

1 **B1-type cyclins control microtubule organization during cell division in**
2 **Arabidopsis**

3

4

5 Mariana R. Motta¹, Xin'Ai Zhao^{1,2}, Martine Pastuglia³, Katia Belcram³, Farshad
6 Roodbarkelari⁴, Maki Komaki¹, Hirofumi Harashima⁵, Shinichiro Komaki^{1,6}, Petra Bulankova⁷,
7 Maren Heese¹, Karel Riha⁸, David Bouchez³, and Arp Schnittger^{1*}

8

9 ¹ Department of Developmental Biology, University of Hamburg, 22609 Hamburg, Germany

10 ² Centre for Organismal Studies Heidelberg, University of Heidelberg, 69120 Heidelberg,
11 Germany

12 ³ Institute Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000
13 Versailles, France

14 ⁴ BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg,
15 Germany

16 ⁵ RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045 Kanagawa, Japan
17 Present address: Solution Research Laboratory, AS ONE Corporation, Kawasaki 210-0821,
18 Japan

19 ⁶ Nara Institute of Science and Technology, 630-0192 Nara, Japan

20 ⁷ VIB-UGent Center for Plant Systems Biology, 9052 Gent, Belgium

21 ⁸ Central European Institute of Technology, Masaryk University, Brno, Czech Republic

22

23 * Corresponding author. Tel: +49 40 428 16 502; Fax: +49 40 428 16 503; E-mail:
24 arp.schnittger@uni-hamburg.de.

25

26

27

28

29

30

31

32

33

34

35

36

37 **Abstract (175 words)**

38 Flowering plants contain a large number of cyclin families, each containing multiple
39 members, most of which have not been characterized to date. Here, we analyzed the role of
40 the B1 subclass of mitotic cyclins in cell cycle control during *Arabidopsis* development. While
41 we reveal *CYCB1;5* to be a pseudogene, the remaining four members were found to be
42 expressed in dividing cells. Mutant analyses showed a complex pattern of overlapping,
43 development-specific requirements of B1-type cyclins with *CYCB1;2* playing a central role.
44 The double mutant *cycb1;1 cycb1;2* is severely compromised in growth, yet viable beyond
45 the seedling stage, hence representing a unique opportunity to study the function of B1-type
46 cyclin activity at the organismic level. Immunolocalization of microtubules in *cycb1;1 cycb1;2*
47 and treating mutants with the microtubule drug oryzalin revealed a key role of B1-type
48 cyclins in orchestrating mitotic microtubule networks. Subsequently, we identified the
49 GAMMA-TUBULIN COMPLEX PROTEIN 3-INTERACING PROTEIN 1 (GIP1/MOZART) as
50 an *in vitro* substrate of B1-type cyclin complexes and further genetic analyses support an
51 important role in the regulation of GIP1 by CYCB1s.

52

53 Keywords: CDK / CYCB1 / Endosperm / Microtubule nucleation / Mitosis

54

55 **Introduction**

56 A highly elaborated control system guides cells through mitosis during which chromosomes
57 are separated and distributed to the newly forming daughter cells. Cyclin-dependent kinase
58 (CDK)-cyclin complexes stand in the center of this control system (Morgan, 1997; Lindqvist
59 *et al*, 2009). In animals, Cdk1 together with B-type cyclins are an essential part of the so-
60 called mitosis promoting factor (MPF) complex that phosphorylates a plethora of mitotic
61 substrates including nuclear structure proteins, such as Lamin A and B, and chromosome
62 segregation proteins, such as the spindle assembly factor TPX2 (Blethrow *et al*, 2008). MPF
63 activity is kept low prior to mitotic entry by excluding Cyclin B1 (CycB1) from the nucleus
64 (Toyoshima *et al*, 1998; Yang *et al*, 1998; Hagting *et al*, 1998). In addition, Cdk1-cyclin B
65 complexes are inhibited by phosphorylation on two inhibitory residues, Thr14 and Tyr15 (or
66 the homologous amino acids in the P-loop of the respective Cdk) by the action of Wee1
67 and/or Myt1 kinases (O'Farrell, 2001). After a threshold concentration of Cdk1-CycB1 is
68 reached, CycB1 accumulates in the nucleus and the Cdk-CycB1 complex becomes activated
69 by a group of dual-specificity Cdc25 phosphatases that remove the inhibitory
70 phosphorylation from the P-loop of the kinase. Due to a negative feedback wiring with Wee1
71 and a positive feedback with Cdc25 (Tyson & Novak, 2001), Cdk1-cyclin activity levels rise
72 rapidly and promote entry and progression through mitosis, including the separation of the
73 duplicated centrosomes (spindle pole body in yeast) as a key step to generate a bipolar

74 spindle (Lacey *et al*, 1999; Haase *et al*, 2001). Finally, to complete mitosis and promote
75 cytokinesis, Cdk1-cyclin B levels have to drop. This is accomplished by the degradation of
76 cyclin B mediated by the Anaphase Promoting Complex/Cyclosome (APC/C) (Nakayama &
77 Nakayama, 2005).

78 While a wealth of information about the execution of mitosis exists in animals and
79 yeast, information is still scarce in plants. Notably, flowering plants appear to regulate
80 mitosis differently from yeast and animals. First of all, flowering plants do not contain
81 centrosomes and it is still not fully understood how the mitotic spindle is organized, although
82 many microtubule-regulating components are conserved (Yamada & Goshima, 2017). Next,
83 Arabidopsis WEE1 kinase was shown to prevent premature cell differentiation in S phase
84 after DNA damage rather than functioning in mitotic control (De Schutter *et al*, 2007; Cools
85 *et al*, 2011). Moreover, Arabidopsis does not contain a functional Cdc25 homolog, thus one
86 of the most central control loops of the animal cell cycle is absent at least in this plant
87 (Dissmeyer *et al*, 2010, 2009).

88 Another difference in mitotic regulation between plants and animals appears at the
89 level of cyclins. In animals, D-type cyclins control entry into S-phase (G1 cyclins), while
90 cyclin A controls S phase as well as early mitotic events, and B-type cyclins control mitosis
91 (Furuno *et al*, 1999; Riabowol *et al*, 1989). In contrast, functional studies and expression
92 analyses have revealed that members of all three cyclin classes, i.e., cyclin A, B, and D, are
93 involved in the control of mitosis in plants (Schnittger *et al*, 2002; Boudolf *et al*, 2009;
94 Menges *et al*, 2005; Dewitte *et al*, 2007; Vanneste *et al*, 2011). While there are only a few
95 members in each cyclin family in metazoans, plant cyclin families are large, which makes
96 functional studies challenging. For instance, as opposed to three B-type cyclins in mammals
97 (CycB1, CycB2 and CycB3) and two in Drosophila (CycB1 and CycB3), there are eleven
98 predicted B-type cyclins divided into three subgroups (B1, B2 and B3) in Arabidopsis that are
99 all equally distant from animal B-type cyclins, i.e., Arabidopsis B1-type cyclins are closer
100 related to B2 and B3 from Arabidopsis than to any B-type cyclin from animals (Vandepoele
101 *et al*, 2002; Wang *et al*, 2004; Doerner *et al*, 1996). This classification is currently only based
102 on sequence similarities and for B-type cyclins, as for most other cyclins in plants, the
103 biological role is far from being understood.

104 Here, we present a functional analysis of the largest class of B-type cyclins in
105 Arabidopsis, i.e., the five-member-containing B1 group. We reveal a central role for
106 CYCB1;2 that is backed up by one or more of the other B1-type cyclins in a tissue-
107 dependent manner. Unlike CycB1 mutants in mouse (Brandeis *et al*, 1998), Arabidopsis
108 cycb1;1 cycb1;2 double mutants are viable, presenting a unique opportunity to study cyclin B
109 function at an organismic level. This allowed us to reveal the organization of mitotic
110 microtubules as the main function of B1-type cyclins in Arabidopsis, a finding supported by *in*

111 *vitro* kinase assays that indicated that GIP1/MOZART, a key factor of microtubule
112 organization, is a substrate of CDK-CYCB1 complexes.

113

114 **Results**

115 **CYCB1;1, CYCB1;2 and CYCB1;3 are redundantly required for endosperm 116 proliferation**

117 To start the characterization of B1-type cyclins, we first determined their expression pattern.
118 To this end, we used previously generated promoter reporter lines comprising *GFP* fused to
119 the N-terminal part of the respective cyclin (*CYCB1;1* to *CYCB1;4*), including the destruction
120 box (Weimer *et al*, 2016). For *CYCB1;5*, since different annotations exist for this gene, we
121 generated three different reporter constructs, each reaching to the different predicted
122 transcriptional start sites. One upstream of the first ATG, one upstream of the second ATG
123 and the third one including the first and second upstream regions. However, in none of these
124 *CYCB1;5* reporter lines a signal could be detected. Therefore, we next analyzed the
125 expression of *CYCB1;5* by qRT-PCR. Sequencing of the amplified products showed the
126 existence of many different *CYCB1;5* cDNAs that exhibited exon skipping, intron retention
127 and use of internal polyadenylation sites (Fig EV1), consistent with the lack of reliable
128 transcriptional support for *CYCB1;5* in public repositories (The Arabidopsis Information
129 Resource, TAIR). Taken together with data from previous studies (Bulankova *et al*, 2013)
130 and the fact that many *Arabidopsis* accessions have accumulated several point mutations
131 and even deletions in *CYCB1;5* (The Arabidopsis Information Resource, TAIR), we
132 concluded that *CYCB1;5* is a pseudogene. In the following study, we therefore concentrated
133 on the analysis of *CYCB1;1* through *CYCB1;4*.

134 The expression of the four B1-type cyclins has been previously described in a patchy
135 pattern in regions with high cell proliferation activity, such as in the roots (Weimer *et al*,
136 2016). Hence, these cyclins seem to be true mitotically expressed genes. Furthermore,
137 previous genome-wide expression studies have detected that the transcripts of all three B1-
138 type cyclins *CYCB1;1*, *CYCB1;2* and *CYCB1;3* are overrepresented in the developing
139 endosperm (Day *et al*, 2008). In agreement, we found that the promoter reporter constructs
140 for *CYCB1;1*, *CYCB1;2* and *CYCB1;3* but not *CYCB1;4* were expressed during endosperm
141 development (Fig EV2).

142

143 To assess the individual biological role of B1-type cyclins, we then analyzed previously
144 isolated null mutants for all four B1-type cyclins (Weimer *et al*, 2016). However, none of the
145 single mutants showed an obvious deviation from the wildtype under normal growth
146 conditions, as for instance seen in growth and seed viability (Fig 1 and 2) in comparison to
147 the wildtype. This finding was consistent with former observations (Weimer *et al*, 2016).

148 Since *CYCB1;1*, *CYCB1;2* and *CYCB1;3* reporters have similar enrichment in the
149 proliferating endosperm (Fig EV2), and *CYCB1;1*, *CYCB1;2*, *CYCB1;3* and *CYCB1;4* have a
150 similar expression pattern in the roots, we reasoned that the B1-type cyclins might control
151 mitotic divisions redundantly. Therefore, we also generated and analyzed all six possible
152 double mutant combinations. The growth of the *cycb1;1 cycb1;2* double mutant was severely
153 reduced (Fig 1B-D; for detailed characterization see below), while the size and morphology
154 of the other double mutants were at a first look indistinguishable from the wildtype.

155 An analysis of the siliques in the double mutants revealed that *cycb1;1 cycb1;3*,
156 *cycb1;1 cycb1;4*, and *cycb1;3 cycb1;4* did not have a reduced seed set. In contrast, *cycb1;1*
157 *cycb1;2* and *cycb1;2 cycb1;3* had on average approximately half of the seeds aborted (Fig
158 2A and 2C; $52.0\% \pm 13.5\%$, $n = 3$ biological replicates, 550 seeds, for *cycb1;1 cycb1;2* and
159 $51.3\% \pm 7.2\%$, $n = 3$ biological replicates, 769 seeds, for *cycb1;2 cycb1;3* versus $4.0\% \pm$
160 3.2% , $n = 3$ biological replicates, 821 seeds, for wildtype, Col-0; $P < 0.0001$ for both
161 comparisons). The appearance of the aborted seeds varied in size and color (Fig 2A). Some
162 seeds lacked the typical green color of a maturing embryo and looked transparent while
163 others appeared brown and shriveled; in some cases, unfertilized or aborted ovules were
164 visible.

165 To investigate the cause of this seed abortion, we collected, fixed and cleared seeds
166 3 days after pollination (DAP) (Fig 3). Since endosperm nuclei exhibit a strong
167 autofluorescence, we were able to assess seed development quantitatively by using
168 confocal laser scanning microscopy. In wildtype *Arabidopsis* seeds, a fertilized central cell
169 will undergo seven to eight cycles of free nuclear divisions leading to an estimated total of
170 more than 200 nuclei in the endosperm of three day old seeds (Boisnard-Lorig *et al*, 2001).
171 In our analysis, the general morphology of the seeds at the single mutant level seemed
172 unchanged in comparison to the wildtype (Fig 3A). However, counting the number of
173 endosperm nuclei in these seeds 3 DAP displayed a strong reduction in endosperm divisions
174 in the *cycb1;2* mutant (Fig 3B; 94.1 ± 55.4 endosperm nuclei per seed, $n = 30$) in
175 comparison to the wildtype (Col-0, 175.2 ± 43.6 , $n = 30$; $P < 0.0001$).

176 At the double mutant level, the general morphology of *cycb1;1 cycb1;2* and *cycb1;2*
177 *cycb1;3* seeds 3 DAP appeared abnormal (Fig 3C). The endosperm nuclei number at this
178 time point was dramatically reduced with only 6 ± 3 in *cycb1;1 cycb1;2* ($n = 26$) and 28 ± 9
179 in *cycb1;2 cycb1;3* ($n = 30$) in relation to 77 ± 19.3 in the wildtype (Fig 3D; Col-0, $n = 30$; $P <$
180 0.0001 for both comparisons). Moreover, the nuclei appeared to be extremely enlarged in
181 *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* (Fig 3C; magenta arrowheads), and in *cycb1;2*
182 *cycb1;3* atypical agglomerates of micro-sized nuclei were seen (Fig 3C; green arrowheads).
183 The strong accumulation of a reporter gene when expressed from the *CYCB1;1*, *CYCB1;2*

184 and *CYCB1;3* promoters in the seeds of these two double mutants consistently revealed
185 enlarged nuclei which appeared, on the basis of reporter activity, to be halted at G2/M (Fig
186 EV2B and EV2C). The double mutant *cycb1;2 cycb1;4* also showed a decrease in
187 endosperm nuclei number (33.4 ± 12.87 , $n = 30$) in relation to the wildtype ($P < 0.0001$), yet
188 not as extensive as in the *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* double mutants and no
189 major morphological abnormalities were identified, which could be explained by our
190 observation that *CYCB1;4* was never expressed in the developing endosperm, consistent
191 with the non-enrichment of the transcript in this tissue as shown in Day *et al*, 2008, and
192 therefore *CYCB1;4* might not play a major role in endosperm divisions.

193 Taken together, we conclude that *CYCB1;2* is of major importance for the free
194 nuclear divisions during endosperm development and acts redundantly with *CYCB1;1* and
195 *CYCB1;3*.

196

197 **CYCB1;1, CYCB1;2 and CYCB1;4 together control female gametophyte development**
198 Up to this point, we did not find a clear role for *CYCB1;4*, suggesting even higher levels of
199 redundancy among the B1-type cyclins or, alternatively, an overlapping function with other
200 B-type cyclins in *Arabidopsis*. To clarify the relative contribution of the four *CYCB1* genes to
201 development, we decided to investigate the role of the *CYCB1* group in detail by first
202 constructing the triple *cycb1;1^{-/-} cycb1;3^{-/-} cycb1;4^{-/-}* mutant. Notably, this triple mutant was
203 not different from the wildtype as for instance judged by overall growth, seed viability (Fig
204 4D), pollen development and pollen viability (Fig 5C and 5E). This finding further underlined
205 the paramount role of *CYCB1;2* among the B1-type cyclins. This result also indicated that
206 *CYCB1;4*, if functionally relevant, may have a redundant role with either one or both of the
207 two pairs *CYCB1;1 CYCB1;2* and *CYCB1;2 CYCB1;3*. To test this, we generated the triple
208 and quadruple mutant combinations *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and *cycb1;1^{-/-} cycb1;2^{+/+}*
209 *cycb1;3^{+/+} cycb1;4^{-/-}*. While overall growth of the triple and quadruple mutant combinations
210 (note that at least one B1 gene is not homozygous mutant in these combinations) was
211 similar to the wildtype, we found a strong reduction in fertility as siliques contained
212 approximately 43% ($\pm 0.4\%$, $n = 3$ biological replicates, 500 seeds; $P < 0.0001$) and 48% (\pm
213 2.1%, $n = 3$ biological replicates, 579 seeds; $P < 0.0001$) of aborting or unfertilized ovules
214 and/or aborting seeds for *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+}*
215 *cycb1;4^{-/-}* respectively in comparison to the wildtype (Fig 4D and 4E; 0.8% \pm 0.9%, $n = 3$
216 biological replicates, 487 seeds). This abortion rate suggested a female gametophytic defect
217 and we therefore analyzed embryo sac development in the mutants.

218 In wild-type *Arabidopsis* plants, an embryo sac develops from a megasporangium that is
219 released after meiosis (Drews & Yadegari, 2002). Every megasporangium undergoes three rounds

220 of nuclear divisions resulting in an eight-celled embryo sac that subsequently cellularizes.
221 The two centrally located polar nuclei fuse then to generate the central cell nucleus while the
222 three antipodal cells that lay at the opposite side of the egg cell will undergo programmed
223 cell death, resulting in a four-celled mature embryo sac that consists of a large, homodiploid
224 central cell and an egg cell (red arrowheads; Fig 4A, Col-0) and two synergids that flank the
225 egg cell (not shown). While this stereotypic wildtype developmental pattern was not
226 significantly altered in *cycb1;1^{-/-} cycb1;2^{+/+}* double mutant combinations, consistent with the
227 full transmission of the mutant allele through the female gametophyte (Table 1), we found
228 embryo sacs from *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}*
229 mutant combinations with only one, two or four nuclei that did not show any sign of
230 cellularization (Fig 4A); in addition, fuzzy embryo sacs were present in 30% and 27% of the
231 cases respectively, likely indicating degenerating tissues, which is consistent with an early
232 arrest of gametophytic development. In total, 46% ($n = 459$ embryo sacs analyzed) and
233 44.7% ($n = 445$) of embryo sacs from plants of the *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and
234 *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* combinations respectively were abnormal, in
235 comparison to 6.2% ($n = 210$) in the wildtype ($P < 0.0001$) and 6.8% in the *cycb1;1^{-/-}*
236 *cycb1;3^{-/-} cycb1;4^{-/-}* triple mutant (Fig 4B; $P < 0.0001$). The observation that the triple
237 *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and quadruple *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* mutants
238 displayed a similar number of mutant embryo sacs (Fig 4B) suggests that CYCB1;3 is not
239 required, at least at this triple mutant level, for the divisions of the female gametophyte.

240 To assess the functionality of these embryo sacs, we pollinated the quadruple mutant
241 combination with pollen from wildtype plants (Fig 4C). Supporting a female gametophytic
242 defect, we observed a similar proportion of unfertilized and/or arrested embryo sacs in these
243 crosses at 3 DAP (44.3%, $n = 684$ seeds) in comparison to control crosses in which wildtype
244 plants were used as a female parent fertilized with wildtype pollen (0.7% arrested embryo
245 sacs, $n = 597$). In reciprocal control crosses with pollen from mutant plants onto stigmas of
246 wildtype plants, embryo and endosperm were formed in the developing seeds (seed abortion
247 = 2.9%, $n = 902$ seeds). Thus, CYCB1;4, next to CYCB1;1 and CYCB1;2 appears to be
248 required for embryo sac development. This was corroborated by analyzing the transmission
249 of the *cycb1;2* and *cycb1;3* mutant alleles in reciprocal crosses of wildtype plants with the
250 quadruple *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* mutant. As expected, transmission of
251 *cycb1;2* was abolished through the female gametophyte (0%) and the efficiency in
252 transmission was clearly reduced through the male gametophyte (70.8%) (Table 2), while
253 the *cycb1;3* allele could be transmitted without an obvious reduction in efficiency through the
254 females (92.7%).

255 Interestingly, the requirement of the B1-type cyclins was different on the male side.
256 Pollen develops from microspores through two consecutive divisions resulting in a tricellular

257 grain that harbors two sperms next to one vegetative cell (McCormick, 2004) (Fig 5). We
258 observed that both the *cycb1;2* as well as the *cycb1;3* mutant alleles were not fully
259 transmitted through pollen in a cross of *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* with wildtype
260 plants (Table 2; 70.8% and 30.2% transmission efficiency, respectively), indicating that all
261 four B1-type cyclins contribute to the mitotic divisions of the developing pollen grain.
262 Consistent with the reduced transmission, we also found pollen grains in mature anthers of
263 *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;4^{-/-}* and *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* mutant
264 combinations that comprised instead of three, only two or sometimes even one cell (Fig 5A-
265 C). Accordingly, differential staining of aborted and non-aborted pollen showed an increased
266 pollen abortion in the triple and quadruple mutants (Fig 5D and 5E) to 8.9% ($n = 403$ pollen
267 grains analyzed) and 14.1% ($n = 467$), respectively, in relation to the wildtype (Col-0, 0.5%,
268 $n = 404$; $P < 0.0001$).

269 Taken together, CYCB1;2 is also the most important B1 type cyclin during
270 gametophyte development. CYCB1;3 appears to have only a minor role during female
271 gametophyte development where instead CYCB1;4 acts together with CYCB1;1 and
272 CYCB1;2. Remarkably, after fertilization the requirement changes, as presented above, and
273 CYCB1;3 instead of CYCB1;4 is necessary for endosperm development.

274

275 **Root growth under microtubule-destabilizing conditions underlines the redundant 276 role of CYCB1;1, CYCB1;2 and CYCB1;3 in regulating the cytoskeleton**

277 Considering the severe reduction of growth in *cycb1;1 cycb1;2* mutants (Fig 1; see above)
278 and to explore the role of CYCB1;2 and the other B1-type cyclins in controlling the
279 microtubule cytoskeleton, we next analyzed the growth of B1-type cyclin mutants on medium
280 containing the microtubule poison oryzalin. The rationale is that a minor defect in the
281 mutants could become more prominent if the microtubule cytoskeleton is already slightly
282 compromised. To that end, we compared the root growth of *cycb1* single and double
283 mutants in $\frac{1}{2}$ MS medium containing 150 nM or 200 nM oryzalin (Fig 1A and 1B
284 respectively; Fig EV3 and EV4). As shown above, under control conditions (0.05% DMSO),
285 the single *cycb1* mutants had similar root growth to the wildtype (Fig 1A). Once oryzalin was
286 applied at 200 nM, *cycb1;2* grew significantly less (0.7 ± 0.03 cm, $n = 3$ biological replicates
287 with at least 10 plants each) when compared to the wildtype (Col-0, 1.0 ± 0.04 cm, $n = 3$; $P <$
288 0.0001).

289 At the double mutant level, some combinations already showed a significantly shorter
290 root even in control conditions (Fig 1B), such as *cycb1;1 cycb1;2* (0.9 ± 0.1 cm, $n = 3$; $P <$
291 0.0001) and *cycb1;2 cycb1;3* (0.9 ± 0.05 cm, $n = 3$; $P < 0.0001$) in comparison to the
292 wildtype (Col-0, 1.2 ± 0.009 cm, $n = 3$). When 150 nM oryzalin was applied, the growth of

293 Col-0 was reduced by approximately 6%, while *cycb1;1 cycb1;2* had a reduction of almost
294 50% in growth and *cycb1;2 cycb1;3* had a reduction of around 24%. As the concentration of
295 oryzalin increased to 200 nM oryzalin, the difference in growth between Col-0 and other
296 double mutants, such as *cycb1;2 cycb1;4* and *cycb1;3 cycb1;4*, became more pronounced.
297 However, most strikingly, *cycb1;1 cycb1;3* mutants, which so far had shown no specific
298 phenotype and no reduction in shoot or root growth, grew significantly shorter at 200 nM
299 oryzalin (0.7 ± 0.04 cm, $n = 3$) in comparison to the wildtype (Col-0, 1.0 ± 0.04 cm, $n = 3$; $P <$
300 0.0001).

301 Collectively, a major function of all four B1-type cyclins seems to be regulating the
302 microtubule cytoskeleton.

303

304 **CYCB1;1 and CYCB1;2 control the organization of different microtubule arrays in the 305 roots**

306 Following our finding that *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* mutants have a severe
307 reduction in root growth both in control and especially in microtubule-depolymerizing
308 conditions, we performed whole mount immunolocalization studies against α -tubulin and
309 KNOLLE, which is a G2/M and cell plate marker (Fig 6 and Fig 7; Table EV1). By analyzing
310 mitotic divisions in the roots of these double mutants, a more detailed picture of cell division
311 appeared.

312 Preceding a mitotic division, a band of microtubules that encircles the nucleus at the
313 equatorial plane, the so-called preprophase band (PPB), will form at the site of the future
314 division plane. The PPB functions as a positional cue and anchoring site for proteins
315 involved in the cell division site determination and by that contributes to the robustness of
316 cell divisions (Schaefer *et al*, 2017). Following nuclear envelope breakdown, the barrel-
317 shaped acentrosomal spindle that is responsible for separating the chromosomes forms.
318 After proper bipolar kinetochore-microtubule attachments occur and enough tension is
319 sensed, sister chromatids are pulled towards opposing poles. Next, the phragmoplast, which
320 is a bipolar microtubule structure that expands in time towards the cell cortex, forms. The
321 phragmoplast is a scaffold for cell wall formation on which vesicles are transported towards
322 the microtubule-devoid midzone, where a growing cell plate is located.

323 As the cell progresses from G2 towards mitosis, the nuclear surface becomes a prominent
324 site of microtubule nucleation. In *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* mutants, at the PPB
325 stage, we observed an increase in perinuclear microtubules, with an average of 18.3% PPBs
326 with prominent microtubules in Col-0 versus 34% and 30% in *cycb1;1 cycb1;2* and *cycb1;2*
327 *cycb1;3* respectively (Fig 6C and 6D). Either *cycb1* mutations induce an early accumulation
328 of perinuclear microtubules or else the “mature” PPB stage, i.e. with perinuclear
329 microtubules, lasts longer in the *cycb1* mutants, and cells have trouble progressing into

330 mitosis. In the stele and pericycle cells of the *cycb1;1 cycb1;2* double mutant, we also
331 observed cells harbouring double PPBs and cells with misplaced PPBs, i.e. PPBs that did
332 not align properly at the equatorial plane of the nucleus. These double and misplaced PPBs
333 were rarely seen in Col-0 wildtype plants; we found 6.50% double PPBs in *cycb1;1 cycb1;2*
334 in comparison to 0.22% in wildtype ($P < 0.0001$) and 6.21% misplaced PPBs in comparison
335 to 2.38% in wildtype ($P = 0.009$; Fig 6A and 6B).

336 At the spindle stage, irregular chromosome configurations were observed in *cycb1;1 cycb1;2*, with a significantly larger number of metaphase and anaphase spindles with
337 chromosome laggards (Fig 6E and 6F). Although the number of spindles with lagging
338 chromosomes in *cycb1;2 cycb1;3* was not significantly larger than in the wildtype, the
339 impairment seen in those mutants in chromosome alignment was much more severe than
340 that of the wildtype plants, i.e. chromosomes were seen far away from the metaphase plate.
341 Finally, abnormal phragmoplasts were observed in the two double mutant combinations,
342 including fragmented phragmoplasts, deformed phragmoplasts around abnormally shaped
343 nuclei, and daughter cells with incompletely separated nuclei ($P < 0.0001$; Fig 7A and 7B).
344 These abnormal phragmoplasts were likely a consequence of the irregular chromosome
345 alignment and segregation seen in metaphase and anaphase. In short, all microtubule
346 arrays were affected in the double mutants to a smaller or larger degree.

348 Next, we analyzed the proportion of cells at PPB, spindle and phragmoplast stages
349 per root (Fig 7C). A significantly larger proportion of cells in both prospindle and early spindle
350 stages were observed in *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* mutants ($P < 0.0001$), which
351 indicates that these stages are delayed in those mutants. The phragmoplast stage is
352 proportionally shorter in the *cycb1;1 cycb1;2* mutant, although this could be a direct
353 consequence of the extended spindle stage since, if the proportions of some stages
354 increase, the others decrease automatically. Accordingly, a flow cytometrical analysis
355 revealed that *cycb1;1 cycb1;2* mutants have a higher proportion of 4C, 8C and 16C nuclei in
356 comparison to the wildtype (Fig EV5), which is an indication that these mutants have longer
357 G2 and/or M phases. An increase in polyploid cells could have two, not mutually excluding
358 reasons. First, a failure to undergo cytokinesis. Second, a compromised division program
359 leading to premature exit from proliferation and entry into differentiation accompanied by
360 endoreplication. In addition, broader peaks were observed, suggesting the formation of
361 aneuploidies as result of irregular mitotic divisions in this genotype.

362 In summary, CYCB1;1 and CYCB1;2 seem to be both redundantly required for robust
363 root mitotic divisions under normal conditions, with CYCB1;3 playing a secondary role.

364

365 **The CYCB1 group forms active complexes mainly together with CDKB2;2 and can**
366 **phosphorylate a MAP**

367 Previous studies have shown that all B1-type cyclins can interact with all five major cell-cycle
368 CDKs from *Arabidopsis*, i.e. CDKA;1, CDKB1;1, CDKB1;2, CDKB2;1, and CDKB2;2 (Van
369 Leene *et al*, 2010). However, when we assessed the biochemical activity of all four B1-type
370 cyclins with CDKA;1, CDKB1;1 and CDKB2;2, as representative members of the major cell-
371 cycle CDKs, in comparative *in vitro* kinase assays against Histone H1, a more complex
372 pattern appeared (Fig 8A). As a general principle, all four B1-type cyclins build the most
373 active complexes with CDKB2;2, which is strictly expressed in mitosis. CYCB1;1 and
374 CYCB1;4 showed overall the highest activity levels with CDKB2;2, followed by CYCB1;2 with
375 CDKB2;2, while the CYCB1;3-CDKB2;2 pair was the least active among the CYCB1-CDKB2
376 complexes. Although much less than in complex with CDKB2;2, CYCB1;1, CYCB1;2 and
377 CYCB1;4 could also phosphorylate Histone H1 together with CDKB1;1, but little to no activity
378 was found in complexes with CDKA;1. In contrast, we could not detect any activity of
379 CYCB1;3-CDKB1;1 complexes, while CYCB1;3 with CDKA;1 was almost as active as
380 CYCB1;3-CDKB2;2 pairs.

381 The abnormal microtubule pattern observed in *cycb1;1 cycb1;2* mutants was
382 reminiscent of the defects observed in microtubule binding and organizing protein mutants,
383 such as in *gip1 gip2* double mutants (Janski *et al*, 2012; Nakamura *et al*, 2012), which are
384 homologs of MOZART1 in animals. The *gip1 gip2* double knockdown mutant displays growth
385 defects, sterility, defective microtubule arrays and spindles with irregular polarity, which is
386 linked to chromosome laggards in metaphase and anaphase and aneuploidy (Janski *et al*,
387 2012). Additionally, the γ -tubulin *tubg1 tubg2* mutants display similar aberrant female and
388 male gametophytes, with abnormal embryo sacs and reduced pollen nuclei number
389 (Pastuglia *et al*, 2006). This suggested that CDK complexes containing B1-type cyclins might
390 phosphorylate the GIPs and/or other microtubule organizing proteins. Indeed, GIP1 but not
391 GIP2 contains a consensus CDK phosphorylation site at position T67. Therefore, we
392 expressed GIP1 in bacteria and subjected it to *in vitro* kinase assays with all four CYCB1
393 members each paired with either CDKA;1, CDKB1;1 or CDKB2;2. High activity levels against
394 GIP1 were found for CYCB1;1, CYCB1;2 and CYCB1;4 (Fig 8B). However, these B1-type
395 cyclins phosphorylated GIP1 only in combination with CDKB2;2, highlighting the importance
396 of both the cyclin and the CDK partner for substrate recognition in plants and further
397 emphasizing B2-type CDKs as the most important partners of the cyclin B1 group.

398 Following the finding that GIP1 is phosphorylated by CYCB1-CDKB2;2 complexes,
399 we decided to generate triple *gip1 cycb1;1 cycb1;2* and *gip2 cycb1;1 cycb1;2* mutants.
400 However, we were never able to isolate *gip2 cycb1;1 cycb1;2* mutants (Table 3). To address
401 whether the missing triple mutant was due to a gametophytic and/or embryonic defect, we
402 performed reciprocal crosses with *gip1^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* and *gip2^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}*
403 as male and female donors with Col-0 (Table 4). With the exception of a reduced

404 transmission efficiency of *cycb1;2* through the female gametophyte of approximately 65% in
405 *gip2^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* crosses with the wildtype, we observed that both *gip1 cycb1;1*
406 *cycb1;2* and *gip2 cycb1;1 cycb1;2* gametes were largely viable and transmitted both through
407 the female and male sides. This indicated that the triple *gip2^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* mutation is
408 embryo lethal.

409 Based on the results of our segregation analysis and reciprocal crosses (Tables 3
410 and 4), the assumption that GIP1 and GIP2 are completely interchangeable is challenged. It
411 seems likely that GIP1 but not GIP2 is regulated by a CYCB1-dependent process. Thus, we
412 generated a 2,849 bp genomic *GFP-GIP1* reporter in order to follow protein localization in
413 the *cycb1;1 cycb1;2* mutant background (Fig 9). We reasoned that, if GIP1 is indeed
414 modulated by CYCB1-CDK complexes, protein localization would be impaired in a *cycb1*
415 mutant background.

416 GIP1 is a microtubule nucleation factor and mainly localizes to microtubule minus
417 ends across mitosis. At prophase, it localizes at the nuclear surface. At metaphase and
418 anaphase, it is directed to the two spindle poles, co-localizing with microtubule minus ends.
419 At telophase, it localizes at the two opposing sides of the phragmoplast, directing
420 microtubule nucleation towards the midzone. With some degree of variation between
421 divisions, GFP-GIP1 localization differed greatly in *cycb1;1 cycb1;2* mutants in comparison
422 to the wildtype. In some cases, GFP-GIP1 was found to remain in the spindle midzone (Fig
423 9; magenta arrowheads) during metaphase in abnormal mitotic divisions. The resulting
424 phragmoplast, which is normally devoid of GIP1 in its midzone (Fig 9; white arrowheads),
425 also contained remaining GIP1. The duration of these abnormal mitotic divisions in the
426 double mutant was also around double the time of the wildtype divisions (Fig 9). Thus, we
427 conclude that B1-type cyclins and in particular CYCB1;2 control microtubule organization
428 through the regulation of GIP1 and likely several other substrates.

429

430

431 **Discussion**

432 Angiosperms have undergone an extensive expansion of the cyclin family in comparison to
433 yeast and mammals, containing for instance a total of 10 different cyclin families with more
434 than 50 protein-encoding cyclin genes in *Arabidopsis* (Wang *et al*, 2004; Jia *et al*, 2014). For
435 most of these genes, functional information is still lacking. Although genetic dissection of
436 such an enlarged number of cyclin members may be more challenging and require the
437 construction of multiple mutant combinations, it also provides an opportunity to study the
438 function of these cyclins in compromised, yet viable mutant combinations of redundantly
439 acting genes. In contrast, mutants for the CycB1 in mice, for example, are not viable and die
440 *in utero* making its analysis, especially at the developmental level, challenging (Brandeis *et*

441 *al*, 1998). Here, we have functionally dissected the group of B1-type cyclins and created
442 various double and multiple mutant combinations. In particular the combination of *cycb1;1*
443 and *cycb1;2* proved to be a valuable tool to study the function of this class of cyclins.

444

445 **CYCB1;2 is the central-most B1-type cyclin in *Arabidopsis***

446 When we analyzed the available information for the different *Arabidopsis* accessions using a
447 public depository (TAIR), we found that very few SNPs are present in CYCB1;2 and there
448 was sequence information for the CYCB1;2 coding region in the deposited genome data for
449 all accessions. In contrast, CYCB1;5 has accumulated different point mutations in the
450 different *Arabidopsis* accessions, which supports our finding that CYCB1;5 is likely a
451 pseudogene. CYCB1;1 and CYCB1;3 displayed slightly more SNPs than CYCB1;2, which is
452 in consistence with the overall normal growth and seed set of *cycb1;1 cycb1;3* mutants. In
453 contrast, double mutants of either of them with *cycb1;2*, i.e., *cycb1;1 cycb1;2* and *cycb1;2*
454 *cycb1;3*, displayed strong mutant phenotypes. Thus, our work reveals a hierarchy of cyclin
455 B1 function with CYCB1;2 being the most important mitotic regulator in this class, whose
456 function is backed-up by CYCB1;1 and CYCB1;3 (Fig 10). CYCB1;4 comes at a third level
457 that was found to act redundantly with CYCB1;1 and CYCB1;2 during female gametophyte
458 development.

459 In parallel to a development-specific requirement, comes the role of B1-type cyclins
460 in response to environmental condition. In particular, CYCB1;1 has been found to play a key
461 role in homologous recombination repair during DNA damage and hence its upregulation
462 can also indicate a cellular stress state (Weimer *et al*, 2016).

463 Thus, when describing cell proliferation in a developmental context and/or as
464 response to environmental conditions, to mitotic gene to monitor needs to be carefully
465 chosen, i.e. CYCB1;3 is not a good choice to describe female gametophyte development
466 and CYCB1;1 has the ambiguity to monitor stress conditions. Due its central role, CYCB1;2
467 appears to be a good general choice, yet certain circumstances might make the analysis of
468 other cyclin genes preferable.

469

470 **Endosperm – a demanding structure**

471 During plant development, many different cell cycle programs are executed (Jakoby &
472 Schnittger, 2004). One of the most particular proliferation modes are the free nuclear
473 divisions during endosperm proliferation (Berger *et al*, 2006). Despite of its importance for
474 seed growth and embryo nutrition, there is currently very little known about the cell cycle
475 machinery that drives these free nuclear divisions. Laser-dissection microscopy-based
476 transcriptional profiling of *Arabidopsis* endosperm revealed that B1-type cyclins are among
477 the most prominently expressed cell-cycle regulators in this tissue (Day *et al*, 2008).

478 Consistently, we found that nuclear divisions are reduced in *cycb1;2* single mutants and
479 aberrant mitotic divisions appear in *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* double mutants.
480 Correspondingly, seed development defects were reported as an effect of silencing cyclin B1
481 expression in rice (Guo *et al*, 2010).

482 Strikingly, the phenotypes of *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* double mutant
483 endosperm closely resembles the defects seen in mutants for ENDOSPERM DEFECTIVE 1
484 (EDE1), a plant-specific microtubule binding protein (Pignocchi *et al*, 2009). EDE1 contains
485 short CDK consensus phosphorylation sites (S/T-P) and so far has not been identified in
486 CDK substrate searches in *Arabidopsis* (Pusch *et al*, 2012; Harashima *et al*, 2016).
487 However, EDE1 could be phosphorylated by human Cdk complexes in *in vitro* kinase assays
488 and it is known that short CDK consensus sites are sufficient to be phosphorylated by
489 CDK/cyclin complexes (Pignocchi & Doonan, 2011; Ubersax *et al*, 2003). Interestingly, many
490 cytoskeletal components are highly expressed in proliferating endosperm tissue and the free
491 nuclear divisions might be very sensitive to alterations in cytoskeleton function, providing a
492 possible reason why these divisions are apparently more sensitive to the loss of CYCB1
493 function (Day *et al*, 2009). Endosperm development in *Arabidopsis* might thus advance as a
494 model system to study cell biological questions. However, endosperm is difficult to access,
495 since it is buried in maternal structures, such as the seed coat and the silique. Therefore,
496 morphological analyses always require mechanical preparation steps. In this light, the
497 identification of homozygous *cycb1;1 cycb1;2* homozygous double mutants represents a
498 unique tool to investigate the control of mitosis in roots or other much more easily accessible
499 plant tissues than gametophytes.

500

501 **B1-type cyclins and the control of microtubule nucleation**

502 Microtubules nucleate from ring-shaped complexes that contain γ -tubulin, and a family of
503 related proteins called γ -tubulin complex proteins (GCPs). The composition of γ -tubulin ring
504 complexes (γ TURC) varies between organisms: budding yeast contains only the γ -tubulin
505 small complex (γ TUSC), with two molecules of γ -tubulin, and one each of GCP2 and GCP3
506 (Vinh *et al*, 2002). On the other hand, animal nucleating complexes are made of multiple
507 copies of the γ TUSC plus GCP4, GCP5 and GCP6, as well as other non-GCP constituents,
508 such as GIP1/MOZART1, MOZART2 and NEDD1, which is a localization factor (Tovey &
509 Conduit, 2018). In plants, γ -tubulin complexes contain all GCP subunits, the
510 GIP1/MOZART1 protein, and a NEDD1 homolog (Lee & Liu, 2019).

511 The dynamic assembly and disassembly of the microtubule network generally runs in
512 parallel with the cell cycle and, for example, even strong defects in microtubule arrays, e.g.
513 lack of the PPB formation (Schaefer *et al*, 2017), do not block the cell cycle. However,
514 rearrangements of the microtubule cytoskeleton in plant cells are obviously coupled with the

515 cell cycle. Specific microtubule arrays accompany each stage of the cell cycle, either in
516 interphase (the interphase cortical microtubule array), in pre-mitosis (the PPB), or in mitosis
517 (spindle and phragmoplast). Moreover, several observations indicate a tight – at least
518 temporal – coordination of both cycles. For instance, the PPB is formed in late G2-prophase
519 in somatic tissues. Rapid PPB dismantling precisely coincides with nuclear envelope
520 breakdown and entry into metaphase. Prospindle and spindle formation also take place at
521 precise stages of the cell cycle. Likewise, the phragmoplast is precisely initiated at telophase
522 from remnants of the spindle. However, very little is currently known about the molecular
523 mechanisms of how this coordination is achieved. Interestingly, several cell cycle regulators
524 including CDKA;1 have been identified at microtubule arrays such as the PPB, spindle and
525 phragmoplast (Boruc *et al*, 2010). Our finding that GIP1/MOZART1 is phosphorylated by
526 CDKB2-CYCB1 complexes offers a potential mechanism of how the cell cycle might
527 orchestrate microtubule assembly. Interestingly, double PPBs and asymmetric PPBs, as we
528 report here to be present in *cycb1;1 cycb1;2* mutants, have also been described in a *gip1*
529 *gip2* double knockdown mutant previously further strengthening that CYCB1 control the
530 cytoskeleton via regulation of the γTURC complex (Janski *et al*, 2012).

531 Moreover, other factors of the γTURC have also been found to be phosphorylated in
532 animals and yeast. For instance, all core units of the γTURC (γ-tubulin, GCP2-GCP6, GCP-
533 WD and GCP8/MOZART2) but GIP1/MOZART1 have been found to be phosphorylated in
534 mammals (Teixidó-Travesa *et al*, 2012). In particular, CDKs were shown to phosphorylate
535 γTURC components including γ-tubulin and others in yeast and Nedd1 in humans (Zhang *et*
536 *al*, 2009; Keck *et al*, 2011). However, the functional importance of these phosphorylation
537 sites is not understood and an analysis of microtubule dynamics in animals is complicated
538 due to the lethality of core cell cycle regulators such as Cdk1 or CycB1 (Santamaría *et al*,
539 2007; Brandeis *et al*, 1998).

540 In plants, all of the core γTURC components (GIP1, GCP2, GCP3, GCP4, GCP5a,
541 GCP5b, NEDD1 and γ-tubulin 1 as well as γ-tubulin 2) but GIP2 have at least one CDK
542 consensus phosphorylation site, and for NEDD1 and GCP4 as well as GCP5a a
543 phosphorylated Ser/Thr in a consensus CDK site has been deposited in the PhosPhAt
544 database (<http://phosphat.uni-hohenheim.de>). In addition, CYCB1;3 has been found to bind
545 to GCP3 and γ-tubulin 1 (Van Leene *et al*, 2010). Thus, the regulation of the γTURC
546 complex by CYCB1s likely goes even beyond the here reported phosphorylation of GIP1.

547

548 **The CYCB1 group has an evolutionarily conserved role in microtubule networks**

549 Mammalian CycB1 is mainly cytoplasmic in interphase, rapidly accumulates in the nucleus at
550 the end of prophase and associates with the mitotic apparatus in the course of mitosis, i.e.,
551 chromatin, microtubules, kinetochores and centrosomes (Hagting *et al*, 1999; Toyoshima et

552 *al*, 1998; Yang *et al*, 1998; Bentley *et al*, 2007). Loss of the CycB1 function in mice results in
553 very early embryo lethality (Brandeis *et al*, 1998). In contrast, mammalian cyclin B2 (CycB2)
554 localizes mostly to the Golgi apparatus in both interphase and metaphase and CycB2 knock-
555 out mice are viable (Brandeis *et al*, 1998; Jackman *et al*, 1995; Draviam *et al*, 2001).
556 However, knocking down both CycB1 and CycB2 in HeLa cells showed a redundant function
557 for both cyclins (Soni *et al*, 2008). Cyclin B3 is only poorly expressed in mitotic cells, but its
558 mRNA is readily observed in both male and female meiosis (Nguyen *et al*, 2002; Lozano *et*
559 *al*, 2002).

560 Interestingly, CycB1 in mammals localizes to the outer plate of the kinetochore at
561 prometaphase and later on to the spindle poles following microtubule attachment to
562 kinetochores (Chen *et al*, 2008; Bentley *et al*, 2007). Reduction of CycB1 by the use of RNA
563 interference results in irregular attachment of kinetochores to microtubules, chromosome
564 alignment defects and delays anaphase (Chen *et al*, 2008), which is reminiscent of the
565 chromosome alignment and segregation problems in addition to the extended spindle stages
566 we found in *cycb1;1 cycb1;2* mutants.

567 In contrast to many other eukaryotes, the setup of interphasic and mitotic microtubule
568 networks in flowering plants is not driven by microtubule organizing centers containing
569 centrioles/basal bodies. Instead, it has been proposed that mitotic microtubule networks
570 nucleate from chromatin. Consistent with a role in microtubule nucleation, CYCB1;1 and
571 CYCB1;2 have been found to be present mainly at chromatin during mitosis, while CYCB1;3
572 localized to both chromatin and cytoplasm and CYCB1;4 localized mainly in the cytoplasm
573 as well as the region of the cytoplasm that co-localizes with the mitotic spindle (Bulankova *et*
574 *al*, 2013). Thus, although the CYCB1 group in *Arabidopsis* appears from a general point of
575 view to regulate the mitotic microtubule network similarly to CycB1 in mammals, the
576 localization of B1-type cyclins is different in both species, indicating that the work of B-type
577 cyclins in different species is differently distributed among its members.

578 Remarkably, and in contrast to CycB1 localization in mammals, CYCB1;1, CYCB1;2
579 and CYCB1;3 were not found at the mitotic spindle. We cannot rule out at the moment that
580 B1-type cyclins do not have a function in further organizing the mitotic spindle. However, it
581 seems likely that other, yet to be characterized subgroups of mitotic cyclins, in particular the
582 B2- and B3 group, might play a key role here especially since a recent analysis of CYCB3;1
583 found that this cyclin is localized to the spindle, at least in meiosis (Sofroni *et al*, 2020). With
584 this, it will be exciting to have eventually a complete view on B-type cyclin function in
585 *Arabidopsis*.

586

587 **Materials and Methods**

588 **Plant material and growth conditions**

589 The accessions Columbia (Col-0) and Nossen (No-0) were used as wildtype controls. The
590 single *cycb1;1*, *cycb1;2*, *cycb1;3* and *cycb1;4* mutants were previously described and
591 characterized (Weimer *et al*, 2016). The *cycb1;3* T-DNA insertion is in a No-0 background.
592 The *gip1* (GABI_213D01) and *gip2* (FLAG_36406) mutants were also previously
593 characterized (Janski *et al*, 2012). Genotyping primers are listed in Table S1.

594 *Arabidopsis thaliana* seeds were sown on half-strength (½) Murashige and Skoog
595 (MS) medium (basal salt mixture, Duchefa Biochemie) containing 0.5% sucrose and 0.8%
596 plant agar (Duchefa Biochemie) at pH 5.8. Seeds were either sterilized with chlorine gas or
597 by liquid sterilization. For the liquid sterilization, a 2% bleach, 0.05% Triton X-100 solution
598 was applied for 5 min, followed by three washing steps with sterile distilled water and the
599 addition of 0.05% agarose. Stratification of the seeds on plates was performed at 4°C for 2
600 to 3 days in the dark. Plants were initially grown *in vitro* at 22°C in a 16-h light regime and
601 subsequently transferred to soil with a 16-h light/21°C and 8-h/18°C dark regime with 60%
602 humidity.

603

604 **Quantitative PCR**

605 Total RNA was isolated from plant tissues using the RNeasy Plant Mini Kit (Qiagen). DNase
606 (TaKaRa) treatment was performed to avoid DNA contamination and RNA concentration
607 was measured using a Nanodrop ND-1000 instrument. 3.5 µg of total RNA was reverse
608 transcribed using SuperScript® III reverse transcriptase kit (Invitrogen). An additional step of
609 RNase H treatment at 37°C for 20 minutes was performed to eliminate remaining RNA. The
610 cDNA was further purified and concentrated by using QIAquick PCR Purification Kit (Qiagen)
611 and the concentration was determined by Nanodrop ND-1000 instrument. Finally, using
612 cDNA as the template, qPCR was performed on a Light-cycler LC480 instrument (Roche) as
613 per the manufacturer's instructions.

614

615 **Plasmid construction and plant transformation**

616 To analyze the expression of the CYCB1 group in seeds, we used previously generated
617 promoter reporter lines for CYCB1;1 to CYCB1;4 fused at the N-terminus to GFP (Weimer *et*
618 *al*, 2016).

619 To generate a *PRO_{GIP1}:GFP:GIP1* construct, a 2,849 bp genomic region including the
620 native promoter and terminator was amplified by PCR and integrated into a *pENTR-D-TOPO*
621 vector. A *Sma*I restriction site was introduced before the first *ATG* codon of the *GIP1* CDS.
622 After linearization of the construct by restriction digest with *Sma*I, a ligation with *GFP* was
623 performed, followed by LR reaction with the destination vector *pGWB501*. The constructs
624 were transformed in *Arabidopsis thaliana* by floral dipping.

625

626 **Flow cytometry assay**

627 Ten seven-day-old seedlings per genotype were chopped with a new razorblade in
628 homogenization buffer (45 mM MgCl₂, 20 mM MOPS, 30 mM sodium citrate, 0.1% Triton X-
629 100, pH 7.0), followed by filtration through a 15-µm nylon mesh. After that, propidium iodide
630 (Sigma) and RNase A (Sigma) were added to final concentrations of 50 µg/mL and 10 µg/mL
631 respectively. Samples were left on ice for 5 min and then analyzed in a S3e Cell Sorter (Bio-
632 Rad) with a laser excitation at 488 nm. The scatterplots were analyzed and processed using
633 the FlowJo software.

634

635 **Endosperm nuclei proliferation analysis**

636 Flower buds were initially emasculated before the visible maturation and release of pollen.
637 Emasculated flowers were then hand-pollinated with pollen from the same genotype after 2
638 to 3 days. After 3 days, siliques were dissected and fixed in a solution of 4% glutaraldehyde
639 in 12.5 mM cacodylate buffer, pH 6.8, followed by vacuum application for 20 min and storage
640 at 4°C overnight. The following day, individual seeds were mounted on microscope slides
641 containing a clearing 1:8:2 glycerol:chloral hydrate:water solution and stored at 4°C
642 overnight. Imaging was performed with a Zeiss LSM 780 or 880 confocal microscope with
643 excitation at 488 nm and detection between 498 and 586 nm and Z-stacks were analyzed
644 using the Fiji software.

645

646 **Pollen staining**

647 To identify single nuclei in mature pollen, pollen grains were released into a DAPI staining
648 solution (2.5 µg/ml DAPI, 0.01% Tween, 5% dimethyl sulfoxide, 50 mM Na phosphate buffer,
649 pH 7.2) and incubated at 4°C overnight. Pollen viability was analyzed by mounting pollen as
650 previously described (Alexander, 1969). Imaging was performed with a Zeiss Axioimager.

651

652 **Embryo sac analysis**

653 Mature ovules and developing seeds were prepared from siliques before and 3 days after
654 fertilization, respectively, mounted on microscope slides on a clearing 1:8:2 glycerol:chloral
655 hydrate:distilled water solution and kept at 4°C overnight before analysis as previously
656 described (Nowack *et al*, 2006). Differential Interference Contrast (DIC) imaging was
657 performed on a Zeiss Axioimager.

658

659 **Microtubule cytoskeleton dynamics in roots**

660 Meristematic cell divisions in the root were observed in 5 to 7 day-old seedlings under a
661 layer of ½ MS medium using a Leica TCS SP8 inverted confocal microscope.

662

663 **Immunostaining**

664 Roots of 4-day-old *Arabidopsis* seedlings were fixed in 4% paraformaldehyde and 0.1%
665 Triton X-100 in ½ MTSB buffer (25 mM PIPES, 2.5 mM MgSO₄, 2.5 mM EGTA, pH 6.9) for 1
666 hour under vacuum, then rinsed in PBS 1X for 10 minutes. Samples were then
667 permeabilized in ethanol for 10 minutes and rehydrated in PBS for 10 minutes. Cell walls
668 were digested using the following buffer for one hour: 2 mM MES pH 5, 0.20% driselase and
669 0.15% macerozyme. Tissues were hybridized overnight at room temperature with the B-5-1-
670 2 monoclonal anti- α -tubulin (Sigma) and the anti-KNOLLE antibody (kind gift of G. Jürgens,
671 University of Tübingen, Germany; Lauber *et al*, 1997). The next day, tissues were washed
672 for 15 minutes in PBS, 50 mM glycine, incubated with secondary antibodies (Alexa Fluor 555
673 goat anti-rabbit for KNOLLE antibody and Alexa Fluor 488 goat anti-mouse for the tubulin
674 antibody) overnight and washed again in PBS, 50 mM glycine and DAPI 20 ng/ml. Tissues
675 were mounted in VECTASHIELD and DAPI and viewed using an SP8 confocal laser
676 microscope (Leica Microsystems). Samples were excited sequentially at 405 nm (DAPI), 488
677 nm (@TUB/Alexa Fluor 488), and 561 nm (@KNOLLE/Alexa Fluor 555), with an emission
678 band of 420-450 nm (DAPI), 495-545 nm (Alexa Fluor 488), and 560-610 nm (Alexa Fluor
679 555) using a PMT for DAPI imaging, and hybrid detectors for MT and KNOLLE imaging. All
680 stacks have been imaged using the same zoom (x 1.60) with a pixel size xyz of 200 nm x
681 200 nm x 500 nm.

682 A blind counting was set up to count mitotic MT arrays seen in ten roots of each
683 genotype. The “Cell counter” plugin was used to count the occurrence of MT arrays within
684 each root stack (<https://imagej.nih.gov/ij/plugins/cell-counter.html>)

685

686 **Protein expression and purification and *in vitro* kinase assays**

687 Purified GIP1 was kindly donated by Nicolas Baumberger (IBMP, Strasbourg). *GIP1* CDS
688 was cloned into the *pGEX-2TK* vector (GE Healthcare; courtesy of Etienne Herzog) and
689 transformed into the BL21(DE3) *E. coli* strain. An overnight culture cultivated at 37°C was
690 used to inoculate an expression culture at an OD₆₀₀ of 0.1. The expression culture was
691 grown at 37°C and 250 rpm until it reached an OD₆₀₀ of 0.6. Afterwards, 0.5mM IPTG was
692 added and the growth continued at 37°C for 6 hours. Cells were collected by centrifugation
693 at 5000 xg for 15 min and the pellet resuspended in 50 mM Tris pH 8, 300 mM NaCl, 5%
694 glycerol, 5 mM EDTA, 0.1% Tween 20. Cells were lysed by sonication and the lysate
695 clarified by centrifugation at 10,000 xg for 20 min at 4°C. GST-GIP was purified by passage
696 onto a glutathione-sepharose GTrap HP 1ml column (GE Healthcare) with 50 mM Tris pH
697 7.5, 10 mM MgCl₂, 100 mM NaCl as equilibration/washing buffer and 50 mM Tris pH 7.5, 10
698 mM MgCl₂, 100 mM NaCl plus 10 mM reduced glutathione as elution buffer. Elution
699 fractions were analyzed on polyacrylamide gel and concentrated by ultrafiltration before

700 being frozen and stored at -80°C. Histone H1⁰ was purchased from NEB. *In vitro* kinase
701 assays were performed as described previously (Harashima & Schnittger, 2012).

702

703 **Oryzalin root growth assays**

704 Plants were sown on ½ MS medium containing either 0.05% DMSO as a control or oryzalin.
705 100 mM oryzalin stock solutions were prepared in DMSO and stored at -20°C and further
706 diluted to a final concentration of 150 nM or 200 nM for the root assays. Root growth was
707 recorded daily up until 5 days after germination, when plates were scanned, and root length
708 was subsequently measured using the Fiji software. Three biological replicates with at least
709 10 plants per genotype were performed. The mean root length of each individual experiment
710 was determined and again averaged.

711

712 **Statistical analysis**

713 The employed statistical tests are indicated in the figure legends. Statistical tests were
714 performed using the GraphPad Prism 9 software and the XLSTAT plugin for Microsoft Excel.
715 The distribution of the measured values was tested beforehand, e.g. by the Anderson-
716 Darling test. If the distribution was significantly different from a normal distribution, a non-
717 parametric test was employed. Significance levels: $P \geq 0.05$ (ns), $P < 0.05$ (*), $P < 0.01$ (**),
718 $P < 0.001$ (***), $P < 0.0001$ (****). In the case of the Chi-squared test followed by the
719 Marascuilo procedure, significant pairwise comparisons are indicated by letters.

720

721 **Acknowledgements**

722 This work was supported by a grant from the Ohsumi Frontier Science Foundation to S.K.,
723 by the Ministry of Education, Youth, and Sports of the Czech Republic, European Regional
724 Development Fund-Project REMAP (grant CZ.02.1.01/0.0/0.0/15_003/0000479) to K.R., and
725 by the Human Frontier Science Program to D.B. and A.S.

726

727 **Author contributions**

728 MM, XZ, MP, FR, HH, SK, MH and AS designed the research; MM, XZ, MP, KB, FR, MK,
729 HH, SK, and PB performed the experiments; MM, XZ, and MP performed the statistical
730 analysis; MM, XZ, MP, KB, FR, MK, HH, SK, PB, MH, KR, DB, and AS analyzed and
731 discussed the data; DB, KR and AS provided material and reagents, MM and AS wrote the
732 article; MM, XZ, MP, FR, MK, HH, SK, PB, MH, KR, DB, AS revised and approved the
733 article.

734

735 **Conflict of interest**

736 The authors declare that they have no conflict of interest.

737

738 **References**

739 Alexander MP (1969) Differential staining of aborted and nonaborted pollen. *Biotech
740 Histochem* 44: 117–122

741 Bentley AM, Normand G, Hoyt J & King RW (2007) Distinct Sequence Elements of Cyclin B1
742 Promote Localization to Chromatin, Centrosomes, and Kinetochores during Mitosis. *Mol
743 Biol Cell* 18: 4847–4858

744 Berger F, Grini PE & Schnittger A (2006) Endosperm: an integrator of seed growth and
745 development. *Curr Opin Plant Biol* 9: 664–670

746 Blethrow JD, Glavy JS, Morgan DO & Shokat KM (2008) Covalent capture of kinase-specific
747 phosphopeptides reveals Cdk1-cyclin B substrates. *Proc Natl Acad Sci U S A* 105:
748 1442–1447

749 Boisnard-Lorig C, Colon-Carmona A, Bauch M, Hodge S, Doerner P, Bancharel E, Dumas
750 C, Haseloff J & Berger F (2001) Dynamic analyses of the expression of the
751 histone::YFP fusion protein in *Arabidopsis* show that syncytial endosperm is divided in
752 mitotic domains. *Plant Cell* 13: 495–509

753 Boruc J, Mylle E, Duda M, de Clercq R, Rombauts S, Geelen D, Hilson P, Inzé D, van
754 Damme D & Russinova E (2010) Systematic localization of the *Arabidopsis* core cell
755 cycle proteins reveals novel cell division complexes. *Plant Physiol* 152: 553–565

756 Boudolf V, Lammens T, Boruc J, van Leene J, van den Daele H, Maes S, van Isterdael G,
757 Russinova E, Kondorosi E, Witters E, et al (2009) CDKB1;1 forms a functional complex
758 with CYCA2;3 to suppress endocycle onset. *Plant Physiol* 150: 1482–1493

759 Brandeis M, Rosewell I, Carrington M, Crompton T, Jacobs MA, Kirk J, Gannon J & Hunt T
760 (1998) Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice
761 die in utero. *Proc Natl Acad Sci U S A* 95: 4344–4349

762 Bulankova P, Akimcheva S, Fellner N & Riha K (2013) Identification of *Arabidopsis* Meiotic
763 Cyclins Reveals Functional Diversification among Plant Cyclin Genes. *PLoS Genet* 9

764 Chen Q, Zhang X, Jiang Q, Clarke PR & Zhang C (2008) Cyclin B1 is localized to
765 unattached kinetochores and contributes to efficient microtubule attachment and proper
766 chromosome alignment during mitosis. *Cell Res* 18: 268–280

767 Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, van den Daele H, van
768 Isterdael G, Schnittger A & de Veylder L (2011) The *Arabidopsis thaliana* checkpoint
769 kinase WEE1 protects against premature vascular differentiation during replication
770 stress. *Plant Cell* 23: 1435–1448

771 Day RC, Herridge RP, Ambrose BA & Macknight RC (2008) Transcriptome analysis of
772 proliferating *Arabidopsis* endosperm reveals biological implications for the control of
773 syncytial division, cytokinin signaling, and gene expression regulation. *Plant Physiol*

774 148: 1964–1984

775 Day RC, Müller S & Macknight RC (2009) Identification of cytoskeleton-associated genes
776 expressed during *Arabidopsis* syncytial endosperm development. *Plant Signal Behav* 4:
777 883–886

778 Dewitte W, Scofield S, Alcasabas AA, Maughan SC, Menges M, Braun N, Collins C,
779 Nieuwland J, Prinsen E, Sundaresan V, *et al* (2007) *Arabidopsis CYCD3 D-type cyclins*
780 link cell proliferation and endocycles and are rate-limiting for cytokinin responses. *Proc
781 Natl Acad Sci U S A* 104: 14537–14542

782 Dissmeyer N, Weimer AK, Pusch S, de Schutter K, Kamei CLA, Nowack MK, Novak B, Duan
783 GL, Zhu YG, de Veylder L, *et al* (2009) Control of cell proliferation, organ growth, and
784 DNA damage response operate independently of dephosphorylation of the *arabidopsis*
785 Cdk1 Homolog CDKA;1. *Plant Cell* 21: 3641–3654

786 Dissmeyer N, Weimer AK, de Veylder L, Novak B & Schnittger A (2010) The regulatory
787 network of cell cycle progression is fundamentally different in plants versus yeast or
788 metazoans. *Plant Signal Behav* 5

789 Doerner P, Jørgenser JE, You R, Steppuhn J & Lamb C (1996) Control of root growth and
790 development by cyclin expression. *Nature* 380: 520–523

791 Draviam VM, Orrechia S, Lowe M, Pardi R & Pines J (2001) The localization of human
792 cyclins B1 and B2 determines CDK1 substrate specificity and neither enzyme requires
793 MEK to disassemble the Golgi apparatus. *J Cell Biol* 152: 945–958

794 Drews GN & Yadegari R (2002) Development and function of the angiosperm female
795 gametophyte. *Annu Rev Genet* 36: 99–124

796 Furuno N, Elzen N Den & Pines J (1999) Human cyclin A is required for mitosis until mid
797 prophase. *J Cell Biol* 147: 295–306

798 Guo J, Wang F, Song J, Sun W & Zhang XS (2010) The expression of *Oryza*;CycB1;1 is
799 essential for endosperm formation and causes embryo enlargement in rice. *Planta* 231:
800 293–303

801 Haase SB, Winey M & Reed SI (2001) Multi-step control of spindle pole body duplication by
802 cyclin-dependent kinase. *Nat Cell Biol* 3: 38–42

803 Hagting A, Jackman M, Simpson K & Pines J (1999) Translocation of cyclin B1 to the
804 nucleus at prophase requires a phosphorylation-dependent nuclear import signal. *Curr
805 Biol* 9: 680–689

806 Hagting A, Karlsson C, Clute P, Jackman M & Pines J (1998) MPF localization is controlled
807 by nuclear export. *EMBO J* 17: 4127–4138

808 Harashima H, Dissmeyer N, Hammann P, Nomura Y, Kramer K, Nakagami H & Schnittger A
809 (2016) Modulation of plant growth *in vivo* and identification of kinase substrates using
810 an analog-sensitive variant of CYCLIN-DEPENDENT KINASE A;1. *BMC Plant Biol* 16:

811 1–19

812 Harashima H & Schnittger A (2012) Robust reconstitution of active cell-cycle control
813 complexes from co-expressed proteins in bacteria. *Plant Methods* 8: 1–9

814 Jackman M, Firth M & Pines J (1995) Human cyclins B1 and B2 are localized to strikingly
815 different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. *EMBO J*
816 14: 1646–1654

817 Jakoby M & Schnittger A (2004) Cell cycle and differentiation. *Curr Opin Plant Biol* 7: 661–
818 669

819 Janski N, Masoud K, Batzenschlager M, Herzog E, Evrard JL, Houlné G, Bourge M,
820 Chabouté ME & Schmit AC (2012) The GCP3-interacting proteins GIP1 and GIP2 are
821 required for γ -tubulin complex protein localization, spindle integrity, and chromosomal
822 stability. *Plant Cell* 24: 1171–1187

823 Jia RD, Guo CC, Xu GX, Shan HY & Kong HZ (2014) Evolution of the cyclin gene family in
824 plants. *J Syst Evol* 52: 651–659

825 Keck JM, Jones MH, Wong CCL, Binkley J, Chen D, Jaspersen SL, Holinger EP, Xu T,
826 Niepel M, Rout MP, et al (2011) A Cell Cycle Phosphoproteome of the Yeast
827 Centrosome. 332: 1557–1562

828 Lacey KR, Jackson PK & Stearns T (1999) Cyclin-dependent kinase control of centrosome
829 duplication. *Proc Natl Acad Sci U S A* 96: 2817–2822

830 Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W &
831 Jürgens G (1997) The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. *J
832 Cell Biol* 139: 1485–1493

833 Lee YRJ & Liu B (2019) Microtubule nucleation for the assembly of acentrosomal
834 microtubule arrays in plant cells. *New Phytol* 222: 1705–1718

835 Van Leene J, Hollunder J, Eeckhout D, Persiau G, Van De Slijke E, Stals H, Van Isterdael G,
836 Verkest A, Neirynck S, Buffel Y, et al (2010) Targeted interactomics reveals a complex
837 core cell cycle machinery in *Arabidopsis thaliana*. *Mol Syst Biol* 6

838 Lindqvist A, Rodríguez-Bravo V & Medema RH (2009) The decision to enter mitosis:
839 feedback and redundancy in the mitotic entry network. *J Cell Biol* 185: 193–202

840 Lozano JC, Schatt P, Peaucellier G, Picard A, Perret E & Arnould C (2002) Molecular
841 cloning, gene localization, and structure of human cyclin B3. *Biochem Biophys Res
842 Commun* 291: 406–413

843 McCormick S (2004) Control of male gametophyte development. *Plant Cell* 16: 142–154

844 Menges M, De Jager SM, Gruissem W & Murray JAH (2005) Global analysis of the core cell
845 cycle regulators of *Arabidopsis* identifies novel genes, reveals multiple and highly
846 specific profiles of expression and provides a coherent model for plant cell cycle
847 control. *Plant J* 41: 546–566

848 Morgan DO (1997) CYCLIN-DEPENDENT KINASES : Engines, Clocks, and
849 Microprocessors. *Annu Rev Cell Dev Biol* 13: 261–291

850 Nakamura M, Yagi N, Kato T, Fujita S, Kawashima N, Ehrhardt DW & Hashimoto T (2012)
851 Arabidopsis GCP3-interacting protein 1/MOZART 1 is an integral component of the γ -
852 tubulin-containing microtubule nucleating complex. *Plant J* 71: 216–225

853 Nakayama KI & Nakayama K (2005) Regulation of the cell cycle by SCF-type ubiquitin
854 ligases. *Semin Cell Dev Biol* 16: 323–333

855 Nguyen TB, Manova K, Capodieci P, Lindon C, Bottega S, Wang XY, Refik-Rogers J, Pines
856 J, Wolgemuth DJ & Koff A (2002) Characterization and expression of mammalian cyclin
857 B3, a prepachytene meiotic cyclin. *J Biol Chem* 277: 41960–41969

858 Nowack MK, Grini PE, Jakoby MJ, Lafos M, Koncz C & Schnittger A (2006) A positive signal
859 from the fertilization of the egg cell sets off endosperm proliferation in angiosperm
860 embryogenesis. *Nat Genet* 38: 63–67

861 O'Farrell PH (2001) Triggering the all-or-nothing switch into mitosis. *Trends Cell Biol* 11:
862 512–519

863 Pastuglia M, Azimzadeh J, Goussot M, Camilleri C, Belcram K, Evrard JL, Schmit AC,
864 Guerche P & Bouchez D (2006) γ -tubulin is essential for microtubule organization and
865 development of Arabidopsis. *Plant Cell* 18: 1412–1425

866 Pignocchi C & Doonan JH (2011) Interaction of a 14-3-3 protein with the plant microtubule-
867 associated protein EDE1. *Ann Bot* 107: 1103–1109

868 Pignocchi C, Minns GE, Nesi N, Koumproglou R, Kitsios G, Benning C, Lloyd CW, Doonan
869 JH & Hills MJ (2009) Endosperm Defective1 is a novel microtubule-associated protein
870 essential for seed development in Arabidopsis. *Plant Cell* 21: 90–105

871 Pusch S, Harashima H & Schnittger A (2012) Identification of kinase substrates by
872 bimolecular complementation assays. *Plant J* 70: 348–356

873 Riabowol K, Draetta G, Brizuela L, Vandre D & Beach D (1989) The cdc2 kinase is a nuclear
874 protein that is essential for mitosis in mammalian cells. *Cell* 57: 393–401

875 Santamaría D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P,
876 Malumbres M & Barbacid M (2007) Cdk1 is sufficient to drive the mammalian cell cycle.
877 *Nature* 448: 811–815

878 Schaefer E, Belcram K, Uyttewaal M, Duroc Y, Goussot M, Legland D, Laruelle E, De
879 Tauzia-Moreau ML, Pastuglia M & Bouchez D (2017) The preprophase band of
880 microtubules controls the robustness of division orientation in plants. *Science* (80-)
881 356: 186–189

882 Schnittger A, Schöbinger U, Bouyer D, Weinl C, Stierhof YD & Hülskamp M (2002) Ectopic
883 D-type cyclin expression induces not only DNA replication but also cell division in
884 Arabidopsis trichomes. *Proc Natl Acad Sci U S A* 99: 6410–6415

885 De Schutter K, Joubès J, Cools T, Verkest A, Corellou F, Babiychuk E, Van Der Schueren E,
886 Beeckman T, Kushnir ST, Inzé D, *et al* (2007) Arabidopsis WEE1 kinase controls cell
887 cycle arrest in response to activation of the DNA integrity checkpoint. *Plant Cell* 19:
888 211–225

889 Sofroni K, Takatsuka H, Yang C, Dissmeyer N, Komaki S, Hamamura Y, Böttger L, Umeda
890 M & Schnittger A (2020) CDKD-dependent activation of CDKA;1 controls microtubule
891 dynamics and cytokinesis during meiosis. *J Cell Biol* 219: 1–21

892 Soni D V., Sramkoski RM, Lam M, Stefan T & Jacobberger JW (2008) Cyclin B1 is rate
893 limiting but not essential for mitotic entry and progression in mammalian somatic cells.
894 *Cell Cycle* 7: 1285–1300

895 Teixidó-Travesa N, Roig J & Lüders J (2012) The where, when and how of microtubule
896 nucleation - one ring to rule them all. *J Cell Sci* 125: 4445–4456

897 Tovey CA & Conduit PT (2018) Microtubule nucleation by γ -tubulin complexes and beyond.
898 *Essays Biochem* 62: 765–780

899 Toyoshima F, Moriguchi T, Wada A, Fukuda M & Nishida E (1998) Nuclear export of cyclin
900 B1 and its possible role in the DNA damage-induced G2 checkpoint. *EMBO J* 17:
901 2728–2735

902 Tyson JJ & Novak B (2001) Regulation of the eukaryotic cell cycle: Molecular antagonism,
903 hysteresis, and irreversible transitions. *J Theor Biol* 210: 249–263

904 Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethow JD, Shah K, Shokat KM &
905 Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. *Nature* 425: 859–864

906 Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S & Inzé D (2002) Genome-wide
907 analysis of core cell cycle genes in Arabidopsis. *Plant Cell* 14: 903–916

908 Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F,
909 De Rybel B, Vuylsteke M, *et al* (2011) Developmental regulation of CYCA2s contributes
910 to tissue-specific proliferation in Arabidopsis. *EMBO J* 30: 3430–3441

911 Vinh DBN, Kern JW, Hancock WO, Howard J & Davis TN (2002) Reconstitution and
912 Characterization of Budding Yeast γ -Tubulin Complex. *Mol Biol Cell* 13: 1144–1157

913 Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW & Ma H (2004)
914 Genome-wide analysis of the cyclin family in arabidopsis and comparative phylogenetic
915 analysis of plant cyclin-like proteins. *Plant Physiol* 135: 1084–1099

916 Weimer AK, Biedermann S, Harashima H, Roodbarkelari F, Takahashi N, Foreman J, Guan
917 Y, Pochon G, Heese M, Van Damme D, *et al* (2016) The plant- specific CDKB 1-
918 CYCB 1 complex mediates homologous recombination repair in Arabidopsis . *EMBO J*
919 35: 2068–2086

920 Yamada M & Goshima G (2017) Mitotic spindle assembly in land plants: Molecules and
921 mechanisms. *Biology (Basel)* 6

922 Yang J, Bardes ESG, Moore JD, Brennan J, Powers MA & Kornbluth S (1998) Control of
923 Cyclin B1 localization through regulated binding of the nuclear export factor CRM1.
924 *Genes Dev* 12: 2131–2143

925 Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q & Zhang C (2009) Sequential
926 phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γTuRC to
927 the centrosome. *J Cell Sci* 122: 2240–2251

928

929

930 **Figure legends**

931

932 **Figure 1. *cycb1;1 cycb1;2* mutants show decreased root growth and shoot**

933 development, which is further emphasized by a MT-destabilizing drug.

934 A, B. Quantification of oryzalin root growth assays in single (A) and double (B) mutants. DAG

935 = days after germination. Graphs show mean \pm SD of three biological replicates with at least

936 10 plants per genotype per replicate. Asterisks indicate a significant difference in root length

937 in a two-way ANOVA followed by Tukey's multiple comparisons test.

938 C. Rosette pictures of 20-day-old Col-0 and *cycb1;1 cycb1;2*. Scale bar: 1 cm.

939 D. Quantification of the rosette area using total leaf surface in Col-0 and *cycb1;1 cycb1;2*.

940 Graph represents the single rosette area values and the horizontal lines indicates the mean

941 value \pm SD, $n = 10$ plants per genotype. Asterisks indicate a significant difference in rosette

942 area using an unpaired *t*-test, $t = 7.421$, $df = 18$.

943

944 **Figure 2. Seed abortion in *cycb1* mutants.**

945 A. Siliques pictures of *cycb1* double mutant combinations. White arrowheads indicate aborted

946 ovules and seeds. Scale bars: 500 μ m.

947 B, C. Quantification of aborted seeds in single (B) and double (C) mutants. Graphs

948 represents the average seed abortion rate per plant \pm SD of three biological replicates, $n =$

949 550-1029 seeds analyzed per genotype. Asterisks indicate significant differences in seed

950 abortion rate in an ordinary one-way ANOVA test, followed by a Dunnett's multiple

951 comparisons test.

952

953 **Figure 3. CYCB1 mutations delay endosperm proliferation.**

954 A, C. Confocal microscopy images of seeds 3 DAP. Endosperm and embryo morphology in

955 *cycb1* single (A) and double (C) mutants. Magenta arrowheads indicate enlarged endosperm

956 nuclei, while green arrowheads indicate atypical agglomerates of endosperm nuclei. Scale

957 bars: 25 μ m.

958 B, D. Quantification of endosperm nuclei in *cycb1* single (B) and double (D) mutants. Boxes

959 and whiskers represent min to max values with the median indicated as a central horizontal

960 line, $n = 26-30$ seeds per genotype. Asterisks show significant differences in the number of

961 endosperm nuclei per seed in a Kruskal-Wallis test followed by Dunn's multiple comparisons

962 test.

963

964 **Figure 4. Embryo sac development is controlled by CYCB1 members.**

965 A. DIC images of abnormal embryo sacs in *cycb1* mutant combinations. Red arrowheads
966 indicate the visible nuclei in Col-0 embryo sacs (central and egg cells) and the
967 corresponding structures in the quadruple *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* mutant.
968 Scale bars: 20 μ m.
969 B. Quantification of the different abnormal embryo sac structures in *cycb1* mutant
970 combinations ($n = 202$ -459 embryo sacs per genotype). Different letters indicate significant
971 differences in the proportion of abnormal embryo sacs in a Chi-squared test followed by the
972 Marascuilo procedure to identify significant pairwise comparisons. WT = wildtype.
973 C. DIC images of embryo sacs 3 DAP with wildtype pollen (female x male). Red arrowheads
974 indicate the visible embryo sac nuclei in the crosses with the quadruple *cycb1;1^{-/-} cycb1;2^{+/+}*
975 *cycb1;3^{+/+} cycb1;4^{-/-}* mutant as a female donor, while the control Col-0 x Col-0 cross exhibits a
976 developing embryo. Scale bars: 20 μ m.
977 D. Quantification of seed abortion in different *cycb1* mutant combinations. Graph represents
978 the average seed abortion rate per plant \pm SD of three biological replicates, $n = 463$ -579
979 seeds analyzed per genotype. Asterisks indicate significant differences in seed abortion rate
980 in an ordinary one-way ANOVA test, followed by a Dunnett's multiple comparisons test.
981 E. Siliques pictures of *cycb1* triple and quadruple mutants. White arrowheads indicate early
982 aborted ovules. Scale bars: 500 μ m.
983

984 **Figure 5. Pollen development is affected by mutations in the CYCB1 group.**

985 A, B. DAPI staining of pollen in *cycb1* mutants, including pollen configurations found in
986 *cycb1;1^{-/-} cycb1;2^{+/+} cycb1;3^{+/+} cycb1;4^{-/-}* mutants (B). Scale bars: 5 μ m.
987 C. Quantification of DAPI-stained pollen configurations in different *cycb1* mutant
988 combinations, $n = 420$ -616 pollen grains per genotype. Different letters indicate significant
989 differences in the proportion of abnormal pollen (uni- and bicellular) in a Chi-squared test
990 followed by the Marascuilo procedure to identify significant pairwise comparisons.
991 D. Alexander staining of mature pollen indicating pollen viability. Scale bars: 5 μ m.
992 E. Quantification of Alexander-stained pollen viability, $n = 403$ -498 pollen grains per
993 genotype. Different letters indicate significant differences in the proportion of dead pollen in a
994 Chi-squared test followed by the Marascuilo procedure to identify significant pairwise
995 comparisons.

996 Red arrowheads indicate dead pollen, while white arrowheads indicate bicellular pollen.
997

998 **Figure 6. The double *cycb1;1 cycb1;2* mutant has abnormal microtubule arrays.**

999 A, C, E. Co-immunolocalization against tubulin (magenta) and KNOLLE (green) in root
1000 meristematic cells. Nuclei were counterstained with DAPI for the DNA (cyan). White
1001 arrowheads indicate laggards in the metaphase stage. Scale bars: 5 μ m.

1002 B. Quantification of wildtype (WT), double and misplaced PPBs. Different letters indicate
1003 significant differences in the proportions of the different arrays per category in a Chi-squared
1004 test followed by the Marascuilo procedure to identify significant pairwise comparisons. Ten
1005 roots were analyzed per genotype.

1006 D. Quantification of PPBs with prominent perinuclear microtubules (MTs). Boxes and
1007 whiskers represent min to max values with the median indicated as a central horizontal line,
1008 $n = 10$ roots per genotype. Asterisks show significant differences in the percentage of PPBs
1009 with prominent perinuclear microtubules per root in an ANOVA test followed by Dunnett's
1010 multiple comparisons test.

1011 F. Quantification of spindles with lagging chromosomes. Boxes and whiskers represent min
1012 to max values with the median indicated as a central horizontal line, $n = 10$ roots per
1013 genotype. Asterisks show significant differences in the percentage of spindles with lagging
1014 chromosomes per root in a Kruskal-Wallis test followed by Dunn's multiple comparisons test.

1015

1016 **Figure 7. Both *cycb1;1 cycb1;2* and *cycb1;2 cycb1;3* have abnormal phragmoplasts
1017 and extended spindle stages.**

1018 A. Co-immunolocalization against tubulin (magenta) and KNOLLE (green) in root
1019 meristematic cells. Nuclei were counterstained with DAPI for the DNA (cyan). Scale bars: 5
1020 μm .

1021 B. Quantification of wildtype (WT) and abnormal phragmoplasts. Different letters indicate
1022 significant differences in the proportions of the different arrays per category in a Chi-squared
1023 test followed by the Marascuilo procedure to identify significant pairwise comparisons. Ten
1024 roots were analyzed per genotype.

1025 C. Quantification of the different mitotic stages in roots of the different genotypes. Different
1026 letters indicate significant differences in the proportions of the different arrays per category in
1027 a Chi-squared test followed by the Marascuilo procedure to identify significant pairwise
1028 comparisons. Ten roots were analyzed per genotype.

1029

1030 **Figure 8. CYCB1-CDKB2;2 complexes are the most active and are able to
1031 phosphorylate a MT-nucleation factor.**

1032 A. Kinase assays against Histone H1. Top and middle panels indicate shorter and longer
1033 exposures respectively of the same kinase assays. Bottom panel is a CBB staining of
1034 Histone H1 showing equal loading of the protein. A: CDKA;1, B1: CDKB1;1, B2: CDKB2;2.

1035 B. Kinase assays against GIP1. Top and and middle panels indicate shorter and longer
1036 exposures respectively of the same kinase assays. Bottom panel is a CBB staining of GIP1
1037 showing equal loading of the protein. A: CDKA;1, B1: CDKB1;1, B2: CDKB2;2.

1038 C. Western blot against StrepIII-tagged proteins to show loaded amounts of the CDKs. A:
1039 CDKA;1, B1: CDKB1;1, B2: CDKB2;2.

1040

1041 **Figure 9. GIP1 mislocalizes in *cycb1;1 cycb1;2* mitosis.**

1042 Time-lapse of confocal microscope pictures of root meristematic cells tagged with GFP-GIP1
1043 in Col-0 (top panel) and *cycb1;1 cycb1;2* (bottom panel). GIP1 localizes at the nuclear polar
1044 caps, followed by co-localization with microtubules at the spindle and phragmoplast arrays.
1045 In *cycb1;1 cycb1;2* double mutants, GIP1 exhibited an abnormal localization, being found at
1046 the spindle (magenta arrowheads) and phragmoplast (white arrowheads) midzones, which
1047 are normally devoid of the protein. Scale bars: 5 μ m.

1048

1049 **Figure 10. The differential role of the members of the CYCB1 group is developmental
1050 and tissue specific.**

1051 A. CYCB1;1 and CYCB1;2 are the main B1-type cyclins involved in sporophytic divisions, as
1052 seen in the general dwarf phenotype of the *cycb1;1 cycb1;2*.

1053 B. CYCB1;1, CYCB1;2 and CYCB1;4 are mainly implicated in the female gametophyte
1054 development, as shown by the defects in embryo sacs of the triple mutants. CYCB1;2 and
1055 CYCB1;3 are primarily involved in the male gametophyte development, as seen by for
1056 instance the higher pollen death in mutant combinations of those two members.

1057 C. In the endosperm, the requirement of CYCB1;1, CYCB1;2 and CYCB1;3 for mitotic
1058 divisions became clear, as shown by the reduced proliferation of that tissue in double
1059 mutants of those cyclins.

1060 D. In mitotic divisions of the roots, microtubule arrays seem to be majorly regulated by
1061 CYCB1;1 and CYCB1;2, followed secondarily by CYCB1;3.

1062

1063 **Table legends**

1064 **Table 1. Transmission efficiency of the *cycb1;1*, *cycb1;2* and *cycb1;3* mutant alleles in
1065 reciprocal crosses of a triple mutant with wildtype.**

1066 A transmission efficiency of 100% indicates full transmission of the mutant allele, i.e. 50% of
1067 the genotyped F1 seedlings are heterozygous. A z-test for one proportion was performed to
1068 test if the observed transmission frequencies differ from expected values and the
1069 significance level was corrected for multiple comparisons using Bonferroni. Asterisks
1070 indicate significant differences from expected values. Primers used for genotyping are listed
1071 in Table S1.

1072

1073 **Table 2. Transmission efficiency of the *cycb1;2* and *cycb1;3* mutant alleles in
1074 reciprocal crosses of a quadruple mutant with wildtype.**

1075 A transmission efficiency of 100% indicates full transmission of the mutant allele, i.e. 50% of
1076 the genotyped F1 seedlings are heterozygous. A z-test for one proportion was performed to
1077 test if the observed transmission frequencies differ from expected values and the
1078 significance level was corrected for multiple comparisons using Bonferroni. Asterisks
1079 indicate significant differences from expected values. Primers used for genotyping are listed
1080 in Table S1.

1081

1082 Table 3. Distortion of *cycb1;2* segregation in a *gip2^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* background.

1083 The expected mendelian segregation reflects the proportion of F1 seedlings with the
1084 respective genotypes if the mutant alleles promote no deleterious effects. A z-test for one
1085 proportion was performed to test if the observed homozygous mutant frequencies differ from
1086 the expected Mendelian value and the significance level was corrected for multiple
1087 comparisons using Bonferroni. Asterisks indicate significant differences from the expected
1088 value (25%). Primers used for genotyping are listed in Table S1.

1089

1090 Table 4. Transmission efficiency of the *cycb1;2* mutant allele in reciprocal crosses of
1091 *gip1^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* and *gip2^{-/-} cycb1;1^{-/-} cycb1;2^{+/+}* with wildtype.

1092 A transmission efficiency of 100% indicates full transmission of the mutant allele, i.e. 50% of
1093 the genotyped F1 seedlings are heterozygous. A z-test for one proportion was performed to
1094 test if the observed transmission frequencies differ from expected values and the
1095 significance level was corrected for multiple comparisons using Bonferroni. Asterisks
1096 indicate significant differences from expected values. Primers used for genotyping are listed
1097 in Table S1.

1098

1099 Expanded View Figure legends

1100 Figure EV1. CYCB1;5 is a pseudogene.

1101 A-C. The predicted gene structure of CYCB1;5, including the observed cDNAs with exon
1102 skipping (A), intron retention and premature polyadenylation sites (B), and alternative
1103 splicing of a large intron (C).

1104

1105 Figure EV2. CYCB1;1, CYCB1;2 and CYCB1;3 but not CYCB1;4 are expressed during
1106 seed development.

1107 A-C. Confocal microscope pictures of seeds expressing either *proCYCB1;1:GFP*,
1108 *proCYCB1;2:GFP* or *proCYCB1;3:GFP* in Col-0 (A), *cycb1;1 cycb1;2* (B) or *cycb1;2 cycb1;3*
1109 (C). Scale bars: 30 μ m.

1110

1111 Figure EV3. Oryzalin root growth assays across time in *cycb1* single mutants.

1112 A-C. Quantification of root length in a control condition (A), 150 nM oryzalin (B) and 200 nM
1113 oryzalin (C). Graphs show mean \pm SD of three biological replicates with at least 10 plants
1114 per genotype per replicate. Asterisks indicate a significant difference in root length in a two-
1115 way ANOVA followed by Tukey's multiple comparisons test.

1116

1117 **Figure EV4. Oryzalin root growth assays across time in *cycb1* double mutants.**

1118 A-C. Quantification of root length in a control condition (A), 150 nM oryzalin (B) and 200 nM
1119 oryzalin (C). Graphs show mean \pm SD of three biological replicates with at least 10 plants
1120 per genotype per replicate. Asterisks indicate a significant difference in root length in a two-
1121 way ANOVA followed by Tukey's multiple comparisons test.

1122

1123 **Figure EV5. Ploidy analysis of young seedlings of the single and double mutants.**

1124 Flow cytometrical quantification of the different nuclear ploidies, as indicated by propidium
1125 iodide (PI) intensity.

1126

1127 **Data availability**

1128 This study includes no data deposited in external repositories.

1129

Table 1. Transmission efficiency of the *cycb1;1*, *cycb1;2* and *cycb1;3* mutant alleles in reciprocal crosses of a triple mutant with wildtype

Parental genotypes (female x male)	Mutant allele			Number of seeds (n)
	<i>cycb1;1</i>	<i>cycb1;2</i>	<i>cycb1;3</i>	
<i>cycb1;1^{+/−} cycb1;2^{+/−} cycb1;3^{+/−}</i> x Col-0	100%	103%	109.2%	192
Col-0 x <i>cycb1;1^{+/−} cycb1;2^{+/−} cycb1;3^{+/−}</i>	86% ***	78.88% ***	81.1% ***	360

Table 2. Transmission efficiency of the *cycb1;2* and *cycb1;3* mutant alleles in reciprocal crosses of a quadruple mutant with wildtype

Parental genotypes (female x male)	Mutant allele		Number of seeds (n)
	<i>cycb1;2</i>	<i>cycb1;3</i>	
<i>cycb1;1^{-/-}</i> <i>cycb1;2^{+/-}</i> <i>cycb1;3^{+/-}</i> <i>cycb1;4^{-/-}</i> x Col-0	0% ****	92.7% ****	192
Col-0 x <i>cycb1;1^{-/-}</i> <i>cycb1;2^{+/-}</i> <i>cycb1;3^{+/-}</i> <i>cycb1;4^{-/-}</i>	70.84% ***	30.2% ****	192

Table 3. Distortion of *cycb1;2* segregation in a *gip2¹⁻* *cycb1;1¹⁻* *cycb1;2¹⁻* background

Genotype (selfed)	Genotype of progeny			Number of seeds (n)
	<i>cycb1;2^{+/+}</i>	<i>cycb1;2⁺⁻</i>	<i>cycb1;2^{-/-}</i>	
<i>cycb1;1¹⁻</i> <i>cycb1;2¹⁻</i>	25.26%	65.26%	9.47% ^{**}	95
<i>gip1¹⁻</i> <i>cycb1;1¹⁻</i> <i>cycb1;2¹⁻</i>	31.25%	64.58%	4.17% ^{***}	96
<i>gip2¹⁻</i> <i>cycb1;1¹⁻</i> <i>cycb1;2¹⁻</i>	34.55%	65.44%	0% ^{****}	191
Expected Mendelian	25%	50%	25%	-

Table 4. Transmission efficiency of the *cycb1;2* mutant allele in reciprocal crosses of *gip1^{l-}* *cycb1;1^{l-}* *cycb1;2^{l-}* and *gip2^{l-}* *cycb1;1^{l-}* *cycb1;2^{l-}* with wildtype

Parental genotypes (female x male)	Allele		Number of seeds (n)
	Wildtype	<i>cycb1;2</i>	
Col-0 x <i>gip1^{l-}</i> <i>cycb1;1^{l-}</i> <i>cycb1;2^{l-}</i>	93.62%	106.38%	94
Col-0 x <i>gip2^{l-}</i> <i>cycb1;1^{l-}</i> <i>cycb1;2^{l-}</i>	111.36%	88.64%****	88
<i>gip1^{l-}</i> <i>cycb1;1^{l-}</i> <i>cycb1;2^{l-}</i> x Col-0	112.36%	87.64%****	89
<i>gip2^{l-}</i> <i>cycb1;1^{l-}</i> <i>cycb1;2^{l-}</i> x Col-0	134.78%	65.22%****	92

Figure 1

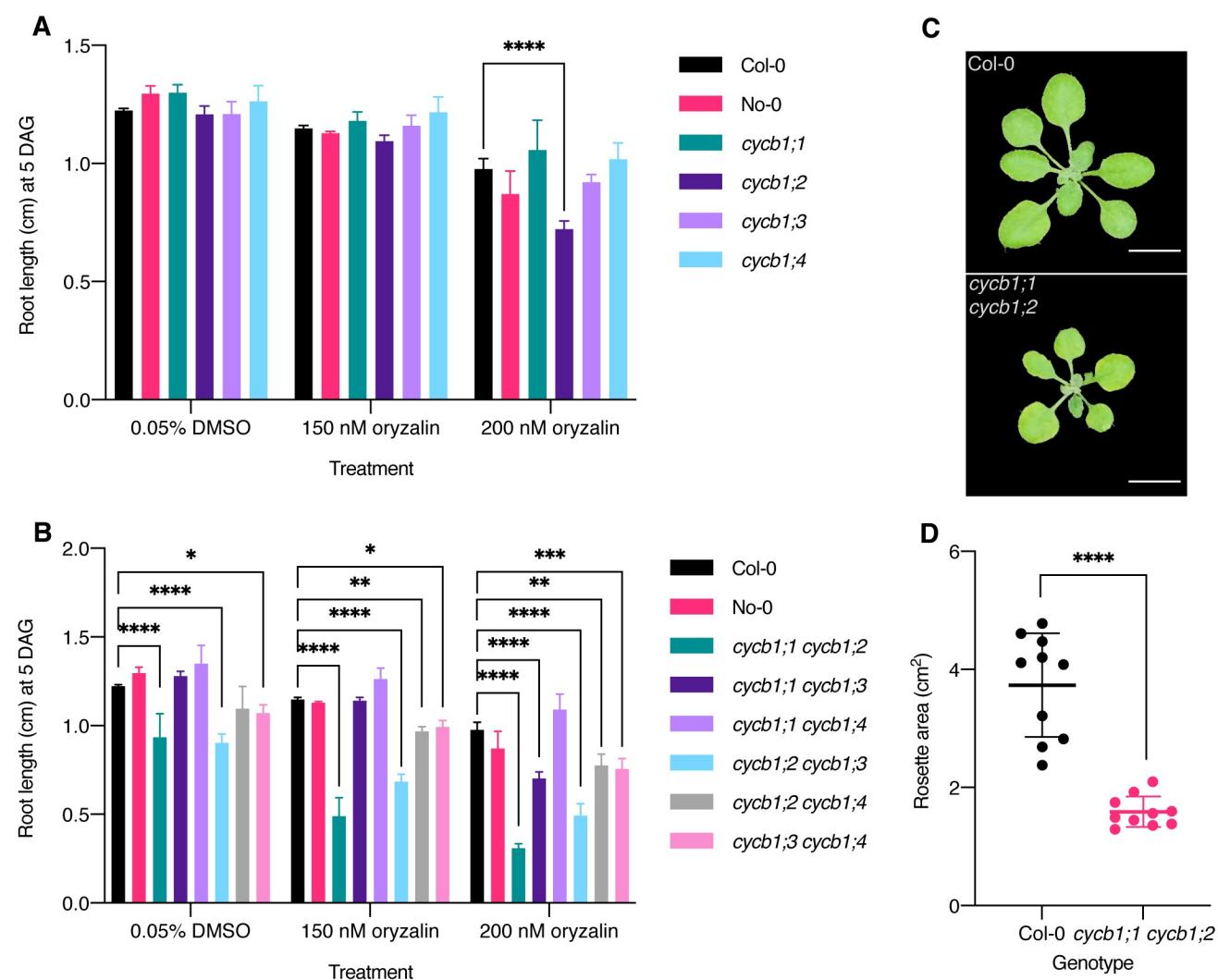


Figure 2

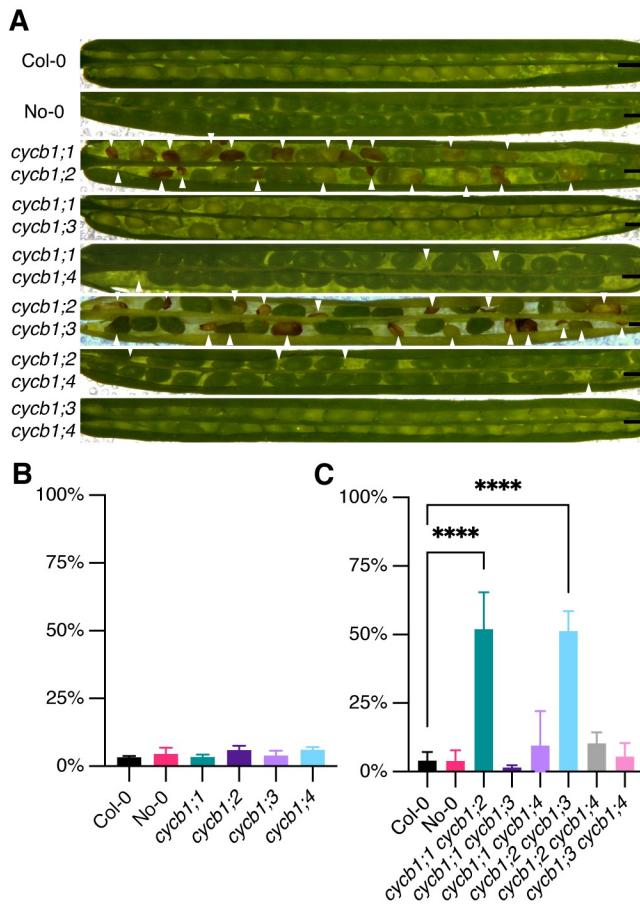
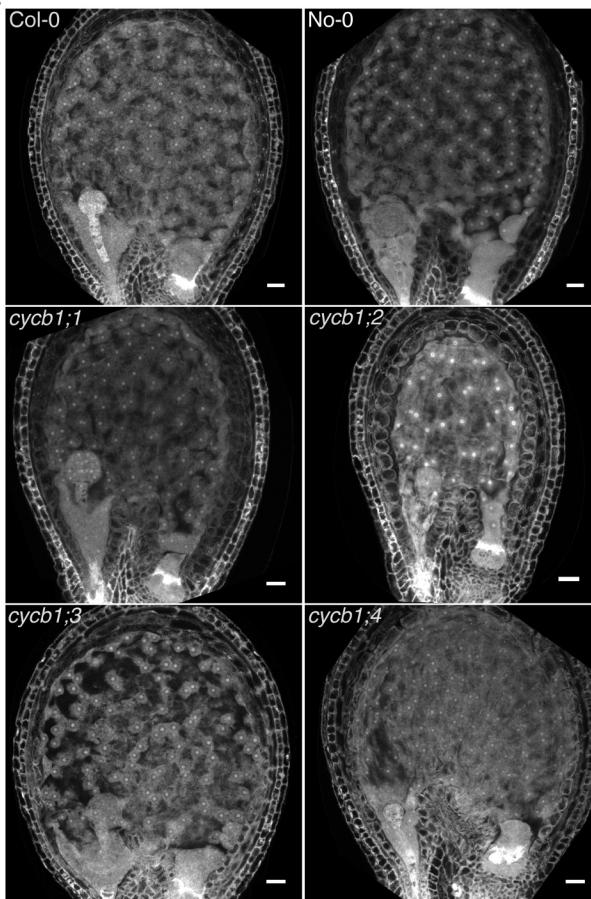
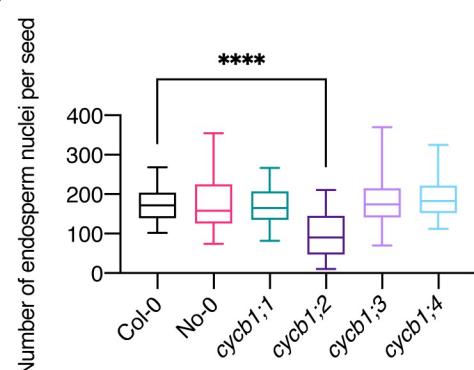
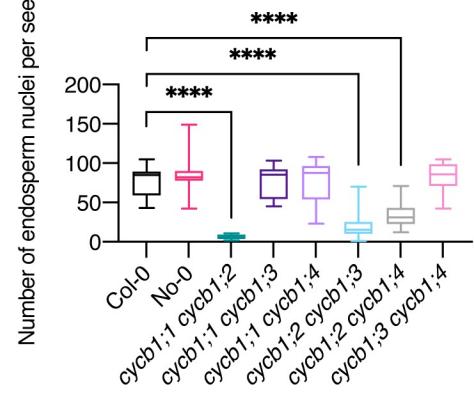




Figure 3


A

B

D

C

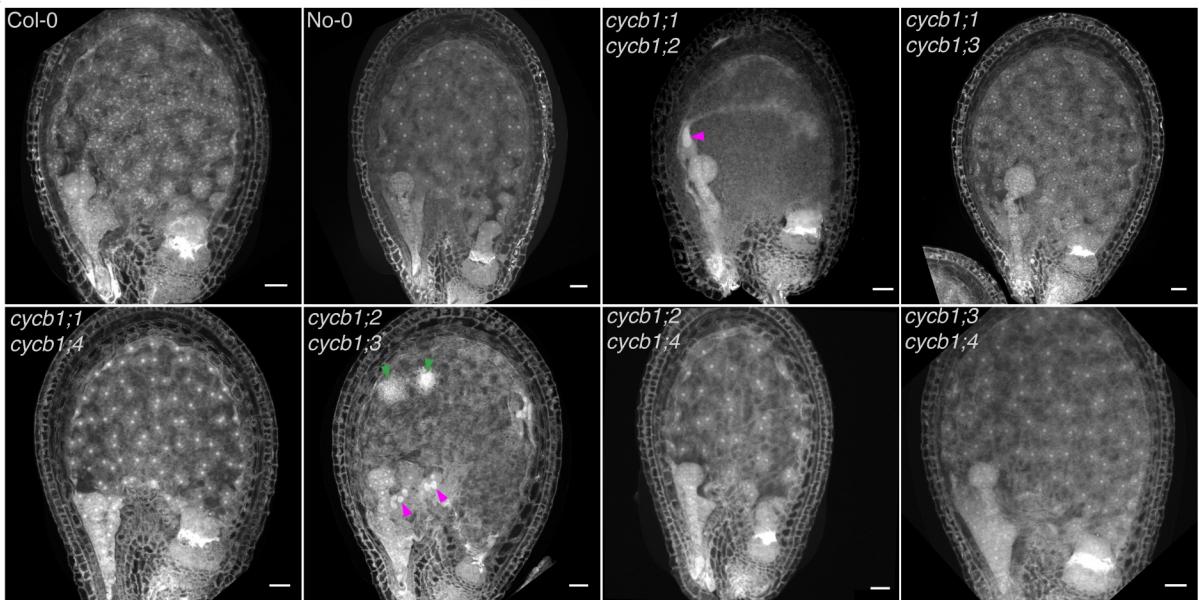
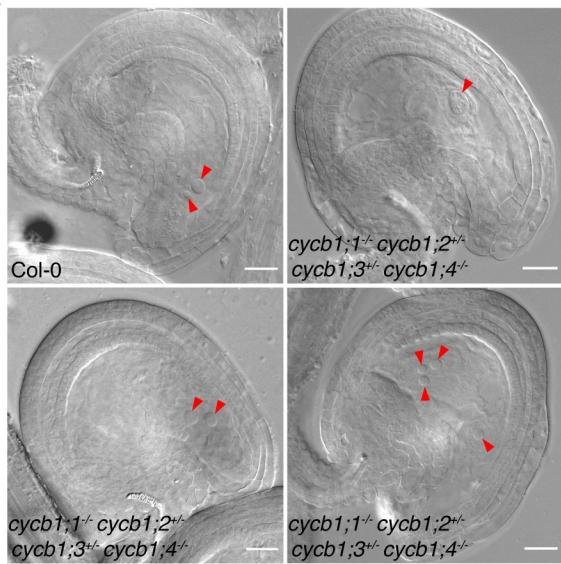
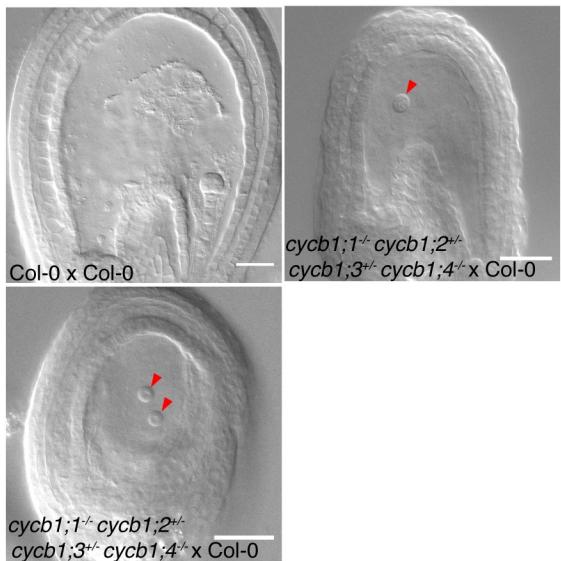
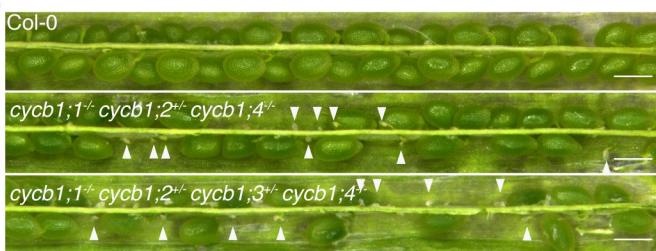
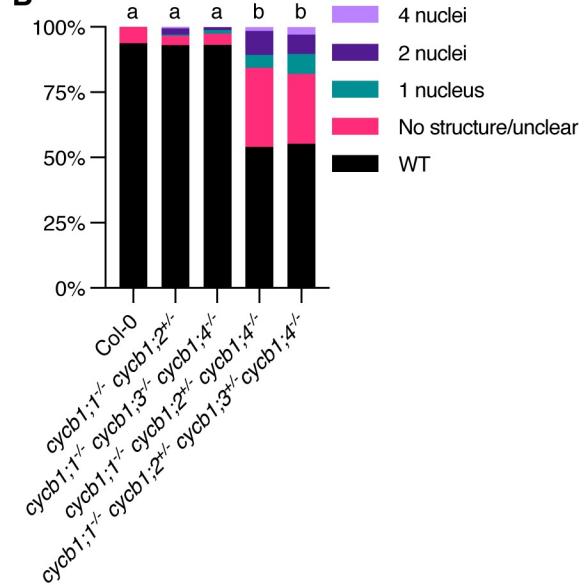




Figure 4


A


C

E

B

D

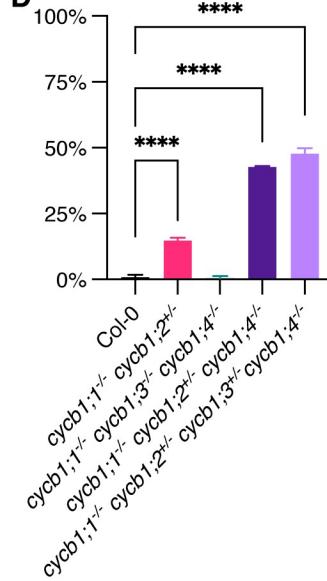
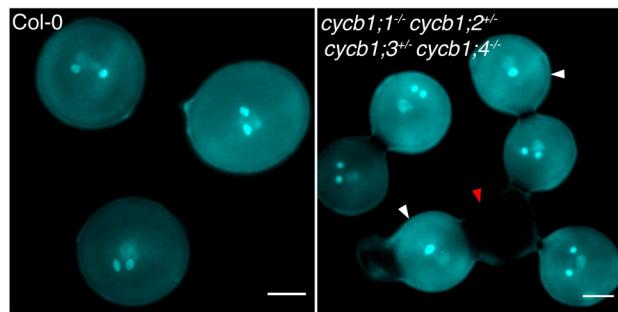
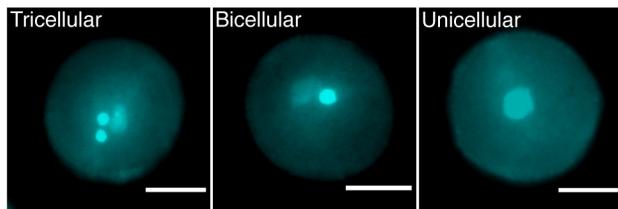
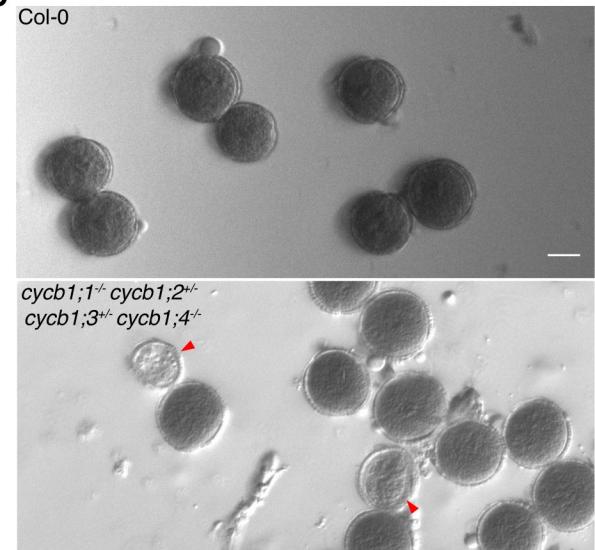
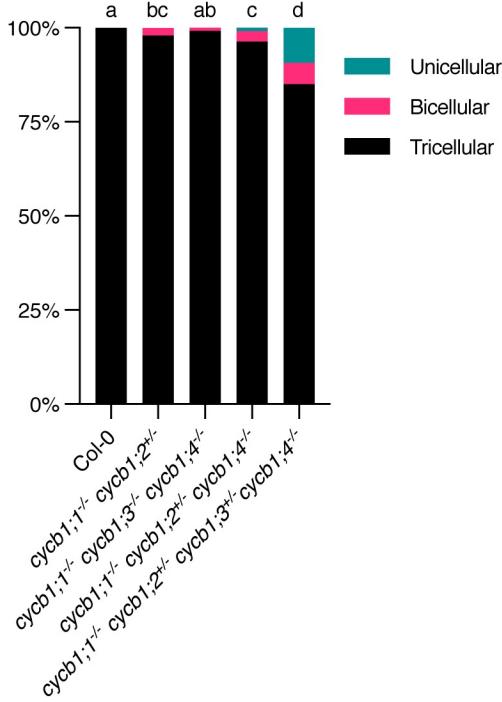




Figure 5


A


B

D

C

E

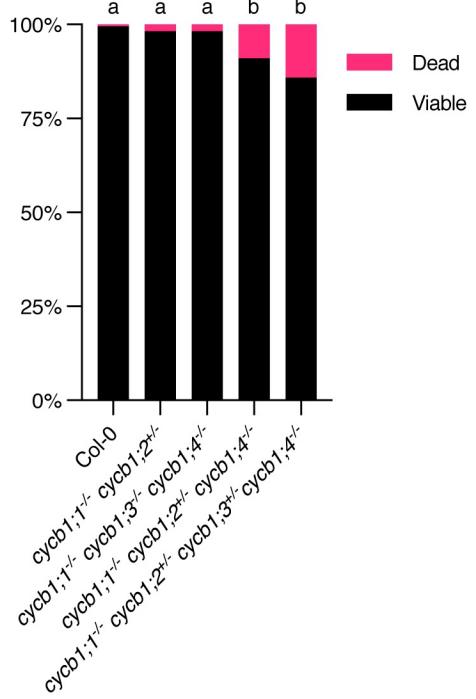


Figure 6

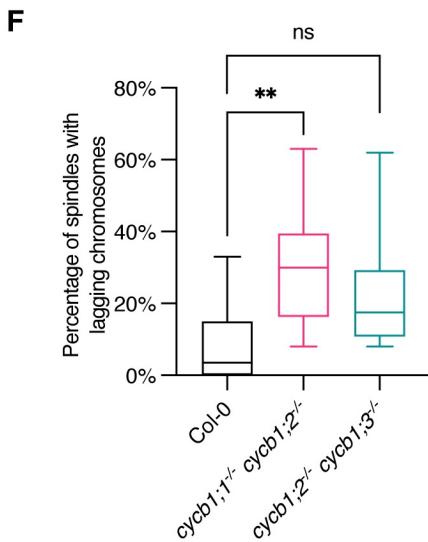
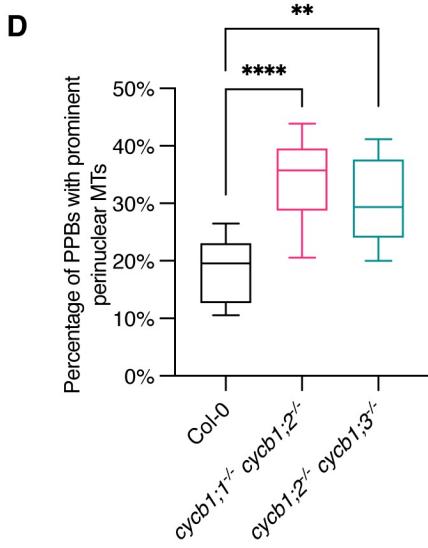
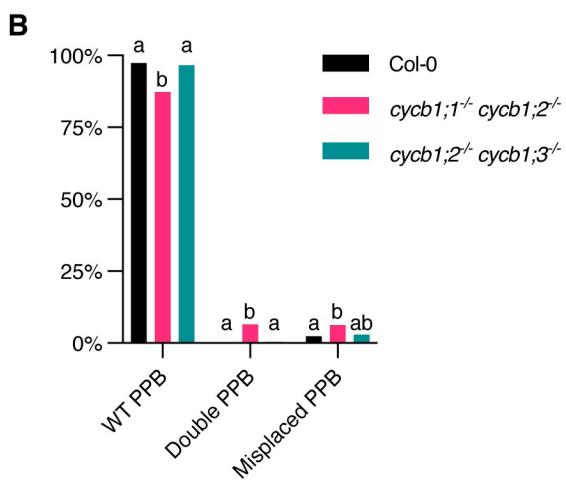
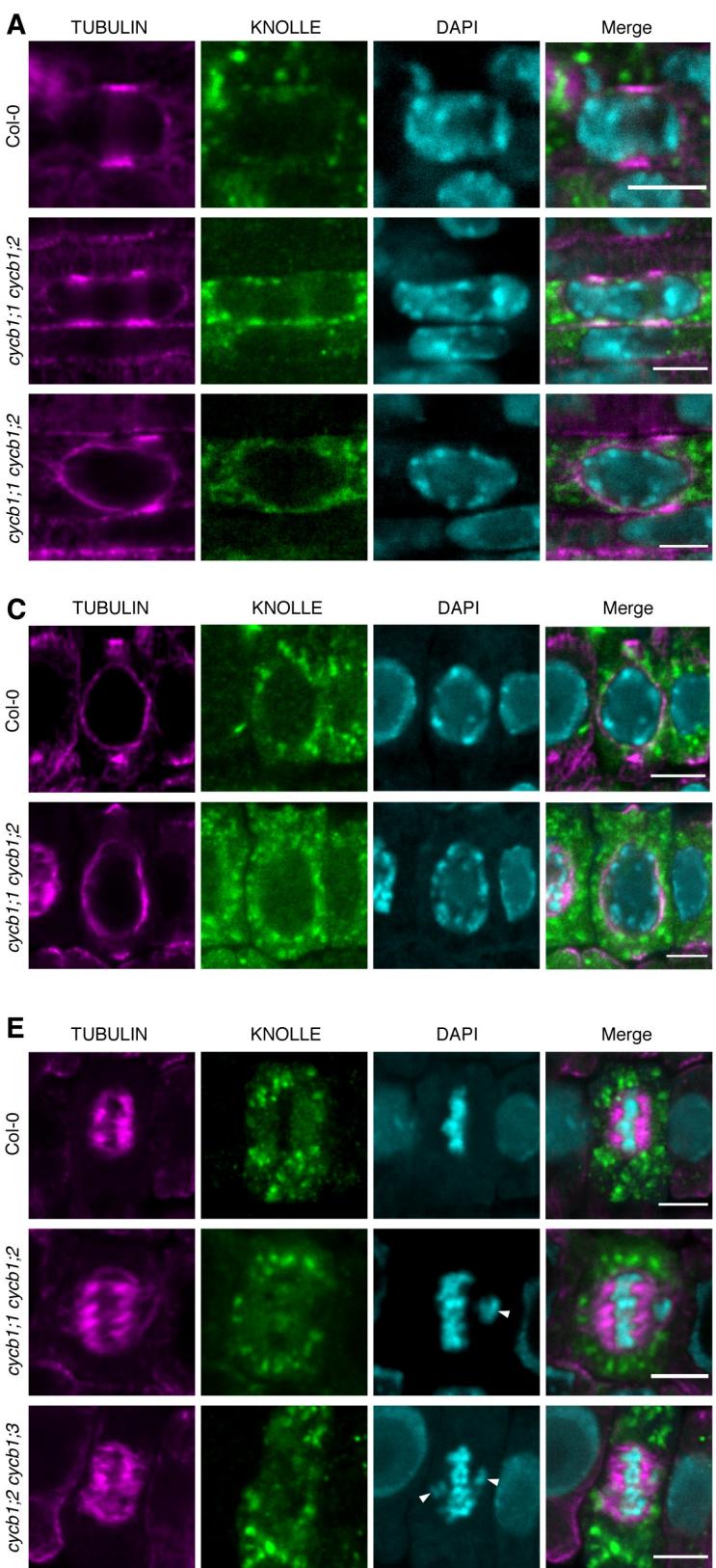





Figure 7

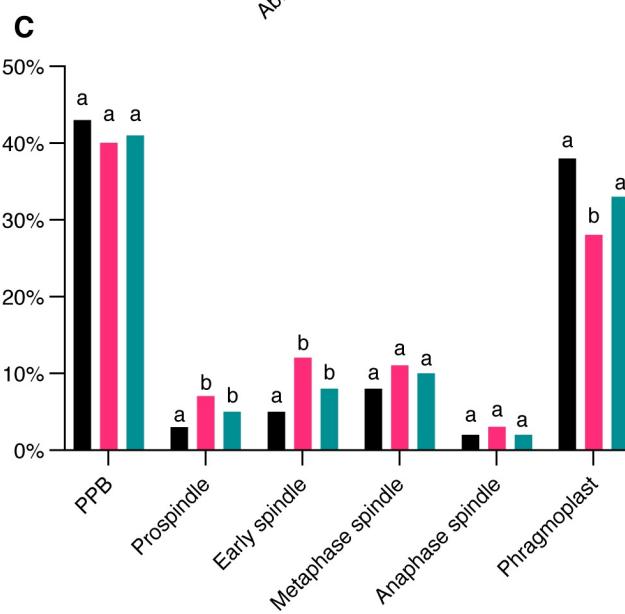
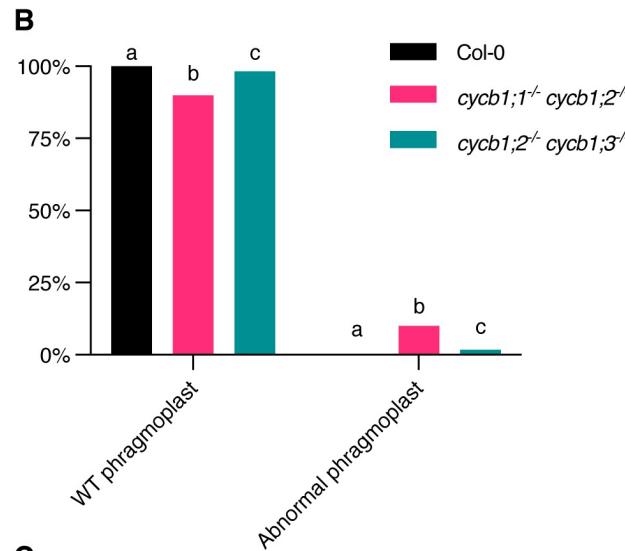
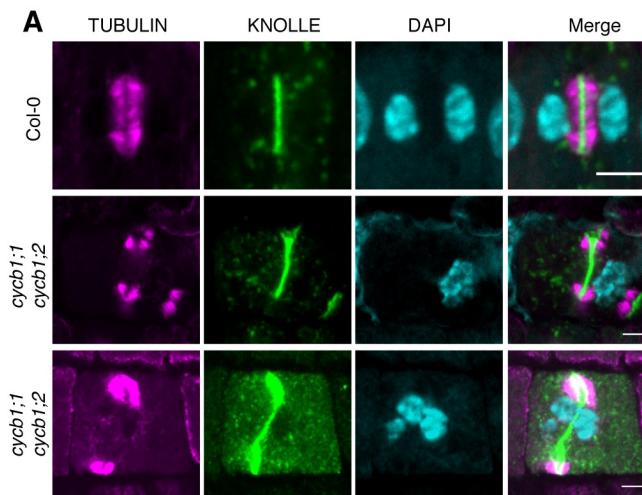




Figure 8

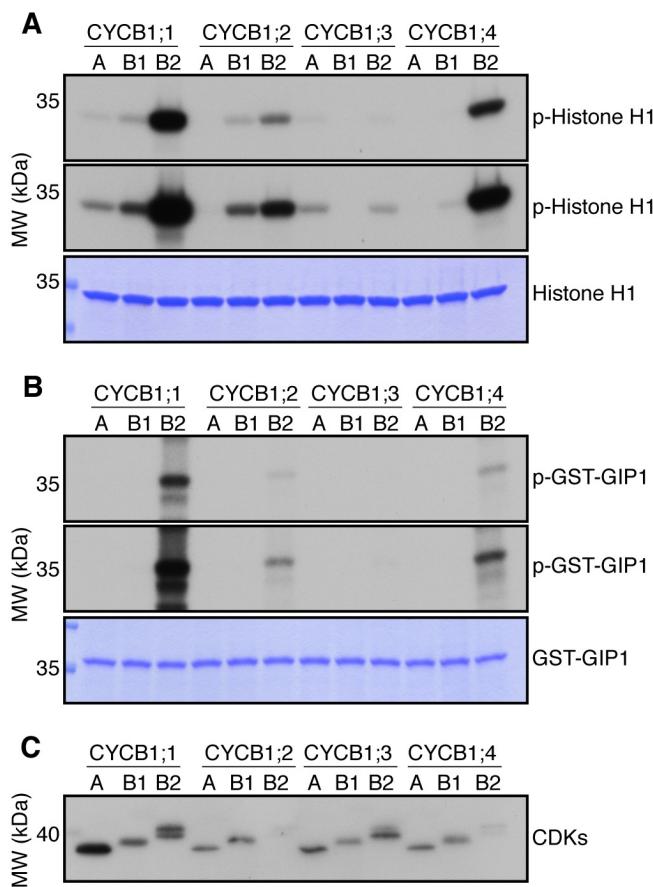


Figure 9

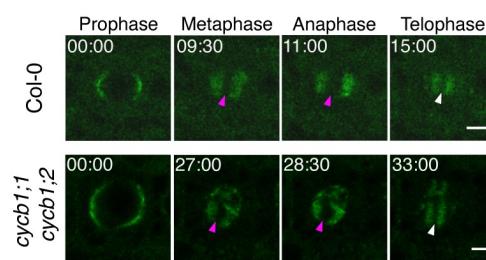
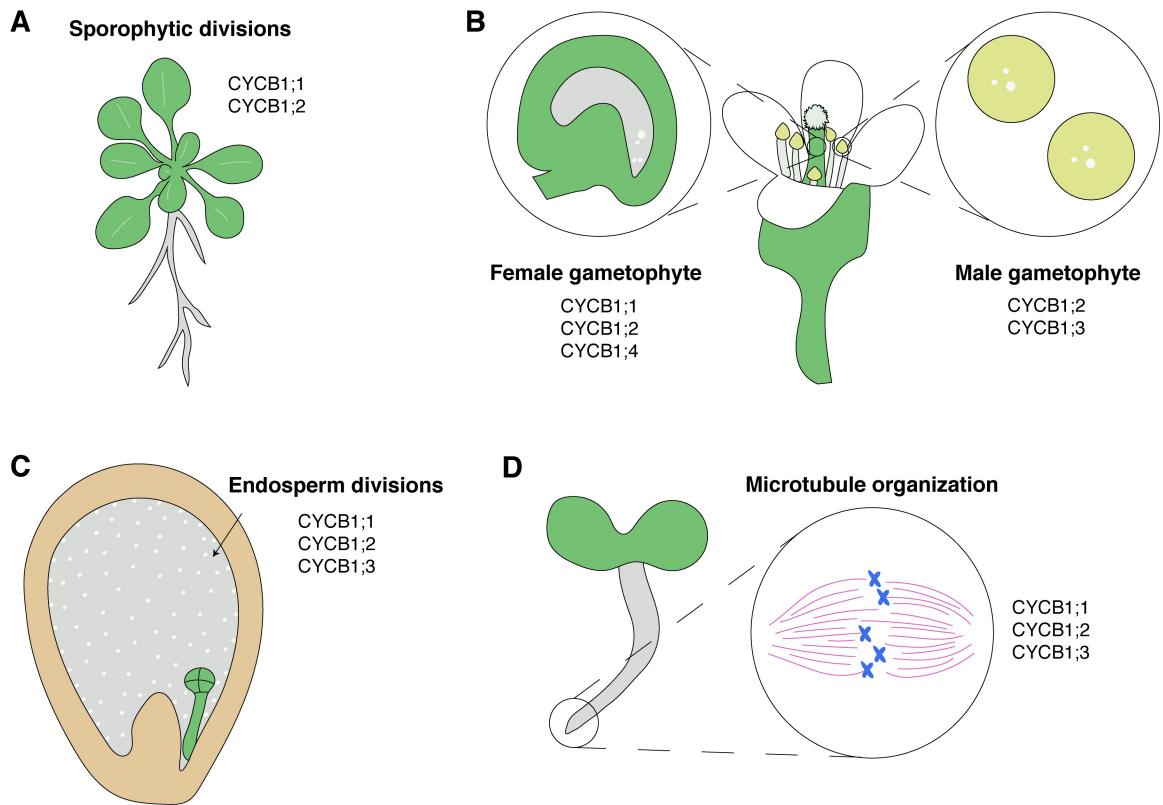



Figure 10

