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Abstract

1 Nucleotide composition in protein-coding sequences is the result of the equilibrium between
2 mutation and selection. In particular, the nucleotide composition differs between the three
3 coding positions, with the third position showing more extreme composition than the first
4 and the second positions. Yet, phylogenetic codon models do not correctly capture this
5 phenomenon and instead predict that the nucleotide composition should be the same for all
6 3 positions of the codons. Alternatively, some models allow for different nucleotide rates at
7 the three positions, a problematic approach since the mutation process should in principle
8 be blind to the coding structure and homogeneous across coding positions. Practically, this
9 misconception could have important consequences in modelling the impact of GC-biased
10 gene conversion (gBGC) on the evolution of protein-coding sequences, a factor which requires
11 mutation and fixation biases to be carefully disentangled. Conceptually, the problem comes
12 from the fact that phylogenetic codon models cannot correctly capture the fixation bias
13 acting against the mutational pressure at the mutation-selection equilibrium. To address this
14 problem, we present an improved codon modeling approach where the fixation rate is not
15 seen as a scalar anymore, but as a tensor unfolding along multiple directions, which gives
16 an accurate representation of how mutation and selection oppose each other at equilibrium.
17 Thanks to this, this modelling approach yields a reliable estimate of the mutational process,
18 while disentangling fixation probabilities in different directions.

19 Keywords codon models - phylogenetics - nucleotide bias - mutation-selection models.
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20 1 Introduction

21 Phylogenetic codon models are now routinely used in many domains of bioinformatics and molecular
2 evolutionary studies. One of their main applications has been to characterize the genes, sites (Nielsen and
23 Yang, 1998; Yang et al., 2005; Murrell et al., 2012) or lineages (Zhang and Nielsen, 2005; Kosakovsky Pond
24 et al., 2011) having experienced positive selection (Murrell et al., 2015; Enard et al., 2016). More generally,
25 these models highlight the respective contributions of mutation, selection, genetic drift (Teufel et al., 2018)
26 and biased gene conversion (Pouyet and Gilbert, 2020; Kosiol and Anisimova, 2019), and the causes of their
27 variation between genes (Zhang and Yang, 2015) or across species (Seo et al., 2004; Popadin et al., 2007,
23 Lartillot and Poujol, 2011).

29 Conceptually, codon models take advantage of the fact that synonymous and non-synonymous substitutions
30 are differentially impacted by selection. Assuming synonymous mutations are neutral, the synonymous
31 substitution rate is equal to the underlying mutation rate (Kimura, 1983). Non-synonymous substitutions, on
32 the other hand, reflect the combined effect of mutation and selection (Ohta, 1995). Classical codon models
33 formalize this idea by invoking a single parameter w, acting multiplicatively on non-synonymous substitutions
3¢ rates (Muse and Gaut, 1994; Goldman and Yang, 1994). Using a parametric model automatically corrects for
35 the multiplicity issues created by the complex structure of the genetic code and by uneven mutation rates
36 between nucleotides. As a result, w captures the net, or aggregate, effect of selection on non-synonymous

37 mutations, also called dy/dg (Spielman and Wilke, 2015; Dos Reis, 2015).

38 Classical codon models, so defined, are phenomenological, in the sense that they capture a complex
39 mixture of selective effects through a single parameter (Rodrigue and Philippe, 2010). In reality, the selective
a0 effects associated with non-synonymous mutations depends on the context (site-specificity) and the amino
a1 acids involved in the transition (Kosiol et al., 2007). Attempts at an explicit modelling of these complex
a2 selective landscapes have also been done, leading to mechanistic codon models, based on the mutation-
43 selection formalism (Halpern and Bruno, 1998). These models, further developed in multiple inference
44 frameworks (Rodrigue et al., 2010; Tamuri and Goldstein, 2012), sometimes using empirically informed fitness
45 landscapes (Bloom, 2014), could have many interesting applications, such as inferring the distribution of
a6 fitness effects (Tamuri and Goldstein, 2012) or detecting genes under adaptation (Rodrigue and Lartillot, 2016;
47 Rodrigue et al., 2021), or even phylogenetic inference (Ren et al., 2005). However, they are computationally
a3 complex and potentially sensitive to the violation of their assumptions about the fitness landscape (such as
49 site independence). For this reason, phenomenological codon models remain an attractive, potentially more

s0 robust, although still perfectible approach.

51 The parametric design of typical codon models, relying on a single aggregate parameter w, raises the
52 question whether they reliably estimate the underlying mutational process. Several observations suggest that
53 this may not be the case. For instance, in their simplest form (Muse and Gaut, 1994; Goldman and Yang,
54 1994), codon models predict that the nucleotide composition should be the same for all three positions of the
55 codons, and should be equal to the nucleotide equilibrium frequencies implied by the underlying nucleotide

s6 substitution rate matrix. In reality, the nucleotide composition differs: the third position shows more extreme
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57 GC composition, reflecting the underlying mutation bias, compared to the first and second positions, which

ss are typically closer to 50% GC (Singer and Hickey, 2000).

59 These modulations across the three coding positions have been accommodated using the so-called 3x4
60 formalism (Goldman and Yang, 1994; Pond and Muse, 2005a), allowing for different nucleotide rate matrices
61 at the three coding positions. However, this is also problematic, since this modelling approach has the
62 consequence that synonymous substitutions, say, from A to C, occur at different rates at the first and third
63 positions. Yet, in reality, the mutation process is blind to the coding structure, and should be homogeneous

64 across coding positions, and if neutral, all mutations from A to C should thus have the same rate.

65 These observations suggest that the mutation matrix (1x4) or matrices (3x4) estimated by codon models
66 are not correctly reflecting the mutation rates between nucleotides (Rodrigue et al., 2008; Kosakovsky Pond
67 et al., 2010). Instead, what these matrices are capturing is the result of the compromise between mutation and
6s selection at the level of the realized nucleotide frequencies. For detecting selection, this problem is probably
60 minor, although it still bears consequences on the estimation of w (Spielman and Wilke, 2015). Conceptually,
70 however, it is a clear symptom of a more fundamental problem: mutation rates and fixation probabilities are

71 not correctly teased apart by current codon models.

72 Practically, this misconception could have important consequences in contexts other than tests of positive
73 selection. In particular, there is a current interest in investigating the variation between species in GC
74 content, and its effect on the evolution of protein-coding sequences. An important factor here is biased gene
75 conversion toward GC (called gBGC), which can confound the tests for detecting positive selection and, more
76 generally, the estimation of w (Galtier et al., 2009; Ratnakumar et al., 2010; Lartillot et al., 2013; Figuet
77 et al., 2014; Bolivar et al., 2019). Even in the absence of gBGC, however, uneven mutation rates varying
78 across species can have an important impact on the estimation of the strength of selection (Guéguen and
79 Duret, 2018). All this suggests that, even before introducing gBGC in codon models, correctly formalizing

so the interplay between mutation and selection in current codon models would be an important first step.

81 In this direction, the key point that needs to be correctly formalized is the following. If the nucleotide’s
g2 realized frequencies are the result of a compromise between mutation and selection, then this implies that the
83 strength of selection is not the same between all nucleotide or amino-acid pairs. For instance, if the mutation
sa process is AT-biased, then, because of selection, the realized nucleotide frequencies at equilibrium will be less
ss  AT-biased than expected under the pure mutation process. However, this implies that, at equilibrium, there
86 will be a net mutation pressure toward AT, which has to be compensated for by a net selection differential
g7 toward GC.

88 All this suggests that, in order for a codon model to correctly formalize this subtle interplay between
so mutation and selection, the component of the parameter vector responsible for absorbing the net effect of
90 selection (i.e. w) should not be a scalar, as is currently the case. Instead, it should be a tensor, that is,
o1 an array of w values unfolding along multiple directions. In the present work, we address the question of
92 whether we can derive a parametric structure being able correctly tease apart mutation rates and selection,
93 and this, without having to explicitly model the underlying fitness landscape. In order to derive a codon

o4 model along those lines, our strategy is to first assume a true site-specific evolutionary process, following the
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o5 mutation-selection formalism. Then, we derive the mean substitution process implied across all sites by this
96 mechanistic model and identify the mean fixation probabilities appearing in this mean-field process with the
97w tensor to be estimated. Inferring parameters on simulated alignments, we show that the model correctly

98 estimates the mutation rates, as well as the mean effect of selection.

o 2 Results

100 To illustrate the problem, we first conduct simulation experiments under a simple mutation-selection
101 substitution model assuming site-specific amino-acid preferences. We use these simulation experiments to
102 explore through summary statistics the intricate interplay between mutation and selection. Then, we explore
103 how codon models with different parameterizations are able to infer the mutation rates and the strength of

104 selection on these simulated alignments. Finally, these alternative models are applied to empirical data.

15 2.1 Simulations experiments

106 Simulations of protein-coding DNA sequences were conducted under an origination-fixation substitution
107 process (McCandlish and Stoltzfus, 2014) at the level of codons (see section 4.1). We assume a simple mutation
108 process with a single parameter controlling the mutational bias toward AT, denoted A = (04 +o071)/(0c +0¢),
100 where o, is the equilibrium frequency of nucleotide x. This mutational process is shared by all sites of the
110 sequence. With regards to selection, synonymous mutations are considered neutral, such that the synonymous
11 substitution rate equal to the underlying mutation rate. At the protein level, selection is modelled by
112 introducing site-specific amino-acid fitness profiles (i.e. a vector of 20 fitnesses for each coding site), which
13 are scaled by a relative effective population size N,. A high N, induces site-specific profiles having a large
14 variance, with some amino acids with a high scaled fitness while all other have a low scaled fitness. Conversely,
115 a low value for N, induces more even amino-acid fitness profiles (i.e. neutral) at each site. Thus, ultimately,
116 the stringency of selection increase with N,. Altogether, the two parameters of the model tune the mutation
17 bias () and the stringency of selection (NV,), respectively. All simulations presented are obtained using the
us  same underlying tree topology and branch lengths of 61 primates from Perelman et al. (2011), and 4980 codon

119 sites with amino-acid fitness profiles resampled from experimentally determined profiles in Bloom (2017).

120 Simulation of this origination-fixation process along a species tree result in a multiple sequence alignment
121 of coding sequences for the extant species, from which summary statistics can then be computed. One such
122 straightforward summary statistic is the frequency of the different nucleotides, and the resulting nucleotide
123 bias AT/GC observed in the alignment. This observed nucleotide bias can be computed separately for each
124 coding position (first, second and third) and compared to the underlying true mutational bias A\. As can
125 be seen from figure 1, the third position of codons (panel C) reflects the underlying mutational bias quite
126 faithfully, while the first and second positions (panel A and B) are impacted by the strength of selection
127 and display nucleotide biases that are less extreme than the one implied by the mutational process. This
128 differential effect across the three coding positions is explained by nucleotide mutations at the third codon
129 position being more often synonymous, while mutations at the first and second positions are more often

130 changing the amino-acid and are thus more often under purifying selection.
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Figure 1: Simulations of 61 primates taxa, 4980 codon sites, with 100 repeats. Solid lines represent the
mean value over the repeats, and the colored area the 95% inter-quantile range. Top row (A-C): Observed
AT/GC composition of simulated alignment (first, second and third coding positions), as a function the
underlying mutational bias towards AT (\), under different stringencies of selection (different values of
effective population size N,). Bottom row (D-E): Mean scaled fixation probability of non-synonymous
mutations along simulations, (2N.Psy), for all mutations (D) and for AT-to-GC mutations only (E), as a
function of the mutational bias (), under different effective population sizes (IV;). F: Ratio of mean scaled
fixation probability for AT-to-GC over GC-to-AT mutations, as a function of the mutational bias and under
different stringencies of selection (N;). Mutational bias is balanced by selection in the opposite direction,

where this effect increases with the stringency of selection.

Apart from the observed nucleotide bias in the alignment, a statistic directly relevant for measuring
the intrinsic effect of selection is the mean scaled fixation probability of non-synonymous mutations, called
(2NoPsx). This summary statistic (2N.Pgx) can be quantified from the substitutions recorded along the
simulation trajectory (see section 4.4). For very long trajectories, it identifies with the ratio of non-synonymous
over synonymous substitution rates (or dy/ds) induced by the underlying mutation-selection model (Spielman
and Wilke, 2015; Dos Reis, 2015; Jones et al., 2017). As expected, (2N Pgy) is always lower than 1 for
simulations at equilibrium, under a time-independent fitness landscape (Spielman and Wilke, 2015). Quite
expectedly (2N.Pgy) decreases with the N, (figure 1, panel D). On the other hand, (2N.Pgy) depends weakly

on the mutational bias ()).

The proxy of selection represented by (2N.Pgy) concerns all non-synonymous mutations, but we can also
consider the mean scaled fixation probability only for the subset of non-synonymous mutations from weak
nucleotides (A or T) to strong nucleotides (G or C), called (2N.P}¥5). Interestingly, (2N.P}'5) increases
with the strength of the mutational bias toward AT (figure 1, panel E). This distortion of the selective

effects toward GC is stronger under an increased stringency of selection, under a higher N,. Likewise, the
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non-synonymous mutations could also be restricted from strong (GC) to weak nucleotides (AT). This ratio
decreases with the strength of the mutational bias toward AT (not shown). As a result, the ratio ratio between
<2Ne Pg‘ff’) and <2NQP&S> is higher than 1 under a mutational bias toward AT (and lower than 1 respectively
for a bias toward GC). It is monotonously increasing with the mutational bias toward AT (figure 1, panel F).
Altogether, fixation probabilities are opposed to mutational bias, and the realized equilibrium frequencies are

thus at an equilibrium point between these two opposing forces.

2.2 Parameter inference on simulated data

From an alignment of protein-coding DNA sequences, without knowing the specific history of substitutions,
can one estimate the mutational bias (A) and the mean scaled fixation probability (2N,Pgx)? In other words,

can we tease apart mutation and selection?

To address this question, here we consider two codon models for inference, differing only by their
parametrization of the codon matrix Q. Both are homogeneous along the sequence (i.e. not site-specific).
The first is based on Muse and Gaut (1994) formalism and uses a scalar w parameter, while the second is

based on a tensor representation of w.
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tree fitness profiles <2Ne[Pﬁx> is the mean scaled fixation probability PREEEEEER
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Figure 2: Overall procedure for simulation (61 primates taxa, 4980 codon sites) and inference (top), and
estimated versus true mutational bias (bottom), using a codon model in which w is modeled as a scalar (Muse
and Gaut formalism, MG, panel A) or as a tensor (mean-field approach, panel B), or by applying a GTR
nucleotide model to the 4-fold degenerate third-coding positions only (panel C).
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159 2.2.1 w as a scalar: the Muse & Gaut formalism

160 This model is defined in terms of a generalized time-reversible nucleotide rate matrix R and a scalar parameter
161 w. The matrix R is a function of the nucleotide frequencies o and the symmetric exchangeability rates

162 p (Tavaré, 1986):
Rap = pa,pos (1)

163 At the level of codons, the substitution rate between the source (i) and target codon (j) depends on the
164 underlying nucleotide change between the codons M(i, j) (e.g. M(AAT, AAG) = TG), and whether or not
165 the change is non-synonymous. Altogether, the substitution rates between codons @); ;, formalized by Muse

166 and Gaut (1994) are defined as follows:

Q;; =0if codons ¢ and j are more than one mutation away,
Qi,j = R if codons i and j are synonymous, (2)
Qi = wR, ) if codons 7 and j are non-synonymous.
167 The model can be fitted by maximum likelihood. Then, from the estimate of ﬁ, one can derive a nucleotide
168 bias toward AT as:
e = (G4 +67) /(6 + 50). (3)

160 As for the mean strength of selection (2N.Pgy), a direct estimate is given by ©.

170 As shown in the left panel of figure 2, estimate of the mutational bias is halfway between the nucleotide
1711 bias observed in the alignment and the true mutational bias used during the simulation. Thus, the MG model
172 cannot reliably infer the mutational bias. On the other hand, & is close to the underlying mean scaled fixation
173 probability (2N.Pgy) computed during the simulation (61 primates taxa, 4980 codon sites, 100 repeats), with
174 a precision of 97.2%. Thus, the failure to correctly estimate the mutation process does not seem to have a

175 strong impact on the overall strength selection, at least in the present case.

176 2.2.2 w as a tensor: mean-field derivation

177 We would like to derive a codon model that would be more accurate than the Muse & Gaut model concerning
178 the estimation of the mutation bias, but that would still be site-homogeneous. However, the true process
179 is site-specific. The link between the two can be formalized by projecting the site-specific processes onto a
180 gene-wise process, using what can be seen as a mean-field approximation (Goldstein and Pollock, 2016). The
181 gene-wise process obtained by this procedure is expressed in terms of mutation rates and mean scaled fixation

182 probabilities. Finally, the mean scaled fixation probabilities can be identified with the w-tensor.

183 Specifically, at each site z, the true codon process is:
QEZJ) = 0 if codons ¢ and j are more than one mutation away,
QZ(LJ) = R, if codons i and j are synonymous, 4)

QEZ]) = RM(Z-J)2N6PEZX) (i,7) if codons ¢ and j are non-synonymous.
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Figure 3: True versus estimated values of w between pairs of amino-acids. The true values are given by
equation 7. Simulations on 61 primates taxa with 4980 codon sites over 100 repeats. Vertical bars are the

95% confidence intervals for the mean value.

184 Where ZNQPEZX) (i,7) is the scaled fixation probability of codon j against codon i, at site z. At equilibrium of

185 the process, averaging over sites under the equilibrium distribution gives the mean-field gene-level process:

(Qi;) =0if codons ¢ and j are more than one mutation away,
(Qij) = R, if codons i and j are synonymous, (5)

(Qij) = R (2NePsx(i, j)) if codons 4 and j are non-synonymous.

186 However, because selection between codons reduces to selection between pairs of amino-acids, (2NoPsax (i, 7))
187 only depends on the amino-acids encoded by ¢ and j (section 4.5 in methods). Thus, by identification, the
188 inference model should be parameterized by a set of w values for all pairs of amino acids, denoted w, ,. For
189 20 amino acids, the total number of pairs of amino acids is 190, hence 380 parameters by counting in both
190 directions. However, because of the structure of the genetic code, there are 75 pairs that are one nucleotide
191 away, since some amino acids are not directly accessible through a single non-synonymous mutation. As a
102 result, the number of parameters necessary to determine all non-zero entries of the tenser (w,,,) in both
103 directions is 150. Finally, under the assumption of a reversible process, the number of parameters can be

104 reduced to 75 symmetric exchangeabilities (5;,,) and 20 stationary effects (e;):

Way = €yPay, where Bz y = By 4. (6)
105 Altogether, the substitution rates between codons @); ; are defined as:
Qi; =0 if codons ¢ and j are non neighbors,
Qi,j = Ry if codons i and j are synonymous,, (7)
Qi = Bam(ij)wa(i), A if codons i and j are non-synonymous,

196 where A(7) is the amino acid encoded by codon ¢ and w, , is given by equation 6.
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197 This mean-field (MF) model is fitted by maximum likelihood, giving an estimate for its parameters, IA%, B
18 and €. Then, from the estimate of the GTR nucleotide matrix (ﬁ), a mutation bias Ay can be estimated as

190 previously (equation 3 above).

200 As shown in the right panel of figure 2, XMF under the MF model provides an accurate estimate of the
200 true mutational. In other words, the MF model can tease out the observed AT/GC bias of the alignment and

202 the underlying mutational bias.

203 The mean scaled fixation probability of non-synonymous mutations (2N,Psx) can also be computed. It
204 is now a compound parameter, expressed as a function of Ii B\ and € (see section 4.6). Under this model,
205 (2NPgy) is close to the true mean scaled fixation probability (2N.Pgy) computed during the simulation,
206 with a precision of 96.9% (61 primates taxa, 4980 codon sites, 100 repeats). Moreover, as shown in figure 3,
207 the estimated rates &, , between pairs of amino acids is congruent with the predicted mean scaled fixation
208 probability computed analytically as a function of the underlying site-specific fitness profiles and the mutation

200 matrix as in equation 26.

210 2.3 Estimation on empirical sequence data

211 The two alternative models of inference just considered, namely the classical Muse & Gaut (MG) and the
212 mean-field (MF) codon models, were then applied to empirical protein-coding sequence alignments. Several
213 examples were analysed: the nucleoprotein in Influenza Virus (as human host) assembled in Bloom (2017),
214 the B-lactamase in bacteria gathered in Bloom (2014), as well as orthologous gene in primates extracted from

215 OrthoMam database (Scornavacca et al., 2019) or from Perelman et al. (2011) as shown in table 1.

216 For alignment globally biased toward AT (nucleoprotein and AT-rich concatenate in primates), similarly
217 to what was observed in the simulation experiments presented above, the mutational bias estimates under
218 the two codon models are greater than the observed nucleotide bias (i.e. 1 < AT/GC < X) This effect
219 18, as previously, probably due to selection at the level of amino acids, partially opposing the mutational
20 bias. More importantly, the mutational bias estimated by the MF model is more extreme than the MG
21 estimate (i.e. 1 < :\\MG < /):MF) These examples behaves identically to the observations made with simulated
222 alignments, where, compared to MG, the MF model estimates a stronger mutational bias, which was also
223 closer to the real value. Thus, a reasonable interpretation is that MG is also underestimating the underlying

24 mutational bias in the present case, and that the estimate of the MF model is more accurate.

225 Concerning selection, the estimated mean scaled fixation probability of non-synonymous mutations, is
226 similarly estimated in the MF and MG models ((2N.Psyx) ~ @). Additionally, in the MF model, (2N.Pgx)
227 can be restricted to mutations from weak nucleotides (AT) to strong (GC), or vice versa (see section 4.6).
28  We observe that under a mutational bias favouring AT (i.e. A > 1), the mean fixation probability of non-
220 synonymous mutations is higher toward GC than toward AT, <2NEPXY(S> > <2NeP§XW>, as expected under a

230 AT-biased mutation process.

231 Reciprocally, for alignment globally biased toward GC (f-lactamase), the estimated mutation bias is
232 stronger (toward GC) than the alignment bias (i.e. A < AT/GC < 1). Curiously, in S-lactamase, the
233 MG model estimates a weaker underlying mutational bias than the observed bias (i.e. AT/GC < Aa < 1).
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Concerning selection, we observe that the fixation probability of non-synonymous mutations is higher on
average toward AT than toward GC, (2N.PEY) > (2N.PY¥5), as expected under a GC-biased mutation

process.

The results obtained on empirical data are globally in agreement with the observations gathered from
the simulation experiments, namely that the presence of a mutational bias results in a selection differential,
taking the form of a slightly higher mean fixation probability of non-synonymous mutations opposing the
mutational bias. Moreover, by setting € =1 and 8 = w X 1 in our mean-field model, we retrieve the nested
Muse & Gaut model, hence, both models are directly comparable. The empirical fit to the data between the
nested models, using AIC and Likelihood ratio test (Posada and Buckley, 2004), always favors the MF model
compared to the MG model. Altogether, our MF model is favored by empirical dataset, and simultaneously

estimates more extreme (and probably more accurate) mutational biases compared to the MG model.

” B-Lactamase | Nucleoprotein | Primates AT-rich Primates
Dataset Bloom Bloom Scornavacca et al. | Perelman et al.
Number of taxa 85 180 22 61
Number of sites 263 498 4877 5300
AT/GC 0.792 1.154 2.028 1.075
AT/GC at 1°* position 0.583 1.057 1.303 0.996
AT/GC at 2"? position 1.177 1.221 2.541 1.426
AT/GC at 3™ position 0.714 1.192 2.648 0.878
MG mutational bias (XMG) 0.853 1.447 2.073 1.139
MF mutational bias (Amr) 0.690 1.748 2.419 1.022
MG @ 0.332 0.114 0.526 0.272
MF (2N.Psy) 0.336 0.116 0.525 0.272
MF (2N.P3®) 0.297 0.141 0.594 0.254
MF (2N.P3%) 0.412 0.092 0.487 0.308
AAIC 37.6 165.2 1527.0 1091.0
p (X3¢=0s > LRT) 9.2x10713 1.2x107% 3.9%x1072% 2.9x107207

Table 1: Mutational bias (A) and mean scaled fixation probability ((2N.Psy)) estimated under the Muse &
Gaut (MG) and mean-field (MF) models on distinct concatenated DNA alignments of orthologous genes.

3 Discussion

In protein-coding DNA sequences, the nucleic composition results from a subtle interplay between mutation at
the nucleic level and selection at the protein level. As a result, the observed nucleotide bias in the alignment

is different from the underlying mutational bias.

However, current parametric codon models are inherently misspecified and, for that reason, are unable to
tease apart these opposing effects of mutation and selection correctly. As a result, they don’t estimate the

mutational process reliably.
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In this work we sought to find the simplest parametric codon model able to correctly tease apart mutation
rates on one hand, and net mean fixation probabilities on the other hand, and this, without having to
explicitly model the underlying fitness landscape. In order to derive a codon model along those lines, our
strategy is to first assume an underlying microscopic model of sequence evolution (here, a mutation-selection
model based on a site-specific, time-independent fitness landscape). Then, we derive the gene-wise mean
fixation probabilities between all pairs of codons, implied by the underlying microscopic process. Finally, we
observe that this mean-field process should in fact invoke as many distinct w parameters as there are pairs of
amino acids that are nearest neighbours in the genetic code. There are reversibility conditions, reducing the

dimensionality and allowing for a GTR-like parameterization of this tensor (95 parameters for selection).

Inferring parameters on simulated alignments, we show that the model derived using this mean-field
argument correctly estimates the underlying mutational bias and selective pressure. Applied to empirical

alignments, we also observe that there is a selection differential opposing the mutational bias.

This work first points to a fundamental property of natural genetic sequences, namely that they are
not optimized but are the result of an equilibrium between forces (Sella and Hirsh, 2005). In the specific
case highlighted in this work, mutational bias at the nucleotide-level results in suboptimal amino-acid being
overrepresented in the sequence. This was pointed out previously (Singer and Hickey, 2000), although never

directly formalized in phylogenetic codon model.

One important consequence of this tradeoff between mutation and selection at equilibrium is that the
observed higher mean fixation probability toward GC is mimicking the effect of biased gene conversion toward
GC (gBGC), although unlike gBGC, the phenomenon described here corresponds to a genuine selective
effect. Although we did not explore the consequences of this at the level of intra-specific polymorphism, the
selection differential uncovered here also implies that the distribution of fitness effects is not the same in
the two directions, either toward AT or toward GC. Specifically, in the presence of an AT-biased mutation
process, the non-synonymous GC polymorphisms are expected to segregate at higher frequencies, compared

to non-synonymous AT polymorphisms.

These observations have some practical implications: for instance, experiments observing a fixation (or
segregation) bias toward GC at the non-synonymous level must also rule out that this fixation bias is not
a simple consequence of the mutation-selection balance. More generally, our observations and modelling
principles offer a useful preliminary basis to better understand how mutation and selection will work together
with GC-biased gene conversion (gBGC), and therefore will help better understand how gBGC will impact
both nucleotide composition and dy/dg. It is worth mentioning that in our result, we focused on the fixation
probability from AT to GC, <2N6P§Y(S>, because of the relationship to gBGC. However, in practice, the same

analysis and methods can be applied to any subset of nucleotides or codons.

Our mean-field parametric model uses gene-level parameters (in the form of a tensor) that is meant to
capture the mean scaled fixation probabilities. This derivation, and its validation on simulated data, shows
that, even though the underlying selective landscape is site-specific, a gene-level approximation can nonetheless

accurately disentangles mutation and selection. As a result, this study demonstrates that phenomenological
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models derived out of mechanistic models are more compact (i.e. not site-specific), and in certain cases are

sufficient to extract the relevant parameters.

The methodology proposed here for deriving inference models consists in proceeding in two steps, first
assuming an underlying mechanistic model of sequence evolution, parameterized by variables that are derived
from first principles (fitness landscape, mutations rates, ...). Subsequently, the phenomenological inference
model is obtained by matching its parameters (here, the entries of the w tensor) with the aggregate parameters
derived from the application of the mean-field procedure to the mechanistic model. Altogether, we believe
that the approach used here could be applied more generally: inference models can be phenomenological in
practice, but should nonetheless be derived from an underlying mechanistic model, so as to correctly formalize

the interplay between mutation, selection, drift and other evolutionary forces.

Our phylogenetic codon models is not the first to model w as a tensor, Yang et al. (1998) introduced a
codon model in which w depends on the distance between amino acids, measured in terms of the Grantham
(1974) distance. Additionally, Tang and Wu (2006) leveraged w tensors in order to detect positively selected
genes. The novelty of this work is to formalize the articulation between the nucleotide composition, the
mutational bias and selection between different amino acids. Finally, this work is still preliminary since the
mean-field model should be tested against a more diverse range of empirical data, in terms of phylogenetic
depth, strength of selection, and codon usage bias to assert the validity of our empirical results. In addition,
several other codon models (Rodrigue et al., 2008; Kosakovsky Pond et al., 2020) should be included in a
broader comparison of the accuracy of the estimation of the underlying mutational bias and strength of

selection on protein-coding DNA sequences.

4 Materials & Methods

4.1 Simulation model

We seek to simulate the evolution of protein-coding sequences along a specie tree. Starting with one sequence
at the root of the tree, the sequences evolve independently along the different branches of the tree by point
substitutions, until they reach the leaves. At the end of the simulation, we get one sequence for each leaf
of the tree, meaning one sequence per species. The substitution is modelled using the origination-fixation
approximation, i.e. substitution rates are the product of the mutation rate at the nucleotide level, and fixation

probabilities, based on selection at the amino-acid level.

The mutation process is assumed homogeneous across sites. On the other hand, selection is assumed to
be varying along the sequence. During the simulation, given the current sequence, the substitution rates
toward all possible mutants (one nucleotide change) are computed and the next substitution event is drawn

randomly based on Gillespie’s algorithm (Gillespie, 1977).

4.2 Mutational bias at the nucleotide level

The mutation rate between nucleotides is always proportional to p. Moreover, mutations from any nucleotide

to another weak nucleotide is increased by the factor A compared with mutations to another strong nucleotide.

12
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The mutation rate matrix is thus:

A C G T
A [—p2+A) I I pA
rR= C A —u(l42X) ] uA (8)
G A 1 —u(l+42X) A
T ) I I —u(2+A)

Which has the following stationary distribution:

ocR=1, 9)

PEPGPY (R S S (10)
C\N24 2072420 242072420 )

As a result, the ratio of weak over strong nucleotide frequencies at stationarity is equal to A:

oator  A2+20)7T+ 242071
= fi .10 11
oo toc (242011 (212an-t 0 Tomed i (11)

— A (12)

p is constrained such the expected flow (- >~ 04Rq,q) of mutation equals to 1.

4.3 Selection at the amino-acid level

The substitution rate is considered null between any two codons differing by more than one nucleotide.
Otherwise, the mutation rate between a pair of codons is given by the mutation rate of the underlying single
nucleotide change. Selection is modelled at the amino-acid level, i.e. we assume that all codons encoding for

one particular amino acid are selectively neutral.

To take into account the heterogeneity of selection between different sites of the protein, we assume that
each site z of the sequence is independently evolving under a site-specific fitness landscape, characterized
by a 20-dimensional frequency vector of scaled (Wrightian) fitness parameters ) = {wéz), 1 <a <20}
The fitness vectors ¥*) used in this study are extracted from Bloom (2017), which were experimentally
determined by deep mutational scanning for 498 codon sites of the nucleoprotein in Influenza Virus strains
(as human host). For each codon site z of our simulation, we assign randomly one the 498 fitness profile
(sampling with replacement) experimentally determined, which altogether determines the (Wrigthian) fitness
vectors across sites. The malthusian fitness (or log-fitness) of amino acid a, denoted Féz), is scaled by the

relative effective population size (N,) accordingly:
FO = Neln (0), 2 € {1,...,2}, ae{1,...,20} (13)

At site z, the substitution rate between non-synonymous codons i and j is given by the product of the

mutation rate and the probability of fixation:

(=) S — Fidy

z J i

Qi,j = RM(iJ) @ g (14)
1 —e 4B TAG)

13
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where A() denotes the amino-acid encoded by codon i. At the root of the tree, for each site z, the sequence

is drawn from the stationary distribution of the process specified by 7(#, which is given by:

(z)
7T§Z) = Z(Z) H Oilk] eFA(i>, (15)

ke{1,2,3}
where i[k] denotes the nucleotide at position k € {1,2,3} of codon i, and Z(*) is the normalizing constant at
site z:

-1
61

(z)
20 =3 | II oum|e™o (16)

Jj=1 | ke{1,2,3}
The substitution process is reversible and fulfils detailed balance conditions at each site z and between each

pair of codons (4, j):

Q) = m Q) (17)

Of note, by modelling fitness at the amino-acid level, we assume that all codons encoding for one particular
amino acid are selectively neutral. In addition, in this modelling framework, the genetic code is of particular
importance since the number of codons encoding for a particular amino acid varies greatly. As an example,
tryptophan is encoded by one codon, while leucine is encoded by 6 codons. Intuitively, this variation makes
the mutation bias more pronounced among codons encoding for the same amino acid, since there are more
mutations possible that are selectively neutral (i.e. synonymous). On the other hand, the mutation bias is

more constrained if the amino acid is encoded by few codons.

4.4 Mean scaled fixation probability

The sequence at time ¢ is denoted S(¢) and the codon present at site z is denoted S,(¢). For a given
sequence, the mean scaled fixation probability over mutations away from S(t), weighted by their probability

of occurrence, is given by the ratio:

: (18)

where A (7) is the set of non-synonymous codons neighbours of codon ¢ and QEZ]) are defined as in equation 14.
Averaged over all branches of the tree, the mean scaled fixation probability is :

(2NPsx) = /(2NePﬁX(t)>dt7 (19)

t

where the integral is taken over all branches of the tree, while the integrand (2N.Pgy(t)) is a piece-wise
function changing after every point substitution event. The mean scaled fixation probability from weak
(AT) to strong (GC) nucleotides, denoted (2N.P¥'®), is obtained similarly by restricting the sums (in the
numerator and the denominator) from weak to strong mutations. A similar computation can be done from

strong to weak.

14
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35 4.5 Derivation of mean-field model

356 The mean-field codon model (Q) is defined such that (Q; ;) is the average rate of substitution to codon j,
357 conditional on currently being on codon i, the average being taken across sites. Importantly, sites differ in

358 their probability of being currently in state i. The average should therefore be weighted by this probability.

Assuming an underlying site-specific mutation-selection process at equilibrium, given we know that a

mutation is from codon ¢, the probability that this mutation is occuring at site z is:

(z)
. T,
P(z|i) = (20)
>

z=1

The site-averaged (mean-field) substitution rate from codon i to j is as result given as:

Z

(Qij) =D P(z]9)Qi; (21)

z=1

If codon i and codon j are synonymous, this equation simplifies to the underlying mutation rate Ry, ;)-

Otherwise, if codon 7 and codon j are non-synonymous, the mean-field substitution rate is:

(Qij) = (Rm(ig)2NePsx (4, 7)) » (22)
= R./\/l(z]) <2Nepﬁx(i7j)> ) (23)
(z2) _ po(2)
3 oo At — Fag
=1 oFat~FAl
= Rm(ij) Z o : (24)
T
(2) (2)
&z A~ Faw
z=1 F¢(4Z()i) —e F«(ﬁlz()])
= R, Ze (25)
> Z(2)e" A
z=1

350 As a result, (2N.Pgx(4,7)) is dependent on the source and target codon solely through the source amino
se0 acid (z) and target amino acid (y), hence the parameter w, , identifies with the average fixation probability

361 (2NPsx (x — y)):

3 RN Ry L
z=1 e*Fagz) — e*Fy(Z)
(2N Psix (x — ) = 7 (26)
Z(Z)eFT(,Z)
=
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4.6 Mean scaled fixation probability (2N.Pgx) under the mean-field model

The mean-field model is parameterized by a GTR mutation matrix R(o, p) and the selection coefficient

w(B,€). As a result, the mean scaled fixation probability of non-synonymous mutations is:

61
YomioYy, Qi

i=1  jeN(

(2N Pgy) = 61]6—()’ (27)
DT Y, i
=1  jeN(i)

61
> l I1 az—m] cai) 2 BumapeanBaa).ai)
i=1 | ke{1,2,3} JEN(4)

61
Z[ I1 Ui[k]‘| €Aty 2 RBmag
JEN(3)

i=1 | ke{1,2,3}
where i[k] denotes the nucleotide at position k € {1, 2,3} of codon i.

Similarly, the mean scaled fixation probability from weak (AT) to strong (GC) nucleotides denoted
<2NEP§Y(S> is obtained similarly by restricting the sums (in the numerator and the denominator) to one

nucleotide mutations only from weak to strong. Conversely, by restricting the sum from strong (GC) to weak
(AT), we obtain (2NPEW).

4.7 Inference method with Hyphy

Maximum likelihood estimation has been performed with the software Hyphy (Pond and Muse, 2005b).
The Python scripts generating the Hyphy batch files (for both Muse & Gaut and mean-field), as well as
scripts necessary to replicate the experiments are available at https://github.com/ThibaultLatrille/

NucleotideBias.

5 Data availability

The data underlying this article are available in Github, at https://github.com/ThibaultLatrille/
NucleotideBias, as well as scripts and instructions necessary to reproduce the simulated and empirical
experiments. The simulators written in C++ are available at https://github.com/ThibaultLatrille/

SimuEvol.
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