
1 

 

 

Functional profiling of long intergenic non-coding RNAs in fission yeast 

 

 

María Rodríguez-López1, Shajahan Anver1*, Cristina Cotobal1*, Stephan Kamrad1,2,3*, 

Michal Malecki1,5*, Clara Correia-Melo2, Mimoza Hoti1, StJohn Townsend1,2, Samuel 

Marguerat1,6, Sheng Kai Pong1, Mary Y. Wu4, Luis F. Montemayor1, Michael Howell4, 

Markus Ralser2,3, Jürg Bähler1+ 

 

 
1 University College London, Institute of Healthy Ageing and Department of Genetics, Evolution 

& Environment, London WC1E 6BT, United Kingdom 
2 The Francis Crick Institute, Molecular Biology of Metabolism Laboratory, London, United 

Kingdom 
3 Charité Universitätsmedizin Berlin, Institute of Biochemistry, Berlin, Germany 
4 The Francis Crick Institute, High Throughput Screening, London, United Kingdom 
5 Current address: Institute of Genetics and Biotechnology, Faculty of Biology, University of 

Warsaw, Warsaw, Poland 
6 Current address: MRC London Institute of Medical Sciences (LMS), London WC12 0NN, 

United Kingdom 

* Equal contribution. 
+ Correspondence: j.bahler@ucl.ac.uk 

 

 

 

 

 

  

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 

 

Eukaryotic genomes express numerous long intergenic non-coding RNAs (lincRNAs) that do not 

overlap any coding genes. Some lincRNAs function in various aspects of gene regulation, but it 

is not clear in general to what extent lincRNAs contribute to the information flow from genotype 

to phenotype. To explore this question, we systematically analyzed cellular roles of lincRNAs in 

Schizosaccharomyces pombe. Using seamless CRISPR/Cas9-based genome editing, we 

deleted 141 lincRNA genes to broadly phenotype these mutants, together with 238 diverse 

coding-gene mutants for functional context. We applied high-throughput colony-based assays to 

determine mutant growth and viability in benign conditions and in response to 145 different 

nutrient, drug and stress conditions. These analyses uncovered phenotypes for 47.5% of the 

lincRNAs and 96% of the protein-coding genes. For 110 lincRNA mutants, we also performed 

high-throughput microscopy and flow-cytometry assays, linking 37% of these lincRNAs with cell-

size and/or cell-cycle control. With all assays combined, we detected phenotypes for 84 (59.6%) 

of all lincRNA deletion mutants tested. For complementary functional inference, we analyzed 

colony growth of strains ectopically overexpressing 113 lincRNA genes under 47 different 

conditions. Of these overexpression strains, 102 (90.3%) showed altered growth under certain 

conditions. Clustering analyses provided further functional clues and relationships for some of 

the lincRNAs. These rich phenomics datasets associate lincRNA mutants with hundreds of 

phenotypes, indicating that most of the lincRNAs analyzed exert cellular functions in specific 

environmental or physiological contexts. This study provides groundwork to further dissect the 

roles of these lincRNAs in the relevant conditions.   
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Introduction 

 

Genomes produce pervasive and diverse non-coding RNAs. How much genetic information is 

transacted by this non-coding ‘dark matter’ remains a matter of debate. A substantial, but poorly 

understood portion of transcriptomes consists of long intergenic non-coding RNAs (lincRNAs). 

LincRNAs are longer than 200 nucleotides, lack long open reading frames, and do not overlap 

any neighbouring coding regions. While not all lincRNAs may be functional, several have well-

defined roles in gene regulation and some other cellular processes. Different lincRNAs can 

control gene expression at different levels, from transcription to translation, and either in cis 

(acting on neighbouring genes) or in trans (acting on distant genes) (Rinn and Chang, 2012; 

Popadin et al., 2013; Ulitsky and Bartel, 2013; Yamashita, Shichino and Yamamoto, 2016; 

Schlackow et al., 2017; Fauquenoy et al., 2018). Although lincRNAs show little sequence 

conservation between species, functional principles seem to be conserved which can help us to 

understand their biology (Ulitsky, 2016). Specific lincRNAs have been implicated in complex 

human diseases (Batista and Chang, 2013)(Kumar et al., 2013). For example, Xist exerts a 

tumour suppressive function (Yildirim et al., 2013), TUNA is associated with neurological 

function and Huntington’s disease (Lin et al., 2014), and lincRNA1 delays senescence 

(Abdelmohsen et al., 2013). Moreover, lincRNAs are emerging as diagnostic molecular markers, 

as they can be easily detected in blood and could provide more readily accessible drug targets 

than proteins (Kim et al., 2016; Bester et al., 2018; DeWeerdt, 2019). 

 

Despite these efforts and insights based on studying selected lincRNAs, the systematic picture 

remains incomplete as the importance of most lincRNAs is unknown. Functional analyses of 

lincRNAs are challenging given their profusion, poor annotation, low expression, and limited 

methodology (Bassett et al., 2014; Cao, Wahlestedt and Kapranov, 2018; Kopp and Mendell, 

2018). Knowledge of lincRNA function is therefore scarce even in well-studied organisms, 

highlighting the need for more systematic approaches. Large-scale genetic studies of lincRNAs 

have emerged, starting to provide a more global picture on their functions and contributions to 

phenotypes (Joung et al., 2017; Liu et al., 2017; Bester et al., 2018; Parker et al., 2018; Tuck et 

al., 2018; Wei et al., 2019; Balarezo-Cisneros et al., 2021). These findings suggest that many 

lincRNAs play specialized roles in specific conditions and, therefore, need to be analysed in the 

relevant conditions.  
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The fission yeast, Schizosaccharomyces pombe, is a potent genetic model system to study 

gene regulation and lincRNA function in vivo (Marguerat et al., 2012; Yamashita, Shichino and 

Yamamoto, 2016; Atkinson et al., 2018; Fauquenoy et al., 2018). Although only the most highly 

expressed lincRNAs show purifying selection (Jeffares et al., 2015), their regulation is often 

affected by expression quantitative trait loci (Clément-Ziza et al., 2014). Notably, transposon 

insertions in up to 80% of non-coding regions of the S. pombe genome can affect fitness (Grech 

et al., 2019). RNA metabolism of fission yeast is similar to metazoan cells. For example, RNA 

interference (RNAi), RNA uridylation, and PABPN1-dependent RNA degradation are conserved 

from fission yeast to humans, but absent in budding yeast. Genome-wide approaches by us and 

others have uncovered widespread lincRNAs in fission yeast (Wilhelm et al., 2008; Rhind et al., 

2011; Eser et al., 2016; Atkinson et al., 2018). Nearly all S. pombe lincRNAs are polyadenylated 

and transcribed by RNA polymerase II (Marguerat et al., 2012). Transcription of lincRNAs starts 

from nucleosome-depleted regions upstream of positioned nucleosomes (Marguerat et al., 

2012; Atkinson et al., 2018), and the regulation of some lincRNAs involves specific transcription 

factors such as Gaf1 (Rodríguez-López et al., 2020). Most S. pombe lincRNAs are cryptic in 

cells growing under standard laboratory conditions, being suppressed by RNA-processing 

pathways such as the nuclear exosome, cytoplasmic exonuclease and/or RNAi (Zhou et al., 

2015; Atkinson et al., 2018), but they become induced during starvation or sexual differentiation 

(Atkinson et al., 2018). A substantial portion of lincRNAs are actively translated (Duncan and 

Mata, 2014), raising the possibility that some of them act as small proteins. A few S. pombe 

lincRNAs have been functionally analyzed: meiRNA and rse1 control meiotic differentiation 

(Ding et al., 2012; Yamashita, Shichino and Yamamoto, 2016; Fauquenoy et al., 2018), 

SPNCRNA.1164 regulates the atf1 transcription-factor gene in trans during oxidative stress 

(Leong et al., 2014), several lincRNAs activate the downstream fbp1 gene during glucose 

starvation (Oda et al., 2015), prt controls pho1 expression (Ard, Tong and Allshire, 2014; Shah 

et al., 2014), nc-tgp1 inhibits the tgp1 gene by transcriptional interference (Ard, Tong and 

Allshire, 2014), and nam1 regulates meiotic differentiation (Touat-Todeschini et al., 2017).  

 

Most S. pombe lincRNAs may not function under benign laboratory conditions, when they are 

typically very lowly expressed (Marguerat et al., 2012; Atkinson et al., 2018). Phenomics 

approaches seek to rigorously characterize phenotypes associated with many gene variants 

under diverse conditions (Brochado and Typas, 2013; Rallis and Bähler, 2016). Such broad, 

high-throughput phenotyping is an effective approach to uncover functional clues for unknown 

genes. For example, while only 34% of all budding yeast gene-deletion mutants display a 
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growth phenotype under the standard condition, 97% of these mutants show sub-optimal growth 

in at least one condition when assayed under a large number of chemical or environmental 

perturbations (Hillenmeyer et al., 2008). We have established a sensitive, reproducible platform 

for high-throughput colony-based assays to determine cellular fitness under diverse conditions 

(Kamrad, Rodríguez-López, et al., 2020). Here we take advantage of this potent approach to 

broadly investigate phenotypes of 150 lincRNAs, using deletion and/or overexpression mutants, 

supplemented with high-throughput microscopy and flow-cytometry assays of deletion mutants. 

Colonies of a representative set of 238 coding-gene mutants were phenotyped in parallel for 

functional comparison. Using these different assays, we collected quantitative data for over 1.1 

million unique colonies and over 5.7 million cells in a wide range of conditions. This study 

reveals hundreds of novel lincRNA-associated phenotypes and provides a framework for follow-

on studies.  

 

 

Results and Discussion 

 
Experimental strategy for functional profiling of lincRNAs 

 
We focused on lincRNAs, rather than other types of non-coding RNAs, because 1) they are 

poorly characterized in general but emerge as varied regulatory factors; 2) they can be deleted 

without directly interfering with coding gene function; and 3) they are more likely to function in 

trans as RNAs than antisense or promoter-associated ncRNAs which can affect neighbouring or 

overlapping genes via their transcription (Ard, Allshire and Marquardt, 2017). For functional 

profiling, we selected 150 S. pombe lincRNA genes that produce well-defined transcripts and 

are well-separated from neighboring coding regions (over ~200 bp), based on genome-browser 

views of RNA-seq data. We established efficient high-throughput methods to genetically 

manipulate these lincRNAs. For deletions, we applied a CRISPR/Cas9-based method 

(Rodríguez-López et al., 2016); this approach allowed us to knock-out the precise regions 

transcribed into lincRNAs without inserting any markers or other alterations, thus avoiding 

indirect physiological effects. For overexpression, we applied restriction-free cloning to express 

the lincRNAs from a plasmid under the control of the strong, inducible nmt1 promoter 

(Maundrell, 1993). Gene overexpression (‘gain-of-function’) provides complementary phenotype 

information to gene deletion (Prelich, 2012); moreover, any phenotype caused by a lincRNA that 

is ectopically expressed from a plasmid points to a function that is exerted over a distance (in 
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trans) via the lincRNA itself, rather than via its transcription or other local effects. We managed 

to delete 141 different lincRNAs (111 of which with at least two independent guide RNAs) and to 

overexpress 113 lincRNAs, with 104 lincRNAs being both deleted and overexpressed. These 

lincRNAs ranged in length from ~90 to 5100 nucleotides and in GC content from 25 to 46%, with 

means of 820 nucleotides and 34% GC, respectively. These lincRNAs are distributed across the 

entire nuclear genome (Figure 1A). Information for all deletion and overexpression strains 

analyzed is available in Supplemental Dataset 1. 

 

To provide functional context for the lincRNA deletion-mutant phenotypes, we also assayed 238 

coding-gene mutants from the S. pombe gene-deletion library, using prototrophic mutants after 

crossing out the auxotrophic mutants (Malecki and Bähler, 2016). These mutants broadly cover 

the Gene Ontology (GO) slim Biological Process categories (Lock et al., 2019), ageing-related 

genes (Rallis et al., 2014; Sideri et al., 2014), as well as 104 ‘priority unstudied genes’ (Wood et 

al., 2019) (Supplemental Dataset 1).  

 

Figure 1B provides an overview of the colony- and microscopy-based phenomics assays for the 

deletion and overexpression mutants. To determine fitness-related traits from colony-based 

assays, we applied pyphe, our python package for phenomics analyses (Kamrad, Rodríguez-

López, et al., 2020). Strains were arrayed randomly around a control grid at a density of 384 

colonies per plate. We assayed the deletion or overexpression strains in response to diverse 

environmental factors such as different nutrients and drugs as well as oxidative, osmotic, heavy-

metal, protein-homeostasis and DNA-metabolism stresses (Supplemental Figure 1), including 

some combined factors which can reveal additional phenotypes by non-additive effects that are 

not evident from single conditions (Rallis, Codlin and Bähler, 2013). For drugs and stressors, we 

applied low and high doses, where wild-type cell growth is normal or inhibited, respectively, to 

uncover both sensitive or resistant mutants. For the deletion mutants, we measured colony size 

to determine cell growth across 149 different nutrient, drug and stress conditions (Supplemental 

Dataset 1). For 68 of these conditions, we also measured colony redness using the phloxine B 

dye to determine cell viability (Lie et al., 2018; Kamrad, Rodríguez-López, et al., 2020). Cell 

growth and viability provided complementary functional information and produced strong 

biological signals (Figure 1C). For the overexpression mutants, we assayed cell growth across 

47 conditions (Supplemental Dataset 1). All colony-based phenotyping was performed in at 

least three independent biological repeats per condition, with a median number of nine repeats 

per lincRNA.  
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Overall, we collected >1,100,000 phenotype data points for cell growth and >350,000 data 

points for cell viability. We established a normalisation procedure based on control grids to 

correct for known variations between and within plates which effectively reduces noise in the 

data (Figure 1C; Supplemental Figure 2A) (Kamrad, Rodríguez-López, et al., 2020). Together 

with the high number of replicates, this normalisation provided the statistical power to 

confidently measure growth differences as small as 5%, thus supporting the detection of subtle 

lincRNA mutant phenotypes (Supplemental Figure 2B). Although control conditions measured in 

the same batch tended to be more similar, the batch effects remained much smaller than the 

biological signals (Supplemental Figure 2C). Thus, our colony-based phenotyping assays 

produce robust and reproducible results with high sensitivity. For the lincRNA deletion mutants, 

we also screened for cell size and cell-cycle traits using high-throughput microscopy and flow-

cytometry analyses (Figure 1B). These assays added >20,000 phenotype datasets (microscopic 

fields analysed), with over 5.7 million cells analysed across 338 samples. Information for all 

phenotyping conditions is provided in Supplemental Dataset 1.  

 

 

Phenotyping of deletion mutants in benign conditions 

 
We screened for phenotypes of the lincRNA and coding-gene deletion mutants under benign, 

standard-laboratory conditions using rich and minimal growth media. We looked for mutants 

showing a significant difference in colony growth and/or colony viability compared to wild-type 

cells. Among the 141 lincRNA mutants tested, five and ten mutants grew slower than wild-type 

cells in rich and minimal media, respectively, while one mutant grew faster in minimal medium 

(Figure 2A; Supplemental Dataset 2). Among the 238 coding-gene mutants tested, 26 and 48 

mutants grew slower in rich and minimal media, respectively, while four mutants each grew 

faster in rich and minimal media, three of which in both media (Figure 2A; Supplemental 

Datasets 3 and 4). Among the total of 51 coding-gene mutants growing slower in our assays, 49 

have previously been associated with the phenotype ontology ‘abnormal vegetative cell-

population growth’ (Harris et al., 2013), thus validating our assay for this phenotype. With 

respect to colony viability, three lincRNA mutants showed lower viability than wild-type cells, two 

in rich medium and one in minimal medium (Figure 2B; Supplemental Datasets 2 and 3). Among 

the coding-gene mutants, 103 and 42 mutants showed higher or lower viability, respectively, in 

either or both benign conditions (Figure 2B; Supplemental Datasets 2 and 3). In conclusion, ~2-

7% of the lincRNA mutants showed growth or viability phenotypes, compared to ~11-43% of the 
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coding-gene mutants, respectively. These results suggest that coding-gene mutants are more 

likely to have phenotypes in standard growth conditions. The results also illustrate that colony-

viability assays can uncover phenotypes for many additional mutants not evident from colony-

growth assays (Lie et al., 2018; Kamrad, Rodríguez-López, et al., 2020).  

 

We examined additional, cellular phenotypes in rich medium for 110 lincRNA deletion mutants. 

Abnormal cell length or altered duration of cell-cycle stages point to defects in the cell-division 

cycle. Using high-throughput microscopy, we determined the length and proportion of bi-

nucleated cells; these cells are fully grown and in G1/S phases of the cell cycle. In addition to 

wild-type cells, we used small wee1-50 and large cdc10-129 cell-cycle mutants as controls 

(Nurse and Hayles, 2019). Bi-nucleated wild-type cells showed a median length of 9.7µm, 

consistent with published data for ethanol-fixed cells (Heisler et al., 2014). Two lincRNA mutants 

were significantly shorter than wild-type cells and four were longer (Figure 3A,B; Supplemental 

Figure 3A; Supplemental Dataset 2). Thus, these lincRNAs may be involved in the coordination 

of cell growth and division. Two of the size mutants, SPNCRNA.989Δ and SPNCRNA.236Δ, 

also showed strong slow-growth phenotypes (Figure 3C), but no anomalies in cell-cycle phases 

(Figure 3D; Supplemental Figure 4A,B). We independently validated the cell-length phenotypes 

of these two mutants by measuring calcofluor-stained cells growing in rich liquid medium fixed 

with formaldehyde. This analysis confirmed the shortened average length of SPNCRNA.989Δ 

cells (11.7±0.89µm; n=114) and extended median length of SPNCRNA.236Δ cells 

(12.7±0.92µm; n=155) compared to wild-type cells (12.1±0.75µm; n=129). These two mutants 

showed a range of other phenotypes and are further discussed below. We also detected 

phenotypes pointing to defects in transitions between cell-cycle phases: 22 and five lincRNA 

mutants showed significantly reduced and increased proportions of bi-nucleated cells, 

respectively, compared to the 13.2% bi-nucleated wild-type cells (Figure 3D; Supplemental 

Figure 3B). Four mutants showed both aberrant cell lengths and proportions of bi-nucleated 

cells: SPNCRNA.819Δ cells were shorter and had fewer bi-nucleates, while SPNCRNA.323Δ, 

SPNCRNA.412Δ and SPNCRNA.934Δ cells were longer and had more bi-nucleates (Figure 

3A,C). We validated these microscopy data with high-throughput flow cytometry, with the results 

showing a good correlation (Supplemental Figure 4C). We conclude that several lincRNAs are 

involved in regulating cell size and/or cell-cycle progression.  
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Phenotyping of deletion mutants in multiple nutrient, drug and stress conditions 

 
We assayed for colony-size (growth) phenotypes of the lincRNA and coding-gene mutants in 

the presence of various stresses or other treatments, relative to the same mutants growing in 

benign conditions and normalized for wild-type growth (Methods). To this end, we applied the 

same significance thresholds as for benign conditions. Among the 141 lincRNA mutants tested, 

60 (43%) showed growth phenotypes in at least one condition (Supplemental Datasets 2 and 3). 

Together, these 60 mutants showed 211 growth phenotypes across conditions, with 69 of the 

145 conditions producing phenotypes in at least one mutant (Figure 4A). The 211 hits included 

150 resistant and 61 sensitive phenotypes (i.e., mutants showing larger or smaller colonies, 

respectively, in assay conditions compared to the control condition, each relative to wild-type). 

Seven lincRNA mutants showed growth phenotypes in at least five conditions, with 

SPNCRNA.236Δ showing the most phenotypes, being resistant in 26 and sensitive in 2 

conditions (Supplemental Datasets 2 and 3). Among all conditions, the most phenotypes were 

triggered by 0.075% MMS (causing DNA damage; 13 hits) and Brefeldin A (inhibiting protein 

transport from endoplasmic reticulum to Golgi; 18 hits).  

 

Due to possible off-target mutations introduced by CRISPR/Cas9, we generated independent 

deletion mutants using different guide RNAs targeting the same lincRNA gene. These 

independent mutants generally produced highly similar growth phenotypes (Figure 4B). Of the 

161 phenotypes associated with lincRNAs represented by two or more independent mutants, 

112 phenotypes agreed between the corresponding mutants (all mutants showed median effect 

sizes >5%), and 27 hits showed a similar trend (median effect sizes >2%). In 16 cases, at least 

one guide RNA showed no phenotype (median effect sizes <2%), and in only 6 cases did the 

guide RNAs show opposite effects (Figure 4B). These results indicate that any secondary 

effects from CRISPR/Cas9-based gene deletions did not affect the consistency of our 

phenotype results in the vast majority of cases.  

 

Among the 238 coding-gene mutants tested, 223 (93.7%) showed growth phenotypes in at least 

one condition, 104 of which representing priority unstudied genes that have remained entirely 

uncharacterized (Wood et al., 2019). Together, these 223 mutants showed 1924 growth 

phenotypes across conditions, with 119 of the 145 conditions tested producing phenotypes in at 

least one mutant (Figure 4C; Supplemental Datasets 3 and 4). The 1924 hits included 651 

resistant and 1273 sensitive phenotypes.  
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We also assayed for colony-viability phenotypes of the lincRNA and coding-gene mutants 

across stress or other treatments relative to mutant cells growing in benign control conditions, 

normalized for wild-type growth. To this end, we applied the same quantitative redness scores 

and significance thresholds as for the benign conditions. Among the 141 lincRNA mutants 

tested, 25 (17.7%) differed in viability in at least one condition compared to wild-type cells 

(Supplemental Dataset 2). Together, these 25 mutants showed 98 phenotype hits across 

conditions, with 45 of the 67 conditions tested producing phenotypes in at least one mutant 

(Figure 4A). The 98 hits included 86 resistant and 12 sensitive phenotypes (higher and lower 

viability than wild-type, respectively). Two lincRNA mutants, which were sensitive in the benign 

condition, caused ~56% of the hits, all resistant, in conditions that partially suppressed this 

sensitive phenotype: SPNCRNA.989Δ (31 hits) and SPNCRNA.1343Δ (24 hits) (Supplemental 

Dataset 2). These lincRNAs are discussed further down. Among all conditions, the highest 

number of hits with viability phenotypes were observed in rich medium with 0.5M KCl or with 

0.005% MMS (6 hits each) and in minimal medium with canavanine (5 hits).  

 

Among the 238 coding-gene mutants tested, 172 (72.3%) showed viability phenotypes in at 

least one condition. Together, these 172 mutants showed 1874 phenotype hits across 

conditions, with 57 of the 67 conditions tested producing phenotypes in at least one mutant 

(Figure 4C; Supplemental Datasets 3 and 4). The 1874 hits included 1535 resistant and 339 

sensitive phenotypes.  

 

We then explored the relationships between colony-growth and -viability for the 67 conditions 

used to measure both phenotypes. The lincRNA mutants produced 140 growth phenotypes and 

98 viability phenotypes, but in only 24 instances were both phenotypes associated with the 

same mutant (Figure 4D). The coding-gene mutants showed 1216 growth phenotypes and 1874 

viability phenotypes, with only 310 instances where both phenotypes were associated with the 

same mutant (Figure 4D). A large excess of high-viability phenotypes was evident for coding-

gene and, even more so, for lincRNA mutants (Figure 4D). Thus, slowly growing mutants did 

often show higher viability rather than lower viability, especially in coding-gene mutants. 

Together, these results further highlight that the colony-viability assays produce orthogonal 

phenotype information to the colony-growth assays and can uncover many additional 

phenotypes (Lie et al., 2018; Kamrad, Rodríguez-López, et al., 2020).  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/


11 

 

The lincRNAs that showed phenotypes were distributed across the genome (Figure 1A). They 

were not enriched in any particular gene-expression patterns, showing diverse responses to 

genetic or physiological perturbations (Supplemental Figure 5A). The lincRNAs associated with 

phenotypes were of similar length as those without phenotypes, but they tended to have a 

higher GC content (Supplemental Figure 5B). This result raises the possibility that the GC 

content reflects or even determines the likelihood of lncRNA function.  

 

In conclusion, substantial proportions of the lincRNA mutants showed growth (43%) and/or 

viability (18%) phenotypes in some stress conditions, and the majority of coding-gene mutants 

showed phenotypes in these conditions (72-94%). With respect to viability phenotypes, much 

larger proportions of both lincRNA and coding-gene mutants were resistant (87.8% and 81.9%, 

respectively). This bias could partly reflect that many mutants are growing somewhat more 

slowly in benign conditions (Figure 2A), a trade-off that may render them more resilient to 

stresses (López-Maury, Marguerat and Bähler, 2008). Together, these analyses show that 

phenomics assays can effectively uncover functional clues not only for protein-coding genes but 

also for many lincRNAs.  

  

 

Integrated analyses of functional signatures from deletion mutants 

 
Using unsupervised clustering, we mined the rich deletion-mutant phenotype data to explore 

functional profiles for both protein-coding and lincRNA genes. For the phenotype calling 

described above, we wanted to identify functional clues and gene-environment interactions with 

high confidence (i.e., low false discovery rate). Here, using a less conservative analysis, we 

applied a multivariate, global approach by converting effect sizes to a modified z-score to 

indicate the deviation from the expected phenotype value in units of standard deviations from 

the wild-type control in the same condition. Several conditions involved the same stressor, e.g. 

the same drug used at different doses (Supplemental Dataset 1). We aggregated such related 

conditions and used the strongest median response for each mutant and set of conditions 

(Methods). The protein-coding mutants generally showed stronger phenotypes than the lincRNA 

mutants as measured by the magnitude of the effect sizes (Supplemental Figure 6A). To 

compare phenotypes across the two types of mutants, we discretized the data, classing mutants 

as either sensitive (-1), resistant (+1), or similar (0) to their fitness in the corresponding control 

condition (Supplemental Figure 6B; Supplemental Dataset 5). Thresholds were chosen at ±1.5 
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standard deviations for both growth and viability data, which resulted in ~23% of all data points 

classed as non-zero in each dataset. We limited this analysis to 41 sets of aggregated ‘core’ 

conditions in which all mutants were phenotyped (Supplemental Dataset 5). 

 

Applying this analysis, most lincRNA mutants showed few or no phenotypes across the 41 core 

conditions, while 16 lincRNA mutants showed strong phenotype profiles across many 

conditions. Such uneven distribution in the phenotype numbers associated with lincRNAs 

indicates that the data reflect biology rather than technical noise. In total, 194 mutants showed a 

phenotype in five or more sets of conditions, including the 16 lincRNA mutants, and these 

mutants were used for hierarchical clustering. Clear patterns were evident, and we divided the 

genes into three main clusters (Figure 5A; Supplemental Figure 6C; Supplemental Dataset 5). 

Clusters 1, 2 and 3 contained two, ten and four lincRNAs, respectively, providing an opportunity 

to infer function through ‘guilt by association’ with known protein-coding genes in the same 

clusters. This approach was somewhat limited because only 115 of the 178 protein-coding 

genes in the clusters had known or inferred biological roles. Using the AnGeLi tool (Bitton et al., 

2015), we identified functional enrichments for the clusters as described below. 

 

Cluster 1 showed the most defined phenotype signature, characterized by many mutants 

displaying higher viability in 15 stress conditions, lower viability in the benign conditions and in 

canavanine A, and slow growth in benign conditions and several drugs tested, including 

hydrogen peroxide and antimycin A (Figure 5A; Supplemental Figure 6C; Supplemental Dataset 

5). This cluster was enriched in various GO categories related to protein localization/transport, 

cellular respiration, phosphate metabolism, and protein translation (the latter including five 

cytosolic/mitochondrial ribosomal subunits, six translation factors, and three subunits of the 

elongator complex). The cluster also included nine genes involved in nutrient- or stress-

dependent signalling (Supplemental Dataset 5). With respect to phenotype ontology (Harris et 

al., 2013), this cluster was enriched in multiple terms related to cytoskeleton aberrations, 

abnormal respiration and translation as well as altered cell growth and stress sensitivity. Indeed, 

80% of the mutants in this cluster have previously been associated with decreased cell 

population growth, and 87% are associated with increased sensitivity to chemicals. These 

enrichments validate our phenotype data.  

 

Cluster 1 contained the two lincRNAs, SPNCRNA.989 and SPNCRNA.1343, which accounted 

for ~56% of the colony-viability phenotypes among the lincRNA deletion mutants. When 
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overexpressed, however, they generated just 1-2 hits, much fewer than average (see below). 

This pattern suggests that these lincRNAs may function in cis, regulating nearby genes. 

Notably, both lincRNAs are located upstream of genes regulated by the Pho7 transcription 

factor (Schwer et al., 2017), which functions during phosphate starvation and other stresses 

(Carter-O’Connell et al., 2012): SPNCRNA.989 and SPNCRNA.1343 are divergently expressed 

to atd1 and tgp1, respectively (Supplemental Figure 7). SPNCRNA.1343 partially overlaps with 

the nc-tgp1 RNA that regulates phosphate homeostasis by repressing the adjacent tgp1 gene 

via transcriptional interference; deletion of SPNCRNA.1343 has been shown to increase tgp1 

expression by inhibiting nc-tgp1 expression (Ard, Tong and Allshire, 2014; Ard and Allshire, 

2016; Shah et al., 2014; Garg et al., 2018; Yague-Sanz et al., 2020). Inspection of the region 

upstream of SPNCRNA.989 suggested a regulatory mechanism similar to tgp1, with divergent 

transcripts towards atd1 likely driven by a bi-directional promoter from the nucleosome-depleted 

region upstream of SPNCRNA.989 (Supplemental Figure 7). These patterns suggest that 

additional Pho7-regulated genes, like atd1, are controlled via upstream RNAs, similar to the 

tgp1, pho84 and pho1 genes that respond to phosphate limitation (Carter-O’Connell et al., 

2012). The similar phenotypes of SPNCRNA.989Δ and SPNCRNA.1343Δ mutants therefore 

suggests that these lincRNA deletions interfere with the expression of their neighboring genes 

and thus with processes affected by this regulon. In spotting assays, the phenotypes of 

SPNCRNA.989Δ and SPNCRNA.1343Δ often differed from those of tgp1Δ and atd1Δ 

(Supplemental Figure 8). These results are consistent with the lincRNA deletion leading to 

induction, rather than repression, of their coding-gene neighbors.  

 

Cluster 2 contained a majority of genes that are not associated with any functional annotations, 

including ten lincRNAs genes (Supplemental Figure 6C; Supplemental Dataset 5). This cluster 

was enriched for long-lived mutants and for genetic interactions (based on Biogrid data; 

(Breitkreutz et al., 2008), meaning that the protein-coding genes within this cluster are ~4 times 

more likely to interact with each other than expected by chance. This cluster included seven 

genes involved in stress and/or nutrient signalling pathways and six genes for transcription 

factors functioning during stress/nutrient responses or in unknown processes. The phenotype 

data in this cluster were sparse and lacked a convincing functional signature across the coding 

and lincRNA genes.  

 

Cluster 3 was characterized by most mutants showing rapid growth in valproic acid, formamide 

and sodium orthovanadate, and many of these mutants also showed higher viability in benign 
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conditions but lower viability in valproic acid. This cluster was enriched for long-lived mutants 

and for energy metabolism, including four genes each functioning in glycolysis and the TCA 

cycle. Intriguingly, one of the four lincRNA genes in this cluster, SPNCRNA.236, is located 

upstream the pyruvate-kinase gene pyk1, which is involved in the last step of glycolysis to 

generate pyruvate for the TCA cycle or fermentation. The finding that the SPNCRNA.236Δ 

mutant leads to a similar phenotypic signature as does deletion of glycolysis or TCA-cycle 

genes raises the possibility that SPNCRNA.236 acts in cis to control pyk1 expression. 

Consistent with this idea, SPNCRNA.236Δ mutants grow slowly (Figure 2A) while increased 

activity of Pyk1 leads to faster growth (Kamrad, Grossbach, et al., 2020). However, 

SPNCRNA.236 also generates phenotypes in 11 conditions when overexpressed from a 

plasmid (Supplemental Dataset 6), including faster growth in minimal medium which is the 

opposite of the slower growth of the deletion mutant in the same condition. Thus, it is also 

possible that SPNCRNA.236 can act in trans.   

 

We validated phenotypes of five lincRNA deletions from Clusters 1 and 3 as well as deletions 

from neighboring coding genes, using serial-dilution spotting assays under 13 conditions. 

Detection of subtle phenotypes involving 5% differences in growth is difficult with such spotting 

assays. Nevertheless, we could confirm 11 (84%) of the phenotypes detected by the high-

throughput colony-based assays (Supplemental Figure 8). We conclude that there is generally a 

good agreement between these different phenotyping assays.  

 

To further explore our dataset, we discretized all deletion-mutant phenotypes, both from 

lincRNAs and coding genes (Supplemental Datasets 2-4). Pearson correlations of phenotype 

profiles were then used for constructing a network that was visualized with Cytoscape (Shannon 

et al., 2003). The network included several distinct clusters. A large, tight cluster consisted 

mostly of protein-coding genes (Figure 5B, highlighted in red). This cluster, which was similar to 

Cluster 1 (Figure 5A), included SPNCRNA.989 and was enriched for genes involved in 

phosphate metabolism and translation and 89% of the mutants in this cluster displayed slow 

growth phenotypes (Figure 5B). Another large cluster was enriched for lysine metabolism with 

18% of the mutants showing ageing-related phenotypes such as increased lifespan during 

quiescence (Sideri et al., 2014). This cluster also included three lincRNAs: SPNCRNA.318, 

SPNCRNA.426 and SPNCRNA.965 (Figure 5B, highlighted in blue). Network analysis of the 

whole phenotypic dataset revealed further connections between several lincRNAs and coding 

genes. For example, a negative phenotypic correlation was evident between SPNCRNA.1460 
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and fbp1 (Figure 5B, upper left); fbp1 is a key gene responding to glucose starvation that is 

regulated by upstream non-coding RNAs (Hoffman and Winston, 1990; Hirota et al., 2008)(Oda 

et al., 2015). SPNCRNA.1460 is located upstream of scr1, encoding a transcriptional repressor 

that negatively regulates fbp1 (Tanaka et al., 1998; Vassiliadis et al., 2019). This link raises the 

possibility that SPNCRNA.1460 controls scr1 expression and, therefore, fbp1 expression. The 

same cluster also included car2, which is also implicated in carbon metabolism, and two priority 

unstudied genes, whose association suggests that they function in similar processes. 

Interestingly, some clusters consisted exclusively or mostly of lincRNAs (Figure 5B, upper left). 

Naturally, these clusters showed no functional enrichments, but they point to several lincRNAs 

acting in related cellular processes, possibly together.  

 

 

Phenotyping of lincRNA overexpression mutants in multiple conditions 

 

Gene overexpression provides complementary phenotype information to gene deletion (Prelich, 

2012). We constructed strains that ectopically overexpressed 113 lincRNAs from a plasmid 

under the strong nmt1 promoter in minimal medium (Methods). We then looked for differences 

in colony growth under benign conditions compared to empty-vector control cells. We also 

looked for growth phenotypes in the presence of various stresses or other treatments, relative to 

growth in benign control conditions and normalized for the growth of empty-vector control cells. 

In the benign condition, most lincRNA overexpression strains grew faster compared to the 

empty-vector control. This pattern may reflect an indirect effect of lincRNA transcription by 

increasing plasmid copy numbers and/or expression of the budding yeast LEU2 marker that is 

limiting for growth. Therefore, we normalized the colony growth of overexpression mutants in 

the stress conditions by the growth in the benign condition to correct for this potential bias. We 

used a more stringent significance threshold for the overexpression mutants than for the 

deletion mutants (Figure 6A), because ectopic overexpression of genes involves cell-to-cell 

variation in plasmid copy numbers, leading to higher phenotypic heterogeneity (Siam, Dolan and 

Forsburg, 2004). Among the 113 lincRNA overexpression strains tested, 102 (90.3%) showed 

growth phenotypes in at least one condition (Figure 6A; Supplemental Dataset 6). Together, 

these 102 overexpression strains showed 565 growth phenotypes across conditions. The 565 

hits included 347 resistant and 218 sensitive phenotypes (i.e., mutants showing larger or 

smaller colonies, respectively, in the assay condition than in the control). Fourteen lincRNA 

overexpression strains showed more consistent phenotypes in ten or more conditions, topped 
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by SPNCRNA.335 that showed sensitive and resistant phenotypes in twelve and three 

conditions, respectively (Supplemental Figure 9A).  

 

With respect to the 47 conditions tested, 42 produced phenotypes in at least one mutant 

(Supplemental Dataset 6). Over 80% of the 565 phenotypes came from only 21 of the 47 

conditions, and ~24% of the phenotypes came from just three conditions: proline as a nitrogen 

source, 5 mM valproic acid (VPA), and 10 mM hydroxyurea (HU) (Supplemental Figure 9B). 

Proline is a poor nitrogen source which causes nitrogen stress and slows growth (Davie, Forte 

and Petersen, 2015). Notably, the expression of many lincRNAs is strongly induced under 

nitrogen starvation (Atkinson et al., 2018). Together with the results presented here, this 

indicates that several lincRNAs function during nitrogen stress. VPA is an inhibitor of histone 

deacetylases, and some lincRNAs are involved in histone modification (Rinn and Chang, 2012). 

Roles for lincRNAs in neurological disorders such as epilepsy are also emerging, and VPA can 

ameliorate epilepsy partly by repressing some of these lincRNAs (Hauser, Henshall and Lubin, 

2018). HU inhibits DNA synthesis, and our findings suggest that several lincRNAs are involved 

in related processes. For example, some lincRNAs have been implicated in double-strand break 

repair (Bader et al., 2020). We propose that several lincRNAs can influence cellular growth in 

trans when ectopically overexpressed under conditions that affect certain cellular processes.  

 

We looked for functional signatures in the lincRNA overexpression phenotypes using 

hierarchical clustering (Figure 6B). Unlike for lincRNA deletion mutants, this data set did not 

provide the functional context from coding-gene mutants. We observed a conspicuous sub-

cluster of four lincRNA overexpression strains that showed slower growth in many of the 

conditions (Figure 6B; highlighted in red). One of these four overexpressed lincRNAs was the 

well-characterized meiRNA that functions in the induction of meiosis (Watanabe and 

Yamamoto, 1994). In mitotically growing cells, meiRNA binds to Mmi1 via its DSR motif and is 

degraded by the nuclear exosome, while upon induction of meiosis, meiRNA binds to the RRM 

motif of Mei2 which in turn promotes meiosis (Yamashita, 2019). The other three lincRNAs in 

this sub-cluster contain motifs for potential Mei2 binding, including two DSR motifs. Moreover, 

like meiRNA, the other three lincRNAs are also de-repressed in nuclear-exosome mutants and 

during meiosis (Atkinson et al., 2018). Together, these findings raise the possibility that the 

other three lincRNAs in the sub-cluster also function in meiosis.  
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We compared the phenotype data from deletion and overexpression mutants. We obtained data 

for both types of mutants for 104 lincRNAs in 22 conditions, 18 of which showed phenotypes. Of 

these 104 lincRNAs, only seven did not produce any phenotypes in any condition tested. Under 

the 18 conditions, a higher proportion of lincRNA overexpression mutants (86.5%) than deletion 

mutants (32.7%) produced phenotype hits in at least one condition. Moreover, lincRNA 

overexpression generally resulted in larger effect sizes, i.e. stronger phenotypes, than did 

lincRNA deletion (Figure 6C). Similar trends have been reported for coding-gene mutants. For 

example, 646 and 1302 growth phenotypes are caused by deletion and overexpression 

mutants, respectively, of non-essential budding yeast genes (Yoshikawa et al., 2011), and 64 

transcription-factor genes of fission yeast show growth phenotypes when overexpressed but not 

when deleted (Vachon et al., 2013). Only a few lincRNAs showed phenotypes as both deletion 

and overexpression mutants. For example, SPNCRNA.236 showed rapid-growth (resistant) 

phenotypes in both overexpression and deletion mutants in five conditions, while in the benign 

condition, the overexpression and deletion mutant showed rapid and slow growth, respectively 

(Supplemental Datasets 2 and 6). In general, our phenotype data for lincRNA deletion and 

overexpression mutants showed little overlap and poor correlation (Figure 6C). These results 

illustrate the complementary information provided by these two types of mutants.  

 

How might lincRNA overexpression result in more phenotypes than lincRNA deletion? 

Overexpression of a protein-coding gene can burden cells via resource-consuming translation 

or toxic protein levels (Moriya, 2015; Bolognesi and Lehner, 2018). Although overexpression of 

a single lincRNA should not affect resource allocation, it is possible that these AT-rich RNAs 

engage in non-specific molecular interactions. Recent findings indicate that RNAs are assembly 

prone and must be tightly regulated as they can promote paraspeckles, stress granules and 

phase separation (Fox et al., 2018; Van Treeck et al., 2018). Such processes could trigger the 

overexpression phenotypes in certain physiological conditions, reflecting that lincRNAs are 

biologically active molecules. Nevertheless, the observed 565 phenotype hits amount to only 

10.6% of the potential 5311 hits if overexpression of all 113 lincRNAs caused phenotypes in the 

47 conditions tested (Supplemental Dataset 6). Thus, overexpressed lincRNAs do not generally 

lead to any non-specific or toxic effects, and the observed phenotypes may, therefore, mostly 

reflect specific lincRNA functions. Given that many lincRNAs may function in specialized 

conditions (Cabili et al., 2011; Derrien et al., 2012; Pauli et al., 2012; Hon et al., 2017; Atkinson 

et al., 2018), deletion mutants will only reveal phenotypes when assayed in the relevant 

conditions. On the other hand, the ‘gain-of-function’ overexpression mutants may also reveal 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/


18 

 

phenotypes in conditions where the lincRNAs do not normally function. Notably, phenotypes 

that are caused by lincRNAs being ectopically expressed from plasmids point to a function that 

is exerted in trans, via the lincRNA itself, rather than via its transcription or other cis effects. Our 

findings therefore raise the possibility that many of the lincRNAs tested can function over a 

distance. 

 

 

Conclusions 

 

We applied a phenomics approach to explore the functional importance of S. pombe lincRNAs, 

including colony-based and cellular assays of deletion mutants and colony-based assays of 

overexpression strains. A panel of deletion mutants of coding-genes were screened in parallel 

for comparison and functional context. Together, these assays revealed phenotypes for 84 of 

141 deleted lincRNAs, 229 of 238 deleted coding-genes, and 102 of 113 overexpressed 

lincRNAs. This extensive phenotyping uncovers lincRNAs that contribute to cellular resistance 

or sensitivity in specific conditions, reflected by altered colony growth and/or viability, and 

lincRNAs that are involved in the size control and the cell-division cycle. As expected, higher 

proportions of coding-gene mutants showed phenotypes and these phenotypes tended to be 

stronger (larger effect sizes) than for lincRNA mutants. In benign conditions, the lincRNA 

mutants were ~3- and 30-fold less likely to show phenotypes for colony growth or viability, 

respectively, than coding-gene mutants. This difference was less pronounced in the nutrient, 

drug and stress conditions, where many more lincRNA mutants revealed phenotypes, at only 

~2- to 4-fold lower proportions than coding-gene mutants for colony growth or viability, 

respectively. Moreover, compared to lincRNA deletion mutants, the lincRNA overexpression 

strains were ~2-fold more likely to show phenotypes, which also tended to be stronger. 

Together, these findings support the notion that most lincRNAs play specialized roles in specific 

conditions. The findings also indicate that lincRNAs in general have more subtle functions than 

proteins, e.g. in fine-tuning of gene expression. Accordingly, it was important that our high-

throughput assays were highly sensitive to detect subtle phenotypes. We conclude that a 

substantial proportion of lincRNAs exert cellular functions under certain conditions, and many of 

which may act in trans as RNAs. This analysis provides a rich framework to mechanistically 

dissect the functions of these lincRNAs in the physiologically relevant conditions.   
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Methods 

 
Deletion and overexpression strain libraries 

 
Using a CRISPR/Cas9-based approach and primer-design tool for seamless genome editing 

(Rodríguez-López et al., 2016), we deleted 141 different lincRNA genes located across all the 

S. pombe chromosomes (Figure 1A; Supplemental Dataset 1 for coordinates). In total, 113 

lincRNA genes were deleted in the 972 h- background, and 70 lincRNA genes were deleted in 

the 968 h90 background, the latter including 15 newly identified lincRNAs (Atkinson et al., 2018). 

Thirty lincRNAs were deleted with one guideRNA (gRNA), 103 were deleted using two gRNAs, 

and eight were deleted using three gRNAs. For the protein-coding deletion mutants, we 

generated a prototroph version of Bioneer V.5 deletion library (Kim et al., 2010) as described 

(Malecki and Bähler, 2016). Strains were arranged into 384-colony format using a RoToR HDA 

colony-pinning robot (Singer Instruments), including a 96-colony grid of wild-type 972 h- strains 

for plate normalization (Kamrad, Rodríguez-López, et al., 2020). We selected a subset of genes 

to broadly cover all main GO categories, together with 91 uncharacterized genes. Supplemental 

Dataset 1 provides information on the individual strains. 

 

We generated ectopic overexpression constructs for 113 long intergenic lincRNAs using the 

nmt1 promoter (Maundrell, 1993). The predicted full-length lincRNA sequences were amplified 

by PCR and cloned into the pJR1-41XL vector (Moreno, Durán and Ribas, 2000) using the 

CloneEZ® PCR Cloning Kit (GenScript). Each plasmid was checked by PCR for correct insert 

size. All primer sequences are provided in Supplemental Dataset 1. Plasmids were then 

transformed into S. pombe cells (h-, leu1-32), and leucine prototroph transformants were 

selected on solid Edinburgh Minimal Medium (EMM2) plates.  An empty-vector control strain 

was created analogously. Of the 113 lincRNAs, 67 were represented by two independently 

cloned vectors (Supplemental Dataset 1). 

 

 

High-throughput phenotyping of deletion mutants on solid media 

 

The deletion mutants were broadly phenotyped using a colony-based phenomics platform as 

described (Kamrad, Rodríguez-López, et al., 2020; Kamrad, Bähler and Ralser, 2021). Mutants 

were assayed on solid media with a variety of 55 unique stressors, using different 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/


20 

 

concentrations and, in some cases, combinations of stressors. In total we assayed 134 different 

conditions, with the viability dye phloxine B being included in 66 of these conditions. 

Supplemental Figure 1 provides a description of the conditions used for phenotyping. 

Supplemental Dataset 1 contains the concentrations of all the stressors used. Cells were grown 

for 24 hours on yeast extract supplement (YES) plates in 384-colony format containing a wild-

type control grid, followed by pinning cells onto plates containing the stressors, using reduced 

pressure (4% pinning pressure to transfer a small amount of biomass). Plates were wrapped in 

plastic to avoid drying out and incubated for ~40 hours at 32°C, unless stated otherwise, before 

image acquisition and phenotype assessment. 

  

Image acquisition and quantitation, data normalisation and processing as well as hit calling was 

performed using our pyphe pipeline which is available here: www.github.com/Bahler-Lab/pyphe 

(Kamrad, Rodríguez-López, et al., 2020). Images of plates were acquired with a flatbed scanner 

(Epson V800 Photo), controlled by pyphe-scan through SANE. Images for quantifying colony 

area (growth) were taken by transmission scanning, using the --mode Grey argument. For 

quantifying redness/viability, images were taken by reflective scanning using --mode Color. 

Images were acquired at 300 or 600 dpi resolution. For colour images, to determine colony 

redness for viability, we used an opaque fixture to hold the plates in place, the white cover was 

installed in the scanner lid, and the scanner was covered by a cardboard box to prevent external 

light interfering with image acquisition. Images were inspected individually and excluded if one 

or more of the following applied: several colonies were missing due to pinning errors (usually in 

the corners), evidence of contamination, white background had not been inserted during colour 

scanning, and/or plate had slipped significantly during scanning so that a whole row/column of 

colonies was missing from the image. The overall number of excluded plates was low and 

generally did not result in significant data loss in the final dataset due to the large number of 

replicate plates.  

 

For image quantification, greyscale transmission images for colony area quantitation were 

analysed with the R package gitter (Wagih and Parts, 2014) using the following parameters: 

plate.format=384, inverse="TRUE", remove.noise="TRUE", autorotate="TRUE". Images for 

which gitter failed (very few) were excluded from further analysis. Colour images for 

redness/viability quantification were analysed with pyphe-quantify using default parameters. 
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For data normalisation and processing, an experimental design table was prepared for each 

dataset which listed for each plate the path to the data file produced during image quantification, 

plate layout information, the condition as well as other meta-data (e.g. batch number, replicate 

counter and free-text comments). Data from all images of the same dataset was parsed and 

processed simultaneously using pyphe-analyse, producing a single data report table in tidy 

format per experiment, containing all data associated with a single measured colony on each 

line. For analysis of colony areas, the following parameters were used: --format gitter --

load_layouts --gridnorm standard384 --rcmedian --check. For colony redness analysis the 

options were: -format pyphe-quantify-redness --load_layouts --rcmedian --check.  

 

Pyphe performs some automated quality control. Specifically, during grid normalisation, missing 

reference grid colonies are flagged and all neighbouring colonies are set to NA. Pyphe also 

checks data for negative and infinite fitness values (rare artefacts of normalisation procedures). 

For the colony size datasets, additional quality control of the data was performed as follows: 

missing colonies (colony size 0 reported by gitter and fitness 0 reported by pyphe-analyse) were 

set to NA as these are pinning errors; colonies with a circularity (reported by gitter) below 0.85 

were set to NA; plates with a CV of >0.2 for wild-type controls were set to NA. For viability 

datasets, the only QC step was to exclude plates with a wild-type CV of >0.05.  

For statistical analysis, tables reporting summary statistics and p-values for each lincRNA gene 

and condition were obtained with pyphe-interpret. Hits were called separately for control 

conditions (where we tested for difference in means between each lincRNA mutant and wild-

type control in the same condition) and all other conditions (where we tested for difference in 

means between each lincRNA mutant in test condition vs corresponding control condition). 

Welch’s t-test, which does not assume homogeneity of variances, was used and the obtained p-

values were corrected for multiple testing for each condition separately using the Benjamini-

Hochberg method (Benjamini and Hochberg, 1995). 

 

The dataset for clustering (Supplemental Dataset 5; Figure 5) was derived from Supplemental 

Datasets 2 and 4 by subtracting 1 from the median effect sizes and dividing by the standard 

deviation of the wild type control for each condition. Conditions were then aggregated by 

choosing the strongest response across all repeats of the same stressor (the stressor is 

indicated in the ‘stress_description’ column in the knock-out_condition_metadata sheet of 

Supplemental Dataset 1. As not all lincRNA mutants were phenotyped in all conditions, 

clustering was restricted to a set of 41 core stressors. LincRNA or coding-gene mutants with 
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less than 5 responses were excluded, leaving 194 mutants in total, including 16 ncRNAs). The 

final dataset only contained 17 NA values which were imputed with 0. Hierarchical clustering 

was done with scipy (Virtanen et al., 2020), using the Ward method and the Euclidean distance 

metric. Clusters were obtained by cutting the dendrogram using the fcluster function with the 

‘maxclust’ method. Functional enrichments in Clusters 1 to 3 were analysed using AnGeLi 

(Bitton et al., 2015), with all protein-coding genes as background list. 

 

Data for the phenotypic correlation network (Fig. 5B) were generated from phenotypes for all 

lincRNA and coding-gene deletions, using a ternary system: resistant, sensitive and no 

phenotype encoded as 1, -1 and 0, respectively. The network was generated following general 

instructions (Contreras-López et al., 2018)(Shannon et al., 2003). Briefly, we used Pearson 

correlations to calculate the network and filtered on absolute r values above 0.6 and adjusted p 

<0.01. Clustering of the network in Cytoscape was done using community clustering (GLay) 

from the clustermaker extension (Morris et al., 2011). 

 

 

High-throughput microscopy and flow cytometry for cell-size and cell-cycle phenotypes 

 

Strains, frozen in glycerol in 384-colony format, were revived in YES solid plates, resuspended 

into 150 μl of liquid YES in 96 well plates and incubated at 32°C for 16 hours. Then, 100 μl from 

these pre-cultures were added to 1.5 ml of preheated (32°C) liquid YES in 96 deep-well plates 

and incubated at 32°C for 8 hours. Cells were collected by centrifugation, cell pellets were 

resuspended in 70% ice-cold ethanol, and stored in the dark at 4°C until further processing. As 

cell-size and cell-cycle phenotype controls, we used two temperature-sensitive cell-cycle 

mutants: cdc10-129 and wee1-50. These mutants were grown in 50 ml YES at 25°C, 

centrifuged and re-suspended in 50 ml of prewarmed (37°C) YES and incubated for 4 hours at 

37°C to block cell-cycle progression. After 4 hours, 1 ml of the samples was fixed for 

microscopy and flow cytometry. The remaining cells were centrifuged and re-suspended in 50 

ml of prewarmed YES (25°C), incubated at 25°C, and samples collected and fixed after 20 and 

60 min. Over 80% of the 110 lincRNA mutants screened for cellular phenotypes were assayed 

in at least 2 independent biological repeats. 

 

For cell-size and cell-cycle phenotypes, fixed cells were washed in 50 mM sodium citrate buffer, 

spun down at 3000g for 5 min, re-suspended in 50 mM sodium citrate containing 0.1 mg/ml 
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RNAse A, and incubated at 37°C for 2 hours. Cells were then spun down at 3000g for 5 min and 

re-suspended in 500 μl of 50 mM sodium citrate + 1 µM SYTOX Green (ThermoFisher 

Scientific, Cat. no. S7020). Immediately prior to analysing samples using either high-throughput 

(HTP) flow cytometry or HTP microscopy, cells in the deep well plates were sonicated for 40 sec 

at 50W (JSP Ultrasonic Cleaner model US21) to increase the efficiency of singlets. 

 

For HTP-image acquisition, cells were further stained with a 1:1000 dilution of CellMask™ Deep 

Red Plasma membrane dye (ThermoFisher Scientific, Cat. no. C10046), according to the 

manufacturer’s instructions. Then, 2.5 µl of fixed and stained cells were transferred from 96-well 

plates into a poly-lysine-coated 384-well Perkin Elmer Cell Carrier Ultra imaging plate 

(PerkinElmer, Cat. no. 6057500), pre-filled with 25 µl of 1µM SYTOX Green using a Biomek Fx 

robot. Cells were spun down for 3 min at 200g before imaging. Imaging was performed on a 

Perkin Elmer Opera Phenix microscope, using a water immersion 63x lens to capture confocal 

stacks of 12 planes in both Alexa488 (SYTOX Green) and Alexa647(CellMask) channels, with 

63 microscopic fields being captured per sample. The images were projected and analysed 

using the associated Phenix software Harmony, for the automated identification of mono- and 

bi-nucleated cells and respective cell length. Features were exported for further analysis using 

R studio. 

 

For HTP flow cytometry, 250 µl of cells were transferred into 96-well plates and 30,000 cells 

were measured in a Fortessa X20 Flow cytometer (BD Biosciences), using the HTS plate mode 

on the DIVA software and a 488 nm excitation laser to capture the SytoxGreen DNA staining. 

Populations of interest were gated as described (Knutsen et al., 2011) using the FlowJo 

software version 10.3.0. Features of interest (populations with different DNA content) were then 

exported for further analysis using R studio. The determined percentage of cells in each cell-

cycle phase per sample was used to validate the HTP-imaging data. For correlation with the 

HTP-imaging (bi-nucleated cells), S- and G1-phase cell populations were grouped together 

(Supplemental Dataset 2). 

 

Data analysis was carried out in R (v.3.5.2), using the package tidyverse for data manipulation, 

visualisation and statistical analysis. All tests were two-sided unless otherwise stated. For HTP-

imaging analysis, cell density was checked for each sample in the multi-well plate and given a 

score of 0 to 5, where 0 is very low to no density (<50 cells/well) and 5 is at too high density; 

samples scoring 0 and 5 were excluded from analysis. For cell-size analysis, the median cell 
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size of bi-nucleated cells for each mutant was used to calculate fold-changes relative to wild-

type values, applying the Wilcox test to determine significant differences (p <0.05), only 

considering cells showing a ≥5% difference in size compared to wild-type cells. For cell-cycle 

analysis by HTP imaging, the percentage of bi-nucleated cells per microscopic field (63 

fields/sample) was used to calculate the median value per lincRNA mutant, followed by fold-

change analysis calculated by normalising the percentage of bi-nucleated cells in each sample 

relative to wild-type values, applying the Wilcox test to determine significant differences (p 

<0.05), only considering cells showing a ≥20% difference in bi-nucleated cells compared to wild-

type.  

 

 

High-throughput phenotyping of overexpression mutants on solid media   

 
Overexpression strains were arrayed in 384 format together with the empty-vector control strain 

and a grid of the wild-type strain (972 h-) for normalisation. Strains were revived from glycerol 

stocks in YES and grown for 2 days at 32°C. Colonies were then transferred to new YES plates, 

grown for 1 day, and pinned onto EMM2 (with NH4Cl but without amino acid supplements) with 

or without the specified drugs/supplements. YES medium contains thiamine that represses the 

nmt1 promoter and leucine that compromises the maintenance of the overexpression plasmid 

(which contains the LEU2 marker). We screened the lincRNA overexpression library for colony 

growth phenotypes in 47 conditions (Supplemental Datasets 1 and 6). Each overexpression 

strain was represented by at least 12 colonies across 3 different plates and experiments were 

repeated at least 3 times. Each condition was assayed in three independent biological repeats, 

together with control EMM2 plates, resulting in at least 36 data points per strain per condition. 

Plates were incubated at 32°C if not stated otherwise for the condition. Plates were imaged as 

described for deletion mutants after 40 or 64 hours in order to capture as many hits as possible. 

  

Image acquisition and quantification, data normalisation and processing as well as hit calling 

were performed using the pyphe pipeline as described above for grayscale transmission images 

to quantify colony sizes. During grid correction, 24,683 colonies were excluded due to missing 

grid colonies, and 2,539 missing colonies were set to “NA” (pinning errors), and data from 290 

of 2772 plates were discarded because they either showed a fraction of unexplained variance 

(FUV) above 1 or a control CV of >0.5. The final dataset contained 917,368 data points. The 
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colonies which passed the above quality control steps were normalised with the grid first, and 

the resulting colony sizes were additionally normalised to the control condition (EMM2) for the 

conditions with stressors. All data from the pyphe analysis are provided in Supplemental 

Dataset 6. The hits were defined by adjusted (Benjamini-Hochberg) p-values ≤0.01 and median 

effect size (MES) ≥5% compared to empty-vector control. 

 

For clustering analyses, we first filtered the relative log2 MES data (relative to empty-vector 

control) for genes with 5 or more hits followed by conditions with 5 or more hits, resulting in 59 

lincRNA mutants with MES data for 29 conditions. Then we discretized the data, classing 

mutants as either sensitive (-1), resistant (+1), or similar to their fitness in the corresponding 

control condition (0). We performed hierarchical clustering with the complete method using the 

Canberra distance metric, and plotted the heatmap (Figure 6B) with the ComplexHeatmap r-

package (Gu, Eils and Schlesner, 2016).  

 
For correlation analyses between deletion vs overexpression data, we filtered the phenotyping 

data for the 104 shared lincRNA mutants and the 22 shared stress conditions between the two 

mutant types. As the overexpression strains could only be assayed on minimal media while the 

deletion strains were mainly assayed on rich media, we matched conditions based on the added 

drug/stressor only, disregarding the media background. In case of multiple related conditions 

(e.g. same stress in different doses), the strongest response was used (maximum median effect 

size).  
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FIGURE LEGENDS 

 

Figure 1: Phenomics assays of lincRNA mutants.   

(A) Representation of all non-coding RNAs across the three S. pombe chromosomes (Atkinson 

et al., 2018). LincRNAs analysed in this study are coloured in red (if they showed no 

phenotypes) or purple (if they showed phenotypes in at least one condition when deleted).   

(B) Schematic overview of experimental design and workflow for phenotyping and data 

analyses.  

(C) Colony size (growth) and redness (viability) provide orthogonal readouts with strong 

biological signals. These two readouts are not correlated (rPearson= -0.022). Both methods are 

highly reproducible with overall coefficients of variation of 0.050 and 0.007 for size and redness, 

respectively (based on 3514 wild-type control colonies across all plates). The lower relative 

distribution spreads of control values (wild-type vs entire dataset) indicates a strong biological 

signal. Fractions of unexplained variance were 0.56 for size and 0.40 for redness. 

 

Figure 2.  Colony growth and viability of deletion mutants in benign conditions.           

(A) Volcano plot for colony size of lincRNA mutants (green) and coding-gene mutants (grey) 

growing in rich medium (top graph) and minimal medium (bottom graph). The dashed lines 

show the significance thresholds. Strains with lower fitness (smaller colonies) are <0 on the x-

axis, and those with higher fitness are >0. We applied a significance threshold of 0.05 after 

Benjamini-Hochberg correction for multiple testing and a difference in fitness of 

abs(log2(mutant/wild type))>log2(0.05) to call hits based on colony size; this difference is similar 

to the median coefficient of variation (CV).                 

(B) Volcano plot for colony viability (phloxine B redness score) of lincRNA mutants (green) and 

coding-gene mutants (grey) growing in rich medium (top graph) and minimal medium (bottom 

graph). The dashed lines show the significance thresholds. Strains showing lower fitness 

(redder colonies) are above zero on the x-axis, and those with higher fitness are below zero. We 

determined quantitative redness scores and applied a significance threshold of 0.05 after 

Benjamini-Hochberg correction for multiple testing and an effect size threshold of 

abs(log2(mutant/wild-type))>log2(0.015) to identify colonies that are more or less red than wild-

type colonies. The labels indicate the identity of the significant lincRNA genes. 
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Figure 3. Cell-size and cell-cycle traits of lincRNA mutants.   

(A) LincRNA deletion mutants showing ≥5% difference in median cell size (pWilcoxon <0.05), 

compared to wild-type (wt) cells and the conditional cell-size mutants wee1-50 and cdc10-129, 

captured at 60 min after release to permissive temperature. The sizes of bi-nucleated cells were 

measured in 63 microscope fields using high-throughput microscopy.   

(B) Representative cells from (A), with bi-nucleated cells in red.   

(C) Plot of cell growth vs cell length of bi-nucleated cells for all lincRNA mutants analyzed here. 

The data on log2 growth of mutant relative to wild-type cells in rich medium are from the colony-

based screen (Figure 2A). The length data of bi-nucleated cells grown in rich medium are from 

the high-throughput microscopy (A).   

(D) lincRNA deletion mutants showing ≥20% difference in percentage of bi-nucleated cells 

(pWilcoxon <0.05) compared to wt cells as in (A). The median proportion of bi-nucleated cells was 

quantified from the proportion of bi-nucleated cells in each microscope field, captured for each 

lincRNA mutant using high-throughput microscopy.   

 

Figure 4. Colony growth and viability of deletion mutants in diverse conditions.           

(A) Distributions of significant hits per mutant (left) or per condition (right) for lincRNA mutants 

with altered colony growth (blue) or viability (orange).   

(B) Plot showing the number of growth-phenotype hits agreeing or disagreeing between 

independently generated lincRNA mutants.   

(C) Distributions of significant hits per mutant (left) or per condition (right) for coding-gene 

mutants with altered colony growth (blue) or viability (orange).   

(D) Top Venn diagram: numbers of lincRNA mutants that showed a phenotype for both colony 

growth (big or small) and viability (red or white, with red colonies having lower viability) in 67 

conditions. Bottom Venn diagram: numbers of coding-gene mutants showing a phenotype for 

both colony growth and viability in 67 conditions.   
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Figure 5. Functional signatures in lincRNA phenotype profiles.   

(A)  Hierarchical clustering of discretized data for 16 lincRNA mutants (green) and 178 coding-

gene mutants (grey), as indicated above the columns. Clustering was limited to the core 

conditions where phenotypes for all mutants were available, including growth phenotypes 

(brown) and viability phenotypes (purple), as indicated to the right of rows. Only mutants with at 

least five hits across the 41 conditions are shown. Resistant (dark red) and sensitive (dark blue) 

phenotypes are indicated for corresponding mutant-condition combinations. Hierarchical 

clustering of both mutants and conditions was performed with the Ward method using Euclidean 

distances. Based on the dendrogram, the genes were divided into 3 clusters indicated in 

different colours (top row). A detailed version of this cluster specifying the conditions and 

mutants is provided in Supplemental Figure 6C.   

(B) Cytoscape gene network representing phenotype correlations between lincRNA and coding-

gene mutants. Yellow and blue edges show positive and negative phenotype correlations, 

respectively. The lincRNAs are shown in green and the protein-coding genes in grey, including 

a pink border if their function is unknown. Clusters discussed in the main text are highlighted in 

color. 

 

Figure 6. Growth phenotypes of lincRNA overexpression mutants in different conditions. 

(A) Distributions of significant phenotype hits per strain (left) and condition (right) for lincRNA 

overexpression strains with altered growth under benign and stress conditions. Overall, 113 

overexpression strains were phenotyped under 47 different conditions, based on 31 distinct 

environmental factors. We applied a significance threshold of p ≤0.01, after correction for 

multiple testing, and a difference in fitness of ≥5% to call hits based on colony size.   

(B) Hierarchical clustering of discretized relative log2 median effect sizes for lincRNA 

overexpression strains (rows), using only the strains and conditions with at least 5 hits (59 

mutants, 29 conditions). Resistant (red) and sensitive (blue) phenotypes are indicated for strain-

condition combinations. The sub-cluster highlighted in red is discussed in the main text.   

(C) Comparison of phenotype data from lincRNA deletion vs overexpression mutants. Plot 

showing maximum median effect sizes for 104 lincRNA mutants represented in both deletion 

and overexpression libraries, phenotyped under 22 shared conditions. The pairwise Pearson 

correlation coefficient is indicated. To aid visualization, ten extreme outliers were removed out of 

2288 data points.   
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1 day Benzamidine 

7 days Bortezomib 

Nutrients DNA damage 

Canavanine A (arginine starvation) Bleomycin 

3-Amino-1,2,4-triazole (3-AT) for histidine starvation UV light 

Proline as nitrogen source Methyl methanesulfonate (MMS) 

Arginine as nitrogen source Nucleic acid metabolism 

glutamine as nitrogen source Hydroxyurea (HU) 

Glycerol as carbon source Formamide 

Galactose as carbon source HDAC inhibitors 

Xylose as carbon source Valproic Acid 

Sorbitol as carbon source Dihydrocoumarin 

0.1% glucose as carbon source Trichostatin A 

0.5% glucose as carbon source TOR-signalling 

1% glucose as carbon source Torin1 

3% glucose as carbon source Rapamycin 

Chelating Agents Other drugs 

EDTA Caffeine 

EGTA Cysteine 

2.,2'-dipyridyl (iron chelator) Methionine 

Osmotic Stress Sodium orthovanadate 

Sodium Chloride Ethanol 

Potassium Chloride Tea tree oil 

Lithium Chloride Phloxine B 

Cell wall/ membrane integrity Stress Antimycin A 

SDS Combinations of chemicals 

Calcofluor KCl + SDS 

Oxidative stress NaCl +MMS 

Tert-Butyl hydroperoxide KCl + calcofluor 

Hydrogen peroxide Glycerol + MMS 

Diamide HU +MMS 

 

Supplemental Figure 1:  Overview of conditions used for phenotyping of lincRNA knock-out library.
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Supplemental Figure 2:  
(A) Grid corrections reduce noise in the data. Shown are distributions of coefficients of variation of 
internal wild-type controls for 1906 plates across the data set (coding and non-coding deletion 
mutants) before and after correction. The median CV before and after correction are 0.098 and 0.027, 
respectively. So our normalisation approach typically reduces the noise by about 4-fold.
(B) Plot of the statistical power (1 - chance of non-rejection of wrong null-hypothesis) vs standardised 
effect size (difference in means divided by standard deviation) using median number of replicates per 
lincRNA gene and condition (n = 9) and number of replicates for control conditions (rich medium, 
median = 173.5). The large number of replicates enables statistical detection of differential growth with 
low false negative rate (type II error rate). The two curves show the statistical power before correction 
for multiple testing and after Bonferroni correction (which represents a worst case scenario). A 5% 
difference in fitness, which is a very subtle effect and approximates the standard deviation of our 
method, is detected with a chance of 83% (no correction) or 24% (Bonferroni correction) (left dashed 
line). A stronger 10% difference in fitness is detected with ~100% power (no correction) or 98.5% 
power (Bonferroni) (right dashed line). Two-sided Student’s t-tests and a standard deviation of 5% 
were used throughput with a significance threshold of 0.05.  
(C) Four control conditions (rich and minimal media, with or without phloxine B each) were included in 
most of the ~30 batches acquired over 2 years. Boxplots of Pearson correlations for technical repeats 
within one batch (orange) vs repeats of the same condition across all batches (blue). While correlation 
within the same batch is consistently higher, this effect is small considering the biological signal as 
illustrated by the distribution of pairwise correlations across all conditions (green). 
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Strain

Supplemental Figure 3: 
(A) Lengths of bi-nucleated cells growing exponentially in rich medium for different lincRNA deletion mutants. 
(B) Proportion of bi-nucleated cells in the population under the same conditions as A.

0

10

20

30

81
9

cd
c1

0-
12

9
72

0
14

15
13

48 38
9

53
4

28
9

62
8

15
30 11

5
17

7
17

5
42

1
47

5
39

9
15

59 73
8

94
2

10
64 53

9
24

2
73

7
60

1
77

8
12

55 40
1

16
8

14
43 12 25

4 51
11

22 46
3 1

16
24 28

2
28

4
45

2
15

19 30 24
8

74
5

76
7

13
72 10

3
13

0
13

26
11

64 86
16

70
16

96 18
9

40
0

98
9

42
6

78
4

11
54 18

7
10

88 99
6 79 52
4

12
49 38

8
41

4
38

3
40

2
13

61 19
0 w
t

65
0

25
6

51
5

11
25 97

4
53

8
50

7
11

30 91
7

78
1 46

10
39 13

7
19

4
23

6
39

4
11

65 23
9

90
0 93 59

12
34

15
62 18

8 37 38
2 26 33
5

14
60 41

0
14

5 90 87 78
0

37
7

14
4

w
ee

1-
50

11
66 80

8
41

2
32

3
93

4

Bi
-n

uc
lea

te
d 

ce
lls

 (%
)

ncRNA
Controls
WT
Not significant
Significant
(p value <0.05 & FC >20%)

Percentage of bi-nucleated cells (HT-Microscopy)

5

10

15

20

w
ee

1-
50 98

9
81

9
13

48 72
0

42
1

17
5

14
15

15
30

16
24 16
8

47
5

73
8

94
2

24
2

28
9

62
8

18
7 51 12 53
9

46
3

17
7

28
4

39
9

73
7

15
19 30 53

4
77

8
10

64
11

22 11
5

13
26 25

4
16

96 52
4

45
2

10
88 38

9
50

7
99

6
40

1
78

1
78

4
13

72 60
1

91
7

24
8

74
5

28
2

40
0

13
0

97
4

12
49

14
43 18

9
38

8
10

3
25

6
38

3
40

2
53

8
76

7
39

4
11

54 79
15

59 87
11

25
11

64
13

61
15

62 37 38
2

11
30

12
55 19

4 26 42
6 59 93 51
5 w
t

10
39

11
65 46 65

0
13

7 1
33

5
41

0
41

4
14

60 86 90
0

14
5 90 18
8

16
70 19

0
23

9
37

7
11

66
12

34 78
0

14
4

80
8

32
3

93
4

41
2

23
6

cd
c1

0-
12

9

Ce
ll l

en
gt

h 
(μ
m
)

ncRNA
Controls
WT
Not significant
Significant
(p value <0.05 & FC >5%)

Cell length of bi-nucleated cells (HT-Microscopy)
A

B

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450572doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450572
http://creativecommons.org/licenses/by/4.0/


Supplemental Figure 4:  
(A) Procedure to identify cell-cycle stages using 
high-throughput flow cytometry data. Cell doublets are 
first excluded (top left) and different stages assigned 
according to the DNA amount (DNA-A) and duration of 
pulse (DNA-W). 
(B) Percentage of cells in different cell-cycle stages 
according to high-throughput flow cytometry. These data 
are only semi-quantitative, however, and the proportions 
of cell-cycle phases are only approximate.  
(C) Comparison of percentage of binucleated cells 
calculated using high-throuput flow cytometry or 
high-thoughput microscopy. The Pearson correlation 
coefficient is indiated.  
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Supplemental Figure 5:  
(A) Expression patterns of lincRNAs in 
this study (data from Atkinson et al, 
2018). LincRNA that display any 
phenotype when deleted are marked 
in purple.  
(B) Comparison of GC content (left) 
and length (right) for linRNAs that 
display phenotype when deleted 
(aquamarine) vs those that do not 
(coral). The p-values for significance of 
difference are indicated (Wilcoxon 
test).
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Supplemental Figure 6: 
(A) Absolute log2 effect sizes for viability and growth data 
of lincRNA and coding-gene mutants.  
(B) Distributions of growth and viability scores with 
discretisation thresholds. Scores reflect the effect size 
scaled by the standard deviation of the wild type control in 
that condition. Thresholds were set at +/-1.5 which resulted 
in ~23% of data being non-zero (blue and red bars for 
sensitive and resistant phenotypes, respectively).  
(C) Hierarchical clustering as in Figure 5A with row and 
column labes. Discretized data for 16 lincRNA mutants 
(orange) and 178 coding-gene mutants (blue). Resistant 
(dark red) and sensitive (dark blue) phenotypes are 
indicated for corresponding mutant-condition combinations. 
Hierarchical clustering of both mutants and conditions was 
performed with the Ward method using Euclidean 
distances. Based on the dendrogram, the genes were 
divided into 3 clusters indicated in different colours.
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Supplemental Figure 7:  Genome browser view of the chomosomal regions surrounding SPNCRNA.1343 
(left) and SPNCRNA.989 (right). The Pho7 binding sites as described by Schwer et al. 2017, the 
transcription start sites (TSS) as described by Thodberg et al. 2018, and the nucleosome positioning data 
as described by Atkinson et al. 2018. RNA-sequencing normalised coverage is separeted in forward (Fw) 
and reverese (Rv) strands (Maria Rodriguez-Lopez, unpublished data).
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Supplemental Figure 8:  
Spot assays with 5-fold serial dilutions to validate selected lincRNA deletion phenotypes from the screen. 
Deletion mutants of lincRNAs (black) and neighbouring protein-coding genes (grey) grown in YES were 
serially diluted and plated onto YES (top) or EMM (bottom) plates containing the drugs indicated. Single 
asterisks indicate validated lincRNA phenotypes, while double asterisks indicate subtle phenotypes in the 
higher doses of formamide and VPA not detected in the doses used for the screen, suggesting dosage 
effects in the serial dilution assays. 
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Supplemental Figure 9: Hit counts per strain (A) or per condition (B) for lincRNA overexpression strains 
with altered colony growth separated by faster and slower colony growth phenotypes relative to empty 
vector control (evc). Data for slower and faster growth are stacked. Adjusted p. value ≤0.01 and difference 
in fitness ≥5% were used as significant thresholds to call hits. Only genes or conditions which produced 
≥5 hits are shown.
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