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ABSTRACT

A set of increasingly powerful approaches are enabling spatially resolved measurements of
growing numbers of molecular features in biological samples. While important insights can be
derived from the two-dimensional data that many of these technologies generate, it is clear that
extending these approaches into the third and fourth dimensions will magnify their impact.
Realizing biological insights from datasets where thousands to millions of cells are annotated with
tens to hundreds of parameters in space will require the development of new computational and
visualization strategies. Here, we describe Theia, a virtual reality-based platform, which enables
exploration and analysis of either volumetric or segmented, molecularly-annotated, three-
dimensional datasets, with the option to extend the analysis to time-series data. We also describe
our pipeline for generating annotated 3D models of breast cancer and supply several datasets to

enable users to explore the utility of Theia for understanding cancer biology in three dimensions.
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INTRODUCTION

The ability to interrogate tissues at the single cell level and to gather genomic and proteomic
information at scale for the individual constituents of living systems is having an enormous impact.
Single-cell RNA and DNA sequencing is revealing new cell types, enabling comprehensive
catalogues of human and mouse tissues, and revealing genetic and phenotypic heterogeneity in
tumours. Yet, most normal and disease development happens in a spatial context. The three-
dimensional architecture of a tissue has profound impacts on its function, whether it be through
the establishment of morphogen gradients in development or through the effect of local tissue
niches featuring distinct cell compositions or signalling states. However powerful, measurements
made on disaggregated cells or nuclei generally lack this critical contextual information. In cancer,
there is a growing appreciation that the initiation of disease, its progression toward invasion and
metastasis, and its response to therapy are all profoundly influenced not only by the properties of
the tumour cells themselves but also by the characteristics of the tumour microenvironment
(TME)™3. A description of the relationships between a tumour and its TME requires not only an
enumerated catalogue of its constituent cell types and clonal lineages but also an understanding

of their interactions and arrangement in three-dimensional space.

The desire to understand development, tissue architecture, and disease in context has
prompted a drive toward the development of methods for making multiplexed measurements on
intact tissues or tissue sections. Such methods measure portions of the transcriptome or
proteome or alternatively can quantify metabolites. Some are destructive, while others leave
tissue intact with the potential for layering additional measurements, and though a few methods
are compatible with multimodal measurements, generally the number of markers measured
outside of the primary modality is rather low. MERFISH*®, STARmap®, seqFISH’, Spatial
Transcriptomics®, and SlideSeq® can interrogate the expression of 100s to >10,000 transcripts in

situ, with most of these approaches operating at cellular or sub-cellular resolution. Imaging Mass
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Cytometry (IMC)'®, CODEX"", CyclIF'?, 4i"3, and others can measure the expression of dozens of
proteins simultaneously or serially. All of these are now beginning to produce new biological
insights into the organization of tissues in two-dimensions. For example, recent studies using
IMC have revealed that the tissue organization in breast cancer is both informed by the subtype

of the tumour and correlates with patient outcomes' .

While two-dimensional, molecularly annotated maps of tissues represent an important
advance and clearly provide added value to disaggregated datasets, three-dimensional datasets
with layered information comprising as many types of measurements as possible would maximize
our ability to extract new biological insights. A recent analysis of gene expression in situ during
mouse embryogenesis, which includes a time dimension, illustrates the power of such

approaches'® (Lohoff et al., Nat Biotechnology (in press) ).

In general, spatial “omics” methods suffer from two main limitations: they usually operate only
on thin two-dimensional sections of tissue, and their speed of acquisition is relatively slow. The
first issue can be resolved by analysing serial sections cut sequentially from an embedded tissue
fragment, and aligning the resulting datasets in order to produce a coherent three-dimensional
object. However, the slow acquisition speed means that each individual section can take hours
or days to acquire. Multiplied by the large section numbers needed to cover a three-dimensional
volume with good axial resolution, this means that a 1x1x1mm block can take many days to weeks

in acquisition time alone to produce a dataset.

An additional challenge is the enormous amount of data generated by spatial omics
technologies. Spatial omics methods, even when operating in two dimensions, routinely produce
datasets containing tens to hundreds of thousands of cells, each possibly described by tens to
hundreds of different measurements. Beyond the computational infrastructure necessary to

process and store this volume of data, the amount of information produced by these methods can
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be overwhelming. This issue is heightened for three-dimensional data, since exploration of this
data is invariably performed on two-dimensional surfaces. The ability to visualize high-
dimensional, complex data is a key element to enabling full exploitation of any spatial molecular
profiling strategy. Approaches to address such issues include the use of dimensionality reduction
to visualize a dataset in a simplified format or exploitation of machine learning to recognize spatial
patterns. However, in both cases, the ability of an individual to explore a dataset naively is greatly
diminished. Several software packages exist to facilitate visualization of spatial “omics” datasets,
some have arisen as spatial add-ons to widely-used single-cell analysis packages (such as

t'" and Scanpy'®), and some developed from scratch with spatial analysis in mind (i.e.

Seura
Giotto', Vitescce, ST viewer?®). However, none of these can handle three-dimensional data

natively.

Virtual Reality (VR), and its cousin, Augmented Reality, have significantly matured in the last
few years and are set to revolutionize the gaming and entertainment industries. These
technologies are increasingly applied in industrial design, medicine, healthcare, and education?'.
However, application of VR to the exploration of scientific data has lagged behind. Indeed, VR
has just started to be applied to biological data, mostly to explore gene networks, to annotate

22-25

neuron morphology, or to visualize microscopy data, both academically (i.e. vLume,

CellexalVR, TeraVR, confocalVR) and commercially (Arivis InviewR).

Here, we describe a VR visualization and analysis platform for spatial multi-omics data. This
‘virtual laboratory,” Theia, so named after the Titaness of sight in Greek mythology, provides a
multi-user, three-dimensional environment for exploration of spatial datasets. This platform can
accept segmented data with large numbers of molecular or other annotations, project them in 3D,
and enable their intuitive manipulation and visualization of patterns of gene or protein expression.
Theia is also enabled for on-the-fly analysis, for example with integrated functions for

dimensionality reduction that can be used to identify groups of cells for re-projection into the 3D
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object. Additional analysis capability can be easily added to customize the platform through a
convenient Application Programming Interface (API). Theia operates using the Unity VR engine
in the Steam VR environment and is therefore compatible with a variety of consumer VR devices

and accompanying high-spec personal computers.

To illustrate the utility of Theia for visualization and exploration of 3D datasets, we generated
three segmented, molecularly annotated samples (Table 1). Two biopsies from human breast
cancers (in the sub-mm size range) were analysed by serial-sectioning followed by IMC and
realignment of the processed imaging data. The third dataset is a large-scale model representing
a 300 um thick section of am approximately 1 cm tumour from a syngeneically transplanted mouse
triple negative breast cancer (TNBC) model. The latter model was produced by serial blockface
two-photon imaging (Serial Two-Photon Tomography, STPT) followed by IMC on recovered

sections and contains over 2 million cells.

While Theia was designed for segmented molecularly annotated datasets, it is also
compatible with a wide variety of different data sources, ranging from segmented, 3D lightsheet
microscope data (including time-course data) to non-spatially resolved single-cell RNAseq
datasets, which can still benefit from the ability to visualize the dimensionality reduction plots in
3D. Any single-cell level data can in principle be visualized in virtual reality, benefitting from the

added sense of depth, a simplified user interface, and a large visualization space.

RESULTS

The IMAXT pipeline for spatial analysis of biological samples

The Imaging and Molecular Annotation of Xenografts and Tumours (IMAXT) CRUK Cancer
Grand Challenge project is a collaboration between research groups located in the UK, USA,

Canada, Switzerland and Ireland. The goal of this consortium is to enable the production of 3D
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multi-parametric models of breast tumours in order to increase the current understanding of
tumour progression, dissemination, and resistance to therapy, and to pave the way for the
development of better diagnostic tools and treatments. At the core of the project is a sample
processing and analysis pipeline (Gonzalez-Solares, E.A. et al., 2021, Nature Cancer, submitted)
that our consortium developed, combining single-cell genomic/transcriptomic methods with large-

volume 3D imaging via STPT and in situ molecular profiling (Figure 1).

Samples that enter the pipeline within IMAXT can come from mouse models of breast cancer
(obtained from genetically engineered mouse models (GEMMs), from tumour cell lines injected
into syngeneic hosts, or chemically or virally induced tumours), patient-derived xenografts grown
in immune-compromised mice, or primary human biopsies or resections. As a first step, one or
more fragments of each sample are collected and cryo-preserved, and used (after dissociation)
for single-cell RNA sequencing (usually using the 10X genomics platform) or single-cell whole-
genome DNA sequencing via DLP+ . The results of these are used to produce a “survey” of the
cell types and cell states present in the sample, and to guide the development of the gene and
antibody panels used for in situ profiling. Since the data yield of disaggregated methods is
presently superior to that of in situ technologies, this step is very important to ensure the spatial
analysis can capture the most relevant parameters, unless a good set of curated markers is

already available.

The bulk of the sample is then embedded in an agarose block and subjected to STPT
imaging? This method produces a distortion-free 3D image of the sample with up to 4
fluorescence channels. This instrument images a plane immediately below the block surface and
then cuts a thin (>=15 pm) section from the sample to enable imaging of the next plane of the
sample. In short STPT combines a vibratome and a two-photon microscope. STPT presents three
key advantages over other whole-organ images modalities such as light-sheet microscopy: (1)

image quality and resolution don’t change with imaging depth, since imaging always happens
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within a short distance from the top surface of the block; (2) objects of any size and depth can be
imaged, with an adjustable axial resolution (physical slice thickness); (3) the sample is sectioned
(>=15 um currently) and imaged at the same time, producing sections that can be further
annotated. These gather in a collection vat in the STPT instrument and are recovered (in random
order) on glass slides or in a known order with an automated collection device (currently limited
to sections of >25 ym). In our workflow, sections are counter-stained with nuclear and membrane
dyes and re-imaged using a whole slide scanner. Each slide image is then registered to the 3D
volume produced by two-photon imaging. To facilitate this step, we co-embed spherical agarose
beads coated with green fluorescent protein in the sample block. The cross-section of the beads
produces a unique pattern for each slice, which can be easily segmented and matched across
imaging modalities (Gonzéalez-Solares, E.A. et al., 2021, Nature Cancer, submitted). Collected
sections are then available for further molecular annotation using spatial transcriptomic or

proteomic methods.

Generation of an integrated dataset from a mouse model of TNBC using STPT and IMC

The 4T1 cell line is a widely used model for basal-like, claudin low breast cancer?®?°

. ltcan
be syngeneically transplanted in immune-competent Balb/C animals or introduced into immune-
compromised recipient mice. Prior work has indicated that 4T1 is both genomically and
phenotypically heterogeneous, and we previously identified subclonal populations of 4T1 (clones

E and T) which can selectively form vessel-like networks when orthotopically transplanted®. We

therefore used this cell line to create a demonstration model for Theia.

We fluorescently labelled the parental 4T1 cell line by expression of TdTomato and labelled
the 4T1-T subclone by expression of GFP. We orthotopically injected a mixture containing 80%
parental and 20% clone T into an NSG recipient animal and resected the tumour after 21 days,

when its diameter had reached approximately 1 cm. We imaged the entire tumour using the STPT
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and collected 20 consecutive sections for further annotation, corresponding to a depth of
approximately 300 um. These sections were imaged on a slide scanner, stained with a panel of
33 metal-conjugated antibodies and imaged by IMC. After co-registration and segmentation, we
obtained a 3D model with an axial resolution of 15 ym (roughly an individual cell diameter) and

over 2,000,000 unique cells mapped over a volume of approximately 12 mm?.

Even in the 3D STPT image alone, we noted different spatial distribution for clone T as
compared to the parental 4T1 cells (Figure 2A, Supplementary video 1). The former distributed in
“foci” within the tumour mass, while the latter were largely uniform. Being able to combine this
imaging with IMC revealed that clone T gathered often in proximity to necrotic areas with
substantial myeloid infiltration (Figure 2 B-D, S1, Supplementary video 2). Interestingly, tumour
cells expressing the proliferation marker Ki67 often had low expression of the TdTomato
fluorophore (Figure 2F). We could also identify host vascular cells expressing endothelial markers
(CD31/CD34) and pericyte markers (PDGFRB, Desmin, alpha-SMA), stromal cells, and cell
clusters characterized by high expression of the M2 macrophage marker CD206/MMR (Figure 2
C.E, Figure S1). In addition to cell types, we were also able to interrogate cell states. We could
clearly identify hypoxic cells, both in the TdTomato+ tumour compartment and in the GFP+ one,
as well as cells characterized by high amounts of phosphorylated S6 (Ser235/236) ribosomal

protein, a downstream target of the mTOR pathway (Figure 2F).

Overall, our results indicated a clear spatial organization of the tumour, with distinct
populations of tumour cells occupying discrete neighbourhoods. In general, GFP+
neighbourhoods were characterized by low proliferation, low expression of epithelial markers, and
high levels of hypoxia-related proteins (l.e. Glut1, Carbonic Anhydrase 1X). These cells also had
higher expression of CD44 than the parental 4T1 cells (Figure 2F). All of these characteristics

can be interrogated in 3D in virtual reality using Theia (Figure 2G, see below).
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High-resolution 3D datasets from human cancer by serial sectioning and IMC

As additional input to our virtual reality platform, we have also provided two human breast
cancer samples that have been previously generated as part of IMAXT Consortium efforts. These
models were generated from a Her2+ invasive ductal breast carcinoma biopsy using 3D IMC to
achieve high axial-resolution together with in situ molecular annotation (Kuett and Catena et al.
Nature Cancer - submitted)®'. Briefly, the 3D IMC method is based on serially sectioning a
paraffin-embedded tissue sample into 2 um sections prior to sample staining and acquisition. This
is followed by computational image processing to achieve the final 3D model with a voxel size of
1x1x2 ym (x-y-z). The first model has the final dimensions of 652 x 488 x 304 um®, and the second
one 606 x 686 x 184 um® and comprise 108,000 and 81,000 segmented cells, respectively (Figure
3A, left and right respectively), providing an interesting substrate for exploration in VR (Figure 3B-
F). Notably, these models reveal spatial distributions of marker expression that are not evident
in 2D images, thus illustrating the ability of 3D models to raise interesting hypotheses. For
example, these models show a varying pattern of CK5-high and SMA-high epithelial basal cells,
a dense colocalization of CD8+ and CD4+ T-cells near endothelial cells, and lining of
pS6(Ser235/236)-high cells along the epithelial tumour compartments (Figure 3C-E, S3,
Supplementary video 3). In the larger 3D IMC model, clusters of potentially invasive cells at the
tumour periphery have been captured, and the 3D visualization makes it apparent that these

clusters are disconnected from the main tumour bulk (Figure 3F).

Development of a virtual reality ‘laboratory’ to explore spatial molecular data

To enable exploration of three-dimensional, molecularly annotated datasets, we developed
a virtual reality implementation that takes lessons from the computer gaming industry and applies
these with the goal of enabling intuitive spatial analyses of cellular arrangements and gene

expression patterns in biological samples. VR has the advantage of not being bound by the

10
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dimensions of even a very large computer monitor. Instead, users can literally step inside the
data, generally in a roughly 5m? area and apply different analysis paradigms and explore the
outcomes on the fly. Finally, our implementation creates a multi-user environment, such that
investigators can convene in a virtual space to interrogate collaboratively high dimensional
datasets. We named this implementation, Theia. Theia has the potential to impact the analysis
of spatial data analogously to the impact of the development of genome browsers have had on

our ability to interrogate and understand next-generation sequencing datasets.

Theia was developed on consumer-grade VR headsets (any compatible with the SteamVR
system) and computer hardware to make it accessible to any laboratory. The investment needed
for operating the software, including headset, controllers and computer is less than the cost of a
generating one single-cell dataset. The software is built upon a popular and well-supported game
engine, Unity, which results in broad compatibility. Our primary concern was to create a space
that was comfortable to work in for several hours with tools that responded quickly and usefully.
Additionally, it was imperative for us that no programming be required and data analysis be
achieved with simple visual metaphors, to make the learning curve as shallow as possible for new
users. The objective was a balanced design, both scientifically functional and with limited visual

clutter (Figure 4A, Supplementary Videos 4-5).

Theia tools have a universal language which is easy to learn. They consist of two varieties;
surfaces for generic analysis (displaying and highlighting cell populations, or visualizing gene
expression) and cabinets for specific analysis such as dimensional reduction or differential
expression. Grabbing and placing of objects is the main mode of interaction. For instance, the
sample can be rotated and zoomed just by grabbing it and moving it closer or farther away
Supplementary videos 4-5). Additionally, pointing, buttons, sliders, and levers are utilized to
change visualization parameters such as cell size and scale. Tools for moving, selecting specific

cells, pointing and taking screenshots are housed on the user’s wrists (Figure S2A). This ensures

11
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easy access from anywhere within the simulation. Features of the dataset to be analysed
(populations, genes, cell types) are displayed as VR ‘tiles’ which the user can interact with by
moving them in specific slots into the environment tools (See examples in Figures 4, 5,
Supplementary videos 6-7. These interactions are subtly guided by objects “snapping” together
when in proximity of a compatible slot, and by haptic feedback through the VR controllers. Subtle
animations and in world screens are also utilized within Theia. This prompts the user toward

correct actions and ensures simulations become intuitive (Figure S2B, Supplementary video 8).
Interactive data analysis in the VR environment

Theia is designed to analyse samples formatted as cell catalogues, with each cell
characterized by a series of spatial coordinates (corresponding to either real space or
embeddings along dimensional reduction axes) and parameters (gene/protein expression or
morphological measurements). Cells can be pre-assigned to different populations (for instance
by means of clustering methods such as the louvain or leiden algorithms®*®3), or populations can
be defined directly by the user by “painting” over cells with a specific tool. Theia uses a dedicated
data storage format optimized for small size and speed of loading, but can import data from most
single-cell processing data formats, e.g., the one specified by the anndata Python package used

by Scanpy'®, or R’s singlecellexperiment and Seurat"’.

Cell populations can be made to appear or disappear by selecting the tiles corresponding to
these cell types from a menu and dropping them on a selection table and can be assigned a
colour by dropping them on a second table (Figure 4B, Supplementary videos 6-7). All cell
populations can be automatically displayed in sequence (Supplementary videos 9-10). Genes
and markers can be visualized in a similar way. Dropping a gene tile on the selection table
launches a query to identify cells with an expression of the given gene above or below a give

threshold (which can be selected) (Supplementary video 11), while dropping it onto a colour re-
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maps the colour intensity to the gene expression level, with a transfer function that can be
personalised adjusting the min/max expression range (Figure 4C, Supplementary video 12).
Queries can be combined by dropping multiple tiles on the selection table, and multiple markers

or populations can be assigned colours at the same time.

Information about the sample is displayed through dedicated “panels” which display details
at the sample level (general metadata on sample generation, size, features, etc) (Figure 4D), or
at the population level, or single cell level. For the latter two, the panel shows a customizable
maker expression heatmap, which allows users to get a general view of gene or protein
expression in a population or in a given cell. The information displayed in the panels changes

dynamically as the user selects different cells (Figure 4D, Supplementary video 13).

While most of the manipulations happen with the model mapped to a size (in virtual space)
more or less equal to that of the user (so that it can be held and manipulated), it is also possible
for the user to greatly expand the model and use a “fly” tool, colloquially termed “superman mode,”
to enter the sample and interrogate individual cells and structures (Figure 4E, Supplementary

Videos 14-15).

Although data on the 3D shape of each cell is available in our datasets, we elected to display
each cell using simplified meshes corresponding to the most frequently observed cell types (icon
view) (Figure 4F). This ensures the user can visually parse the sample with ease and also
provides an additional layer of visual information. Furthermore, icon view is computationally
simpler to render, and allows for the viewing of larger samples. The icon assigned to each different
cell type can be defined when samples are imported. In spatial datasets such as the ones
produced by our group, in which information on the volume of each cell is present, the mesh size

of each object is taken from the real measurements. In other data types, the size can be used as

13
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a visual cue for a parameter, for instance by making specific cell types appear bigger or smaller

to facilitate their visualization.

We implemented tools to switch easily between visualization of the spatial coordinates of the
sample and the expression of specific genes or embeddings produced by dimensional reduction
algorithms. Gene/marker tiles can be inserted in a “plotter” tool, which transforms the sample
visualization into a 3D plot with dimensions corresponding to the marker intensity (Figure 5B,
Supplementary video 16). The same can be done with dimensional reduction embeddings, which
can either be pre-generated in the dataset or calculated on the fly (UMAP reduction®* is used by
default). (Figure 5C, supplementary video 17) Users can perform a full “round trip” analysis, for
instance selecting a spatial area for study, visualizing the cells contained in it in gene space orin
a dimensional reduction plot, identifying a population and mapping it back to its spatial location
(Figure 5D, Supplementary video 18). Other tools allow the definition of “gene signatures” (by
averaging the expression of multiple markers into a new marker tile that can be used as a single
parameter) (Figure 5E) or the calculation of differential gene/marker expression between custom
populations (Figure 5F, Supplementary video 19). Finally, a spatial search tool can be used to
identify all cells lying within a certain distance (in 3D) from a selected population (Figure 5G,
Supplementary Video 20). This function is critical to identify patterns of marker expression that
depend on spatial proximity between cells (i.e. by comparing differential expression between cells
closer or farther away from a specific tissue feature). Cell populations identified from within Theia
can be exported as csv files which can be further processed through any other processing

pipeline.

All of the functions of Theia are available in multi-user environments hosted on public servers.
Users can host or join interactive analysis sessions in which the same dataset is analysed
cooperatively, and up to 8 international users have been convened in a single session thus far.

Each user is represented by an avatar in the analysis space, and can interact with the objects in
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the virtual laboratory. Audio feeds enable live communication between users during analysis

(Figure 5H, Supplementary video 21).

Advanced analysis and plug-in structure

In designing Theia, we aimed to strike a balance between implementing easy-to-use tools
directly in the software, and leveraging the incredibly rich ecosystem of single-cell analysis
software, scripts, and methods (some of which are dedicated to spatial analysis) that already exist
and are in constant evolution. For this reason, one of the key features of Theia is a plug-in system
which allows users to pass information between the visualization software and a custom piece of
code, run some processing, and return data for visualization. The viewer component of Theia
(developed in Unity and C# language) sits on top of a Python instance. The dataset loaded in the
viewer is automatically also loaded in Python as an anndata object, and is available for
manipulation using any Python module, such as the scanpy package. Users can develop custom
scripts performing their desired processing, and, by using specific tools in the virtual space, load
it and input parameters (such as list of cells) to it. The script output is then parsed and returned
to Theia in the form of new cell populations, new markers, or gene lists, and can be displayed in
VR. This method is used, for instance, for the dimensionality reduction, differential expression,
and spatial search tool, which can be customised or varied by the expert user by modifying the
underlying Python code. New scripts can also be developed from scratch to implement other
functions. Different templates (corresponding to different cabinet shapes in the virtual world)
mediate different types of input-output, and can be used to implement different functions. While
at the moment the plug-in engine is only compatible with Python, we plan to extend it to R in the

near future, and it is already possible to call R scripts by using Python as an intermediate.
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Compaitibility of Theia with other data types

We expect spatial datasets, such as the ones presented here, to become increasingly
available. However, true, molecularly annotated, 3D datasets are still relatively rare and difficult
to generate, requiring substantial infrastructure and effort in technology implementation and data
analysis. We therefore have also made Theia compatible with the analysis of datasets and

datatypes that are already widespread.

Disaggregated single cell analyses (transcriptome, copy number, methylome, etc) are
increasingly used in all areas of biology, including to interrogate the tumour microenvironment
and the clonal evolution of different tumour types. The technology to generate many of these data
types is now mature and broadly available. Theia is compatible with all single-cell datasets, and
includes a data converter for scanpy’s anndata objects, one of the most popular formats. Other
formats can be loaded if converted first to anndata, which is usually a straightforward process. If
positional information is not included, the dimensional reduction embeddings (t-SNE, PCA or
UMAP) are used in lieu of the spatial coordinates for visualization, and populations/clusters are
mapped to cell types. All of Theia’s tools (on-the-fly dimensional reduction, differential expression,
gene averages, etc) are compatible with single-cell data. As an example of the usage of this data
type, we provide with Theia a single-cell dataset obtained from the same tumour type and stage

represented in our STPT/IMC 3D model (Figure 6, Supplementary video 22)

Whole-mount microscopy is another family of technologies that has recently seen increased
democratization, in part thanks to the development of novel microscopy techniques such as light
sheet, bessel beam, lattice light sheet, STPT, and others®. Thanks to technical advancements,
whole organisms can now be imaged in toto, including live imaging of their development. Datasets

t36,37

of this type have been published for D. melanogaster and zebrafish early developmen and

for pre-implantation mouse embryos during gastrulation and early organogenesis®. In parallel to
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the technical improvements in imaging, improved methods for object segmentation have allowed
the identification of every cell in these models, and their tracking across time. Since the output of
these processes is a catalogue XYZ position for each cell at different timepoints, Theia can be
used to visualize them. To enable visualization of time-series data, we modified one of the
functions of our viewer, normally used to cycle through the different cell types present in a sample
to be compatible with timepoints. As a result, Theia can be used to load and visualize spatial time-
lapse data. Cell labels and markers (if present) can still be visualized as for other samples. As an
example of this, we included with Theia a pre-packaged version of the mouse development

dataset from McDole et al. (Figure 7A, supplementary Video 23) for exploration.

Finally, while segmentation of biological images and production of annotated cell catalogues
is arguably a critical step of most analysis pipelines, we sought to make Theia compatible with
non-segmented data as well, and introduced a volumetric renderer into the software. While this
is not yet capable of visualizing terabyte-scale datasets at native resolution (mostly due to
limitations in data 1/0 and to the fact that Unity’s renderer is not natively designed to handle voxel
data), it is sufficient to visualize image volumes up to many millimetres in size with a resolution in
the 10s of microns, sufficient to discriminate minute features of the tissue microenvironment. The
volume viewer takes as input tiff image stacks, and provides controls to adjust the transfer
function, opacity, colour and sampling density of the visualization. The viewer is by default
compatible with single-colour images, but will be soon expanded to multi-channel images. Users
are able to move and zoom volume around by grabbing it and manipulating it, and are provided
with a “plane” tool which allows them to “section” the volume at any level and angle and display
that sectional plane. The latter operation, which is normally quite laborious on a computer's
screen, and requires long manipulations of the dataset to get the correct angle and position, can
be performed in seconds in virtual reality, which further highlights the power of this medium for

volume analysis (Figure 7B, Supplementary video 24).
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DISCUSSION

The increasing availability of commercial platforms for producing spatial omics data is poised
to impact biology in a manner similar to the widespread deployment of commercial single-cell
profiling methodologies. This necessitates the development of platforms to analyse, process, and
explore such datasets. Virtual Reality offers a flexible, scalable, and intuitive solution for the
exploration of spatial data, and this has motivated the creation of Theia as an open-source
resource for the community. Theia has been created with embedded tutorials (accessible from
within the VR environment) to enable investigators to rapidly master its use, and most users can
gain a familiarity with Theia’s basic toolkit in under 30 minutes. Theia also offers a suite of more
advanced analyses and importantly the ability to integrate most existing tools and analyses for
single-cell level data and provides the ability to easily incorporate novel tools in the future.
Moreover, Theia has been developed to be compatible with widely available and relatively
inexpensive hardware, with a complete installation generally costing less than producing one

single-cell dataset.
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METHODS

Sample generation for the 3D/STPT sample

To construct the tdTomato-Akaluc vector, tdTomato and p2A-Akaluc were amplified by PCR and
cloned into the 3rd generation lentiviral pZIP backbone harbouring a spleen focus-forming virus
57 promoter (SFFV) using Gibson Assembly. 4T1 parental cells (ATCC® CRL-2539™) were
infected with tdTomato-Akaluc followed by selection of tdTomato positive cells using FACS. 4T1-
T cells (as described in Wagenblast et al.*°) were made GFP positive by transduction with the
CellTag-GFP vector (pSMALGO CellTag-V1), which was a gift from Samantha Morris*® (Addgene
115643), based on the pPSMAL backbone from John Dick, and were sorted based on their EGFP
expression. The cell lines were cultured in DMEM (Gibco) supplemented with 10 % (v/v) heat-
inactivated FBS in a humidified incubator at 37°C and 5 % CO..The murine tumour 4T1 parental
cells (tdTomato™) were combined with the 4T1-T clonal cells (EGFP*) in a ratio of 80 % parental-
4T1 to 20 % 4T1-T. From this mixed population, 50,000 cells were suspended in 1:1 PBS and
Matrigel (Corning, Cat No. 356231) and tumour formation was induced by orthotopic injection into
the mammary fat pad of female NSG™ mice (Jackson labs, NOD.Cg-Prkdcscid 112rgtm1Wijl/SzJ,
stock 005557). Primary tumour volume was assessed and the tumour was allowed to develop for
21 days post-injection before the animal was sacrificed and the tumour was excised. The tumour
was fixed in 4 % paraformaldehyde (PFA) for 24 h, 4°C. All of the animal procedures were
performed in accordance with the UK Animal Scientific Procedures Act (ASPA) under the authority
of an animal use project license approved by the UK home office, and in accordance with the

standard operating procedures indicated by CRUK Cl Animal Welfare Review Board (AWERB).
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Fiducial beads conjugation for STPT embedding

NHS-activated Sepharose® beads (Sigma Cat No. GE-17-0906-01), composed of 4 % cross-
linked agarose with an average particle size of 90 um, were coated with recombinant GFP protein
(Abcam, Cat No. Ab84191). Briefly, an aliquot of 200 pL bead slurry was washed in 1 mM HCI,
followed by Coupling Buffer (0.4 M NaHCOs3, 1 M NaCl, pH 8.3). 100 ug of GFP was incubated
with the beads overnight at 4°C, with rotation. The reaction was quenched with 0.1 M Tris-HCI pH

8.0, 0.3 M NaCl and the GFP-conjugated beads were stored in 0.1 M Tris, pH 8.0 at 4°C.

STPT sample preparation and STPT imaging

To prepare the tumour sample for serial two photon tomography (STPT), a 4.5 % (w/v) agarose
solution (Type 1 agarose, Cat. No. A6013, Sigma) in 50 mM phosphate buffer, pH 7.4 was
oxidized by the addition of 10 mM sodium periodate (NalOs). The solution was agitated for 3 h in
the dark, washed with phosphate buffer and resuspended in the appropriate volume of 50 mM
phosphate buffer to achieve 4.5 % agarose. This oxidized agarose solution was heated to boiling,
cooled to 60°C, and spiked with GFP-conjugated agarose fiducial marker beads prior to
embedding the tissue. The PFA-fixed tissue was embedded in the molten agarose using a 2 cm®
embedding mould (Cat. No. E6032-1CS, Sigma). Once the agarose block was solidified, it was
immersed into a degassed polymer solution (Imbed 100S monomer, TissueVision) for 48 h at
4°C. The agarose block was baked for 8 h at 40°C to crosslink the polymer solution, following
which the block was stored at 4°C in 50 mM phosphate buffer, pH 7.4 until it was ready for

imaging.

The agarose block containing the tumour sample was glued to a histology glass slide (25 x 75 x
1 mm) modified by attaching two neodymium bar magnets to the bottom side (non-frosted) using

epoxy glue, and this was placed onto a magnetic plate within an imaging vat and filled with 1 It of
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50 mM phosphate buffer, pH 7.4. Serial two-photon imaging was then performed on a TissueCyte
1000 instrument (TissueVision, Newton, MA, USA), where a series of 2D XY mosaic images were
taken, followed by physical sectioning with a vibratome to remove the imaged tissue and to create
a new surface for a subsequent round of imaging. For this dataset, twenty physical sections of 15
pum thickness were cut with the vibratome at a speed of 0.1 mm/sec and 55 Hz frequency. Two
planes of images were taken for each 15 pym physical section, one at an imaging depth of 30 um
below the surface and another at 38 um. A dual laser setup (Coherent Discovery) allowed
simultaneous acquisition of GFP (excitation wavelength 900 nm) and tdTomato (excitation
wavelength 1040 nm). Fluorescence was detected by four PMT tubes in the following spectral
ranges: <500nm (channel 4), 500-560 nm (channel 3), 560-600nm (channel 2), >600nm (channel
1). GFP and TdTomato were detected in channel 3 and channel 2 respectively. Collagen was
also imaged through the second-harmonic emission generated by the 900nm laser (450 nm).
Tissue sections were collected from the buffer vat onto Superfrost Plus microscope slides, air-
dried and stored at 4°C until processed for fluorescence scanning. The tiled STPT images were
stitched and segmented using the image analysis workflow described below, and in more detail

elsewhere (Gonzalez-Solares, E.A. et al., 2021, Nature Cancer, submitted).

Slide imaging

Images were captured post-STPT with the Zeiss Axioscan Z1 microscope slide scanner with a
resolution of 0.44 um/pixel. GFP - Excitation filter — 465-490nm, Emission filter — 460-480nm,
Exposure time 250ms. tdTomato — Excitation filter — 545-565nm, Emission filter — 578-640nm,

Exposure time 700ms. The surface area of each section was imaged including the GFP+ fiducial

marker beads surrounding the tissue.
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IMC antibody conjugation and panel preparation

All antibody conjugations were performed using the standard protocol available from Fluidigm for
metal-antibody conjugation using the Maxpar X8 metal conjugation kit. All centrifugations were
done at room temperature. Briefly, the metal polymer was equilibrated to room temperature and
spun down in a mini-centrifuge for 10 seconds. The polymer was suspended in 95 ul of Fluidigm’s
L buffer and 5 pl of the appropriate lanthanide metal from Fluidigm was added to this. After
thorough resuspension, the metal-polymer was incubated at 37°C for 30 minutes. During this
step, 100 ug of an IgG antibody (in BSA and glycerol free formulation) were spun down at 12,000
x g for 10 minutes in an Amicon 50 kDa centrifuge filter tube. A buffer exchange was performed
by adding 400 pl of Fluidigm’s R buffer to the concentrated antibody and spun down at 12,000 x
g for 10 minutes. The antibody was then partially reduced with 100ul of 4mM TCEP-R buffer,
made by diluting 0.5 mM TCEP (Sigma-Aldrich) in R-buffer. After ensuring gentle and thorough
resuspension of the antibody and reducing agent, the antibody was incubated in a water bath at
37°C for 30 minutes. During this step, the polymer-lanthanide mixture was transferred to an
Amicon 3 kDa centrifuge filter tube with 200 ul of L buffer and spun down at 12,000 x g for 25
minutes. The polymer-metal complex was then washed with 400 pl of Fluidigm’s C buffer and
spun down at 12,000 x g for 30 minutes. During the polymer-metal purification, 300 ul of C buffer
was added to the partially reduced antibody and spun down at 12,000 x g for 10 minutes. This
wash was repeated with 400 pl of C buffer. After purification of both the polymer-metal complex
and the reduced antibody, the polymer-metal was brought to a final volume of 80 ul with C buffer
and added to the 20 pl of antibody, thus initiating the conjugation processes. The antibody-
polymer-metal complex was incubated in a water bath at 37°C for 90minutes. The conjugated
product was then washed with 200 pl of Fluidigm’s W buffer and spun down at 12,000 x g for 10
minutes. The wash was repeated 3 times more with W buffer up to a total volume of 400 ul. The

~20 pl of the conjugated antibody was resuspended in W-buffer to a final volume of 100 ul and its
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absorbance at 289 nm was measured using the Nanodrop. After spinning down the product at
12,000 x g for 10 minutes, the conjugated antibody was resuspended in the appropriate amount
of PBS to bring the final concentration to 0.5 mg/ml. The product was spun down at 1,000 x g for
2minutes, collected and supplemented with 0.05% sodium azide preservative. Final conjugated
products were stored at 4°C for long term use. The final panel used for this manuscript is

described in Supplementary Table 1.

IMC sample preparation for the STPT/IMC dataset

IMC imaging was performed on 20 consecutive 15 ym STPT sections adhered to frosted glass
slides. Briefly, sections were incubated at 60°C for 30 minutes, followed by a 5-minute wash in
ddH20. Slides were placed into 50-ml Falcon tubes containing antigen retrieval reagent (Tris-
EDTA pH9), preheated at 95°C in a water bath. Slides were transferred to the pre-heated ARR
for 30 minutes, and subsequently cooled under running cold water for 5 minutes to ensure gradual
reduction to 70°C. Slides were then washed in ddH.O for 10 minutes followed by TBS (tris-
buffered saline) for 10 minutes. Tissue sections were first permeabilised in a 0.3% Triton X-
100/TBS buffer for one hour, then blocked in a 3%BSA/0.3%Triton X-100/TBS solution for one
hour. The blocking solution was removed, ensuring removal of excess liquid to avoid diluting the
antibody mix. The antibody mix (Supplementary Table 1) was prepared in a final solution of
1%BSA/TBS and added to each tissue section; a coverslip was placed onto each tissue section.
The slides were placed in a humidified chamber at 4°C for overnight incubation. The following
day, the coverslips were gently removed and slides were washed twice in 0.1%Tween 20/TBS,
followed by two washes with TBS, each wash performed for 7 minutes. The tissue section was
then stained with Fluidigm’s DNA intercalator (catalogue #201192B), dilute 1:500 in TBS, and
incubated for 30 minutes at room temperature. Sections were washed with ddH2O for 5 minutes

and allowed to air dry before imaging.
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IMC Image acquisition

Each tissue section was imaged using the Hyperion Imaging System™ (Fluidigm). The system
was first tuned and calibrated using a glass slide that’s been labelled with known concentrations
of each metal isotope within Fluidigm’s metal library. Calibration was performed at a frequency of
20 Hz and an ablation energy of 0 dB, with Pre-Calibration XY Optimization and Fine XY
Optimization options both enabled. Upon successful calibration of the system, the slide was
placed into the ablation chamber and a panorama image of the entire tissue section, including the
surrounding STPT, GFP-labelled beads, was generated. Acquisition was performed at a
frequency of 200 Hz and an ablation energy of ranging from 0 to 5 dB depending on acquisition
time and laser duty hours (energy was calibrated to the lowest amount sufficient to produce
complete ablation on a small tissue sample). Tuning and image acquisition ablations were all
performed using a UV laser set a diameter of 1 um. The data acquired was stored into both an

MCD and txt file.

STPT image stitching and Z alignment

Because STPT is the modality that has access to a relatively intact sample cube, STPT images
serve as the anchor for data processing. It was important then to ensure that these images provide

the most accurate representation of the sample possible.

With our choice of focal lenses, the field of view of the STPT microscope is roughly 1 mm?, with
a pixel size of 0.56 um. Imaging the surface of a sample cube requires typically around a hundred
field of view acquisitions; we refer to these as tiles. The control software for the microscope has
the capability to reconstruct the full stage view from these tiles by stitching them together from
the recorded positions of the actuators that move the sample. We have found that these positions
can be often be 10 ym off, and therefore chose to implement our own stitching procedure

(Gonzélez-Solares, E.A. et al., 2021, Nature Cancer, submitted).
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For this purpose, we configured the STPT microscope so that there is a 10% overlap between
adjacent tiles, and we refined the tile-to-tile positioning by intensity-matching these overlaps. This

allowed us to reconstruct the full stage image with relative tile positioning errors of around 1 pm.

The normal operation of the microscope consists of an acquisition in several channels and/or
optical depths, followed by sectioning the sample with the microtome. After this, the sample cube
is raised, and the cycle begins again. Because the sample is re-positioned between slices and
each slice image is stitched independently, there are mis-alignments introduced between slices.
These could be corrected by means again of comparing slice to slice, but because the sample
itself has changed, this is often imprecise. To solve this problem and facilitate multi-modal

registration later on, we used the embedded Sepharose® beads as fiducial marks.

These beads are spherical and therefore easy to segment and model. For the former, we used a
U-Net neural network*® trained on manually segmented beads. For the latter, we built a realistic
model of a homogeneous sphere embedded in a medium of transmissivity T<1.0. From this model
we derived the centre coordinates and the radius of each bead. This effectively transformed the
beads into point sources, allowing us to resort to a wealth of algorithms developed for Astronomy,

as aligning/crossmatching point sources is a common problem in this field.

In the case of slice-to-slice registration, a simple nearest neighbour search was enough to find
the bead pairs in contiguous slices, and by identifying in which slices a given bead appeared (due
to their size, usually 3 to 5 slices) we could use the measurements of their central coordinates to
align all the slices in the sample. Typical alignment errors were of 3 uym, while the action of the
microtome introduces a drift that from top to bottom would skew the misaligned cube close to 20

Mm in one direction.
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STPT to whole slide scanning to IMC registration

The collection of slices from the STPT tank effectively randomises their order, but once deposited
on a glass slide, an image was taken using a Zeiss Axioscan and the slide was given an unique
ID that enables traceability. The issue that remained was to find the match between each
Axioscan image and the corresponding STPT slice. This was complicated by several factors:
firstly, depositing the slice onto the glass slide can change the left/right, top/bottom and front/back
orientation; secondly, STPT images a layer embedded some microns into the tissue, while
Axioscan does so to the surface of the sample; thirdly, collecting and depositing the slices
introduces some mechanical deformation. Our matching algorithm attempted to address all of
these factors. First, we aligned a 32x down-sampled Axioscan image to a STPT dummy image
obtained from a median along the Z axis of all the slices. We modelled the STPT to Axioscan
transformation as an affine transform with six degrees of freedom, solving the problem of relative
orientation and correcting most of the possible deformations. We then segmented and profiled
the visible beads on the Axioscan image following the same procedure as for STPT, and using
the rough transformation derived previously we tried to match the detected Axioscan beads to
those in each STPT slice. Maximising the number of beads in common gave us the best Axioscan

to STPT match, along with the STPT to Axioscan transformation for that particular slice.

Once a sample slice was affixed to a glass slide and tagged, the IMC to Axioscan correspondence
was immediate. As IMC imaging is time consuming, smaller stage sizes are used, and normally
fewer beads are visible. Having Axioscan as a middle stage alleviates the associated problems.
We registered each IMC multichannel cube to its associated Axioscan image using the same
procedure outlined before, saving the first step as in this case relative orientation is fixed. Once a
good transformation was obtained, we compounded it with the already known Axioscan to STPT

transform, and refined this by comparing the beads in common between Axioscan and STPT.
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Typical registration errors, as measured by comparing the bead centers are of 6 uym for the IMC

to STPT registration and 7 ym for the Axio to STPT one.

IMC segmentation

IMC images were segmented using an automated pipeline developed for high-throughput analysis
of biological images. The pipeline is written in Python and uses the OpenCYV library, i.e., an open-
source computer vision and machine learning software library written in C++. For each IMC slice,
the pipeline reads a data cube, performs a pre-processing step, segments individual cells,
extracts several features for each cell, and finally outputs a catalogue of detected cells and their
calculated properties as well as a cell mask image. Initially, the code extracts the nuclear channel
using metadata information and uses this channel as a reference for the subsequent
segmentation process. It includes the normalisation of the reference image and noise reduction
by applying a Gaussian filter. Next, we used an adaptive threshold method to remove background
pixels. The latter produced a binary image which was the input to the watershed segmentation
algorithm. Most of the cells overlapped with one another. Therefore, one crucial step was to
separate (also called deblending) such cells. Our algorithm used the coordinates of local peaks
(maxima) to perform the deblending task. At this step, we computed cellular features for each
segmented cell. These included centroids, shape descriptors, and mean pixel intensities within
the cell nuclei across all available IMC channels using the cell nuclear mask. In addition, we
created another image mask associated with the cell's periphery, i.e. the two-dimensional zone
surrounding the cell, to compute mean pixel intensities (across all IMC channels) within the
cytoplasmic area. Finally, we produced a catalogue that includes all properties for detected cells
and a cell image mask for all detections. The pipeline is also further described in a separate

manuscript (Gonzalez-Solares, E.A. et al., 2021, Nature Cancer, submitted)

27


https://doi.org/10.1101/2021.06.28.448342
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.448342; this version posted June 29, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Dataset assembly and single cell analysis for the STPT/IMC model

In order to produce a coherent 3D dataset, the cell catalogues produced by segmentation of
each IMC dataset were first transformed into the coordinate frame of the STPT 3D model by
applying the transformation defined above (STPT to Axio to IMC registration) to the XY
coordinates of each cell, and using the progressive order of the STPT section matched to the IMC
image as the Z. This produced a three-dimensional set of cell localizations, which was
transformed into an Anndata python object for further processing using the scanpy package. In
order to clean the dataset, any IMC channel corresponding to antibodies that did not produce a
good quality staining pattern, or that weren’t specific for a pathway or cell type (i.e. the nuclear

counterstain) were removed.

An initial dimensional reduction (using the pca, neighbour and umap functions of the scanpy
package) was performed for the initial IMC section, followed by clustering using the leiden
function. The cells from the subsequent sections were then aligned (in multi-dimensional
parameter space) with the annotated ones from the first section using the ingest function, re-
projecting them into the same UMAP coordinate space and transferring the cluster labels.
Clusters were then manually annotated and cleaned based on user experience and the
expression of known cell type markers. Finally, a new 3-dimensional UMAP reduction was
calculated for the entire dataset. The final dataset was saved in Anndata format as well as

converted to Seurat format for wider compatibility.
3D IMC human breast cancer models

The two 3D IMC human breast cancer models were used after final pre-processing as presented
in Kuett and Catena et al. (2021, Nature Cancer, submitted). The data was downloaded from

https://doi.org/10.5281/zenodo.4752030. Briefly, for the 3D IMC models, paraffin embedded

biopsy samples were serially sectioned into 2um sections using diamond knife and

ultramicrotome. After section collection samples were stained with a mixture of metal-tagged
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antibodies and acquired with a commercial Fluidigm Hyperion Imaging System. The raw mcd
image files were converted into omeTIFF files using IMC pre-processing pipeline available at

https://github.com/BodenmillerGroup/imctools. Consecutive images were aligned using Fiji-

ImageJ2-linux64 v1.0 plugins Register Virtual Stack Slices and Transform Virtual Stack Slices

(https://github.comffiji/reqister virtual stack slices/). 3D segmentation was done with a Fiji-

ImagedJ2-linux64 v1.0 plugin called h-watershed (https://github.com/mpicbg-scicomp/Interactive-

H-Watershed/).

Single cell dataset processing

The single cell sample distributed with Theia was produced from a tumour similar to the one
described above in “Sample generation for the 3D-STPT sample”. In short, an 80/20 mixture of
parental 4T1 cells (not fluorescent) and green-labelled 4T1-T cells (Zsgreen) were injected into
the fat pad of two Nod-Scid-Gamma (NSG) mice (Jackson labs, NOD.Cg-Prkdcscid
12rgtm1W;jl/SzJ, stock 005557). Tumours were allowed to develop for 20 days and collected by
necropsy. Tumour were dissociated using a Miltenyi Biotech GentleMACS octo w/heaters
dissociatior and the Tumour dissociation kit (cat. 130096730) according to supplier’s instructions.
Cells were washed, counted, and approximately 4000 cells per sample were submitted to the
CRUK-CI genomics core for processing through the 10X genomics 3’ single cell gene expression
pipeline (v3). The sequencing results were processed using the 10X Cellranger software to
produce cell-gene count matrices, and the resulting datasets were further processed using the
Scanpy package.

Approximately 1800 cells were identified as high-quality after removing doublets, cells with
low counts, cells with high mitochondrial reads and cells with high ribosomal reads. Celltypes
were identified using the cellassign R package*' and a custom annotated marker matrix. Each
cluster was further validated by performing unbiases clustering with the leiden method and

verifying that each cellassign cluster corresponded to one or more leiden clusters. Normalization,
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log-transformation, scaling and dimensionality reduction/neighbourhood analysis were all

performed using the scanpy package.

Mammary duct volumetric dataset

The mammary gland sample was obtained from a virgin NSG-GFP mouse (Jackson Labs,
NOD.Cg-Prkdcscid 112rgtm1Wjl Tg(CAG-EGFP)10sb/SzJ, stock 021937, approximately 2-3
months old. The animal was first euthanised using increasing concentration of CO2 as prescribed
by the schedule 1 of the UK Animal Scientific Procedures Act (ASPA) and specific in the home
office approved project license mentioned above. The inguinal fat pad was dissected and fixed
for 24h in 4% PFA in PBS, followed by several washed in PBS. The sample was embedded and
imaged as described in “STPT sample preparation and STPT imaging” above, with the following
variations: 8% agarose was used, and the sample was infiltrated with Imbed 301H+ monomer mix
instead of Imbed 100S. STPT imaging was performed taking 100 15um sections, GFP was
visualized in channel 3 and second harmonic generation (collagen) in channel 4. Excitation was

900nm from the tuneable beam of the Coherent Discovery laser attached to the STPT instrument.

Packaging of samples for VR analysis

Datasets in Anndata format can be converted directly into the proprietary format used by
Theia by means of a python script provided with the Theia software (anndata_to_theia.py). The
script guides the user through a series of questions aimed at defining the coordinate sets to use
as spatial coordinate (i.e. spatial coordinates or dimensional reductions), the cell type annotation
to use, the variables to associate to size, which icons should be associated to different cell types,

whether to normalize data, etc.
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For the IDC samples downloaded from Zenodo and for the embryo development sample from
McDole et Al, the conversion was performed by means of custom Jupyter notebooks available on

the github site mentioned below.

Theia software

Theia is built with the Unity real time 3D development platform. The choice was made to build
upon an existing 3D framework over creating one from scratch. This would allow for a shorter
development time as well as the access to support when issues arose. Unity in particular was
chosen for its flexible nature as well as the abundance of developers and artists that are familiar
with it. Unity’s multiplatform nature allowed us to minimise risk, as it builds on top of existing
standard modules (the SteamVR platform) supporting multiple devices. It is also a very fast tool
for prototyping and experimentation, which would be an important aspect for developing such a
new piece of software. Theia is primarily programmed in C#. Python is used to import, analyse
and export datasets.

In order to display so many 3D objects in virtual reality we needed to use instanced rendering.
We used this to allow us to display large volumes of the same mesh. This allows us to show larger
samples in the simulation. In addition to this we use compute shaders for highlighting of the
sample. Using a technique called parallel reduction we are able to maintain a smooth framerate
and retain comfort in the simulation while making each cell an interactable object. Framerate is
critical in virtual reality, as low values lead to the user experiencing motion sickness. For this
reason, we employed several strategies to minimize rendering load during fast interaction, for
instance applying a “vignette” effect blanking the periphery of the field of view during fly
movements.

A Python socket server was used to connect with external Python tools and execute custom
scripts on the sample. This was used for differential expression, dimensionality reduction and the

nearest neighbour function. These were implemented using the scanpy package.
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Data and code availability

IMAXT aims to produce periodic data releases for the scientific community. The data described
in this manuscript have been included in our Imaxt Data Release 1 (IDR1). This release contains
the raw STPT, whole-slide scanning and IMC data for all models, as well as the re-projected
whole-slide and IMC data, the segmentation masks, the cell catalogues, and the final dataset in
anndata and seeurat format. Information on how to access the data and description of datasets

can be found in https://imaxt.ast.cam.ac.uk/release/docs/dr1/ ). IDR1 also contains the single-

cell RNAseq dataset described in figure 6, which is also deposited in the Gene Expression
Omnibus (GEO), with ID GSE178069. The data for the serial ablation IMC human IDC models

can be obtained from the Zenodo platform https://doi.org/10.5281/zen0do0.4752030 . The code

used to perform stitching of the STPT sample and nuclear segmentation of the IMC datasets is
released under a GNU General Public License version 3 (GPLv3) and publicly available from

https://github.com/IMAXT/ (Gonzéalez-Solares, E.A. et al., 2021, Nature Cancer, submitted).

Executables and source code for Theia can be downloaded from

https://imaxt.ast.cam.ac.uk/release/docs/dr1/ and from https://www.suil.ie/
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Figure 1. Scheme of the IMAXT pipeline. The IMAXT pipeline integrates data from multiple
platforms into a 3D map of a biological sample. Platforms include survey single-cell sequencing,
Serial two-photon tomography, Imaging Mass Cytometry, spatial transcriptomics (not included in

this manuscript), and data integration.
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Figure 2

Figure 2. Mutimodal analysis in 3D of a 4T1-derived tumour. A. 3D view of the STPT data for
the multi-modal NSG 4T1 model dataset. GFP is displayed in green and TdTomato in red. B.
Zoom-in on an area of the sample including a vessel-like structure. Cutouts display the full
resolution STPT data, as well as IMC images for GFP/TdTomato (tumour cell populations),
immune markers (Cd11b), Hypoxia markers (Car9), Vessel markers (CD31), Epithelial markers
(Krt19), Pericyte markers (PDGFRB), and nuclear counter-stain. C. UMAP dimensional reduction

plot for the dataset. D. Marker abundance plots for a representative 2D section of the sample.
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Each dot is a segmented cells and signal intensity corresponds to the normalized abundance of
the marker in the cell. The same markers described above are displayed, with the addition of
proliferation (Ki67) and apoptosis (Cleaved Caspase 3). E. Spatial plot of a representative 2D
section of the dataset. Each colour corresponds to a different cell type predicted by leiden
clustering on the data. F. Dot plot identifying specific markers for each cell population. Signal
intensity corresponds to average expression, dot size corresponds to the fraction of the population
expressing the marker. G. 3D model as visualized in Theia. All cells are shown on the left
(Endothelial cells: red - Hypoxic cells: pink — Myeloid cells: blue - Mrc1+ cells: cyan — Stromal
cells: green - Tumour GFP+ cells: yellow - Tumour Tomato+ cells: orange, Tumour Ki67+
proliferating cells: lime), and specific cell types are shown on the right (myeloid cells in green,

proliferating tumour cells in cyan and endothelial cells in red).
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Figure 3

Figure 3. VR analysis of Invasive ductal carcinoma models generated by serial sectioning
IMC by Kuett, Catena et al. A. 3D renderings of the raw IMC data for the first and second model,
showing (as indicated) basal markers (SMA), Stromal markers (Vimentin), epithelial markers
(panCK / Her2), endothelial markers (VWF/CD31) and T cell markers (CD8). B. IDC2 model
visualized in the VR environment in Theia (the Z scale is exaggerated to facilitate visualization).
C. CD8+ T cells (cyan) clustered around endothelial cells lining a blood vessel (red) visualized in
the VR model. D. Lining of tumour-filled mammary ducts formed by CK5+ and SMA+ basal cells

(in red and blue). E: Intensity of phospho-S6 (Ser235/236) marker visualized through virtual
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reality, highlighting a pattern of increased expression just below the outer surface (basal layer) of
the ducts. F. IDC1 visualized in VR. Some tumour cells from a specific phenograph cluster (in
blue, red circle) can be seen breaking off a mammary duct (red dotted line) and invading the

stroma (in this case rich in lymphocyte cells — green). Other tumour cells are in white.
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Figure 4. Data exploration tools in Theia. A. Overview of the virtual environment featuring the
selection table and plotting slots (left), favourites table and sample/cell size console (centre), and
sample information panel, highlighting table and export console (right). B. Cell type selection for
the NSG 4T1 model (GFP+ and TdTomato+ tumour cells displayed) and of the IDC2 3D-IMC
model (detail of the highlighting table and 3D visualization with stroma in magenta, macrophages
in orange, B cells in red, CD8+ T cells in green, and Basal SMA+ cells in blue. C. Marker intensity
mapping for E-cadherin on the NSG 4T1 model. D. Detail of the sample information panel (left)
and population information panel and expression heatmap (right). E. A fly-in of the IDC2 model.

The camera is located in a stromal region just outside a duct (blue cells, bottom left) filled with
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tumour cells. Other cell types are represented in different colours (i.e. green/pink tumour cells,

red immune cells) F. Meshes representing different cell types in icon view.
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Figure 5. Analysis tools in Theia. A. detail of the gene plotting tool, dimensional reduction tool,
and population manipulation tool. B. example 3D marker expression view for phospho-S6,
(Ser235/236) Phospho-Histone H3 and CD68. Different cell clusters are highlighted in different
colours (i.e. macrophages in red) C. 3D UMAP plot of the IDC2 sample. D. Cell selection tool.

Selected cells are highlighted in the centre of the model. E. Gene signature tool and intensity
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mapping of a T-cell signature produced by averaging the per-cell intensities of CD3, CD8a, and
CD45. F. Differential expression tool showing DE genes for the CK5" or SMA" populations of
basal cells (in yellow and blue). P values are generated by T-test. G. Neighbourhood search tool.
An initial selected population (in red) is expanded by a user selected radius to generate the green
area. H. Multi-user interaction with Theia: 3 users analysing a sample together. Note the head

avatars and the controller objects tracking the users’ hands.
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Figure 6. Visualization of disaggregated single-cell datasets in Theia. The dataset displayed
here was generated through the 10X genomic platform (3° GEX v3) from a NSG 4T1 tumour
analogous to the one used for the STPT/IMC dataset. Approximately 1000 cells are included A.
UMAP plot highlighting cell types as inferred by the cellassign supervised cell identification
algorithm. B. Model shown in Theia. All cells (left), cell highlighting (centre) and gene intensity
mapping (right). C. UMAP plots showing marker expression for a subset of markers also present
in the STPT/IMC dataset and for the stromal marker Col1a1 (collagen 1). D. Dot plot identifying
specific genes for each cell population. Signal intensity corresponds to average expression, dot

size corresponds to the fraction of the population expressing the marker
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Figure 7. Compatibility of Theia with other data types. A. The embryo neurulation dataset was
from McDole et al * Top: modified figure from McDole et Al showing cell localizations and lineages
35h after the start of imaging. Middle/bottom: Theia visualizations of the same dataset. The neural
tube, lateral plates and heart fields are highlighted. B. Theia volumetric viewer for the visualization
of native voxel data. Top and bottom-left: Example mammary gland dataset generated by STPT
on a fragment of a GFP+ mouse mammary gland. All mouse tissues are GFP+. Collagen detected
via second harmonic generation is in red. The middle panel showcases the sectional plane tool.

Bottom right: 3D model of a 4T1 tumour.
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Tables

Table 1. Datasets included for analysis in VR and their source

Sample Source Technology Description N. cells N. Volume
name Marke (um)
rs
3d STPT/IMC | Syngeneic STPT + Whole | 80/20 mix of parental 4T1 2,008,786 | 26 Approx.
multimodal tumour model slide scanning | cells (labelled with (10% sub- | protein | 10000 x
(411 cells) in + IMC TdTomato) and 4T1-T from | sampling S 10000 x 300
Immunocompro Wagenblast et Al. (labelled is also um
mised mouse with GFP). Injected into the | provided)
host (NSG) fat-pad of a NSG mouse
host and dissected at d21
post-injection
Serial IMC 13" | Human DCIS Serial First proof of concept of 3D | 108,487 24 652 x 488 x
(IDC) sectioning + IMC pipeline protein | 304
IMC ]
Serial IMC 23" | Human DCIS Serial Second proof of concept of | 81,225 28 606 x 686 X
(IDC) sectioning + 3D IMC pipeline protein | 184
IMC ]
4T1_d20_scR | Syngeneic 10X single- 80/20 mix of parental 4T1 1879 31053 | N.A
NAseq tumour model cell 3’ end cells (labelled with genes
(411 cells) in transcriptomi | TdTomato) and 4T1-T from
Immunocompro cs Wagenblast et Al. (labelled
mised mouse with GFP). Injected into the
host (NSG) fat-pad of a NSG mouse
host and dissected at d20
post-injection
McDole Developing Multi-view TARDIS-A embryo dataset 10,000,000 | N/A 1527 x 2052
TARDIS-A3® mouse embryo light-sheet from McDole et Al. (down- x 4037 um
microscopy + sampled
segmentation to
300,000)
Volumetric Mammary gland | STPT Mammary gland dissected | N/A N/A N/A
Mammary of NSG-GFP from a pan-fluorescent NSG
gland mouse animal, bearing green
fluorescence in all cells.
Ducts are labelled in green
and collagen (through
second harmonic
generation from the two-
photon excitation) in red.
Volumetric image
Volumetric Syngeneic STPT Tumour produced by N/A N/A Approx.
4t1 d20 tumour model injecting 4T1 cells in the fat- 5000x5000x
tumour (411 cells) in NSG pad of a NSG mouse. 3000 um
mouse host
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