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Abstract

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not
overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it
is not clear in general to what extent lincRNAs contribute to the information flow from genotype
to phenotype. To explore this question, we systematically analyzed cellular roles of lincRNAs in
Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we
deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse
coding-gene mutants for functional context. We applied high-throughput colony-based assays to
determine mutant growth and viability in benign conditions and in response to 145 different
nutrient, drug and stress conditions. These analyses uncovered phenotypes for 47.5% of the
lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed
high-throughput microscopy and flow-cytometry assays, linking 37% of these lincRNAs with cell-
size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%)
of all lincRNA deletion mutants tested. For complementary functional inference, we analyzed
colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different
conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain
conditions. Clustering analyses provided further functional clues and relationships for some of
the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of
phenotypes, indicating that most of the lincRNAs analyzed exert cellular functions in specific
environmental or physiological contexts. This study provides groundwork to further dissect the

roles of these lincRNASs in the relevant conditions.
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Introduction

Genomes produce pervasive and diverse non-coding RNAs. How much genetic information is
transacted by this non-coding ‘dark matter’ remains a matter of debate. A substantial, but poorly
understood portion of transcriptomes consists of long intergenic non-coding RNAs (lincRNAS).
LincRNAs are longer than 200 nucleotides, lack long open reading frames, and do not overlap
any neighbouring coding regions. While not all lincRNAs may be functional, several have well-
defined roles in gene regulation and some other cellular processes. Different lincRNAs can
control gene expression at different levels, from transcription to translation, and either in cis
(acting on neighbouring genes) or in trans (acting on distant genes) (Rinn and Chang, 2012;
Popadin et al., 2013; Ulitsky and Bartel, 2013; Yamashita, Shichino and Yamamoto, 2016;
Schlackow et al., 2017; Fauquenoy et al., 2018). Although lincRNAs show little sequence
conservation between species, functional principles seem to be conserved which can help us to
understand their biology (Ulitsky, 2016). Specific lincRNAs have been implicated in complex
human diseases (Batista and Chang, 2013)(Kumar et al., 2013). For example, Xist exerts a
tumour suppressive function (Yildirim et al., 2013), TUNA is associated with neurological
function and Huntington'’s disease (Lin et al., 2014), and lincRNA1 delays senescence
(Abdelmohsen et al., 2013). Moreover, lincRNAs are emerging as diagnostic molecular markers,
as they can be easily detected in blood and could provide more readily accessible drug targets
than proteins (Kim et al., 2016; Bester et al., 2018; DeWeerdt, 2019).

Despite these efforts and insights based on studying selected lincRNAs, the systematic picture
remains incomplete as the importance of most lincRNAs is unknown. Functional analyses of
lincRNAs are challenging given their profusion, poor annotation, low expression, and limited
methodology (Bassett et al., 2014; Cao, Wahlestedt and Kapranov, 2018; Kopp and Mendell,
2018). Knowledge of lincRNA function is therefore scarce even in well-studied organisms,
highlighting the need for more systematic approaches. Large-scale genetic studies of incRNAs
have emerged, starting to provide a more global picture on their functions and contributions to
phenotypes (Joung et al., 2017; Liu et al., 2017; Bester et al., 2018; Parker et al., 2018; Tuck et
al., 2018; Wei et al., 2019; Balarezo-Cisneros et al., 2021). These findings suggest that many
lincRNAs play specialized roles in specific conditions and, therefore, need to be analysed in the

relevant conditions.
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The fission yeast, Schizosaccharomyces pombe, is a potent genetic model system to study
gene regulation and lincRNA function in vivo (Marguerat et al., 2012; Yamashita, Shichino and
Yamamoto, 2016; Atkinson et al., 2018; Fauquenoy et al., 2018). Although only the most highly
expressed lincRNAs show purifying selection (Jeffares et al., 2015), their regulation is often
affected by expression quantitative trait loci (Clément-Ziza et al., 2014). Notably, transposon
insertions in up to 80% of non-coding regions of the S. pombe genome can affect fitness (Grech
et al., 2019). RNA metabolism of fission yeast is similar to metazoan cells. For example, RNA
interference (RNAIi), RNA uridylation, and PABPN1-dependent RNA degradation are conserved
from fission yeast to humans, but absent in budding yeast. Genome-wide approaches by us and
others have uncovered widespread lincRNAs in fission yeast (Wilhelm et al., 2008; Rhind et al.,
2011; Eser et al., 2016; Atkinson et al., 2018). Nearly all S. pombe lincRNAs are polyadenylated
and transcribed by RNA polymerase Il (Marguerat et al., 2012). Transcription of incRNAs starts
from nucleosome-depleted regions upstream of positioned nucleosomes (Marguerat et al.,
2012; Atkinson et al., 2018), and the regulation of some lincRNAs involves specific transcription
factors such as Gafl (Rodriguez-Lépez et al., 2020). Most S. pombe lincRNAs are cryptic in
cells growing under standard laboratory conditions, being suppressed by RNA-processing
pathways such as the nuclear exosome, cytoplasmic exonuclease and/or RNAi (Zhou et al.,
2015; Atkinson et al., 2018), but they become induced during starvation or sexual differentiation
(Atkinson et al., 2018). A substantial portion of lincRNAs are actively translated (Duncan and
Mata, 2014), raising the possibility that some of them act as small proteins. A few S. pombe
lincRNAs have been functionally analyzed: meiRNA and rsel control meiotic differentiation
(Ding et al., 2012; Yamashita, Shichino and Yamamoto, 2016; Fauquenoy et al., 2018),
SPNCRNA.1164 regulates the atfl transcription-factor gene in trans during oxidative stress
(Leong et al., 2014), several lincRNAs activate the downstream fbpl gene during glucose
starvation (Oda et al., 2015), prt controls phol expression (Ard, Tong and Allshire, 2014; Shah
et al., 2014), nc-tgp1 inhibits the tgpl gene by transcriptional interference (Ard, Tong and

Allshire, 2014), and naml regulates meiotic differentiation (Touat-Todeschini et al., 2017).

Most S. pombe lincRNAs may not function under benign laboratory conditions, when they are
typically very lowly expressed (Marguerat et al., 2012; Atkinson et al., 2018). Phenomics
approaches seek to rigorously characterize phenotypes associated with many gene variants
under diverse conditions (Brochado and Typas, 2013; Rallis and Bahler, 2016). Such broad,
high-throughput phenotyping is an effective approach to uncover functional clues for unknown

genes. For example, while only 34% of all budding yeast gene-deletion mutants display a
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growth phenotype under the standard condition, 97% of these mutants show sub-optimal growth
in at least one condition when assayed under a large number of chemical or environmental
perturbations (Hillenmeyer et al., 2008). We have established a sensitive, reproducible platform
for high-throughput colony-based assays to determine cellular fithess under diverse conditions
(Kamrad, Rodriguez-Lépez, et al., 2020). Here we take advantage of this potent approach to
broadly investigate phenotypes of 150 lincRNAs, using deletion and/or overexpression mutants,
supplemented with high-throughput microscopy and flow-cytometry assays of deletion mutants.
Colonies of a representative set of 238 coding-gene mutants were phenotyped in parallel for
functional comparison. Using these different assays, we collected quantitative data for over 1.1
million unique colonies and over 5.7 million cells in a wide range of conditions. This study
reveals hundreds of novel lincRNA-associated phenotypes and provides a framework for follow-
on studies.

Results and Discussion

Experimental strategy for functional profiling of lincRNAs

We focused on lincRNAs, rather than other types of non-coding RNAs, because 1) they are
poorly characterized in general but emerge as varied regulatory factors; 2) they can be deleted
without directly interfering with coding gene function; and 3) they are more likely to function in
trans as RNAs than antisense or promoter-associated ncRNAs which can affect neighbouring or
overlapping genes via their transcription (Ard, Allshire and Marquardt, 2017). For functional
profiling, we selected 150 S. pombe lincRNA genes that produce well-defined transcripts and
are well-separated from neighboring coding regions (over ~200 bp), based on genome-browser
views of RNA-seq data. We established efficient high-throughput methods to genetically
manipulate these lincRNAs. For deletions, we applied a CRISPR/Cas9-based method
(Rodriguez-Lopez et al., 2016); this approach allowed us to knock-out the precise regions
transcribed into lincRNAs without inserting any markers or other alterations, thus avoiding
indirect physiological effects. For overexpression, we applied restriction-free cloning to express
the lincRNAs from a plasmid under the control of the strong, inducible nmt1 promoter
(Maundrell, 1993). Gene overexpression (‘gain-of-function’) provides complementary phenotype
information to gene deletion (Prelich, 2012); moreover, any phenotype caused by a lincRNA that

is ectopically expressed from a plasmid points to a function that is exerted over a distance (in
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trans) via the lincRNA itself, rather than via its transcription or other local effects. We managed
to delete 141 different lincRNAs (111 of which with at least two independent guide RNAs) and to
overexpress 113 lincRNAs, with 104 lincRNAs being both deleted and overexpressed. These
lincRNAs ranged in length from ~90 to 5100 nucleotides and in GC content from 25 to 46%, with
means of 820 nucleotides and 34% GC, respectively. These lincRNAs are distributed across the
entire nuclear genome (Figure 1A). Information for all deletion and overexpression strains

analyzed is available in Supplemental Dataset 1.

To provide functional context for the lincRNA deletion-mutant phenotypes, we also assayed 238
coding-gene mutants from the S. pombe gene-deletion library, using prototrophic mutants after
crossing out the auxotrophic mutants (Malecki and Bahler, 2016). These mutants broadly cover
the Gene Ontology (GO) slim Biological Process categories (Lock et al., 2019), ageing-related
genes (Rallis et al., 2014, Sideri et al., 2014), as well as 104 ‘priority unstudied genes’ (Wood et
al., 2019) (Supplemental Dataset 1).

Figure 1B provides an overview of the colony- and microscopy-based phenomics assays for the
deletion and overexpression mutants. To determine fitness-related traits from colony-based
assays, we applied pyphe, our python package for phenomics analyses (Kamrad, Rodriguez-
Lépez, et al., 2020). Strains were arrayed randomly around a control grid at a density of 384
colonies per plate. We assayed the deletion or overexpression strains in response to diverse
environmental factors such as different nutrients and drugs as well as oxidative, osmotic, heavy-
metal, protein-homeostasis and DNA-metabolism stresses (Supplemental Figure 1), including
some combined factors which can reveal additional phenotypes by non-additive effects that are
not evident from single conditions (Rallis, Codlin and Bahler, 2013). For drugs and stressors, we
applied low and high doses, where wild-type cell growth is normal or inhibited, respectively, to
uncover both sensitive or resistant mutants. For the deletion mutants, we measured colony size
to determine cell growth across 149 different nutrient, drug and stress conditions (Supplemental
Dataset 1). For 68 of these conditions, we also measured colony redness using the phloxine B
dye to determine cell viability (Lie et al., 2018; Kamrad, Rodriguez-Lopez, et al., 2020). Cell
growth and viability provided complementary functional information and produced strong
biological signals (Figure 1C). For the overexpression mutants, we assayed cell growth across
47 conditions (Supplemental Dataset 1). All colony-based phenotyping was performed in at
least three independent biological repeats per condition, with a median number of nine repeats
per lincRNA.
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Overall, we collected >1,100,000 phenotype data points for cell growth and >350,000 data
points for cell viability. We established a normalisation procedure based on control grids to
correct for known variations between and within plates which effectively reduces noise in the
data (Figure 1C; Supplemental Figure 2A) (Kamrad, Rodriguez-Lépez, et al., 2020). Together
with the high number of replicates, this normalisation provided the statistical power to
confidently measure growth differences as small as 5%, thus supporting the detection of subtle
lincRNA mutant phenotypes (Supplemental Figure 2B). Although control conditions measured in
the same batch tended to be more similar, the batch effects remained much smaller than the
biological signals (Supplemental Figure 2C). Thus, our colony-based phenotyping assays
produce robust and reproducible results with high sensitivity. For the lincRNA deletion mutants,
we also screened for cell size and cell-cycle traits using high-throughput microscopy and flow-
cytometry analyses (Figure 1B). These assays added >20,000 phenotype datasets (microscopic
fields analysed), with over 5.7 million cells analysed across 338 samples. Information for all

phenotyping conditions is provided in Supplemental Dataset 1.

Phenotyping of deletion mutants in benign conditions

We screened for phenotypes of the lincRNA and coding-gene deletion mutants under benign,
standard-laboratory conditions using rich and minimal growth media. We looked for mutants
showing a significant difference in colony growth and/or colony viability compared to wild-type
cells. Among the 141 lincRNA mutants tested, five and ten mutants grew slower than wild-type
cells in rich and minimal media, respectively, while one mutant grew faster in minimal medium
(Figure 2A; Supplemental Dataset 2). Among the 238 coding-gene mutants tested, 26 and 48
mutants grew slower in rich and minimal media, respectively, while four mutants each grew
faster in rich and minimal media, three of which in both media (Figure 2A; Supplemental
Datasets 3 and 4). Among the total of 51 coding-gene mutants growing slower in our assays, 49
have previously been associated with the phenotype ontology ‘abnormal vegetative cell-
population growth’ (Harris et al., 2013), thus validating our assay for this phenotype. With
respect to colony viability, three lincRNA mutants showed lower viability than wild-type cells, two
in rich medium and one in minimal medium (Figure 2B; Supplemental Datasets 2 and 3). Among
the coding-gene mutants, 103 and 42 mutants showed higher or lower viability, respectively, in
either or both benign conditions (Figure 2B; Supplemental Datasets 2 and 3). In conclusion, ~2-

7% of the lincRNA mutants showed growth or viability phenotypes, compared to ~11-43% of the
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coding-gene mutants, respectively. These results suggest that coding-gene mutants are more
likely to have phenotypes in standard growth conditions. The results also illustrate that colony-
viability assays can uncover phenotypes for many additional mutants not evident from colony-
growth assays (Lie et al., 2018; Kamrad, Rodriguez-Lépez, et al., 2020).

We examined additional, cellular phenotypes in rich medium for 110 lincRNA deletion mutants.
Abnormal cell length or altered duration of cell-cycle stages point to defects in the cell-division
cycle. Using high-throughput microscopy, we determined the length and proportion of bi-
nucleated cells; these cells are fully grown and in G1/S phases of the cell cycle. In addition to
wild-type cells, we used small weel-50 and large cdc10-129 cell-cycle mutants as controls
(Nurse and Hayles, 2019). Bi-nucleated wild-type cells showed a median length of 9.7um,
consistent with published data for ethanol-fixed cells (Heisler et al., 2014). Two lincRNA mutants
were significantly shorter than wild-type cells and four were longer (Figure 3A,B; Supplemental
Figure 3A; Supplemental Dataset 2). Thus, these lincRNAs may be involved in the coordination
of cell growth and division. Two of the size mutants, SPNCRNA.9894 and SPNCRNA.236A4,
also showed strong slow-growth phenotypes (Figure 3C), but no anomalies in cell-cycle phases
(Figure 3D; Supplemental Figure 4A,B). We independently validated the cell-length phenotypes
of these two mutants by measuring calcofluor-stained cells growing in rich liquid medium fixed
with formaldehyde. This analysis confirmed the shortened average length of SPNCRNA.989A
cells (11.7+0.89um; n=114) and extended median length of SPNCRNA.236A cells
(12.7£0.92um; n=155) compared to wild-type cells (12.1+0.75um; n=129). These two mutants
showed a range of other phenotypes and are further discussed below. We also detected
phenotypes pointing to defects in transitions between cell-cycle phases: 22 and five lincRNA
mutants showed significantly reduced and increased proportions of bi-nucleated cells,
respectively, compared to the 13.2% bi-nucleated wild-type cells (Figure 3D; Supplemental
Figure 3B). Four mutants showed both aberrant cell lengths and proportions of bi-nucleated
cells: SPNCRNA.819A cells were shorter and had fewer bi-nucleates, while SPNCRNA.3234,
SPNCRNA.4124 and SPNCRNA.934A cells were longer and had more bi-nucleates (Figure
3A,C). We validated these microscopy data with high-throughput flow cytometry, with the results
showing a good correlation (Supplemental Figure 4C). We conclude that several lincRNAs are

involved in regulating cell size and/or cell-cycle progression.
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Phenotyping of deletion mutants in multiple nutrient, drug and stress conditions

We assayed for colony-size (growth) phenotypes of the lincRNA and coding-gene mutants in
the presence of various stresses or other treatments, relative to the same mutants growing in
benign conditions and normalized for wild-type growth (Methods). To this end, we applied the
same significance thresholds as for benign conditions. Among the 141 lincRNA mutants tested,
60 (43%) showed growth phenotypes in at least one condition (Supplemental Datasets 2 and 3).
Together, these 60 mutants showed 211 growth phenotypes across conditions, with 69 of the
145 conditions producing phenotypes in at least one mutant (Figure 4A). The 211 hits included
150 resistant and 61 sensitive phenotypes (i.e., mutants showing larger or smaller colonies,
respectively, in assay conditions compared to the control condition, each relative to wild-type).
Seven lincRNA mutants showed growth phenotypes in at least five conditions, with
SPNCRNA.2364 showing the most phenotypes, being resistant in 26 and sensitive in 2
conditions (Supplemental Datasets 2 and 3). Among all conditions, the most phenotypes were
triggered by 0.075% MMS (causing DNA damage; 13 hits) and Brefeldin A (inhibiting protein

transport from endoplasmic reticulum to Golgi; 18 hits).

Due to possible off-target mutations introduced by CRISPR/Cas9, we generated independent
deletion mutants using different guide RNAs targeting the same lincRNA gene. These
independent mutants generally produced highly similar growth phenotypes (Figure 4B). Of the
161 phenotypes associated with lincRNAs represented by two or more independent mutants,
112 phenotypes agreed between the corresponding mutants (all mutants showed median effect
sizes >5%), and 27 hits showed a similar trend (median effect sizes >2%). In 16 cases, at least
one guide RNA showed no phenotype (median effect sizes <2%), and in only 6 cases did the
guide RNAs show opposite effects (Figure 4B). These results indicate that any secondary
effects from CRISPR/Cas9-based gene deletions did not affect the consistency of our

phenotype results in the vast majority of cases.

Among the 238 coding-gene mutants tested, 223 (93.7%) showed growth phenotypes in at least
one condition, 104 of which representing priority unstudied genes that have remained entirely
uncharacterized (Wood et al., 2019). Together, these 223 mutants showed 1924 growth
phenotypes across conditions, with 119 of the 145 conditions tested producing phenotypes in at
least one mutant (Figure 4C; Supplemental Datasets 3 and 4). The 1924 hits included 651

resistant and 1273 sensitive phenotypes.
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We also assayed for colony-viability phenotypes of the lincRNA and coding-gene mutants
across stress or other treatments relative to mutant cells growing in benign control conditions,
normalized for wild-type growth. To this end, we applied the same quantitative redness scores
and significance thresholds as for the benign conditions. Among the 141 lincRNA mutants
tested, 25 (17.7%) differed in viability in at least one condition compared to wild-type cells
(Supplemental Dataset 2). Together, these 25 mutants showed 98 phenotype hits across
conditions, with 45 of the 67 conditions tested producing phenotypes in at least one mutant
(Figure 4A). The 98 hits included 86 resistant and 12 sensitive phenotypes (higher and lower
viability than wild-type, respectively). Two lincRNA mutants, which were sensitive in the benign
condition, caused ~56% of the hits, all resistant, in conditions that partially suppressed this
sensitive phenotype: SPNCRNA.989A (31 hits) and SPNCRNA.1343A (24 hits) (Supplemental
Dataset 2). These lincRNAs are discussed further down. Among all conditions, the highest
number of hits with viability phenotypes were observed in rich medium with 0.5M KCI or with

0.005% MMS (6 hits each) and in minimal medium with canavanine (5 hits).

Among the 238 coding-gene mutants tested, 172 (72.3%) showed viability phenotypes in at
least one condition. Together, these 172 mutants showed 1874 phenotype hits across
conditions, with 57 of the 67 conditions tested producing phenotypes in at least one mutant
(Figure 4C; Supplemental Datasets 3 and 4). The 1874 hits included 1535 resistant and 339

sensitive phenotypes.

We then explored the relationships between colony-growth and -viability for the 67 conditions
used to measure both phenotypes. The lincRNA mutants produced 140 growth phenotypes and
98 viability phenotypes, but in only 24 instances were both phenotypes associated with the
same mutant (Figure 4D). The coding-gene mutants showed 1216 growth phenotypes and 1874
viability phenotypes, with only 310 instances where both phenotypes were associated with the
same mutant (Figure 4D). A large excess of high-viability phenotypes was evident for coding-
gene and, even more so, for lincRNA mutants (Figure 4D). Thus, slowly growing mutants did
often show higher viability rather than lower viability, especially in coding-gene mutants.
Together, these results further highlight that the colony-viability assays produce orthogonal
phenotype information to the colony-growth assays and can uncover many additional

phenotypes (Lie et al., 2018; Kamrad, Rodriguez-Lopez, et al., 2020).
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The lincRNAs that showed phenotypes were distributed across the genome (Figure 1A). They
were not enriched in any particular gene-expression patterns, showing diverse responses to
genetic or physiological perturbations (Supplemental Figure 5A). The lincRNAs associated with
phenotypes were of similar length as those without phenotypes, but they tended to have a
higher GC content (Supplemental Figure 5B). This result raises the possibility that the GC

content reflects or even determines the likelihood of IncRNA function.

In conclusion, substantial proportions of the lincRNA mutants showed growth (43%) and/or
viability (18%) phenotypes in some stress conditions, and the majority of coding-gene mutants
showed phenotypes in these conditions (72-94%). With respect to viability phenotypes, much
larger proportions of both lincRNA and coding-gene mutants were resistant (87.8% and 81.9%,
respectively). This bias could partly reflect that many mutants are growing somewhat more
slowly in benign conditions (Figure 2A), a trade-off that may render them more resilient to
stresses (LOpez-Maury, Marguerat and Bahler, 2008). Together, these analyses show that
phenomics assays can effectively uncover functional clues not only for protein-coding genes but

also for many lincRNAs.

Integrated analyses of functional signatures from deletion mutants

Using unsupervised clustering, we mined the rich deletion-mutant phenotype data to explore
functional profiles for both protein-coding and lincRNA genes. For the phenotype calling
described above, we wanted to identify functional clues and gene-environment interactions with
high confidence (i.e., low false discovery rate). Here, using a less conservative analysis, we
applied a multivariate, global approach by converting effect sizes to a modified z-score to
indicate the deviation from the expected phenotype value in units of standard deviations from
the wild-type control in the same condition. Several conditions involved the same stressor, e.g.
the same drug used at different doses (Supplemental Dataset 1). We aggregated such related
conditions and used the strongest median response for each mutant and set of conditions
(Methods). The protein-coding mutants generally showed stronger phenotypes than the lincRNA
mutants as measured by the magnitude of the effect sizes (Supplemental Figure 6A). To
compare phenotypes across the two types of mutants, we discretized the data, classing mutants
as either sensitive (-1), resistant (+1), or similar (0) to their fitness in the corresponding control

condition (Supplemental Figure 6B; Supplemental Dataset 5). Thresholds were chosen at +1.5


https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.30.450572; this version posted July 1, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

12

standard deviations for both growth and viability data, which resulted in ~23% of all data points
classed as non-zero in each dataset. We limited this analysis to 41 sets of aggregated ‘core’

conditions in which all mutants were phenotyped (Supplemental Dataset 5).

Applying this analysis, most lincRNA mutants showed few or no phenotypes across the 41 core
conditions, while 16 lincRNA mutants showed strong phenotype profiles across many
conditions. Such uneven distribution in the phenotype numbers associated with lincRNAs
indicates that the data reflect biology rather than technical noise. In total, 194 mutants showed a
phenotype in five or more sets of conditions, including the 16 lincRNA mutants, and these
mutants were used for hierarchical clustering. Clear patterns were evident, and we divided the
genes into three main clusters (Figure 5A; Supplemental Figure 6C; Supplemental Dataset 5).
Clusters 1, 2 and 3 contained two, ten and four lincRNAS, respectively, providing an opportunity
to infer function through ‘guilt by association’ with known protein-coding genes in the same
clusters. This approach was somewhat limited because only 115 of the 178 protein-coding
genes in the clusters had known or inferred biological roles. Using the AnGeLi tool (Bitton et al.,

2015), we identified functional enrichments for the clusters as described below.

Cluster 1 showed the most defined phenotype signature, characterized by many mutants
displaying higher viability in 15 stress conditions, lower viability in the benign conditions and in
canavanine A, and slow growth in benign conditions and several drugs tested, including
hydrogen peroxide and antimycin A (Figure 5A; Supplemental Figure 6C; Supplemental Dataset
5). This cluster was enriched in various GO categories related to protein localization/transport,
cellular respiration, phosphate metabolism, and protein translation (the latter including five
cytosolic/mitochondrial ribosomal subunits, six translation factors, and three subunits of the
elongator complex). The cluster also included nine genes involved in nutrient- or stress-
dependent signalling (Supplemental Dataset 5). With respect to phenotype ontology (Harris et
al., 2013), this cluster was enriched in multiple terms related to cytoskeleton aberrations,
abnormal respiration and translation as well as altered cell growth and stress sensitivity. Indeed,
80% of the mutants in this cluster have previously been associated with decreased cell
population growth, and 87% are associated with increased sensitivity to chemicals. These

enrichments validate our phenotype data.

Cluster 1 contained the two lincRNAs, SPNCRNA.989 and SPNCRNA.1343, which accounted

for ~56% of the colony-viability phenotypes among the lincRNA deletion mutants. When
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overexpressed, however, they generated just 1-2 hits, much fewer than average (see below).
This pattern suggests that these lincRNAs may function in cis, regulating nearby genes.
Notably, both lincRNAs are located upstream of genes regulated by the Pho7 transcription
factor (Schwer et al., 2017), which functions during phosphate starvation and other stresses
(Carter-O’Connell et al., 2012): SPNCRNA.989 and SPNCRNA.1343 are divergently expressed
to atd1 and tgpl, respectively (Supplemental Figure 7). SPNCRNA.1343 partially overlaps with
the nc-tgpl RNA that regulates phosphate homeostasis by repressing the adjacent tgpl gene
via transcriptional interference; deletion of SPNCRNA.1343 has been shown to increase tgpl
expression by inhibiting nc-tgpl expression (Ard, Tong and Allshire, 2014; Ard and Allshire,
2016; Shah et al., 2014; Garg et al., 2018; Yague-Sanz et al., 2020). Inspection of the region
upstream of SPNCRNA.989 suggested a regulatory mechanism similar to tgp1, with divergent
transcripts towards atd1 likely driven by a bi-directional promoter from the nucleosome-depleted
region upstream of SPNCRNA.989 (Supplemental Figure 7). These patterns suggest that
additional Pho7-regulated genes, like atdl, are controlled via upstream RNAs, similar to the
tgpl, pho84 and phol genes that respond to phosphate limitation (Carter-O’'Connell et al.,
2012). The similar phenotypes of SPNCRNA.989A and SPNCRNA.13434 mutants therefore
suggests that these lincRNA deletions interfere with the expression of their neighboring genes
and thus with processes affected by this regulon. In spotting assays, the phenotypes of
SPNCRNA.9894 and SPNCRNA.1343A often differed from those of tgpl4 and atd14
(Supplemental Figure 8). These results are consistent with the lincRNA deletion leading to

induction, rather than repression, of their coding-gene neighbors.

Cluster 2 contained a majority of genes that are not associated with any functional annotations,
including ten lincRNAs genes (Supplemental Figure 6C; Supplemental Dataset 5). This cluster
was enriched for long-lived mutants and for genetic interactions (based on Biogrid data;
(Breitkreutz et al., 2008), meaning that the protein-coding genes within this cluster are ~4 times
more likely to interact with each other than expected by chance. This cluster included seven
genes involved in stress and/or nutrient signalling pathways and six genes for transcription
factors functioning during stress/nutrient responses or in unknown processes. The phenotype
data in this cluster were sparse and lacked a convincing functional signature across the coding

and lincRNA genes.

Cluster 3 was characterized by most mutants showing rapid growth in valproic acid, formamide

and sodium orthovanadate, and many of these mutants also showed higher viability in benign
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conditions but lower viability in valproic acid. This cluster was enriched for long-lived mutants
and for energy metabolism, including four genes each functioning in glycolysis and the TCA
cycle. Intriguingly, one of the four lincRNA genes in this cluster, SPNCRNA.236, is located
upstream the pyruvate-kinase gene pyk1, which is involved in the last step of glycolysis to
generate pyruvate for the TCA cycle or fermentation. The finding that the SPNCRNA.236A4
mutant leads to a similar phenotypic signature as does deletion of glycolysis or TCA-cycle
genes raises the possibility that SPNCRNA.236 acts in cis to control pykl expression.
Consistent with this idea, SPNCRNA.236A4 mutants grow slowly (Figure 2A) while increased
activity of Pyk1 leads to faster growth (Kamrad, Grossbach, et al., 2020). However,
SPNCRNA.236 also generates phenotypes in 11 conditions when overexpressed from a
plasmid (Supplemental Dataset 6), including faster growth in minimal medium which is the
opposite of the slower growth of the deletion mutant in the same condition. Thus, it is also
possible that SPNCRNA.236 can act in trans.

We validated phenotypes of five lincRNA deletions from Clusters 1 and 3 as well as deletions
from neighboring coding genes, using serial-dilution spotting assays under 13 conditions.
Detection of subtle phenotypes involving 5% differences in growth is difficult with such spotting
assays. Nevertheless, we could confirm 11 (84%) of the phenotypes detected by the high-
throughput colony-based assays (Supplemental Figure 8). We conclude that there is generally a

good agreement between these different phenotyping assays.

To further explore our dataset, we discretized all deletion-mutant phenotypes, both from
lincRNAs and coding genes (Supplemental Datasets 2-4). Pearson correlations of phenotype
profiles were then used for constructing a network that was visualized with Cytoscape (Shannon
et al., 2003). The network included several distinct clusters. A large, tight cluster consisted
mostly of protein-coding genes (Figure 5B, highlighted in red). This cluster, which was similar to
Cluster 1 (Figure 5A), included SPNCRNA.989 and was enriched for genes involved in
phosphate metabolism and translation and 89% of the mutants in this cluster displayed slow
growth phenotypes (Figure 5B). Another large cluster was enriched for lysine metabolism with
18% of the mutants showing ageing-related phenotypes such as increased lifespan during
guiescence (Sideri et al., 2014). This cluster also included three lincRNAs: SPNCRNA.318,
SPNCRNA.426 and SPNCRNA.965 (Figure 5B, highlighted in blue). Network analysis of the
whole phenotypic dataset revealed further connections between several lincRNAs and coding

genes. For example, a negative phenotypic correlation was evident between SPNCRNA.1460
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and fbpl (Figure 5B, upper left); fopl is a key gene responding to glucose starvation that is
regulated by upstream non-coding RNAs (Hoffman and Winston, 1990; Hirota et al., 2008)(Oda
et al., 2015). SPNCRNA.1460 is located upstream of scrl, encoding a transcriptional repressor
that negatively regulates fbpl (Tanaka et al., 1998; Vassiliadis et al., 2019). This link raises the
possibility that SPNCRNA.1460 controls scrl expression and, therefore, fopl expression. The
same cluster also included car2, which is also implicated in carbon metabolism, and two priority
unstudied genes, whose association suggests that they function in similar processes.
Interestingly, some clusters consisted exclusively or mostly of lincRNAs (Figure 5B, upper left).
Naturally, these clusters showed no functional enrichments, but they point to several incRNAs

acting in related cellular processes, possibly together.

Phenotyping of lincRNA overexpression mutants in multiple conditions

Gene overexpression provides complementary phenotype information to gene deletion (Prelich,
2012). We constructed strains that ectopically overexpressed 113 lincRNAs from a plasmid
under the strong nmtl promoter in minimal medium (Methods). We then looked for differences
in colony growth under benign conditions compared to empty-vector control cells. We also
looked for growth phenotypes in the presence of various stresses or other treatments, relative to
growth in benign control conditions and normalized for the growth of empty-vector control cells.
In the benign condition, most lincRNA overexpression strains grew faster compared to the
empty-vector control. This pattern may reflect an indirect effect of lincRNA transcription by
increasing plasmid copy numbers and/or expression of the budding yeast LEU2 marker that is
limiting for growth. Therefore, we normalized the colony growth of overexpression mutants in
the stress conditions by the growth in the benign condition to correct for this potential bias. We
used a more stringent significance threshold for the overexpression mutants than for the
deletion mutants (Figure 6A), because ectopic overexpression of genes involves cell-to-cell
variation in plasmid copy numbers, leading to higher phenotypic heterogeneity (Siam, Dolan and
Forsburg, 2004). Among the 113 lincRNA overexpression strains tested, 102 (90.3%) showed
growth phenotypes in at least one condition (Figure 6A; Supplemental Dataset 6). Together,
these 102 overexpression strains showed 565 growth phenotypes across conditions. The 565
hits included 347 resistant and 218 sensitive phenotypes (i.e., mutants showing larger or
smaller colonies, respectively, in the assay condition than in the control). Fourteen lincRNA

overexpression strains showed more consistent phenotypes in ten or more conditions, topped
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by SPNCRNA.335 that showed sensitive and resistant phenotypes in twelve and three

conditions, respectively (Supplemental Figure 9A).

With respect to the 47 conditions tested, 42 produced phenotypes in at least one mutant
(Supplemental Dataset 6). Over 80% of the 565 phenotypes came from only 21 of the 47
conditions, and ~24% of the phenotypes came from just three conditions: proline as a nitrogen
source, 5 mM valproic acid (VPA), and 10 mM hydroxyurea (HU) (Supplemental Figure 9B).
Proline is a poor nitrogen source which causes nitrogen stress and slows growth (Davie, Forte
and Petersen, 2015). Notably, the expression of many lincRNAs is strongly induced under
nitrogen starvation (Atkinson et al., 2018). Together with the results presented here, this
indicates that several lincRNAs function during nitrogen stress. VPA is an inhibitor of histone
deacetylases, and some lincRNAs are involved in histone modification (Rinn and Chang, 2012).
Roles for lincRNAs in neurological disorders such as epilepsy are also emerging, and VPA can
ameliorate epilepsy partly by repressing some of these lincRNAs (Hauser, Henshall and Lubin,
2018). HU inhibits DNA synthesis, and our findings suggest that several lincRNAs are involved
in related processes. For example, some lincRNAs have been implicated in double-strand break
repair (Bader et al., 2020). We propose that several lincRNAs can influence cellular growth in

trans when ectopically overexpressed under conditions that affect certain cellular processes.

We looked for functional signatures in the lincRNA overexpression phenotypes using
hierarchical clustering (Figure 6B). Unlike for lincRNA deletion mutants, this data set did not
provide the functional context from coding-gene mutants. We observed a conspicuous sub-
cluster of four lincRNA overexpression strains that showed slower growth in many of the
conditions (Figure 6B; highlighted in red). One of these four overexpressed lincRNAs was the
well-characterized meiRNA that functions in the induction of meiosis (Watanabe and
Yamamoto, 1994). In mitotically growing cells, meiRNA binds to Mmil via its DSR motif and is
degraded by the nuclear exosome, while upon induction of meiosis, meiRNA binds to the RRM
motif of Mei2 which in turn promotes meiosis (Yamashita, 2019). The other three lincRNAs in
this sub-cluster contain motifs for potential Mei2 binding, including two DSR motifs. Moreover,
like meiRNA, the other three lincRNAs are also de-repressed in nuclear-exosome mutants and
during meiosis (Atkinson et al., 2018). Together, these findings raise the possibility that the

other three lincRNAs in the sub-cluster also function in meiosis.
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We compared the phenotype data from deletion and overexpression mutants. We obtained data
for both types of mutants for 104 lincRNAs in 22 conditions, 18 of which showed phenotypes. Of
these 104 lincRNAs, only seven did not produce any phenotypes in any condition tested. Under
the 18 conditions, a higher proportion of lincRNA overexpression mutants (86.5%) than deletion
mutants (32.7%) produced phenotype hits in at least one condition. Moreover, lincRNA
overexpression generally resulted in larger effect sizes, i.e. stronger phenotypes, than did
lincRNA deletion (Figure 6C). Similar trends have been reported for coding-gene mutants. For
example, 646 and 1302 growth phenotypes are caused by deletion and overexpression
mutants, respectively, of non-essential budding yeast genes (Yoshikawa et al., 2011), and 64
transcription-factor genes of fission yeast show growth phenotypes when overexpressed but not
when deleted (Vachon et al., 2013). Only a few lincRNAs showed phenotypes as both deletion
and overexpression mutants. For example, SPNCRNA.236 showed rapid-growth (resistant)
phenotypes in both overexpression and deletion mutants in five conditions, while in the benign
condition, the overexpression and deletion mutant showed rapid and slow growth, respectively
(Supplemental Datasets 2 and 6). In general, our phenotype data for lincRNA deletion and
overexpression mutants showed little overlap and poor correlation (Figure 6C). These results

illustrate the complementary information provided by these two types of mutants.

How might lincRNA overexpression result in more phenotypes than lincRNA deletion?
Overexpression of a protein-coding gene can burden cells via resource-consuming translation
or toxic protein levels (Moriya, 2015; Bolognesi and Lehner, 2018). Although overexpression of
a single lincRNA should not affect resource allocation, it is possible that these AT-rich RNAs
engage in non-specific molecular interactions. Recent findings indicate that RNAs are assembly
prone and must be tightly regulated as they can promote paraspeckles, stress granules and
phase separation (Fox et al., 2018; Van Treeck et al., 2018). Such processes could trigger the
overexpression phenotypes in certain physiological conditions, reflecting that lincRNAs are
biologically active molecules. Nevertheless, the observed 565 phenotype hits amount to only
10.6% of the potential 5311 hits if overexpression of all 113 lincRNAs caused phenotypes in the
47 conditions tested (Supplemental Dataset 6). Thus, overexpressed lincRNAs do not generally
lead to any non-specific or toxic effects, and the observed phenotypes may, therefore, mostly
reflect specific lincRNA functions. Given that many lincRNAs may function in specialized
conditions (Cabili et al., 2011; Derrien et al., 2012; Pauli et al., 2012; Hon et al., 2017; Atkinson
et al., 2018), deletion mutants will only reveal phenotypes when assayed in the relevant

conditions. On the other hand, the ‘gain-of-function’ overexpression mutants may also reveal
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phenotypes in conditions where the lincRNAs do not normally function. Notably, phenotypes
that are caused by lincRNAs being ectopically expressed from plasmids point to a function that
is exerted in trans, via the lincRNA itself, rather than via its transcription or other cis effects. Our
findings therefore raise the possibility that many of the lincRNAs tested can function over a

distance.

Conclusions

We applied a phenomics approach to explore the functional importance of S. pombe lincRNAs,
including colony-based and cellular assays of deletion mutants and colony-based assays of
overexpression strains. A panel of deletion mutants of coding-genes were screened in parallel
for comparison and functional context. Together, these assays revealed phenotypes for 84 of
141 deleted lincRNAs, 229 of 238 deleted coding-genes, and 102 of 113 overexpressed
lincRNAs. This extensive phenotyping uncovers lincRNAs that contribute to cellular resistance
or sensitivity in specific conditions, reflected by altered colony growth and/or viability, and
lincRNAs that are involved in the size control and the cell-division cycle. As expected, higher
proportions of coding-gene mutants showed phenotypes and these phenotypes tended to be
stronger (larger effect sizes) than for incRNA mutants. In benign conditions, the lincRNA
mutants were ~3- and 30-fold less likely to show phenotypes for colony growth or viability,
respectively, than coding-gene mutants. This difference was less pronounced in the nutrient,
drug and stress conditions, where many more lincRNA mutants revealed phenotypes, at only
~2- to 4-fold lower proportions than coding-gene mutants for colony growth or viability,
respectively. Moreover, compared to lincRNA deletion mutants, the lincRNA overexpression
strains were ~2-fold more likely to show phenotypes, which also tended to be stronger.
Together, these findings support the notion that most lincRNAs play specialized roles in specific
conditions. The findings also indicate that lincRNAs in general have more subtle functions than
proteins, e.g. in fine-tuning of gene expression. Accordingly, it was important that our high-
throughput assays were highly sensitive to detect subtle phenotypes. We conclude that a
substantial proportion of lincRNAs exert cellular functions under certain conditions, and many of
which may act in trans as RNAs. This analysis provides a rich framework to mechanistically

dissect the functions of these lincRNAs in the physiologically relevant conditions.
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Methods

Deletion and overexpression strain libraries

Using a CRISPR/Cas9-based approach and primer-design tool for seamless genome editing
(Rodriguez-Lopez et al., 2016), we deleted 141 different lincRNA genes located across all the
S. pombe chromosomes (Figure 1A; Supplemental Dataset 1 for coordinates). In total, 113
lincRNA genes were deleted in the 972 h”background, and 70 lincRNA genes were deleted in
the 968 h* background, the latter including 15 newly identified lincRNAs (Atkinson et al., 2018).
Thirty lincRNAs were deleted with one guideRNA (gRNA), 103 were deleted using two gRNAs,
and eight were deleted using three gRNAs. For the protein-coding deletion mutants, we
generated a prototroph version of Bioneer V.5 deletion library (Kim et al., 2010) as described
(Malecki and Bahler, 2016). Strains were arranged into 384-colony format using a RoToR HDA
colony-pinning robot (Singer Instruments), including a 96-colony grid of wild-type 972 h™ strains
for plate normalization (Kamrad, Rodriguez-Lopez, et al., 2020). We selected a subset of genes
to broadly cover all main GO categories, together with 91 uncharacterized genes. Supplemental

Dataset 1 provides information on the individual strains.

We generated ectopic overexpression constructs for 113 long intergenic lincRNAs using the
nmtl promoter (Maundrell, 1993). The predicted full-length lincRNA sequences were amplified
by PCR and cloned into the pJR1-41XL vector (Moreno, Duran and Ribas, 2000) using the
CloneEZ® PCR Cloning Kit (GenScript). Each plasmid was checked by PCR for correct insert
size. All primer sequences are provided in Supplemental Dataset 1. Plasmids were then
transformed into S. pombe cells (h’, leul-32), and leucine prototroph transformants were
selected on solid Edinburgh Minimal Medium (EMM2) plates. An empty-vector control strain
was created analogously. Of the 113 lincRNAs, 67 were represented by two independently

cloned vectors (Supplemental Dataset 1).

High-throughput phenotyping of deletion mutants on solid media

The deletion mutants were broadly phenotyped using a colony-based phenomics platform as

described (Kamrad, Rodriguez-Lépez, et al., 2020; Kamrad, Bahler and Ralser, 2021). Mutants

were assayed on solid media with a variety of 55 unique stressors, using different
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concentrations and, in some cases, combinations of stressors. In total we assayed 134 different
conditions, with the viability dye phloxine B being included in 66 of these conditions.
Supplemental Figure 1 provides a description of the conditions used for phenotyping.
Supplemental Dataset 1 contains the concentrations of all the stressors used. Cells were grown
for 24 hours on yeast extract supplement (YES) plates in 384-colony format containing a wild-
type control grid, followed by pinning cells onto plates containing the stressors, using reduced
pressure (4% pinning pressure to transfer a small amount of biomass). Plates were wrapped in
plastic to avoid drying out and incubated for ~40 hours at 32°C, unless stated otherwise, before

image acquisition and phenotype assessment.

Image acquisition and quantitation, data normalisation and processing as well as hit calling was

performed using our pyphe pipeline which is available here: www.github.com/Bahler-Lab/pyphe

(Kamrad, Rodriguez-Lépez, et al., 2020). Images of plates were acquired with a flatbed scanner
(Epson V800 Photo), controlled by pyphe-scan through SANE. Images for quantifying colony
area (growth) were taken by transmission scanning, using the --mode Grey argument. For
quantifying redness/viability, images were taken by reflective scanning using --mode Color.
Images were acquired at 300 or 600 dpi resolution. For colour images, to determine colony
redness for viability, we used an opaque fixture to hold the plates in place, the white cover was
installed in the scanner lid, and the scanner was covered by a cardboard box to prevent external
light interfering with image acquisition. Images were inspected individually and excluded if one
or more of the following applied: several colonies were missing due to pinning errors (usually in
the corners), evidence of contamination, white background had not been inserted during colour
scanning, and/or plate had slipped significantly during scanning so that a whole row/column of
colonies was missing from the image. The overall number of excluded plates was low and
generally did not result in significant data loss in the final dataset due to the large number of

replicate plates.

For image quantification, greyscale transmission images for colony area quantitation were
analysed with the R package gitter (Wagih and Parts, 2014) using the following parameters:
plate.format=384, inverse="TRUE", remove.noise="TRUE", autorotate="TRUE". Images for
which gitter failed (very few) were excluded from further analysis. Colour images for

redness/viability quantification were analysed with pyphe-quantify using default parameters.
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For data normalisation and processing, an experimental design table was prepared for each
dataset which listed for each plate the path to the data file produced during image quantification,
plate layout information, the condition as well as other meta-data (e.g. batch number, replicate
counter and free-text comments). Data from all images of the same dataset was parsed and
processed simultaneously using pyphe-analyse, producing a single data report table in tidy
format per experiment, containing all data associated with a single measured colony on each
line. For analysis of colony areas, the following parameters were used: --format gitter --
load_layouts --gridnorm standard384 --rcmedian --check. For colony redness analysis the

options were: -format pyphe-quantify-redness --load_layouts --rcmedian --check.

Pyphe performs some automated quality control. Specifically, during grid normalisation, missing
reference grid colonies are flagged and all neighbouring colonies are set to NA. Pyphe also
checks data for negative and infinite fitness values (rare artefacts of normalisation procedures).
For the colony size datasets, additional quality control of the data was performed as follows:
missing colonies (colony size 0 reported by gitter and fitness 0 reported by pyphe-analyse) were
set to NA as these are pinning errors; colonies with a circularity (reported by gitter) below 0.85
were set to NA,; plates with a CV of >0.2 for wild-type controls were set to NA. For viability
datasets, the only QC step was to exclude plates with a wild-type CV of >0.05.

For statistical analysis, tables reporting summary statistics and p-values for each lincRNA gene
and condition were obtained with pyphe-interpret. Hits were called separately for control
conditions (where we tested for difference in means between each lincRNA mutant and wild-
type control in the same condition) and all other conditions (where we tested for difference in
means between each lincRNA mutant in test condition vs corresponding control condition).
Welch’s t-test, which does not assume homogeneity of variances, was used and the obtained p-
values were corrected for multiple testing for each condition separately using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995).

The dataset for clustering (Supplemental Dataset 5; Figure 5) was derived from Supplemental
Datasets 2 and 4 by subtracting 1 from the median effect sizes and dividing by the standard
deviation of the wild type control for each condition. Conditions were then aggregated by
choosing the strongest response across all repeats of the same stressor (the stressor is
indicated in the ‘stress_description’ column in the knock-out_condition_metadata sheet of
Supplemental Dataset 1. As not all lincRNA mutants were phenotyped in all conditions,

clustering was restricted to a set of 41 core stressors. LincRNA or coding-gene mutants with
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less than 5 responses were excluded, leaving 194 mutants in total, including 16 ncRNAS). The
final dataset only contained 17 NA values which were imputed with 0. Hierarchical clustering
was done with scipy (Virtanen et al., 2020), using the Ward method and the Euclidean distance
metric. Clusters were obtained by cutting the dendrogram using the fcluster function with the
‘maxclust’ method. Functional enrichments in Clusters 1 to 3 were analysed using AnGeLi

(Bitton et al., 2015), with all protein-coding genes as background list.

Data for the phenotypic correlation network (Fig. 5B) were generated from phenotypes for all
lincRNA and coding-gene deletions, using a ternary system: resistant, sensitive and no
phenotype encoded as 1, -1 and 0, respectively. The network was generated following general
instructions (Contreras-Lopez et al., 2018)(Shannon et al., 2003). Briefly, we used Pearson
correlations to calculate the network and filtered on absolute r values above 0.6 and adjusted p
<0.01. Clustering of the network in Cytoscape was done using community clustering (GLay)

from the clustermaker extension (Morris et al., 2011).

High-throughput microscopy and flow cytometry for cell-size and cell-cycle phenotypes

Strains, frozen in glycerol in 384-colony format, were revived in YES solid plates, resuspended
into 150 pl of liquid YES in 96 well plates and incubated at 32°C for 16 hours. Then, 100 ul from
these pre-cultures were added to 1.5 ml of preheated (32°C) liquid YES in 96 deep-well plates
and incubated at 32°C for 8 hours. Cells were collected by centrifugation, cell pellets were
resuspended in 70% ice-cold ethanol, and stored in the dark at 4°C until further processing. As
cell-size and cell-cycle phenotype controls, we used two temperature-sensitive cell-cycle
mutants: cdc10-129 and weel-50. These mutants were grown in 50 ml YES at 25°C,
centrifuged and re-suspended in 50 ml of prewarmed (37°C) YES and incubated for 4 hours at
37°C to block cell-cycle progression. After 4 hours, 1 ml of the samples was fixed for
microscopy and flow cytometry. The remaining cells were centrifuged and re-suspended in 50
ml of prewarmed YES (25°C), incubated at 25°C, and samples collected and fixed after 20 and
60 min. Over 80% of the 110 lincRNA mutants screened for cellular phenotypes were assayed

in at least 2 independent biological repeats.

For cell-size and cell-cycle phenotypes, fixed cells were washed in 50 mM sodium citrate buffer,

spun down at 3000g for 5 min, re-suspended in 50 mM sodium citrate containing 0.1 mg/ml
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RNAse A, and incubated at 37°C for 2 hours. Cells were then spun down at 3000g for 5 min and
re-suspended in 500 pl of 50 mM sodium citrate + 1 M SYTOX Green (ThermoFisher

Scientific, Cat. no. S7020). Immediately prior to analysing samples using either high-throughput
(HTP) flow cytometry or HTP microscopy, cells in the deep well plates were sonicated for 40 sec

at 50W (JSP Ultrasonic Cleaner model US21) to increase the efficiency of singlets.

For HTP-image acquisition, cells were further stained with a 1:1000 dilution of CellMask™ Deep
Red Plasma membrane dye (ThermoFisher Scientific, Cat. no. C10046), according to the
manufacturer’s instructions. Then, 2.5 pl of fixed and stained cells were transferred from 96-well
plates into a poly-lysine-coated 384-well Perkin Elmer Cell Carrier Ultra imaging plate
(PerkinElmer, Cat. no. 6057500), pre-filled with 25 pl of 1uM SYTOX Green using a Biomek Fx
robot. Cells were spun down for 3 min at 200g before imaging. Imaging was performed on a
Perkin Elmer Opera Phenix microscope, using a water immersion 63x lens to capture confocal
stacks of 12 planes in both Alexa488 (SYTOX Green) and Alexa647(CellMask) channels, with
63 microscopic fields being captured per sample. The images were projected and analysed
using the associated Phenix software Harmony, for the automated identification of mono- and
bi-nucleated cells and respective cell length. Features were exported for further analysis using
R studio.

For HTP flow cytometry, 250 pl of cells were transferred into 96-well plates and 30,000 cells
were measured in a Fortessa X20 Flow cytometer (BD Biosciences), using the HTS plate mode
on the DIVA software and a 488 nm excitation laser to capture the SytoxGreen DNA staining.
Populations of interest were gated as described (Knutsen et al., 2011) using the FlowJo
software version 10.3.0. Features of interest (populations with different DNA content) were then
exported for further analysis using R studio. The determined percentage of cells in each cell-
cycle phase per sample was used to validate the HTP-imaging data. For correlation with the
HTP-imaging (bi-nucleated cells), S- and G1-phase cell populations were grouped together

(Supplemental Dataset 2).

Data analysis was carried out in R (v.3.5.2), using the package tidyverse for data manipulation,
visualisation and statistical analysis. All tests were two-sided unless otherwise stated. For HTP-
imaging analysis, cell density was checked for each sample in the multi-well plate and given a
score of 0 to 5, where 0 is very low to no density (<50 cells/well) and 5 is at too high density;

samples scoring 0 and 5 were excluded from analysis. For cell-size analysis, the median cell
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size of bi-nucleated cells for each mutant was used to calculate fold-changes relative to wild-

type values, applying the Wilcox test to determine significant differences (p <0.05), only

considering cells showing a 25% difference in size compared to wild-type cells. For cell-cycle

analysis by HTP imaging, the percentage of bi-nucleated cells per microscopic field (63
fields/sample) was used to calculate the median value per lincRNA mutant, followed by fold-
change analysis calculated by normalising the percentage of bi-nucleated cells in each sample

relative to wild-type values, applying the Wilcox test to determine significant differences (p

<0.05), only considering cells showing a 220% difference in bi-nucleated cells compared to wild-

type.

High-throughput phenotyping of overexpression mutants on solid media

Overexpression strains were arrayed in 384 format together with the empty-vector control strain
and a grid of the wild-type strain (972 h-) for normalisation. Strains were revived from glycerol
stocks in YES and grown for 2 days at 32°C. Colonies were then transferred to new YES plates,
grown for 1 day, and pinned onto EMM2 (with NH,CI but without amino acid supplements) with
or without the specified drugs/supplements. YES medium contains thiamine that represses the
nmtl promoter and leucine that compromises the maintenance of the overexpression plasmid
(which contains the LEU2 marker). We screened the lincRNA overexpression library for colony
growth phenotypes in 47 conditions (Supplemental Datasets 1 and 6). Each overexpression
strain was represented by at least 12 colonies across 3 different plates and experiments were
repeated at least 3 times. Each condition was assayed in three independent biological repeats,
together with control EMM2 plates, resulting in at least 36 data points per strain per condition.
Plates were incubated at 32°C if not stated otherwise for the condition. Plates were imaged as

described for deletion mutants after 40 or 64 hours in order to capture as many hits as possible.

Image acquisition and quantification, data normalisation and processing as well as hit calling
were performed using the pyphe pipeline as described above for grayscale transmission images
to quantify colony sizes. During grid correction, 24,683 colonies were excluded due to missing
grid colonies, and 2,539 missing colonies were set to “NA” (pinning errors), and data from 290
of 2772 plates were discarded because they either showed a fraction of unexplained variance
(FUV) above 1 or a control CV of >0.5. The final dataset contained 917,368 data points. The
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colonies which passed the above quality control steps were normalised with the grid first, and
the resulting colony sizes were additionally normalised to the control condition (EMM2) for the
conditions with stressors. All data from the pyphe analysis are provided in Supplemental
Dataset 6. The hits were defined by adjusted (Benjamini-Hochberg) p-values <0.01 and median

effect size (MES) 25% compared to empty-vector control.

For clustering analyses, we first filtered the relative log2 MES data (relative to empty-vector
control) for genes with 5 or more hits followed by conditions with 5 or more hits, resulting in 59
lincRNA mutants with MES data for 29 conditions. Then we discretized the data, classing
mutants as either sensitive (-1), resistant (+1), or similar to their fithess in the corresponding
control condition (0). We performed hierarchical clustering with the complete method using the
Canberra distance metric, and plotted the heatmap (Figure 6B) with the ComplexHeatmap r-

package (Gu, Eils and Schlesner, 2016).

For correlation analyses between deletion vs overexpression data, we filtered the phenotyping
data for the 104 shared lincRNA mutants and the 22 shared stress conditions between the two
mutant types. As the overexpression strains could only be assayed on minimal media while the
deletion strains were mainly assayed on rich media, we matched conditions based on the added
drug/stressor only, disregarding the media background. In case of multiple related conditions
(e.g. same stress in different doses), the strongest response was used (maximum median effect

size).
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FIGURE LEGENDS

Figure 1: Phenomics assays of lincRNA mutants.

(A) Representation of all non-coding RNAs across the three S. pombe chromosomes (Atkinson
et al., 2018). LincRNAs analysed in this study are coloured in red (if they showed no
phenotypes) or purple (if they showed phenotypes in at least one condition when deleted).

(B) Schematic overview of experimental design and workflow for phenotyping and data
analyses.

(C) Colony size (growth) and redness (viability) provide orthogonal readouts with strong
biological signals. These two readouts are not correlated (rpearson= -0.022). Both methods are
highly reproducible with overall coefficients of variation of 0.050 and 0.007 for size and redness,
respectively (based on 3514 wild-type control colonies across all plates). The lower relative
distribution spreads of control values (wild-type vs entire dataset) indicates a strong biological

signal. Fractions of unexplained variance were 0.56 for size and 0.40 for redness.

Figure 2. Colony growth and viability of deletion mutants in benign conditions.

(A) Volcano plot for colony size of lincRNA mutants (green) and coding-gene mutants (grey)
growing in rich medium (top graph) and minimal medium (bottom graph). The dashed lines
show the significance thresholds. Strains with lower fithess (smaller colonies) are <0 on the x-
axis, and those with higher fitness are >0. We applied a significance threshold of 0.05 after
Benjamini-Hochberg correction for multiple testing and a difference in fitness of
abs(log2(mutant/wild type))>log2(0.05) to call hits based on colony size; this difference is similar
to the median coefficient of variation (CV).

(B) Volcano plot for colony viability (phloxine B redness score) of lincRNA mutants (green) and
coding-gene mutants (grey) growing in rich medium (top graph) and minimal medium (bottom
graph). The dashed lines show the significance thresholds. Strains showing lower fitness
(redder colonies) are above zero on the x-axis, and those with higher fithess are below zero. We
determined quantitative redness scores and applied a significance threshold of 0.05 after
Benjamini-Hochberg correction for multiple testing and an effect size threshold of
abs(logx(mutant/wild-type))>log,(0.015) to identify colonies that are more or less red than wild-

type colonies. The labels indicate the identity of the significant lincRNA genes.
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Figure 3. Cell-size and cell-cycle traits of lincRNA mutants.

(A) LincRNA deletion mutants showing =5% difference in median cell size (Pwicoxon <0.05),
compared to wild-type (wt) cells and the conditional cell-size mutants weel-50 and cdc10-129,
captured at 60 min after release to permissive temperature. The sizes of bi-nucleated cells were
measured in 63 microscope fields using high-throughput microscopy.

(B) Representative cells from (A), with bi-nucleated cells in red.

(C) Plot of cell growth vs cell length of bi-nucleated cells for all incRNA mutants analyzed here.
The data on log2 growth of mutant relative to wild-type cells in rich medium are from the colony-
based screen (Figure 2A). The length data of bi-nucleated cells grown in rich medium are from
the high-throughput microscopy (A).

(D) lincRNA deletion mutants showing =20% difference in percentage of bi-nucleated cells
(Pwilcoxon <0.05) compared to wt cells as in (A). The median proportion of bi-nucleated cells was
guantified from the proportion of bi-nucleated cells in each microscope field, captured for each

lincRNA mutant using high-throughput microscopy.

Figure 4. Colony growth and viability of deletion mutants in diverse conditions.

(A) Distributions of significant hits per mutant (left) or per condition (right) for incRNA mutants
with altered colony growth (blue) or viability (orange).

(B) Plot showing the number of growth-phenotype hits agreeing or disagreeing between
independently generated lincRNA mutants.

(C) Distributions of significant hits per mutant (left) or per condition (right) for coding-gene
mutants with altered colony growth (blue) or viability (orange).

(D) Top Venn diagram: numbers of lincRNA mutants that showed a phenotype for both colony
growth (big or small) and viability (red or white, with red colonies having lower viability) in 67
conditions. Bottom Venn diagram: numbers of coding-gene mutants showing a phenotype for

both colony growth and viability in 67 conditions.
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Figure 5. Functional signatures in lincRNA phenotype profiles.

(A) Hierarchical clustering of discretized data for 16 lincRNA mutants (green) and 178 coding-
gene mutants (grey), as indicated above the columns. Clustering was limited to the core
conditions where phenotypes for all mutants were available, including growth phenotypes
(brown) and viability phenotypes (purple), as indicated to the right of rows. Only mutants with at
least five hits across the 41 conditions are shown. Resistant (dark red) and sensitive (dark blue)
phenotypes are indicated for corresponding mutant-condition combinations. Hierarchical
clustering of both mutants and conditions was performed with the Ward method using Euclidean
distances. Based on the dendrogram, the genes were divided into 3 clusters indicated in
different colours (top row). A detailed version of this cluster specifying the conditions and
mutants is provided in Supplemental Figure 6C.

(B) Cytoscape gene network representing phenotype correlations between lincRNA and coding-
gene mutants. Yellow and blue edges show positive and negative phenotype correlations,
respectively. The lincRNAs are shown in green and the protein-coding genes in grey, including
a pink border if their function is unknown. Clusters discussed in the main text are highlighted in

color.

Figure 6. Growth phenotypes of [incRNA overexpression mutants in different conditions.
(A) Distributions of significant phenotype hits per strain (left) and condition (right) for lincRNA
overexpression strains with altered growth under benign and stress conditions. Overall, 113
overexpression strains were phenotyped under 47 different conditions, based on 31 distinct
environmental factors. We applied a significance threshold of p <0.01, after correction for
multiple testing, and a difference in fithess of 25% to call hits based on colony size.

(B) Hierarchical clustering of discretized relative log2 median effect sizes for lincRNA
overexpression strains (rows), using only the strains and conditions with at least 5 hits (59
mutants, 29 conditions). Resistant (red) and sensitive (blue) phenotypes are indicated for strain-
condition combinations. The sub-cluster highlighted in red is discussed in the main text.

(C) Comparison of phenotype data from lincRNA deletion vs overexpression mutants. Plot
showing maximum median effect sizes for 104 lincRNA mutants represented in both deletion
and overexpression libraries, phenotyped under 22 shared conditions. The pairwise Pearson
correlation coefficient is indicated. To aid visualization, ten extreme outliers were removed out of

2288 data points.
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Supplemental Figure 2:

(A) Grid corrections reduce noise in the data. Shown are distributions of coefficients of variation of
internal wild-type controls for 1906 plates across the data set (coding and non-coding deletion
mutants) before and after correction. The median CV before and after correction are 0.098 and 0.027,
respectively. So our normalisation approach typically reduces the noise by about 4-fold.

(B) Plot of the statistical power (1 - chance of non-rejection of wrong null-hypothesis) vs standardised
effect size (difference in means divided by standard deviation) using median number of replicates per
lincRNA gene and condition (n = 9) and number of replicates for control conditions (rich medium,
median = 173.5). The large number of replicates enables statistical detection of differential growth with
low false negative rate (type Il error rate). The two curves show the statistical power before correction
for multiple testing and after Bonferroni correction (which represents a worst case scenario). A 5%
difference in fitness, which is a very subtle effect and approximates the standard deviation of our
method, is detected with a chance of 83% (no correction) or 24% (Bonferroni correction) (left dashed
line). A stronger 10% difference in fitness is detected with ~100% power (no correction) or 98.5%
power (Bonferroni) (right dashed line). Two-sided Student’s t-tests and a standard deviation of 5%
were used throughput with a significance threshold of 0.05.

(C) Four control conditions (rich and minimal media, with or without phloxine B each) were included in
most of the ~30 batches acquired over 2 years. Boxplots of Pearson correlations for technical repeats
within one batch (orange) vs repeats of the same condition across all batches (blue). While correlation
within the same batch is consistently higher, this effect is small considering the biological signal as
illustrated by the distribution of pairwise correlations across all conditions (green).
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Supplemental Figure 3:

(A) Lengths of bi-nucleated cells growing exponentially in rich medium for different lincRNA deletion mutants.

(B) Proportion of bi-nucleated cells in the population under the same conditions as A.


https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/

<v><’>séd:wrcod:cowsd:NNoolbw'rz{:é&)t:')dﬂolbo'ou'xbv'rr'\dmmhmdn'\thtbl'\#éu‘)c'o 3 é;&lbétbvr\ooédahr\émtoétbvmém olbdatotoéw'rw'rr'\mb#w'ﬁ'rlx'a V-d:d)é:c'm'o!'oQ'm'rr'\c’)évvédﬂbvmér'\cbc'o&)&r'\&r'\ﬁ-
QRN RBANDAT DR TN N mNr\r\Nmmomr\m QNS BERGERABN B A S e N e s e e e ST A S
N OOON ‘\Iu’:u“m‘: =% SN FOO mvmmr\vmv AR R v—(\u\w-tom =

2507 wild-type 1054 SPNCRNA.2364
200HHORXiIV prepri_ht'jduéi h-_tt X //dol org/10 1]01/2021.06.50.450572; this version posted July 1, 2021. The copyright holder for this preprint (which
1 was not certi 'eﬁf 2 er revnew) |sthe author/fafger, who has granted gjoRxiv a license to display the preprint in perpetuity. It is made
5 cells ; o asailable underaCC- \Nternational license
. : < ] Lifi
8 gl S e
3 G2826% —/
] bi-nucleated 16.7%
: 191
_:‘g: E
1€ -545 T+ T T T T
O 0 50K 100K 150K 200K
0 50K 100K 150K 200K 250K R
FSC-A DNA-W
105 ] wild-type 105 SPNCRNA.989A
104 4 104
E E -]
< 3 < 3 --
<Z( ] < ] B/
B 50 /- men B, o/ wen
103 0,034
3 G2829% - 3 G2817%
] * bi-nucleated 16.3% ] ~ bi-nucleated 19.3%
5] ]
183 Y 1958 S
-545 94— .,....,....,....,._545_. L I . VUL L P L N
0 50K 100K 150K 200K 0 50K 100K 150K 200K
DNA-W DNA-W
B Cell-cycle phase:
M-G1 HT-Flow cytometry
mS
154
£
©
o
©
o 10
()]
8
c
@
o
o
- | ‘ | ||| “l ‘ |‘ |“||““|“‘|‘
OJ|||| |||||||||||| I|||| ||||||||| il || || A ||I| ||||||||| | ||||I LA “ L
S
SNQ Qe

IlncRNA deletion strains

C Percentage of bi—nucleated cells

-
©

Supplemental Figure 4:
(A) Procedure to identify cell-cycle stages using
high-throughput flow cytometry data. Cell doublets are
first excluded (top left) and different stages assigned
according to the DNA amount (DNA-A) and duration of
pulse (DNA-W).
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Supplemental Figure 6:
(A) Absolute log2 effect sizes for viability and growth data

of lincRNA and coding-gene mutants.
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(B) Distributions of growth and viability scores with
discretisation thresholds. Scores reflect the effect size
scaled by the standard deviation of the wild type control in
that condition. Thresholds were set at +/-1.5 which resulted
in ~23% of data being non-zero (blue and red bars for
sensitive and resistant phenotypes, respectively).

(C) Hierarchical clustering as in Figure 5A with row and
column labes. Discretized data for 16 lincRNA mutants
(orange) and 178 coding-gene mutants (blue). Resistant
(dark red) and sensitive (dark blue) phenotypes are
indicated for corresponding mutant-condition combinations.
Hierarchical clustering of both mutants and conditions was
performed with the Ward method using Euclidean
distances. Based on the dendrogram, the genes were
divided into 3 clusters indicated in different colours.
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Supplemental Figure 7: Genome browser view of the chomosomal regions surrounding SPNCRNA. 1343
(left) and SPNCRNA.989 (right). The Pho7 binding sites as described by Schwer et al. 2017, the
transcription start sites (TSS) as described by Thodberg et al. 2018, and the nucleosome positioning data
as described by Atkinson et al. 2018. RNA-sequencing normalised coverage is separeted in forward (Fw)
and reverese (Rv) strands (Maria Rodriguez-Lopez, unpublished data).
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Supplemental Figure 8:

Spot assays with 5-fold serial dilutions to validate selected lincRNA deletion phenotypes from the screen.
Deletion mutants of lincRNAs (black) and neighbouring protein-coding genes (grey) grown in YES were
serially diluted and plated onto YES (top) or EMM (bottom) plates containing the drugs indicated. Single
asterisks indicate validated lincRNA phenotypes, while double asterisks indicate subtle phenotypes in the
higher doses of formamide and VPA not detected in the doses used for the screen, suggesting dosage
effects in the serial dilution assays.
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Supplemental Figure 9: Hit counts per strain (A) or per condition (B) for lincRNA overexpression strains
with altered colony growth separated by faster and slower colony growth phenotypes relative to empty

vector control (evc). Data for slower and faster growth are stacked. Adjusted p. value <0.01 and difference
in fitness 25% were used as significant thresholds to call hits. Only genes or conditions which produced

25 hits are shown.
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