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ABSTRACT 

A set of increasingly powerful approaches are enabling spatially resolved measurements of 

growing numbers of molecular features in biological samples.  While important insights can be 

derived from the two-dimensional data that many of these technologies generate, it is clear that 

extending these approaches into the third and fourth dimensions will magnify their impact. 

Realizing biological insights from datasets where thousands to millions of cells are annotated with 

tens to hundreds of parameters in space will require the development of new computational and 

visualization strategies.  Here, we describe Theia, a virtual reality-based platform, which enables 

exploration and analysis of either volumetric or segmented, molecularly-annotated, three-

dimensional datasets, with the option to extend the analysis to time-series data. We also describe 

our pipeline for generating annotated 3D models of breast cancer and supply several datasets to 

enable users to explore the utility of Theia for understanding cancer biology in three dimensions. 
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INTRODUCTION 

The ability to interrogate tissues at the single cell level and to gather genomic and proteomic 

information at scale for the individual constituents of living systems is having an enormous impact. 

Single-cell RNA and DNA sequencing is revealing new cell types, enabling comprehensive 

catalogues of human and mouse tissues, and revealing genetic and phenotypic heterogeneity in 

tumours.  Yet, most normal and disease development happens in a spatial context.  The three-

dimensional architecture of a tissue has profound impacts on its function, whether it be through 

the establishment of morphogen gradients in development or through the effect of local tissue 

niches featuring distinct cell compositions or signalling states. However powerful, measurements 

made on disaggregated cells or nuclei generally lack this critical contextual information.  In cancer, 

there is a growing appreciation that the initiation of disease, its progression toward invasion and 

metastasis, and its response to therapy are all profoundly influenced not only by the properties of 

the tumour cells themselves but also by the characteristics of the tumour microenvironment 

(TME)1–3.  A description of the relationships between a tumour and its TME requires not only an 

enumerated catalogue of its constituent cell types and clonal lineages but also an understanding 

of their interactions and arrangement in three-dimensional space.   

The desire to understand development, tissue architecture, and disease in context has 

prompted a drive toward the development of methods for making multiplexed measurements on 

intact tissues or tissue sections.  Such methods measure portions of the transcriptome or 

proteome or alternatively can quantify metabolites.  Some are destructive, while others leave 

tissue intact with the potential for layering additional measurements, and though a few methods 

are compatible with multimodal measurements, generally the number of markers measured 

outside of the primary modality is rather low. MERFISH4,5, STARmap6, seqFISH7, Spatial 

Transcriptomics8, and SlideSeq9 can interrogate the expression of 100s to >10,000 transcripts in 

situ, with most of these approaches operating at cellular or sub-cellular resolution.  Imaging Mass 
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Cytometry (IMC)10, CODEX11, CycIF12, 4i13, and others can measure the expression of dozens of 

proteins simultaneously or serially.  All of these are now beginning to produce new biological 

insights into the organization of tissues in two-dimensions.  For example, recent studies using 

IMC have revealed that the tissue organization in breast cancer is both informed by the subtype 

of the tumour and correlates with patient outcomes14,15. 

While two-dimensional, molecularly annotated maps of tissues represent an important 

advance and clearly provide added value to disaggregated datasets, three-dimensional datasets 

with layered information comprising as many types of measurements as possible would maximize 

our ability to extract new biological insights.  A recent analysis of gene expression in situ during 

mouse embryogenesis, which includes a time dimension, illustrates the power of such 

approaches16 (Lohoff et al., Nat Biotechnology (in press) ).   

In general, spatial “omics” methods suffer from two main limitations: they usually operate only 

on thin two-dimensional sections of tissue, and their speed of acquisition is relatively slow. The 

first issue can be resolved by analysing serial sections cut sequentially from an embedded tissue 

fragment, and aligning the resulting datasets in order to produce a coherent three-dimensional 

object. However, the slow acquisition speed means that each individual section can take hours 

or days to acquire. Multiplied by the large section numbers needed to cover a three-dimensional 

volume with good axial resolution, this means that a 1x1x1mm block can take many days to weeks 

in acquisition time alone to produce a dataset.  

An additional challenge is the enormous amount of data generated by spatial omics 

technologies. Spatial omics methods, even when operating in two dimensions, routinely produce 

datasets containing tens to hundreds of thousands of cells, each possibly described by tens to 

hundreds of different measurements. Beyond the computational infrastructure necessary to 

process and store this volume of data, the amount of information produced by these methods can 
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be overwhelming. This issue is heightened for three-dimensional data, since exploration of this 

data is invariably performed on two-dimensional surfaces. The ability to visualize high-

dimensional, complex data is a key element to enabling full exploitation of any spatial molecular 

profiling strategy. Approaches to address such issues include the use of dimensionality reduction 

to visualize a dataset in a simplified format or exploitation of machine learning to recognize spatial 

patterns.  However, in both cases, the ability of an individual to explore a dataset naively is greatly 

diminished. Several software packages exist to facilitate visualization of spatial “omics” datasets, 

some have arisen as spatial add-ons to widely-used single-cell analysis packages (such as 

Seurat17 and Scanpy18), and some developed from scratch with spatial analysis in mind (i.e. 

Giotto19, Vitescce, ST viewer20). However, none of these can handle three-dimensional data 

natively. 

Virtual Reality (VR), and its cousin, Augmented Reality, have significantly matured in the last 

few years and are set to revolutionize the gaming and entertainment industries. These 

technologies are increasingly applied in industrial design, medicine, healthcare, and education21. 

However, application of VR to the exploration of scientific data has lagged behind.  Indeed, VR 

has just started to be applied to biological data, mostly to explore gene networks, to annotate 

neuron morphology, or to visualize microscopy data, both academically22–25 (i.e. vLume, 

CellexalVR, TeraVR, confocalVR) and commercially (Arivis InviewR). 

Here, we describe a VR visualization and analysis platform for spatial multi-omics data.  This 

‘virtual laboratory,’ Theia, so named after the Titaness of sight in Greek mythology, provides a 

multi-user, three-dimensional environment for exploration of spatial datasets.  This platform can 

accept segmented data with large numbers of molecular or other annotations, project them in 3D, 

and enable their intuitive manipulation and visualization of patterns of gene or protein expression.  

Theia is also enabled for on-the-fly analysis, for example with integrated functions for 

dimensionality reduction that can be used to identify groups of cells for re-projection into the 3D 
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object.  Additional analysis capability can be easily added to customize the platform through a 

convenient Application Programming Interface (API).  Theia operates using the Unity VR engine 

in the Steam VR environment and is therefore compatible with a variety of consumer VR devices 

and accompanying high-spec personal computers.   

To illustrate the utility of Theia for visualization and exploration of 3D datasets, we generated 

three segmented, molecularly annotated samples (Table 1). Two biopsies from human breast 

cancers (in the sub-mm size range) were analysed by serial-sectioning followed by IMC and 

realignment of the processed imaging data.  The third dataset is a large-scale model representing 

a 300 µm thick section of am approximately 1 cm tumour from a syngeneically transplanted mouse 

triple negative breast cancer (TNBC) model.  The latter model was produced by serial blockface 

two-photon imaging (Serial Two-Photon Tomography, STPT) followed by IMC on recovered 

sections and contains over 2 million cells.  

While Theia was designed for segmented molecularly annotated datasets, it is also 

compatible with a wide variety of different data sources, ranging from segmented, 3D lightsheet 

microscope data (including time-course data) to non-spatially resolved single-cell RNAseq 

datasets, which can still benefit from the ability to visualize the dimensionality reduction plots in 

3D. Any single-cell level data can in principle be visualized in virtual reality, benefitting from the 

added sense of depth, a simplified user interface, and a large visualization space. 

RESULTS 

The IMAXT pipeline for spatial analysis of biological samples 

 The Imaging and Molecular Annotation of Xenografts and Tumours (IMAXT) CRUK Cancer 

Grand Challenge project is a collaboration between research groups located in the UK, USA, 

Canada, Switzerland and Ireland. The goal of this consortium is to enable the production of 3D 
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multi-parametric models of breast tumours in order to increase the current understanding of 

tumour progression, dissemination, and resistance to therapy, and to pave the way for the 

development of better diagnostic tools and treatments. At the core of the project is a sample 

processing and analysis pipeline (González-Solares, E.A. et al., 2021, Nature Cancer, submitted) 

that our consortium developed, combining single-cell genomic/transcriptomic methods with large-

volume 3D imaging via STPT and in situ molecular profiling (Figure 1). 

Samples that enter the pipeline within IMAXT can come from mouse models of breast cancer 

(obtained from genetically engineered mouse models (GEMMs), from tumour cell lines injected 

into syngeneic hosts, or chemically or virally induced tumours), patient-derived xenografts grown 

in immune-compromised mice, or primary human biopsies or resections. As a first step, one or 

more fragments of each sample are collected and cryo-preserved, and used (after dissociation) 

for single-cell RNA sequencing (usually using the 10X genomics platform) or single-cell whole-

genome DNA sequencing via DLP+ 26. The results of these are used to produce a “survey” of the 

cell types and cell states present in the sample, and to guide the development of the gene and 

antibody panels used for in situ profiling. Since the data yield of disaggregated methods is 

presently superior to that of in situ technologies, this step is very important to ensure the spatial 

analysis can capture the most relevant parameters, unless a good set of curated markers is 

already available. 

The bulk of the sample is then embedded in an agarose block and subjected to STPT 

imaging27 This method produces a distortion-free 3D image of the sample with up to 4 

fluorescence channels.  This instrument images a plane immediately below the block surface and 

then cuts a thin (>=15 μm) section from the sample to enable imaging of the next plane of the 

sample. In short STPT combines a vibratome and a two-photon microscope. STPT presents three 

key advantages over other whole-organ images modalities such as light-sheet microscopy: (1) 

image quality and resolution don’t change with imaging depth, since imaging always happens 
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within a short distance from the top surface of the block; (2) objects of any size and depth can be 

imaged, with an adjustable axial resolution (physical slice thickness); (3) the sample is sectioned 

(>=15 μm currently) and imaged at the same time, producing sections that can be further 

annotated. These gather in a collection vat in the STPT instrument and are recovered (in random 

order) on glass slides or in a known order with an automated collection device (currently limited 

to sections of >25 μm). In our workflow, sections are counter-stained with nuclear and membrane 

dyes and re-imaged using a whole slide scanner. Each slide image is then registered to the 3D 

volume produced by two-photon imaging. To facilitate this step, we co-embed spherical agarose 

beads coated with green fluorescent protein in the sample block. The cross-section of the beads 

produces a unique pattern for each slice, which can be easily segmented and matched across 

imaging modalities (González-Solares, E.A. et al., 2021, Nature Cancer, submitted). Collected 

sections are then available for further molecular annotation using spatial transcriptomic or 

proteomic methods. 

Generation of an integrated dataset from a mouse model of TNBC using STPT and IMC  

The 4T1 cell line is a widely used model for basal-like, claudin low breast cancer28,29.  It can 

be syngeneically transplanted in immune-competent Balb/C animals or introduced into immune-

compromised recipient mice.  Prior work has indicated that 4T1 is both genomically and 

phenotypically heterogeneous, and we previously identified subclonal populations of 4T1 (clones 

E and T) which can selectively form vessel-like networks when orthotopically transplanted30.  We 

therefore used this cell line to create a demonstration model for Theia. 

We fluorescently labelled the parental 4T1 cell line by expression of TdTomato and labelled 

the 4T1-T subclone by expression of GFP.  We orthotopically injected a mixture containing 80% 

parental and 20% clone T into an NSG recipient animal and resected the tumour after 21 days, 

when its diameter had reached approximately 1 cm.  We imaged the entire tumour using the STPT 
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and collected 20 consecutive sections for further annotation, corresponding to a depth of 

approximately 300 μm.  These sections were imaged on a slide scanner, stained with a panel of 

33 metal-conjugated antibodies and imaged by IMC.  After co-registration and segmentation, we 

obtained a 3D model with an axial resolution of 15 μm (roughly an individual cell diameter) and 

over 2,000,000 unique cells mapped over a volume of approximately 12 mm3. 

Even in the 3D STPT image alone, we noted different spatial distribution for clone T as 

compared to the parental 4T1 cells (Figure 2A, Supplementary video 1). The former distributed in 

“foci” within the tumour mass, while the latter were largely uniform. Being able to combine this 

imaging with IMC revealed that clone T gathered often in proximity to necrotic areas with 

substantial myeloid infiltration (Figure 2 B-D, S1, Supplementary video 2).  Interestingly, tumour 

cells expressing the proliferation marker Ki67 often had low expression of the TdTomato 

fluorophore (Figure 2F). We could also identify host vascular cells expressing endothelial markers 

(CD31/CD34) and pericyte markers (PDGFRB, Desmin, alpha-SMA), stromal cells, and cell 

clusters characterized by high expression of the M2 macrophage marker CD206/MMR (Figure 2 

C,E, Figure S1). In addition to cell types, we were also able to interrogate cell states. We could 

clearly identify hypoxic cells, both in the TdTomato+ tumour compartment and in the GFP+ one, 

as well as cells characterized by high amounts of phosphorylated S6 (Ser235/236) ribosomal 

protein, a downstream target of the mTOR pathway (Figure 2F).  

Overall, our results indicated a clear spatial organization of the tumour, with distinct 

populations of tumour cells occupying discrete neighbourhoods. In general, GFP+ 

neighbourhoods were characterized by low proliferation, low expression of epithelial markers, and 

high levels of hypoxia-related proteins (I.e. Glut1, Carbonic Anhydrase IX). These cells also had 

higher expression of CD44 than the parental 4T1 cells (Figure 2F).  All of these characteristics 

can be interrogated in 3D in virtual reality using Theia (Figure 2G, see below). 
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High-resolution 3D datasets from human cancer by serial sectioning and IMC 

As additional input to our virtual reality platform, we have also provided two human breast 

cancer samples that have been previously generated as part of IMAXT Consortium efforts. These 

models were generated from a Her2+ invasive ductal breast carcinoma biopsy using 3D IMC to 

achieve high axial-resolution together with in situ molecular annotation (Kuett and Catena et al. 

Nature Cancer - submitted)31. Briefly, the 3D IMC method is based on serially sectioning a 

paraffin-embedded tissue sample into 2 µm sections prior to sample staining and acquisition. This 

is followed by computational image processing to achieve the final 3D model with a voxel size of 

1x1x2 µm (x-y-z). The first model has the final dimensions of 652 x 488 x 304 µm3, and the second 

one 606 x 686 x 184 µm3 and comprise 108,000 and 81,000 segmented cells, respectively (Figure 

3A, left and right respectively), providing an interesting substrate for exploration in VR (Figure 3B-

F).  Notably, these models reveal spatial distributions of marker expression that are not evident 

in 2D images, thus illustrating the ability of 3D models to raise interesting hypotheses. For 

example, these models show a varying pattern of CK5-high and SMA-high epithelial basal cells, 

a dense colocalization of CD8+ and CD4+ T-cells near endothelial cells, and lining of 

pS6(Ser235/236)-high cells along the epithelial tumour compartments (Figure 3C-E, S3, 

Supplementary video 3). In the larger 3D IMC model, clusters of potentially invasive cells at the 

tumour periphery have been captured, and the 3D visualization makes it apparent that these 

clusters are disconnected from the main tumour bulk (Figure 3F).  

Development of a virtual reality ‘laboratory’ to explore spatial molecular data 

To enable exploration of three-dimensional, molecularly annotated datasets, we developed 

a virtual reality implementation that takes lessons from the computer gaming industry and applies 

these with the goal of enabling intuitive spatial analyses of cellular arrangements and gene 

expression patterns in biological samples. VR has the advantage of not being bound by the 
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dimensions of even a very large computer monitor.  Instead, users can literally step inside the 

data, generally in a roughly 5m2 area and apply different analysis paradigms and explore the 

outcomes on the fly.  Finally, our implementation creates a multi-user environment, such that 

investigators can convene in a virtual space to interrogate collaboratively high dimensional 

datasets. We named this implementation, Theia.  Theia has the potential to impact the analysis 

of spatial data analogously to the impact of the development of genome browsers have had on 

our ability to interrogate and understand next-generation sequencing datasets. 

Theia was developed on consumer-grade VR headsets (any compatible with the SteamVR 

system) and computer hardware to make it accessible to any laboratory. The investment needed 

for operating the software, including headset, controllers and computer is less than the cost of a 

generating one single-cell dataset. The software is built upon a popular and well-supported game 

engine, Unity, which results in broad compatibility. Our primary concern was to create a space 

that was comfortable to work in for several hours with tools that responded quickly and usefully. 

Additionally, it was imperative for us that no programming be required and data analysis be 

achieved with simple visual metaphors, to make the learning curve as shallow as possible for new 

users.  The objective was a balanced design, both scientifically functional and with limited visual 

clutter (Figure 4A, Supplementary Videos 4-5).  

Theia tools have a universal language which is easy to learn. They consist of two varieties; 

surfaces for generic analysis (displaying and highlighting cell populations, or visualizing gene 

expression) and cabinets for specific analysis such as dimensional reduction or differential 

expression. Grabbing and placing of objects is the main mode of interaction. For instance, the 

sample can be rotated and zoomed just by grabbing it and moving it closer or farther away 

Supplementary videos 4-5).  Additionally, pointing, buttons, sliders, and levers are utilized to 

change visualization parameters such as cell size and scale. Tools for moving, selecting specific 

cells, pointing and taking screenshots are housed on the user’s wrists (Figure S2A). This ensures 
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easy access from anywhere within the simulation. Features of the dataset to be analysed 

(populations, genes, cell types) are displayed as VR ‘tiles’ which the user can interact with by 

moving them in specific slots into the environment tools (See examples in Figures 4, 5, 

Supplementary videos 6-7. These interactions are subtly guided by objects “snapping” together 

when in proximity of a compatible slot, and by haptic feedback through the VR controllers. Subtle 

animations and in world screens are also utilized within Theia. This prompts the user toward 

correct actions and ensures simulations become intuitive (Figure S2B, Supplementary video 8). 

Interactive data analysis in the VR environment 

Theia is designed to analyse samples formatted as cell catalogues, with each cell 

characterized by a series of spatial coordinates (corresponding to either real space or 

embeddings along dimensional reduction axes) and parameters (gene/protein expression or 

morphological measurements). Cells can be pre-assigned to different populations (for instance 

by means of clustering methods such as the louvain or leiden algorithms32,33), or populations can 

be defined directly by the user by “painting” over cells with a specific tool. Theia uses a dedicated 

data storage format optimized for small size and speed of loading, but can import data from most 

single-cell processing data formats, e.g., the one specified by the anndata Python package used 

by Scanpy18, or R’s singlecellexperiment and Seurat17. 

Cell populations can be made to appear or disappear by selecting the tiles corresponding to 

these cell types from a menu and dropping them on a selection table and can be assigned a 

colour by dropping them on a second table (Figure 4B, Supplementary videos 6-7). All cell 

populations can be automatically displayed in sequence (Supplementary videos 9-10). Genes 

and markers can be visualized in a similar way. Dropping a gene tile on the selection table 

launches a query to identify cells with an expression of the given gene above or below a give 

threshold (which can be selected) (Supplementary video 11), while dropping it onto a colour re-
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maps the colour intensity to the gene expression level, with a transfer function that can be 

personalised adjusting the min/max expression range (Figure 4C, Supplementary video 12). 

Queries can be combined by dropping multiple tiles on the selection table, and multiple markers 

or populations can be assigned colours at the same time.  

Information about the sample is displayed through dedicated “panels” which display details 

at the sample level (general metadata on sample generation, size, features, etc) (Figure 4D), or 

at the population level, or single cell level. For the latter two, the panel shows a customizable 

maker expression heatmap, which allows users to get a general view of gene or protein 

expression in a population or in a given cell. The information displayed in the panels changes 

dynamically as the user selects different cells (Figure 4D, Supplementary video 13). 

While most of the manipulations happen with the model mapped to a size (in virtual space) 

more or less equal to that of the user (so that it can be held and manipulated), it is also possible 

for the user to greatly expand the model and use a “fly” tool, colloquially termed “superman mode,” 

to enter the sample and interrogate individual cells and structures (Figure 4E, Supplementary 

Videos 14-15). 

Although data on the 3D shape of each cell is available in our datasets, we elected to display 

each cell using simplified meshes corresponding to the most frequently observed cell types (icon 

view) (Figure 4F). This ensures the user can visually parse the sample with ease and also 

provides an additional layer of visual information. Furthermore, icon view is computationally 

simpler to render, and allows for the viewing of larger samples. The icon assigned to each different 

cell type can be defined when samples are imported. In spatial datasets such as the ones 

produced by our group, in which information on the volume of each cell is present, the mesh size 

of each object is taken from the real measurements. In other data types, the size can be used as 
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a visual cue for a parameter, for instance by making specific cell types appear bigger or smaller 

to facilitate their visualization. 

We implemented tools to switch easily between visualization of the spatial coordinates of the 

sample and the expression of specific genes or embeddings produced by dimensional reduction 

algorithms. Gene/marker tiles can be inserted in a “plotter” tool, which transforms the sample 

visualization into a 3D plot with dimensions corresponding to the marker intensity (Figure 5B, 

Supplementary video 16). The same can be done with dimensional reduction embeddings, which 

can either be pre-generated in the dataset or calculated on the fly (UMAP reduction34 is used by 

default). (Figure 5C, supplementary video 17) Users can perform a full “round trip” analysis, for 

instance selecting a spatial area for study, visualizing the cells contained in it in gene space or in 

a dimensional reduction plot, identifying a population and mapping it back to its spatial location 

(Figure 5D, Supplementary video 18). Other tools allow the definition of “gene signatures” (by 

averaging the expression of multiple markers into a new marker tile that can be used as a single 

parameter) (Figure 5E) or the calculation of differential gene/marker expression between custom 

populations (Figure 5F, Supplementary video 19). Finally, a spatial search tool can be used to 

identify all cells lying within a certain distance (in 3D) from a selected population (Figure 5G, 

Supplementary Video 20). This function is critical to identify patterns of marker expression that 

depend on spatial proximity between cells (i.e. by comparing differential expression between cells 

closer or farther away from a specific tissue feature). Cell populations identified from within Theia 

can be exported as csv files which can be further processed through any other processing 

pipeline. 

All of the functions of Theia are available in multi-user environments hosted on public servers. 

Users can host or join interactive analysis sessions in which the same dataset is analysed 

cooperatively, and up to 8 international users have been convened in a single session thus far. 

Each user is represented by an avatar in the analysis space, and can interact with the objects in 
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the virtual laboratory. Audio feeds enable live communication between users during analysis 

(Figure 5H, Supplementary video 21). 

Advanced analysis and plug-in structure 

In designing Theia, we aimed to strike a balance between implementing easy-to-use tools 

directly in the software, and leveraging the incredibly rich ecosystem of single-cell analysis 

software, scripts, and methods (some of which are dedicated to spatial analysis) that already exist 

and are in constant evolution. For this reason, one of the key features of Theia is a plug-in system 

which allows users to pass information between the visualization software and a custom piece of 

code, run some processing, and return data for visualization. The viewer component of Theia 

(developed in Unity and C# language) sits on top of a Python instance. The dataset loaded in the 

viewer is automatically also loaded in Python as an anndata object, and is available for 

manipulation using any Python module, such as the scanpy package. Users can develop custom 

scripts performing their desired processing, and, by using specific tools in the virtual space, load 

it and input parameters (such as list of cells) to it. The script output is then parsed and returned 

to Theia in the form of new cell populations, new markers, or gene lists, and can be displayed in 

VR. This method is used, for instance, for the dimensionality reduction, differential expression, 

and spatial search tool, which can be customised or varied by the expert user by modifying the 

underlying Python code. New scripts can also be developed from scratch to implement other 

functions. Different templates (corresponding to different cabinet shapes in the virtual world) 

mediate different types of input-output, and can be used to implement different functions. While 

at the moment the plug-in engine is only compatible with Python, we plan to extend it to R in the 

near future, and it is already possible to call R scripts by using Python as an intermediate. 
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Compatibility of Theia with other data types 

We expect spatial datasets, such as the ones presented here, to become increasingly 

available.  However, true, molecularly annotated, 3D datasets are still relatively rare and difficult 

to generate, requiring substantial infrastructure and effort in technology implementation and data 

analysis. We therefore have also made Theia compatible with the analysis of datasets and 

datatypes that are already widespread. 

Disaggregated single cell analyses (transcriptome, copy number, methylome, etc) are 

increasingly used in all areas of biology, including to interrogate the tumour microenvironment 

and the clonal evolution of different tumour types. The technology to generate many of these data 

types is now mature and broadly available. Theia is compatible with all single-cell datasets, and 

includes a data converter for scanpy’s anndata objects, one of the most popular formats. Other 

formats can be loaded if converted first to anndata, which is usually a straightforward process. If 

positional information is not included, the dimensional reduction embeddings (t-SNE, PCA or 

UMAP) are used in lieu of the spatial coordinates for visualization, and populations/clusters are 

mapped to cell types. All of Theia’s tools (on-the-fly dimensional reduction, differential expression, 

gene averages, etc) are compatible with single-cell data. As an example of the usage of this data 

type, we provide with Theia a single-cell dataset obtained from the same tumour type and stage 

represented in our STPT/IMC 3D model (Figure 6, Supplementary video 22) 

Whole-mount microscopy is another family of technologies that has recently seen increased 

democratization, in part thanks to the development of novel microscopy techniques such as light 

sheet, bessel beam, lattice light sheet, STPT, and others35. Thanks to technical advancements, 

whole organisms can now be imaged in toto, including live imaging of their development. Datasets 

of this type have been published for D. melanogaster and zebrafish early development36,37 and 

for pre-implantation mouse embryos during gastrulation and early organogenesis38. In parallel to 
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the technical improvements in imaging, improved methods for object segmentation have allowed 

the identification of every cell in these models, and their tracking across time. Since the output of 

these processes is a catalogue XYZ position for each cell at different timepoints, Theia can be 

used to visualize them. To enable visualization of time-series data, we modified one of the 

functions of our viewer, normally used to cycle through the different cell types present in a sample 

to be compatible with timepoints. As a result, Theia can be used to load and visualize spatial time-

lapse data. Cell labels and markers (if present) can still be visualized as for other samples. As an 

example of this, we included with Theia a pre-packaged version of the mouse development 

dataset from McDole et al. (Figure 7A, supplementary Video 23) for exploration. 

Finally, while segmentation of biological images and production of annotated cell catalogues 

is arguably a critical step of most analysis pipelines, we sought to make Theia compatible with 

non-segmented data as well, and introduced a volumetric renderer into the software. While this 

is not yet capable of visualizing terabyte-scale datasets at native resolution (mostly due to 

limitations in data I/O and to the fact that Unity’s renderer is not natively designed to handle voxel 

data), it is sufficient to visualize image volumes up to many millimetres in size with a resolution in 

the 10s of microns, sufficient to discriminate minute features of the tissue microenvironment. The 

volume viewer takes as input tiff image stacks, and provides controls to adjust the transfer 

function, opacity, colour and sampling density of the visualization. The viewer is by default 

compatible with single-colour images, but will be soon expanded to multi-channel images. Users 

are able to move and zoom volume around by grabbing it and manipulating it, and are provided 

with a “plane” tool which allows them to “section” the volume at any level and angle and display 

that sectional plane. The latter operation, which is normally quite laborious on a computer’s 

screen, and requires long manipulations of the dataset to get the correct angle and position, can 

be performed in seconds in virtual reality, which further highlights the power of this medium for 

volume analysis (Figure 7B, Supplementary video 24). 
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DISCUSSION 

The increasing availability of commercial platforms for producing spatial omics data is poised 

to impact biology in a manner similar to the widespread deployment of commercial single-cell 

profiling methodologies.  This necessitates the development of platforms to analyse, process, and 

explore such datasets.  Virtual Reality offers a flexible, scalable, and intuitive solution for the 

exploration of spatial data, and this has motivated the creation of Theia as an open-source 

resource for the community. Theia has been created with embedded tutorials (accessible from 

within the VR environment) to enable investigators to rapidly master its use, and most users can 

gain a familiarity with Theia’s basic toolkit in under 30 minutes.  Theia also offers a suite of more 

advanced analyses and importantly the ability to integrate most existing tools and analyses for 

single-cell level data and provides the ability to easily incorporate novel tools in the future.  

Moreover, Theia has been developed to be compatible with widely available and relatively 

inexpensive hardware, with a complete installation generally costing less than producing one 

single-cell dataset.   
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METHODS 

Sample generation for the 3D/STPT sample 

To construct the tdTomato-Akaluc vector, tdTomato and p2A-Akaluc were amplified by PCR and 

cloned into the 3rd generation lentiviral pZIP backbone harbouring a spleen focus-forming virus 

57 promoter (SFFV) using Gibson Assembly. 4T1 parental cells (ATCC® CRL-2539™) were 

infected with tdTomato-Akaluc followed by selection of tdTomato positive cells using FACS. 4T1-

T cells (as described in Wagenblast et al.30) were made GFP positive by transduction with the 

CellTag-GFP vector (pSMAL60 CellTag-V1), which was a gift from Samantha Morris39 (Addgene 

115643), based on the pSMAL backbone from John Dick, and were sorted based on their EGFP 

expression. The cell lines were cultured in DMEM (Gibco) supplemented with 10 % (v/v) heat-

inactivated FBS in a humidified incubator at 37°C and 5 % CO2.The murine tumour 4T1 parental 

cells (tdTomato+) were combined with the 4T1-T clonal cells (EGFP+) in a ratio of 80 % parental-

4T1 to 20 % 4T1-T. From this mixed population, 50,000 cells were suspended in 1:1 PBS and 

Matrigel (Corning, Cat No. 356231) and tumour formation was induced by orthotopic injection into 

the mammary fat pad of female NSG™ mice (Jackson labs, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, 

stock 005557). Primary tumour volume was assessed and the tumour was allowed to develop for 

21 days post-injection before the animal was sacrificed and the tumour was excised. The tumour 

was fixed in 4 % paraformaldehyde (PFA) for 24 h, 4°C. All of the animal procedures were 

performed in accordance with the UK Animal Scientific Procedures Act (ASPA) under the authority 

of an animal use project license approved by the UK home office, and in accordance with the 

standard operating procedures indicated by CRUK CI Animal Welfare Review Board (AWERB).  
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Fiducial beads conjugation for STPT embedding 

NHS-activated Sepharose® beads (Sigma Cat No. GE-17-0906-01), composed of 4 % cross-

linked agarose with an average particle size of 90 µm, were coated with recombinant GFP protein 

(Abcam, Cat No. Ab84191). Briefly, an aliquot of 200 µL bead slurry was washed in 1 mM HCl, 

followed by Coupling Buffer (0.4 M NaHCO3, 1 M NaCl, pH 8.3). 100 µg of GFP was incubated 

with the beads overnight at 4°C, with rotation. The reaction was quenched with 0.1 M Tris-HCl pH 

8.0, 0.3 M NaCl and the GFP-conjugated beads were stored in 0.1 M Tris, pH 8.0 at 4°C.  

STPT sample preparation and STPT imaging 

To prepare the tumour sample for serial two photon tomography (STPT), a 4.5 % (w/v) agarose 

solution (Type 1 agarose, Cat. No. A6013, Sigma) in 50 mM phosphate buffer, pH 7.4 was 

oxidized by the addition of 10 mM sodium periodate (NaIO4). The solution was agitated for 3 h in 

the dark, washed with phosphate buffer and resuspended in the appropriate volume of 50 mM 

phosphate buffer to achieve 4.5 % agarose. This oxidized agarose solution was heated to boiling, 

cooled to 60°C, and spiked with GFP-conjugated agarose fiducial marker beads prior to 

embedding the tissue. The PFA-fixed tissue was embedded in the molten agarose using a 2 cm3 

embedding mould (Cat. No. E6032-1CS, Sigma). Once the agarose block was solidified, it was 

immersed into a degassed polymer solution (Imbed 100S monomer, TissueVision) for 48 h at 

4°C. The agarose block was baked for 8 h at 40°C to crosslink the polymer solution, following 

which the block was stored at 4°C in 50 mM phosphate buffer, pH 7.4 until it was ready for 

imaging. 

The agarose block containing the tumour sample was glued to a histology glass slide (25 x 75 x 

1 mm) modified by attaching two neodymium bar magnets to the bottom side (non-frosted) using 

epoxy glue, and this was placed onto a magnetic plate within an imaging vat and filled with 1 lt of 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.28.448342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.448342
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

50 mM phosphate buffer, pH 7.4.  Serial two-photon imaging was then performed on a TissueCyte 

1000 instrument (TissueVision, Newton, MA, USA), where a series of 2D XY mosaic images were 

taken, followed by physical sectioning with a vibratome to remove the imaged tissue and to create 

a new surface for a subsequent round of imaging. For this dataset, twenty physical sections of 15 

µm thickness were cut with the vibratome at a speed of 0.1 mm/sec and 55 Hz frequency. Two 

planes of images were taken for each 15 µm physical section, one at an imaging depth of 30 µm 

below the surface and another at 38 µm. A dual laser setup (Coherent Discovery) allowed 

simultaneous acquisition of GFP (excitation wavelength 900 nm) and tdTomato (excitation 

wavelength 1040 nm). Fluorescence was detected by four PMT tubes in the following spectral 

ranges: <500nm (channel 4), 500-560 nm (channel 3), 560-600nm (channel 2), >600nm (channel 

1). GFP and TdTomato were detected in channel 3 and channel 2 respectively.  Collagen was 

also imaged through the second-harmonic emission generated by the 900nm laser (450 nm).  

Tissue sections were collected from the buffer vat onto Superfrost Plus microscope slides, air-

dried and stored at 4°C until processed for fluorescence scanning. The tiled STPT images were 

stitched and segmented using the image analysis workflow described below, and in more detail 

elsewhere (González-Solares, E.A. et al., 2021, Nature Cancer, submitted). 

Slide imaging 

Images were captured post-STPT with the Zeiss Axioscan Z1 microscope slide scanner with a 

resolution of 0.44 µm/pixel. GFP - Excitation filter – 465-490nm, Emission filter – 460-480nm, 

Exposure time 250ms. tdTomato – Excitation filter – 545-565nm, Emission filter – 578-640nm, 

Exposure time 700ms. The surface area of each section was imaged including the GFP+ fiducial 

marker beads surrounding the tissue. 
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IMC antibody conjugation and panel preparation 

All antibody conjugations were performed using the standard protocol available from Fluidigm for 

metal-antibody conjugation using the Maxpar X8 metal conjugation kit. All centrifugations were 

done at room temperature. Briefly, the metal polymer was equilibrated to room temperature and 

spun down in a mini-centrifuge for 10 seconds. The polymer was suspended in 95 µl of Fluidigm’s 

L buffer and 5 µl of the appropriate lanthanide metal from Fluidigm was added to this. After 

thorough resuspension, the metal-polymer was incubated at 37°C for 30 minutes. During this 

step, 100 µg of an IgG antibody (in BSA and glycerol free formulation) were spun down at 12,000 

x g for 10 minutes in an Amicon 50 kDa centrifuge filter tube. A buffer exchange was performed 

by adding 400 µl of Fluidigm’s R buffer to the concentrated antibody and spun down at 12,000 x 

g for 10 minutes. The antibody was then partially reduced with 100ul of 4mM TCEP-R buffer, 

made by diluting 0.5 mM TCEP (Sigma-Aldrich) in R-buffer. After ensuring gentle and thorough 

resuspension of the antibody and reducing agent, the antibody was incubated in a water bath at 

37°C for 30 minutes. During this step, the polymer-lanthanide mixture was transferred to an 

Amicon 3 kDa centrifuge filter tube with 200 ul of L buffer and spun down at 12,000 x g for 25 

minutes. The polymer-metal complex was then washed with 400 µl of Fluidigm’s C buffer and 

spun down at 12,000 x g for 30 minutes. During the polymer-metal purification, 300 ul of C buffer 

was added to the partially reduced antibody and spun down at 12,000 x g for 10 minutes. This 

wash was repeated with 400 µl of C buffer. After purification of both the polymer-metal complex 

and the reduced antibody, the polymer-metal was brought to a final volume of 80 µl with C buffer 

and added to the 20 µl of antibody, thus initiating the conjugation processes. The antibody-

polymer-metal complex was incubated in a water bath at 37°C for 90minutes. The conjugated 

product was then washed with 200 µl of Fluidigm’s W buffer and spun down at 12,000 x g for 10 

minutes. The wash was repeated 3 times more with W buffer up to a total volume of 400 µl. The 

~20 µl of the conjugated antibody was resuspended in W-buffer to a final volume of 100 µl and its 
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absorbance at 289 nm was measured using the Nanodrop. After spinning down the product at 

12,000 x g for 10 minutes, the conjugated antibody was resuspended in the appropriate amount 

of PBS to bring the final concentration to 0.5 mg/ml. The product was spun down at 1,000 x g for 

2minutes, collected and supplemented with 0.05% sodium azide preservative. Final conjugated 

products were stored at 4°C for long term use. The final panel used for this manuscript is 

described in Supplementary Table 1. 

IMC sample preparation for the STPT/IMC dataset 

IMC imaging was performed on 20 consecutive 15 µm STPT sections adhered to frosted glass 

slides. Briefly, sections were incubated at 60°C for 30 minutes, followed by a 5-minute wash in 

ddH2O. Slides were placed into 50-ml Falcon tubes containing antigen retrieval reagent (Tris-

EDTA pH9), preheated at 95°C in a water bath. Slides were transferred to the pre-heated ARR 

for 30 minutes, and subsequently cooled under running cold water for 5 minutes to ensure gradual 

reduction to 70°C. Slides were then washed in ddH2O for 10 minutes followed by TBS (tris-

buffered saline) for 10 minutes. Tissue sections were first permeabilised in a 0.3% Triton X-

100/TBS buffer for one hour, then blocked in a 3%BSA/0.3%Triton X-100/TBS solution for one 

hour. The blocking solution was removed, ensuring removal of excess liquid to avoid diluting the 

antibody mix. The antibody mix (Supplementary Table 1) was prepared in a final solution of 

1%BSA/TBS and added to each tissue section; a coverslip was placed onto each tissue section. 

The slides were placed in a humidified chamber at 4°C for overnight incubation. The following 

day, the coverslips were gently removed and slides were washed twice in 0.1%Tween 20/TBS, 

followed by two washes with TBS, each wash performed for 7 minutes. The tissue section was 

then stained with Fluidigm’s DNA intercalator (catalogue #201192B), dilute 1:500 in TBS, and 

incubated for 30 minutes at room temperature. Sections were washed with ddH2O for 5 minutes 

and allowed to air dry before imaging. 
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IMC Image acquisition 

Each tissue section was imaged using the Hyperion Imaging System™ (Fluidigm). The system 

was first tuned and calibrated using a glass slide that’s been labelled with known concentrations 

of each metal isotope within Fluidigm’s metal library. Calibration was performed at a frequency of 

20 Hz and an ablation energy of 0 dB, with Pre-Calibration XY Optimization and Fine XY 

Optimization options both enabled. Upon successful calibration of the system, the slide was 

placed into the ablation chamber and a panorama image of the entire tissue section, including the 

surrounding STPT, GFP-labelled beads, was generated. Acquisition was performed at a 

frequency of 200 Hz and an ablation energy of ranging from 0 to 5 dB depending on acquisition 

time and laser duty hours (energy was calibrated to the lowest amount sufficient to produce 

complete ablation on a small tissue sample). Tuning and image acquisition ablations were all 

performed using a UV laser set a diameter of 1 µm. The data acquired was stored into both an 

MCD and txt file.  

STPT image stitching and Z alignment 

Because STPT is the modality that has access to a relatively intact sample cube, STPT images 

serve as the anchor for data processing. It was important then to ensure that these images provide 

the most accurate representation of the sample possible. 

With our choice of focal lenses, the field of view of the STPT microscope is roughly 1 mm2, with 

a pixel size of 0.56 μm. Imaging the surface of a sample cube requires typically around a hundred 

field of view acquisitions; we refer to these as tiles. The control software for the microscope has 

the capability to reconstruct the full stage view from these tiles by stitching them together from 

the recorded positions of the actuators that move the sample. We have found that these positions 

can be often be 10 μm off, and therefore chose to implement our own stitching procedure 

(González-Solares, E.A. et al., 2021, Nature Cancer, submitted). 
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For this purpose, we configured the STPT microscope so that there is a 10% overlap between 

adjacent tiles, and we refined the tile-to-tile positioning by intensity-matching these overlaps. This 

allowed us to reconstruct the full stage image with relative tile positioning errors of around 1 μm. 

The normal operation of the microscope consists of an acquisition in several channels and/or 

optical depths, followed by sectioning the sample with the microtome. After this, the sample cube 

is raised, and the cycle begins again. Because the sample is re-positioned between slices and 

each slice image is stitched independently, there are mis-alignments introduced between slices. 

These could be corrected by means again of comparing slice to slice, but because the sample 

itself has changed, this is often imprecise. To solve this problem and facilitate multi-modal 

registration later on, we used the embedded Sepharose® beads as fiducial marks. 

These beads are spherical and therefore easy to segment and model. For the former, we used a 

U-Net neural network40 trained on manually segmented beads. For the latter, we built a realistic 

model of a homogeneous sphere embedded in a medium of transmissivity T<1.0. From this model 

we derived the centre coordinates and the radius of each bead. This effectively transformed the 

beads into point sources, allowing us to resort to a wealth of algorithms developed for Astronomy, 

as aligning/crossmatching point sources is a common problem in this field. 

In the case of slice-to-slice registration, a simple nearest neighbour search was enough to find 

the bead pairs in contiguous slices, and by identifying in which slices a given bead appeared (due 

to their size, usually 3 to 5 slices) we could use the measurements of their central coordinates to 

align all the slices in the sample. Typical alignment errors were of 3 µm, while the action of the 

microtome introduces a drift that from top to bottom would skew the misaligned cube close to 20 

μm in one direction. 
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STPT to whole slide scanning to IMC registration 

The collection of slices from the STPT tank effectively randomises their order, but once deposited 

on a glass slide, an image was taken using a Zeiss Axioscan and the slide was given an unique 

ID that enables traceability. The issue that remained was to find the match between each 

Axioscan image and the corresponding STPT slice. This was complicated by several factors: 

firstly, depositing the slice onto the glass slide can change the left/right, top/bottom and front/back 

orientation; secondly, STPT images a layer embedded some microns into the tissue, while 

Axioscan does so to the surface of the sample; thirdly, collecting and depositing the slices 

introduces some mechanical deformation. Our matching algorithm attempted to address all of 

these factors. First, we aligned a 32x down-sampled Axioscan image to a STPT dummy image 

obtained from a median along the Z axis of all the slices. We modelled the STPT to Axioscan 

transformation as an affine transform with six degrees of freedom, solving the problem of relative 

orientation and correcting most of the possible deformations. We then segmented and profiled 

the visible beads on the Axioscan image following the same procedure as for STPT, and using 

the rough transformation derived previously we tried to match the detected Axioscan beads to 

those in each STPT slice. Maximising the number of beads in common gave us the best Axioscan 

to STPT match, along with the STPT to Axioscan transformation for that particular slice. 

Once a sample slice was affixed to a glass slide and tagged, the IMC to Axioscan correspondence 

was immediate. As IMC imaging is time consuming, smaller stage sizes are used, and normally 

fewer beads are visible. Having Axioscan as a middle stage alleviates the associated problems. 

We registered each IMC multichannel cube to its associated Axioscan image using the same 

procedure outlined before, saving the first step as in this case relative orientation is fixed. Once a 

good transformation was obtained, we compounded it with the already known Axioscan to STPT 

transform, and refined this by comparing the beads in common between Axioscan and STPT. 
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Typical registration errors, as measured by comparing the bead centers are of 6 μm for the IMC 

to STPT registration and 7 μm for the Axio to STPT one. 

IMC segmentation 

IMC images were segmented using an automated pipeline developed for high-throughput analysis 

of biological images. The pipeline is written in Python and uses the OpenCV library, i.e., an open-

source computer vision and machine learning software library written in C++. For each IMC slice, 

the pipeline reads a data cube, performs a pre-processing step, segments individual cells, 

extracts several features for each cell, and finally outputs a catalogue of detected cells and their 

calculated properties as well as a cell mask image. Initially, the code extracts the nuclear channel 

using metadata information and uses this channel as a reference for the subsequent 

segmentation process. It includes the normalisation of the reference image and noise reduction 

by applying a Gaussian filter. Next, we used an adaptive threshold method to remove background 

pixels. The latter produced a binary image which was the input to the watershed segmentation 

algorithm. Most of the cells overlapped with one another. Therefore, one crucial step was to 

separate (also called deblending) such cells. Our algorithm used the coordinates of local peaks 

(maxima) to perform the deblending task. At this step, we computed cellular features for each 

segmented cell. These included centroids, shape descriptors, and mean pixel intensities within 

the cell nuclei across all available IMC channels using the cell nuclear mask. In addition, we 

created another image mask associated with the cell's periphery, i.e. the two-dimensional zone 

surrounding the cell, to compute mean pixel intensities (across all IMC channels) within the 

cytoplasmic area. Finally, we produced a catalogue that includes all properties for detected cells 

and a cell image mask for all detections. The pipeline is also further described in a separate 

manuscript (González-Solares, E.A. et al., 2021, Nature Cancer, submitted) 
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Dataset assembly and single cell analysis for the STPT/IMC model 

In order to produce a coherent 3D dataset, the cell catalogues produced by segmentation of 

each IMC dataset were first transformed into the coordinate frame of the STPT 3D model by 

applying the transformation defined above (STPT to Axio to IMC registration) to the XY 

coordinates of each cell, and using the progressive order of the STPT section matched to the IMC 

image as the Z. This produced a three-dimensional set of cell localizations, which was 

transformed into an Anndata python object for further processing using the scanpy package. In 

order to clean the dataset, any IMC channel corresponding to antibodies that did not produce a 

good quality staining pattern, or that weren’t specific for a pathway or cell type (i.e. the nuclear 

counterstain) were removed.  

An initial dimensional reduction (using the pca, neighbour and umap functions of the scanpy 

package) was performed for the initial IMC section, followed by clustering using the leiden 

function. The cells from the subsequent sections were then aligned (in multi-dimensional 

parameter space) with the annotated ones from the first section using the ingest function, re-

projecting them into the same UMAP coordinate space and transferring the cluster labels. 

Clusters were then manually annotated and cleaned based on user experience and the 

expression of known cell type markers. Finally, a new 3-dimensional UMAP reduction was 

calculated for the entire dataset. The final dataset was saved in Anndata format as well as 

converted to Seurat format for wider compatibility. 

3D IMC human breast cancer models 

The two 3D IMC human breast cancer models were used after final pre-processing as presented 

in Kuett and Catena et al. (2021, Nature Cancer, submitted). The data was downloaded from 

https://doi.org/10.5281/zenodo.4752030. Briefly, for the 3D IMC models, paraffin embedded 

biopsy samples were serially sectioned into 2um sections using diamond knife and 

ultramicrotome. After section collection samples were stained with a mixture of metal-tagged 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 29, 2021. ; https://doi.org/10.1101/2021.06.28.448342doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.28.448342
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29 

antibodies and acquired with a commercial Fluidigm Hyperion Imaging System. The raw mcd 

image files were converted into omeTIFF files using IMC pre-processing pipeline available at 

https://github.com/BodenmillerGroup/imctools. Consecutive images were aligned using Fiji-

ImageJ2-linux64 v1.0 plugins Register Virtual Stack Slices and Transform Virtual Stack Slices 

(https://github.com/fiji/register_virtual_stack_slices/). 3D segmentation was done with a Fiji-

ImageJ2-linux64 v1.0 plugin called h-watershed (https://github.com/mpicbg-scicomp/Interactive-

H-Watershed/).  

Single cell dataset processing 

The single cell sample distributed with Theia was produced from a tumour similar to the one 

described above in “Sample generation for the 3D-STPT sample”. In short, an 80/20 mixture of 

parental 4T1 cells (not fluorescent) and green-labelled 4T1-T cells (Zsgreen) were injected into 

the fat pad of two Nod-Scid-Gamma (NSG) mice (Jackson labs, NOD.Cg-Prkdcscid 

Il2rgtm1Wjl/SzJ, stock 005557). Tumours were allowed to develop for 20 days and collected by 

necropsy. Tumour were dissociated using a Miltenyi Biotech GentleMACS octo w/heaters 

dissociatior and the Tumour dissociation kit (cat. 130096730) according to supplier’s instructions. 

Cells were washed, counted, and approximately 4000 cells per sample were submitted to the 

CRUK-CI genomics core for processing through the 10X genomics 3’ single cell gene expression 

pipeline (v3). The sequencing results were processed using the 10X Cellranger software to 

produce cell-gene count matrices, and the resulting datasets were further processed using the 

Scanpy package. 

Approximately 1800 cells were identified as high-quality after removing doublets, cells with 

low counts, cells with high mitochondrial reads and cells with high ribosomal reads. Celltypes 

were identified using the cellassign R package41 and a custom annotated marker matrix. Each 

cluster was further validated by performing unbiases clustering with the leiden method and 

verifying that each cellassign cluster corresponded to one or more leiden clusters. Normalization, 
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log-transformation, scaling and dimensionality reduction/neighbourhood analysis were all 

performed using the scanpy package. 

Mammary duct volumetric dataset 

The mammary gland sample was obtained from a virgin NSG-GFP mouse (Jackson Labs, 

NOD.Cg-Prkdcscid Il2rgtm1Wjl Tg(CAG-EGFP)1Osb/SzJ, stock 021937, approximately 2-3 

months old. The animal was first euthanised using increasing concentration of CO2 as prescribed 

by the schedule 1 of the UK Animal Scientific Procedures Act (ASPA) and specific in the home 

office approved project license mentioned above. The inguinal fat pad was dissected and fixed 

for 24h in 4% PFA in PBS, followed by several washed in PBS. The sample was embedded and 

imaged as described in “STPT sample preparation and STPT imaging” above, with the following 

variations: 8% agarose was used, and the sample was infiltrated with Imbed 301H+ monomer mix 

instead of Imbed 100S. STPT imaging was performed taking 100 15um sections, GFP was 

visualized in channel 3 and second harmonic generation (collagen) in channel 4. Excitation was 

900nm from the tuneable beam of the Coherent Discovery laser attached to the STPT instrument. 

Packaging of samples for VR analysis 

Datasets in Anndata format can be converted directly into the proprietary format used by 

Theia by means of a python script provided with the Theia software (anndata_to_theia.py). The 

script guides the user through a series of questions aimed at defining the coordinate sets to use 

as spatial coordinate (i.e. spatial coordinates or dimensional reductions), the cell type annotation 

to use, the variables to associate to size, which icons should be associated to different cell types, 

whether to normalize data, etc. 
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For the IDC samples downloaded from Zenodo and for the embryo development sample from 

McDole et Al, the conversion was performed by means of custom Jupyter notebooks available on 

the github site mentioned below. 

Theia software 

Theia is built with the Unity real time 3D development platform. The choice was made to build 

upon an existing 3D framework over creating one from scratch. This would allow for a shorter 

development time as well as the access to support when issues arose. Unity in particular was 

chosen for its flexible nature as well as the abundance of developers and artists that are familiar 

with it.  Unity’s multiplatform nature allowed us to minimise risk, as it builds on top of existing 

standard modules (the SteamVR platform) supporting multiple devices. It is also a very fast tool 

for prototyping and experimentation, which would be an important aspect for developing such a 

new piece of software. Theia is primarily programmed in C#. Python is used to import, analyse 

and export datasets. 

In order to display so many 3D objects in virtual reality we needed to use instanced rendering. 

We used this to allow us to display large volumes of the same mesh. This allows us to show larger 

samples in the simulation. In addition to this we use compute shaders for highlighting of the 

sample. Using a technique called parallel reduction we are able to maintain a smooth framerate 

and retain comfort in the simulation while making each cell an interactable object.  Framerate is 

critical in virtual reality, as low values lead to the user experiencing motion sickness. For this 

reason, we employed several strategies to minimize rendering load during fast interaction, for 

instance applying a “vignette” effect blanking the periphery of the field of view during fly 

movements. 

A Python socket server was used to connect with external Python tools and execute custom 

scripts on the sample. This was used for differential expression, dimensionality reduction and the 

nearest neighbour function. These were implemented using the scanpy package. 
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Data and code availability 

IMAXT aims to produce periodic data releases for the scientific community. The data described 

in this manuscript have been included in our Imaxt Data Release 1 (IDR1). This release contains 

the raw STPT, whole-slide scanning and IMC data for all models, as well as the re-projected 

whole-slide and IMC data, the segmentation masks, the cell catalogues, and the final dataset in 

anndata and seeurat format. Information on how to access the data and description of datasets 

can be found in  https://imaxt.ast.cam.ac.uk/release/docs/dr1/ ). IDR1 also contains the single-

cell RNAseq dataset described in figure 6, which is also deposited in the Gene Expression 

Omnibus (GEO), with ID GSE178069. The data for the serial ablation IMC human IDC models 

can be obtained from the Zenodo platform https://doi.org/10.5281/zenodo.4752030 . The code 

used to perform stitching of the STPT sample and nuclear segmentation of the IMC datasets is 

released under a GNU General Public License version 3 (GPLv3) and publicly available from 

https://github.com/IMAXT/ (González-Solares, E.A. et al., 2021, Nature Cancer, submitted). 

Executables and source code for Theia can be downloaded from 

https://imaxt.ast.cam.ac.uk/release/docs/dr1/  and from https://www.suil.ie/ 
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Figure 1. Scheme of the IMAXT pipeline. The IMAXT pipeline integrates data from multiple 

platforms into a 3D map of a biological sample.  Platforms include survey single-cell sequencing, 

Serial two-photon tomography, Imaging Mass Cytometry, spatial transcriptomics (not included in 

this manuscript), and data integration. 
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Figure 2. Mutimodal analysis in 3D of a 4T1-derived tumour.  A. 3D view of the STPT data for 

the multi-modal NSG 4T1 model dataset. GFP is displayed in green and TdTomato in red. B.  

Zoom-in on an area of the sample including a vessel-like structure. Cutouts display the full 

resolution STPT data, as well as IMC images for GFP/TdTomato (tumour cell populations), 

immune markers (Cd11b), Hypoxia markers (Car9), Vessel markers (CD31), Epithelial markers 

(Krt19), Pericyte markers (PDGFRB), and nuclear counter-stain. C. UMAP dimensional reduction 

plot for the dataset. D. Marker abundance plots for a representative 2D section of the sample. 
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Each dot is a segmented cells and signal intensity corresponds to the normalized abundance of 

the marker in the cell. The same markers described above are displayed, with the addition of 

proliferation (Ki67) and apoptosis (Cleaved Caspase 3). E. Spatial plot of a representative 2D 

section of the dataset. Each colour corresponds to a different cell type predicted by leiden 

clustering on the data. F. Dot plot identifying specific markers for each cell population. Signal 

intensity corresponds to average expression, dot size corresponds to the fraction of the population 

expressing the marker. G. 3D model as visualized in Theia. All cells are shown on the left 

(Endothelial cells: red - Hypoxic cells: pink – Myeloid cells: blue - Mrc1+ cells: cyan – Stromal 

cells: green - Tumour GFP+ cells: yellow - Tumour Tomato+ cells: orange, Tumour Ki67+ 

proliferating cells: lime), and specific cell types are shown on the right (myeloid cells in green, 

proliferating tumour cells in cyan and endothelial cells in red). 
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Figure 3. VR analysis of Invasive ductal carcinoma models generated by serial sectioning 

IMC by Kuett, Catena et al. A. 3D renderings of the raw IMC data for the first and second model, 

showing (as indicated) basal markers (SMA), Stromal markers (Vimentin), epithelial markers 

(panCK / Her2), endothelial markers (vWF/CD31) and T cell markers (CD8). B. IDC2 model 

visualized in the VR environment in Theia (the Z scale is exaggerated to facilitate visualization). 

C. CD8+ T cells (cyan) clustered around endothelial cells lining a blood vessel (red) visualized in 

the VR model. D. Lining of tumour-filled mammary ducts formed by CK5+ and SMA+ basal cells 

(in red and blue). E: Intensity of phospho-S6 (Ser235/236) marker visualized through virtual 
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reality, highlighting a pattern of increased expression just below the outer surface (basal layer) of 

the ducts. F. IDC1 visualized in VR. Some tumour cells from a specific phenograph cluster (in 

blue, red circle) can be seen breaking off a mammary duct (red dotted line) and invading the 

stroma (in this case rich in lymphocyte cells – green). Other tumour cells are in white. 
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Figure 4. Data exploration tools in Theia. A. Overview of the virtual environment featuring the 

selection table and plotting slots (left), favourites table and sample/cell size console (centre), and 

sample information panel, highlighting table and export console (right). B. Cell type selection for 

the NSG 4T1 model (GFP+ and TdTomato+ tumour cells displayed) and of the IDC2 3D-IMC 

model (detail of the highlighting table and 3D visualization with stroma in magenta, macrophages 

in orange, B cells in red, CD8+ T cells in green, and Basal SMA+ cells in blue. C. Marker intensity 

mapping for E-cadherin on the NSG 4T1 model. D. Detail of the sample information panel (left) 

and population information panel and expression heatmap (right). E. A fly-in of the IDC2 model. 

The camera is located in a stromal region just outside a duct (blue cells, bottom left) filled with 
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tumour cells. Other cell types are represented in different colours (i.e. green/pink tumour cells, 

red immune cells) F. Meshes representing different cell types in icon view.  
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Figure 5. Analysis tools in Theia. A. detail of the gene plotting tool, dimensional reduction tool, 

and population manipulation tool. B. example 3D marker expression view for phospho-S6, 

(Ser235/236) Phospho-Histone H3 and CD68. Different cell clusters are highlighted in different 

colours (i.e. macrophages in red) C. 3D UMAP plot of the IDC2 sample. D. Cell selection tool. 

Selected cells are highlighted in the centre of the model. E. Gene signature tool and intensity 
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mapping of a T-cell signature produced by averaging the per-cell intensities of CD3, CD8a, and 

CD45. F. Differential expression tool showing DE genes for the CK5hi or SMAhi populations of 

basal cells (in yellow and blue). P values are generated by T-test. G. Neighbourhood search tool. 

An initial selected population (in red) is expanded by a user selected radius to generate the green 

area. H. Multi-user interaction with Theia: 3 users analysing a sample together. Note the head 

avatars and the controller objects tracking the users’ hands. 
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Figure 6.  Visualization of disaggregated single-cell datasets in Theia. The dataset displayed 

here was generated through the 10X genomic platform (3’ GEX v3) from a NSG 4T1 tumour 

analogous to the one used for the STPT/IMC dataset. Approximately 1000 cells are included A. 

UMAP plot highlighting cell types as inferred by the cellassign supervised cell identification 

algorithm. B. Model shown in Theia. All cells (left), cell highlighting (centre) and gene intensity 

mapping (right). C. UMAP plots showing marker expression for a subset of markers also present 

in the STPT/IMC dataset and for the stromal marker Col1a1 (collagen 1). D. Dot plot identifying 

specific genes for each cell population. Signal intensity corresponds to average expression, dot 

size corresponds to the fraction of the population expressing the marker 
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Figure 7. Compatibility of Theia with other data types. A. The embryo neurulation dataset was 

from McDole et al 38 Top: modified figure from McDole et Al showing cell localizations and lineages 

35h after the start of imaging. Middle/bottom: Theia visualizations of the same dataset. The neural 

tube, lateral plates and heart fields are highlighted. B. Theia volumetric viewer for the visualization 

of native voxel data. Top and bottom-left: Example mammary gland dataset generated by STPT 

on a fragment of a GFP+ mouse mammary gland. All mouse tissues are GFP+. Collagen detected 

via second harmonic generation is in red. The middle panel showcases the sectional plane tool. 

Bottom right: 3D model of a 4T1 tumour. 
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Tables 
 
Table 1.  Datasets included for analysis in VR and their source 
 

Sample 
name 

Source Technology Description N. cells N. 
Marke

rs 

Volume 
(um) 

3d STPT/IMC 
multimodal 

Syngeneic 
tumour model 
(4t1 cells) in 
Immunocompro
mised mouse 
host (NSG) 

STPT + Whole 
slide scanning 
+ IMC 

80/20 mix of parental 4T1 
cells (labelled with 
TdTomato) and 4T1-T from 
Wagenblast et Al. (labelled 
with GFP). Injected into the 
fat-pad of a NSG mouse 
host and dissected at d21 
post-injection 

2,008,786 
(10% sub-
sampling 
is also 
provided) 

26 
protein
s 

Approx. 
10000 x 
10000 x 300 
um 

Serial IMC 1 31 Human DCIS 
(IDC) 

Serial 
sectioning + 
IMC 

First proof of concept of 3D 
IMC pipeline 

108,487 24 
protein
s 

652 x 488 x 
304 

Serial IMC 2 31 Human DCIS 
(IDC) 

Serial 
sectioning + 
IMC 

Second proof of concept of 
3D IMC pipeline 

81,225 28 
protein
s 

606 x 686 x 
184 

4T1_d20_scR
NAseq 

Syngeneic 
tumour model 
(4t1 cells) in 
Immunocompro
mised mouse 
host (NSG) 

10X single-
cell 3’ end 
transcriptomi
cs 

80/20 mix of parental 4T1 
cells (labelled with 
TdTomato) and 4T1-T from 
Wagenblast et Al. (labelled 
with GFP). Injected into the 
fat-pad of a NSG mouse 
host and dissected at d20 
post-injection 

1879 31053 
genes 

N.A 

McDole 
TARDIS-A38 

Developing 
mouse embryo 

Multi-view 
light-sheet 
microscopy + 
segmentation 

TARDIS-A embryo dataset 
from McDole et Al.  

10,000,000 
(down-
sampled 
to 
300,000) 

N/A 1527 x 2052 
x 4037 um 
 

Volumetric 
Mammary 
gland 

Mammary gland 
of NSG-GFP 
mouse 

STPT Mammary gland dissected 
from a pan-fluorescent NSG 
animal, bearing green 
fluorescence in all cells. 
Ducts are labelled in green 
and collagen (through 
second harmonic 
generation from the two-
photon excitation) in red. 
Volumetric image 

N/A N/A N/A 

Volumetric 
4t1 d20 
tumour 

Syngeneic 
tumour model 
(4t1 cells) in NSG 
mouse host 

STPT Tumour produced by 
injecting 4T1 cells in the fat-
pad of a NSG mouse. 

N/A N/A Approx. 
5000x5000x
3000 um 
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