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Abstract

The transposable elements (TESs) through evolutionary exaptation have become an
integral part of human genome, offering ample regulatory sequences and shaping
chromatin 3D architecture. While the functional impacts of TE-derived sequences on
early embryogenesis are recognized, their role in malignancy has only started to
emerge. Here we show that many TES, especially the pluripotency-related endogenous
retrovirus H (HERVH), are abnormally activated in colorectal cancer (CRC) samples.
The transcriptional upregulation of HERVH is associated with mutations of several
tumor suppressors including ARID1A. Knockout of ARID1A in CRC cells leads to
increased accessibility at HERVH loci and enhanced transcription, which is dependent
on ARID1B. Suppression of HERVH in CRC cells and patient-derived organoids
impairs tumor growth. Mechanistically, HERVH transcripts colocalize with nuclear
BRD4 foci, modulate their dynamics, and co-regulate many target genes. Altogether,
we uncover a critical role for ARID1A in restraining HERVH, which can promote
tumorigenesis by stimulating BRD4-dependent transcription when ARID1A is
mutated.
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I ntroduction

We have been facing constant viral attacks during the course of evolution. While most
viruses come and go, few have invaded and colonized the germline genome,
becoming a significant fraction of transposable elements (TES) that contribute more
than 50% to the human nuclear DNA content™. Human TEs include DNA
transposons, long termina repeat (LTR) retrotransposons, and non-LTR
retrotransposons. The majority of them has lost the ability to transpose during
evolution and had long been regarded as functionless repetitive DNA. Recent studies
however have begun to reveal that TEs are an abundant source of many regulatory
sequences™®*®, such as microRNAs (miRNAs) and long noncoding RNAs
(INcRNAs)"™*2, and that TEs are co-opted to serve important functions including
transcriptional  regulation, chromatin organization and 3D compartmentalization,

especially during early embryogenesis and in embryonic stem cells (ESCs)***%,

The endogenous retroviruses (ERV's), which have been identified half a century ago®,
make up 8% of the human genome. They are LTR retrotransposons and have similar
compositions to retroviruses, with internal coding sequences (gag-pro-pol-env)
flanked by a pair of identical LTRs containing cisregulatory elements for
transcription. By estimation, there are 98,000 copies of ERV's and their derivatives,
with human endogenous retrovirus H (HERVH) being one of the most abundant
groups, comprising a total of ~2000 copies among which ~100 are close to
full-length®?. ERV's are largely in heterochromatin and transcriptionally repressed
by an expanding battery of epigenetic mechanisms*?"?8, including methylation of
histone H3 on lysine 9 (H3K9) or lysine 27 (H3K27), DNA methylation, as well as
the RNA N(6)-methyladenosine (m(6)A) modification®*°. Of note, these regulatory
mechanisms are often redundant and function in a context-specific manner®%,
reflecting the sophisticated evolutionary arms race between vira sequences and the
host genome”*.

ERVs are not always inactive. During the profound epigenetic resetting in early
embryonic development, ERVs are systematically transcribed in a stage-specific
manner, coinciding with different cellular identities and differentiation potencies™®,
While a comprehensive understanding of ERV's function during early embryogenesis
is yet to be established, recent studies have revealed the intimate relationship between
HERVH and the human pluripotency network™. Depending on different variants of
LTR (LTR7, LTR7Y, and LTR7A/B/C), the transcription of HERVH interna sequence
(HERVH-int) is activated from 4-cell stage to blastocyst®>. HERVH transcripts are
also highly abundant in human ESCs as well as induced pluripotent stem cells (iPSCs),
and moreover, the naive-like pluripotency is associated with higher levels of HERVH
expression™®1%%  Activation of HERVH promotes both the acquisition and
maintenance of pluripotent states, by generating noncoding RNAs (ncRNASs) or
producing chimeric transcripts with protein-coding genes via alternative splicing™°.
The transcriptionally active HERVH can also demarcate topologically associated
domains (TADs) and help maintain a pluripotent chromatin architecture?. Cancer
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development in many aspects parallels the process of early embryogenesis. This
includes regain the capacity of self-renewal and dramatic alterations in epigenetic
landscapes. Interestingly, reactivation of HERVH is also observed in several types of
human cancer, such as colorectal carcinomas (CRCs)**°, however, a mechanistic
insight into this reactivation is lacking and its functional consequence unclear.

The SWI/SNF (mating type SWItch/Sucrose NonFermentable) family chromatin
remodelers, BAF, PBAF, and GBAF, regulate chromatin packing and transcription by
controlling the dynamics of nucleosomes®. As a subunit of the BAF complex,
ARID1A functions as a bona fide tumor suppressor and is mutated in approximately 8%
of al human cancers®*. Mutation of ARIDIA sensitizes cancer cells to
bromodomain and extraterminal domain (BET) inhibitors®™*, likely due to its
indispensable role in maintaining normal enhancer function by influencing BRD4
activity**** How ARID1A mutation affects BRD4 remains unknown. Here, we
show that loss of ARID1A results in an ARID1B-dependent upregulation of HERVH,
whose transcripts partition into nuclear BRD4 foci and contribute to the
BRD4-dependent gene regulatory network. This ARID1B-HERVH-BRD4 axis is
crucia for the growth of CRC cells and patient-derived organoid, offering novel
treatment opportunities for ARID1A mutated cancers.
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Results

HERVH is abnor mally upregulated in CRCs

The mgjority of the human genome is comprised of various repetitive DNA sequences,
most of which are transcribable. To globally characterize the expression of repetitive
DNA elements in CRCs, we collected 521 colon adenocarcinoma (COAD) and 177
rectum adenocarcinoma (READ) RNA-seq data from The Cancer Genome Atlas
(TCGA), filtered and grouped them according to the variables (Fig. S1A), and
quantified the repeats expression using the human RepeatMasker Repeats annotation
(https://genome.ucsc.edu/cgi-bin/hgTables). We first applied principal component
analysis (PCA) to the gene expression as well as the repeats expression data from 51
norma and 631 tumor samples (Fig. S1A). Both the genes and repeats showed
digtinct expression profiles that successfully demarcated the normal and tumor
samples (Fig. 1A-1B and Supplementary Table 1). We next categorized the
differentially expressed repeats. While the simple repeats were the most abundant,
many LTR retrotransposons (also known as ERVS) showed altered expression
between normal and tumor tissues (Fig. 1C and Supplementary Table 1). Of the 580
ERVs, 44 were downregulated and 84 upregulated in CRC tumor tissues (Fig. 1D and
Supplementary Table 1). To validate these upregulated ERV's, we repeated the analysis
with another independent RNA-seq dataset (GSE50760) of CRC tissues, and
identified 17 ERV's that showed consistent upregulation. Specific activation of ERVs
is linked with pluoripotency in embryonic cells®®°. We compared the upregulated
ERVsin CRC tissues with that observed in early embryos and ESCs, and pinpointed
two elements, HERVH-int and LTR7Y, that constitute a full-legth HERVH (Fig. 1E
and Supplementary Table 1). Both elements showed increased expression in tumor
tissues and their expressions were highly correlated with each other in the TCGA
colorectal dataset (COREAD) (Fig. S1B-S1D and Supplementary Table 1). To further
confirm the upregualtion of HERVH in CRCs, we performed RNAscope analysis for
HERVH RNA on CRC tissue array. Compared with the matched peritumoral tissues,
the tumoral tissues showed significantly stronger RNAscope signals (Fig. S1IE-S1F).
We then investigated the association of the expression levels of HERVH with the
clinica outcomes of the CRC patients using the TCGA COREAD dataset, and
observed that higher HERVH-int expression predicted poorer survival (Fig. 1F and
Supplementary Table 1).

Molecular characterization of CRC samples have revealed 24 genes that are
significantly mutated®. To interrogate the relationship between these gene mutations
and the upregulation of HERVH, we selected 516 CRC samples with genetic variation
data from the TCGA COREAD dataset, extracted their mutational signatures, and
correlated the mutational status of one of the 24 genes with the expression of either
HERVH-int or HERVK-int for comparison (Fig. S1A). In contrast to HERVK-int
whose expression showed no obvious association with any gene mutations analyzed,
the expression of HERVH-int correlated with the mutational status of several genes
(Fig. 1G and Supplementary Table 1). We expanded this analysis to the 59 CRC cell
lines in cancer cell line encyclopedia (CCLE)* (Fig. 1H and Supplementary Table 1),
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and identified a list of genes whose mutation was consistently correlated with
upregulation of HERVH. Thisincluded MLK4, FBXW7, ACVR1B, ARID1A, GRIKS3,

and SMAD2.
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Figure 1 Characterization of HERVH expresson in CRCs. (A) Principal component analysis
(PCA) of gene expression of 51 normal and 631 CRC tumor tissues from the TCGA COREAD
dataset. (B) PCA based on the expression of repetitive sequences in the same TCGA dataset. (C)
Classification of differentially expressed repetitive sequences (adjusted p-value < 0.05 and |Log;
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FoldChange| > 0.585). (D) Volcano plot of differentially expressed ERVs. Up (red) and down
(green) regulated ERVs are determined with the cut-off values of adjusted p-vaue < 0.05 and
|Log, FoldChange| > 0.585. (E) Overlap analysis of upregulated ERV's in CRCs samples and early
embryonic cells identifies the internal coding sequences of HERVH (HERVH-int) and its
corresponding LTR (LTR7Y) as the commonly upregulated elements. (F) Survival analysis based
on the expression level of HERVH-int and the overall survival (OS) from 493 patients with AJCC
pathologic tumor stage greater than I. The mean expression value of HERVH-int is used to
demarcate the HERVH-int-High (145 patients) and HERVH-int-Low (348 patients) groups. (G)
Correlation anaysis of HERVH-int expresson and mutational status of the most frequently
mutated genes in CRCs using the TCGA dataset. (H) Correlation of HERVH-int expresson and
gene mutationsin CRC cell lines from the CCLE dataset.
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Figure S1 Expression of HERVH in CRC samples. (A) The inclusion and exclusion criteria for
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the TCGA-COREAD samples used in Figure 1. (B-C) Box plots of the expression of LTR7Y and
HERVH-int in the TCGA-COREAD dataset. ***p < 0.001 by Wilcox test. (D) Correlation of the
expression of HERVH-int and LTR7Y in the TCGA-COREAD dataset. The Pearson correlation
coefficient (r) and the p-value are shown. (E) Representative images of RNAscope staining of
HERVH transcripts on CRC tissue array. Bars: 500 um in the upper panels and 20 um in lower
insets. (F) Quantification of the RNAscope signals from the peritumoral and tumor tissues on the
CRC tissue array. ***p < 0.001 by Wilcox test. (G) gPCR analysis of HERVH expression in cells
treated with the indicated SRNA. **p < 0.01, ***p < 0.001, ****p < 0.0001 by t-test.

Loss of ARID1A leads to transcriptional activation of HERVH

Knockdown the expression of some of the listed genes by small interfering RNA
(siRNA) resulted in increased transcription of HERVH (Fig. S1G). We selected
ARID1A for further functional validation, because it is a DNA-binding subunit of the
BAF chromosome remodeler complex and its inactivation mutations occur in a broad

spectrum of human cancers™®**,

To comprehensively depict the changes of repeats expression upon ARID1A loss, we
collected and analyzed two independent RNA-seq data of HCT116 wild type (WT)
and its isogenic ARID1A knockout (KO) cell lines®. Of note, the LTR
retrotransposons or ERV's were the most upregulated repeat group in ARID1A KO
cells (Fig. 2A, S2A, and Supplementary Table 2). We ranked all the ERV's according
to their fold changes (Fig. 2B, S2A, and Supplementary Table 2). HERVH-int and two
of its associated LTRs, LTR7Y and LTR7, were the three most significantly
upregulated elements, whereas other HERVH-related LTRs didn’t show consistent
upregulation (Fig. 2C, S2A, and Supplementary Table 2). Scatter plots of the
expression of all 580 ERVsrevealed that HERVH-int, LTR7Y, and LTR7 were already
expressed in HCT116 WT cells but the ARID1A inactivation further increased their
abundance (Fig. 2D, S2C, and Supplementary Table 2). These observations were
further validated with our own RNA-seq data of ARID1A WT and KO HCT116 cells
(Fig. S2B, S2D, and Supplementary Table 2). Overlapping the significantly
upregulated ERVs in the three datasets spotted HERVH-int and its LTR as the only
unambiguously activated elements upon ARID1A loss (Fig. 2E). We generated
additional ARID1A KO colorectal cell lines to further confirm the observed
upregulation of HERVH (Fig. 2F). gPCR analyses with primers specifically targeting
the gag and pol sequences of HERVH-int revealed increased transcripts abundance in
al three ARID1A KO cell lines (Fig. 2G and 2H). To test if the transcriptional
activation of HERVH can be suppressed by re-expression of ARID1A, we infected the
ARID1A KO cells with lentiviruses carrying ARID1A or its counterpart ARID1B>"%
(Fig. 21-2K). The re-introduction of ARID1A significantly downregulated the
expression of HERVH. Interestingly, overexpression of ARID1B didn’t rescue but
instead mildly increased the amount of HERVH transcriptsin ARID1A KO cells (Fig.
2K).

Unlike genes, ERVs are quite diverse between primates and rodents. To assess the
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effect of ARID1A inactivation on ERVs expression in mice, we analyzed RNA-seq
data of the colon epithelial cells from WT or ARID1A KO mice®. Of the 423 ERVsin
the mouse genome, 16 were downregulated and 11 upregulated in the absence of
ARID1A (Fig. S2E and Supplementary Table 3). The upregulated ERVs included
RLTR1B-int, RLTR1D, RMER12B, IAPLTR4_| (Fig. S2F and Supplementary Table
3). Therefore, the influence of ARID1A on ERVs seemed to be universal, and in
human, the most responsive element toward ARID1A mutation was the HERVH.
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Figure 2 ARID1A loss leads to upregulation of HERVH. (A-C) Heatmaps of the expression of
different repetitive sequencesin wild type (WT) and ARID1A knockout (KO) HCT116 cells. The
differential expression is tested based on a model using the negative binomial distribution
(adjusted p values are labeled as *padj < 0.05, **padj < 0.01). The schematic of a typica
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full-length HERVH element is shown in (C). (D) A scatter plot of the expression of all 580 ERV's
in WT and KO HCT116 cells. The up- or downregulated ERV's are labeled in red or green
respectively (|Log, FoldChange] > 1 and adjusted p-value < 0.05). (E) Venn diagram showing that
HERVH is repetitively upregulated in three independent sequencing experiments with HCT116
ARID1A WT and KO cells. (F) Western blots of different ARID1A WT and KO cell lines. (G-H)
gPCR analyses of HERVH expression in ARID1A WT and KO cell lines using two different
primer sets. *p < 0.05, **p < 0.01, ***p < 0.001 by t-test. (I) Western blots showing ARID1A
protein levelsin WT, KO, and ARID1A rescued KO HCT116 cells. Arrow indicates the full-length
ARID1A band. (J) gPCR analysis of ARID1A and HERVH expression in the indicated groups of
cells. *p < 0.05 by t-test. (K) gPCR analysis of ARID1B and HERVH expresson. **p < 0.01 by
t-test.
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Figure S2 ARID1A loss derepresses ERVs. (A-B) Heatmaps of the expresson of different
repetitive sequences in wild type (WT) and ARID1A knockout (KO) HCT116 cells using our own
RNA-seq data and that from GSE101966. *padj < 0.05, **padj < 0.01. (C-D) Scatter plots of the
expression of al 580 ERVsin WT and ARID1A KO HCT116 cells using different datasets. (E)
Volcano plot of differentially expressed ERVs in WT and ARID1A KO mouse colons. Up (red)
and down (green) regulated ERV's are determined with the cut-off values of adjusted p-value <
0.05 and |Log, FoldChange| > 0.585. (F) Heatmap showing differentially expressed mouse ERV's
in ARID1A KO mouse colon using GSE71514 dataset. * padj < 0.05, **padj < 0.01.
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Transcription of HERVH in the absence of ARID1A is dependent on ARID1B

To investigate the mechanism of how ARID1A loss induced HERVH transcription, we
put our focus on ARID1B, which shares 60% homology with ARID1A>". Functioning
as the rigid structural core, they are mutually exclusive in the BAF complex®®,
ARID1B is essential for the survival of ARID1A mutated cancer cells, by supplying
residual BAF complex activities to maintain chromatin accessibility at enhancers and

regulate RNA polymerase |l dynamics™>*,

We first examined the influence of ARID1B on the expression of repetitive elements
using published RNA-seq data® (Fig. 3A and Supplementary Table 4). Knocking
down the expression of ARID1B by short hairpin RNA (shRNA) in WT HCT116 cells
(WT-KD) only showed limited effects on repeats expression, however, ARID1B
knockdown in ARID1A KO cells (KO-KD) dramatically reduced the transcripts
abundance of many repeats, especialy the LTR retrotransposons (ERVs) (Fig. 3B and
Supplementary Table 4). Of note, the upregulation of several HERVH elements was
partially reversed by ARID1B KD (Fig. 3C and Supplementary Table 4). Using two
different shRNAs targeting ARID1B, we verified the suppresson of HERVH by
ARID1B KD in ARID1A KO cells (Fig. 3D). Both ARID1A and ARID1B harbor
DNA-binding activity>". We next analyzed their occupancy on the HERVH elements
using ChIP-gPCR (Fig. S3A and S3B). While the amount of ARID1A on HERVH was
minimized in ARID1A KO cells, the binding of ARID1B to HERVH was
compensatorily increased, maintaining a comparable amount of BAF activity at
HERVH loci in these cells (Fig. S3C). The ARID1A- and ARID1B-containing BAF
complexes are associated with different histone acetyltransferase (HAT) and
deacetylase (HDAC) activities”. To characterize the epigenetic changes
accompanying this subunit switch of BAF complex on HERVH, we identified the
commonly derepressed genomic HERVH loci in different datasets and analyzed their
chromosome accessibility as well as histone modifications (Fig. S3D and
Supplementary Table 5). In ARID1A KO HCT116 cells, we observed some increase
in accessbility at the HERVH loci (Fig. 3E, 3H, and Supplementary Table 5).
Interestingly, acetylation of H3K27 (H3K27ac), as well as mono methylation of
histone 3 on lysine 4 (H3K4me), was aso increased (Fig. 3F-3H, and Supplementary
Table 5). We further validated this increase of H3K27ac on HERVH by ChIP-gPCR
(Fig. S3E). To test whether HDACs and HATs contributed to the dysregulation of
HERVH in the absence of ARID1A, we treated WT HCT116 cells with two different
HDAC inhibitors, SAHA and TSA. Both inhibitors stimulated the expression of
HERVH (Fig. S3F). We treated the ARID1A KO cells with MG149, an inhibitor of
Tip60 which is a HAT associated with ARID1B-BAF complex®. The inhibition of
Tip60 suppressed the activation of HERVH upon ARID1A loss (Fig. S3G). To
identify which transcription factor (TF) accounted for the increased expression of
HERVH, we examined the expression levels of all the TFs that are able to bind
HERVH in ARID1A KO HCT116 cdls (Fig. S3H), individually knocked down their
expression by siRNA, and performed RNA-seq analysis (Fig. S3I and Supplementary
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Table 6). Only SP1 knockdown significantly reduced the expression of HERVH (Fig.
S3J).

Based on these results, we propose that the ARID1A-contaning BAF complex
normally maintains a compact chromatin configuration at HERVH loci with the help
from its associated HDACs. When ARID1A is mutated, the ARID1B-containing BAF
recruits HATs to the HERVH loci and increases local accessibility, and then SP1 binds
to and activates its transcription (Fig. 3l).
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showing the expression levels of ARID1B and HERVH in ARID1A WT and KO cells treated with
shRNA targeting GFP or ARID1B. **p < 0.01, ***p < 0.001 by t-test. (E) ATAC-seq results from
ARID1A WT and KO HCT116 cells (GSE101966) demonstrate increased chromatin accessibility
at the derepressed HERVH loci in ARID1A KO cells. (F-G) ChiP-seq data (GSE101966) show
increased H3K 27ac and H3K4me at the derepressed HERVH loci in ARID1A KO HCT116 cells.
(H) Genomic snapshots of RNA-seq, ATAC-seq, and ChiP-seq signals at two representative
HERVH loci. (I) Modedl showing the mutually exclusive relationship between ARID1A- and
ARID1B-containing BAF complexes, their differential associations with HDACs and HATSs, and
the different regulatory functions imposed on HERVH loci.
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Figure S3 HATs associated with ARID1B and transcriptional factor SP1 are contributing to
the upregulation of HERVH upon ARID1A loss. (A-C) ChlIP-gPCR results showing decreased
ARID1A and increased ARID1B at HERVH loci in ARID1A KO cells, whereas the amount of
another BAF component SMARCA4 at HERVH loci remains unchanged. (D) Venn diagram
highlights the commonly derepressed HERVH loci shared by two independent RNA-seq datasets
of the ARID1A KO HCT116 cells. (E) ChlP-gPCR confirming increased H3K27ac at HERVH loci
upon ARID1A loss. (F) qPCR analysis of HERVH expression in control and HDAC inhibitors
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treated HCT116 cells. (G) gPCR analysis of HERVH expression in control and histone
acetyltransferase Tip60 inhibitor treated ARID1A KO HCT116 cells. (H) Relative expression of
different transcriptional factors that are predicted to bind HERVH in ARID1A KO HCT116 cells.
(1) Heatmap showing the transcripts abundance of HERVH (HERVH-int and LTR7s) and HERVK
(HERVK-int and LTR5s) upon knockdown of several transcriptional factors by SRNA in ARID1A
KO HCT116 cdls. (J) Genomic snapshot of RNA-seq signals from ARID1A KO HCT116 cells
treated with control or the indicated SRNA at a representative HERVH locus. *p < 0.05, **p <
0.01, ***p < 0.001, by t-test. ns, no significance.

HERVH isrequired for the survival of colorectal cancer cells

Knockdown the expression of HERVH in ESCs triggers differentiation’. To
investigate the function of HERVH transcription in CRCs, we reduced its expression
in different cell lines and patient-derived organoids using shRNAs targeting different
regions of HERVH-int and assessed the consequence (Fig. 4A).

We first tested the effects of HERVH knockdown with different colorectal cell lines.
The céll lines analyzed all had varying degrees of HERVH expression, whereas the
expression of HERVK was kept to aminimum (Fig. $4B). Cell viability assay showed
that knockdown of HERVH impaired the survival of all the cell lines tested (Fig. S4C),
and the HERVH knockdown also strongly inhibited colony formation of these cells in
clonogenic assays (Fig. $4D). CRC cell line SW480 had weak ability in the formation
of tumor spheres when cultured in ultralow attachment plates, and ARID1A
inactivation significantly enhanced this ability (Fig. 4A). Knockdown of HERVH in
the ARID1A KO cells greatly reduced the formation of tumor spheres (Fig. 4A-4C).
To further assess the function of HERVH in tumorigenicity, we subcutaneously
seeded shRNA-infected ARID1A WT or KO HCT116 cells into nude mice. The cells
with HERVH knockdown showed significant growth impairment when compared
with control cells (Fig. 4D).

We next sought to verify the critical role of HERVH in patient-derived CRC
organoids. We obtained tumoral and peritumoral tissues from surgical biopsy, and
evaluated their HERVH transcripts level using gPCR (Fig. S4E). The tumoral tissues
with high HERVH expression were selected to generate CRC organoids, which were
then infected with lentiviruses carrying shRNA targeting either HERVH or GFP to
achieve specific knockdown (Fig. 4E). RNA fluorescence in situ hybridization (FISH)
of the organoids confirmed the knockdown efficacy of HERVH (Fig. S4F). Compared
to control, HERVH knockdown resulted in the formation of fewer organoids (Fig. 4F),
and their size was also much smaller (Fig. $4G, $4H, and 4G). We examined the cell
proliferation and apoptosis in the treated organoids by Ki67 and TUNEL stainings
(Fig. 4H and 4l). HERVH knockdown dramatically reduced the number of
proliferating Ki67 positive cells (Fig. 4J), meanwhile increased the number of
TUNEL positive apoptotic cells (Fig. 4K).
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Altogether, the results suggested that HERVH is a vulnerability not only in ARID1A
mutated cells, but also in many other CRC cells that express HERVH.
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Figure4 HERVH isessential for the proliferation of CRC cells. (A) Representative brightfield
images showing that knockdown of HERVH inhibits sphere formation of ARID1A KO SW480
cells. Bar: 130 um. (B-C) Quantifications of sphere number and sphere size of the indicated cells.
***n < 0.001 by t-test. (D) HERVH knockdown suppresses tumor growth of WT and ARID1A KO
HCT116 cells in mouse subcutaneous xenograft tumor models. **p < 0.01, ***p < 0.001 by t-test.
(E) Schematic illustrating the establishment and subsequent treatments of patient-derived CRC
organoids. (F-G) HERVH knockdown decreases both the number and the size of CRC organoids.
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**p < 0.01, ***p < 0.001 by t-test. (H-1) Representative images of control and HERVH shRNA
treated organoids stained with E-Cadherin (green), Ki67 (red), TUNEL (yellow), and DAPI (blue).
Bars: 34 um. (J-K) Percentages of Ki67 or TUNEL positive cells in control and HERVH shRNA
treated CRC organoids. ***p < 0.001 by chi-squared test.
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HERVH than HERVK in various normal colon and CRC cells. (C) Results of MTT assay showing
reduced viability upon HERVH knockdown in the indicated cell lines. (D) Clonogenic assay
showing reduced colony formation in the indicated cells treated with HERVH shRNA. (E) gPCR
analysis of HERVH expression in patient samples used to establish CRC organoids. (F)
Fluorescent in dtu hybridization (FISH) shows reduced HERVH transcripts level in CRC
organoids treated with HERVH shRNA. Bar: 10 um. (G-H) Representative brightfield images of
CRC organoidsin control or HERVH shRNA treated groups. Bars: 74 um. ***p < 0.001, ****p <
0.0001 by t-test.

HERVH transcript is a component of BRD4 nuclear speckles and regulates
BRD4-mediated transcriptions

HERVH is part of the transcriptiona circuitry regulating pluripotency, and its
transcription markedly influences the transcriptome™'>'®* To investigate the
molecular underpinnings of the oncogenic function of HERVH in CRCs, we assessed
the impact of HERVH knockdown on global gene expression. PCA showed that the
transcriptomes of the ARID1A WT and KO HCT116 cells were noticeably separated
on the second principal component (PC2), and HERVH knockdown narrowed this
difference (Fig. 5A), suggesting that the altered transcription seen in ARID1A KO
cells was partialy linked to the upregulation of HERVH. We identified 552
upregulated genes and 531 downregulated genes whose transcriptional change was
reversed upon HERVH knockdown in ARID1A KO cells (Fig. 5B and Supplementary
Table 7). Many of the 552 HERVH-dependent upregulated genes were enriched in
cancer related pathways (Fig. 5C and Supplementary Table 7). We selected some of
the upregulated target genes and validated the observed reversion of expression by
gPCR (Fig. SbA-S5B). The observed increase of H3K27ac and H3K4me at the
derepressed HERVH loci suggested that they could function as active enhancers and
their transcripts enhancer RNAs® (Fig. 3F and 3G). Additionally, HERVH transcripts
are able to interact with many subunits of the mediator complex™. We compared the
transcriptome dynamics after SRNA mediated knockdown of different subunits of the
mediator complex, its binding partner BRD4, and HERVH. The correlation matrix
suggested that suppression of BRD4 and HERVH imposed similar influence on global
transcription (Fig. S5C and Supplementary Table 7). Further analysis using the
differentially expressed genesin BRD4 and HERVH knockdown cells revealed strong
correlation between these two groups (Fig. 5D, S5D, and Supplementary Table 7). Of
the 1643 differentially expressed genes upon HERVH knockdown, 1018 of them
showed similar changes in BRD4 knockdown cells (Fig. 5E and Supplementary Table
7).

BRD4 as well as the mediator complex subunit MED1 can form liquid-like
condensates, especially at super-enhancers™*. To investigate the distribution of
HERVH transcripts and their relationship with BRD4 and the mediator complex, we
combined RNA FISH targeting HERVH with immunofluorescence (IF) stainings. The
specificity of the RNA FISH was validated by the absence of signals in HERVH
knockdown cells (Fig. S5E). Varying degrees of colocalization was detected between
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HERVH transcripts and the endogenous BRD4, MED1, and MED12 (Fig. S5F),
suggesting that HERVH RNA could regulate their protein dynamics in the nucleus.
We knocked down the expression of HERVH, and observed a mild decrease in the
protein level of BRD4 (Fig. 5G). To further characterize the influence of HERVH on
BRD4, we stably expressed GFP-BRD4 in ARID1A KO HCT116 cells. GFP-BRD4
formed nuclear condensates as previously reported™, and RNA FISH revealed clear
distribution of HERVH RNA in the BRD4 puncta (Fig. 5F). Knockdown of HERVH
markedly decreased both the number and size of the BRD4 puncta (Fig. 5H and 5I).
We further assessed the dynamics of the BRD4 puncta using fluorescence recovery
after photobleaching (FRAP). While in control cells the photobleached BRD4 puncta
quickly recovered its fluorescence, the fluorescence recovery after HERVH
knockdown became much slower (Fig. 5J).

It was reported that ARID1A mutant cells showed higher sensitivity to the BET
inhibitor JQ1*“, We confirmed that the ARID1IA KO HCT116 cells were indeed
more sensitive to JQ1 as well as another recently reported BRD4 inhibitor
NHWD-870%° (Fig. S5G and S5H). The results reported here suggested that the
upregulated transcription of HERVH in ARID1A mutant cells contributed to the
formation of BRD4 nuclear puncta and stimulated their dynamic activity (Fig. 5K),
providing an explanation for the observed increased sensitivity to BET inhibitors.
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Figure 5 HERVH contributes to the formation of BRD4 puncta and its function in
transcriptional regulation. (A) PCA analysis showing the impacts of HERVH knockdown on the
globa transcriptome of HCT116 WT and KO cells. (B) Heatmap highlighting a set of genes
whose expression increase upon ARID 1A loss but decrease again when HERVH is knocked down.
(C) KEGG enrichment analysis of the HERVH-dependent genes. (D) Heatmap showing strong
correlation of changes in transcriptome between knockdowns of HERVH and BRD4 in ARID1A
KO HCT116 cells. (E) Venn diagram showing that 1018 genes are coregulated by BRD4 and
HERVH. (F) Partia colocalization between HERVH FISH signals and GFP-BRD4 nuclear foci.
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Bar: 5 um. (G) Western blot showing decreased BRD4 protein level upon knockdown of HERVH
in HCT116 ARID1A KO cdlls. (H) Representative images of BRD4 nuclear foci in control and
HERVH shRNA treated cells. Bar: 5 um. (1) Quantifications of the number and size of BRD4 foci.
***n < 0.001 by Wilcox test. (J) Fluorescence recovery after photo bleaching (FRAP) analysis of
BRD4 foci after control or HERVH knockdown. Bar: 3.3 um. (K) A model summarizing how
ARID1A loss upregulates HERVH and hence stimulates BRD4 nuclear foci formation and
BRD4-mediated transcription. Red asterisks label potentia targets of intervention.
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Figure S5 The effect of HERVH knockdown in gene expression and its relationship with
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BRD4 and other components of the mediator complex. (A-B) qPCR validation of gene
expression changes reported in Fig 5B. (C) Correlation matrix showing the unbiased and pairwise
comparisons of global transcriptome changes upon knockdown of HERVH and the indicated
genes. Color bar represents Spearman’s correlation coefficient. (D) The foldchanges of a group of
representative genes whose expression increases in ARID1A KO cells but decreases upon
knockdown of HERVH or BRD4. (E) FISH staining of HERVH in control and HERVH
knockdown cells. Bar: 5 um. (F) Representative immunofluorescence images showing different
degrees of colocalization between HERVH transcripts (red) and BRD4 or other components in the
mediator complex (green). Bar: 5 um. (G-H) MTT assay of ARID1A WT or KO HCT116 cells
treated with two different BET inhibitors. *p < 0.05, **p < 0.01, and ***p < 0.001 by t te<t.
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Discussion

Mutational landscape analyses have revealed that ARID1A is among the most
frequently mutated epigenetic factors across many cancer types’®*. Understanding its
mechanism of action and hence identifying targetable vulnerabilities for ARID1A
inactivation have been of great importance. In this study, we investigated how the
repetitive genome responded to the inactivation of ARID1A and identified that the
HERVH group of ERVs was specifically derepressed. This derepression was
ARID1B-dependent, and was indispensable for the survival of the CRC cells, likely
due to its influence on the dynamics of BRD4 and the regulated transcriptional
network. Several synthetic lethality targets of ARID1A have been reported, including
ARID1B, EZH2, HDACS, Aurora A, and GCLC*>***% ARID1A mutant cells are
also hypersensitive to BET inhibitors™“, a promising class of anticancer drugs. Our
results suggest that the activation of pluripotency-related HERVH is a shared
mechanistic foundation of the previously observed ARID1B- and BET-vulnerabilities
of the ARID1A mutated tumors. The ARID1B-HERVH-BRD4 regulatory axis and the
adjunct mechanism reported here also offer several new potential targets of
intervention (Fig. 5K), among which the HERVH itself is of most interest, because of
its specific expression in early embryos and general silencing in most adult tissues. It
isworth noting that ARID1A has been implicated in several other biological processes,
some of which aso involves HERVH, such as high-order spatial chromosome
partitioning and tissue regeneration>****°"%_ The molecular mechanism reported
here may have certain explanatory power in those scenarios as well.

Derived from ancient retroviral infections, ERVs are domesticated viral fossils in our
genome whose activity is under close surveillance®?*?®. Comprehensive
interrogations in mouse ESCs have revealed that overlapping epigenetic pathways
linked to heterochromatin formation are enlisted to suppress the transcription of ERVs.
This includes DNA methylation (5-methylcytosine, 5mC), various histone
modifications (H3K9me3, H3K27me3, H4K20me3, H4R3me2, and H2AK119ub),
and their corresponding writers and readers®™*. Reminiscent of the diversity of the
process of heterochromatin formation in early embryos™, different families of ERVs
rely on distinct epigenetic means to achieve silencing. The specific recognition of
different ERVs by the various epigenetic mechanisms is in part mediated by the
KRAB domain-containing zinc finger proteins (KZFPs), which can bind to specific
DNA sequences in individual ERV and recruit KAPL and other epigenetic modifiers.
RNA mediated targeting mechanisms also contribute to the specific silencing of ERVs.
piRNAs as well as other small RNA species are able to bring histone modifying
activities to their complementary ERV loci***™"2. Our study reveals another mode of
ERVs suppression which involves the SWI/SNF chromatin remodelers, further
increasing the complexity of the epigenetic regulatory network constraining the
expression of ERVs. The targeting mechanism for the BAF complex in silencing
HERVH is currently unknown. It will be interesting to investigate the potential

interactions between BAF and KZFPs or the small RNA machineries.
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Accumulating evidence reveals that ERV's are co-opted to perform a wide range of
biological functions. In early embryos and ESCs, ERV's serve as regulatory elements
and alternative promoters to rewire the transcription network of pluripotency™*:.
Moreover, certain groups of ERVs become transcriptionally activated in an orderly
fashion during embryogenesis®, functioning as enhancer or long noncoding RNAs'*°,
and sometimes synthesizing reverse transcriptase activity and even forming viral-like
particles”. ERVs are also involved in many human diseases such as various types of
cancer. The abnormally activated ERVs can produce long noncoding RNAs or
functional polypeptides® ™"’ enabling cancer cells to exploit and repurpose
developmental pathways to promote malignancy®®. Of particular note, the reactivated
ERVs in cancer are extensively recruited as promoters to drive expression of many
oncogenes in a process termed onco-exaptation’’. Our results reciprocaly
demonstrate that mutations of tumor suppressor can activate functionally important
ERV's, suggesting the existence of positive feedback |oops between ERV's and cancer
driver genes. Future studies shall extend the analysis to other cancer driver genes and
characterize these positive feedback loops more comprehensively. The establishment
of a mutually reinforcing relationship between cancer driver genes and ERV's will
deepen our understandings on the etiology of malignancy and throw new light on
cancer treatments.
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Methods

Data download

The TCGA dataset used in this study, including the RNA-seq BAM files, the gene raw
count data (htseg-count files), and the annotated somatic simple nucleotide variation
files (MuTect2 VCF) of patients with colon adenocarcinoma (COAD) and rectum
adenocarcinoma (READ), were accessed through dbGaP accession number
phs000178.v11.p8" and downloaded using the gdc-client v1.6.0. The cinical overall
survival (OS) information was obtained from Liu et a.*. The RNA-seq fastq files of
norma and tumor tissues from another 18 CRC patients were downloaded from
https://www.ncbi.nim.nih.gov/geo under the accession number GSE50760*. The
RNA-seq fastq files of the 59 colorectal cancer cell lines in cancer cell line
encyclopedia (CCLE) were downloaded from https.//www.ebi.ac.uk/ under the
accession number PRINA523380%, and the corresponding germline filtered CCLE
merged mutation calls were acquired from https://portals.broadinstitute.org/ccle/data.
The previously published RNA-seq and ChlP-seq raw reads fastq files generated with
HCT116 cells or mice primary colon epithelial cells were downloaded from
https://www.ncbi.nim.nih.gov/geo under the accesson numbers GSE71514 and
GSE101966".

RNA-seq analysis

Raw reads were first cleaned using trim_galore v0.6.0
(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/)  with  default
parameters. The reads from each RNA-seq sample were then mapped to hg38 or mm9
genome assembly downloaded from UCSC, using STAR v2.5.3a%. The key alignment
parameters were as follows. “--outFilterMismatchNoverLmax 0.04 --outSAMtype
BAM SortedByCoordinate --outFilterMultimapNmax 500 --outMultimapperOrder
Random --outSAMmultNmax 1”; the parameters “--outFilterMultimapNmax 500"
and “--outMultimappedOrder Random” ensured that multiple aligned reads were
included but only one position was assigned randomly. Genes expression was
quantified using featureCounts v1.6.5* of subread-1.6.5 package based on hg38
RefSeq genes annotation file. Repeats expression was quantified using featureCounts
v1.6.5 (“featureCounts --M --fraction”) based on repeats annotation files downloaded
from https://genome.ucsc.edu/cgi-bin/hgTables. Principal component anaysis was
conducted with the functions “vst” and “plotPCA” from R package DESeq2 v1.22.2%.
Differential expression analysis was performed based on the negative binomial
distribution using the functions “DESeq” and “results” from DESeq2. The heatmap of
differentially expressed genes or repeats was created using R package pheatmap
v1.0.12. The KEGG enrichment anaysis was performed using the function
“enrichKEGG” from the R package clusterProfiler v3.10.1%. Venn diagrams were
prepared with the R package Vennerable and venn.

Survival analysis
The curated clinical endpoint results (OS event and OS event times) of the 628
patients in TCGA-COREAD dataset were obtained from Liu et al.%. Only patients in
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stages |l and later according to the American Joint Committee on Cancer (AJCC)
pathologic tumor staging system were included. The 493 CRC patients were classified
into HERVH-high (145 patients with HERVH-int CPM>8430.797) and HERVH-low
groups (348 patients with CPM<8430.797), and the survival curves of the two groups
were compared using log-rank test from the function “survdiff” in R package survival
v2.44-1.1.

I ntegration analysis of whole-exome sequencing (WXS) and RNA-seq

WXS files (MuTect2 VCF) and RNA-seq data from 516 patients in TCGA-COREAD
were analyzed (Fig. S1A). All the somatic mutational information was included
regardless of their classification. For each gene, we classified the patients into WT or
mutation group, and then calculated the Log, FoldChange between these two groups
using the expression values (CPM) of HERVK-int and HERVH-int. p values were
calculated by Wilcoxon test.

ATAC-seq and ChlP-seq analyses

Raw reads were cleaned using trim_galore. The reads were then aligned to the hg38
genome assembly using Bowtie2 v2.3.5.1%°, with the default parameters that look for
multiple alignments but only report the one with best mapping quality. Duplicate
reads were then removed using MarkDuplicates from gatk package v.4.1.4.1.
Replicate samples were merged using the samtools v1.10¥. Pesk calling was
performed using MACS2 v2.2.6% (parameters: -g hs --keep-dup 1 --broad-cutoff
0.01). Peaks near active HERVH loci were identified using bedtools v2.26.0%. For
ATAC-seq, bigwig tracks were generated using bamCoverage from python package
deeptools (parameteres: --skipNAs --normalizeUsing CPM)®. For ChlP-seq, bigwig
tracks were generate using bamCompare from deeptools (parameters. --skipNAs
--scaleFactorsMethod readCount --operation log2 --extendReads 200). Negative
values were set to zero. ATAC-seq and ChiP-seq profiles were created by
computeMatrix and plotProfile in deeptools. IGV v.2.4.13 was used to visualize the
bigwig tracks™.

Céll culture and cdl line generation.

The cell lines used in this study, including HCT116, DLD1, SW480, LS174T, SW620,
HT29, HCT8, RKO, CRL1790/841, NCM460, and 293T, were cultured in RPMI
1640 or DMEM medium containing 10% FBS and incubated at 37 °C with 5% CO, in
a humidified incubator. To generate ARID1A KO cell lines, the indicated cells were
transfected with LentiCRISPR-V 2 plasmid carrying SJARID1A (Supplementary Table
8) using Lipofectamine 2000 (Invitrogen), and further selected by 1 ug/mL puromycin
(Selleck, s7417) for 3 days. The cells were then plated at single-cell density in 100
mm petri dishes, and the emerged individual clones were picked and replated into
24-well plates. The loss of ARID1A expression was confirmed by western blot.

Organoid culture
The CRC organoid was generated as previously described®. All the human tissue
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related experiments were approved by the Medical Ethics Committee of Central South
University, and the informed consent was obtained from the patients. From the
resected colon segment, the tumor tissues as well as normal tissues were isolated and
stored in ice-cold RPMI 1640 supplemented with 1% Penicillin-Streptomycin. The
tissues were then washed in iceccold DPBS supplemented with 1%
Penicillin-Streptomycin and cut into 1-3 mm? cubes. After centrifuging at 200 g for 5
min, the supernatant was removed and pellet was resuspended in collagenase 1V
(Gibco, 17104019) supplemented with 10 pM ROCK inhibitor Y-27632
dihydrochloride (Merk Millipore, SCMO075). The tissues were digested at 371 for 1
hour and mixed up every 10-15 min by pipetting, washed with 10 mL advanced
DMEM/F12 (Thermo Fisher Scientific, 12634-010) supplemented with Y-27632, and
then centrifuged at 200 g for 5 min at 4 °C. The pellet was resuspended in
DMEM/F12 supplemented with Y-27632 and filtered through 60 um cell strainer.
After centrifugation at 200 g for 5 min at 4 °C, the supernatant was discarded and the
pellet resuspended in 70% Matrigel (Corning, 356231). 30 UL of the Matrigel mixture
was plated on the bottom of 24-well plates, and 500 pL organoid medium (Accurate
International Biotechnology, M 102-50) was added to each well following incubation
at 3771 with 5% CO, for 30 min. The organoid medium was changed every 2-3 days,
and the organoids were passaged after 7 days of culture.

Cell growth assays

For cell viability assays, cells were plated into 96-well plates at the density of
2000-5000 cells per well after infected with lentiviruses expressing shGFP or
shERVH. The cells were kept for another 7 days, and the viability was measured daily
using MTT (Sigma, M5655) as previously described™. For chemosensitivity assays,
the cells were seeded in 96-well plates and treated with the compounds at indicated
concentrations for 72 hours, and then the cell viability was measured. For colony
formation assays, the cells were seeded at the density of 1000-2000 cells per well in
6-well plates after infected with lentiviruses expressing shGFP or shERVH. The cells
were allowed to grow for 10-14 days and then fixed for 10 min in 50% (v/v) methanol
containing 0.01% (w/v) crystal violet.

Tumor sphereformation

The 6-well plates were coated with 12 mg/mL poly-hydroxyethylmethacrylate
(polyHEMA, Sigma-Aldrich, P3932) in 95% ethanol. The indicated cells were
digested by TrypLE, and approximately 1000 cells were suspended in 50% Matrigel
(Corning, 356231) and plated in the precoated 6-well plates. The 6-well plates
containing the cells were incubated at 37/ for 30 min, and then 2 mL of phenol
red-free DMEM/F12 (GIBCO, 21041) containing 1x B27 supplement (Invitrogen,
12587) and 20 ng/mL rEGF (Sigma Aldrich, E-9644) was added into each well. The
culture medium was changed every 2-3 days, and the number of tumor spheres in
each well was counted after 12 days.

Xenograft tumors
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The 4-5 weeks old female BALB/c nude mice were purchased from Hunan SJA
Laboratory Animal Co., Ltd. (Changsha, China). 5x10° of the indicated cells were
suspended in 100 pL DPBS and injected subcutaneously into the flank of nude mice.
The tumors were measured twice weekly with an electronic caliper, and the volumes
were calculated using the formula: 0.5x(length x width?). All the animal experiments
were approved by the Medical Ethics Committee of Central South University, and
conducted according to the Guidelines of Animal Handling and Care in Medical
Research in Hunan Province, China

RNA interference

The siRNA oligos were synthesized by GenePharma (Shanghai GenePharma Co.,
Ltd.), and the sequences were listed in Supplementary Table 8. Cells were transfected
with the indicated SRNA by Lipofectamine 2000. After 48 hours, the cells were
harvested and the efficiency of silencing was verified by gPCR. For shRNA, shRNA
oligos were synthesized by Tsingke (Tsingke Biotechnology Co., Ltd.) and cloned
into pLKO.1 TRC Cloning vector (Supplementary Table 8). The shRNA and
packaging vectors (pMD2.G and psPAX2) were transiently co-transfected into 293T
cells by polyethylenimine (Sigma, P3143), and the resulted lentivirus particles were
harvested and precipitated by PEG8000. The target cells were treated with lentivirus
particles and 8 ug/mL polybrene for 24 hours, and the efficacy of shRNA interference
was determined by qPCR.

HERVH knockdown in organoids

The organoids cultured in Matrigel were washed once with DPBS, and digested with
TrypLE for 5 min at 37L_. During the digestion, Matrigel was disrupted by pipetting
repeatedly. When cell clumps containing 2-10 cells were observed, 10 mL of
advanced DMEM/F12 was added before centrifugation at 200 g for 5 min. The
supernatant was removed and the cells were resuspended using organoid medium
supplemented with 8 pg/mL polybrene. Then the cells were split equally into 2 wells
of 24-well plate precoated with polyHEMA, and 50 pL of lentivirus carrying shGFP
or shERVH was added. After spin infection at 2000 rpm for 1 hour, the cells were
incubated at 3701 with 5% CO, for 4 hours. The cells were then resuspended in 10 mL
of advanced DMEM/F12 and centrifuged at 200 g for 5 min. The pellet was
resuspended with 100 pL of 70% Matrigel, and 10 pL of the mixture was plated per
well into prewarmed 96-well plate. The organoids were cultured for 10-14 days and
the medium was changed every 2-3 days.

Western blot

Cells were washed with cold DPBS for two times and then lysed in 2x Laemmli
buffer (2% SDS, 20% glycerol, and 125 mM Tris-HCI, pH 6.8) supplemented with 1x
protease inhibitor cocktail (Sigma, P8340). The cell lysate was scraped and sonicated,
and the concentration of protein was determined by BCA assay. The protein was
separated by SDS-PAGE and transferred onto nitrocellulose membrane. The
membrane was then blocked with 5% non-fat milk for 1 hour at room temperature,
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and incubated with the indicated primary antibody overnight at 411 with shaking. The
membrane was washed for 3 times and incubated with secondary antibodies (1:5000,
Thermo Fisher Scientific) for 2 hours. The signal was then detected with ECL
substrates (Millipore, WBKLS0500). Dilutions of primary antibodies were: rabbit
anti-ARID1A/BAF250A Ab (1:1000, Cell Signaling, 12354S), rabbit anti-BRD4 Ab
(1:1000, Active Matif, 39909), mouse anti-a-Tubulin Ab (1:3000, Cell Signaling,
3873s). Primary antibodies used in this study were listed in Supplementary Table 11.

RNA-seq and gPCR

The RNA of the treated cells was extracted by TRIzol (Life Technologies, 87804)
according to the manufacturer’s protocol. Total RNA was made into libraries for
sequencing using the mRNA-Seq Sample Preparation Kit (Illumina) and sequenced
on an Illumina Hiseq platform (Novagene, Tianjin, China). The sequencing data was
deposited to the GEO database (accession number GSE). For RT-gPCR, RNA was
extracted by TRIzol, and reverse transcribed to cDNA using the PrimeScript RT
reagent Kit (Takara, RRO37A). The cDNA was then used as templates and gPCR was
performed using the SYBR Green gPCR Master Mix (SolomonBio, QST-100) on the
QuantStudio 3 Rea-Time PCR system (Applied Biosystems). Primers used in g°PCR
were listed in Supplementary Table 8.

Chromatin immunoprecipitation

The indicated cells in 100 mm petri dishes were cross-linked with 1% formaldehyde
for 10 min at room temperature, and quenched with 125 mM ice-cold glycine. The
cells were then rinsed with 5 mL ice-cold 1x PBS for two times, and harvested by
scraping using silicon scraper. After spinning at 1350 g for 5 min a 4L, the
supernatant was discarded, and the pellet was resuspended in Lysis Buffer | (50 mM
HEPES-KOH, pH 7.5, 140 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25%
Triton X-100 and 1x protease inhibitors) and incubated at 471 for 10 min with rotating.
After spinning at 1350 g for 5 min at 477, the pellet was resuspended in Lysis Buffer |1
(10 mM Tris-HCl, pH 8.0, 200 mM NaCl, 1 mM EDTA, 0.5 mM EGTA and 1x
protease inhibitors), incubated for 10 min at room temperature, and spun at 1350 g for
5 min at 401. The pellet was again resuspended in Lysis Buffer [11 (10 mM Tris-HCI
pH 8.0, 100 MM NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% Na-Deoxycholate, 0.5%
N-lauroylsarcosine and 1x protease inhibitors) and transferred into Covaris
microTUBEs. The DNA was sonicated to 200 bp fragments using Covaris S220 (duty
cycle: 10; intensity: 4; cycles/burst: 200; duration: 200 s). After quenching the SDS by
1% of Triton X-100, the lysate was spun at 20,000 g for 10 min at 477. 50 pL of
supernatant from each sample was reserved as input, and the rest lysate was incubated
overnight at 4L with the magnetic beads bound with ARID1A (CST, 12354S),
ARID1B (Santa Cruz, sc-32762X), SMARCA4 (Abcam, ab110641) or H3K27ac
(Abcam, ab4729) antibody respectively. The beads were washed three times with
Wash Buffer (50 mM Hepes-KOH, pH 7.6, 500 mM LiCl, 1 mM EDTA, 1% NP-40,
0.7% Na-deoxycholate), and washed once with 1 mL TE buffer containing 50 mM
NaCl. The DNA was eluted with 210 uL of Elution Buffer (50 mM Tris-HCI, pH 8.0,
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10 mM EDTA, 1% SDS). The cross-links were reversed by incubated at 650
overnight. 200 pL of TE buffer was added to each tube, and the RNA was degraded
by incubation with 16 pL of 25 mg/mL RNase A at 371 for 60 min. The protein was
degraded by adding 4 pL of 20 mg/mL proteinase K and incubating at 55 °C for 60
min. The DNA was then purified by phenol:chloroform:isoamyl alcohol extraction,
and resuspended in 50 puL ddH,O. The fragments of HERVH DNA were detected by
gPCR (Supplementary Table 8).

The RNAscope™ in situ hybridization (I SH)

The colon cancer tissue array (HCol-Adel80Sur) was purchased from Shanghai
Biochip Co. Ltd (Shanghai, China). The RNAscope analysis with probes targeting the
HERVH-gag sequence was performed using the RNAscope Multiplex Fluorescent
Reagent Kit v2 (ACD bio, 323100) according to the manufacturer’s protocol. The
HERVH consensus sequence used for probe design was listed in Supplementary Table
9. Following the RNAscope staining, the tissue array was imaged with a LSM880
confocal microscope (Zeiss).

RNA-FISH combined with immunofluorescence

RNA-FISH combined with immunofluorescence was performed as previously
described™. Cells cultured on poly-L-lysine-coated coverglasses were fixed with 10%
formaldehyde in DPBS for 10 min. After three washes in DPBS, cells were
permeabilized with 0.5% Triton-X100 for 10 min. The cells were then washed three
times in DPBS and blocked with 4% Bovine Serum Albumin for 30 min. The cells
were incubated with the indicated primary antibody diluted in DPBS overnight,
washed three times in DPBS, and incubated again with the secondary antibody for 1
hour. After washing twice with DPBS, the cells were fixed again with 10%
formaldehyde in DPBS for 10 min. Following two washes with DPBS, the cells were
further washed in Wash Buffer | (20% Stellaris RNA FISH Wash Buffer A (Biosearch
Technologies, Inc., SMF-WA1-60), 10% Deionized Formamide (Invitrogen, AM9342)
in RNase-free water) for 5 min. The RNA probe (Stellaris) in hybridization buffer was
added to the cells and incubated at 37171 for 16 hours. After washing with Wash Buffer
| at 370 for 30 min, the cells were stained with 1 pg/mL DAPI for 5 min. The cells
were then washed with Wash Buffer B (Biosearch Technologies, Inc., SMF-WA1-60)
for 5 min, and rinsed once in water before mounting with SlowFade Diamond
Antifade Mountant (Invitrogen, S36963). The sequence of the RNA probe (Stellaris)
was listed in Supplementary Table 10.

RNA-FI SH and immunofluorescence with organoids

After dissolving the Matrigel with ice-cold cell recovery solution (Corning, 354253),
the organoids were placed on a poly-L-lysine-coated glass slide for 30 min. The
organoids attached to the slide were fixed with 10% formaldehyde for 45 min at 4 °C,
and washed with DPBS for three times. The organoids were then permeabilized with
0.5% Triton-X100 for 15 min and washed with DPBS for two times. After one wash
with Wash Buffer A for 5 min, the organoids were hybridized with the RNA-FISH
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probe overnight at 377 . After one wash with Wash Buffer A for 30 min at 37771, the
organoids were stained with 1 pg/mL DAPI in Wash Buffer A for another 30 min, and
washed twice with Wash Buffer B for 30 min. The organoids were rinsed with ddH-O
and mounted with SlowFade Diamond Antifade Mountant (Invitrogen, S36963). The
images were taken with a LSM880 confocal microscope (Zeiss).

The immunofluorescence of organoids was performed as previously described®. The
organoids cultured in 96-well plate were washed once with DPBS without disrupting
the Matrigel, and then 200 uL of ice-cold cell recovery solution (Corning, 354253)
was added and incubated at 4 °C for 1 hour with shaking at 60 rpm. After the Matrigel
was dissolved, the organoids were rinsed out using ice-cold PBS with 1% BSA and
spun down at 70 g for 3 min a 4 °C. The pellet of organoids was resuspended in 1 mL
of 10% formaldehyde in DPBS, and incubated at 4 °C for 45 min. 9 mL of ice-cold
PBT (0.1% Tween 20 in DPBS) was added and incubated at 4 °C for 10 min. The
organoids were then spun down at 70 g for 5 min at 4 °C, resuspended in 200 pL
ice-cold OWB (0.1% Triton X-100, 0.2% BSA in DPBS), and transferred into 24-well
plate precoated with polyHEMA. Following incubation at 4 °C for 15 min, 200 pL of
the indicated primary antibody diluted in OWB was added and incubated overnight at
4 °C with shaking at 60 rpm. The next day, 1 mL of OWB was added into each well.
After all the organoids were settled at the bottom of the well, the OWB was removed
with just 200 uL left in each well. The organoids were washed three times with 1 mL
of OWB and incubated at 4 °C for 2 hours with shaking at 60 rpm. The OWB was
removed with just 200 pL left in each well, and then 200 pL of secondary antibody
diluted at 1:200 in OWB was added and incubated overnight at 4 °C with shaking at
60 rpm. After the incubation, the organoids were washed once with OWB, and 200 pL
of 2 yg/mL DAPI in OWB was added and incubated at 4 °C for 30 min. The
organoids were then washed two times with OWB, transferred to 1.5-mL Eppendorf
tube, and spun down at 70 g for 3 min at 4 °C. The OWB was removed as much as
possible without touching the organoids, and the organoids were resuspended with
fructose-glycerol clearing solution (60% glycerol and 2.5 M fructose in ddH,0).
Drew a 1x2 cm rectangle in the middle of aslide, and placed 3 layers of sticky tape at
both sides of the rectangle. The organoids were transferred into the middle of the
rectangle, and put the coverslip on the top. The images were taken with a LSM880
confocal microscope (Zeiss).

Fluorescence Recovery After Photobleaching (FRAP)

The treated cells were plated into 35 mm glass bottom confocal dishes (NEST,
801001), and the FRAP experiment was performed on the Zeiss LSM880 Airyscan
confocal microscope with a 63x Plan-Apochromat 1.4 NA oil objective. The Zeiss
TempModule system was used to control the temperature (37 °C), the humidity and
the CO, (5%) of the imaging system. After imaging for 3 frames, the cells were
photo-bleached using 100% laser power with the 488 nm laser (iterations. 50, stop
when intensity drops to 50%). The cells were then imaged again every two seconds.
The images were analyzed and measured with ZEN 2 blue edition (Zeiss).
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Code Availability.
All custom scripts are available from the authors upon request.
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