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Abstract

Nucleotide composition in protein-coding sequences is the result of the equilibrium between1

mutation and selection. In particular, the nucleotide composition differs between the three2

coding positions, with the third position showing more extreme composition than the first3

and the second positions. Yet, phylogenetic codon models do not correctly capture this4

phenomenon and instead predict that the nucleotide composition should be the same for all5

3 positions of the codons. Alternatively, some models allow for different nucleotide rates at6

the three positions, a problematic approach since the mutation process should in principle7

be blind to the coding structure and homogeneous across coding positions. Practically, this8

misconception could have important consequences in modelling the impact of GC-biased9

gene conversion (gBGC) on the evolution of protein-coding sequences, a factor which requires10

mutation and fixation biases to be carefully disentangled. Conceptually, the problem comes11

from the fact that phylogenetic codon models cannot correctly capture the fixation bias12

acting against the mutational pressure at the mutation-selection equilibrium. To address this13

problem, we present an improved codon modeling approach where the fixation rate is not14

seen as a scalar anymore, but as a tensor unfolding along multiple directions, which gives15

an accurate representation of how mutation and selection oppose each other at equilibrium.16

Thanks to this, this modelling approach yields a reliable estimate of the mutational process,17

while disentangling fixation probabilities in different directions.18

Keywords codon models · phylogenetics · nucleotide bias · mutation-selection models.19
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1 Introduction20

Phylogenetic codon models are now routinely used in many domains of bioinformatics and molecular21

evolutionary studies. One of their main applications has been to characterize the genes, sites (Nielsen and22

Yang, 1998; Yang et al., 2005; Murrell et al., 2012) or lineages (Zhang and Nielsen, 2005; Kosakovsky Pond23

et al., 2011) having experienced positive selection (Murrell et al., 2015; Enard et al., 2016). More generally,24

these models highlight the respective contributions of mutation, selection, genetic drift (Teufel et al., 2018)25

and biased gene conversion (Pouyet and Gilbert, 2020; Kosiol and Anisimova, 2019), and the causes of their26

variation between genes (Zhang and Yang, 2015) or across species (Seo et al., 2004; Popadin et al., 2007;27

Lartillot and Poujol, 2011).28

Conceptually, codon models take advantage of the fact that synonymous and non-synonymous substitutions29

are differentially impacted by selection. Assuming synonymous mutations are neutral, the synonymous30

substitution rate is equal to the underlying mutation rate (Kimura, 1983). Non-synonymous substitutions, on31

the other hand, reflect the combined effect of mutation and selection (Ohta, 1995). Classical codon models32

formalize this idea by invoking a single parameter ω, acting multiplicatively on non-synonymous substitutions33

rates (Muse and Gaut, 1994; Goldman and Yang, 1994). Using a parametric model automatically corrects for34

the multiplicity issues created by the complex structure of the genetic code and by uneven mutation rates35

between nucleotides. As a result, ω captures the net, or aggregate, effect of selection on non-synonymous36

mutations, also called dN/dS (Spielman and Wilke, 2015; Dos Reis, 2015).37

Classical codon models, so defined, are phenomenological, in the sense that they capture a complex38

mixture of selective effects through a single parameter (Rodrigue and Philippe, 2010). In reality, the selective39

effects associated with non-synonymous mutations depends on the context (site-specificity) and the amino40

acids involved in the transition (Kosiol et al., 2007). Attempts at an explicit modelling of these complex41

selective landscapes have also been done, leading to mechanistic codon models, based on the mutation-42

selection formalism (Halpern and Bruno, 1998). These models, further developed in multiple inference43

frameworks (Rodrigue et al., 2010; Tamuri and Goldstein, 2012), sometimes using empirically informed fitness44

landscapes (Bloom, 2014), could have many interesting applications, such as inferring the distribution of45

fitness effects (Tamuri and Goldstein, 2012) or detecting genes under adaptation (Rodrigue and Lartillot, 2016;46

Rodrigue et al., 2021), or even phylogenetic inference (Ren et al., 2005). However, they are computationally47

complex and potentially sensitive to the violation of their assumptions about the fitness landscape (such as48

site independence). For this reason, phenomenological codon models remain an attractive, potentially more49

robust, although still perfectible approach.50

The parametric design of typical codon models, relying on a single aggregate parameter ω, raises the51

question whether they reliably estimate the underlying mutational process. Several observations suggest that52

this may not be the case. For instance, in their simplest form (Muse and Gaut, 1994; Goldman and Yang,53

1994), codon models predict that the nucleotide composition should be the same for all three positions of the54

codons, and should be equal to the nucleotide equilibrium frequencies implied by the underlying nucleotide55

substitution rate matrix. In reality, the nucleotide composition differs: the third position shows more extreme56
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GC composition, reflecting the underlying mutation bias, compared to the first and second positions, which57

are typically closer to 50% GC (Singer and Hickey, 2000).58

These modulations across the three coding positions have been accommodated using the so-called 3x459

formalism (Goldman and Yang, 1994; Pond and Muse, 2005a), allowing for different nucleotide rate matrices60

at the three coding positions. However, this is also problematic, since this modelling approach has the61

consequence that synonymous substitutions, say, from A to C, occur at different rates at the first and third62

positions. Yet, in reality, the mutation process is blind to the coding structure, and should be homogeneous63

across coding positions, and if neutral, all mutations from A to C should thus have the same rate.64

These observations suggest that the mutation matrix (1x4) or matrices (3x4) estimated by codon models65

are not correctly reflecting the mutation rates between nucleotides (Rodrigue et al., 2008; Kosakovsky Pond66

et al., 2010). Instead, what these matrices are capturing is the result of the compromise between mutation and67

selection at the level of the realized nucleotide frequencies. For detecting selection, this problem is probably68

minor, although it still bears consequences on the estimation of ω (Spielman and Wilke, 2015). Conceptually,69

however, it is a clear symptom of a more fundamental problem: mutation rates and fixation probabilities are70

not correctly teased apart by current codon models.71

Practically, this misconception could have important consequences in contexts other than tests of positive72

selection. In particular, there is a current interest in investigating the variation between species in GC73

content, and its effect on the evolution of protein-coding sequences. An important factor here is biased gene74

conversion toward GC (called gBGC), which can confound the tests for detecting positive selection and, more75

generally, the estimation of ω (Galtier et al., 2009; Ratnakumar et al., 2010; Lartillot et al., 2013; Figuet76

et al., 2014; Boĺıvar et al., 2019). Even in the absence of gBGC, however, uneven mutation rates varying77

across species can have an important impact on the estimation of the strength of selection (Guéguen and78

Duret, 2018). All this suggests that, even before introducing gBGC in codon models, correctly formalizing79

the interplay between mutation and selection in current codon models would be an important first step.80

In this direction, the key point that needs to be correctly formalized is the following. If the nucleotide’s81

realized frequencies are the result of a compromise between mutation and selection, then this implies that the82

strength of selection is not the same between all nucleotide or amino-acid pairs. For instance, if the mutation83

process is AT-biased, then, because of selection, the realized nucleotide frequencies at equilibrium will be less84

AT-biased than expected under the pure mutation process. However, this implies that, at equilibrium, there85

will be a net mutation pressure toward AT, which has to be compensated for by a net selection differential86

toward GC.87

All this suggests that, in order for a codon model to correctly formalize this subtle interplay between88

mutation and selection, the component of the parameter vector responsible for absorbing the net effect of89

selection (i.e. ω) should not be a scalar, as is currently the case. Instead, it should be a tensor, that is,90

an array of ω values unfolding along multiple directions. In the present work, we address the question of91

whether we can derive a parametric structure being able correctly tease apart mutation rates and selection,92

and this, without having to explicitly model the underlying fitness landscape. In order to derive a codon93

model along those lines, our strategy is to first assume a true site-specific evolutionary process, following the94
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mutation-selection formalism. Then, we derive the mean substitution process implied across all sites by this95

mechanistic model and identify the mean fixation probabilities appearing in this mean-field process with the96

ω tensor to be estimated. Inferring parameters on simulated alignments, we show that the model correctly97

estimates the mutation rates, as well as the mean effect of selection.98

2 Results99

To illustrate the problem, we first conduct simulation experiments under a simple mutation-selection100

substitution model assuming site-specific amino-acid preferences. We use these simulation experiments to101

explore through summary statistics the intricate interplay between mutation and selection. Then, we explore102

how codon models with different parameterizations are able to infer the mutation rates and the strength of103

selection on these simulated alignments. Finally, these alternative models are applied to empirical data.104

2.1 Simulations experiments105

Simulations of protein-coding DNA sequences were conducted under an origination-fixation substitution106

process (McCandlish and Stoltzfus, 2014) at the level of codons (see section 4.1). We assume a simple mutation107

process with a single parameter controlling the mutational bias toward AT, denoted λ = (σA +σT )/(σC +σG),108

where σx is the equilibrium frequency of nucleotide x. This mutational process is shared by all sites of the109

sequence. With regards to selection, synonymous mutations are considered neutral, such that the synonymous110

substitution rate equal to the underlying mutation rate. At the protein level, selection is modelled by111

introducing site-specific amino-acid fitness profiles (i.e. a vector of 20 fitnesses for each coding site), which112

are scaled by a relative effective population size Nr. A high Nr induces site-specific profiles having a large113

variance, with some amino acids with a high scaled fitness while all other have a low scaled fitness. Conversely,114

a low value for Nr induces more even amino-acid fitness profiles (i.e. neutral) at each site. Thus, ultimately,115

the stringency of selection increase with Nr. Altogether, the two parameters of the model tune the mutation116

bias (λ) and the stringency of selection (Nr), respectively. All simulations presented are obtained using the117

same underlying tree topology and branch lengths of 61 primates from Perelman et al. (2011), and 4980 codon118

sites with amino-acid fitness profiles resampled from experimentally determined profiles in Bloom (2017).119

Simulation of this origination-fixation process along a species tree result in a multiple sequence alignment120

of coding sequences for the extant species, from which summary statistics can then be computed. One such121

straightforward summary statistic is the frequency of the different nucleotides, and the resulting nucleotide122

bias AT/GC observed in the alignment. This observed nucleotide bias can be computed separately for each123

coding position (first, second and third) and compared to the underlying true mutational bias λ. As can124

be seen from figure 1, the third position of codons (panel C) reflects the underlying mutational bias quite125

faithfully, while the first and second positions (panel A and B) are impacted by the strength of selection126

and display nucleotide biases that are less extreme than the one implied by the mutational process. This127

differential effect across the three coding positions is explained by nucleotide mutations at the third codon128

position being more often synonymous, while mutations at the first and second positions are more often129

changing the amino-acid and are thus more often under purifying selection.130
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Figure 1: Simulations of 61 primates taxa, 4980 codon sites, with 100 repeats. Solid lines represent the
mean value over the repeats, and the colored area the 95% inter-quantile range. Top row (A-C): Observed
AT/GC composition of simulated alignment (first, second and third coding positions), as a function the
underlying mutational bias towards AT (λ), under different stringencies of selection (different values of
effective population size Nr). Bottom row (D-E): Mean scaled fixation probability of non-synonymous
mutations along simulations, 〈2NePfix〉, for all mutations (D) and for AT-to-GC mutations only (E), as a
function of the mutational bias (λ), under different effective population sizes (Nr). F: Ratio of mean scaled
fixation probability for AT-to-GC over GC-to-AT mutations, as a function of the mutational bias and under
different stringencies of selection (Nr). Mutational bias is balanced by selection in the opposite direction,
where this effect increases with the stringency of selection.

Apart from the observed nucleotide bias in the alignment, a statistic directly relevant for measuring131

the intrinsic effect of selection is the mean scaled fixation probability of non-synonymous mutations, called132

〈2NePfix〉. This summary statistic 〈2NePfix〉 can be quantified from the substitutions recorded along the133

simulation trajectory (see section 4.4). For very long trajectories, it identifies with the ratio of non-synonymous134

over synonymous substitution rates (or dN/dS) induced by the underlying mutation-selection model (Spielman135

and Wilke, 2015; Dos Reis, 2015; Jones et al., 2017). As expected, 〈2NePfix〉 is always lower than 1 for136

simulations at equilibrium, under a time-independent fitness landscape (Spielman and Wilke, 2015). Quite137

expectedly 〈2NePfix〉 decreases with the Nr (figure 1, panel D). On the other hand, 〈2NePfix〉 depends weakly138

on the mutational bias (λ).139

The proxy of selection represented by 〈2NePfix〉 concerns all non-synonymous mutations, but we can also140

consider the mean scaled fixation probability only for the subset of non-synonymous mutations from weak141

nucleotides (A or T) to strong nucleotides (G or C), called
〈
2NePWS

fix
〉
. Interestingly,

〈
2NePWS

fix
〉

increases142

with the strength of the mutational bias toward AT (figure 1, panel E). This distortion of the selective143

effects toward GC is stronger under an increased stringency of selection, under a higher Nr. Likewise, the144
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non-synonymous mutations could also be restricted from strong (GC) to weak nucleotides (AT). This ratio145

decreases with the strength of the mutational bias toward AT (not shown). As a result, the ratio ratio between146 〈
2NePWS

fix
〉

and
〈
2NePWS

fix
〉

is higher than 1 under a mutational bias toward AT (and lower than 1 respectively147

for a bias toward GC). It is monotonously increasing with the mutational bias toward AT (figure 1, panel F).148

Altogether, fixation probabilities are opposed to mutational bias, and the realized equilibrium frequencies are149

thus at an equilibrium point between these two opposing forces.150

2.2 Parameter inference on simulated data151

From an alignment of protein-coding DNA sequences, without knowing the specific history of substitutions,152

can one estimate the mutational bias (λ) and the mean scaled fixation probability 〈2NePfix〉? In other words,153

can we tease apart mutation and selection?154

To address this question, here we consider two codon models for inference, differing only by their155

parametrization of the codon matrix Q. Both are homogeneous along the sequence (i.e. not site-specific).156

The first is based on Muse and Gaut (1994) formalism and uses a scalar ω parameter, while the second is157

based on a tensor representation of ω.158
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Figure 2: Overall procedure for simulation (61 primates taxa, 4980 codon sites) and inference (top), and
estimated versus true mutational bias (bottom), using a codon model in which ω is modeled as a scalar (Muse
and Gaut formalism, MG, panel A) or as a tensor (mean-field approach, panel B), or by applying a GTR
nucleotide model to the 4-fold degenerate third-coding positions only (panel C).
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2.2.1 ω as a scalar: the Muse & Gaut formalism159

This model is defined in terms of a generalized time-reversible nucleotide rate matrix R and a scalar parameter160

ω. The matrix R is a function of the nucleotide frequencies σ and the symmetric exchangeability rates161

ρ (Tavaré, 1986):162

Ra,b = ρa,bσb (1)

At the level of codons, the substitution rate between the source (i) and target codon (j) depends on the163

underlying nucleotide change between the codons M(i, j) (e.g. M(AAT,AAG) = TG), and whether or not164

the change is non-synonymous. Altogether, the substitution rates between codons Qi,j , formalized by Muse165

and Gaut (1994) are defined as follows:166 
Qi,j = 0 if codons i and j are more than one mutation away,

Qi,j = RM(i,j) if codons i and j are synonymous,

Qi,j = ωRM(i,j) if codons i and j are non-synonymous.

(2)

The model can be fitted by maximum likelihood. Then, from the estimate of R̂, one can derive a nucleotide167

bias toward AT as:168

λ̂MG = (σ̂A + σ̂T )/(σ̂G + σ̂C). (3)

As for the mean strength of selection 〈2NePfix〉, a direct estimate is given by ω̂.169

As shown in the left panel of figure 2, estimate of the mutational bias is halfway between the nucleotide170

bias observed in the alignment and the true mutational bias used during the simulation. Thus, the MG model171

cannot reliably infer the mutational bias. On the other hand, ω̂ is close to the underlying mean scaled fixation172

probability 〈2NePfix〉 computed during the simulation (61 primates taxa, 4980 codon sites, 100 repeats), with173

a precision of 97.2%. Thus, the failure to correctly estimate the mutation process does not seem to have a174

strong impact on the overall strength selection, at least in the present case.175

2.2.2 ω as a tensor: mean-field derivation176

We would like to derive a codon model that would be more accurate than the Muse & Gaut model concerning177

the estimation of the mutation bias, but that would still be site-homogeneous. However, the true process178

is site-specific. The link between the two can be formalized by projecting the site-specific processes onto a179

gene-wise process, using what can be seen as a mean-field approximation (Goldstein and Pollock, 2016). The180

gene-wise process obtained by this procedure is expressed in terms of mutation rates and mean scaled fixation181

probabilities. Finally, the mean scaled fixation probabilities can be identified with the ω-tensor.182

Specifically, at each site z, the true codon process is:183 
Q

(z)
i,j = 0 if codons i and j are more than one mutation away,

Q
(z)
i,j = RM(i,j) if codons i and j are synonymous,

Q
(z)
i,j = RM(i,j)2NeP(z)

fix (i, j) if codons i and j are non-synonymous.

(4)
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equation 7. Simulations on 61 primates taxa with 4980 codon sites over 100 repeats. Vertical bars are the
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Where 2NeP(z)
fix (i, j) is the scaled fixation probability of codon j against codon i, at site z. At equilibrium of184

the process, averaging over sites under the equilibrium distribution gives the mean-field gene-level process:185 
〈Qi,j〉 = 0 if codons i and j are more than one mutation away,

〈Qi,j〉 = RM(i,j) if codons i and j are synonymous,

〈Qi,j〉 = RM(i,j) 〈2NePfix(i, j)〉 if codons i and j are non-synonymous.

(5)

However, because selection between codons reduces to selection between pairs of amino-acids, 〈2NePfix(i, j)〉186

only depends on the amino-acids encoded by i and j (section 4.5 in methods). Thus, by identification, the187

inference model should be parameterized by a set of ω values for all pairs of amino acids, denoted ωx,y. For188

20 amino acids, the total number of pairs of amino acids is 190, hence 380 parameters by counting in both189

directions. However, because of the structure of the genetic code, there are 75 pairs that are one nucleotide190

away, since some amino acids are not directly accessible through a single non-synonymous mutation. As a191

result, the number of parameters necessary to determine all non-zero entries of the tenser (ωx,y) in both192

directions is 150. Finally, under the assumption of a reversible process, the number of parameters can be193

reduced to 75 symmetric exchangeabilities (βx,y) and 20 stationary effects (εx):194

ωx,y = εyβx,y, where βx,y = βy,x. (6)

Altogether, the substitution rates between codons Qi,j are defined as:195 
Qi,j = 0 if codons i and j are non neighbors,

Qi,j = RM(i,j) if codons i and j are synonymous,,

Qi,j = RM(i,j)ωA(i),A(j) if codons i and j are non-synonymous,

(7)

where A(i) is the amino acid encoded by codon i and ωx,y is given by equation 6.196
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This mean-field (MF) model is fitted by maximum likelihood, giving an estimate for its parameters, R̂, β̂197

and ε̂. Then, from the estimate of the GTR nucleotide matrix (R̂), a mutation bias λ̂MF can be estimated as198

previously (equation 3 above).199

As shown in the right panel of figure 2, λ̂MF under the MF model provides an accurate estimate of the200

true mutational. In other words, the MF model can tease out the observed AT/GC bias of the alignment and201

the underlying mutational bias.202

The mean scaled fixation probability of non-synonymous mutations 〈2NePfix〉 can also be computed. It203

is now a compound parameter, expressed as a function of R̂, β̂ and ε̂ (see section 4.6). Under this model,204

〈2NePfix〉 is close to the true mean scaled fixation probability 〈2NePfix〉 computed during the simulation,205

with a precision of 96.9% (61 primates taxa, 4980 codon sites, 100 repeats). Moreover, as shown in figure 3,206

the estimated rates ω̂x,y between pairs of amino acids is congruent with the predicted mean scaled fixation207

probability computed analytically as a function of the underlying site-specific fitness profiles and the mutation208

matrix as in equation 26.209

2.3 Estimation on empirical sequence data210

The two alternative models of inference just considered, namely the classical Muse & Gaut (MG) and the211

mean-field (MF) codon models, were then applied to empirical protein-coding sequence alignments. Several212

examples were analysed: the nucleoprotein in Influenza Virus (as human host) assembled in Bloom (2017),213

the β-lactamase in bacteria gathered in Bloom (2014), as well as orthologous gene in primates extracted from214

OrthoMam database (Scornavacca et al., 2019) or from Perelman et al. (2011) as shown in table 1.215

For alignment globally biased toward AT (nucleoprotein and AT-rich concatenate in primates), similarly216

to what was observed in the simulation experiments presented above, the mutational bias estimates under217

the two codon models are greater than the observed nucleotide bias (i.e. 1 < AT/GC < λ̂). This effect218

is, as previously, probably due to selection at the level of amino acids, partially opposing the mutational219

bias. More importantly, the mutational bias estimated by the MF model is more extreme than the MG220

estimate (i.e. 1 < λ̂MG < λ̂MF). These examples behaves identically to the observations made with simulated221

alignments, where, compared to MG, the MF model estimates a stronger mutational bias, which was also222

closer to the real value. Thus, a reasonable interpretation is that MG is also underestimating the underlying223

mutational bias in the present case, and that the estimate of the MF model is more accurate.224

Concerning selection, the estimated mean scaled fixation probability of non-synonymous mutations, is225

similarly estimated in the MF and MG models (〈2NePfix〉 ' ω̂). Additionally, in the MF model, 〈2NePfix〉226

can be restricted to mutations from weak nucleotides (AT) to strong (GC), or vice versa (see section 4.6).227

We observe that under a mutational bias favouring AT (i.e. λ > 1), the mean fixation probability of non-228

synonymous mutations is higher toward GC than toward AT,
〈
2NePWS

fix
〉
>
〈
2NePSW

fix
〉
, as expected under a229

AT-biased mutation process.230

Reciprocally, for alignment globally biased toward GC (β-lactamase), the estimated mutation bias is231

stronger (toward GC) than the alignment bias (i.e. λ̂MF < AT/GC < 1). Curiously, in β-lactamase, the232

MG model estimates a weaker underlying mutational bias than the observed bias (i.e. AT/GC < λ̂MG < 1).233
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Concerning selection, we observe that the fixation probability of non-synonymous mutations is higher on234

average toward AT than toward GC,
〈
2NePSW

fix
〉
>
〈
2NePWS

fix
〉
, as expected under a GC-biased mutation235

process.236

The results obtained on empirical data are globally in agreement with the observations gathered from237

the simulation experiments, namely that the presence of a mutational bias results in a selection differential,238

taking the form of a slightly higher mean fixation probability of non-synonymous mutations opposing the239

mutational bias. Moreover, by setting ε = 1 and β = ω × 1 in our mean-field model, we retrieve the nested240

Muse & Gaut model, hence, both models are directly comparable. The empirical fit to the data between the241

nested models, using AIC and Likelihood ratio test (Posada and Buckley, 2004), always favors the MF model242

compared to the MG model. Altogether, our MF model is favored by empirical dataset, and simultaneously243

estimates more extreme (and probably more accurate) mutational biases compared to the MG model.244

β-Lactamase Nucleoprotein Primates AT-rich Primates

Dataset Bloom Bloom Scornavacca et al. Perelman et al.
Number of taxa 85 180 22 61
Number of sites 263 498 4877 5300
AT/GC 0.792 1.154 2.028 1.075
AT/GC at 1st position 0.583 1.057 1.303 0.996
AT/GC at 2nd position 1.177 1.221 2.541 1.426
AT/GC at 3rd position 0.714 1.192 2.648 0.878
MG mutational bias (λ̂MG) 0.853 1.447 2.073 1.139
MF mutational bias (λ̂MF) 0.690 1.748 2.419 1.022
MG ω̂ 0.332 0.114 0.526 0.272
MF 〈2NePfix〉 0.336 0.116 0.525 0.272
MF

〈
2NePWS

fix
〉

0.297 0.141 0.594 0.254

MF
〈
2NePWS

fix
〉

0.412 0.092 0.487 0.308

∆AIC 37.6 165.2 1527.0 1091.0
p
(
χ2

df=93 > LRT
)

9.2×10−13 1.2×10−31 3.9×10−296 2.9×10−207

Table 1: Mutational bias (λ) and mean scaled fixation probability (〈2NePfix〉) estimated under the Muse &
Gaut (MG) and mean-field (MF) models on distinct concatenated DNA alignments of orthologous genes.

3 Discussion245

In protein-coding DNA sequences, the nucleic composition results from a subtle interplay between mutation at246

the nucleic level and selection at the protein level. As a result, the observed nucleotide bias in the alignment247

is different from the underlying mutational bias.248

However, current parametric codon models are inherently misspecified and, for that reason, are unable to249

tease apart these opposing effects of mutation and selection correctly. As a result, they don’t estimate the250

mutational process reliably.251
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In this work we sought to find the simplest parametric codon model able to correctly tease apart mutation252

rates on one hand, and net mean fixation probabilities on the other hand, and this, without having to253

explicitly model the underlying fitness landscape. In order to derive a codon model along those lines, our254

strategy is to first assume an underlying microscopic model of sequence evolution (here, a mutation-selection255

model based on a site-specific, time-independent fitness landscape). Then, we derive the gene-wise mean256

fixation probabilities between all pairs of codons, implied by the underlying microscopic process. Finally, we257

observe that this mean-field process should in fact invoke as many distinct ω parameters as there are pairs of258

amino acids that are nearest neighbours in the genetic code. There are reversibility conditions, reducing the259

dimensionality and allowing for a GTR-like parameterization of this tensor (95 parameters for selection).260

Inferring parameters on simulated alignments, we show that the model derived using this mean-field261

argument correctly estimates the underlying mutational bias and selective pressure. Applied to empirical262

alignments, we also observe that there is a selection differential opposing the mutational bias.263

This work first points to a fundamental property of natural genetic sequences, namely that they are264

not optimized but are the result of an equilibrium between forces (Sella and Hirsh, 2005). In the specific265

case highlighted in this work, mutational bias at the nucleotide-level results in suboptimal amino-acid being266

overrepresented in the sequence. This was pointed out previously (Singer and Hickey, 2000), although never267

directly formalized in phylogenetic codon model.268

One important consequence of this tradeoff between mutation and selection at equilibrium is that the269

observed higher mean fixation probability toward GC is mimicking the effect of biased gene conversion toward270

GC (gBGC), although unlike gBGC, the phenomenon described here corresponds to a genuine selective271

effect. Although we did not explore the consequences of this at the level of intra-specific polymorphism, the272

selection differential uncovered here also implies that the distribution of fitness effects is not the same in273

the two directions, either toward AT or toward GC. Specifically, in the presence of an AT-biased mutation274

process, the non-synonymous GC polymorphisms are expected to segregate at higher frequencies, compared275

to non-synonymous AT polymorphisms.276

These observations have some practical implications: for instance, experiments observing a fixation (or277

segregation) bias toward GC at the non-synonymous level must also rule out that this fixation bias is not278

a simple consequence of the mutation-selection balance. More generally, our observations and modelling279

principles offer a useful preliminary basis to better understand how mutation and selection will work together280

with GC-biased gene conversion (gBGC), and therefore will help better understand how gBGC will impact281

both nucleotide composition and dN/dS . It is worth mentioning that in our result, we focused on the fixation282

probability from AT to GC,
〈
2NePWS

fix
〉
, because of the relationship to gBGC. However, in practice, the same283

analysis and methods can be applied to any subset of nucleotides or codons.284

Our mean-field parametric model uses gene-level parameters (in the form of a tensor) that is meant to285

capture the mean scaled fixation probabilities. This derivation, and its validation on simulated data, shows286

that, even though the underlying selective landscape is site-specific, a gene-level approximation can nonetheless287

accurately disentangles mutation and selection. As a result, this study demonstrates that phenomenological288
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models derived out of mechanistic models are more compact (i.e. not site-specific), and in certain cases are289

sufficient to extract the relevant parameters.290

The methodology proposed here for deriving inference models consists in proceeding in two steps, first291

assuming an underlying mechanistic model of sequence evolution, parameterized by variables that are derived292

from first principles (fitness landscape, mutations rates, . . .). Subsequently, the phenomenological inference293

model is obtained by matching its parameters (here, the entries of the ω tensor) with the aggregate parameters294

derived from the application of the mean-field procedure to the mechanistic model. Altogether, we believe295

that the approach used here could be applied more generally: inference models can be phenomenological in296

practice, but should nonetheless be derived from an underlying mechanistic model, so as to correctly formalize297

the interplay between mutation, selection, drift and other evolutionary forces.298

Our phylogenetic codon models is not the first to model ω as a tensor, Yang et al. (1998) introduced a299

codon model in which ω depends on the distance between amino acids, measured in terms of the Grantham300

(1974) distance. Additionally, Tang and Wu (2006) leveraged ω tensors in order to detect positively selected301

genes. The novelty of this work is to formalize the articulation between the nucleotide composition, the302

mutational bias and selection between different amino acids. Finally, this work is still preliminary since the303

mean-field model should be tested against a more diverse range of empirical data, in terms of phylogenetic304

depth, strength of selection, and codon usage bias to assert the validity of our empirical results. In addition,305

several other codon models (Rodrigue et al., 2008; Kosakovsky Pond et al., 2020) should be included in a306

broader comparison of the accuracy of the estimation of the underlying mutational bias and strength of307

selection on protein-coding DNA sequences.308

4 Materials & Methods309

4.1 Simulation model310

We seek to simulate the evolution of protein-coding sequences along a specie tree. Starting with one sequence311

at the root of the tree, the sequences evolve independently along the different branches of the tree by point312

substitutions, until they reach the leaves. At the end of the simulation, we get one sequence for each leaf313

of the tree, meaning one sequence per species. The substitution is modelled using the origination-fixation314

approximation, i.e. substitution rates are the product of the mutation rate at the nucleotide level, and fixation315

probabilities, based on selection at the amino-acid level.316

The mutation process is assumed homogeneous across sites. On the other hand, selection is assumed to317

be varying along the sequence. During the simulation, given the current sequence, the substitution rates318

toward all possible mutants (one nucleotide change) are computed and the next substitution event is drawn319

randomly based on Gillespie’s algorithm (Gillespie, 1977).320

4.2 Mutational bias at the nucleotide level321

The mutation rate between nucleotides is always proportional to µ. Moreover, mutations from any nucleotide322

to another weak nucleotide is increased by the factor λ compared with mutations to another strong nucleotide.323
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The mutation rate matrix is thus:324

R =

A C G T


A −µ(2 + λ) µ µ µλ

C µλ −µ(1 + 2λ) µ µλ

G µλ µ −µ(1 + 2λ) µλ

T µλ µ µ −µ(2 + λ)

(8)

Which has the following stationary distribution:

σR = 1, (9)

⇐⇒ σ =
(

λ

2 + 2λ,
1

2 + 2λ,
1

2 + 2λ,
λ

2 + 2λ

)
. (10)

As a result, the ratio of weak over strong nucleotide frequencies at stationarity is equal to λ:

σA + σT

σC + σG
= λ(2 + 2λ)−1 + λ(2 + 2λ)−1

(2 + 2λ)−1 + (2 + 2λ)−1 , from eq. 10, (11)

= λ. (12)

µ is constrained such the expected flow (-
∑

a σaRa,a) of mutation equals to 1.325

4.3 Selection at the amino-acid level326

The substitution rate is considered null between any two codons differing by more than one nucleotide.327

Otherwise, the mutation rate between a pair of codons is given by the mutation rate of the underlying single328

nucleotide change. Selection is modelled at the amino-acid level, i.e. we assume that all codons encoding for329

one particular amino acid are selectively neutral.330

To take into account the heterogeneity of selection between different sites of the protein, we assume that331

each site z of the sequence is independently evolving under a site-specific fitness landscape, characterized332

by a 20-dimensional frequency vector of scaled (Wrightian) fitness parameters ψ(z) = {ψ(z)
a , 1 ≤ a ≤ 20}.333

The fitness vectors ψ(z) used in this study are extracted from Bloom (2017), which were experimentally334

determined by deep mutational scanning for 498 codon sites of the nucleoprotein in Influenza Virus strains335

(as human host). For each codon site z of our simulation, we assign randomly one the 498 fitness profile336

(sampling with replacement) experimentally determined, which altogether determines the (Wrigthian) fitness337

vectors across sites. The malthusian fitness (or log-fitness) of amino acid a, denoted F
(z)
a , is scaled by the338

relative effective population size (Nr) accordingly:339

F (z)
a = Nr ln

(
ψ(z)

a

)
, z ∈ {1, . . . ,Z}, a ∈ {1, . . . , 20} (13)

At site z, the substitution rate between non-synonymous codons i and j is given by the product of the340

mutation rate and the probability of fixation:341

Q
(z)
i,j = RM(i,j)

F
(z)
A(j) − F

(z)
A(i)

1− eF
(z)
A(i)−F

(z)
A(j)

(14)
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where A(i) denotes the amino-acid encoded by codon i. At the root of the tree, for each site z, the sequence
is drawn from the stationary distribution of the process specified by π(z), which is given by:

π
(z)
i = Z(z)

 ∏
k∈{1,2,3}

σi[k]

 eF
(z)
A(i) , (15)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i, and Z(z) is the normalizing constant at
site z:

Z(z) =

 61∑
j=1

 ∏
k∈{1,2,3}

σj[k]

 eF
(z)
A(j)

−1

(16)

The substitution process is reversible and fulfils detailed balance conditions at each site z and between each
pair of codons (i, j):

π
(z)
i Q

(z)
i,j = π

(z)
j Q

(z)
j,i (17)

Of note, by modelling fitness at the amino-acid level, we assume that all codons encoding for one particular342

amino acid are selectively neutral. In addition, in this modelling framework, the genetic code is of particular343

importance since the number of codons encoding for a particular amino acid varies greatly. As an example,344

tryptophan is encoded by one codon, while leucine is encoded by 6 codons. Intuitively, this variation makes345

the mutation bias more pronounced among codons encoding for the same amino acid, since there are more346

mutations possible that are selectively neutral (i.e. synonymous). On the other hand, the mutation bias is347

more constrained if the amino acid is encoded by few codons.348

4.4 Mean scaled fixation probability349

The sequence at time t is denoted S(t) and the codon present at site z is denoted Sz(t). For a given
sequence, the mean scaled fixation probability over mutations away from S(t), weighted by their probability
of occurrence, is given by the ratio:

〈2NePfix(t)〉 =

Z∑
z=1

∑
j∈N (Sz(t))

QSz(t)→j

Z∑
z=1

∑
j∈N (Sz(t))

µSz(t)→j

, (18)

where N (i) is the set of non-synonymous codons neighbours of codon i and Q(z)
i,j are defined as in equation 14.

Averaged over all branches of the tree, the mean scaled fixation probability is :

〈2NePfix〉 =
∫

t

〈2NePfix(t)〉 dt, (19)

where the integral is taken over all branches of the tree, while the integrand 〈2NePfix(t)〉 is a piece-wise350

function changing after every point substitution event. The mean scaled fixation probability from weak351

(AT) to strong (GC) nucleotides, denoted
〈
2NePWS

fix
〉
, is obtained similarly by restricting the sums (in the352

numerator and the denominator) from weak to strong mutations. A similar computation can be done from353

strong to weak.354

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.06.30.450338doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.30.450338
http://creativecommons.org/licenses/by/4.0/


An improved codon modeling approach for accurate estimation of the mutation bias

4.5 Derivation of mean-field model355

The mean-field codon model 〈Q〉 is defined such that 〈Qi,j〉 is the average rate of substitution to codon j,356

conditional on currently being on codon i, the average being taken across sites. Importantly, sites differ in357

their probability of being currently in state i. The average should therefore be weighted by this probability.358

Assuming an underlying site-specific mutation-selection process at equilibrium, given we know that a
mutation is from codon i, the probability that this mutation is occuring at site z is:

P(z | i) = π
(z)
i

Z∑
z=1

π
(z)
i

(20)

The site-averaged (mean-field) substitution rate from codon i to j is as result given as:

〈Qi,j〉 =
Z∑

z=1
P(z | i)Qi,j (21)

If codon i and codon j are synonymous, this equation simplifies to the underlying mutation rate RM(i,j).
Otherwise, if codon i and codon j are non-synonymous, the mean-field substitution rate is:

〈Qi,j〉 =
〈
RM(i,j)2NePfix(i, j)

〉
, (22)

= RM(i,j) 〈2NePfix(i, j)〉 , (23)

= RM(i,j)

Z∑
z=1

π
(z)
i

F
(z)
A(j) − F

(z)
A(i)

1− eF
(z)
A(i)−F

(z)
A(j)

Z∑
z=1

π
(z)
i

, (24)

= RM(i,j)

Z∑
z=1
Z(z)

F
(z)
A(j) − F

(z)
A(i)

e−F
(z)
A(i) − e−F

(z)
A(j)

Z∑
z=1
Z(z)eF

(z)
A(i)

(25)

As a result, 〈2NePfix(i, j)〉 is dependent on the source and target codon solely through the source amino359

acid (x) and target amino acid (y), hence the parameter ωx,y identifies with the average fixation probability360

〈2NePfix (x→ y)〉:361

〈2NePfix (x→ y)〉 =

Z∑
z=1
Z(z) F

(z)
y − F (z)

x

e−F
(z)
x − e−F

(z)
y

Z∑
z=1
Z(z)eF

(z)
x

. (26)
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4.6 Mean scaled fixation probability 〈2NePfix〉 under the mean-field model362

The mean-field model is parameterized by a GTR mutation matrix R(σ,ρ) and the selection coefficient
ω(β, ε). As a result, the mean scaled fixation probability of non-synonymous mutations is:

〈2NePfix〉 =

61∑
i=1

πi

∑
j∈N (i)

Qi,j

61∑
i=1

πi

∑
j∈N (i)

µi,j

, (27)

=

61∑
i=1

[ ∏
k∈{1,2,3}

σi[k]

]
εA(i)

∑
j∈N (i)

RM(i,j)εA(j)βA(i),A(j)

61∑
i=1

[ ∏
k∈{1,2,3}

σi[k]

]
εA(i)

∑
j∈N (i)

RM(i,j)

, (28)

where i[k] denotes the nucleotide at position k ∈ {1, 2, 3} of codon i.363

Similarly, the mean scaled fixation probability from weak (AT) to strong (GC) nucleotides denoted364 〈
2NePWS

fix
〉

is obtained similarly by restricting the sums (in the numerator and the denominator) to one365

nucleotide mutations only from weak to strong. Conversely, by restricting the sum from strong (GC) to weak366

(AT), we obtain
〈
2NePSW

fix
〉
.367

4.7 Inference method with Hyphy368

Maximum likelihood estimation has been performed with the software Hyphy (Pond and Muse, 2005b).369

The Python scripts generating the Hyphy batch files (for both Muse & Gaut and mean-field), as well as370

scripts necessary to replicate the experiments are available at https://github.com/ThibaultLatrille/371

NucleotideBias.372

5 Data availability373

The data underlying this article are available in Github, at https://github.com/ThibaultLatrille/374

NucleotideBias, as well as scripts and instructions necessary to reproduce the simulated and empirical375

experiments. The simulators written in C++ are available at https://github.com/ThibaultLatrille/376

SimuEvol.377
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Boĺıvar, P., Guéguen, L., Duret, L., Ellegren, H., and Mugal, C. F. 2019. GC-biased gene conversion conceals392

the prediction of the nearly neutral theory in avian genomes. Genome Biology, 20(1): 1–13.393

Dos Reis, M. 2015. How to calculate the non-synonymous to synonymous rate ratio of protein-coding genes394

under the fisher-wright mutation-selection framework. Biology Letters, 11(4): 20141031.395

Enard, D., Cai, L., Gwennap, C., and Petrov, D. A. 2016. Viruses are a dominant driver of protein adaptation396

in mammals. eLife, 5: e12469.397

Figuet, E., Ballenghien, M., Romiguier, J., and Galtier, N. 2014. Biased gene conversion and GC-content398

evolution in the coding sequences of reptiles and vertebrates. Genome Biology and Evolution, 7(1): 240–250.399
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