

1 **Global analysis of putative phospholipases in the malaria parasite *Plasmodium***
2 ***falciparum* reveals critical factors for parasite proliferation**

3
4 Paul-Christian Burda^{1,2,3,##}, Abhinay Ramaprasad^{4,#}, Emma Pietsch^{1,2,3}, Sabrina
5 Bielfeld^{1,2,3}, Christoph Söhnchen^{1,2,3}, Louisa Wilcke^{1,2,3}, Jan Strauss^{1,2,3}, Dominik
6 Schwudke^{5,6,7}, Aaron Sait⁸, Lucy M Collinson⁸, Michael J Blackman^{4,9*}, Tim-Wolf
7 Gilberger^{1,2,3*}

8
9 ¹Centre for Structural Systems Biology, Hamburg, Germany, ²Bernhard Nocht
10 Institute for Tropical Medicine, Hamburg, Germany, ³University of Hamburg,
11 Hamburg, Germany, ⁴Malaria Biochemistry Laboratory, The Francis Crick Institute,
12 London, UK, ⁵Division of Bioanalytical Chemistry, Research Center Borstel, Leibniz
13 Lung Center, Borstel, Germany, ⁶German Center for Infection Research, Thematic
14 Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems,
15 Borstel, Germany, ⁷German Center for Lung Research (DZL), Airway Research
16 Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel,
17 Germany, ⁸Electron Microscopy Science Technology Platform, The Francis Crick
18 Institute, London, UK, ⁹Faculty of Infectious and Tropical Diseases, London School of
19 Hygiene & Tropical Medicine, London, UK, [#]Equal contribution

20
21 *Correspondence: burda@bnitm.de, mike.blackman@crick.ac.uk,
22 gilberger@bnitm.de

23
24 **Running title:** Phospholipase function in *Plasmodium*

25
26 **Key words:** blood stage / malaria / mitochondrion / patatin-like phospholipase /
27 phospholipase C

28 **ABSTRACT**

29 For its replication within red blood cells, the malaria parasite is highly dependent on
30 correctly regulated lipid metabolism. Enzymes involved in lipid metabolic processes
31 are therefore potential drug targets. We here provide a functional analysis of the 20
32 putative phospholipases that are expressed by asexual blood stages of *Plasmodium*
33 *falciparum*. We reveal a high level of redundancy among members of this group, but
34 using conditional mislocalization and gene disruption techniques we show that the
35 phosphoinositide-specific phospholipase C (PF3D7_1013500) has a previously
36 unrecognized essential role in intracellular parasite maturation. In addition, we
37 demonstrate that the patatin-like phospholipase PF3D7_1358000 localizes to the
38 mitochondrion. Parasites lacking this enzyme display a severe growth phenotype and
39 defects in mitochondrial morphogenesis and function leading to hypersensitivity
40 towards proguanil and inhibitors of the mitochondrial electron transport chain
41 including atovaquone. This demonstrates that regulated mitochondrial lipid
42 homeostasis is necessary for mitochondrial function and coordinated division during
43 parasite multiplication.

44

45 **INTRODUCTION**

46 With an estimated 228 million cases per year worldwide and more than 400,000
47 deaths, malaria remains one of the most important human health threats (WHO,
48 2019). The replication of protozoan parasites of the genus *Plasmodium* within red
49 blood cells (RBCs) and the associated transformation and destruction of these cells
50 are responsible for the clinical symptoms of the disease. With no licensed vaccine
51 widely available and widespread resistance of the parasite to available drugs, there is
52 an urgent need to better understand the biology of the malaria parasite in order to
53 identify suitable targets for new intervention strategies.

54 Malaria parasites are transmitted by the bite of an infected *Anopheles* mosquito and

55 initially establish in their vertebrate host by multiplying in hepatocytes. From here,
56 parasites are released into the bloodstream, where they undergo repeated cycles of
57 replication within RBCs (reviewed in (De Niz et al., 2017)). Central to intraerythrocytic
58 growth of parasites is an intense period of membrane biogenesis. Not only do the
59 intracellular parasites need to extend the parasite plasma membrane and replicate
60 their organelles during the formation of daughter cells, they also have to support
61 expansion and maturation of the parasitophorous vacuole membrane (PVM), which
62 surrounds them during their multiplication. As a consequence of this, the
63 phospholipid content of the RBC increases almost fivefold during intraerythrocytic
64 development (Tran et al., 2016). Fatty acids, the building blocks of lipids, are largely
65 taken up from the host, but due to the presence of a functional FASII system in the
66 apicoplast, a non-photosynthetic plastid derived from algae, the parasite can also
67 synthesize fatty acids *de novo*; this is particularly important for parasite development
68 in the liver (reviewed in (Tarun et al., 2009)). Generation of membranes not only
69 requires *de novo* synthesis and acquisition but also the degradation of phospholipids,
70 a function performed by phospholipases. These enzymes hydrolyze specific ester
71 bonds in phospholipids and are classified into four groups, A, B, C, and D based on
72 their hydrolysis activity (reviewed in (Flammersfeld et al., 2017)). Although
73 phospholipases likely play key functions for *Plasmodium* cell biology, little is known
74 about their role in proliferation of the malaria parasite and information regarding
75 phospholipase essentiality is incomplete.

76 We here have performed a comprehensive functional analysis of the phospholipase
77 gene family in the most virulent malaria parasite species *Plasmodium falciparum*
78 during its asexual multiplication within RBCs. Using conditional inactivation
79 techniques, we provide evidence for a physiological function of the phosphoinositide-
80 specific phospholipase C (PI-PLC) during intracellular parasite maturation, long
81 before its previously perceived role at parasite egress and invasion. We additionally

82 show that, during their development within RBCs, parasites express a patatin-like
83 phospholipase that regulates mitochondrial morphogenesis and function,
84 representing a novel role for this class of enzymes in protozoan parasites.

85

86 **RESULTS**

87 **Gene deletion screening of the *Plasmodium* phospholipase family in asexual 88 blood stages**

89 We started to systematically investigate the function of *Plasmodium* phospholipases
90 in *P. falciparum* asexual blood stages by first searching the *Plasmodium* genome for
91 genes encoding proteins containing putative lipase/phospholipase-related domains
92 (Plasmodb.org, (Aurrecoechea et al., 2009)). This resulted in a list of 27 genes
93 encoding enzymes with putative phospholipase function (Figure 1 – figure
94 supplement 1) that also included the putative phospholipases identified previously
95 (Flammersfeld et al., 2017). For 20 of these 27 genes there exists mass
96 spectrometric evidence for expression in asexual blood stage parasites (Bowyer et
97 al., 2011; Cobbold et al., 2016; Florens et al., 2002, 2004; Lasonder et al., 2012,
98 2015; Oehring et al., 2012; Pease et al., 2013; Silvestrini et al., 2010; Solyakov et al.,
99 2011; Treeck et al., 2011). We therefore focused subsequent efforts on these 20
100 genes and characterized their essentiality for the erythrocytic parasite life cycle.

101 For this, we performed targeted gene disruption (TGD) using the selection-linked
102 integration (SLI)-system (Birnbaum et al., 2017) (Figure 1A). Of the 20 transfected
103 targeting constructs, each designed to disrupt expression of the targeted gene, we
104 obtained outgrowth of viable parasites displaying correct integration into their
105 respective gene loci in 15 cases, indicating that the corresponding genes are not
106 essential for *in vitro* parasite growth (Figure 1B, Figure 1 – figure supplement 2). For
107 the remaining five putative phospholipase genes we consistently failed to obtain
108 viable parasites harboring correctly integrated targeting plasmid, suggesting that

109 these genes are important or essential for propagation of asexual blood stage
110 parasites (Figure 1B). Analysis of the obtained 15 mutant lines for potential growth
111 defects revealed that only the patatin-like phospholipase PF3D7_1358000 mutant
112 consistently showed a reduction in growth rate of ~50% in comparison to wild type
113 (WT) parasites over two parasite cycles (Figure 1C, Figure 1 – figure supplement 3).
114 All the other mutant parasite lines displayed no or very slightly reduced growth rates.
115 These data are overall in agreement with a recent genome-wide saturation
116 mutagenesis screen in *P. falciparum* (Zhang et al., 2018). However, there were
117 several exceptions to this. On the one hand, the patatin-like phospholipase 1
118 (PF3D7_0209100), for which we could not obtain transgenic knockout (KO)
119 parasites, was identified as being nonessential by Zhang et al. and the redundant
120 function for asexual blood stage development was recently confirmed by two
121 independent groups (Flammersfeld et al., 2019; Singh et al., 2019). On the other
122 hand, five of the analyzed genes suggested to be essential by Zhang et al. could all
123 be inactivated by our SLI-system, underlining the need to verify global-scale
124 screening data at the single gene level. Another large-scale knockout screen was
125 performed in blood stages of the rodent malaria model *Plasmodium berghei* (Bushell
126 et al., 2017). Interestingly, of the eight putative phospholipase orthologs analyzed in
127 that screen only the genes encoding PI-PLC and the patatin-like phospholipase
128 PF3D7_1358000 could not be disrupted (Figure 1B), consistent with our new data
129 and supporting an important role for these two enzymes in intraerythrocytic parasite
130 replication.

131

132 **PI-PLC is essential for parasite proliferation**

133 Based on our SLI-based gene disruption data indicating that the single *P. falciparum*
134 PI-PLC (PF3D7_1013500) is critical for parasite growth (Figure 1B), we decided to
135 further investigate the functional role of this putative enzyme. *P. falciparum* PI-PLC is

136 1,385 amino acids in length and contains all the functional domains typical for PI-PLC
137 enzymes of the delta subclass, including: i) a lipid binding pleckstrin homology (PH)-
138 domain (residues 80-209); ii) a calcium-binding EF-hand motif (residues 217-304); iii)
139 a catalytic domain consisting of an X- (residues 624-769) and Y-domain (residues
140 972-1087); and iv) a calcium/lipid-binding C2 domain (residues 1279-1383) (Figure
141 2A) (Raabe et al., 2011a). To analyze the subcellular localization of PI-PLC and
142 study its function, we made use of the recently developed conditional knocksideways
143 system (Birnbaum et al., 2017). For this, we first tagged the endogenous PI-PLC
144 coding sequence by generating a C-terminal fusion to GFP flanked by two FKBP-
145 domains (Figure 2 – figure supplement 1). We then expressed in this parasite line a
146 ‘mislocalizer’ protein called NLS-ML, consisting of mCherry fused to an FRB-domain
147 and a nuclear localization signal. Addition of the small molecule Rapalog (Rapa)
148 mediates heterodimerization of the NLS-ML and PI-PLC-GFP-FKBP proteins,
149 removing the latter from its physiological site of action to the nucleus (Birnbaum et
150 al., 2017). The resulting parasite line, called PI-PLC-GFP-knocksideways (PI-PLC-
151 GFP-KS), was used for subsequent localization and functional characterization.
152 Previous RNAseq studies have shown peak expression of the *pi-PLC* gene during
153 trophozoite development (López-Barragán et al., 2011). In accord with this, live
154 microscopic examination of untreated PI-PLC-GFP-KS parasites revealed a GFP
155 signal in trophozoite and schizont stage parasites that was mainly confined to the
156 parasite cytoplasm. Interestingly, in mature schizonts the signal appeared to partially
157 surround developing daughter merozoites, suggesting a potential association of PI-
158 PLC with the parasite plasma membrane (Figure 2B, upper panels). Treatment of
159 synchronous ring stage PI-PLC-GFP-KS parasites with Rapa led to rapid
160 redistribution of the PI-PLC signal to the nucleus, as expected, leading to efficient
161 colocalization with the NLS-ML signal (Figure 2B, lower panels). To investigate the
162 effects of this conditional PI-PLC mislocalization on parasite development, we

163 compared the replication rates of untreated and Rapa-treated parasites over four
164 erythrocytic cycles using flow cytometry. This showed that the Rapa-treated parasites
165 displayed an ~50% reduced multiplication rate per cycle, leading to a reduction in
166 replication of more than 90% after four erythrocytic cycles (Figure 2C). The residual
167 multiplication capacity of the Rapa-treated PI-PLC-GFP-KS parasites is likely
168 explained by the fact that only about 90 +/- 5% (mean +/- SD of three independent
169 quantification experiments, total n=356) of these parasites expressed the NLS-ML
170 construct. This substantial reduction in parasite replication upon conditional
171 mislocalization of PI-PLC is consistent with the results of our SLI-based gene
172 disruption screen (Figure 1), confirming that PI-PLC indeed plays an important role in
173 erythrocytic parasite growth.

174

175 **PI-PLC is involved in trophozoite and schizont development**

176 To determine the specific stage(s) in the erythrocytic developmental cycle affected by
177 conditional mislocalization of PI-PLC, we monitored the development of tightly
178 synchronized control and Rapa-treated PI-PLC-GFP-KS parasites by light
179 microscopic examination of Giemsa-stained thin blood films. While parasite
180 development appeared to be unaffected over the first 24 hours post RBC invasion
181 (24 hpi), clear effects on parasite maturation were detectable in Rapa-treated PI-
182 PLC-GFP-KS parasites by 40 and 48 hpi (Figure 2D). At 40 hpi, ~25% of Rapa-
183 treated parasites were still at the trophozoite stage, in contrast to the untreated
184 parasites at this time point, in which hardly any trophozoites were detectable.
185 Furthermore and in contrast to control parasites, ~40% of the Rapa-treated parasites
186 that formed schizonts displayed abnormal morphology. Together, these observations
187 suggest that PI-PLC is involved in trophozoite and schizont development. Likely as a
188 consequence of this, ring stage parasitemia values at 40 and 48 hpi were reduced by
189 more than 60% in the Rapa-treated parasites (Figure 2D).

190 To analyze in further detail this potential function of PI-PLC during schizont
191 development, we used an inhibitor of the parasite cGMP-dependent protein kinase G
192 (PKG), called compound 2 (C2, which prevents egress) to synchronize parasites at
193 mature schizont stage (Taylor et al., 2010). Examination of these C2-arrested
194 schizonts revealed that more than 40% of Rapa-treated PI-PLC-GFP-KS parasites
195 were dysmorphic (Figure 2E). In line with this, analysis by immunofluorescence
196 assay (IFA) of the C2-arrested parasites showed that a high proportion of Rapa-
197 treated parasites failed to express the late stage specific marker AMA1 (Figure 2F).
198 Collectively, these results highlight a crucial role for PI-PLC in intraerythrocytic
199 parasite maturation.

200 To test whether the maturation phenotype upon conditional inactivation of PI-PLC is
201 associated with a perturbation of the lipid homeostasis, we subjected untreated and
202 Rapa-treated PI-PLCK-GFP-KS trophozoites (30 hpi) and schizonts (40 hpi) to
203 lipidomic analysis. In this semi-targeted lipid analysis, 266 lipids were quantified
204 covering 15 lipid classes and cholesterol. In line with the maturation phenotype, we
205 observed that Rapa-treated trophozoites and schizonts had a significantly reduced
206 lipid content in comparison to untreated parasites. Apart from this, only minor
207 alterations in the lipid profile were observed, including a reduced absolute
208 concentration of phosphatidylglycerol and cardiolipin per schizont (Figure 2 – figure
209 supplement 2, Supplementary file 2). Levels of diacylglycerol, a primary metabolite of
210 PI-PLC activity, were unchanged, suggesting an only minor contribution of PI-PLC
211 activity to the total intracellular pool of diacylglycerols.

212

213 **Conditional disruption of PI-PLC confirms its essentiality for *P. falciparum***
214 **asexual blood stage growth**

215 The knocksideways system is a powerful tool to study the function of essential
216 proteins that do not enter the secretory pathway (Birnbaum et al., 2017). However,

217 under conditions where mislocalization is not 100% efficient, varying amounts of
218 target protein can remain at the site of action and therefore functional. We therefore
219 decided to further probe the function of PI-PLC using the rapamycin (RAP)-inducible
220 dimerizable Cre recombinase (DiCre) system (Collins et al., 2013; Jones et al., 2016)
221 to perform conditional disruption of the *pi-plc* gene. For this, a 3'-proximal segment of
222 the *pi-plc* open reading frame encoding the predicted catalytic core of PI-PLC (the
223 predicted X and Y domains) as well as the calcium/lipid-binding C2 domain, was
224 targeted for excision by replacing the endogenous gene segment with a synthetic
225 modified version using Cas9-enhanced homologous recombination. The modified
226 sequence incorporated: i) a short synthetic intron containing a *loxP* site (loxPint)
227 upstream of the catalytic domains; ii) the recodonized version of the segment
228 encoding the WT amino acid sequence but with altered codon usage; iii) a C-terminal
229 triple-hemagglutinin (3HA) epitope tag just preceding the translational stop codon;
230 and iv) a second *loxP* site immediately following the translational stop codon (Figure
231 3A). The genetic modification was performed in the B11 *P. falciparum* line (Perrin et
232 al., 2018), which stably expresses DiCre recombinase, a form of 'split Cre' which is
233 activated by RAP-mediated heterodimerization. DiCre-mediated excision of the
234 floxed sequence was expected to result in conditional inactivation of PI-PLC due to
235 the deletion of its catalytic domains. The transgenic parasites (called PI-
236 PLC:HA:loxPint) were cloned by limited dilution and two clonal parasite lines (D9 and
237 F9) were isolated. The expected genetic modifications in both clones were confirmed
238 by diagnostic PCR (Figure 3 – figure supplement 1). RAP treatment of tightly
239 synchronized ring stage PI-PLC:HA:loxPint parasites resulted in the anticipated
240 truncation of PI-PLC within the same erythrocytic cycle, as detected by PCR (Figure
241 3B), IFA (Figure 3C) and western blot (Figure 3D). To initially assess the viability of
242 the resulting PI-PLC-null mutants, growth of RAP- and mock-treated cultures of the
243 two PI-PLC:HA:loxPint clonal lines was monitored over the course of four erythrocytic

244 cycles. PI-PLC-null parasites failed to proliferate, confirming our knocksideways-
245 based indications that PI-PLC is crucial for viability during asexual blood stage
246 replication of *P. falciparum* (Figure 3E). For more in-depth characterization, the F9
247 PI-PLC:HA:loxPint clone was used in all subsequent experiments.

248 Intracellular development of PI-PLC-null mutants within the erythrocytic cycle of RAP-
249 treatment was studied by microscopic examination of Giemsa-stained parasites. This
250 revealed that the PI-PLC-null mutants underwent apparently normal growth until late
251 trophozoite stage, after which they developed morphological abnormalities with
252 diffused nuclei and failed to progress through normal schizont maturation (Figure
253 3F,G). Schizont development was further analyzed by allowing mock- and RAP-
254 treated parasites to reach maturity in the presence of the egress inhibitor C2. This
255 revealed that >70% of PI-PLC-null parasites exhibited an abnormal morphology
256 (Figure 3H). Analysis by transmission electron microscopy (TEM) of these C2-
257 arrested parasites showed that more than 60% of PI-PLC-null parasites possessed
258 poorly-defined subcellular organelles, and only 1-2 nuclei visible in the sections
259 (rather than the 7 or more nuclei which were observed in about 80% of mock-treated
260 control schizonts) (Figure 3I,J). Despite these developmental defects, haemoglobin-
261 containing cytostomes and haemozoin crystals were evident in the digestive vacuole
262 of the PI-PLC-null parasites, suggesting that the mutants retained the capacity to
263 internalize and digest haemoglobin. Around 17% of PI-PLC-null parasites showed
264 formation of 3-4 nuclei, well-formed rhoptries and parasite plasma membrane
265 invaginations, pointing to the start of merozoite formation. However, we were unable
266 to find more than a few well-segmented schizonts in the PI-PLC-null samples, in
267 contrast to the majority of the mock-treated parasites, which formed well-segmented
268 schizonts with clearly defined merozoites (Figure 3I,J). These microscopic
269 observations show that most PI-PLC-null mutants show stunted growth in late
270 trophozoite stages while a few of them develop to early schizont stage but stop short

271 of becoming mature schizonts. Taken together, we concluded that lack of PI-PLC
272 caused a severe growth defect during the trophozoite-schizont transition, suggesting
273 that PI-PLC-mediated activity is critical for intraerythrocytic parasite development.

274

275 **A patatin-like phospholipase is critical for mitochondrial morphogenesis**

276 Having established the importance of PI-PLC for parasite growth, we turned our
277 attention to the putative phospholipase PF3D7_1358000, which was also indicated
278 by our screen to be important for parasite replication. PF3D7_1358000 encodes a
279 protein of 2,012 amino acids, containing a predicted signal peptide in addition to a
280 patatin-like phospholipase (PNPLA) domain close to its C-terminal end (residues
281 1130-1405) (Figure 4A); based on this, the gene product is subsequently referred to
282 as patatin-like phospholipase 2 (PNPLA2). Previous transcriptomic analyses indicate
283 that peak expression of PNPLA2 in the asexual blood stage cycle occurs during
284 schizont development (López-Barragán et al., 2011). In order to localize PNPLA2 in
285 the parasite, we appended a C-terminal GFP-tag to the endogenous gene using the
286 SLI system and confirmed the genetic modification by PCR (Figure 4 – figure
287 supplement 1). Live fluorescence microscopy of PNPLA2-GFP parasites revealed
288 that PNPLA2 localized to the mitochondrion, as shown by clear colocalization with
289 MitoTracker Red (Figure 4B). In contrast, there was little or no colocalization with co-
290 expressed mCherry directed to the apicoplast by fusion to the ACP-targeting
291 sequence (Birnbaum et al., 2020), excluding localization of PNPLA2 to this organelle
292 (Figure 4C).

293 We next characterized the growth phenotype of PNPLA2-null parasites in more
294 detail, examining the development of tightly synchronized intracellular parasites over
295 the course of the erythrocytic cycle. This showed that PNPLA2-null parasites
296 exhibited delayed development in comparison to WT parasites, as evident by
297 microscopic quantification of Giemsa-stained thin blood films (Figure 4D). However,

298 this also revealed that in those PNPLA2-null schizonts that developed to maturity,
299 there was no significant decrease in daughter merozoite numbers as compared to
300 WT schizonts (Figure 4E), indicating that loss of PNPLA2 leads to delayed but not
301 compromised parasite maturation.

302 Given the mitochondrial localization of PNPLA2, we next studied mitochondrial
303 development in the PNPLA2-null parasites. Microscopic examination of mitochondria
304 during trophozoite and schizont development using MitoTracker Red revealed
305 mitochondrial abnormalities in the mutant parasites in the form of accumulations that
306 first became evident following the first round of nuclear division (2 nuclei) and were
307 further pronounced at later stages of schizogony (3 and more nuclei) (Figure 4F). To
308 further analyze and quantify this phenotype, we performed an end-point analysis by
309 arresting egress of WT and PNPLA2-null schizonts for 8 hours using C2 and then
310 quantifying mitochondrial morphology using MitoTracker Red staining. This showed
311 that whilst most segmented WT schizonts displayed the typical comma-like structure
312 of divided mitochondria, ~80% of PNPLA2-null schizonts showed abnormal
313 mitochondrial accumulations, together indicating that PNPLA2 is involved in
314 mitochondrial morphogenesis (Figure 4G).

315

316 **Confirmation of the PNPLA2-null phenotype by conditional gene disruption**

317 To further analyze the function of PNPLA2, and to establish whether the observed
318 defects were detectable immediately following gene disruption, we next targeted the
319 *pnpla2* gene using the DiCre-based conditional KO approach. To this aim, we again
320 used Cas9-assisted double homologous recombination to flox the sequence
321 encoding the C-terminal half of the PNPLA2 coding sequence (harboring the catalytic
322 PNPLA domain), simultaneously appending a 3xHA epitope tag to the gene (Figure
323 5A). As previously, this manipulation was performed in the DiCre-expressing B11 *P.*
324 *falciparum* line. Two clonal transgenic parasite lines (called PNPLA2:HA:loxPint

325 clones C9 and D11) were isolated and the expected genomic modifications
326 confirmed by PCR (Figure 5 – figure supplement 1).

327 RAP treatment of synchronous PNPLA2:HA:loxPint ring stage parasites resulted in
328 the expected truncation of the PNPLA2 gene within a single erythrocytic cycle, as
329 confirmed by PCR (Figure 5B) and western blot analysis (Figure 5C). Flow
330 cytometry-based growth analysis revealed a reduction in replication rate of ~50% in
331 RAP-treated parasites over four erythrocytic cycles, as compared to mock-treated
332 PNPLA2:HA:loxPint parasites (Figure 5D). To assess the longer-term viability of
333 PNPLA2-null parasites, we used a plaque assay (Thomas et al., 2016), which
334 provides a measure of replication over a period of ~5 erythrocytic cycles by
335 visualization of localized zones of RBC lysis in static parasite cultures. At limiting
336 dilution parasitemia levels, each plaque arises from clonal expansion of a single
337 parasite and the area of the plaque is proportional to the clonal replication rate. In
338 both clonal lines C9 and D11, RAP treatment resulted in a 25-30% reduction in
339 numbers of plaques formed (number of plaques: C9-RAP+, 180; C9-RAP-, 239; D11-
340 RAP+, 633; D11-RAP-, 999). Additionally, we observed a 34-40% reduction in the
341 average area of each plaque in the RAP-treated cultures (Figure 5E). Together with
342 the results of the flow cytometry based growth assays, these results further highlight
343 the importance of PNPLA2 for parasite proliferation. For more in-depth
344 characterization, the clonal line D11 was used in all subsequent experiments.

345 To establish whether the reduced replication rate in PNPLA2-null parasites was due
346 to inefficient egress or invasion, we isolated schizonts from RAP- and mock-treated
347 PNPLA2:HA:loxPint cultures at the end of the cycle of treatment and incubated them
348 with fresh RBCs under both static and shaking conditions. This showed no significant
349 differences between the resulting increases in parasitemia (Figure 5F), suggesting
350 that loss of PNPLA2 does not impair egress or invasion.

351 To test whether conditional disruption of PNPLA2 led to a mitochondrial development
352 defect similar to that observed following direct gene disruption (Figure 4), we
353 assessed mitochondrial morphology in mock- and RAP-treated PNPLA2:HA:loxPint
354 schizonts by MitoTracker Red staining. This also revealed abnormal mitochondrial
355 morphology in the RAP-treated schizonts (Figure 5G), confirming the importance of
356 PNPLA2 in mitochondrial morphogenesis.

357

358 **Disruption of PNPLA2 impairs mitochondrial electron transport chain function**

359 Given the mitochondrial localization of PNPLA2 and the KO-associated mitochondrial
360 morphogenesis phenotype, we next aimed to characterize the susceptibility of our
361 SLI-based PNPLA2-KO parasites towards several drugs that target mitochondrial
362 functions to test whether disruption of PNPLA2 might impact the efficiency of these
363 compounds. For this we performed a 96-hour SYBR-gold growth assay starting with
364 trophozoite stage parasites and tested the growth of WT and PNPLA2-KO parasites
365 under varying concentrations of drugs. Interestingly, PNPLA2-KO parasites showed
366 decreased IC₅₀ values for proguanil (13 fold) and the mitochondrial electron transport
367 chain (mtETC) inhibitors atovaquone (5 fold), myxothiazol (6 fold) and antimycin A (7
368 fold) in comparison to WT parasites (Figure 6A-D). No increased sensitivity of KO
369 parasites was seen for other drugs such as DSM1, dihydroartemisinin (DHA) and
370 primaquine (Figure 6E-G), excluding a general increased drug susceptibility of the
371 PNPLA2-KO parasites. Collectively, these data strongly suggest that disruption of
372 PNPLA2 sensitizes parasites to antimalarial drugs that inhibit mitochondrial function.
373 One main role of the malarial mtETC is to recycle ubiquinone that is necessary for
374 ubiquinone-dependent enzymes, including dihydroorotate dehydrogenase (DHODH),
375 which is the target of DSM1 and essential for the pyrimidine biosynthesis pathway
376 (Goodman et al., 2017; Phillips et al., 2008). To test whether the ubiquinone pool was
377 affected by disruption of PNPLA2, we treated parasites with increasing

378 concentrations of the ubiquinone analog decylubiquinone (DCUQ). As reported
379 previously (Ke et al., 2011), this treatment rescued an atovaquone-induced growth
380 arrest of WT parasites in a dose-dependent manner. However, no rescue of PNPLA2
381 KO-parasite growth was observed upon DCUQ treatment (Figure 6H). This, together
382 with the comparable susceptibility of PNPLA2-KO and WT parasites towards DSM1
383 suggests that disruption of PNPLA2 likely does not impair ubiquinone recycling.
384 Another important function for the mtETC in blood stage malaria parasites is to pump
385 protons across the mitochondrial inner membrane to build up a proton
386 electrochemical gradient, with the mitochondrial membrane potential, $\Delta\Psi_m$, as its
387 major component. The energy saved in $\Delta\Psi_m$ is then used by the mitochondrion to
388 import proteins and metabolic precursors from the cytosol, to maintain critical
389 biochemical pathways such as the generation of iron-sulfur clusters (Painter et al.,
390 2007; Vaidya and Mather, 2009). To test whether the $\Delta\Psi_m$ is affected in PNPLA2-
391 KO parasites, we incubated WT and PNPLA2-KO schizonts with the mitochondrial
392 potentiometric dye rhodamine123 as previously described (Matz et al., 2018) and
393 analyzed them by fluorescence microscopy. This allowed differentiation of parasites
394 with i) strong mitochondrial rhodamine123 signal, ii) visible but weak mitochondrial
395 staining and iii) absent fluorescence or cytoplasmic/peripheral signal. This analysis
396 revealed significantly more PNPLA2-KO parasites showing an abnormal (weak or
397 absent) rhodamine123 signal in comparison to WT parasites, indicating that
398 disruption of PNPLA2 impairs a mitochondrial function that is necessary to sustain
399 normal $\Delta\Psi_m$ (Figure 6I). Given that, of the drugs tested, PNPLA2-KO parasites
400 showed the highest level of hypersensitivity towards proguanil (Figure 6A), parasites
401 were also treated with increasing concentrations of this drug to test how this affected
402 $\Delta\Psi_m$. In line with our drug susceptibility data, treatment of PNPLA2-KO parasites
403 with 200 nM proguanil led to a statistically significant increase in parasites showing
404 an abnormal rhodamine123 staining in comparison to DMSO-treated PNPLA2-KO

405 parasites, while the differences observed for WT parasites at this concentration of the
406 drug did not reach statistical significance. Of note, treating WT parasites with 1 μ M
407 proguanil also significantly increased the percentage of parasites showing an
408 abnormal rhodamine123 signal, suggesting that proguanil treatment alone does
409 impact on $\Delta\Psi_m$ in WT parasites. This stands in contrast to a previous study
410 performed in a rodent malaria model that found that proguanil alone does not
411 influence $\Delta\Psi_m$ (Srivastava and Vaidya, 1999). Collectively, our data imply that
412 PNPLA2-KO parasites may have a defect in the mETC that leads to an impaired
413 ability to sustain $\Delta\Psi_m$ and thereby renders parasite hypersensitive to mETC
414 inhibitors.

415

416 **DISCUSSION**

417 Phospholipases are ubiquitously occurring enzymes that catalyze the cleavage of
418 phospholipid molecules. As a result, these enzymes are involved in diverse
419 physiological processes including remodeling of cellular membranes, lipid-mediated
420 signal transduction processes, cell proliferation and virulence (reviewed in
421 (Flammersfeld et al., 2017)).

422 The focus of this study was a systematic functional characterization of 20 putative *P.*
423 *falciparum* phospholipase genes for which mass-spectrometry data unambiguously
424 indicated expression during asexual blood stage development. We first used a SLI-
425 based gene disruption strategy to show that out of the 20 genes, 15 could be readily
426 disrupted without loss of parasite viability, pointing to a high level of redundancy
427 within this class of enzymes in *Plasmodium*. For the five remaining genes no
428 transgenic knockout parasites were obtained, suggesting a possible critical role in
429 parasite growth. Of these five genes, two previous studies concluded that the
430 PNPLA1 (PF3D7_0209100) was dispensable for asexual parasite growth
431 (Flammersfeld et al., 2019; Singh et al., 2019). Our essentiality data are in good

432 agreement with a recent genome-wide saturation mutagenesis screen in *P.*
433 *falciparum* (Zhang et al., 2018), except that we readily obtained gene disruption of
434 five putative phospholipases that were predicted to be essential by the genome-wide
435 KO screen.

436 Functional redundancy between phospholipases is well established, including an
437 excellent example in *Listeria*, where individual disruption of two phospholipases
438 resulted in moderate effects on infectivity to mice (2–20 fold reduction), whilst
439 simultaneous disruption of both phospholipases in combination severely impaired
440 infectivity (500 fold reduction) (Smith et al., 1995). Revealing the interplay between
441 putative phospholipases in the malaria parasite by generation of double or even triple
442 null parasites will be an interesting approach to discovering functional interplay within
443 this enzyme family.

444 Some of the non-essential putative phospholipases identified in our work have been
445 previously studied. The homologue of PF3D7_0629300 in the rodent malaria model
446 *P. berghei* (*PbPL*, PBANKA_1128100) exhibits phospholipase and membranolytic
447 activity *in vitro* and has been implicated in cell traversal by sporozoites and disruption
448 of the liver stage PVM during parasite egress from hepatocytes (Bhanot et al., 2005;
449 Burda et al., 2015). The sphingomyelin phosphodiesterase (PF3D7_1238600) was
450 identified as a PLC able to hydrolyze sphingomyelin and lysocholinephospholipids,
451 and inhibitor studies using scyphostatin were used to argue for an essential role of
452 the enzyme during asexual growth (Hanada et al., 2002). Our study now provides
453 unambiguous reverse genetic evidence that PF3D7_1238600 is dispensable for
454 parasite proliferation, suggesting that scyphostatin has additional targets within the
455 parasite. PF3D7_0709700, previously designated as prodrug activation and
456 resistance esterase *PfPARE*, was shown to have esterase activity to activate
457 esterified pepstatin, a peptidyl inhibitor of malarial aspartyl proteases (Istvan et al.,
458 2017). *PfPARE* active site mutants were not impaired in asexual blood stage growth

459 (Istvan et al., 2017), mirroring our successful gene disruption. Finally, the two non-
460 essential putative lysophospholipases PF3D7_1001400 and PF3D7_1001600 both
461 contain a PEXEL motif and were shown to be exported into the host RBC, although
462 their molecular functions have not yet been determined (Spillman et al., 2016).
463 Several previous studies have suggested that PI-PLC is essential for parasite blood
464 stage proliferation, but definitive genetic evidence for this has been lacking. Earlier
465 work has shown that the PI-PLC homolog in *P. berghei* (PBANKA_1211900) is
466 refractory to genetic deletion (Raabe et al., 2011a). PI-PLCs are phosphodiesterases
467 that participate in phosphatidylinositol 4,5-bisphosphate (PIP₂) metabolism and lipid
468 signaling pathways in a Ca²⁺-dependent manner (reviewed in (Kadamur and Ross,
469 2013)). Studies in malaria parasites have suggested that PI-PLC activity is involved
470 in multiple processes ranging from gametocyte development and sporozoite motility
471 to egress and invasion of merozoites by regulating Ca²⁺ release (Agarwal et al.,
472 2013; Carey et al., 2014; Raabe et al., 2011b; Singh et al., 2010). PI-PLC was shown
473 to likely act downstream of the parasite PKG, which regulates egress and activity of
474 which promoted hydrolysis of the PI-PLC substrate PIP₂ (Brochet et al., 2014).
475 However, all of these studies relied on the use of the small compound inhibitor
476 U73122, for which the degree of selectivity for PI-PLC is unclear, given that in
477 numerous other systems the compound has the potential to modulate Ca²⁺
478 homeostasis independently of PI-PLC inhibition (Macmillan and McCarron, 2010; De
479 Moel et al., 1995; Mogami et al., 1997).
480 Using two distinct conditional gene targeting approaches we now provide
481 unambiguous genetic evidence that PI-PLC is essential for *P. falciparum* asexual
482 blood stage proliferation. Both conditional inactivation techniques resulted in a defect
483 in trophozoite to schizont conversion, as well as impaired development of schizonts.
484 In line with this maturation phenotype, our lipidomic analysis showed a significantly
485 reduced lipid content in the PI-PLC deficient parasites, while only a slight impact on

486 the overall lipid profile was visible. It might be interesting, although experimentally
487 challenging, to directly probe the enzymatic activity of PI-PLC by quantitation of PIP₂
488 and inositol 1,4,5-triphosphate (IP₃) using our PI-PLC deficient parasites.
489 The maturation phenotype of our PI-PLC deficient parasites is reminiscent of that
490 seen in the related apicomplexan parasite *Toxoplasma gondii*, where conditional
491 ablation of *Tg*PI-PLC caused significant morphological abnormalities during lytic
492 stage growth (Bullen et al., 2016). Together, these findings therefore support a
493 function for PI-PLC in a yet incompletely understood role that is necessary for
494 daughter cell formation in these two apicomplexan genera and that occurs long
495 before the role of PI-PLC in egress and invasion.
496 Of the 15 non-essential putative phospholipases analyzed in this study, only
497 disruption of PNPLA2 (PF3D7_1358000) led to a growth defect. PNPLAs are highly
498 conserved enzymes of prokaryotic and eukaryotic organisms with a broad
499 physiological role (reviewed in (Wilson and Knoll, 2018)). Apart from PNPLA2, the *P.*
500 *falciparum* genome encodes three other putative PNPLA enzymes (PF3D7_0209100,
501 PF3D7_0218600, PF3D7_0924000), all of which appear to be redundant for asexual
502 blood stage multiplication (Figure 1, (Flammersfeld et al., 2019; Singh et al., 2019)).
503 Interestingly, PNPLA1 (PF3D7_0209100) seems to be critical in gametocyte
504 induction (Flammersfeld et al., 2019) and gametogenesis (Singh et al., 2019).
505 Using GFP-tagging of the endogenous gene product, we unequivocally showed that
506 PNPLA2 localizes to the parasite mitochondrion, in line with the fact that the N-
507 terminus of PNPLA2 contains a predicted mitochondrial targeting signature sequence
508 (Claros and Vincens, 1996). Interestingly, the putative *T. gondii* orthologue of
509 PNPLA2 (TGME49_231370) localizes to the apicoplast and its conditional
510 knockdown led to a rapid apicoplast loss due to deregulated lipid homeostasis in this
511 organelle (Lévêque et al., 2017). Here we demonstrate that disruption of *P.*
512 *falciparum* PNPLA2 impairs blood stage proliferation and that PNPLA2 deficient

513 parasites display mitochondrial abnormalities, indicating a putative function of
514 PNPLA2 in mitochondrial morphogenesis.

515 We further show that PNPLA2-KO parasites are hypersensitive to drugs that target
516 the mtETC and that they have a defect in sustaining $\Delta\Psi_m$, which both together
517 argues for a defect somewhere in the mtETC. Although the molecular dissection of
518 this defect requires further investigation, it is likely that it occurs downstream of
519 complex III, for instance in the electron transport from complex III to complex IV or in
520 the activity of the latter. This assessment is based on the facts that i) we did not
521 observe hypersensitivity towards DSM1 and ii) we could not rescue the KO
522 associated growth defect by treatment with the ubiquinone analog DCUQ. In this
523 regard it is interesting to note that certain phospholipids of the inner mitochondrial
524 membrane, in particular cardiolipin and phosphatidylethanolamine, are important for
525 full activity of the mtETC and the efficient generation of $\Delta\Psi_m$ by affecting
526 supercomplex-formation between complex III and IV and by regulating complex IV
527 activity (Böttinger et al., 2012; Pfeiffer et al., 2003). One plausible explanation for the
528 defects observed in PNPLA2-KO parasites would thus be that KO parasites have a
529 deregulated mitochondrial phospholipid metabolism, which negatively affects the
530 activity of the mtETC. Although this still needs to be shown, a role of PNPLA2 in
531 regulation of mitochondrial phospholipids is likely, especially given the fact that the
532 putative orthologue of PNPLA2 in *T. gondii* is implicated in lipid homeostasis
533 (Lévéque et al., 2017). In further support of this hypothesis, a similar function was
534 previously described for the calcium-independent phospholipase A2y in mice that
535 also localizes to the mitochondrion and disruption of which was associated with
536 deregulated cardiolipin metabolism and reduced complex IV activity (Mancuso et al.,
537 2007). Interestingly, reduced complex IV activity in *Caenorhabditis elegans* and
538 mammalian cells has been shown to trigger mitochondrial hyperfusion to transiently
539 compensate for a decreased activity of the mtETC (Rolland et al., 2013). A similar

540 mechanism might also be induced in the PNPLA2-deficient parasites, perhaps
541 explaining the mitochondrial accumulations that we consistently observed in these
542 parasites. Alternatively, these accumulations might be the result of a deregulated
543 lipid metabolism per se, since mitochondrial morphology is regulated by the relative
544 rates of mitochondrial fusion and division, processes that are performed by a
545 conserved protein machinery and that are both highly dependent on the
546 mitochondrial phospholipid composition (reviewed in (Furt and Moreau, 2009)).
547 In addition to mtETC inhibitors, PNPLA2-KO parasites also became hypersensitive
548 towards proguanil, which is combined together with atovaquone in the registered
549 antimalarial formulation Malarone. Although proguanil's mechanism of action is not
550 completely understood, combination studies have shown that proguanil acts by
551 lowering the concentration at which atovaquone collapses parasite $\Delta\Psi_m$ (Painter et
552 al., 2007; Srivastava and Vaidya, 1999). It is hypothesized that this process is
553 connected to an ATP synthase function, which only becomes essential when the
554 mtETC is inhibited. During mtETC inhibition, ATP synthase could maintain $\Delta\Psi_m$ by
555 operating in reverse and it may be this function that is inhibited by proguanil (Painter
556 et al., 2007). Given the high level of hypersensitivity of PNPLA2-deficient parasites
557 towards proguanil, it is tempting to speculate that the proguanil-sensitive pathway for
558 maintaining $\Delta\Psi_m$ in presence of mtETC inhibition might partially compensate for the
559 PNPLA2-KO-associated defect in the mtETC and that this is one reason why
560 PNPLA2-KO parasites are still viable.

561 In conclusion, our study provides a functional framework of phospholipases in the
562 clinically relevant blood stages of *P. falciparum*. Our work identifies PI-PLC as an
563 essential regulator of parasite maturation, and demonstrates a critical role for a
564 malarial PNPLA in mitochondrial morphogenesis and function. Collectively, our
565 findings expand the repertoire of functions that phospholipases may perform in this
566 important human pathogen.

567 **MATERIALS AND METHODS**

568 **Cloning of SLI plasmids**

569 For generation of SLI-based TGD constructs, 312-954 bp immediately downstream of
570 the start ATG of the target genes were amplified by PCR, starting with a stop codon,
571 to serve as homology regions for single-crossover based integration. PCR products
572 were cloned using NotI/MluI into pSLI-TGD (Birnbaum et al., 2017) to generate the
573 final targeting plasmids.

574 For generation of the PI-PLC knocksideways construct pSLI-PF3D7_1013500-KS,
575 the C-terminal 985 bp of the *pi-plc* gene were amplified by PCR using primers
576 PF3D7_1013500-tag-fw/PF3D7_1013500-tag-rev, starting with a stop codon, and
577 cloned into pSLI-sandwich (Birnbaum et al., 2017) using NotI/AvrII.

578 For generation of the PNPLA2 GFP-tagging construct pSLI-PF3D7_1358000-GFP,
579 the C-terminal 1,063 bp of the *pnpla2* gene were amplified by PCR using primers
580 PF3D7_1358000-tag-fw/PF3D7_1358000-tag-rev and cloned into pSLI-TGD
581 (Birnbaum et al., 2017) using NotI/MluI.

582 Phusion High-Fidelity DNA polymerase (New England BioLabs) was used for all
583 plasmid constructions and all plasmid sequences were confirmed by Sanger
584 sequencing. For primer sequences see Supplementary file 1.

585

586 **Cloning of plasmids for conditional gene KO**

587 Gene segments containing the catalytic domains of the *pi-plc* and *pnpla2* genes were
588 replaced by a synthetic, modified version using Cas9-enhanced homologous
589 recombination by transfecting a guide plasmid and a linearized repair plasmid into
590 the DiCre-expressing *P. falciparum* line B11 (Perrin et al., 2018). A 2,417 bp and
591 2,352 bp long gene segment were chosen in *pi-plc* and *PNPLA2* respectively.

592 Two single guide RNA (sgRNA) inserts per target gene were generated by annealing
593 oligo pairs PF3D7_1013500_gRNA01.F/ PF3D7_1013500_gRNA01.R and

594 PF3D7_1013500_gRNA02.F/ PF3D7_1013500_gRNA02.R for PI-PLC and
595 PF3D7_1358000_gRNA01.F/ PF3D7_1358000_gRNA01.R and
596 PF3D7_1358000_gRNA02.F/ PF3D7_1358000_gRNA02.R for PNPLA2, which were
597 subsequently ligated into the BbsI-digested plasmid pDC2-Cas9-hDHFRyFCU
598 plasmid (Knuepfer et al., 2017) which contains sequences encoding Cas9, single
599 guide RNA (sgRNA) and the drug selectable marker hDHFR (human dihydrofolate
600 reductase)/yFCU (yeast cytosine deaminase/uridyl phosphoribosyl transferase).
601 Repair plasmids were designed such that they had i) ~500 bp native sequences on
602 either side of the targeted gene segment to serve as homology arms, ii) a short
603 synthetic intron containing a *loxP* site (*loxP*int) upstream of the targeted gene
604 segment, iii) the recodonized version of the targeted gene segment with the PAM
605 sites destroyed, iv) a triple-hemagglutinin (3HA) epitope tag just prior to the gene
606 translational stop codon, and v) another *loxP* site following the translational stop
607 codon. To target PI-PLC, the above designed construct was synthesized as two parts
608 (2,866 bp and 791 bp) and combined by restriction-ligation (using HindIII and Xhol
609 enzymes) to create pREP-piplc-3HA-*loxP*int. Similarly, to target PNPLA2, the
610 designed construct was synthesized as two parts (2,421 bp and 1,109 bp) and
611 inserted subsequently into a pCR-blunt vector (Thermo Fisher Scientific) using
612 restriction-ligation with Xhol/Apal and Xhol/PstI respectively. The synthesized
613 construct did not contain the 3' homology arm, which was therefore amplified from
614 B11 genomic DNA (amplification primers: PF3D7_1358000_3hom_F and
615 PF3D7_1358000_3hom_R) and added to the construct by restriction-ligation using
616 NheI/Apal sites to create pREP-PNPLA2-3HA-*loxP*int.
617 Synthetic gene constructs were synthesized by GeneArt (Thermo Fisher Scientific).
618 Phusion High-Fidelity DNA polymerase (New England BioLabs) was used for all
619 plasmid constructions and all plasmid sequences were confirmed by Sanger
620 sequencing. For sequences of all primers and synthetic gene constructs see

621 Supplementary file 1.

622

623 ***P. falciparum* culture**

624 Blood stages of 3D7 *P. falciparum* parasites were cultured in human RBCs. Cultures
625 were maintained at 37°C in an atmosphere of 90% nitrogen, 5% carbon dioxide and
626 5% oxygen (DiCre-based KO lines) or in an atmosphere of 94% nitrogen, 5% carbon
627 dioxide and 1% oxygen (all other parasite lines) using RPMI complete medium
628 containing 0.5% Albumax according to standard procedures (Trager and Jensen,
629 1976).

630

631 **Generation of SLI-based parasite lines**

632 For transfection of constructs, Percoll (GE Healthcare)-enriched synchronized mature
633 schizonts of 3D7 parasites were electroporated with 50 µg of plasmid DNA using a
634 Lonza Nucleofector II device (Moon et al., 2013). Transfectants were selected in
635 medium supplemented with 3 nM WR99210 (Jacobus Pharmaceuticals), 0.9 µM
636 DSM1 (BEI Resources) or 2 µg/ml blasticidin S (Invitrogen). For generation of stable
637 integrant cell lines, parasites containing the episomal plasmids selected with
638 WR99210 were grown with 400 µg/ml Neomycin/G418 (Sigma) to select for
639 integrants carrying the desired genomic modification as described previously
640 (Birnbaum et al., 2017). Each WR-resistant parasite culture was routinely placed
641 under neomycin selection in three independent experiments using three culture
642 dishes each time and was followed up for 60 days to monitor the appearance of
643 viable transgenic parasites (expected to represent parasites in which the targeted
644 gene was disrupted). Successful integration was confirmed by diagnostic PCR using
645 FIREpol DNA polymerase (Solis BioDyne). For primer sequences see
646 Supplementary file 1.

647

648 **Generation of conditional KO parasite lines**

649 All transgenic *P. falciparum* DiCre-based KO parasite lines used in this study were
650 based on the DiCre-expressing *P. falciparum* clone B11, derived from the 3D7
651 parasite line (Perrin et al., 2018). Two transfections (one per guide RNA) were
652 performed for each gene target. Mature schizonts enriched using Percoll (GE
653 Healthcare) were electroporated with 20 ug of guide plasmid and 60 ug of linearized
654 repair plasmid using an Amaxa 4D electroporator and P3 Primary cell 4D
655 Nucleofector X Kit L (Lonza) using programme FP158 as described (Collins et al.,
656 2013). 24 hours post-transfection, the culture medium was replaced with fresh
657 medium containing WR99210 (2.5 nM), which was withdrawn after 4 days. Once
658 drug-resistant parasites appeared (in about 2 weeks), they were cloned by limiting
659 dilution using a plaque-based method (Thomas et al., 2016). Successful integration
660 was confirmed by diagnostic PCR using GOtaq Hot Start Green Master Mix
661 (Promega). For primer sequences see Supplementary file 1.

662

663 **Fluorescence microscopy**

664 Mitochondria were stained by incubation of parasites in 20 nM MitoTracker Red
665 CMXRos (Invitrogen) in culture medium for 15 min at 37°C. For staining of nuclei,
666 parasites were incubated with 1 µg/ml DAPI (Sigma) in culture medium for 15 min at
667 37°C. DiCre-based conditional KO parasites were imaged using a Nikon Eclipse Ni-E
668 widefield microscope, equipped with a Hamamatsu C11440 digital camera and a
669 100x/1.45NA oil immersion objective. All other parasite lines were imaged on a Leica
670 D6B fluorescence microscope, equipped with a Leica DFC9000 GT camera and a
671 Leica Plan Apochromat 100x/1.4 oil objective. Image processing was performed
672 using ImageJ.

673

674 **Western blot**

675 For western blot analysis, parasites were Percoll-enriched, washed and lysed with
676 saponin. The resulting parasite pellets were solubilized in five volumes of a
677 denaturing solubilization buffer (1% (w/w) SDS in 50 mM Tris-HCl, pH 8.0, 5
678 mM EDTA, 1 mM PMSF) with sonication. Samples were immediately boiled for 5
679 min, clarified by centrifugation at 12,000 \times g for 20 min and subjected to SDS-PAGE.
680 Proteins were transferred to nitrocellulose membranes. Membranes were then
681 blocked in 3% BSA in PBS containing 0.2% Tween 20 before staining with rat anti-
682 HA mAb 3F10 (Sigma, diluted 1:1,000) primary antibody in blocking buffer, then
683 incubated with biotin-conjugated anti-rat antibody (Roche, diluted 1:8,000) in blocking
684 buffer followed by horseradish peroxidase-conjugated streptavidin (Sigma, diluted
685 1:10,000). Antibody binding was detected using an Immobilon Western
686 Chemiluminescent HRP Substrate (Millipore) and visualized using a ChemiDoc
687 Imager (Bio-Rad) with Image Lab software (Bio-Rad). AMA1 and PKG were probed
688 as loading controls using a rabbit anti-AMA1 antibody (Collins et al., 2009) (diluted
689 1:500) and a rabbit polyclonal human-PKG antibody (Enzo Lifesciences, diluted
690 1:1,000) respectively, followed by a HRP-conjugated goat anti-rabbit secondary
691 antibody (Sigma, diluted 1:3,000).

692

693 **Immunofluorescence analysis**

694 For IFA of PI-PLC-GFP-KS parasites, air dried thin blood films were fixed for 3 min in
695 icecold methanol. After rehydration in PBS and blocking in 3% BSA/PBS, they were
696 stained with mouse anti-AMA1 antibody (clone 1F9 (Coley et al., 2001), diluted
697 1:1,000) in blocking buffer, followed by staining with anti-mouse-AlexaFluor488
698 antibody (Invitrogen, 1:2,000) additionally containing 1 μ g/ml DAPI in blocking buffer.
699 Finally, DAKO mounting solution was added and slides were covered with a
700 coverslip.

701 For IFA of PI-PLC:HA:loxPint parasites, air dried thin blood films were fixed with 4%
702 paraformaldehyde in PBS for 30 min at RT, permeabilized with 0.1% (v/v) Triton X-
703 100 in PBS for 10 min, and blocked overnight in 4% BSA/PBS. Samples were probed
704 with rat anti-HA 3F10 (Sigma, 1:500) in 4% BSA/PBS. Bound primary antibodies
705 were detected using biotin-conjugated anti-rat antibody (Roche, 1:1,000) and
706 AlexaFluor594-conjugated streptavidin (Life Technologies, 1:1,000) in 4% BSA/PBS.
707 Slides were mounted in ProLong Gold Antifade Mountant with DAPI (Life
708 Technologies).

709

710 **Analysis of SLI-based parasite lines**

711 Schizont stage parasites of all analyzed parasite lines were isolated by Percoll
712 enrichment and incubated with uninfected RBCs (5% hematocrit) for 3 h to allow
713 rupture and invasion. Parasites were then treated with 5% sorbitol to remove residual
714 unruptured schizonts, leading to a synchronous ring stage culture with a 3 h window.
715 For growth analysis of PI-PLC-GFP-KS parasites, synchronous ring stage cultures
716 were adjusted to ~0.1% parasitemia and divided into two 2 ml dishes. To one of
717 these dishes, rapalog (AP21967, Clontech) was added to a final concentration of 250
718 nM (rapalog was stored at -20°C as a 500 mM stock in ethanol, and working stocks
719 were kept as 1:20 dilutions in RPMI at 4°C) while the other dish served as a control.
720 Parasitemia was analyzed by flow cytometry at 1, 3, 5, and 7 days, when most of the
721 parasites were at the trophozoite stage. After analysis on day 5, cultures were diluted
722 10-fold into fresh RBCs to prevent overgrowth. Medium with or without rapalog was
723 changed daily.

724 For growth analysis of TGD-based KO lines, synchronous ring stage cultures were
725 allowed to mature to trophozoites for one day. Parasitemia was then determined one
726 day post-infection by flow cytometry and adjusted to exactly 0.1% starting
727 parasitemia in a 2 ml dish. Medium was changed daily and growth of the parasite

728 lines was assessed by flow cytometry after five days (two erythrocytic cycles). As a
729 reference, WT 3D7 parasites were included in each assay.
730 For quantification of developmental stage and schizont analysis of PI-PLC-GFP-KS
731 and PNPLA2-KO lines, synchronous ring stage cultures were diluted to ~1-2%
732 parasitemia in 2 ml dishes, which were either left untreated or treated with rapalog as
733 described above in case of PI-PLC-GFP-KS parasites. Giemsa-stained blood films
734 were prepared at 24, 40 and 48 hpi. For stage quantification, at least 20 fields of view
735 were recorded using a 63x objective per sample. Erythrocyte numbers were then
736 determined using the automated Parasitemia software
737 (<http://www.gburri.org/parasitemia/>) and the number of the different parasite stages
738 was manually counted on these images. For analysis of schizont morphology,
739 cultures containing schizont stage parasites (40 hpi) were supplemented with the
740 egress inhibitor compound 2 (1 μ M; kindly provided by S. Osborne (LifeArc) and
741 stored as a 10 mM stock in DMSO at -20°C). After 8 h, Giemsa-stained blood films
742 were prepared and schizont morphology was investigated by light microscopy. For
743 determining the number of merozoites per schizont, the cysteine protease inhibitor
744 E64 (10 μ M; Sigma) was added to schizonts at 40 hpi to prevent rupture of the host
745 cell membrane. 6 to 8 h later, Giemsa smears were prepared and the number of
746 merozoites per schizont was determined by light microscopy.

747

748 **Lipidomic analysis**

749 Highly synchronous PI-PLC-GFP-KS ring stage parasite cultures were divided into
750 four 10 ml plates. Two of these were treated with 250 nM Rapalog, while the other
751 two were left untreated. Medium with or without Rapalog was replaced once per day.
752 At 30 hpi and 40 hpi, parasitemia (3 – 7%) and the total number of erythrocytes were
753 determined by flow cytometry for calculation of the absolute number of parasites per
754 sample (50 – 140 $\times 10^6$ parasites). Per treatment and time point, parasites from one

755 10 ml dish were isolated by saponin lysis. Therefore, they were first washed in
756 icecold PBS, followed by incubation in 0,03% saponin in PBS on ice for 10 min. After
757 three washes in icecold PBS, parasite pellets were resuspended in 200 μ l of PBS to
758 which 800 μ l of icecold LC-MS grade methanol (Merck) containing 0,1% (w/v)
759 butylated hydroxytoluene (Sigma) were added. Samples were stored at -80°C until
760 lipid extraction.

761 For the lipid extraction, samples were slowly thawed in ice cold water and sonified for
762 15 min. Directly afterwards aliquots were transferred into a new vial that correspond
763 to 25 million parasites and the suspension was dried in a speed vac. To the dried cell
764 pellets 50 μ l water was added and rigorous stirred. The samples were then further
765 homogenized using three freeze-thaw cycles consisting of a shock-freezing step in
766 liquid nitrogen and 30 sec of sonification. Afterwards a mix of internal standards was
767 added (Supplementary file 3). Lipid extraction was further performed according to
768 earlier described lipid extraction method using MTBE (Matyash et al., 2008).
769 Cholesterol was determined after acetylation as described (Liebisch et al., 2006).
770 Shotgun lipidomics measurements were performed as described earlier (Eggers and
771 Schwudke, 2018) using Q Exactive Plus (Thermo Fisher Scientific, Bremen,
772 Germany) mass spectrometer coupled with the TriVersa NanoMate (Advion, Ithaca,
773 USA). Lipid identification was performed with LipidXplorer 1.2.1 (Herzog et al., 2011)
774 and post processing including quantitation was executed with IxPostman.

775

776 **Analysis of conditional KO parasite lines**

777 Tightly synchronized ring stage cultures were divided into two dishes and treated with
778 100 nM rapamycin (Sigma, prepared as a 10 mM stock in DMSO) or DMSO only for
779 3 h at 37°C, following which the cultures received fresh medium. 24 h later, growth
780 assays were set up for each treatment. For this, trophozoite stage parasites were
781 diluted in triplicate cultures with fresh RBCs to a parasitemia of 0.1%. For invasion

782 assays, schizonts were isolated 48 h after the beginning of rapamycin treatment by
783 Percoll enrichment and replicate cultures of each treatment were set up at ~5%
784 parasitemia with fresh RBCs. Parasites were allowed to invade for 4 h at 37°C under
785 static or shaking (110 rpm) conditions. Giemsa smears were prepared at selected
786 time points and parasite development and morphology assessed and quantified by
787 light microscopy. In order to enrich the cultures with mature schizont stage parasites,
788 parasites were treated at 46 hpi for 3 h with 1 μ M C2 to arrest egress.

789

790 **Flow cytometry**

791 For growth quantification of DiCre-based KO parasite lines, parasites were fixed with
792 0.1% glutaraldehyde/PBS and stained with SYBR Green I dye (1:10,000 dilution in
793 PBS; Life Technologies) for 30 min at 37°C. Samples were analyzed in a BD
794 Fortessa FACS instrument using the 530/30-blue detector configuration. Flow
795 cytometry data was analyzed using FlowJo v10. Erythrocytes were gated based on
796 their forward and side scatter parameters, and SYBR Green I stain-positive RBCs
797 were identified using the 530/30-blue detector.

798 Flow cytometry-based analysis of growth of all other parasite lines was performed
799 essentially as described previously (Malleret et al., 2011). In brief, 20 μ l resuspended
800 parasite culture was incubated with dihydroethidium (5 μ g/ml, Cayman) and SYBR
801 Green I dye (0.25 x dilution, Invitrogen) in a final volume of 100 μ l medium for 20 min
802 at RT protected from light. Samples were analyzed on a ACEA NovoCyte flow
803 cytometer. RBCs were gated based on their forward and side scatter parameters. For
804 every sample, 100,000 events were recorded and parasitemia was determined based
805 on SYBR Green I fluorescence.

806

807 **Plaque assay**

808 Long-term parasite replication rate as measured by plaque-forming ability was
809 determined by diluting trophozoite stage cultures to a density of 10 parasites per well
810 in complete medium with RBCs at a hematocrit of 0.75% as previously described
811 (Thomas et al., 2016). This suspension was plated into flat bottom 96 well
812 microplates (200 μ l per well) and incubated under static conditions for 10 days in
813 gassed humidified sealed modular chambers. Plaque formation was assessed by
814 microscopic examination using a Nikon TMS inverted microscope (40x magnification)
815 and documented using a Perfection V750 Pro scanner (Epson, Long Beach, CA).
816 Plaques were counted by visual examination of the scanned images and plaque size
817 quantified using the Lasso tool in Adobe Photoshop 2019.

818

819 **Transmission electron microscopy**

820 PI-PLC:HA:loxPint parasites were treated at ring stage with RAP or DMSO, as
821 described above, and allowed to develop to schizont stage. Schizonts were Percoll
822 enriched and incubated with 1 μ M C2 for 3 h. Samples were then fixed with 2.5%
823 glutaraldehyde-4% formaldehyde in 0.1 M phosphate buffer (PB) for 30 min at RT.
824 Schizonts were embedded in 3% low melting point agarose and the samples then cut
825 into 1 mm³ blocks. These were then processed using a modified version of the
826 NCMIR protocol (Deerinck et al., 2010). Briefly, blocks were washed in 0.1 M PB,
827 post-fixed with 1% reduced osmium (1% OsO₄/ 1.5% K₃Fe(CN)₆) for 1 h at 4°C, then
828 washed in double distilled water (ddH₂O). The blocks were incubated in 1%
829 thiocarbohydrazide (TCH) for 20 min at RT, rinsed in ddH₂O and further fixed with 2%
830 osmium tetroxide for 30 min at RT. The blocks were then stained with 1% uranyl
831 acetate at 4°C overnight, washed in ddH₂O and stained with Walton's lead aspartate
832 for 30 min at 60°C. The blocks were washed in ddH₂O and dehydrated stepwise
833 using serial dilutions of ethanol: 30% and 50% at RT for 5 min each, then 70%, 90%
834 and 2 x 100% for 10 min each. The blocks were infiltrated with a 4:1 mixture of

835 propylene oxide (PO):Durcupan resin (Sigma) for 1 h at RT, followed by 1:1 and 1:4
836 mixtures for 1 h each at RT, then with 100% Durcupan resin for 48 h. Blocks were
837 polymerised in fresh Durcupan resin at 60 °C for 48 h. The samples were cut into 70
838 nm ultrathin sections using an ultramicrotome (UC7, Leica Microsystems UK) and
839 picked up onto copper mesh grids (Agar Scientific). Images were obtained on a 120
840 kV transmission electron microscope (Tecnai G2 Spirit BioTwin, Thermo Fisher
841 Scientific) using a charge-coupled device camera (Oneview, Gatan Inc.).

842

843 **Drug susceptibility assay**

844 3D7-WT and SLI-based PNPLA2-KO parasites were synchronized to a 3 h time
845 window as described for SLI-based parasite lines. At 24 hpi, parasitemia was
846 determined by flow cytometry and drug susceptibility assays were set up in black 96-
847 well microtiter plates (Thermo Scientific) with 0.1% starting parasitemia and 2%
848 hematocrit in a final volume of 200 µl of medium. Hereby parasites were incubated
849 with varying concentrations of the following drugs: proguanil (Sigma), atovaquone
850 (Cayman), myxothiazol (Sigma), antimycin A (Sigma), DHA (Sigma), DSM1 (BEI
851 Resources), primaquine (Cayman). Drugs were dissolved in PBS (primaquine,
852 freshly prepared for every experiment) or DMSO (all other drugs) and then further
853 diluted in culture medium. The final DMSO concentration did not exceed 0.25%. In
854 each plate, infected RBCs in the absence of drugs and only treated with DMSO
855 served as positive controls for parasite growth, whereas uninfected RBCs served as
856 negative controls (background). After 96 h of incubation, inhibition of parasite growth
857 was determined by measuring the fluorescence of SYBR Gold (Invitrogen).
858 Therefore, 100 µl/well supernatant were discarded without disturbing the RBC layer
859 and 100 µl/well lysis buffer (20 mM Tris, 0.008% saponin, 0.08% Triton X-100, 1X
860 SYBR Gold) were added. Plates were incubated in the dark for 2 h at RT before
861 measuring fluorescence using the EnVision Multimode Plate Reader (PerkinElmer)

862 with excitation and emission wavelengths of FITC 485 / FITC 535. IC₅₀ values were
863 calculated using nonlinear regression in GraphPad Prism (log(inhibitor) vs.
864 normalized response – Variable slope).

865

866 **DCUQ assay**

867 Growth of 3D7-WT and PNPLA2-KO parasites in presence of different concentrations
868 of decylubiquinone (DCUQ, Cayman, stock prepared in DMSO) or DMSO was
869 analyzed over two parasite cycles by flow cytometry as already described for the
870 TGD-based KO parasite lines. As a positive control, WT parasites were treated with
871 1.15 nM atovaquone (IC₅₀ value according to (Agarwal et al., 2017)) in addition to
872 DCUQ/DMSO. Parasites were fed daily with fresh culture medium containing
873 atovaquone, DCUQ or DMSO until analysis.

874

875 **Rhodamine123 based visualization of ΔΨm**

876 Tightly synchronised ring stage cultures were treated with 200 nM proguanil, 1 μM
877 proguanil or DMSO from 3 hpi until imaging. At 40 hpi, parasites were treated for 8 h
878 with 1 μM C2 to prevent egress. Parasites were stained with rhodamine123
879 (Cayman) basically as previously described (Matz et al., 2018). In brief, parasites
880 were incubated in 0.1 μg/ml rhodamine 123 and 1 μg/ml DAPI in culture medium for
881 30 min at 37°C. Afterwards, parasites were washed once in culture medium and
882 further incubated at 37°C for another 30 min prior to live cell microscopy. The entire
883 medium used during the staining procedure contained C2 and the respective amount
884 of proguanil/DMSO. Image acquisition was performed using the same settings for all
885 samples and at least 70 parasites per condition were imaged in each independent
886 experiment.

887

888 **Statistical analysis**

889 For statistical analysis of differences between two groups, paired or unpaired two-
890 tailed students t-tests were used. For statistical analysis of differences between more
891 than two groups, a one-way analysis of variance (ANOVA), followed by a Holm-Sidak
892 multiple-comparison test was performed. All statistical tests were done in GraphPad
893 Prism. P values of <0.05 were considered significant. Statistical details (n numbers,
894 tests used, definition of the error bars) are described in the figure legends.

895

896 **DATA AVAILABILITY**

897 All data generated or analyzed during this study are included in this published article
898 and its supplemental material files. Detailed information on the lipidomics approach is
899 available on the LIFS webportal (Schwudke, Shevchenko, Hoffmann, & Ahrends,
900 2017, <https://lifs-tools.org>). The preliminary LipidCompass accession number is
901 LCE8.

902

903 **ACKNOWLEDGEMENTS**

904 We thank Michael Foley for providing the monoclonal AMA1 antibody 1F9. The
905 following reagent was obtained through BEI Resources, NIAID, NIH: DSM1, MRA-
906 1161. We thank Anna Woitalla (RCB) for excellent technical support for the
907 lipidomics analysis. We are grateful for expert support by Dr. Nils Hoffmann (Centrum
908 for Biotechnology (CeBi/Tec), Universität Bielefeld) in data upload and data base
909 management of the LIFS webportal. Images were acquired on microscopes of the
910 CSSB imaging facility as well as the Electron Microscopy Science Technology
911 Platform at the Francis Crick Institute. For the purpose of Open Access, the authors
912 have applied a CC BY public copyright licence to any Author Accepted Manuscript
913 version arising from this submission. PCB was funded by the Deutsche
914 Forschungsgemeinschaft (DFG, German Research Foundation) – project number
915 414222880. AR was funded by a Marie Skłodowska Curie Individual Fellowship

916 (Project number 751865). The work was also supported by funding to MJB from the
917 Francis Crick Institute (<https://www.crick.ac.uk/>), which receives its core funding from
918 Cancer Research UK (FC001043; <https://www.cancerresearchuk.org>), the UK
919 Medical Research Council (FC001043; <https://www.mrc.ac.uk/>), and the Wellcome
920 Trust (FC001043; <https://wellcome.ac.uk/>). The work was further supported by
921 Wellcome ISSF2 funding to the London School of Hygiene & Tropical Medicine. Work
922 in the DS lab was supported by LIFS2 project (FKZ 031L0108B) of the German
923 Network for Informatic Infrastructure (de.NBI) and support by the German Center for
924 Infection Research (TTU-TB, DZIF).

925

926 **AUTHOR CONTRIBUTIONS**

927 Conceived and designed the experiments: PCB, AR, EP, MJB, TWG. Performed the
928 experiments: PCB, AR, EP, SB, CS, LW, DS, AS, LMC. Analyzed the data: PCB, AR,
929 EP, SB, CS, LW, JS, DS, MJB, TWG. Wrote the paper: PCB, AR, DS, MJB, TWG.

930

931 **CONFLICT OF INTEREST**

932 The authors declare that they have no conflict of interest.

933

934 **REFERENCES**

935 Agarwal, P., Anvikar, A.R., Pillai, C.R., and Srivastava, K. (2017). In vitro
936 susceptibility of Indian *Plasmodium falciparum* isolates to different antimalarial drugs
937 & antibiotics. *Indian J. Med. Res.* **146**, 622–628.

938 Agarwal, S., Singh, M.K., Garg, S., Chitnis, C.E., and Singh, S. (2013). Ca²⁺-
939 mediated exocytosis of subtilisin-like protease 1: A key step in egress of *Plasmodium*
940 *falciparum* merozoites. *Cell. Microbiol.* **15**, 910–921.

941 Aurrecoechea, C., Brestelli, J., Brunk, B.P., Dommer, J., Fischer, S., Gajria, B., Gao,
942 X., Gingle, A., Grant, G., Harb, O.S., et al. (2009). PlasmoDB: a functional genomic

943 database for malaria parasites. *Nucleic Acids Res.* 37, D539–D543.

944 Bhanot, P., Schauer, K., Coppens, I., and Nussenzweig, V. (2005). A surface

945 phospholipase is involved in the migration of *Plasmodium* sporozoites through cells.

946 *J. Biol. Chem.* 280, 6752–6760.

947 Birnbaum, J., Flemming, S., Reichard, N., Soares, A.B., Mesén-Ramírez, P.,

948 Jonscher, E., Bergmann, B., and Spielmann, T. (2017). A genetic system to study

949 *Plasmodium falciparum* protein function. *Nat. Methods* 14, 450–456.

950 Birnbaum, J., Scharf, S., Schmidt, S., Jonscher, E., Hoeijmakers, W.A.M., Flemming,

951 S., Toenhake, C.G., Schmitt, M., Sabitzki, R., Bergmann, B., et al. (2020). A Kelch13-

952 defined endocytosis pathway mediates artemisinin resistance in malaria parasites.

953 *Science* 367, 51–59.

954 Böttlinger, L., Horvath, S.E., Kleinschroth, T., Hunte, C., Daum, G., Pfanner, N., and

955 Becker, T. (2012). Phosphatidylethanolamine and cardiolipin differentially affect the

956 stability of mitochondrial respiratory chain supercomplexes. *J. Mol. Biol.* 423, 677–

957 686.

958 Bowyer, P.W., Simon, G.M., Cravatt, B.F., and Bogyo, M. (2011). Global profiling of

959 proteolysis during rupture of *Plasmodium falciparum* from the host erythrocyte. *Mol.*

960 *Cell. Proteomics* 10, M110.001636.

961 Brochet, M., Collins, M.O., Smith, T.K., Thompson, E., Sebastian, S., Volkmann, K.,

962 Schwach, F., Chappell, L., Gomes, A.R., Berriman, M., et al. (2014).

963 Phosphoinositide Metabolism Links cGMP-Dependent Protein Kinase G to Essential

964 Ca²⁺ Signals at Key Decision Points in the Life Cycle of Malaria Parasites. *PLoS*

965 *Biol.* 12.

966 Bullen, H.E., Jia, Y., Yamaryo-Botté, Y., Bisio, H., Zhang, O., Jemelin, N.K., Marq, J.-

967 B., Carruthers, V., Botté, C.Y., and Soldati-Favre, D. (2016). Phosphatidic Acid-

968 Mediated Signaling Regulates Microneme Secretion in *Toxoplasma*. *Cell Host*

969 *Microbe* 19, 349–360.

970 Burda, P.C., Roelli, M.A., Schaffner, M., Khan, S.M., Janse, C.J., and Heussler, V.T.
971 (2015). A *Plasmodium* phospholipase is involved in disruption of the liver stage
972 parasitophorous vacuole membrane. *PLoS Pathog.* *11*, e1004760.

973 Bushell, E., Gomes, A.R., Sanderson, T., Anar, B., Girling, G., Herd, C., Metcalf, T.,
974 Modrzynska, K., Schwach, F., Martin, R.E., et al. (2017). Functional Profiling of a
975 *Plasmodium* Genome Reveals an Abundance of Essential Genes. *Cell* *170*, 260-
976 272.e8.

977 Carey, A.F., Singer, M., Bargieri, D., Thibierge, S., Frischknecht, F., Ménard, R., and
978 Amino, R. (2014). Calcium dynamics of *Plasmodium berghei* sporozoite motility. *Cell.*
979 *Microbiol.* *16*, 768–783.

980 Chen, F., Mackey, A.J., Stoeckert, C.J.J., and Roos, D.S. (2006). OrthoMCL-DB:
981 querying a comprehensive multi-species collection of ortholog groups. *Nucleic Acids*
982 *Res.* *34*, D363-8.

983 Claros, M.G., and Vincens, P. (1996). Computational method to predict
984 mitochondrially imported proteins and their targeting sequences. *Eur. J. Biochem.*
985 *241*, 779–786.

986 Cobbold, S.A., Santos, J.M., Ochoa, A., Perlman, D.H., and Llinás, M. (2016).
987 Proteome-wide analysis reveals widespread lysine acetylation of major protein
988 complexes in the malaria parasite. *Sci. Rep.* *6*, 19722.

989 Coley, A.M., Campanale, N. V, Casey, J.L., Hodder, A.N., Crewther, P.E., Anders,
990 R.F., Tilley, L.M., and Foley, M. (2001). Rapid and precise epitope mapping of
991 monoclonal antibodies against *Plasmodium falciparum* AMA1 by combined phage
992 display of fragments and random peptides. *Protein Eng. Des. Sel.* *14*, 691–698.

993 Collins, C.R., Withers-Martinez, C., Hackett, F., and Blackman, M.J. (2009). An
994 inhibitory antibody blocks interactions between components of the malarial invasion
995 machinery. *PLoS Pathog.* *5*, e1000273.

996 Collins, C.R., Das, S., Wong, E.H., Andenmatten, N., Stallmach, R., Hackett, F.,

997 Herman, J.P., M??ller, S., Meissner, M., and Blackman, M.J. (2013). Robust
998 inducible Cre recombinase activity in the human malaria parasite *Plasmodium*
999 *falciparum* enables efficient gene deletion within a single asexual erythrocytic growth
1000 cycle. *Mol. Microbiol.* **88**, 687–701.

1001 Deerinck, T.J., Bushong, E.A., Thor, A., and Ellisman, M.H. (2010). NCMIR methods
1002 for 3D EM: A new protocol for preparation of biological specimens for serial block
1003 face scanning electron microscopy. *Microscopy* **6**–8.

1004 Eggers, L.F., and Schwudke, D. (2018). Shotgun Lipidomics Approach for Clinical
1005 Samples. *Methods Mol. Biol.* **1730**, 163–174.

1006 Flammersfeld, A., Lang, C., Flieger, A., and Pradel, G. (2017). Phospholipases
1007 during membrane dynamics in malaria parasites. *Int. J. Med. Microbiol.*
1008 Flammersfeld, A., Panyot, A., Yamaryo-Botté, Y., Aurass, P., Przyborski, J.M.,
1009 Flieger, A., Botté, C., and Pradel, G. (2019). A patatin-like phospholipase functions
1010 during gametocyte induction in the malaria parasite *Plasmodium falciparum*. *Cell.*
1011 *Microbiol.* e13146.

1012 Florens, L., Washburn, M.P., Raine, J.D., Anthony, R.M., Grainger, M., Haynes, J.D.,
1013 Moch, J.K., Muster, N., Sacci, J.B., Tabb, D.L., et al. (2002). A proteomic view of the
1014 *Plasmodium falciparum* life cycle. *Nature* **419**, 520–526.

1015 Florens, L., Liu, X., Wang, Y., Yang, S., Schwartz, O., Peglar, M., Carucci, D.J.,
1016 Yates, J.R. 3rd, and Wu, Y. (2004). Proteomics approach reveals novel proteins on
1017 the surface of malaria-infected erythrocytes. *Mol. Biochem. Parasitol.* **135**, 1–11.

1018 Furt, F., and Moreau, P. (2009). Importance of lipid metabolism for intracellular and
1019 mitochondrial membrane fusion/fission processes. *Int. J. Biochem. Cell Biol.* **41**,
1020 1828–1836.

1021 Goodman, C.D., Buchanan, H.D., and McFadden, G.I. (2017). Is the Mitochondrion a
1022 Good Malaria Drug Target? *Trends Parasitol.* **33**, 185–193.

1023 Hanada, K., Palacpac, N.M.Q., Magistrado, P.A., Kurokawa, K., Rai, G., Sakata, D.,

1024 Hara, T., Horii, T., Nishijima, M., and Mitamura, T. (2002). *Plasmodium falciparum*
1025 phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a
1026 possible target for malaria chemotherapy. *J. Exp. Med.* **195**, 23–34.

1027 Herzog, R., Schwudke, D., Schuhmann, K., Sampaio, J.L., Bornstein, S.R.,
1028 Schroeder, M., and Shevchenko, A. (2011). A novel informatics concept for high-
1029 throughput shotgun lipidomics based on the molecular fragmentation query
1030 language. *Genome Biol.* **12**, R8.

1031 Istvan, E.S., Mallari, J.P., Corey, V.C., Dharia, N. V, Marshall, G.R., Winzeler, E.A.,
1032 and Goldberg, D.E. (2017). Esterase mutation is a mechanism of resistance to
1033 antimalarial compounds. *Nat. Commun.* **8**, 14240.

1034 Jones, M.L., Das, S., Belda, H., Collins, C.R., Blackman, M.J., and Treeck, M.
1035 (2016). A versatile strategy for rapid conditional genome engineering using loxP sites
1036 in a small synthetic intron in *Plasmodium falciparum*. *Sci. Rep.* **6**.

1037 Kadamur, G., and Ross, E.M. (2013). Mammalian phospholipase C. *Annu Rev*
1038 *Physiol* **75**, 127–154.

1039 Ke, H., Morrisey, J.M., Ganesan, S.M., Painter, H.J., Mather, M.W., and Vaidya, A.B.
1040 (2011). Variation among *Plasmodium falciparum* strains in their reliance on
1041 mitochondrial electron transport chain function. *Eukaryot. Cell* **10**, 1053–1061.

1042 Knuepfer, E., Napiorkowska, M., van Ooij, C., and Holder, A.A. (2017). Generating
1043 conditional gene knockouts in *Plasmodium* - a toolkit to produce stable DiCre
1044 recombinase-expressing parasite lines using CRISPR/Cas9. *Sci. Rep.* **7**, 3881.

1045 Lasonder, E., Green, J.L., Camarda, G., Talabani, H., Holder, A.A., Langsley, G., and
1046 Alano, P. (2012). The *Plasmodium falciparum* schizont phosphoproteome reveals
1047 extensive phosphatidylinositol and cAMP-protein kinase A signaling. *J. Proteome*
1048 *Res.* **11**, 5323–5337.

1049 Lasonder, E., Green, J.L., Grainger, M., Langsley, G., and Holder, A.A. (2015).
1050 Extensive differential protein phosphorylation as intraerythrocytic *Plasmodium*

1051 falciparum schizonts develop into extracellular invasive merozoites. *Proteomics* 15,
1052 2716–2729.

1053 Lévêque, M.F., Berry, L., Yamaryo-Botté, Y., Nguyen, H.M., Galera, M., Botté, C.Y.,
1054 and Besteiro, S. (2017). TgPL2, a patatin-like phospholipase domain-containing
1055 protein, is involved in the maintenance of apicoplast lipids homeostasis in
1056 *Toxoplasma*. *Mol. Microbiol.* 105, 158–174.

1057 Liebisch, G., Binder, M., Schifferer, R., Langmann, T., Schulz, B., and Schmitz, G.
1058 (2006). High throughput quantification of cholesterol and cholesterol ester by
1059 electrospray ionization tandem mass spectrometry (ESI-MS/MS). *Biochim. Biophys.*
1060 *Acta* 1761, 121–128.

1061 López-Barragán, M.J., Lemieux, J., Quiñones, M., Williamson, K.C., Molina-Cruz, A.,
1062 Cui, K., Barillas-Mury, C., Zhao, K., and Su, X. zhuan (2011). Directional gene
1063 expression and antisense transcripts in sexual and asexual stages of *Plasmodium*
1064 falciparum. *BMC Genomics* 12.

1065 Macmillan, D., and McCarron, J.G. (2010). The phospholipase C inhibitor U-73122
1066 inhibits Ca(2+) release from the intracellular sarcoplasmic reticulum Ca(2+) store by
1067 inhibiting Ca(2+) pumps in smooth muscle. *Br. J. Pharmacol.* 160, 1295–1301.

1068 Malleret, B., Claser, C., Ong, A.S.M., Suwanarusk, R., Sripawat, K., Howland, S.W.,
1069 Russell, B., Nosten, F., and Rénia, L. (2011). A rapid and robust tri-color flow
1070 cytometry assay for monitoring malaria parasite development. *Sci. Rep.* 1.

1071 Mancuso, D.J., Sims, H.F., Han, X., Jenkins, C.M., Guan, S.P., Yang, K., Moon,
1072 S.H., Pietka, T., Abumrad, N.A., Schlesinger, P.H., et al. (2007). Genetic ablation of
1073 calcium-independent phospholipase A2gamma leads to alterations in mitochondrial
1074 lipid metabolism and function resulting in a deficient mitochondrial bioenergetic
1075 phenotype. *J. Biol. Chem.* 282, 34611–34622.

1076 Matyash, V., Liebisch, G., Kurzchalia, T. V, Shevchenko, A., and Schwudke, D.
1077 (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. *J.*

1078 Lipid Res. 49, 1137–1146.

1079 Matz, J.M., Goosmann, C., Matuschewski, K., and Kooij, T.W.A. (2018). An Unusual

1080 Prohibitin Regulates Malaria Parasite Mitochondrial Membrane Potential. Cell Rep.

1081 23, 756–767.

1082 De Moel, M.P., Van de Put, F.H., Vermegen, T.M., De Pont, J.H., and Willems, P.H.

1083 (1995). Effect of the aminosteroid, U73122, on Ca²⁺ uptake and release properties

1084 of rat liver microsomes. Eur. J. Biochem. 234, 626–631.

1085 Mogami, H., Lloyd Mills, C., and Gallacher, D. V (1997). Phospholipase C inhibitor,

1086 U73122, releases intracellular Ca²⁺, potentiates Ins(1,4,5)P₃-mediated Ca²⁺

1087 release and directly activates ion channels in mouse pancreatic acinar cells.

1088 Biochem. J. 324 (Pt 2, 645–651.

1089 Moon, R.W., Hall, J., Rangkuti, F., Ho, Y.S., Almond, N., Mitchell, G.H., Pain, A.,

1090 Holder, A.A., and Blackman, M.J. (2013). Adaptation of the genetically tractable

1091 malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes.

1092 Proc. Natl. Acad. Sci. U. S. A. 110, 531–536.

1093 De Niz, M., Burda, P.-C., Kaiser, G., Del Portillo, H.A., Spielmann, T., Frischknecht,

1094 F., and Heussler, V.T. (2017). Progress in imaging methods: insights gained into

1095 Plasmodium biology. Nat. Rev. Microbiol. 15, 37–54.

1096 Oehring, S.C., Woodcroft, B.J., Moes, S., Wetzel, J., Dietz, O., Pulfer, A., Dekiwadia,

1097 C., Maeser, P., Flueck, C., Witmer, K., et al. (2012). Organellar proteomics reveals

1098 hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum.

1099 Genome Biol. 13, R108.

1100 Painter, H.J., Morrisey, J.M., Mather, M.W., and Vaidya, A.B. (2007). Specific role of

1101 mitochondrial electron transport in blood-stage Plasmodium falciparum. Nature 446,

1102 88–91.

1103 Pease, B.N., Huttlin, E.L., Jedrychowski, M.P., Talevich, E., Harmon, J., Dillman, T.,

1104 Kannan, N., Doerig, C., Chakrabarti, R., Gygi, S.P., et al. (2013). Global analysis of

1105 protein expression and phosphorylation of three stages of *Plasmodium falciparum*
1106 intraerythrocytic development. *J. Proteome Res.* **12**, 4028–4045.
1107 Perrin, A.J., Collins, C.R., Russell, M.R.G., Collinson, L.M., Baker, D.A., and
1108 Blackman, M.J. (2018). The Actinomyosin Motor Drives Malaria Parasite Red Blood
1109 Cell Invasion but Not Egress. *MBio* **9**.
1110 Pfeiffer, K., Gohil, V., Stuart, R.A., Hunte, C., Brandt, U., Greenberg, M.L., and
1111 Schägger, H. (2003). Cardiolipin stabilizes respiratory chain supercomplexes. *J. Biol.*
1112 *Chem.* **278**, 52873–52880.
1113 Phillips, M.A., Gujjar, R., Malmquist, N.A., White, J., El Mazouni, F., Baldwin, J., and
1114 Rathod, P.K. (2008). Triazolopyrimidine-based dihydroorotate dehydrogenase
1115 inhibitors with potent and selective activity against the malaria parasite *Plasmodium*
1116 *falciparum*. *J. Med. Chem.* **51**, 3649–3653.
1117 Raabe, A., Berry, L., Sollelis, L., Cerdan, R., Tawk, L., Vial, H.J., Billker, O., and
1118 Wengelnik, K. (2011a). Genetic and transcriptional analysis of phosphoinositide-
1119 specific phospholipase C in *Plasmodium*. *Exp. Parasitol.* **129**, 75–80.
1120 Raabe, A.C., Wengelnik, K., Billker, O., and Vial, H.J. (2011b). Multiple roles for
1121 *Plasmodium berghei* phosphoinositide-specific phospholipase C in regulating
1122 gametocyte activation and differentiation. *Cell. Microbiol.* **13**, 955–966.
1123 Rolland, S.G., Motori, E., Memar, N., Hench, J., Frank, S., Winklhofer, K.F., and
1124 Conradt, B. (2013). Impaired complex IV activity in response to loss of LRPPRC
1125 function can be compensated by mitochondrial hyperfusion. *Proc. Natl. Acad. Sci. U.*
1126 *S. A.* **110**, E2967-76.
1127 Schwudke, D., Shevchenko, A., Hoffmann, N., and Ahrends, R. (2017). Lipidomics
1128 informatics for life-science. *J. Biotechnol.* **261**, 131–136.
1129 Silvestrini, F., Lasonder, E., Olivieri, A., Camarda, G., van Schaijk, B., Sanchez, M.,
1130 Younis Younis, S., Sauerwein, R., and Alano, P. (2010). Protein export marks the
1131 early phase of gametocytogenesis of the human malaria parasite *Plasmodium*

1132 falciparum. *Mol. Cell. Proteomics* 9, 1437–1448.

1133 Singh, P., Alaganan, A., More, K.R., Lorthiois, A., Thiberge, S., Gorgette, O.,

1134 Guillotte Blisnick, M., Guglielmini, J., Aguilera, S.S., Touqui, L., et al. (2019). Role of

1135 a patatin-like phospholipase in *Plasmodium falciparum* gametogenesis and malaria

1136 transmission. *Proc. Natl. Acad. Sci. U. S. A.* 116, 17498–17508.

1137 Singh, S., Alam, M.M., Pal-Bhowmick, I., Brzostowski, J.A., and Chitnis, C.E. (2010).

1138 Distinct external signals trigger sequential release of apical organelles during

1139 erythrocyte invasion by malaria parasites. *PLoS Pathog.* 6, e1000746.

1140 Smith, G.A., Marquis, H., Jones, S., Johnston, N.C., Portnoy, D.A., and Goldfine, H.

1141 (1995). The two distinct phospholipases C of *Listeria monocytogenes* have

1142 overlapping roles in escape from a vacuole and cell-to-cell spread. *Infect. Immun.* 63,

1143 4231–4237.

1144 Solyakov, L., Halbert, J., Alam, M.M., Semblat, J.-P., Dorin-Semblat, D., Reininger,

1145 L., Bottrill, A.R., Mistry, S., Abdi, A., Fennell, C., et al. (2011). Global kinomic and

1146 phospho-proteomic analyses of the human malaria parasite *Plasmodium falciparum*.

1147 *Nat. Commun.* 2, 565.

1148 Spillman, N.J., Dalmia, V.K., and Goldberg, D.E. (2016). Exported Epoxide

1149 Hydrolases Modulate Erythrocyte Vasoactive Lipids during *Plasmodium falciparum*

1150 Infection. *MBio* 7.

1151 Srivastava, I.K., and Vaidya, A.B. (1999). A mechanism for the synergistic

1152 antimalarial action of atovaquone and proguanil. *Antimicrob. Agents Chemother.* 43,

1153 1334–1339.

1154 Tarun, A.S., Vaughan, A.M., and Kappe, S.H.I. (2009). Redefining the role of de novo

1155 fatty acid synthesis in *Plasmodium* parasites. *Trends Parasitol.* 25, 545–550.

1156 Taylor, H.M., McRobert, L., Grainger, M., Sicard, A., Dluzewski, A.R., Hopp, C.S.,

1157 Holder, A.A., and Baker, D.A. (2010). The malaria parasite cyclic GMP-dependent

1158 protein kinase plays a central role in blood-stage schizogony. *Eukaryot. Cell* 9, 37–

1159 45.

1160 Thomas, J.A., Collins, C.R., Das, S., Hackett, F., Graindorge, A., Bell, D., Deu, E.,
1161 and Blackman, M.J. (2016). Development and Application of a Simple Plaque Assay
1162 for the Human Malaria Parasite *Plasmodium falciparum*. *PLoS One* *11*, e0157873.

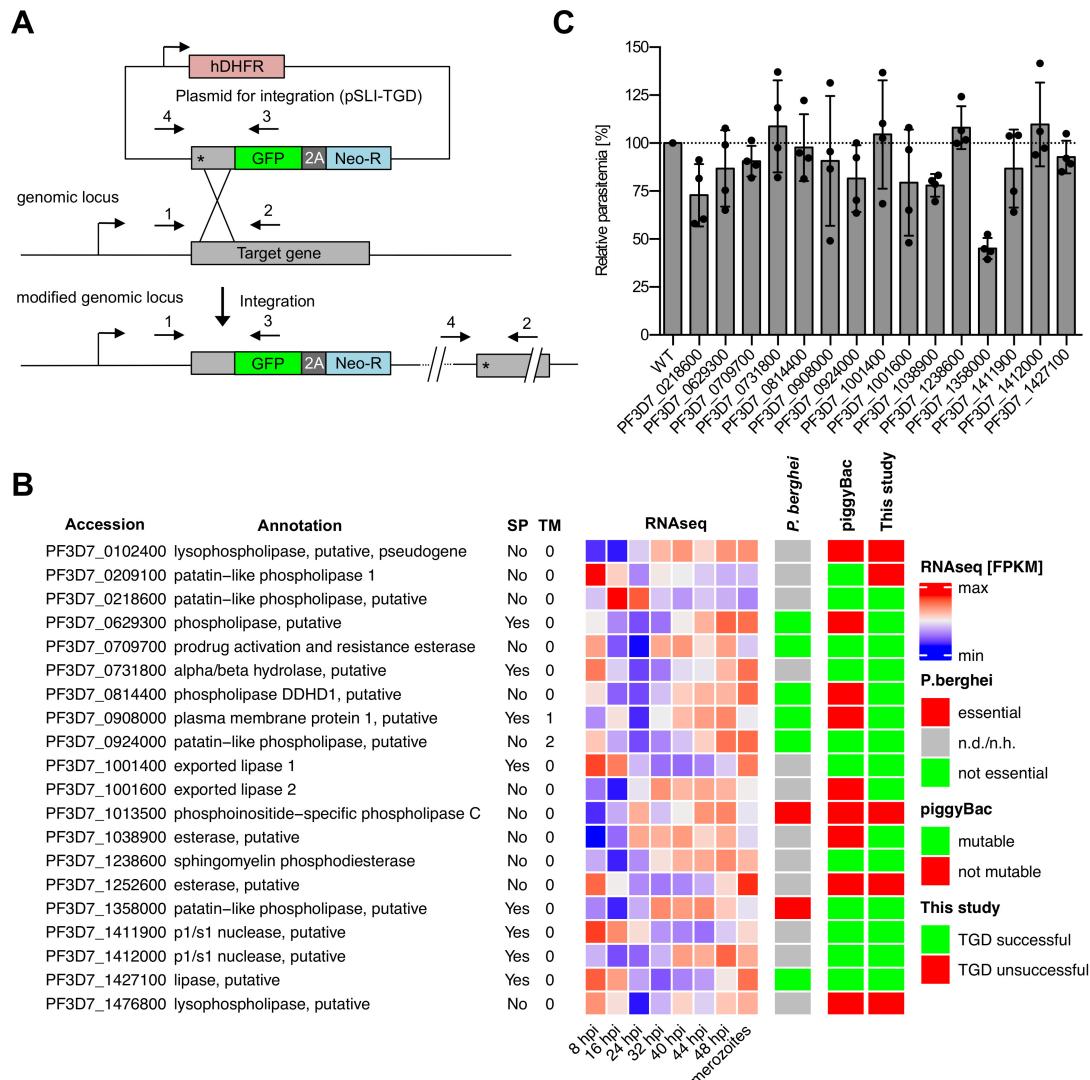
1163 Trager, W., and Jensen, J.B. (1976). Human malaria parasites in continuous culture.
1164 *Science* (80-). *193*, 673–675.

1165 Tran, P.N., Brown, S.H.J., Rug, M., Ridgway, M.C., Mitchell, T.W., and Maier, A.G.
1166 (2016). Changes in lipid composition during sexual development of the malaria
1167 parasite *Plasmodium falciparum*. *Malar. J.* *15*.

1168 Treeck, M., Sanders, J.L., Elias, J.E., and Boothroyd, J.C. (2011). The
1169 phosphoproteomes of *Plasmodium falciparum* and *Toxoplasma gondii* reveal unusual
1170 adaptations within and beyond the parasites' boundaries. *Cell Host Microbe* *10*, 410–
1171 419.

1172 Vaidya, A.B., and Mather, M.W. (2009). Mitochondrial evolution and functions in
1173 malaria parasites. *Annu. Rev. Microbiol.* *63*, 249–267.

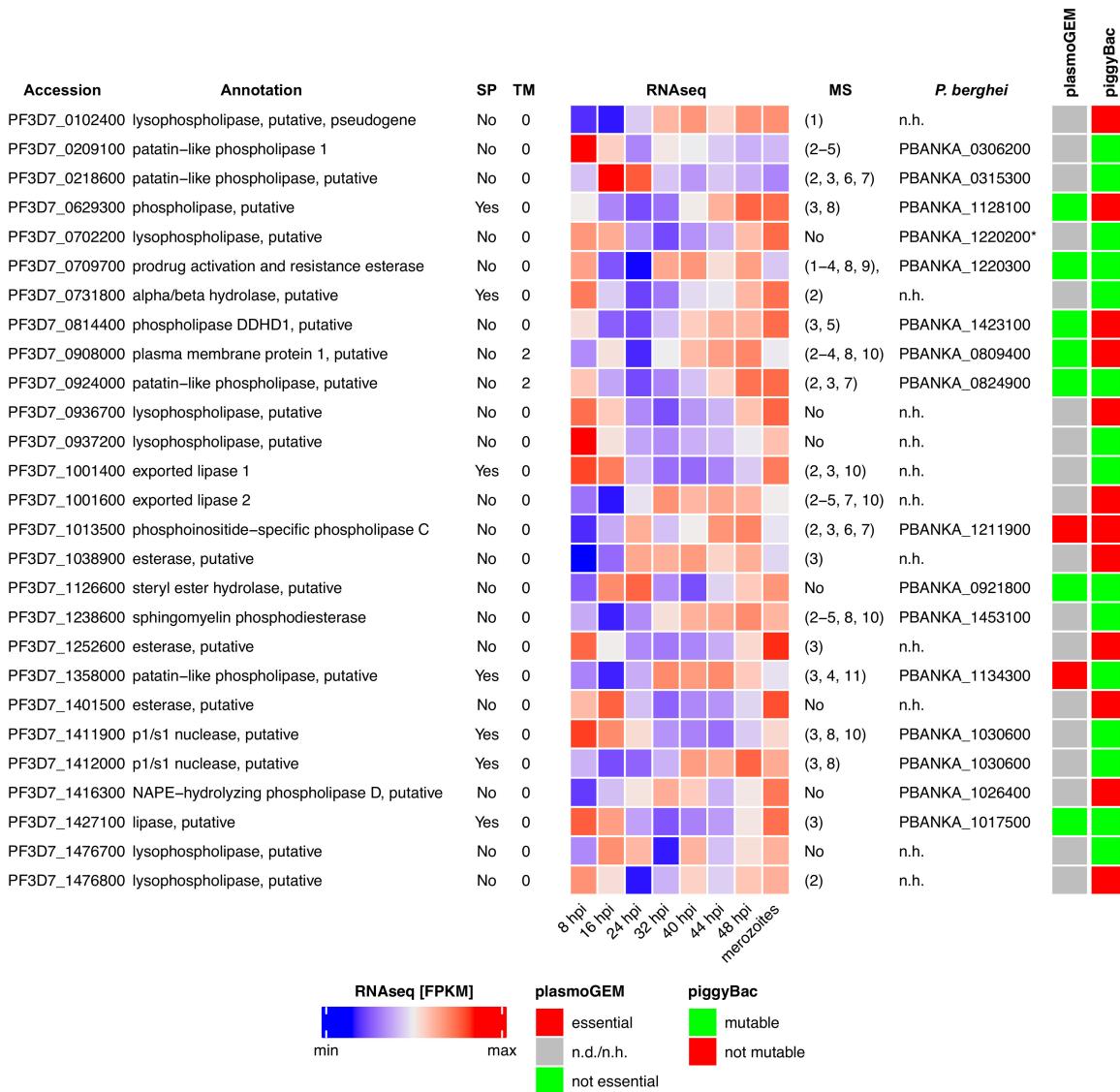
1174 WHO (2019). World malaria report 2019.


1175 Wickers, J.S., Scholz, J.A.M., Strauss, J., Witt, S., Lill, A., Ehnold, L.-I., Neupert, N.,
1176 Liffner, B., Lühken, R., Petter, M., et al. (2019). Dissecting the Gene Expression,
1177 Localization, Membrane Topology, and Function of the *Plasmodium falciparum*
1178 STEVOR Protein Family. *MBio* *10*.

1179 Wilson, S.K., and Knoll, L.J. (2018). Patatin-like phospholipases in microbial
1180 infections with emerging roles in fatty acid metabolism and immune regulation by
1181 Apicomplexa. *Mol. Microbiol.* *107*, 34–46.

1182 Zhang, M., Wang, C., Otto, T.D., Oberstaller, J., Liao, X., Adapa, S.R., Udenze, K.,
1183 Bronner, I.F., Casandra, D., Mayho, M., et al. (2018). Uncovering the essential genes
1184 of the human malaria parasite *Plasmodium falciparum* by saturation mutagenesis.
1185 *Science* (80-). *360*.

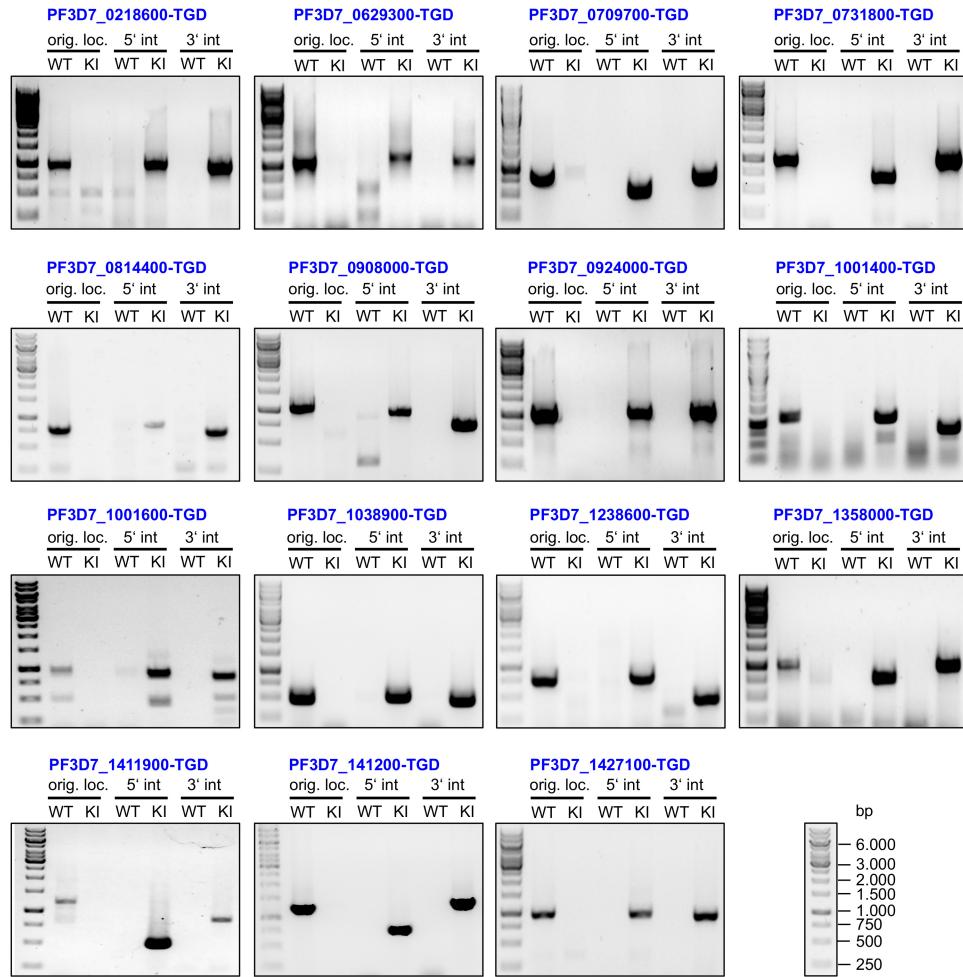
1187 **FIGURES AND FIGURE SUPPLEMENTS**

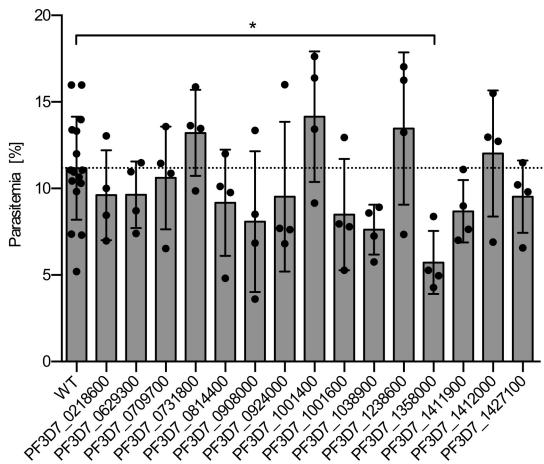


1188

1189 **Figure 1.** Gene disruption screen of the 20 predicted *P. falciparum* phospholipases
1190 expressed during blood stage development. A) Schematic of the selection-linked-
1191 integration (SLI) strategy used for targeted gene disruption (TGD)-based essentiality
1192 screening of the 20 putative phospholipases that show expression evidence in blood
1193 stages by mass spectrometry. Localization of primers used to detect successful
1194 integration of targeting constructs by PCR are indicated. Integration PCR results are
1195 displayed in Figure 1- figure supplement 2. 2A, skip peptide; Neo-R, neomycin-
1196 resistance gene; asterisks, stop codons; arrows, promoters. B) Results of the gene
1197 deletion screen compared to the results of genome-wide knockout screens in *P.*
1198 *falciparum* using piggyBack transposon-based mutagenesis (Zhang et al., 2018) and

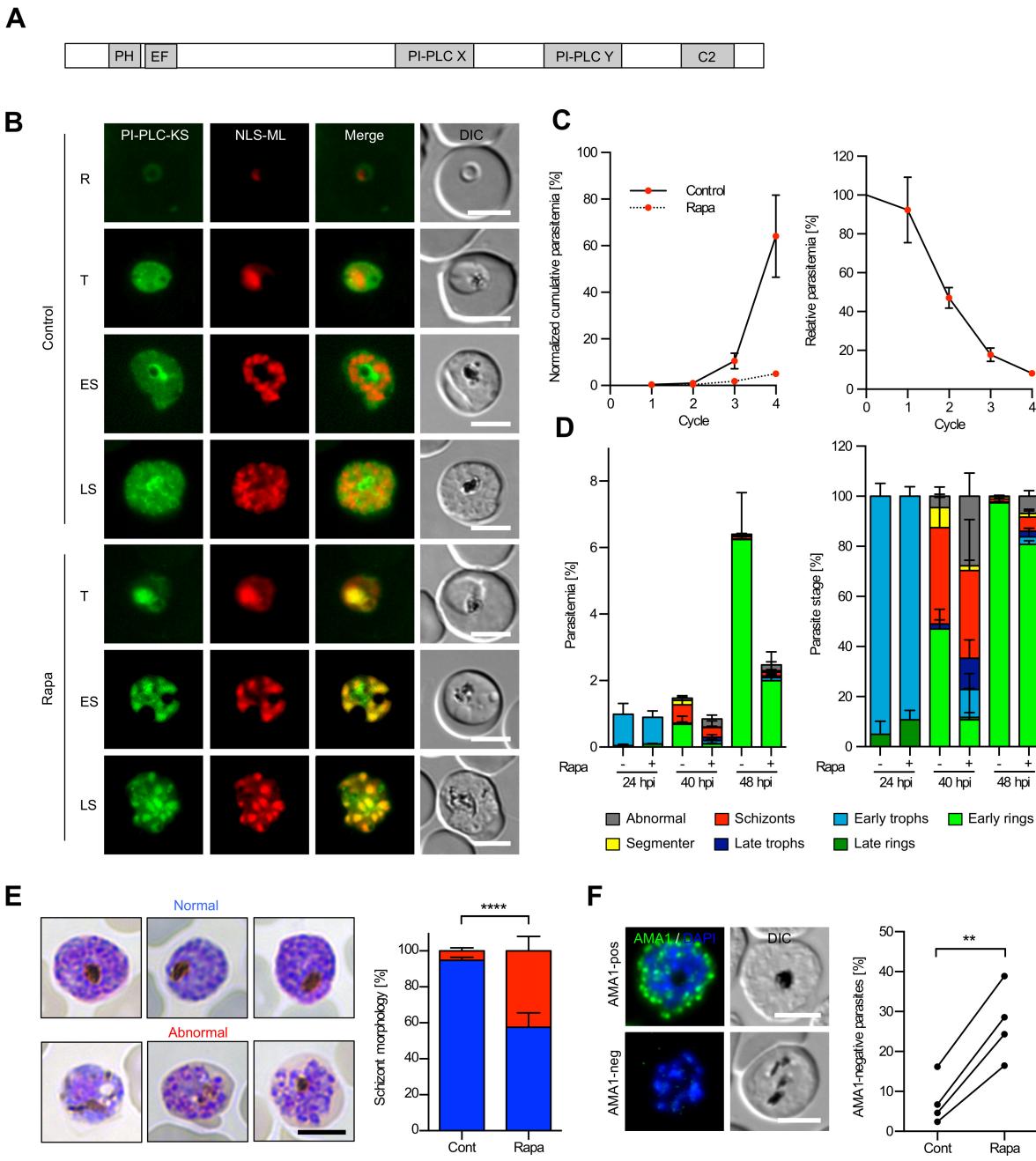
1199 in *P. berghei* (Bushell et al., 2017), respectively. RNAseq expression data is derived
1200 from (Wichers et al., 2019). SP, signal peptide; TM, transmembrane domain. For
1201 further details see Figure 1 – figure supplement 1. C) Flow cytometry-based growth
1202 analysis of synchronous phospholipase mutant parasite lines after two erythrocytic
1203 cycles in comparison to 3D7 WT parasites. Relative growth of each parasite line is
1204 shown in comparison to 3D7 WT parasites, the growth rate of which was normalized
1205 to 100% in each experiment. Shown are means +/- SD of four independent growth
1206 experiments per parasite line. Raw parasitemia values are shown in Figure 1 – figure
1207 supplement 3.


1208

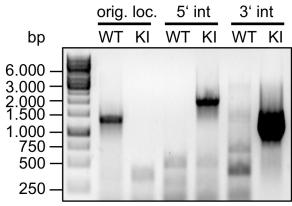


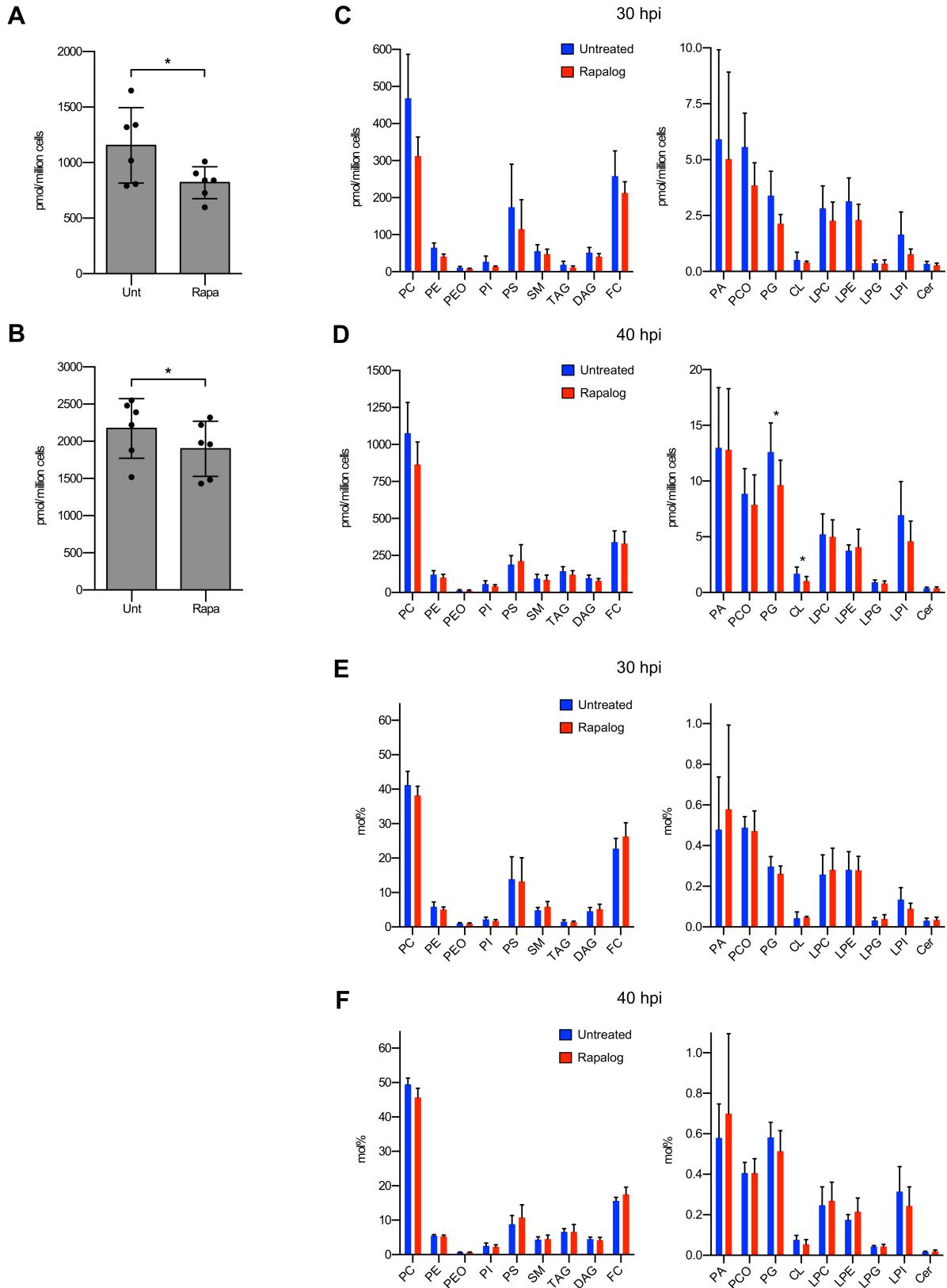
1209

1210 **Figure 1 - figure supplement 1.** Putative phospholipases of *P. falciparum*. Mass-
 1211 spectrometry (MS) expression data are based on the following references: 1)
 1212 (Florens et al., 2002) 2) (Treeck et al., 2011) 3) (Pease et al., 2013) 4) (Bowyer et al.,
 1213 2011) 5) (Solyakov et al., 2011) 6) (Lasonder et al., 2015) 7) (Lasonder et al., 2012)
 1214 8) (Oehring et al., 2012), 9) (Florens et al., 2004), 10) (Silvestrini et al., 2010), 11)
 1215 (Cobbold et al., 2016). RNAseq expression data is derived from (Wichers et al.,
 1216 2019). Orthologues in the rodent malaria model *P. berghei* were identified in
 1217 PlasmoDB (Aurrecoechea et al., 2009) and are based on (Chen et al., 2006). Non-
 1218 syntenic orthologues are marked with an asterisk. Results of the genome-wide KO
 1219 screens in *P. berghei* (plasmoGEM) (Bushell et al., 2017) and *P. falciparum* using


1220 piggyBac-based mutagenesis (Zhang et al., 2018) are shown. SP, signal peptide;
1221 TM, transmembrane domain.

1232

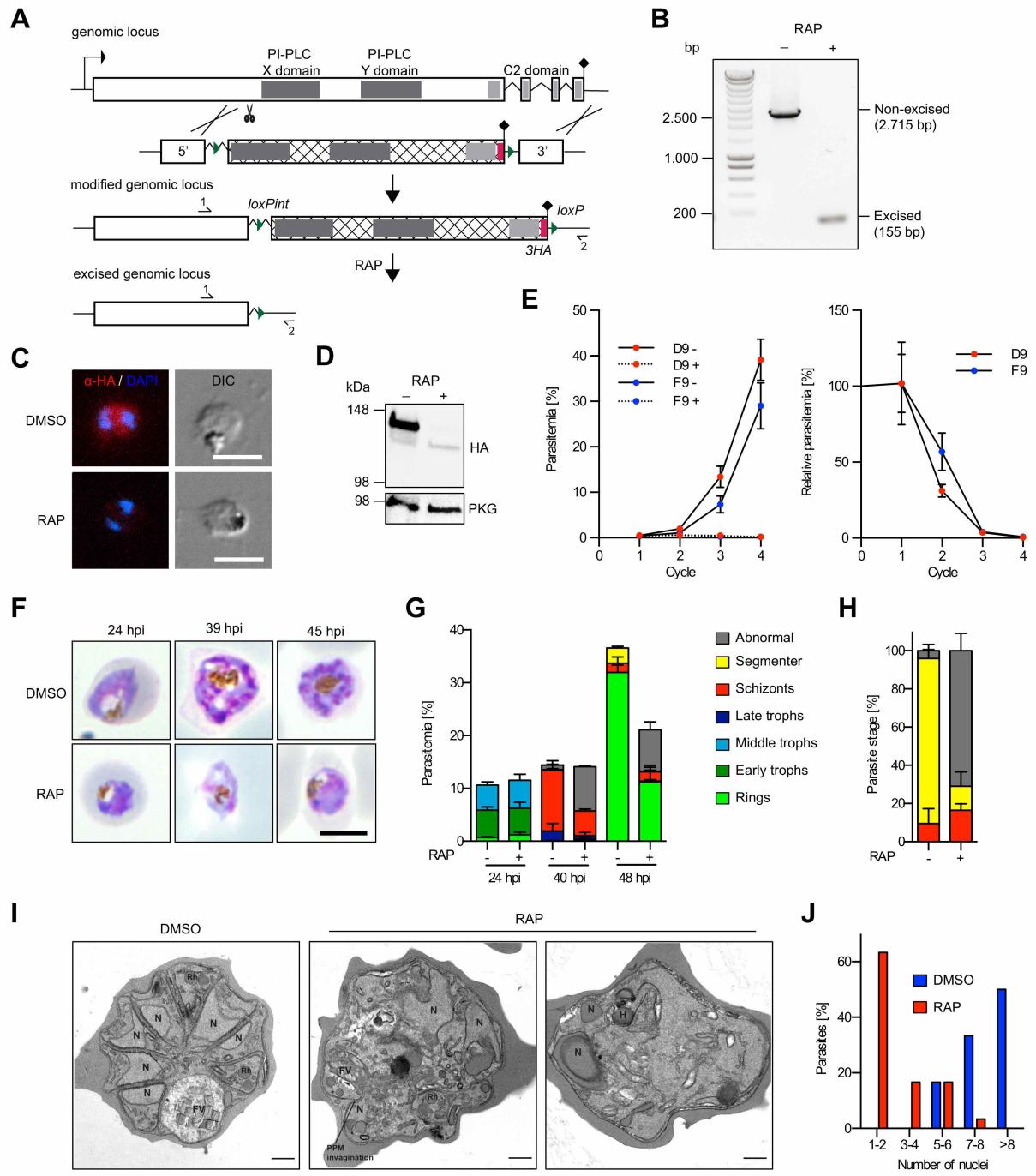

1233 **Figure 1 – figure supplement 3.** FACS-based growth analysis of synchronous
1234 phospholipase KO parasite lines after two erythrocytic cycles in comparison to 3D7
1235 WT parasites. Raw parasitemia values with means +/- SD of four independent growth
1236 experiments per parasite line are shown. 3D7 WT parasites were included in each
1237 independent assay as a reference. For statistical analysis of growth rates of the
1238 different parasite lines in comparison to WT parasites, a one-way analysis of
1239 variance (ANOVA) followed by a Holm-Sidak multiple comparison test was
1240 performed. All statistically significant differences are indicated (* p < 0.05).



1241

1242 **Figure 2.** PI-PLC has an essential role in trophozoite and schizont development. A) 1243 Schematic representation of the functional domains of PI-PLC. B) Live cell 1244 microscopy of ring (R), trophozoite (T) early schizont (ES) and late schizont (LS) of 1245 PI-PLC-GFP-KS parasites expressing endogenously FKBP-GFP-tagged PI-PLC 1246 (green) in addition to a nuclear mislocalizer fused to mCherry (NLS-ML, red). 1247 Parasites were either untreated (control) or treated with Rapa to conditionally 1248 mislocalize the PI-PLC to the nucleus. DIC, differential interference contrast. C) 1249 Growth over four erythrocytic cycles of PI-PLC-GFP-KS parasites treated with Rapa

1250 in comparison to untreated control parasites as determined by flow cytometry. For
1251 calculation of the normalized cumulative parasitemia (shown on the left), parasitemia
1252 levels of untreated parasites were normalized to 1% in the second cycle. For
1253 calculation of relative parasitemia values (shown on the right), the parasitemia of
1254 Rapa-treated parasites was divided by the parasitemia of the respective untreated
1255 controls. Shown are means +/- SD of four independent experiments. D) Stage and
1256 parasitemia quantification of control and Rapa-treated PI-PLC-GFP-KS parasites at
1257 24, 40 and 48 hpi. Shown are means +/- SD of four independent experiments. E, F)
1258 Schizont morphology and AMA1 expression of untreated and Rapa-treated PI-PLC-
1259 GFP-KS schizonts at 48 hpi, which were cultured in presence of C2 for 8 hours to
1260 prevent egress. In (E) schizont morphology was determined by microscopic
1261 examination of Giemsa-stained parasites. Shown are means +/- SD of four
1262 independent experiments, in which a total of 156 control and 153 Rapa-treated
1263 schizonts were analyzed. Statistical evaluation was by unpaired students t-test (**** p
1264 < 0.0001). Representative images of normal and abnormal schizonts are shown on
1265 the left. In (F) AMA1-expression was assessed by IFA. Shown are means +/- SD of
1266 four independent experiments, in which a total of 306 control and 356 Rapa-treated
1267 schizonts were analyzed. Statistical analysis was by a paired students t-test (** p <
1268 0.01). Representative AMA1-positive and AMA1-negative schizonts are shown on the
1269 left. All scale bars, 5 μ m.



1279

1280 **Figure 2 – figure supplement 2.** Lipidomic analysis of untreated and Rapa-treated
 1281 PI-PLC-GFP-KS parasites. Parasites were grown in absence or presence of Rapa
 1282 and harvested at 30 hpi and 40 hpi for lipidomic analysis. A, B) Total lipid amount of
 1283 untreated and Rapa-treated PI-PLC-knocksideways parasites at 30 hpi (A) and 40

1284 hpi (B). C, D) Absolute lipid levels of untreated and Rapa-treated PI-PLC-
1285 knocksideways parasites at 30 hpi (C) and 40 hpi (D). E, F) Relative abundance of
1286 lipid species in the total lipid composition (mol%) at 30 hpi (E) and 40 hpi (F). Data
1287 are based on 6 biological replicates. Means +/- SD are shown. Statistical evaluations
1288 were performed using paired two-tailed students t-test. For the data displayed in C-F,
1289 the Holm-Šídák method was used to correct for multiple comparisons. All statistically
1290 significant differences are indicated (* p < 0.05). PC, phosphatidylcholine; PE,
1291 phosphatidylethanolamine; PEO, alkyl-acylglycerophosphoethanolamines; PI,
1292 phosphatidylinositol; PS, phosphatidylserine; SM, sphingomyelin; TAG,
1293 triacylglycerol; DAG, diacylglycerol; FC, free cholesterol; PA, phosphatidic acid;
1294 PCO, alkyl-acylglycerophosphocholines; PG, phosphatidylglycerol; CL, cardiolipin,
1295 LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; LPG,
1296 lysophosphatidylglycerol, LPI, lysophosphatidylinositol, Cer, ceramide. For a
1297 complete overview of all the results of the lipidomic analyses please see
1298 Supplementary file 2.

1299

1300 **Figure 3.** Conditional gene disruption confirms essentiality of PI-PLC. A) Schematic
 1301 of the strategy used to generate a conditional PI-PLC knockout line (PI-
 1302 PLC:HA:loxPint). The X and Y catalytic domains (dark grey) and the lipid-binding C2
 1303 domain (light grey) were floxed by introducing an upstream *loxP*-containing intron
 1304 (loxPint) and a second *loxP* site downstream of the translational stop site (lollipop).
 1305 Sites of targeted Cas9-mediated double-stranded DNA break (scissors), left and right
 1306 homology arms for homology-directed repair (5' and 3'), introduced *loxP* sites (arrow
 1307 heads), recodonized sequences (hatched) and 3xHA epitope (red) are indicated.

1308 RAP-induced DiCre-mediated excision results in removal of the functional domains.

1309 Primers 1 and 2 (half arrows) were used for diagnostic PCR to assess excision. B)

1310 Confirmation of efficient gene excision by PCR. Samples were taken at 12 h post

1311 RAP- or mock (DMSO) treatment of ring stage parasites. Expected PCR amplicon

1312 sizes from non-excised and excised parasites are shown. Shown is one

1313 representative experiment (of five independent experiments). C) IFA images of mock

1314 or RAP-treated PI-PLC:HA:loxPint trophozoite stage parasites. Parasites were fixed

1315 at 33 hpi and stained with an anti-HA-antibody (red). DAPI-stained nuclei are shown

1316 in blue. DIC, differential interference contrast. Scale bars, 5 μ m. D) Western blot of

1317 mature schizonts (45 hpi) showing successful RAP-induced ablation of PI-PLC-3xHA

1318 expression in the erythrocytic cycle of RAP addition. PKG served as a loading

1319 control. Note that PI-PLC-3xHA in DMSO-treated parasites runs slightly lower as

1320 compared to its calculated molecular weight of 167,4 kDa. E) Replication of mock-

1321 (solid line) and RAP-treated (dashed line) parasites from two clonal lines of PI-

1322 PLC:HA:loxPint over four erythrocytic cycles. For calculation of relative parasitemia

1323 values (shown on the right), the parasitemia of RAP-treated parasites was divided by

1324 the parasitemia of respective mock-treated control parasites. Shown are means +/-

1325 SD of three biological replicates (different blood sources). F) Giemsa-stained images

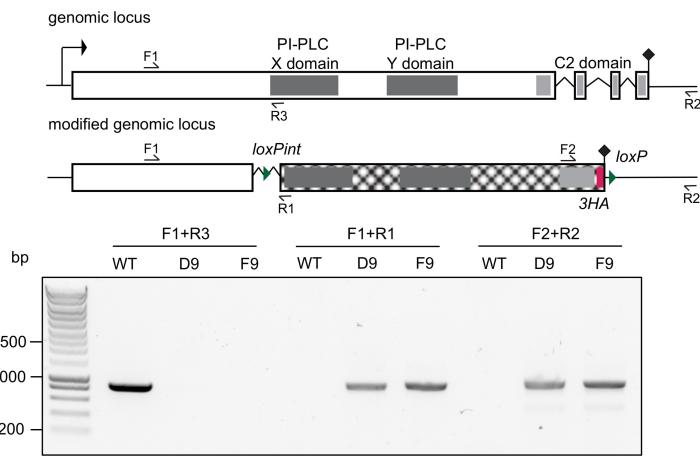
1326 of DMSO- and RAP-treated PI-PLC:HA:loxPint parasites at 24, 39 and 45 hpi.

1327 Representative images of two independent experiments are shown. Scale bars, 5

1328 μ m. G) Stage and parasitemia quantification of mock- and RAP-treated PI-

1329 PLC:HA:loxPint parasites at 24, 40 and 48 hpi. Shown are means +/- SD of three

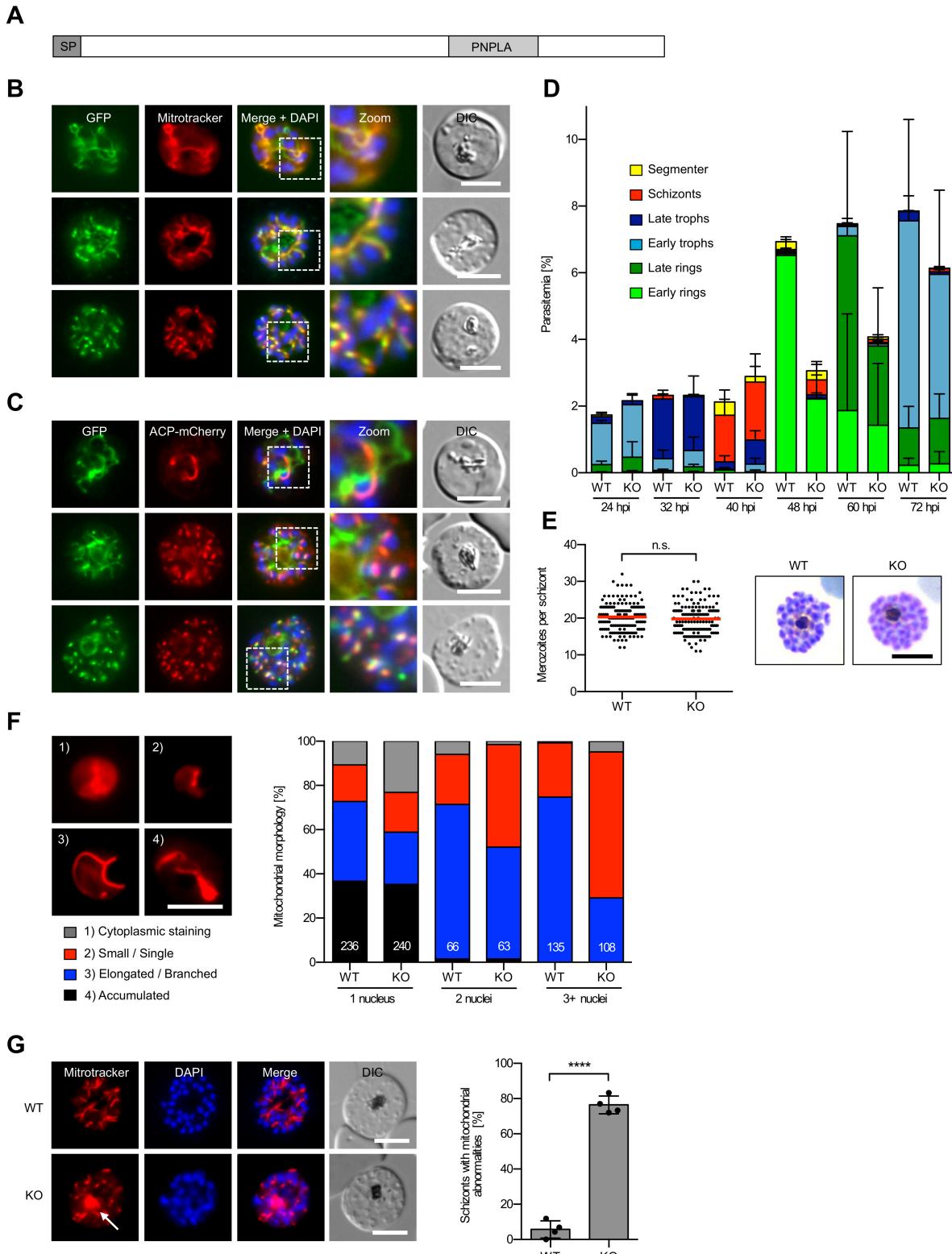
1330 biological replicates. H, I, J) Morphological analysis of mock- or RAP-treated


1331 PLC:HA:loxPint parasites that were allowed to mature to egress-stalled schizonts

1332 from 46 to 49 hpi in the presence of C2. In (H) parasite morphology was assessed on

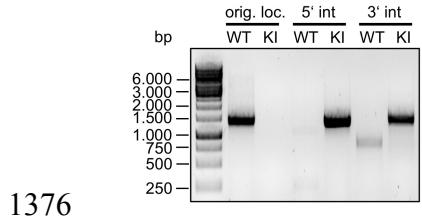
1333 Giemsa-stained blood smears. Shown are means +/- SD of three independent

1334 experiments. Color code same as in (G). In (I) and (J) parasite morphology was

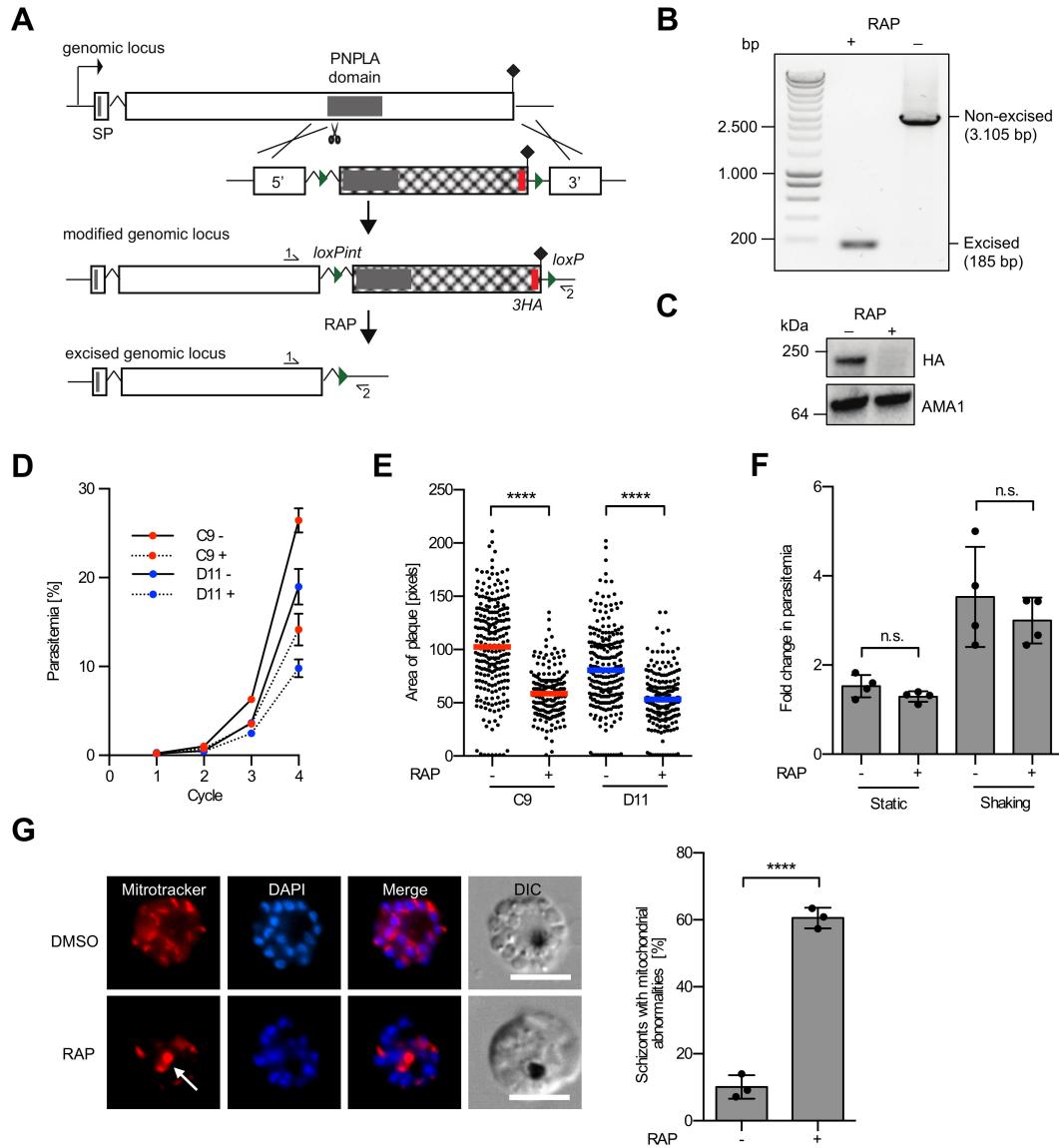

1335 assessed using TEM. Representative images of mock- and RAP treated parasites
1336 are displayed in (I) and a quantification of nuclei is shown in (J). Results are
1337 representative of 18 DMSO- and 30 RAP-treated analyzed parasites. N, nucleus; FV,
1338 food vacuole; PPM, parasite plasma membrane; Rh, rhoptries; H, haemoglobin-
1339 containing cytostome. Scale bar, 500 nm.

1340

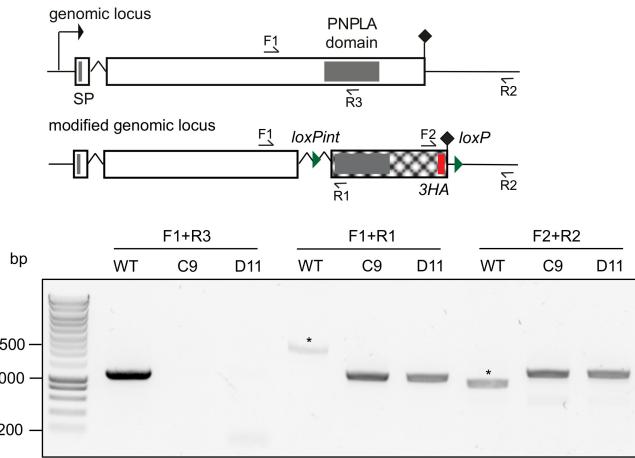
1341 **Figure 3 – figure supplement 1.** Integration PCR of PI-PLC:HA:loxPint parasites.


1342 Schematic of the *pi-PLC* locus before and after CRISPR-Cas9-based gene editing is
1343 shown on top, while agarose gel electrophoresis of PCR products from unmodified
1344 WT and clonal modified parasite lines are displayed below. Primers used for
1345 confirming correct integration into the genome are indicated with arrows. For primer
1346 sequences see Supplementary file 1.

1347

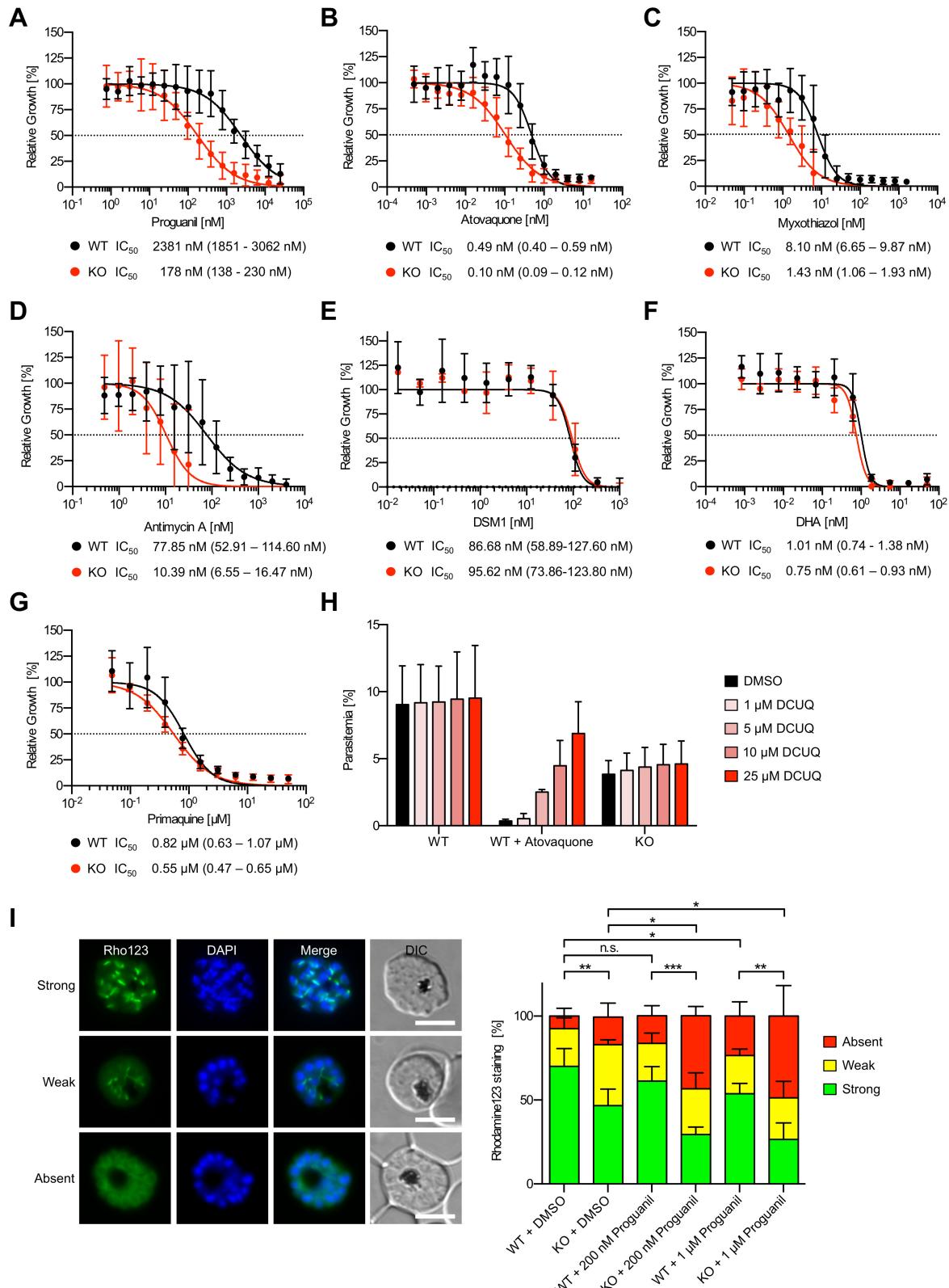

1348 **Figure 4.** PNPLA2 localizes to the mitochondrion and is involved in mitochondrial
 1349 morphogenesis. A) Schematic overview of the functional domains of PNPLA2. SP,
 1350 signal peptide; PNPLA, patatin-like phospholipase domain. B, C) Live-cell
 1351 microscopy of parasites expressing endogenously tagged PNPLA2-GFP (green).
 1352 Parasites stained with MitoTracker Red (red) are shown in (B), whereas parasites co-

1353 expressing the apicoplast marker ACP-mCherry (red) are shown in (C). Merged
1354 images additionally contain DAPI-stained nuclei (blue). DIC, differential interference
1355 contrast. D) Stage quantification of WT and PNPLA2-KO parasites at different points
1356 after invasion. Shown are means +/- SD of three independent experiments. E)
1357 Merozoite numbers per schizont in WT and PNPLA2-KO parasites. Shown are
1358 pooled data of three independent experiments. In each experiment the number of
1359 merozoites per schizont was determined from 50 schizonts per parasite line. Mean
1360 values are highlighted in red. Statistical evaluation used unpaired two-tailed students
1361 t-test (n.s., not significant). Representative Giemsa-stained images of WT and KO
1362 parasites are shown on the right. F, G) Mitochondrial morphology as visualized by
1363 MitoTracker Red staining (red) in WT and PNPLA2-KO parasites. In (F) mitochondrial
1364 morphology was evaluated between 24 and 40 hpi and parasites were divided
1365 according to their number of nuclei. Shown are mean values of two independent
1366 experiments. The total number of schizonts analyzed in each category is shown at
1367 the bottom of each graph. Representative images of the different mitochondrial
1368 morphologies observed are displayed on the left. In (G) WT and KO schizonts were
1369 arrested from 40 to 48 hpi with C2 to prevent egress and the percentage of schizonts
1370 having at least one abnormal mitochondrial accumulation determined. Shown are
1371 means +/- SD of four independent experiments, in which a total of 381 WT and 376
1372 KO schizonts were analyzed. Statistical evaluation used unpaired students t-test (****
1373 $p < 0.0001$). Representative images of WT and KO schizonts are shown on the left.
1374 DAPI-stained nuclei are shown in blue. A typical mitochondrial accumulation
1375 observed in KO parasites is arrowed. All scale bars, 5 μ m.


1377 **Figure 4 – figure supplement 1.** Integration PCR of PNPLA2-GFP parasites.

1378 Agarose gel electrophoresis of PCR products amplified from genomic DNA of
1379 PNPLA2-GFP as well as unmodified WT parasites. Primers used are as indicated in
1380 Figure 1, demonstrating a product across the 5' and 3' integration junction (indicated
1381 as 5' int and 3' int, respectively) as well as quantitative absence of the original locus
1382 ('orig. loc.'). Absence of this band indicates that no WT parasites remained in the
1383 parasite population. KI, knock in cell line. For primer sequences see Supplementary
1384 file 1.

1386 **Figure 5.** Conditional gene disruption confirms a key role of PNPLA2 in parasite
 1387 growth and mitochondrial morphogenesis. A) Schematic of the strategy used to make
 1388 a conditional PNPLA2-KO line (PNPLA2:HA:loxPint). The PNPLA domain (dark grey)
 1389 was floxed by introducing a *loxP*-containing intron (*loxPint*) upstream of the domain
 1390 and a second *loxP* site downstream of the translational stop site (lollipop). Sites of
 1391 targeted Cas9-mediated double-stranded DNA break (scissors), left and right
 1392 homology arms for homology-directed repair (5' and 3'), introduced *loxP* sites (arrow
 1393 heads), recodonized sequences (hatched) and 3xHA epitope (red) are indicated.
 1394 RAP-induced DiCre-mediated excision results in removal of the functional domains.
 1395 Primers 1 and 2 (half arrows) were used for diagnostic PCR. B) Confirmation of
 1396 efficient gene excision by PCR. Samples were taken at 12 h post RAP or mock


1397 (DMSO) treatment of ring stage parasites. Expected PCR product sizes for non-
1398 excised and excised parasites are shown. Displayed are results of one
1399 representative experiment (out of five independent experiments). C) Western blot of
1400 C2-arrested mature schizonts (48 hpi) showing successful RAP-induced ablation of
1401 PNPLA2-HA expression in the erythrocytic cycle of RAP addition. AMA1 served as a
1402 loading control. Shown is one representative out of two independent experiments. D)
1403 Replication of mock- (solid line) and RAP-treated (dashed line) parasites from two
1404 clonal lines of PNPLA2:HA:loxPint parasites over four erythrocytic cycles. Shown are
1405 means +/- SD of three biological replicates. E) Replication of individual mock- and
1406 RAP-treated parasites from two clonal lines over five erythrocytic cycles measured as
1407 area of clonal plaques formed after 10 days of growth. Statistical evaluation used an
1408 unpaired students t-test (**** = P < 0.0001). F) Fold change in parasitemia after 4 h
1409 invasion of mock- and RAP-treated schizonts under static and shaking conditions.
1410 Shown are means +/- SD of two independent experiments with two biological
1411 replicates each. Statistical evaluation used unpaired students t-test (n.s., not
1412 significant). G) Mitochondrial morphology as visualized by MitoTracker Red (red)
1413 staining in mock- and RAP-treated PNPLA2:HA:loxPint parasites. Schizonts were
1414 arrested from 46 to 49 hpi with C2 to prevent egress and the percentage of schizonts
1415 having at least one abnormal mitochondrial accumulation was determined. Shown
1416 are means +/- SD of three independent experiments, in which a total of 481 mock-
1417 and 522 RAP-treated schizonts were analyzed. Unpaired students t-test was used for
1418 statistical evaluation (**** p < 0.0001). Representative images of mock- and RAP-
1419 treated schizonts are shown on the left. DAPI-stained nuclei, blue. The arrow
1420 indicates a typical mitochondrial accumulation observed in KO parasites. DIC,
1421 differential interference contrast. All scale bars, 5 μ m.

1422

1423 **Figure 5 – figure supplement 1.** Integration PCR of PNPLA2:HA:loxPint parasites.

1424 Schematic of the *pnpla2* locus before and after CRISPR-Cas9-based gene editing is
1425 shown on top, while agarose gel electrophoresis of PCR products from unmodified
1426 WT and clonal modified parasite lines are displayed below. Primers used for
1427 confirming correct integration into the genome are indicated with arrows. Non-specific
1428 PCR products are marked with an asterisk. For primer sequences see
1429 Supplementary file 1.

1430

1431 **Figure 6.** PNPLA2-KO parasites have a defect in the mtETC. A-G) Drug
1432 susceptibility assays of WT and PNPLA2-KO parasites using proguanil (A),
1433 atovaquone (B), myxothiazol (C), antimycin A (D), DSM1 (E), dihydroartemisinin
1434 (DHA, F), primaquine (G). Parasite growth was assessed by measuring DNA content

1435 using SYBR gold when exposed to varying concentrations of drugs for 96 h. The
1436 growth of DMSO-treated control parasites was set to 100%. Shown are means +/-
1437 SD of 3 to 6 independent experiments performed in duplicate. Calculated IC₅₀ values
1438 with 95% confidence intervals are shown below each graph. H) The artificial electron
1439 acceptor decylubiquinone (DCUQ) does not rescue growth of PNLA2-KO parasites.
1440 WT and PNPLA2-KO parasites were grown in presence of various concentrations of
1441 DCUQ for two parasites cycles and parasitemia was evaluated using flow cytometry.
1442 As positive control, WT parasites were additionally treated with 1,15 nM atovaquone.
1443 Shown are means +/- SD of three independent experiments. I) PNPLA2-KO
1444 parasites have a defect in sustaining normal ΔΨm. C2-arrested WT and PNPLA2-KO
1445 schizonts that had been treated with DMSO (solvent control), 200 nM or 1 μM of
1446 proguanil were stained with the mitochondrial potentiometric dye rhodamine123
1447 (Rho123, green) and parasites with a strong, weak or absent mitochondrial
1448 rhodamine123 signal were quantified by fluorescence microscopy. Shown are means
1449 +/- SD of four independent experiments, in which a total of 352 to 414 schizonts were
1450 analyzed per cell line and condition. For statistical evaluation a one-way ANOVA
1451 followed by a Holm-Sidak multiple comparison test was performed (*p < 0.05; **p <
1452 0.01; ***p < 0,001; n.s., not significant). Representative images are shown on the left.
1453 DAPI-stained nuclei are shown in blue. DIC, differential interference contrast. Scale
1454 bars, 5 μm.

1455 **Supplementary file 1.** Oligonucleotides and other synthetic DNA used in this study.

1456

1457 **Supplementary file 2.** Lipidomic analysis of untreated and Rapa-treated PI-PLC-

1458 GFP-KS parasites.

1459

1460 **Supplementary file 3.** Details on the lipid standard used for lipidomic analysis.