

1 TAILORED DC INDUCE PROTECTIVE HIV-1 SPECIFIC POLYFUNCTIONAL CD8+
2 T CELLS IN THE LYMPHOID TISSUE FROM HUMANIZED BLT MICE

3 Marta Calvet-Mirabent^{1,2\$}, Daniel T. Claiborne^{3\$}, Maud Deruaz^{4,5\$}, Serah Tanno^{3,4}, Carla Serra⁶,
4 Cristina Delgado-Arévalo^{1,2}, Ildefonso Sánchez-Cerrillo¹, Ignacio de los Santos⁷, Jesús Sanz⁷,
5 Lucio García-Fraile⁷, Francisco Sánchez-Madrid^{1,2}, Arantzazu Alfranca¹, María Ángeles Muñoz-
6 Fernández⁸, Todd M. Allen³, María J. Buzón⁶, Alejandro Balazs^{3,4}, Vladimir Vrbanac^{3,4*}, Enrique
7 Martín-Gayo^{1,2*}

8 ¹ Immunology Unit from Hospital Universitario de la Princesa and Instituto de Investigación
9 Sanitaria Princesa, ²Universidad Autónoma of Madrid, Medicine Department Spain, ³Ragon
10 Institute of MGH, MIT and Harvard, ⁴Human Immune System Mouse Program from
11 Massachusetts General Hospital, Boston ⁵Center for Immunology and Inflammatory Diseases,
12 Massachusetts General Hospital, Boston, MA 02114, USA; ⁶Infectious Diseases Department,
13 Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autònoma de
14 Barcelona, ⁷ Infectious Diseases Unit from Hospital Universitario de la Princesa and Instituto de
15 Investigación Sanitaria Princesa ⁸Immunology Section, Instituto Investigación Sanitaria Gregorio
16 Marañón (IiSGM), Hospital General Universitario Gregorio Marañón. Madrid, Spain.

17 \$ These authors have contributed equally to the study; * These authors share senior authorship.

18 # Corresponding author:

19 Enrique Martin-Gayo Ph.D.

20 Assistant Professor, Universidad Autónoma de Madrid

21 Medicine Department, Immunology Unit, Hospital de la Princesa

22 Calle de Diego de León, 62, 28006 Madrid, Spain

23 e-mail: enrique.martin@uam.es

24

25 **Abstract**

26 Effective function of CD8⁺ T cells and enhanced innate activation of dendritic cells (DC) in
27 response to HIV-1 is linked to protective antiviral immunity in controllers. Manipulation of DC
28 targeting the master regulator TANK-binding Kinase 1 (TBK1) might be useful to acquire
29 controller-like properties. Here, we evaluated the impact of TBK1-primed DC inducing protective
30 CD8⁺ T cell responses in lymphoid tissue and peripheral blood and their association with reduced
31 HIV-1 disease progression *in vivo* in the humanized bone marrow, liver and thymus (hBLT) mouse
32 model. A higher proportion of hBLT-mice vaccinated with TBK1-primed DC exhibited less severe
33 CD4⁺ T cell depletion following HIV-1 infection compared to control groups. This was associated
34 with infiltration of CD8⁺ T cells in the white pulp from the spleen, reduced spread of infected p24⁺
35 cells to secondary lymphoid organs and with preserved abilities of CD8⁺ T cells from the spleen
36 and blood of vaccinated animals to induce specific polyfunctional responses upon antigen
37 stimulation. Therefore, TBK1-primed DC might be an useful tool for subsequent vaccine studies.

38 **Author summary**

39 Emulating protective immunological characteristics from individuals capable of spontaneously
40 controlling HIV-1 infection might be useful for the development of a protective vaccine. Enhanced
41 function of dendritic cells (DC) in these HIV-1 controllers depends on the activation of TANK-
42 binding Kinase 1 (TBK1) and might associate with protective T cells. Our study evaluated the
43 ability of DCs trained through TBK1 activation inducing protective adaptive immune responses
44 against HIV-1 and reducing disease progression *in vivo*, using a humanized mouse model. Our
45 data indicate that mice vaccinated with tailored DC exhibit delayed disease progression, increased
46 induction of protective CD8⁺ T lymphocyte subsets in the lymphoid tissue and blood upon antigen
47 recognition. Therefore, trained-DC might be an useful tool for future HIV-1 vaccine designs.

48 **Introduction**

49

50 A remaining challenge to end the HIV-1 pandemic is the development of an effective vaccine
51 capable of providing protective and long-lasting immunity against HIV-1 infection. While
52 previous efforts to achieve this goal have failed (1, 2), the scientific community has come to
53 understand that the induction of effective and durable HIV-1-specific T cell responses in different
54 anatomical compartments will most likely require the targeting and fine-tuning of specific innate
55 immune cell subsets, such as dendritic cells (DC). DC play a critical role during the priming of
56 specific adaptive immune responses, since they are capable of both efficiently presenting antigens
57 (Ags) to T cells and also mediating the polarization of effector lymphocytes (3-7). In fact, DC-
58 based therapeutic vaccines have shown very promising results in clinical trials for cancer therapy
59 (8). However, although encouraging, previous DC-based HIV-1 vaccination strategies have
60 demonstrated limited abilities priming durable memory HIV-1-specific T cell responses (9-13). In
61 addition, most vaccine studies used adjuvants systemically as a means to globally increase innate
62 immune activation, without considering their individual impact on specific DC functional
63 characteristics (14).

64 Previous studies showed that conventional DC (cDC) from HIV-1 elite controllers (EC) are
65 capable of efficiently detecting HIV-1 reverse transcripts (15, 16) and inducing activation of the
66 signal transducer TANK-binding Kinase 1 (TBK1) (17, 18). This mechanism leads to enhanced
67 capabilities to prime polyfunctional HIV-1-specific CD8⁺ T cell responses, which are associated
68 with effective control of HIV-1 infection (19-22). Therefore, TBK1 may, in principle, represent a
69 therapeutic target to improve DC maturation towards an EC-like phenotype and to more efficiently
70 activate protective antiviral CD8⁺ T cell responses in a broader population of individuals.
71 Combined stimulation of DC with ligands to multiple intracellular sensors upstream TBK1 such

72 as cGAS, RIG-I, MDA5 or TLR3 (23), could synergistically act as TBK1 adjuvants and further
73 improve the function of these cells. Supporting this possibility, initial studies suggested that the
74 maturation of DC in the presence of the TLR3/RIG-I ligand Poly I:C boosts HIV-1-specific T cell
75 responses from HIV-1-infected individuals *in vitro* (24). Multiple vaccine studies have mainly
76 focused on analyzing activation patterns on circulating HIV-1-specific T cells, despite growing
77 evidence of the critical role of lymphoid tissue-resident T cells controlling HIV-1 or simian
78 immunodeficiency virus (SIV) (25, 26). Therefore, it is critical to determine the efficiency and
79 relevance of potential novel DC-vaccine strategies inducing HIV-1-specific adaptive immune
80 responses *in vivo* in different tissue locations.

81 The non-human primate model has been traditionally recognized as the gold standard *in vivo*
82 model to test HIV-1 vaccine candidates (27). However, in addition to intrinsic differences with the
83 human organism, this *in vivo* model might not always be accessible for initial phases of vaccine
84 candidate evaluation. Immunodeficient NOD/SCID IL2R $\gamma^{-/-}$ (NSG) mice transplanted with human
85 fetal hematopoietic stem cells, liver and thymus (here after referred to as hBLT-mouse) represent
86 a more accessible humanized *in vivo* system that recapitulates the development of most human
87 myeloid and lymphoid lineages (28-31). Importantly, hBLT-mice can be infected with HIV-1 and
88 meet some aspects of HIV-1 disease progression, such as the depletion of CD4 $^{+}$ T cell lymphocytes
89 and the induction of specific adaptive immune responses, including cytotoxic CD8 $^{+}$ T cells (CTL)
90 (32-35). Moreover, the hBLT model supports the induction of effector memory HIV-1-specific
91 CD8 $^{+}$ T cells similar to those observed in previous vaccine studies (12, 36, 37). Despite some
92 limitations, the hBLT mouse represents a very attractive model for a proof-of-concept of HIV-1
93 vaccine study. Recent data indicate that the immunization of hBLT mice with HIV-1 Gag protein
94 potentiates the induction of Gag-specific T cells capable of reducing HIV-1 viremia and forcing

95 viral escape mutations (38). However, whether the hBLT model supports the induction of
96 protective T cell responses in different lymphoid tissue compartments that could actively
97 contribute to viral control after vaccination has not been studied in detail. In addition, little, if any,
98 information on the polyfunctional characteristics of CD8⁺ T cells, a critical hallmark of immune
99 control of HIV-1 infection (39, 40), has been described in this system. Finally, the impact and
100 potential benefit of a DC-based HIV-1 vaccine on the induction of HIV-1 specific T cells and
101 disease progression have not been tested in the hBLT mouse model yet.

102 In this study, we assessed the ability of TBK1-primed DC to improve parameters of immune
103 protection against HIV-1 in the lymphoid tissue and peripheral blood using the hBLT mouse
104 model. Our data indicate that TBK1-primed DC potentiate the infiltration of CD8⁺ T cells in the
105 white pulp of spleen and the retention of infected HIV-1 p24⁺ cells in these areas, preventing viral
106 spread to secondary lymphoid organs. These histological parameters induced by TBK1 DC-
107 vaccination correlated with preserved abilities to induce polyfunctional CD8⁺ T cell responses in
108 the spleen upon HIV-1 Gag stimulation and with less severe depletion of CD4⁺ T cells at late time
109 points of infection in vaccinated hBLT mice. Our study provides novel evidence of enhanced
110 cellular immunity against HIV-1 in the lymphoid tissue induced by a tailored DC-based vaccine
111 *in vivo*, which could be useful for the development of new vaccine strategies.

112

113

114

115

116

117

118 **Results**

119 *Combination of TBK1 adjuvants improves maturation and functional properties of DC*

120 We first evaluated the efficacy of potential TBK1 adjuvants such as the TLR3 and STING agonists

121 Poly I:C and 2'3'-di-AM(PS) to enhance maturation and functional properties of DCs. To this end,

122 we stimulated Monocyte derived-DC (MDDC) and primary circulating CD1c⁺ cDCs with these

123 molecules individually or in combination and monitored the phosphorylation of TBK1 and the

124 downstream effector IRF3 as a readout of activation. As shown in Figure 1A and Supplemental

125 Figure 1A, stimulation of both MDDC and cDC with a combination of the STING agonist and

126 Poly:IC led to a more significant increase in TBK1 and IRF3 phosphorylation compared to

127 individual treatments. Therefore, simultaneous stimulation with the STING agonist and Poly I:C

128 could have significant impact on the activation and subsequent maturation of DC. To test this, we

129 assessed expression of maturation markers and the transcription of inflammatory cytokines on

130 primary cDCs stimulated with TBK1 adjuvants. As shown in Supplemental Figure 1B, both

131 STING agonist and Poly I:C were able to significantly increase expression of CD40 and CD86

132 individually, and the combination of both TBK1 adjuvants led to limited but significant additional

133 increase in the expression of CD40. We observed that the combination of the STING agonist and

134 Poly I:C induced significantly higher mRNA levels of IFN β , IL-12 and, to some extent, TNF α ,

135 suggesting an enhancement in the maturation program of cDC (Figure 1B). To determine whether

136 these changes in cDC could be translated into improved functional antigen presenting cell

137 properties, we first performed co-cultures of total T cells with allogeneic cDC pre-incubated in

138 media or in the presence of different combinations of TBK1 adjuvants. cDC treated with both Poly

139 I:C and the STING agonist were capable of inducing higher proportions of CD8⁺T cells co-

140 expressing IFN γ and the degranulation marker CD107a (Figure 1C). Importantly, we observed that

141 treatment of PBMC from healthy donors with Poly I:C and STING agonist in the presence of a
142 pool of HIV-1 Gag peptides and a subsequent boost with autologous Gag-peptide loaded cDC
143 stimulated with both TBK1 adjuvants enhanced *de novo* induction of IFN γ ⁺ HIV-1 Gag-specific
144 CD8⁺ T cells *in vitro* (Figure 1D, left). Moreover, significantly higher proportions of IFN γ ⁺ CD8⁺
145 T cells co-expressing CD107a were detected in the presence of Gag-peptide loaded cDC stimulated
146 with TBK1 adjuvants (Figure 1D, right), suggesting enhanced polyfunctionality in HIV-1-specific
147 cells. Importantly, these effects were dependent on the presence of the Ag, since no significant
148 increase of T cell responses was observed after stimulation only with TBK1 adjuvants
149 (Supplemental Figure 1C). Together, these data suggest that combination of of Poly I:C and
150 STING agonists as effective TBK1 adjuvants potentiating the maturation and function of cDCs *in*
151 *vitro*.

152

153 *Vaccination of hBLT-mice with TBK1-primed DC reduces HIV-1-mediated disease progression*

154 We next determined whether DC activated in the presence of the TBK1 adjuvant cocktail could
155 also induce protective responses against HIV-1 infection *in vivo* using the hBLT mouse model. To
156 ensure that only DC were manipulated with TBK1 adjuvants, we differentiated CD11c⁺ CD14⁻
157 HLA⁺ cDC and CD11c⁺ CD14⁺ HLA⁺ MoDC-like cells *in vitro* from a portion of the human
158 fetal CD34⁺ HSC precursors used to reconstitute the hBLT mice prior to vaccination
159 (Supplemental Figure 2A). HSC-derived cDC and MoDC were sorted and cultured separately for
160 24h in the presence of media alone (MED), a pool of peptides from HIV-1 Gag alone (GAG) or in
161 combination with our TBK1 adjuvant cocktail (GAG-ADJ) (Supplemental Figure 2B-C). The
162 individual addition of Gag peptides did not induce significant activation of sorted cells
163 (Supplemental Figure 2C). However, despite differences in basal expression of activation markers,

164 both sorted DC subsets responded to the adjuvant stimulation (Supplemental Figure 2C) and cDC
165 and MoDC from each condition were pooled for vaccination (Supplemental Figure 2D). In two
166 experiments performed with different batches of hBLT mice, a total of n=42 hBLT animals were
167 subdivided in 3 groups of n=14 animals that were vaccinated intravenously with either MED, GAG
168 or GAG-ADJ DC by injection in the tail vein (Supplemental Figure 2D). Two weeks after
169 vaccination, mice were intravenously infected with 10,000 TCID₅₀ of JRCF HIV-1 strain. Prior
170 pilot experiments indicated that HIV-1 plasma viremia begins to stabilize by 3 weeks post-
171 infection (p.i.) and reaches a stable setpoint by 6 weeks p.i. in hBLT (Supplemental Figure 3A).
172 In addition, it has been reported that at 6 weeks p.i. depletion of CD4⁺ T cells and HIV disease
173 progression reproducibly becomes more evident in hBLT mice infected with JRCSF HIV-1 (32)
174 and is the peak time point of detection of HIV-1 specific T cell responses in the blood of these
175 animals (38). Therefore, we analyzed clinical, histological and cellular parameters associated with
176 protection or disease progression at three, five/six and six/seven weeks p.i. to cover these critical
177 time points (Supplemental Figure 2D). As shown in Supplemental Figure 2E, no differences in
178 weight were observed among the three hBLT mouse groups prior or after HIV-1 infection,
179 suggesting vaccination did not have any significant impact on the induction of GvHD. Although
180 all hBLT mouse groups experienced a significant reduction in circulating hCD4⁺ T cells 3 weeks
181 after infection with HIV-1 compared to baseline (Supplemental Figure 4A, C), we observed a
182 noticeably less severe CD4⁺ T cell depletion in the GAG-ADJ group (Figure 2A) at 5/6 weeks post
183 infection (Figure 2A, Supplemental Figure 4A-C). Consistently, CD4⁺/CD8⁺ T cell ratio in the
184 blood tended to be higher in GAG-ADJ mice at later time points of infection (Supplemental Figure
185 4B). Notably, the GAG-ADJ vaccinated group included a significantly higher proportion of
186 animals experiencing less than 0.5-fold reduction in circulating CD4⁺ T cell numbers (CD4Hi

187 phenotype) at these late time points (Figure 2A; Supplemental Figure 4A-C). In contrast, mice
188 vaccinated with GAG DC experienced a dramatic depletion of CD4⁺ T cells below 0.5-fold
189 threshold (CD4Lo phenotype) in the majority of animals from this group (Figure 2A, Supplemental
190 Figure 4A-C). Similar results were obtained at 6/7 weeks p.i., but differences between vaccinated
191 groups were more pronounced at 5/6 weeks p.i. (Supplemental Figure 4A-C). These effects were
192 consistently observed in the two independent hBLT mouse batches (Supplementary Figure 4A-C).
193 Interestingly, mice vaccinated with MED DC that had not received adjuvant or Ag were
194 characterized by an intermediate phenotype of 50% animals exhibiting dramatic (<0.5-fold
195 decrease) and 50% less severe (>0.5-fold decrease) depletion of CD4⁺ T cells, suggesting a partial
196 and Ag-independent effect of vaccination with immature DC (Figure 2A, Supplemental Figure
197 4A-B). Interestingly, while not significant differences in plasma viremia were observed at any time
198 point between the total 3 groups of vaccinated animals (Supplemental Figure 3B), we observed an
199 enrichment of lower viral loads at 3 weeks p.i. in those hBLT mice displaying a less severe CD4Hi
200 phenotype at 5/6 weeks p.i., which again were more significantly enriched in the GAG-ADJ and
201 MED animal groups (Figure 2B). The early control of viremia seemed to be transient and no
202 significant differences were observed in plasma viral loads by 6/7 weeks p.i (Supplemental Figure
203 3C). These data indicate that vaccination of hBLT mice with TBK1-trained DC is associated with
204 less severe depletion of CD4⁺ T cells and a concomitant partial early control of HIV-1 viremia,
205 suggesting delayed progression of HIV-1 infection in these animals.

206

207 *Accumulation of CD8⁺ T cells and HIV-1 infected cells in the white pulp after vaccination with*
208 *TBK1-primed DC*

209 To better understand differences in HIV-1 disease progression in the three groups of vaccinated
210 hBLT mice, we analyzed histological distribution of CD8⁺ T cells and infected p24⁺ cells by
211 immunofluorescence in tissue sections from spleen and lymph nodes (LN) from the hBLT mice at
212 6/7 weeks p.i. As shown in Figure 3A-B and 4A-B, p24⁺ HIV-1-infected cells could be detected
213 in the spleen and LN of all hBLT mice, consistent with previous observations (32). No differences
214 were observed in total HIV-1 p24⁺ cell counts in the spleen of infected animals (Supplemental
215 Figure 5B, lower panel), and a weak enrichment on total splenic Granzyme B⁺ CD8⁺ T cells was
216 observed in tissue sections from hBLT mice vaccinated with GAG-ADJ DC (Supplemental Figure
217 5B, upper panel). However, infiltrated CD8⁺ T cells were significantly higher in white pulp areas
218 defined by hematoxylin/eosin staining, from the spleens from GAG-ADJ vaccinated hBLT mice
219 at 6/7 weeks p.i. (Figure 3B left panel, Supplemental Figure 5A). Interestingly, increased
220 infiltration of CD8⁺ T cells in the white pulp was significantly associated with expression of
221 Granzyme B in the spleen (Figure 3B, right). Additionally, we observed significantly increased
222 proportions of Granzyme B⁺ cytotoxic CD8⁺ T cells in the surrounding red pulp areas in the spleen
223 of GAG-ADJ mice, and higher frequencies of these cells correlated with infiltration of CD8⁺ T
224 cells in the white pulp (Supplemental Figure 5C-D). Interestingly, CD8⁺ T cells infiltrated in the
225 spleen white pulp also tended to express higher levels of Granzyme B and CXCR5 in GAG-ADJ
226 mice (Supplemental Figure 5C,F). In contrast, opposite patterns were observed in GAG mice
227 (Supplemental Figure 5C,F). Notably, we also observed a significantly higher accumulation of
228 infected p24⁺ cells in white pulp areas of spleen from these GAG-ADJ hBLT mice compared to
229 those vaccinated with GAG, which was correlated with increased infiltration of CD8⁺ T cells in
230 this area (Figure 3C). These effects were more significantly appreciated in CD4Hi ADJ-GAG
231 hBLT mice displaying less severe depletion of CD4⁺ T cells compared to GAG-only hBLT mice

232 (Supplemental Figure 5E). In contrast, reduced frequencies of HIV-1 p24⁺ cells and enrichment
233 on CD8⁺ T cells were observed in the LN of GAG-ADJ hBLT mice and more significantly in mice
234 from this group experiencing less severe depletion of CD4⁺ T cells (Figure 4 A-C; Supplemental
235 Figure 6B.). In addition, numbers of p24⁺ cells per area of the LN correlated with viral load
236 detection either at early time-points (3 weeks p.i.) and late time-points (5-6 and 6-7 weeks p.i.)
237 and were inversely associated with CD8⁺ T cell recruitment in the spleen. (Supplemental Figure
238 6C; Figure 4E). Moreover, CD8⁺ T cells recruited in the LN from GAG-ADJ vaccinated hBLT
239 animals distributed in significantly larger cell clusters (Figure 4D, Supplemental Figure 6A-D).
240 Clustered CD8⁺ T cells did not appear preferentially express Granzyme B (Figure 4A, right).
241 Importantly, we observed that these histological CD8⁺ T cell aggregation patterns were
242 significantly inversely associated with less detection of p24⁺ cells in the LN and positively
243 correlated with increased recruitment of CD8⁺ T cells to the spleen and infiltration in the white
244 pulp areas and with less severe depletion of CD4⁺ T cells at 5/6 weeks p.i. (Figure 4E-F). Our data
245 clearly indicate that vaccination of hBLT mice with TBK1-trained DC induces specific and
246 interconnected histological patterns of infiltrated CD8⁺ T cell responses in the spleen that are
247 associated with the retention of HIV-1 infected cells in this organ, preventing the spread and
248 progression of HIV-1 infection in peripheral organs from these mice.

249

250 *Polyfunctional CD8⁺ T cell responses in lymphoid tissue and blood from hBLT mice vaccinated*
251 *with GAG-ADJ-DC*

252 We next addressed the polyfunctional profiles of splenic and circulating CD8⁺ T cells from the
253 three vaccinated hBLT mouse groups by analyzing expression of IFN γ , IL-2, TNF α and CD107a
254 *ex vivo* and after stimulation with a pool of HIV-1 Gag peptides at 3 and 6/7 weeks post-infection.

255 We analyzed the proportions of T cells co-expressing 2, 3 and 4 of the analyzed parameters as a
256 readout for polyfunctionality and quantified all individual cell subsets by Boolean gating
257 (Supplemental Figure 7). Overall, basal levels of cells displaying higher polyfunctionality tended
258 to be increased on splenic and circulating CD8⁺ T cells from GAG-ADJ DC vaccinated mice, but
259 differences did not reach statistical significance in all cases (Supplemental Figure 7A). In fact,
260 only polyfunctional cells co-expressing two-parameters were significantly higher in the blood at
261 6/7 weeks p.i. of GAG-ADJ mice compared to GAG and MED control groups (Supplemental
262 Figure 7C). In contrast, we observed a gradual increase in the induction of polyfunctional splenic
263 CD8⁺ T cells co-expressing 3 and 2 out of 4 analyzed parameters after Gag peptide stimulation in
264 the hBLT mice groups receiving GAG and GAG-ADJ DC vaccines. These differences were only
265 significant in the GAG-ADJ hBLT group compared to MED mice (Supplemental Figure 7B;
266 Figure 5C, upper plot). In fact, the increase of 3-parameter polyfunctional CD8⁺ T cells in GAG-
267 ADJ hBLT mice after Gag peptide stimulation was driven by a more significant increase in the
268 proportion of two specific subpopulations of CD107a⁺INF γ ⁺IL2⁻TNF α ⁺ and CD107a⁻ INF γ ⁺ IL2⁺
269 TNF α ⁺ CD8⁺ T cells, while the other combinations did not reach significance (Supplemental
270 Figure 9A, Figure 5C bottom plot). To better determine whether the presence or the absence of
271 total or specific polyfunctional populations was associated with reduced progression of HIV-1
272 infection, we performed a correlation network between these cell subsets and the clinical and
273 histological parameters previously observed (Supplemental Figure 8). This unbiased approach
274 identified histological and T cell responses significantly associated with viral control (Figure 5A-
275 B, D; Supplemental Figure 8A-B). In the spleen, we did not observe any significant association of
276 histological or clinical parameters with basal polyfunctional CD8⁺ T cell profiles differentially
277 induced in the GAG-ADJ hBLT mice (Supplemental Figure 8A). However, significant

278 associations between proportions of antigen-mediated induction of splenic polyfunctional CD8⁺ T
279 cells co-expressing 3 parameters were found with less severe depletion of CD4⁺ T cell counts,
280 infiltration of CD8⁺ T cells in the white pulp areas from the spleen and lower detection of infected
281 p24⁺ cells in the LN (Figure 5D, Supplemental Figure 9B). Interestingly, when we analyzed which
282 of the two Ag-induced 3-parameter polyfunctional T cells were more associated with virological,
283 immunological and histological patterns, we observed that the population of CD107a⁺ IFN γ ⁺ IL2⁻
284 TNF α ⁺ CD8⁺ T cells significantly induced in GAG-ADJ hBLT mice was more significantly
285 correlated with these parameters than the other CD107a⁻ INF γ ⁺ IL2⁺ TNF α ⁺ subset of CD8⁺ T cells
286 induced in these animals (Figure 5C bottom panel; Supplemental Figure 9A-C). In particular
287 frequencies of these CD107a⁺IFN γ ⁺IL2⁻TNF α ⁺ CD8⁺ T cells correlated more significantly with
288 lower pVL at earlier time points (3 wk p.i; p=0.0081) and with higher CD4⁺/CD8⁺ T cell ratios in
289 the blood (p=0.0468), higher infiltration of CD8⁺ T cells in the spleen (p=0.0010) and lower
290 detection of p24⁺ cells in the LN (p=0.0030) at the time of sacrifice (6/7wk p.i) (Supplemental
291 Figure 9A-C). These data suggest that CD8⁺ T cells from the spleen of GAG-ADJ hBLT mice
292 display preserved abilities to induce specific patterns of polyfunctional cytotoxic and cytokine
293 secreting cell subsets after antigen re-stimulation.

294 Our analyses also indicated that preserved polyfunctional responses after antigen stimulation from
295 circulating cells were also associated with control of HIV-1 infection in hBLT mice. Interestingly,
296 non-specific higher basal frequencies of polyfunctional CD107a⁺ IFN γ ⁺ IL2⁺ TNF α ⁺ in the
297 absence of Ag stimulation and increased induction after Gag-stimulation of CD107a⁻ IFN γ ⁺ IL2⁺
298 TNF α ⁺ cells in circulating CD8⁺ T cells were not associated with protection parameters but seemed
299 to be indicative of pronounced disease progression (Figure 5A-B, Supplemental Figure 9D).
300 However, we found that the polyfunctional CD107a⁺IFN γ ⁺IL2⁻TNF α ⁻ cell population induced by

301 Gag peptide stimulation from circulating CD8⁺ T cells at 3 weeks p.i. which was more significantly
302 increased in GAG-ADJ hBLT mice (Figure 5E, left plot). Although proportions of these
303 polyfunctional CD107a⁺IFN γ ⁺IL2⁺TNF α ⁻ at 3 weeks p.i. was not directly associated with clinical
304 and histological parameters (Figure 5A-B), this subset significantly correlates with subsequent
305 increased proportions of protective Ag-induced CD107a⁺IFN γ ⁺IL2⁺TNF α ⁺ (Figure 5E, right
306 plots). Together, our results indicate that vaccination of hBLT mice with TBK1 trained DC
307 enhance Ag-inducible precursors of polyfunctional T cell responses on circulating cells that can
308 serve as biomarkers of tissue polyfunctionality and reduced progression of HIV-1 infection.

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324 **Discussion**

325 Our study evaluates the efficacy of DC simultaneously matured with two TBK1 adjuvants, a
326 STING agonist and Poly I:C, inducing parameters of immune control of HIV-1 infection *in vivo*.
327 We demonstrate that vaccination with TBK1-tailored DC is associated with reduced progression
328 of HIV-1 disease in hBLT mouse model. Previous clinical trials evaluated the benefit of systemic
329 administration of Poly I:C to HIV-1 infected individuals, and demonstrated an increase of HIV-1-
330 specific T cell responses but the therapeutic benefit of this format remains unclear (41-43). In
331 addition, while previous studies in a murine model suggested that HIV-1 vaccines administered
332 systemically targeting DC via CD40 or DEC205 and Poly I:C as an adjuvant could induce antigen-
333 specific responses (44-46), our work provides new proof of concept of beneficial effects of the
334 administration of a TBK1-tailored DC vaccine in an *in vivo* humanized model without systemic
335 adjuvant addition, which can trigger other cell populations. This is particularly relevant since it
336 has been shown that systemic Poly I:C administration can lead to HIV-1 reactivation on CD4⁺ T
337 cells (45, 47). Moreover, this study specifically explores the benefit of enhanced maturation of DC
338 in the presence of a combination of Poly I:C and STING agonist, potentiating phosphorylation of
339 TBK1 and IRF3 and more efficiently inducing the secretion of immunomodulatory cytokines such
340 as IL-12 and IFN β , which was associated with an increase of DC antigen presenting properties.
341 However, we cannot completely rule out that in addition to activating TBK1, some of the adjuvants
342 used in our study such Poly I:C could be also triggering additional pathways, which might also
343 affect DC maturation. Despite this possibility, our data indicate that our combined adjuvant
344 strategy is able to recapitulate some of the enhanced functional properties previously observed in
345 DC from HIV-1 elite controllers (15, 48).

346 Importantly, while previous studies on HIV-1 vaccine prototypes have mainly focused on the
347 phenotype or even polyfunctionality induced circulating T cells (49, 50), we were able to identify
348 cellular and histological parameters associated with reduced spread of HIV-1 infection to
349 secondary lymphoid organs, such as the spleen and the lymph nodes. Moreover, vaccination of
350 hBLT mice with TBK1-tailored DC induced higher levels of infiltration of CD8⁺ T cells in white
351 pulp areas of spleen, which were associated with accumulation of infected HIV-1 p24⁺ cells in
352 these areas. This splenic phenotype was associated with higher volume of CD8⁺ T cell clusters and
353 lower detection of infected cells in the lymph node of hBLT mice. These histological patterns bear
354 some resemblance to follicular CD8⁺ T cell responses observed in primates able to control viral
355 infection (26) and in HIV-1 controller patients (25). In fact, we observed expression of CXCR5
356 preferentially on CD8⁺ T cells infiltrating the white pulp areas from GAG-ADJ hBLT mice, which
357 might support a follicular-like phenotype previously linked to viral control (51, 52). However,
358 since deficiencies in lymphoid tissue architecture have been described in the hBLT model (32, 53),
359 further characterization of white-pulp resident CD8⁺ T cells in the hBLT mouse needs to be
360 conducted in order to better understand these potential similarities. In fact, in our study we did not
361 address the causal relationships between the enrichment in cytotoxic CD8⁺ T cells in the red pulp
362 and the infiltration of CXCR5⁺ CD8⁺ T cells in the white pulp and the differential accumulation
363 of HIV-1 p24⁺ cells observed in these areas. Furthermore, the relationship between the observed
364 histological distribution of splenic CD8⁺ T cells with inflammatory tissue fibrosis, previously
365 linked to immunopathology of HIV-1 infection or the presence of CXCR5⁺ CD4⁺ T cells, was not
366 addressed in our study and deserves further investigation (54, 55).

367 In addition to histological patterns, we identified in vaccinated hBLT mice preserved abilities of
368 splenic CD8⁺ T cells to induce a polyfunctional population of tissue resident CD107a⁺ IFN γ ⁺

369 TNF α ⁺ IL2⁻ cells upon Ag stimulation that was associated with less severe depletion of circulating
370 CD4⁺ T cells, higher infiltration of CD8⁺ T cells in the white pulp areas and lower numbers of
371 infected p24⁺ cells in the lymph node, thus underscoring that these cells could display effective
372 antiviral properties. Supporting this possibility, a number of studies have described that
373 polyfunctional T cells co-expressing TNF α with other parameters correlate with protection against
374 viral infections such as Zika and Cytomegalovirus (56, 57). However, future studies are needed to
375 better understand the developmental kinetics and functional relationships of this particular subset
376 of polyfunctional cells with other subpopulations that might also be present in the GAG-ADJ
377 hBLT mice. While our data also indicate that TBK1-primed DC vaccination could induce control
378 on plasma viral load, these effects could be mediated by HLA-variability or HIV-1 escape
379 mutations induced in vaccinated hBLT mouse (33, 38). Although our study suggests that TBK-1
380 DC can induce multiple histological and immunological parameters associated with immune
381 control of HIV-1 infection, we focused on analyzing them at key time points previously described
382 to mark HIV-1 pathogenesis and detection of HIV-1 responses in the blood. Thus, further
383 longitudinal studies with a larger number of hBLT mice and a broader range of time point analyses
384 are required to better establish the impact and evolution of the identified histological and
385 immunological parameters during the course of HIV-1 infection and their relationship with
386 protection.

387 Finally, an additional limitation of our study was the relatively high TCID₅₀ dose and the
388 administration route of HIV-1 to the hBLT mice studied. The primary objective of our study was
389 to address whether vaccination of mice with TBK1-tailored DC could induce some level of
390 protection against progression of HIV-1 infection in a model in which we ensured infection of all
391 mice. However, new studies evaluating the beneficial effect of TBK1-tailored DC under more

392 physiological conditions such as the use of lower viral titers and a mucosal administration route
393 should be conducted. Despite these limitations, our study provides evidence of the beneficial
394 effect of TBK1-tailored DC inducing more effective immune responses against HIV-1 at the
395 histological, clinical, and cellular levels, and therefore it may be useful for the development of
396 future vaccine strategies against HIV-1.

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415 **Materials and Methods**

416 *Isolation of human peripheral blood populations*

417 Human Peripheral blood mononuclear cells (PBMC) were isolated by Ficoll (Pancoll, PAN
418 Biotech) gradient centrifugation. Subsequently, conventional Dendritic Cells (cDC) and total T
419 cells were purified from PBMC suspensions by negative immunomagnetic selection (purity >90%)
420 using the Human Myeloid DC Enrichment Kit (STEMCELL) and the Untouched total human T
421 cell (Invitrogen) kits, respectively. Monocyte-Derived Dendritic Cells (MDDC) were generated
422 from adherent cells present in PBMCs and cultured in the presence of 100IU/ml of GM-CSF and
423 IL-4 (Prepotech) for 5 days.

424

425 *In vitro functional assays*

426 Human PBMC or purified primary cDCs were cultured in RPMI 1640 media supplemented with
427 10% Fetal Bovine Serum (HyClone) alone or in the presence of either 1 μ g/ml 2'3'-c'diAM(PS)2
428 (Invivogen) or 5 μ g/ml Poly I:C (SIGMA) or a combination of both for 24h. For all functional
429 assays, stimulated cDC were washed with 1X PBS prior to the experiment. For mixed leukocyte
430 reaction (MLR) assays, activated DC were co-cultured with allogenic T cells at a DC:T ratio of
431 1:2 in 96 round-bottom well plates for 5 days. At day 5, cultured lymphocytes were re-stimulated
432 with 0.25 μ g/ml PMA (SIGMA) and ionomycin (SIGMA) for 1 h and cultured for 4 h in the
433 presence of 0.5 μ g/ml Brefeldin A (SIGMA), 0.005mM Monensin and 0.2 μ g/ml anti-CD107a-APC
434 antibody. Intracellular expression of INF γ and CD107a on cultured CD8 $^{+}$ and CD4 $^{+}$ T cells was
435 then analyzed by flow cytometry. For the experiments evaluating *de novo*-priming of HIV-1
436 specific responses, total PBMCs from healthy donors were pre-stimulated with 5 μ g/ml of a pool
437 of HIV-1 Gag peptides (NIH AIDS Reagent Program #11057) in the absence or the presence of

438 the adjuvant combinations previously mentioned and kept in culture in media supplemented with
439 25 IU/ml IL-2 (Prepotech) for 2 weeks. Subsequently, cDC where isolated from PBMC from the
440 same donor and activated under the same conditions in the absence or presence of a pool of HIV-1
441 Gag peptides. After 16h, pre-cultured PBMC and stimulated autologous cDCs were co-cultured
442 for additional 16h in the presence of Brefeldin A, Monensin and CD107a antibody and analyzed
443 by flow cytometry as previously mentioned. All antibodies used for flow cytometry are listed in
444 Table 1.

445

446 *Western blot analysis*

447 Total protein lysates from MDDC and cDC cultured for 1 h in the presence of media or individual
448 or combined Poly I:C and 2'3'-di AM(PS) agonists were obtained using RIPA buffer containing
449 1% phosphatase and protease inhibitors (Roche Diagnostics). Subsequently, protein lysates were
450 resolved in a 10% agarose gel with SDS and transferred to a nitrocellulose membrane (Fisher
451 Scientific). Membranes were blocked in 5% bovine serum albumin v (Sigma-Aldrich) in Tris
452 buffered saline and incubated overnight with 1:100 dilution of primary anti-TBK1, anti-IRF3 or
453 anti-GAPDH antibodies (Table 1). Then, membranes were incubated for 1 h with the appropriate
454 anti-rabbit or anti-mouse secondary antibodies (Table 1). Protein band intensity was quantified by
455 analyzing chemiluminescence detected using an ImageQuant 800 system (Amersham).

456

457 *Gene expression validation and RT-qPCR*

458 RNA was isolated from cDC cultured in the absence or the presence of TBK1 adjuvants using
459 RNeasy Micro Kit (Qiagen) according to manufacturer instructions. Subsequently, cDNA was
460 synthesized using the Reverse Transcription kit (Promega). Transcriptional levels of IFN- β , IL-12

461 and TNF α were analyzed by semiquantitative PCR (SYBR Green assay Go Taq qPCR Master
462 Mix; Promega) with specific primers (Metabion) on an Applied Biosystems StepOne Real-Time
463 PCR system (Applied Biosystems). Relative gene expression was calculated after normalization
464 to β -actin transcriptional levels.

465

466 *Generation of humanized BLT-mice*

467 NOD/SCID IL2Ry $^{-/-}$ (NSG) mice transplanted with human bone marrow, fetal liver and thymus
468 (BLT-mouse) were generated as previously described (32) at the Human Immune System Core
469 from the Ragon Institute and Massachussets General Hospital in collaboration with Dr. Vladimir
470 Vrbanac, Dr. Maud Deruaz and Dr. Alejandro Balazs. Mice were housed in microisolator cages
471 and fed autoclaved food and water at a pathogen-free facility. Human immune reconstitution was
472 monitored for 17 weeks and mice were considered reconstituted with proportions of human CD45 $^{+}$
473 lymphocytes superior to 30%.

474

475 *DC vaccination and HIV-1 infection of hBLT mice*

476 Dendritic cells (DC) were generated from the same CD34 $^{+}$ HSC precursors used to reconstitute
477 the corresponding batch of hBLT mice in the presence of 100IU/ml FLT3L, SCF, IL-7 and GM-
478 CSF (Prepotech). After 10 days, cDC (CD14 $^{+}$ HLA-DR $^{-}$) and MoDC (CD14 $^{+}$ HLA-DR $^{+}$) present
479 in cultures were sorted and incubated in media in the absence (MED mice group) or in the presence
480 of 5ug/ml of a Gag pool of peptides (GAG mice group) alone or in combination with 1 μ g/ml of
481 2'3'-c'diAM(PS) and 5 μ g/ml Poly I:C adjuvants (ADJ mice group). After 24 h, cDC and MoDC
482 from each culture condition were pooled and hBLT mice were intravenously vaccinated in the tail
483 vein with approximately 10 5 total DC per animal. Two weeks after vaccination, hBLT mice were

484 infected intravenously with a dose of 10,000 TCID₅₀ of HIV-1_{JR-CSF}. For histological analyses
485 some unvaccinated uninfected mice were included as controls.

486 Plasma HIV-1 viral loads were assessed at 3 and 5/6 and 6/7 weeks post-infection by isolating
487 viral RNA from plasma and quantified by RT-qPCR as previously described (38). Circulating
488 CD4⁺ T cell counts were assessed at day 0, 3 weeks, 5/6 weeks and 6/7 weeks post-infection by
489 flow cytometry using counting beads (CountBright, ThermoFisher).

490

491 *Histological analysis of tissue sections from hBLT mice*

492 Lymph nodes and spleens were paraffin-embedded and segmented in fragments of 2 μ m of
493 thickness in a Leica microtome. Tissue sections deparaffinization, hydration and target retroviral
494 were performed with a PT-LINK (Dako) previous to staining.

495 For paraffin-preserved tissue, we used rabbit anti-human CD8 (abcam), rabbit anti-human CXCR5
496 (GeneTex), rat anti-human CD8 (Bio-Rad), rat anti-human Granzyme B (eBioscience), mouse
497 anti-human CD3 (Dako) and mouse anti-HIV-1 P24 (Dako), as primary antibodies; and goat anti-
498 rabbit AF488 (Invitrogen), donkey anti-rat AF594 (Jackson ImmunoResearch) and donkey anti-
499 mouse AF647 (ThermoFisher) as secondary antibodies. Images were taken with a Leica TCS SP5
500 confocal and processed with the LAS AF software. 3-D CD8⁺ T cell aggregations were analyzed
501 with Imaris 9.1 software. CD8⁺ T cell, Granzyme B and HIV-1 P24 cell counts, co-localization
502 and distance 2-Dimensions maps were analyzed with ImageJ software. In some cases, spleen tissue
503 sections were also stained with hematoxylin and eosin to discriminate white (no eosin staining)
504 and red pulp (intense eosin staining due to enrichment in erythrocytes) areas containing nucleated
505 cells (hematoxylin stained).

506

507 *Analysis of polyfunctional T cell responses*

508 Blood was extracted from hBLT mice at 3 and 5-6 weeks post-infection and lysed with Red Blood
509 Cell Lysis Buffer (SIGMA). T cells were activated for 1.5 h with 5 μ l/ml of anti-CD28 and anti-
510 CD49d in the presence or absence of 6.4 μ g/ml of a Gag pool of peptides in the presence of
511 0.5 μ g/ml Brefeldin A, Golgi Plug and CD107a antibody (see Table 1). After 5 h of incubation,
512 polyfunctionality of T cell response was assessed by INF γ , IL2, TNF α and CD107a expression by
513 multicolor flow cytometry panel (all antibodies used are listed in Table 1) in a BD LSR Fortessa
514 Instrument (BD Biosciences). Polyfunctionality was evaluated using Boolean gating obtained with
515 FlowJo v10 software.

516

517 *Statistics*

518 Significance of phenotypical and functional differences between paired conditions or different
519 animals were assessed using a Wilcoxon matched-pairs signed-rank test or Mann-Whitney U test,
520 or using a Kruskal-wallis or Friedman test followed by a Dunn's post-hoc multiple comparison
521 test, as appropriate. Dependence of contingency tables values were calculated with Chi-square
522 statistic. Association between clinical, histological and phenotypical parameters were calculated
523 using non-parametric Spearman correlation individually between two parameters or using a
524 correlation network. All statistical analyses were performed using the GrapPad Prism 8 Sofware.

525

526 *Ethics statement*

527 This study was conducted following ethical standards for the treated animals specified in the
528 IACUC protocol of the Human Immune System Core led by Dr. Vladimir Vrbanac and approved

529 by the Research Ethics Committee from Massachusetts General Hospital and Universidad
530 Autónoma de Madrid and the Bioethical committees.

531 **Acknowledgments**

532 **Funding**

533 EMG was supported by the NIH R21 program (R21AI140930), the Ramón y Cajal Program
534 (RYC2018-024374-I), the MINECO/FEDER RETOS program (RTI2018-097485-A-I00) and by
535 Comunidad de Madrid Talento Program (2017-T1/BMD-5396). MJ.B is supported by the Miguel
536 Servet program funded by the Spanish Health Institute Carlos III (CP17/00179), the
537 MINECO/FEDER RETOS program (RTI2018-101082-B-100) and Fundació La Marató TV3
538 (201805-10FMTV3). EMG and MJB are funded by “La Caixa Banking Foundation H20-00218).
539 M.C.M was also funded by the NIH (R21AI140930). FS-M was supported by SAF2017-82886-R
540 from the Ministerio de Economía y Competitividad and HR17-00016 grant from “La Caixa
541 Banking Foundation. We also would like to thank the NIH AIDS Reagent Program, Division of
542 AIDS, NIAID, NIH for providing HIV-1 PTE Gag Peptide Pool from NIAID, DAIDS (cat #11057)
543 for the study. Finally, the Microscopy Unit from Centro Nacional de Investigaciones
544 Cardiovasculares provided technical support for the microscopy image processing and analysis.

545

546 **Author contributions**

547 E.M.G., V.V., D.C., M.D., A.B., M.J.B. developed the research idea and study concept, designed
548 the study and wrote the manuscript;
549 E.M.G., V.V. supervised the study;
550 M.C.M., D.C. M.D and S.T. designed and conducted most experiments and equally contributed to
551 the study;

552 T.A. and D.C. provided longitudinal VL data evolution in BLT mice from a pilot experiment
553 M.C.M. performed the histology staining and the image analysis of tissue sections from the study.
554 M.D and D.C. provided critical feedback during experimental design and execution phases of the
555 studies and were directly involved in the experiments.
556 M.J.B. and C.S. provided reagents and support for the histological analyses performed in the study.
557 F.S.M., A.A., M.A.MF, I.D.S, L.G.F and J.S. provided peripheral blood, reagents and participated
558 on the analysis of the data.

559

560 **Declarations of Interests:** The authors declare no competing interests.

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575 **References**

576

- 577 1. O'Connell RJ, Kim JH, Corey L, Michael NL. Human immunodeficiency virus vaccine trials. *Cold Spring Harbor perspectives in medicine*. 2012;2(12):a007351.
- 578 2. Gray GE, Laher F, Lazarus E, Ensoli B, Corey L. Approaches to preventative and therapeutic HIV vaccines. *Current opinion in virology*. 2016;17:104-9.
- 579 3. O'Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. *Cellular and molecular life sciences : CMLS*. 2015.
- 580 4. Martin-Gayo E, Gao C, Chen HR, Ouyang Z, Kim D, Kolb KE, et al. Immunological Fingerprints of Controllers Developing Neutralizing HIV-1 Antibodies. *Cell reports*. 2020;30(4):984-96.e4.
- 581 5. Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. *The Journal of experimental medicine*. 2010;207(6):1247-60.
- 582 6. Anderson DA, 3rd, Murphy KM, Briseno CG. Development, Diversity, and Function of Dendritic Cells in Mouse and Human. *Cold Spring Harbor perspectives in biology*. 2017.
- 583 7. Cancel JC, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How? *Frontiers in immunology*. 2019;10:9.
- 584 8. Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. *Clinical cancer research : an official journal of the American Association for Cancer Research*. 2016;22(8):1897-906.
- 585 9. Ide F, Nakamura T, Tomizawa M, Kawana-Tachikawa A, Odawara T, Hosoya N, et al. Peptide-loaded dendritic-cell vaccination followed by treatment interruption for chronic HIV-1 infection: a phase 1 trial. *J Med Virol*. 2006;78(6):711-8.
- 586 10. Kundu SK, Engleman E, Benike C, Shapero MH, Dupuis M, van Schooten WC, et al. A pilot clinical trial of HIV antigen-pulsed allogeneic and autologous dendritic cell therapy in HIV-infected patients. *AIDS research and human retroviruses*. 1998;14(7):551-60.
- 587 11. Gandhi RT, O'Neill D, Bosch RJ, Chan ES, Bucy RP, Shopis J, et al. A randomized therapeutic vaccine trial of canarypox-HIV-pulsed dendritic cells vs. canarypox-HIV alone in HIV-1-infected patients on antiretroviral therapy. *Vaccine*. 2009;27(43):6088-94.
- 588 12. Garcia F, Climent N, Assoumou L, Gil C, Gonzalez N, Alcami J, et al. A therapeutic dendritic cell-based vaccine for HIV-1 infection. *The Journal of infectious diseases*. 2011;203(4):473-8.
- 589 13. Garcia F, Climent N, Guardo AC, Gil C, Leon A, Autran B, et al. A dendritic cell-based vaccine elicits T cell responses associated with control of HIV-1 replication. *Sci Transl Med*. 2013;5(166):166ra2.
- 590 14. Coelho AV, de Moura RR, Kamada AJ, da Silva RC, Guimaraes RL, Brandao LA, et al. Dendritic Cell-Based Immunotherapies to Fight HIV: How Far from a Success Story? A Systematic Review and Meta-Analysis. *Int J Mol Sci*. 2016;17(12).
- 591 15. Martin-Gayo E, Buzon MJ, Ouyang Z, Hickman T, Cronin J, Pimenova D, et al. Potent Cell-Intrinsic Immune Responses in Dendritic Cells Facilitate HIV-1-Specific T Cell Immunity in HIV-1 Elite Controllers. *PLoS pathogens*. 2015;11(6):e1004930.
- 592 16. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. *Science*. 2013;341(6148):903-6.

619 17. Habjan M, Pichlmair A. Cytoplasmic sensing of viral nucleic acids. *Current opinion in*
620 *virology*. 2015;11:31-7.

621 18. Ma Z, Damania B. The cGAS-STING Defense Pathway and Its Counteraction by Viruses.
622 *Cell host & microbe*. 2016;19(2):150-8.

623 19. Almeida JR, Price DA, Papagno L, Arkoub ZA, Sauce D, Bornstein E, et al. Superior
624 control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and
625 clonal turnover. *The Journal of experimental medicine*. 2007;204(10):2473-85.

626 20. Samri A, Bacchus-Souffan C, Hocqueloux L, Avettand-Fenoel V, Descours B, Theodorou
627 I, et al. Polyfunctional HIV-specific T cells in Post-Treatment Controllers. *Aids*.
628 2016;30(15):2299-302.

629 21. Meraviglia S, Di Carlo P, Pampinella D, Guadagnino G, Presti EL, Orlando V, et al. T-
630 Cell Subsets (T(CM), T(EM), T(EMRA)) and Poly-Functional Immune Response in Patients with
631 Human Immunodeficiency Virus (HIV) Infection and Different T-CD4 Cell Response. *Annals of*
632 *clinical and laboratory science*. 2019;49(4):519-28.

633 22. Betts MR, Harari A. Phenotype and function of protective T cell immune responses in HIV.
634 *Current opinion in HIV and AIDS*. 2008;3(3):349-55.

635 23. Zhao C, Zhao W. TANK-binding kinase 1 as a novel therapeutic target for viral diseases.
636 *Expert opinion on therapeutic targets*. 2019;23(5):437-46.

637 24. Huang XL, Fan Z, Borowski L, Rinaldo CR. Maturation of dendritic cells for enhanced
638 activation of anti-HIV-1 CD8(+) T cell immunity. *Journal of leukocyte biology*. 2008;83(6):1530-
639 40.

640 25. Nguyen S, Deleage C, Darko S, Ransier A, Truong DP, Agarwal D, et al. Elite control of
641 HIV is associated with distinct functional and transcriptional signatures in lymphoid tissue CD8(+)
642 T cells. *Science translational medicine*. 2019;11(523).

643 26. Fukazawa Y, Lum R, Okoye AA, Park H, Matsuda K, Bae JY, et al. B cell follicle sanctuary
644 permits persistent productive simian immunodeficiency virus infection in elite controllers. *Nature*
645 *medicine*. 2015;21(2):132-9.

646 27. Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS
647 vaccine development. *Curr Protoc Immunol*. 2013;102:Unit 12 4.

648 28. Lan P, Tonomura N, Shimizu A, Wang S, Yang YG. Reconstitution of a functional human
649 immune system in immunodeficient mice through combined human fetal thymus/liver and CD34+
650 cell transplantation. *Blood*. 2006;108(2):487-92.

651 29. Marsden MD, Kovochich M, Suree N, Shimizu S, Mehta R, Cortado R, et al. HIV latency
652 in the humanized BLT mouse. *Journal of virology*. 2012;86(1):339-47.

653 30. Wege AK, Melkus MW, Denton PW, Estes JD, Garcia JV. Functional and phenotypic
654 characterization of the humanized BLT mouse model. *Current topics in microbiology and*
655 *immunology*. 2008;324:149-65.

656 31. Weichseldorf M, Heredia A, Reitz M, Bryant JL, Latinovic OS. Use of Humanized
657 Mouse Models for Studying HIV-1 Infection, Pathogenesis and Persistence. *Journal of AIDS and*
658 *HIV treatment*. 2020;2(1):23-9.

659 32. Brainard DM, Seung E, Frahm N, Cariappa A, Bailey CC, Hart WK, et al. Induction of
660 robust cellular and humoral virus-specific adaptive immune responses in human
661 immunodeficiency virus-infected humanized BLT mice. *Journal of virology*. 2009;83(14):7305-
662 21.

663 33. Dudek TE, No DC, Seung E, Vrbanac VD, Fadda L, Bhoumik P, et al. Rapid evolution of
664 HIV-1 to functional CD8(+) T cell responses in humanized BLT mice. *Science translational*
665 *medicine*. 2012;4(143):143ra98.

666 34. Biswas S, Chang H, Sarkis PT, Fikrig E, Zhu Q, Marasco WA. Humoral immune responses
667 in humanized BLT mice immunized with West Nile virus and HIV-1 envelope proteins are largely
668 mediated via human CD5+ B cells. *Immunology*. 2011;134(4):419-33.

669 35. Chang H, Biswas S, Tallarico AS, Sarkis PT, Geng S, Panditrapo MM, et al. Human B-cell
670 ontogeny in humanized NOD/SCID gammac(null) mice generates a diverse yet auto/poly- and
671 HIV-1-reactive antibody repertoire. *Genes Immun*. 2012;13(5):399-410.

672 36. Garcia F, Lejeune M, Climent N, Gil C, Alcami J, Morente V, et al. Therapeutic
673 immunization with dendritic cells loaded with heat-inactivated autologous HIV-1 in patients with
674 chronic HIV-1 infection. *The Journal of infectious diseases*. 2005;191(10):1680-5.

675 37. Kloverpris H, Karlsson I, Bonde J, Thorn M, Vinner L, Pedersen AE, et al. Induction of
676 novel CD8+ T-cell responses during chronic untreated HIV-1 infection by immunization with
677 subdominant cytotoxic T-lymphocyte epitopes. *Aids*. 2009;23(11):1329-40.

678 38. Claiborne DT, Dudek TE, Maldini CR, Power KA, Ghebremichael M, Seung E, et al. Immunization of BLT Humanized Mice Redirects T Cell Responses to Gag and Reduces Acute
679 HIV-1 Viremia. *Journal of virology*. 2019;93(20).

680 39. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, et al. HIV
681 nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. *Blood*.
682 2006;107(12):4781-9.

683 40. Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW, et al. HIV
684 specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in
685 nonprogressors. *Nature immunology*. 2002;3(11):1061-8.

686 41. Thompson KA, Strayer DR, Salvato PD, Thompson CE, Klimas N, Molavi A, et al. Results
687 of a double-blind placebo-controlled study of the double-stranded RNA drug polyI:polyC12U in
688 the treatment of HIV infection. *European journal of clinical microbiology & infectious diseases :
689 official publication of the European Society of Clinical Microbiology*. 1996;15(7):580-7.

690 42. Armstrong JA, McMahon D, Huang XL, Pazin GJ, Gupta P, Rinaldo CR, Jr., et al. A phase
691 I study of ampligen in human immunodeficiency virus-infected subjects. *The Journal of infectious
692 diseases*. 1992;166(4):717-22.

693 43. Miller E, Spadaccia M, Sabado R, Chertova E, Bess J, Trubey CM, et al. Autologous
694 aldrithiol-2-inactivated HIV-1 combined with polyinosinic-polycytidylic acid-poly-L-lysine
695 carboxymethylcellulose as a vaccine platform for therapeutic dendritic cell immunotherapy.
696 *Vaccine*. 2015;33(2):388-95.

697 44. Apostólico JS, Lunardelli VAS, Yamamoto MM, Cunha-Neto E, Boscardin SB, Rosa DS.
698 Poly(I:C) Potentiates T Cell Immunity to a Dendritic Cell Targeted HIV-Multiepitope Vaccine.
699 *Frontiers in immunology*. 2019;10:843.

700 45. Cheng L, Wang Q, Li G, Banga R, Ma J, Yu H, et al. TLR3 agonist and CD40-targeting
701 vaccination induces immune responses and reduces HIV-1 reservoirs. *The Journal of clinical
702 investigation*. 2018;128(10):4387-96.

703 46. Gómez CE, Nájera JL, Sánchez R, Jiménez V, Esteban M. Multimeric soluble CD40 ligand
704 (sCD40L) efficiently enhances HIV specific cellular immune responses during DNA prime and
705 boost with attenuated poxvirus vectors MVA and NYVAC expressing HIV antigens. *Vaccine*.
706 2009;27(24):3165-74.

708 47. Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, et al. Toll-
709 like receptor 3 activation selectively reverses HIV latency in microglial cells. *Retrovirology*.
710 2017;14(1):9.

711 48. Martin-Gayo E, Cole MB, Kolb KE, Ouyang Z, Cronin J, Kazer SW, et al. A
712 Reproducibility-Based Computational Framework Identifies an Inducible, Enhanced Antiviral
713 State in Dendritic Cells from HIV-1 Elite Controllers. *Genome biology*. 2018;19(1):10.

714 49. Lévy Y, Thiébaut R, Montes M, Lacabaratz C, Sloan L, King B, et al. Dendritic cell-based
715 therapeutic vaccine elicits polyfunctional HIV-specific T-cell immunity associated with control of
716 viral load. *European journal of immunology*. 2014;44(9):2802-10.

717 50. Rosa DS, Ribeiro SP, Almeida RR, Mairena EC, Postól E, Kalil J, et al. A DNA vaccine
718 encoding multiple HIV CD4 epitopes elicits vigorous polyfunctional, long-lived CD4+ and CD8+
719 T cell responses. *PloS one*. 2011;6(2):e16921.

720 51. He R, Hou S, Liu C, Zhang A, Bai Q, Han M, et al. Follicular CXCR5- expressing CD8(+) T
721 cells curtail chronic viral infection. *Nature*. 2016;537(7620):412-28.

722 52. Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, et al. CXCR5(+) follicular
723 cytotoxic T cells control viral infection in B cell follicles. *Nature immunology*. 2016;17(10):1187-
724 96.

725 53. Murooka TT, Deruaz M, Marangoni F, Vrbanac VD, Seung E, von Andrian UH, et al.
726 HIV-infected T cells are migratory vehicles for viral dissemination. *Nature*. 2012;490(7419):283-
727 7.

728 54. Zeng M, Haase AT, Schacker TW. Lymphoid tissue structure and HIV-1 infection: life or
729 death for T cells. *Trends in immunology*. 2012;33(6):306-14.

730 55. Sanchez JL, Hunt PW, Reilly CS, Hatano H, Beilman GJ, Khoruts A, et al. Lymphoid
731 fibrosis occurs in long-term nonprogressors and persists with antiretroviral therapy but may be
732 reversible with curative interventions. *The Journal of infectious diseases*. 2015;211(7):1068-75.

733 56. Giménez E, Blanco-Lobo P, Muñoz-Cobo B, Solano C, Amat P, Pérez-Romero P, et al.
734 Role of cytomegalovirus (CMV)-specific polyfunctional CD8+ T-cells and antibodies neutralizing
735 virus epithelial infection in the control of CMV infection in an allogeneic stem-cell transplantation
736 setting. *The Journal of general virology*. 2015;96(9):2822-31.

737 57. Grifoni A, Costa-Ramos P, Pham J, Tian Y, Rosales SL, Seumois G, et al. Cutting Edge:
738 Transcriptional Profiling Reveals Multifunctional and Cytotoxic Antiviral Responses of Zika
739 Virus-Specific CD8(+) T Cells. *Journal of immunology*. 2018;201(12):3487-91.

740

741

742

743

744

745

746

747 **Figure legends**

748

749 **Figure 1. Impact of combined TBK1 adjuvants on maturation and function of DC *in vitro*.**

750 (A): Representative Western blot images of analysis of phosphorylated and total TBK1 and IRF3

751 proteins in Monocyte-Derived DC (MDDC) cultured in the absence or the presence of individual

752 or combined TBK1 adjuvants (left panel). Activation of TBK1 (left plot) and IRF3 (right plot)

753 proteins was determined by calculating the ratio of phosphorylated vs total protein and normalized

754 to GAPDH as housekeeping protein for DCs. Data shown in the right represent ratios normalized

755 to values from the control condition (MDDC alone) of each experiment (n=5 experiments).

756 Statistical significance was calculated using a Kruskal-Wallis multiple comparison test with

757 Dunn's correction (*p<0.05; **p<0.01; ***p<0.001). (B): RT-qPCR analysis of IFN γ , IL-12 and

758 TNF α mRNA expression normalized to β -actin levels in cDC cultured for 16 h hours with media

759 alone or in the presence of 2'3'-c-di-AM(PS)2 and/or Poly I:C. (n=8 experiments). Statistical

760 significance was calculated using a two-tailed matched-pairs Wilcoxon test (*p<0.05; **p<0.01).

761 (C): Proportions of polyfunctional IFN γ $^+$ CD107a $^+$ CD8 $^+$ T cells detected by flow cytometry after

762 culture of total T cells with allogeneic cDCs pre-treated with media or in the presence of individual

763 or combined TBK1 adjuvants. Significance was calculated using a two-tailed Wilcoxon test

764 (*p<0.05). (D): Proportions of *de novo* induced total (IFN γ $^+$, left) and polyfunctional (IFN γ $^+$

765 CD107a $^+$, right) HIV-1-Gag-specific T cells from healthy donors cultured for 2 weeks in the

766 absence or the presence of a pool of HIV-1 Gag peptides alone or combined with the indicated

767 TBK1 adjuvants and restimulated with autologous cDC pre-treated in the same mentioned culture

768 conditions. Significance was calculated using a two-tailed Wilcoxon test (*p<0.05; **p<0.01).

769

770 **Figure 2. hBLT mice vaccinated with GAG-ADJ DC display less severe progression of HIV-**
771 **1 infection.** (A): Fold-change in circulating hCD4⁺ T cell counts in infected hBLT mice at 5-6
772 weeks post-infection with HIV-1 relative to basal counts present on each mouse at day 0 (upper
773 panels). Significance was calculated using a two-tailed Wilcoxon test (*p<0.05; **p<0.01;
774 ***p<0.001). Pie charts showing percentage of mice displaying less severe decrease of hCD4⁺ T
775 cell counts (hCD4⁺ T cell fold change \geq 0.5; CD4 Hi) and those animals with severe depletion
776 (hCD4⁺ T cell fold change < 0.5; CD4 Low). Statistical significance of differences was calculated
777 using a Chi-square test with Yates correction (**p<0.01; ****p<0.0001). (B): HIV-1 plasma viral
778 loads (upper panels) quantified by RT-qPCR from the plasma of hBLT-mice vaccinated with
779 MED, GAG and GAG-ADJ treated DCs at 3 weeks post infection, stratified by CD4 Hi and CD4
780 Low phenotypes within each indicated hBLT mouse subgroup. Pie charts (lower panels)
781 representing mice with VL either equal or higher than 10^5 copies/ml (dark color) or lower than 10^5
782 copies/ml (light color) per treatment group and CD4⁺ T cell fold-change stratification. Statistical
783 significance of differences was calculated using a Chi-square test with Yates correction (**p<0.01;
784 ***p<0.0001).

785
786 **Figure 3. Histological analysis of CD8⁺ T cell and HIV-1-infected cell distribution in spleen**
787 **from vaccinated hBLT mice.** (A): Representative confocal microscopy image (magnification
788 40X) of a whole transversal splenic section showing staining of cell nuclei (DAPI; blue), human
789 CD8⁺ T cells (green), Granzyme B⁺ (gray) and HIV-1 p24⁺ infected cells (red). Zoomed images
790 (40X magnification) from selected white pulp (i) and red pulp (ii) areas highlighted by dashed
791 lines and defined as in Supplemental Figure 4, are displayed on the right to appreciate cellular
792 patterns. Green arrows CD8⁺ T cells; white arrow Granzyme B⁺ cell; dashed white arrow

793 Granzyme B⁺ CD8⁺ T cells; red arrow HIV-1 p24⁺ cells. (B-C): Analysis of hCD8⁺ T cells (B,
794 left) and HIV-1 p24⁺ cells (C, left) infiltrated in the white pulp areas from spleen of the indicated
795 groups of hBLT mice. Significance was calculated using a Kruskal-Wallis multiple comparison
796 test with Dunn's correction (**p<0.01; ***p<0.001). Spearman correlation analysis of association
797 of frequencies of CD8⁺ T cells in the white pulp and proportions of Granzyme B⁺ CD8⁺ T cells
798 (B, right) and p24⁺ in the white pulp (C, right) are also shown. Spearman R and P values are
799 highlighted on the upper right areas of each plot.

800

801 **Figure 4. Histological CD8⁺ T cell and HIV-1 p24⁺ cell characterization in lymph nodes from**
802 **vaccinated hBLT mice.** (A): Representative confocal microscopy image (40x magnification)
803 example of whole lymph node section showing staining of nuclei (DAPI, blue), hCD8⁺ T cells
804 (green), Granzyme B⁺ (grey) and infected HIV-1 p24⁺ cells (red). A zoom of an (i) area from the
805 same original image is shown on the right. Dashed lines highlight CD8⁺ T cell cluster areas. Green
806 arrows CD8⁺ T cells; white arrow Granzyme B⁺ cell; dashed white arrow Granzyme B⁺ CD8⁺ T
807 cells; red arrow HIV-1 p24⁺ cells. (B): Quantification of number of infected HIV-1 p24⁺ cells per
808 lymph node area from the indicated hBLT mice groups. Pie charts shown below represent the
809 percentage of mice displaying high density of infected cells per area (≥ 0.00003 p24⁺ cells/square
810 micron) or low density of infected cells per area (< 0.00003 p24⁺ cells/square micron) within each
811 hBLT mouse subgroup. Statistical significance of differences was calculated using a Chi-square
812 test with Yates correction (**p<0.001). (C): Number of hCD8⁺ T cells per lymph node area
813 (upper panel) from the indicated hBLT mice groups. Pie charts showing the percentage of mice
814 per group displaying high density of CD8⁺ T cells per lymph node area (≥ 0.002 hCD8⁺ T
815 cells/square micron) or low density of CD8⁺ T cells per lymph node area (< 0.002 hCD8⁺ T

816 cells/square micron) are shown below. Statistical significance of differences in proportions of mice
817 with enrichment of CD8⁺ T cells among groups was calculated using a Chi-square test with Yates
818 correction (**p<0.01; ***p<0.001). (D): Percentage of mice presenting CD8⁺ T cells large volume
819 clusters (\geq 6000 cubic microns) in the lymph nodes corresponding to the quantifications shown in
820 Supplemental Figure 5. Statistical significance of differences was calculated using a Chi-square
821 test with Yates correction (****p<0.0001). (E): Two tailed Spearman correlation network
822 showing R (left heatmap) and p values (right heatmap) between selected histological parameters
823 and plasma viral loads and fold change in PB CD4⁺ T cell count and CD4⁺/CD8⁺ T cell ratios at
824 different times post infection. (F): Individual Spearman correlations between numbers (Upper row)
825 and median volume (lower row) of large CD8⁺ T cell clusters (\geq 6000 cubic microns) versus the
826 indicated spleen histological patterns (upper row) and clinical parameters (lower row). Spearman
827 R and p values for all animals (black) and GAG-ADJ group (red) are shown on each plot.

828

829 **Figure 5. Identification of CD8⁺ T cell polyfunctional patterns associated with histological**
830 **and clinical parameters of progression of HIV-1 infection in hBLT mice.** (A-B): Correlation
831 networks showing Spearman R (A) and p values (B) between selected clinical and histological
832 parameters and basal and antigen-induced polyfunctional phenotype of splenic and circulating
833 CD8⁺ T cell populations analyzed by flow cytometry at different times post-infection (B). Positive
834 and negative correlations are highlighted in red and blue respectively; Significant p values for each
835 correlation are highlighted in brown scale. (C): Proportion of splenic CD8⁺ T cells either co-
836 expressing 3 out of 4 tested cytokine/degranulation parameters upon stimulation with a pool of
837 HIV-1 Gag peptides (upper plot) or a splenic population of polyfunctional cells defined as
838 CD107a⁺ INF γ ⁺ TNF α ⁺ IL-2⁻ detected under these conditions (lower plot). (D): Individual

839 Spearman correlations between proportions of Gag-peptide induced splenic CD8⁺ T cells co-
840 expressing 3 cytokine/degranulation parameters and the indicated clinical and histological
841 parameters. Spearman p and r values are highlighted in each plot. *p<0.05; **p<0.01. (E):
842 Proportions of CD107a⁺ INF γ ⁺ TNF α ⁻ IL-2⁻ included in circulating CD8⁺ T cells at 3 weeks p.i.
843 after HIV-1 Gag-peptide stimulation. Individual Spearman correlations between proportions of
844 this population and Ag-induced 3 parameter polyfunctional cells and p24⁺ cell No. in LN are
845 shown in the right. Significance for (C, E) was calculated using a Kruskal-Wallis multiple
846 comparison test with Dunn's correction (*p<0.05; **p<0.01).

847 **Table 1. List of commercial antibodies used in the study**

Antibody	Vendor	Application	Dilution
CD107a APC	Biolegend	FACS	1ul/ml
CD107a PE-Cy7	Biolegend	FACS	1ul/ml
CD3 Pacific Blue	Immunostep	FACS	1:50
CD3 V605	Biolegend	FACS	2:50
CD4 APC-Cy7	Biolegend	FACS	2:50
CD45 PerCP	Biolegend	FACS	2:50
CD8 APC	Biolegend	FACS	2:50
CD8 PerCP	Biolegend	FACS	1:50
IL-2 PE	Biolegend	FACS	3:50
INF γ FITC	Biolegend	FACS	3:50
INF γ FITC	BD Pharmigen	FACS	1:50
TNF α Pacific Blue	Biolegend	FACS	2:50
Ghost Dye Red 780	TONBO Bioscience	FACS	1:1000
Live/Dead Fixable Blue Dead Cell Stain Kit	Thermo Fisher	FACS	1:1000
phosphoTBK1	Cell Signaling	WB	1:1000
TBK1	Cell Signaling	WB	1:1000
phosphoIRF3	Cell Signaling	WB	1:1000
IRF3	Cell Signaling	WB	1:1000
GAPDH	Biolegend	WB	1:1000
anti-rabbit	Invitrogen	WB	1:5000
anti-mouse	Invitrogen	WB	1:2000
CD8	abcam	IF	1:100
Granzyme B	eBioscience	IF	1:100
HIV P24	Dako	IF	1:10
CD3	Dako	IF	1:25
CXCR5	GeneTex	IF	1:100
anti-rabbit AF488	Invitrogen	IF	1:200
anti-rat AF594	Jackson ImmunoResearch	IF	1:200
anti-mouse AF647	Thermo Fisher	IF	1:200

848 **Supplemental figure legends**

849

850 **Supplemental figure 1. Impact of TBK1 adjuvants in activation and function of cDC *in vitro*.**

851 (A): Representative Western blot analysis of TBK1 and IRF3 phosphorylation in primary cDCs
852 cultured for 1 h in the presence of media alone or with 2'3'-c-di-AM(PS)2 and/or Poly I:C. Ratios
853 for phosphorylated vs total TBK1 and IRF3 proteins are shown on the right. Significance was
854 calculated using a Kruskal-Wallis multiple comparison test with Dunn's correction (*p<0.05). (B):
855 Flow cytometry analysis of Mean Fluorescence Intensity (MFI) of CD40 (left) and CD86 (right)
856 in cDC following culture in the absence or the presence of different indicated adjuvant
857 combinations (n=8 experiments). Significance was calculated using a two-tailed Wilcoxon test
858 (*p<0.05). (C): Flow cytometry dot plots showing analysis of IFN γ versus CD8 on gated CD8 $^{+}$ T
859 cells from healthy individuals exposed to autologous cDCs pre-cultured in media alone or activated
860 with 2'3'-c-di-AM(PS)2 and Poly I:C in the absence or the presence of a pool of HIV-1 Gag
861 peptides. Dot plots from three representative experiments are shown. Number below gates
862 represent proportion of positive cells.

863

864 **Supplemental figure 2. *In vitro* generation and isolation of HSC-derived DC and**
865 **experimental design for *in vivo* hBLT vaccination and analysis.** (A): Representative pre-sorting
866 gating strategy showing cell populations derived from human fetal CD34 $^{+}$ HSC cultured *in vitro*
867 for 2 weeks (see methods). Conventional dendritic cells (cDC) and monocyte derived DC-like
868 (MoDC-like) derived from HSC were defined as live CD33 $^{+}$ HLA-DR $^{+}$ myeloid cells differing on
869 CD14 expression, respectively. (B): Flow cytometry analysis of CD14 vs HLA-DR expression on
870 sorted cDC (upper plots) and MoDC-like cells (lower plots). Proportion of cells included on each

871 gate are highlighted. Levels of CD11c expression overlayed with FMO controls (blue histograms)
872 for each of these two populations (red histograms) is also shown on the right. (C): Flow cytometry
873 analysis of expression of CD40 versus CD86 on sorted CD34⁺ HSC-derived cDC and MoDC-like
874 cultured in just media (MED) or in the presence of a pool of HIV-1 Gag peptides alone (GAG) or
875 in combination with the TBK1 adjuvant cocktail (GAG-ADJ). Numbers in quadrants indicate
876 proportions of positive cells. (D): Schematic representation of the experimental generation of
877 hBLT mice, *in vivo* vaccination regime and analysis design. (E): Analysis of hBLT mice weight
878 during the course of the experiment. Individual weights of hBLT mice are shown in a lighter color
879 and median for each hBLT mouse subgroup is highlighted in a darker color and thicker lines
880 (yellow for Media (MED), blue for Gag pool (GAG) and red for Gag pool + adjuvants (GAG
881 AGJ)).

882

883 **Supplemental figure 3. Evolution of plasma HIV-1 viral loads in vaccinated hBLT mice**
884 **infected with HIV-1.** (A): Pilot experiment showing RT-qPCR analysis of the evolution of plasma
885 HIV-1 (RNA copies/ml) in n= 7 hBLT mice at different weeks after infection with JRCSF HIV-1
886 virus. (B-C): RT-qPCR analysis of plasma viral load in hBLT-mice vaccinated with MED, GAG
887 and GAG-ADJ treated DCs at 3, 5/6 and 6/7 weeks post infection (B) and stratified in CD4 Hi and
888 CD4 Low animals included within each hBLT mouse subgroup at 6/7 weeks post infection (C).
889 Pie charts (lower panel C) represent the proportions of mice presenting plasma viral load either
890 equal or higher than 10⁵ copies/ml (dark color) or lower than 10⁵ copies/ml (light color). Statistical
891 significance of differences was calculated using a Chi-square test with Yates correction
892 (****p<0.0001).

893 **Supplemental figure 4. Depletion of circulating CD4+ T cells in vaccinated hBLT mice**
894 **infected with HIV-1.** (A-C): Fold-change in peripheral hCD4⁺ T cell counts at 3, 5-6 and 6-7
895 weeks post infection with HIV-1 in the study (A) or shown individually in two separate
896 experiments performed with different batches of hBLT mice (C; experiment 1, n=24, left and
897 experiment 2, n=18, right). Individual data for each mouse was normalized to the corresponding
898 baseline hCD4⁺ T count values present at day 0. (B): Fold change in CD4⁺/CD8⁺ T cell ratios in
899 the blood at 5/6 and 6/7 weeks post-infection from the values observed at 3 weeks post-infection
900 in the indicated groups of vaccinated animals. Statistical significance was calculated using a two-
901 tailed matched-pairs Wilcoxon test (*p<0.05; **p<0.01).

902
903 **Supplemental figure 5. Histological analysis of hBLT mice splenic architecture and**
904 **association with CD8⁺ T cell activation.** (A): Representative image of a hematoxylin-eosin
905 staining of a full spleen section from a hBLT mouse used for the study and defining white and red
906 pulp areas (magnification 5x). Dashed areas include white pulp and exclude red pulp and (i) and
907 (ii) sections from these regions are further zoomed in the lower panels (magnification 20x). (B):
908 Quantification of percentage of cytotoxic Granzyme B⁺ hCD8⁺ T cell from total splenic hCD8⁺ T
909 cells (upper panel) and number of HIV p24⁺-infected cells per square microns (lower panel)
910 detected per splenic section of the hBLT mice from the indicated subgroups. Significance was
911 calculated using a Kruskal-Wallis multiple comparison test with Dunn's correction. (C): Analysis
912 of the percentages of cytotoxic Granzyme B⁺ cells from total CD8⁺ T cells found in the white pulp
913 (WP, upper plot) and in the red pulp (RP, lower plot) areas in the spleen of the indicated hBLT
914 mouse subgroups. Significance between white and red pulp paired values was calculated using a
915 two-tailed Wilcoxon test (*p<0.05; **p<0.01; ***p<0.001). Intergroup significance was

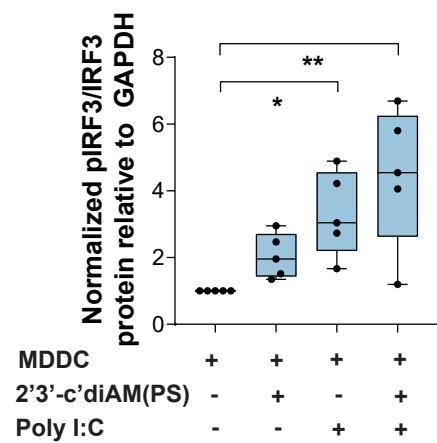
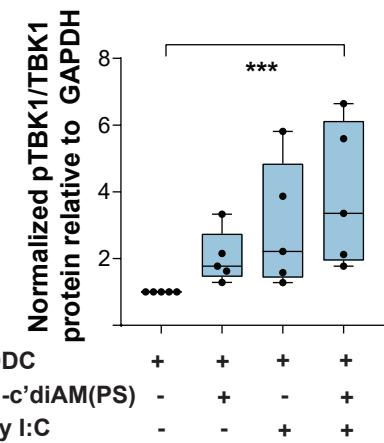
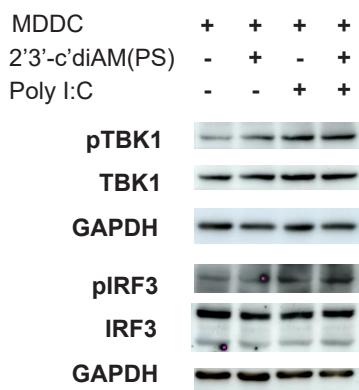
916 calculated using a Kruskal-Wallis multiple comparison test with Dunn's correction (*p<0.05). (D):
917 Spearman correlation between proportions of Granzyme B⁺ CD8⁺ T cells present in the red versus
918 the white pulp of the spleen of vaccinated hBLT mice. Spearman R and p values are highlighted
919 in the upper right area of the plot. (E): Frequencies of CD8⁺ T cells and p24⁺ cells per spleen area
920 in vaccinated MED (yellow), GAG (blue) and GAG-ADJ (red) hBLT mice stratified by less severe
921 (CD4Hi) and marked (CD4Lo) depletion of circulating CD4⁺ T cell counts at 5/6 wk p.i. Statistical
922 significance between values from CD4Hi ADJ-GAG mice and the indicated subgroups were
923 performed using a two-tailed Mann Whitney test. (F): Representative confocal microscopy images
924 (magnification 40x) from white pulp areas of the spleen of a GAG (left panel) and a GAG-ADJ
925 (right panel) spleen section stained with anti-CD3 (yellow), anti-CD8 (green), CXCR5 (magenta);
926 Nuclei were stained with DAPI (blue). White arrows highlight CXCR5⁺ CD8⁺ T cells in the white
927 pulp areas from the spleen.

928

929 **Supplemental figure 6. Analysis of CD8⁺ T cell clusters in the lymph node from hBLT mice.**
930 (A): Analysis of the volume of CD8⁺ T cell clusters detected on hBLT LN tissue sections using
931 the Imaris 9.2 software. CD8⁺ clusters are colored with a gradient from higher volumes (red and
932 orange) to lower volumes (purple and dark blue). (B): Proportion of infected HIV-1 p24⁺ cells per
933 lymph node area stratified by CD4 Hi and CD4 Low animals included on each hBLT mouse
934 subgroup. (C): Individual Spearman correlations of p24⁺ cells per LN area versus plasma viral
935 loads at different time points and CD8⁺ T cell per spleen area at 6/7 weeks p.i. Values of r and p
936 in Total (black) and GAG-ADJ (red) hBLT mice are highlighted on each plot. *p<0.05; **p<0.01;
937 ***p<0.001; ****p<0.0001. (D): Quantification of numbers of large (500-3000000 μm^3 , upper
938 pot; red line showing high-volume elements cut-off) and low (0-500 μm^3 , lower pot) volume CD8⁺

939 T cell clusters obtained with the Imaris 9.2 software for every single lymph node and per hBLT
940 mouse.

941
942 **Supplemental figure 7. Quantification of basal and HIV-1 peptide induced polyfunctional**
943 **profiles of splenic and circulating CD8⁺ T cells from hBLT mice.** (A, B): Percentages of
944 polyfunctional splenic CD8⁺ T cells at 6/7 weeks post-infection defined as lymphocytes co-
945 expressing either 4, 3 or 2 analyzed cytokine and degranulation parameters on gated CD8⁺ T cells
946 either basally (A) or upon HIV-1 Gag peptide stimulation (B). (C-F): Percentage of polyfunctional
947 cells, as previously defined, included on circulating CD8⁺ T cells at 3 and 6/7 weeks post-infection
948 either basally (C for 6/7 wk p.i., and E for 3 wk p.i.) and after HIV-1 Gag peptide-stimulation (D
949 for 6/7 wk p.i., and F for 3 wk p.i.). Statistical significance was calculated using a Kruskal-Wallis
950 multiple comparison test with Dunn's correction (*p<0.05; **p<0.01; ***p<0.001).




951
952 **Supplemental figure 8. Association of HIV-1 Gag-peptide induced splenic CD107a⁺ INF γ ⁺**
953 **TNF α ⁺ CD8⁺ T cells and HIV-1 disease progression parameters.** (A-B): Correlation network
954 showing Spearman R (A) and p values (B) between the indicated clinical, histological, and basal
955 and antigen-induced polyfunctional phenotype of splenic and circulating CD8⁺ T cell populations
956 analyzed by flow cytometry at different times post-infection. Positive and negative correlations
957 are highlighted in red and blue respectively; Significant p values for each correlation are
958 highlighted in brown scale

959
960 **Supplemental Figure 9. Association of basal and HIV-1 Gag-peptide induced polyfunctional**
961 **CD8⁺ T cells populations and histological and HIV-1 disease progression parameters.** A):

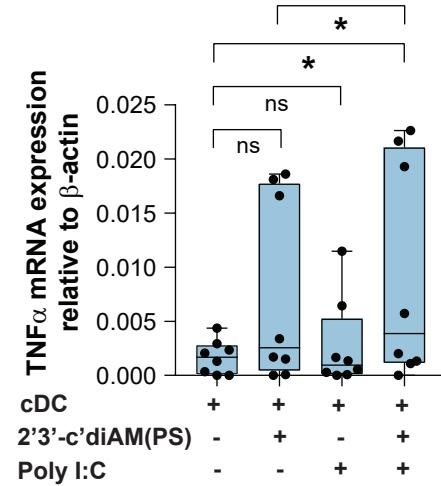
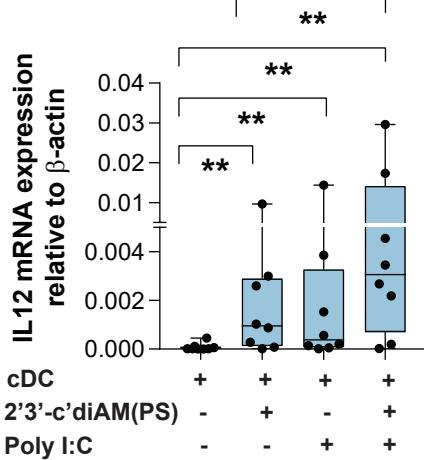
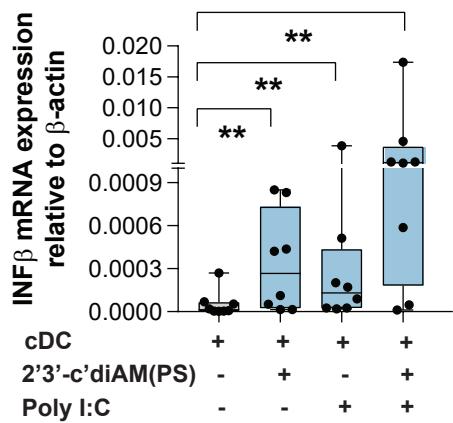
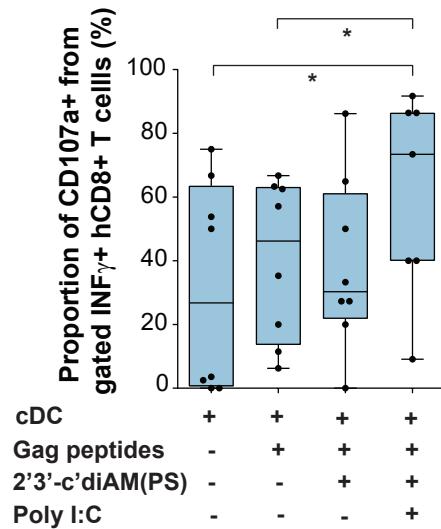
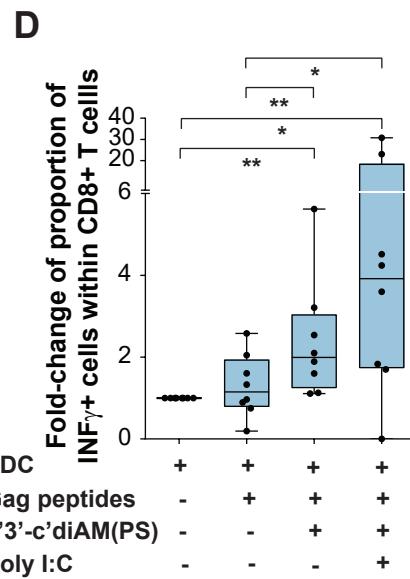
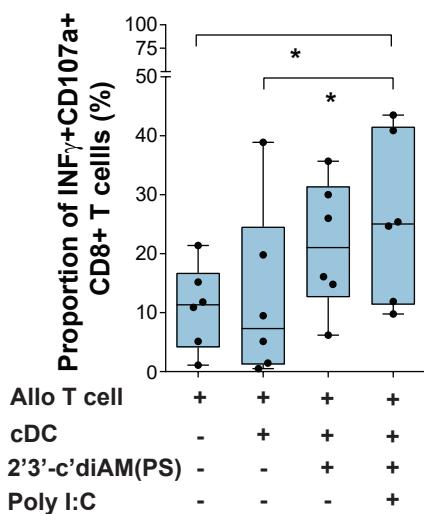
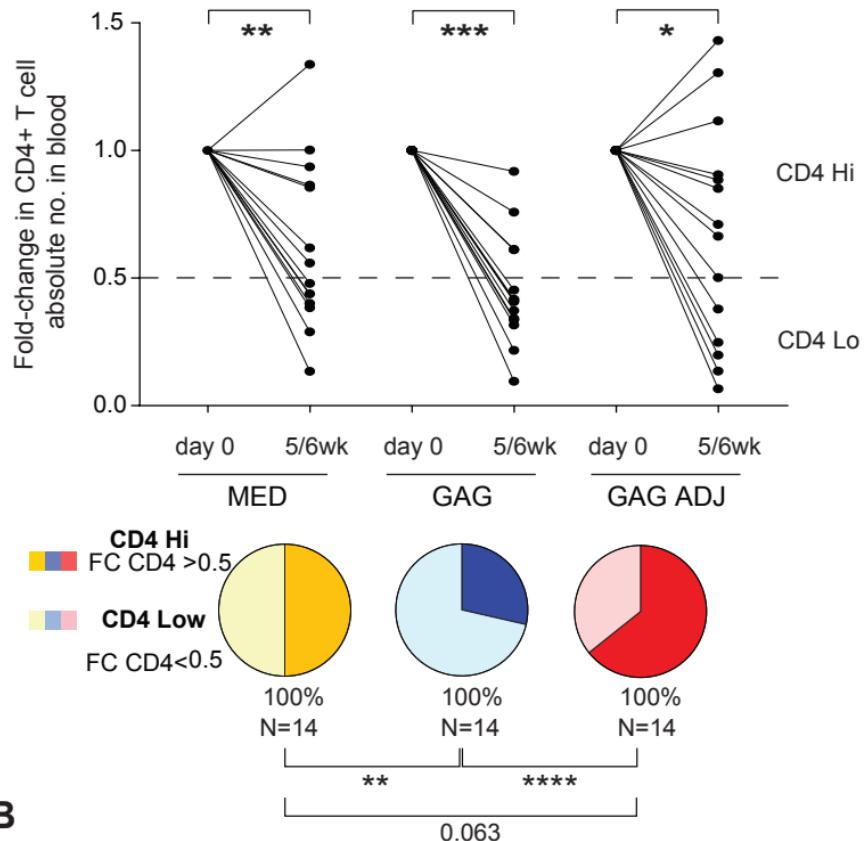
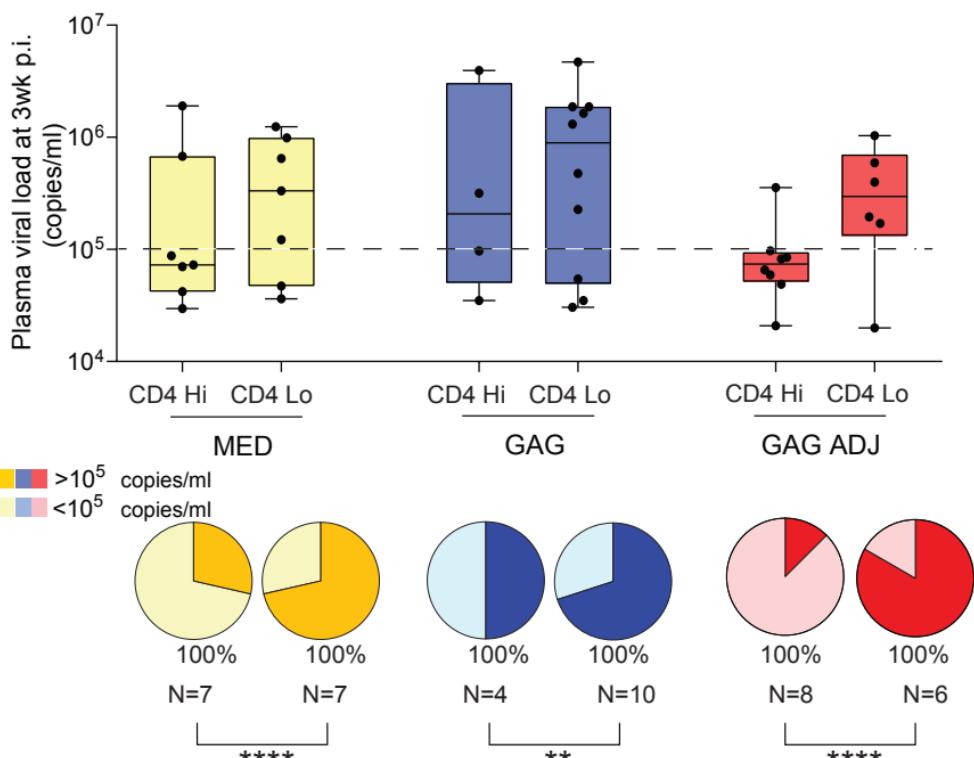
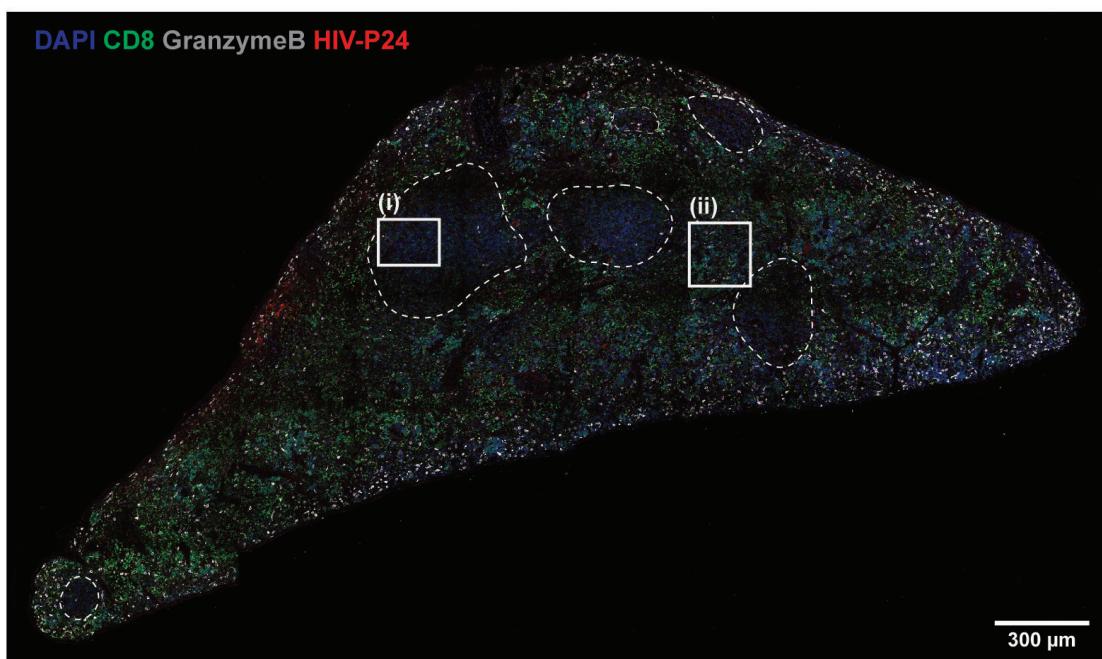



962 Proportions of CD107a⁺IFN γ ⁺IL2⁺TNF α ⁻, CD107a⁺IFN γ ⁻IL2⁺TNF α ⁺ and CD107a⁻
963 IFN γ ⁺IL2⁺TNF α ⁺ 3-parameter polyfunctional subpopulations from splenic CD8⁺ T cells induced
964 after HIV-1 Gag peptide stimulation CD8⁺ T cells. Statistical significance was calculated using a
965 two-tailed Mann Whitney test, **p<0.01 (B-D): Individual Spearman correlation between
966 proportions of CD107a⁺ INF γ ⁺ IL2⁻ TNF α ⁺ (Upper rows) and CD107a⁻ INF γ ⁺ IL2⁺ TNF α ⁺ (bottom
967 rows) from splenic CD8⁺ T cell detected after HIV-1 Gag-peptide stimulation and the indicated
968 virological (B) and immunological (C) parameters. Correlations between indicated histological
969 and immunological parameters and proportions of CD107a⁺IFN γ ⁺IL2⁺TNF α ⁺ cells basally present
970 in circulating CD8⁺ T cells at 3 weeks post-infection are shown in panel D. Spearman R and p
971 values of all and ADJ-GAG hBLT mice groups are highlighted in black and red, respectively.

Figure 1




A

B


C

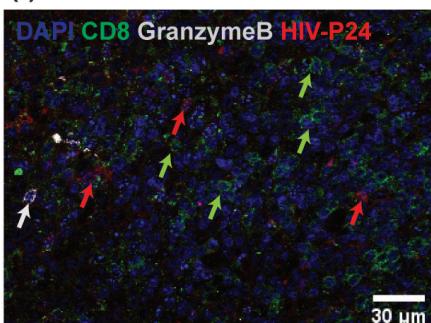
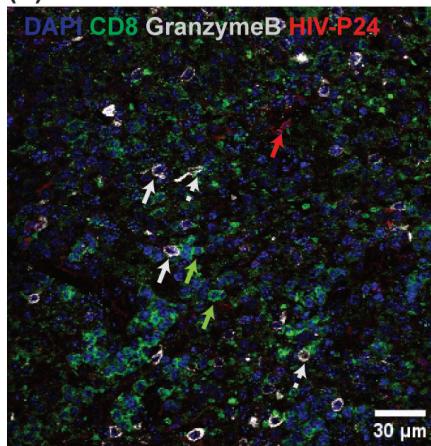
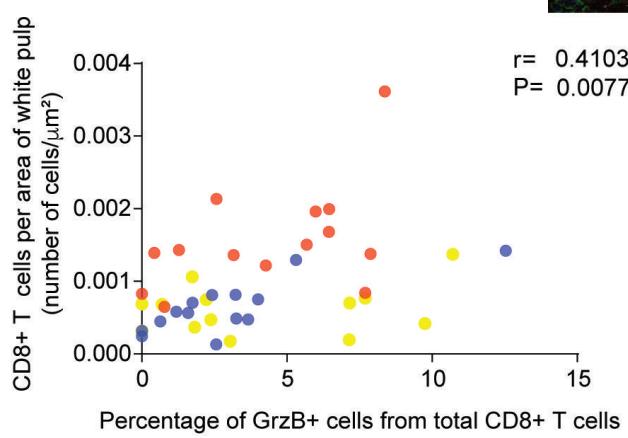
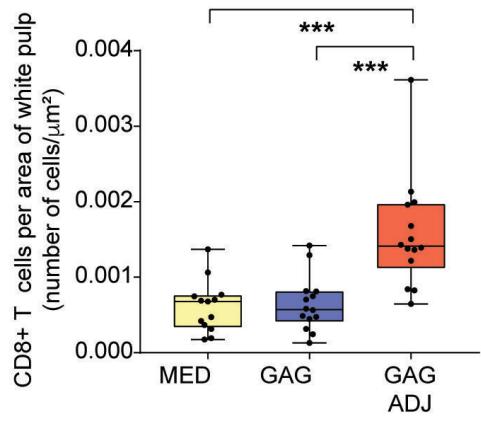
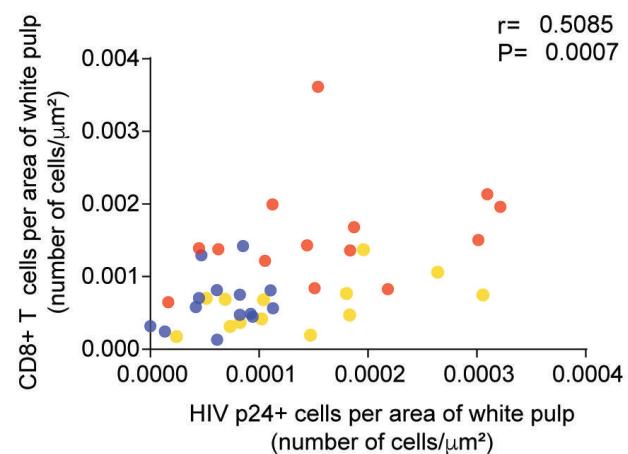
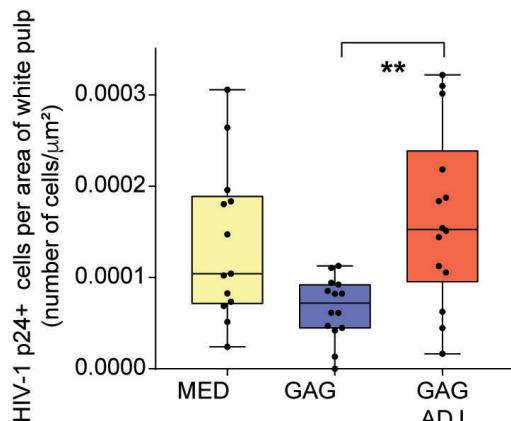
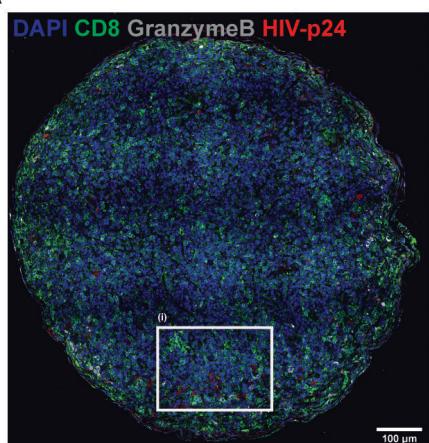

Figure 2**A****B**

Figure 3


A



(i) WHITE PULP



(ii) RED PULP


B

C

A

DAPI CD8 GranzymeB HIV-p24

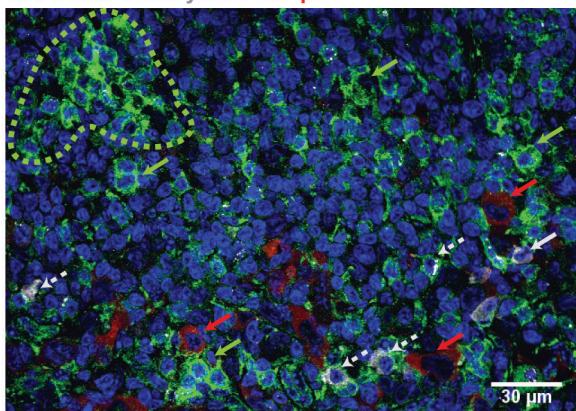
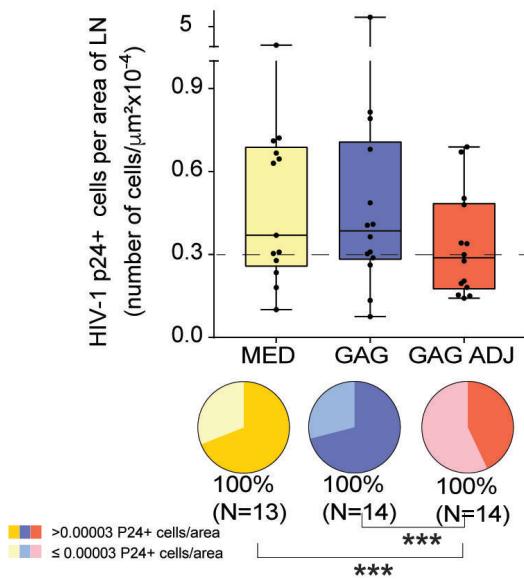
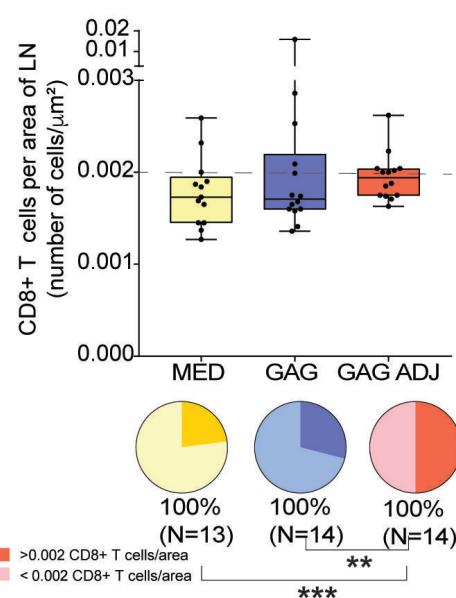
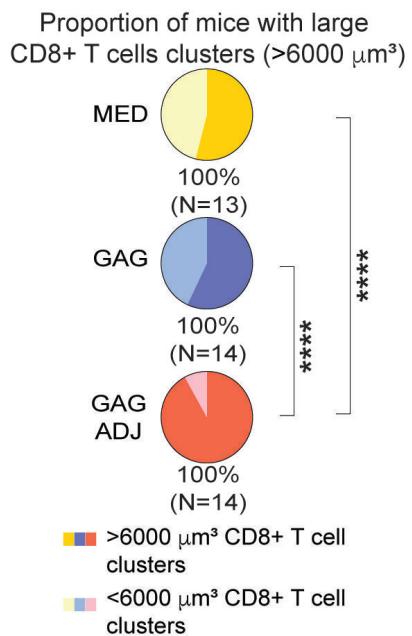
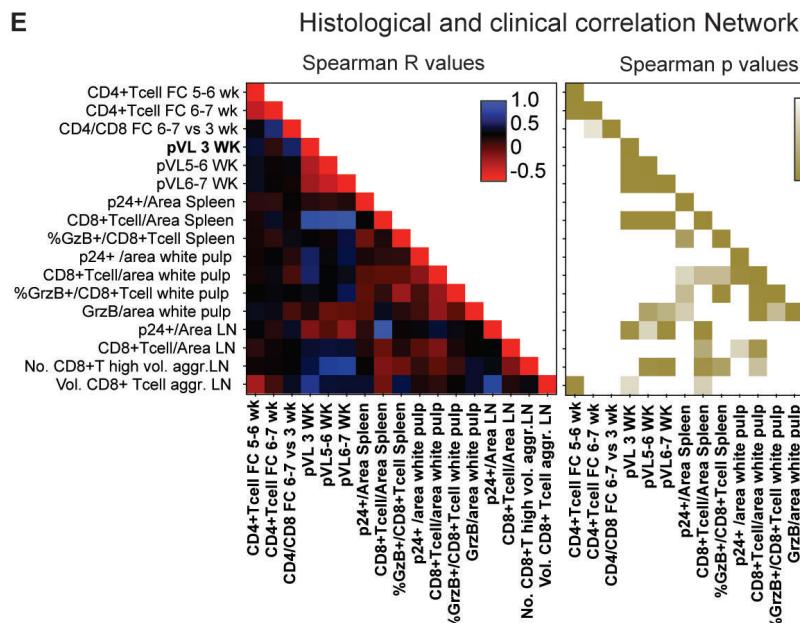
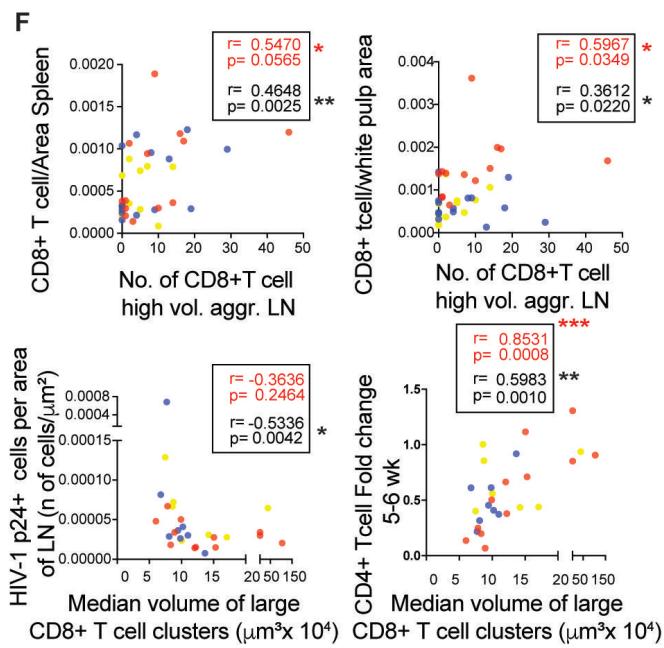
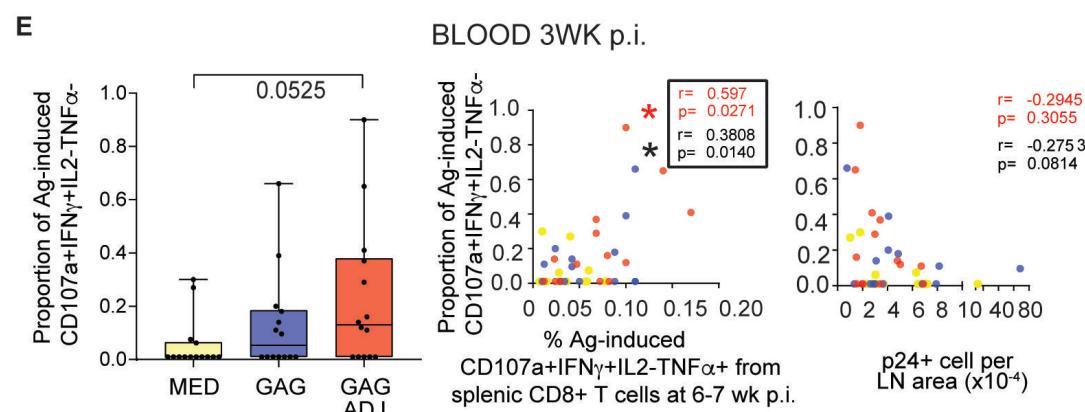
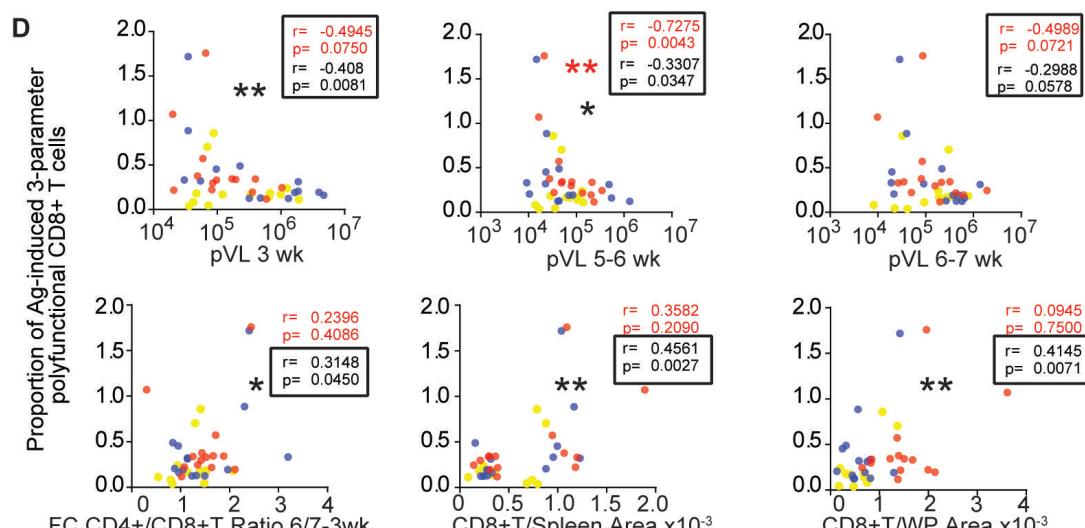
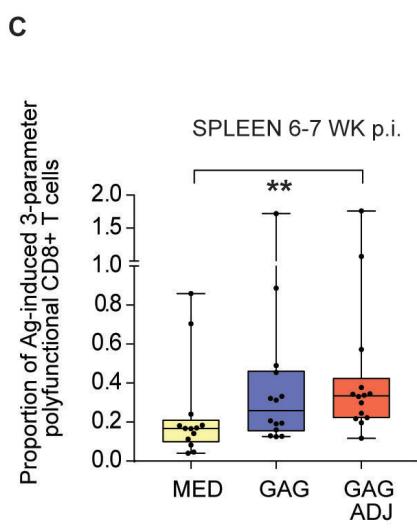
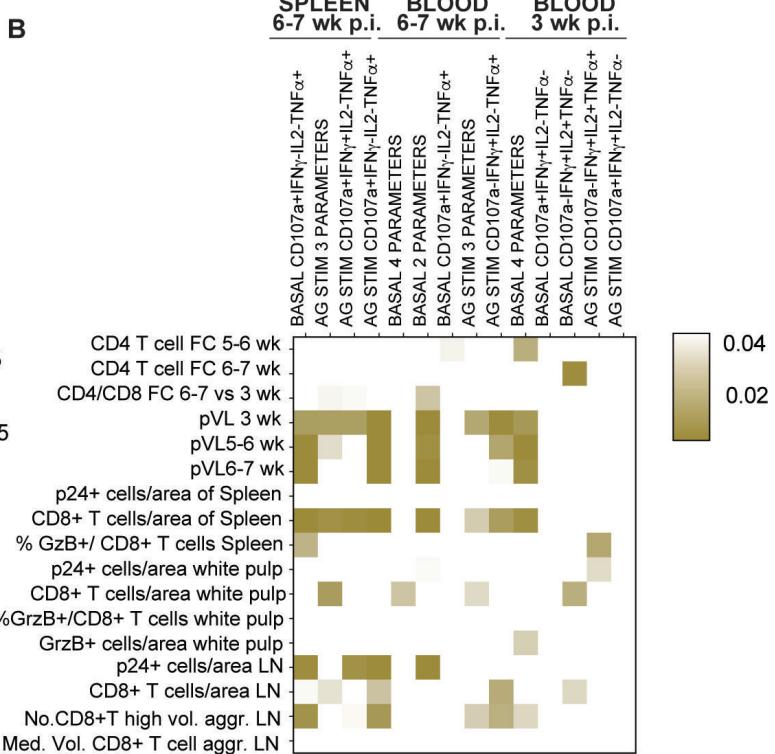
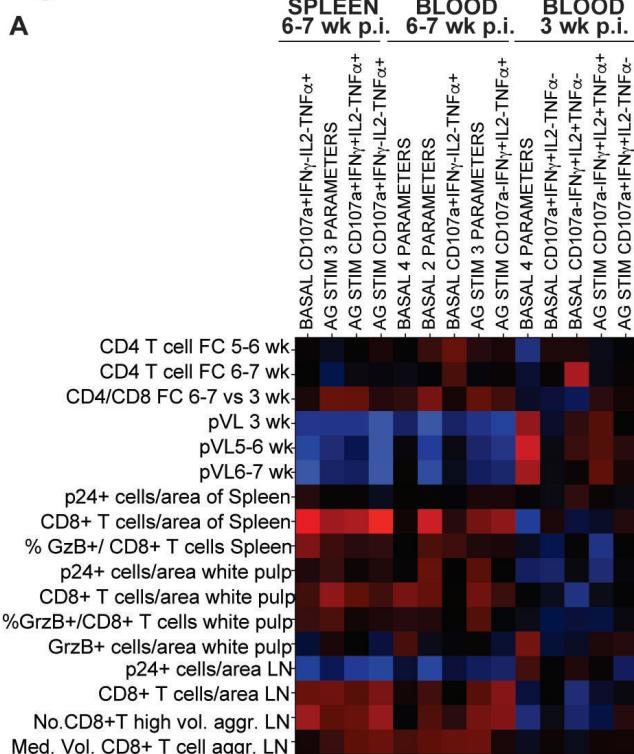




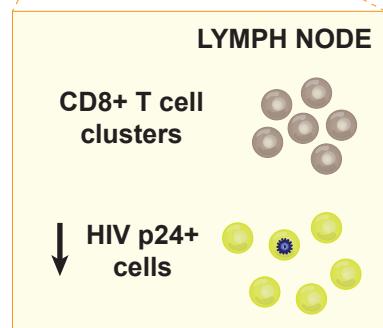
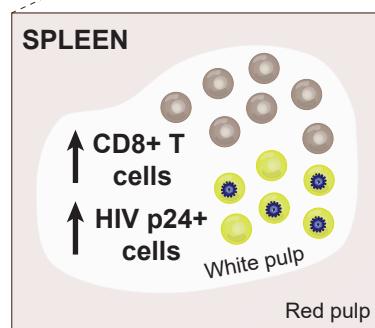
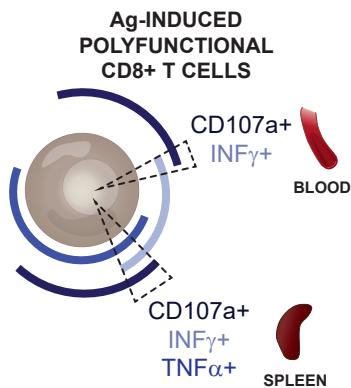
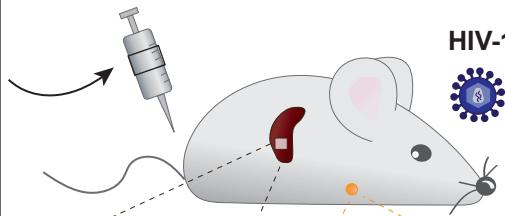
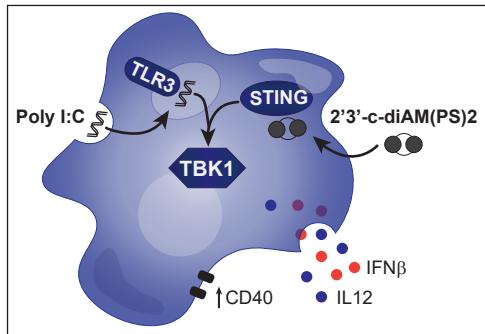
Figure 4


B


C


D






E

F

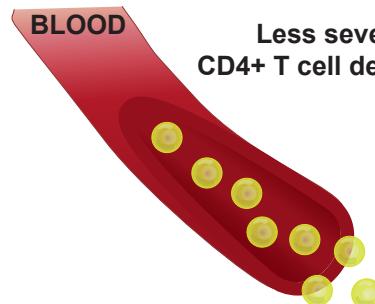


Figure 5

Less severe CD4+ T cell depletion

