

CTCF and transcription influence chromatin structure re-configuration after mitosis

Haoyue Zhang^{1,2*}, Jessica Lam^{2,3}, Di Zhang^{2,3}, Yemin Lan³, Marit W. Vermunt², Cheryl A. Keller⁴, Belinda Giardine⁴, Ross C. Hardison⁴ and Gerd A. Blobel^{2,3,*}

¹Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.

²Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA

³Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

⁴Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA

*Correspondence: zhang_adam@szbl.ac.cn (H.Z.), blobel@email.chop.edu (G.A.B.)

24 **Abstract:**

25 During mitosis, transcription is globally attenuated and chromatin architecture is dramatically
26 reconfigured. Here we exploited the M- to G1-phase progression to interrogate the contributions
27 of the architectural factor CTCF and the process of transcription to re-sculpting the genome in
28 newborn nuclei. Depletion of CTCF specifically during the M- to G1-phase transition altered the
29 re-establishment of local short-range compartmentalization after mitosis. Chromatin domain
30 boundary reformation was impaired upon CTCF loss, but a subset (~27%) of boundaries,
31 characterized by transitions in chromatin states, was established normally. Without CTCF,
32 structural loops failed to form, leading to illegitimate contacts between *cis*-regulatory elements
33 (CREs). Transient CRE contacts that are normally resolved after telophase persisted deeply into
34 G1-phase in CTCF depleted cells. CTCF loss-associated gains in transcription were often linked
35 to increased, normally illegitimate enhancer-promoter contacts. In contrast, at genes whose
36 expression declined upon CTCF loss, CTCF seems to function as a conventional transcription
37 activator, independent of its architectural role. CTCF-anchored structural loops facilitated
38 formation CRE loops nested within them, especially those involving weak CREs. Transcription
39 inhibition did not elicit global architectural changes and left transcription start site-associated
40 boundaries intact. However, ongoing transcription contributed considerably to the formation of
41 gene domains, regions of enriched contacts spanning the length of gene bodies. Notably, gene
42 domains formed rapidly in ana/telophase prior to the completion of the first round of transcription,
43 suggesting that epigenetic features in gene bodies contribute to genome reconfiguration prior to
44 transcription. The focus on the de novo formation of nuclear architecture during G1 entry yielded
45 novel insights into how CTCF and transcription contribute to the dynamic re-configuration of
46 chromatin architecture during the mitosis to G1 phase progression.

47 **Introductory paragraph:**

48 The mitotic phase of the cell cycle is characterized by rapid and extensive re-organization of
49 chromatin architecture and global attenuation of transcription¹⁻⁵. Studies of chromatin dynamics
50 during entry into and exit from mitosis have informed the mechanistic basis underlying the
51 hierarchical organization of chromatin. During mitotic exit, A/B compartmentalization is
52 detectable as early as in ana/telophase but intensifies and expands thereafter¹⁻⁵. Contacts between
53 CREs such as promoters and enhancers are re-established with variable kinetics, some forming
54 gradually and plateauing deeper into G1 while others are transient in nature being developed fully
55 in ana/telophase only to fade upon G1-entry¹. Resumption of transcription follows similarly
56 variable characteristics: some genes display a spike in activity early in G1 and settle down at later
57 stages whereas others are activated in a gradual fashion^{1,6,7}.

58

59 The multi-functional transcription factor CTCF frequently co-localizes with boundaries of contact
60 domains, such as topologically associated domains (TADs), and is proposed to assist their
61 formation in collaboration with the cohesin ring complex through a process termed “loop extrusion”
62⁸⁻¹⁰. Accordingly, acute depletion of CTCF or cohesin leads to wide-spread weakening of
63 boundaries in interphase cells¹¹⁻¹⁵. CTCF and cohesin are evicted from mitotic chromatin to
64 varying extents^{1,16-19}, and measuring the rates by which they return to chromatin has enabled
65 correlative assessments of their roles in post-mitotic genome folding and transcriptional activation.
66 Upon mitotic exit, CTCF is immediately recruited back to chromatin prior to the formation of
67 domain boundaries and architectural loops¹. The rate limiting step in the formation of these latter
68 structures appears to be the accumulation of cohesin at CTCF bound sites, which occurs more
69 gradually as chromatid extrusion proceeds.

70

71 Another feature frequently associated with domain boundaries is transcription start sites (TSS)^{20,21},
72 but the role of transcription in boundary formation is still being debated. Inhibition of transcription
73 compromises boundary strength in *Drosophila melanogaster* embryos^{20,21}. Yet, neither genetic nor
74 chemical inhibition of transcription elicited a significant impact on higher-order structures of
75 mammalian genomes^{22,23}. A recent gain-of-function study demonstrated that ectopic insertions of
76 TSSs can lead to the formation of new domain-like structures spanning the lengths of the *de novo*
77 transcripts²⁴.

78

79 Most studies on how CTCF depletion or transcription inhibition impact chromatin architecture
80 have been carried out in asynchronously growing cells and thus did not distinguish requirements
81 for establishment versus maintenance of genome structure^{11,13-15,20-22,25}. The transition from
82 mitosis into G1-phase offers the opportunity to monitor the *de novo* formation of compartments,
83 compartment domains (here referring to genomic segments of a given compartment), domain
84 boundaries, and chromatin loops in relation to CTCF binding and gene activation. Here, we
85 interrogated the contributions of CTCF and the process of active transcription to the establishment
86 of post-mitotic chromatin architecture by acutely depleting CTCF through the auxin inducible
87 degron (AID) system alone or jointly with chemical inhibition of transcription during the mitosis
88 to G1-phase transition^{1,11,26}.

89

90

91

92

93 **Results:**

94 **Cell cycle stage specific degradation of CTCF.**

95 To explore the impact of CTCF loss specifically during the period when chromatin architecture is
96 rebuilt, we employed a murine erythroblast line G1E-ER4 in which both CTCF alleles were
97 engineered to contain a C-terminal fusion to the AID-mCherry domains (Extended Data Fig. 1a)
98^{11,26}. A TIR-expressing construct was transduced into the cells to allow for rapid auxin induced
99 CTCF degradation (Extended Data Fig. 1a). CTCF became virtually undetectable after 1h
100 exposure to auxin (Extended Data Fig. 1b). The acute nature of AID mediated degradation enabled
101 removal of CTCF at precisely chosen time points. We applied auxin during nocodazole-induced
102 prometaphase-arrest/release (Fig. 1a). CTCF depleted cells were enriched by FACS at defined time
103 points during the prometaphase-to-G1 phase transition on the basis of mCherry fluorescence signal
104 and DNA content staining (Extended Data Fig. 1c)^{1,27}. To facilitate FACS purification of cells at
105 ana/telophase, we adopted GFP fused to a mitotic-specific degron (MD) (Extended Data Fig. 1a).
106 Purified cells were processed for *in-situ* Hi-C to detect architectural alterations (Extended Data
107 Fig. 1d; Supplementary table 1). Short-term depletion of CTCF did not impede cell cycle
108 progression, and accordingly, post-mitotic Hi-C contact decay curves were highly similar between
109 auxin treated and control cells (Extended Data Fig. 1c; 2a), enabling pair-wise comparisons
110 between CTCF depleted and replete cells at each post-mitotic cell cycle stage.

111

112 **Local compartmentalization after mitosis requires CTCF.**

113 A/B compartment emergence in ana/telophase as well as expansion and intensity gains occurred
114 at comparable rates in control and CTCF depleted cells, suggesting that CTCF is dispensable for
115 global compartmentalization after mitosis (Fig. 1b; Extended Data Fig. 2b, d-g). Since prior reports

116 suggested that loop extrusion counteracts compartmentalization^{12,28}, we examined whether CTCF
117 loss and the resulting extended extrusion process may affect short-range compartmental
118 interactions. We analyzed the post-mitotic interaction frequency between consecutive B-type
119 compartment domain pairs flanking a single A-type compartment domain and found it to be
120 significantly increased upon CTCF depletion (Fig. 1c-e; Extended Data Fig. 3a). It is noteworthy
121 that such increment of short-range B-B interactions grew as cells proceeded towards G1 (Fig. 1e;
122 Extended Data Fig. 3h), in line with the progressive loading of cohesin after mitosis. Moreover,
123 gains of B-B interactions only occurred locally and tapered off as they were further separated
124 (Extended Data Fig. 3e-h), consistent with the limited residence time of cohesin on chromatin²⁹.
125 Intriguingly, interactions between short-range A-type compartment domains were diminished in
126 CTCF deficient cells (Fig. 1f-h; Extended Data Fig. 3b, e, g, i). Together, our data highlight a
127 previously undescribed role of CTCF to regulate short-range compartmental interactions, likely by
128 restricting cohesin driven loop extruding.

129

130 **CTCF dependent and independent mechanisms drive boundary reformation after mitosis.**
131 We next investigated post-mitotic boundary reformation upon CTCF depletion. We identified
132 6,376 boundaries with high concordance among biological replicates (Extended Data Fig. 4a, b;
133 Supplementary table 2)³⁰. K-means clustering yielded five groups of boundaries with distinct
134 sensitivities to CTCF depletion (Fig. 2a). Only ~20% of boundaries (cluster1) were fully dependent
135 on CTCF after mitosis (Fig. 2a; Extended Data Fig. 4c, f). ~31.9% (cluster2) were partially
136 dependent, and ~27% (cluster3) were unaffected by CTCF loss (Fig. 2a; Extended Data Fig. 4d, e,
137 g, h) indicative of CTCF independent mechanisms. As expected, cluster3 boundaries displayed
138 markedly lower CTCF/cohesin occupancy than cluster 1 and 2 (Fig. 2b). Visual inspection

139 suggested that cluster 2 and 3 boundaries are frequently located at transitions between regions
140 enriched for the repressive histone mark H3K27me3 and the transcription elongation mark
141 H3K36me3 (Extended Data Fig. 4i). We further quantified chromatin state transitions by principal
142 component analysis (PCA) using 10kb binned H3K27me3 and H3K36me3 ChIP-seq signals
143 across the -/+50kb region of each boundary (Fig. 2c). We found that the extreme (top or bottom
144 20%) PC1 projections reliably predicted transitions of chromatin states at boundaries (Fig. 2d).
145 Importantly, cluster2 and 3 boundaries are significantly more enriched with top and bottom 20%
146 PC1s compared to cluster1 (Fig. 2e). Therefore, cluster1 boundaries seem to be primarily driven
147 by CTCF/cohesin mediated loop extrusion, Cluster3 boundaries may be formed through
148 segregation of active and inactive chromatins, and cluster2 boundaries by both mechanisms.
149 Intriguingly, under normal conditions (“-auxin”), cluster2 and 3 boundaries were reformed
150 significantly faster than cluster1 after mitosis (Fig. 2f), suggesting that chromatin segregation may
151 mediate more rapid insulation than loop extrusion after mitosis. Our data demonstrate that CTCF
152 dependent and independent mechanisms can work separately or jointly to drive boundary
153 formation after mitosis.

154

155 **Variable requirement of CTCF for post-mitotic loop formation.**

156 CTCF is frequently found at chromatin domain boundaries and anchors of architectural loops
157 where it can promote or inhibit loop contacts among regulatory regions, such as enhancers and
158 promoters. We stratified chromatin loops based on the composition of their loop anchors and asked
159 to what extent they are rebuilt upon CTCF depletion. A modified HICCUPS algorithm ^{1,31}
160 identified a union of 16,370 loops across all time points and auxin treatment conditions with high
161 concordance (Extended Data Fig. 5a, b; Supplementary table 3). Newly called loops were also

162 appreciated visually at each cell cycle stage, supporting the validity of our loop calling method
163 (Extended Data Fig. 5c). Among all loops, 8,207 (~50%) harbor CTCF/cohesin co-occupied sites
164 at both anchors. These were further sub-categorized into 4,837 “structural loops” with one or no
165 anchor containing CREs (as defined previously¹), and 3,370 “dual-function loops” with both
166 anchors containing CREs (Fig. 3a). Post-mitotic reemergence of both structural and dual-function
167 loops was severely disrupted upon CTCF loss as evidenced by aggregated peak analysis (APA)
168 and PCA (Fig. 3b-d; Extended Data Fig. 5d). We also called 4,642 “CRE loops” with both anchors
169 containing CREs and only one or no anchor harboring CTCF/cohesin peaks (Fig. 3a). While APA
170 plots failed to reveal major changes in CRE loop establishment, ~44.5% and ~30.4% of CRE loops
171 were lost and newly gained, respectively after auxin treatment (Fig. 3b, e, f), uncovering a
172 considerable shift in their reformation after CTCF depletion. Our results thus point to a critical
173 role for CTCF in the formation of diverse loop categories after mitosis.

174

175 **Transient post-mitotic CRE loops are terminated by interfering structural loops.**

176 Previously, we uncovered a group of transient CRE loops whose intensities spiked in ana/telophase
177 and subsequently faded in G1¹. The function of such transient contacts if any, and the causative
178 role for CTCF in their disruption remained unknown. Our acute CTCF depletion system enabled
179 us to test this question globally. Using *k*-means clustering, we identified 392 transient CRE loops
180 (cluster1) in control cells (Fig. 3g). Strikingly, 228 of these CRE loops persisted deep into G1 after
181 CTCF depletion (cluster1-P), implying that CTCF is capable of blocking a subset of early-
182 established CRE contacts after mitosis (Extended Data Fig. 6a, b). 164 CRE loops maintained their
183 transient nature in the absence of CTCF (cluster1-NP) (Extended Data Fig. 6a, b). Visual
184 examination of a representative cluster1-P CRE loop revealed the emergence of an interfering

185 structural loop in control but not in auxin treated cells (Fig. 3h). Genome-wide, a high fraction
186 (~63.1%) of cluster1-P loops is potentially interrupted by structural loops, whereas remaining
187 clusters (1-NP, 2, 3 & 4) were less affected (Extended Data Fig. 6c). Notably, the 1,410 newly
188 gained CRE loops after CTCF loss also showed high level of structural loop interruption,
189 comparable to that of cluster1-P (Extended Data Fig. 6c). This observation held true after
190 randomized matching of CRE loop sizes from different clusters (Extended Data Fig. 6d).

191

192 CTCF resumes full chromatin occupancy in ana/telophase while cohesin accumulation is delayed
193¹. Interference of CRE loops by structural loops occurs at later cell cycle stages (Fig 3h), suggesting
194 that CTCF by itself is insufficient to block CRE interaction but requires engagement in cohesin
195 mediated looped contacts. To test this idea, we performed genome-wide enrichment analysis to
196 compare the likelihood of CRE loops to be disrupted by structural loops versus “loop-free”
197 CTCF/cohesin co-occupied sites (Extended Data Fig. 6e). In comparison to structural loops, “loop-
198 free” CTCF/cohesin sites displayed a reduced tendency to disrupt cluster1-P and the gained CRE
199 contacts (Extended Data Fig. 6f). Furthermore, CTCF peaks independent of cohesin and structural
200 loops were evenly distributed across all CRE loop clusters (Extended Data Fig. 6f). Together,
201 dissection of the cell cycle dynamics of different loop categories uncovered support for the notion
202 that CTCF is more effective as an insulator when part of a looped structure. A caveat of this
203 interpretation is that small structural loops are undetectable in our Hi-C data.

204

205 Interposition of structural loops does not always disrupt CRE contacts: ~37.5% of the CRE loops
206 in clusters 2-4 had interposed structural loops. The failure of these to break up CRE loops might
207 be related to their relative positioning. We observed that structural loops that are capable of

208 weakening cluster1-P CRE loops tended to reside near (~50kb) the CREs (Fig. 3h). To quantify
209 this trait, we measured the distance of the influenced CRE to the most proximal structural loop
210 anchor inside the CRE loop: s_i -min (Extended Data Fig. 7a). Remarkably, s_i -min was significantly
211 shorter for cluster1-P and the gained CRE loops compared to the non-insulated cluster2, 3 and 4
212 (Extended Data Fig. 7b). This observation holds true for size-matched CRE loops (Extended Data
213 Fig. 7c). Moreover, we observed a significant negative correlation between insulation strength and
214 s_i -min after mitosis (Extended Data Fig. 7d). Together, our data suggest that the insulating, CRE
215 loop disrupting function of CTCF is linked not only to CTCF's ability to form a loop but also to
216 the relative position of the insulating loop.

217

218 **Structural loops can facilitate CRE connectivity after mitosis.**

219 CTCF depletion weakened a subset of CRE loops after mitosis (Fig. 3e), suggesting a supportive
220 role of CTCF for certain CRE contact formation. APA plots demonstrated that the slower-forming
221 cluster4 CRE loops were attenuated the most in G1 phase when compared to the other clusters
222 (Extended Data Fig. 8a, b). Interestingly, cluster4 CRE loops were significantly more likely to
223 reside within structural loops compared to size-matched ones from other clusters, implying a
224 supportive role of structural loops for CRE-contacts (Extended Data Fig. 8c). Accordingly, the
225 strengthening effects on cluster4 increased with cell cycle progression, consistent with the
226 progressive re-formation of structural loops after mitosis (Extended Data Fig. 8d). It is noteworthy
227 that anchors of cluster4 CRE loops displayed significantly weaker decoration with active histone
228 marks H3K27ac, H3K4me1 and H3K4me3 than cluster3 (Extended Data Fig. 8e), suggesting that
229 weak CRE contacts are especially reliant on encompassing structural loops.

230

231 **Reduced enhancer-promoter interactions do not account for transcription loss upon CTCF**
232 **depletion.**

233 Given that CTCF loss altered post-mitotic CRE loop reformation, we examined how these changes
234 impact gene reactivation after mitosis. We generated PolII ChIP-seq datasets during the mitosis-
235 to-G1 phase transition with or without auxin treatment with high concordance among biological
236 replicates (Extended Data Fig. 9a). We identified 7,238 active genes across all time points
237 (Supplementary table 4). ~52.0% of these genes showed post-mitotic transcriptional spiking in
238 control cells (Extended Data Fig. 9b), as observed previously ^{1,6}. This spiking pattern was
239 overwhelmingly maintained in the absence of CTCF (Extended Data Fig. 9b-d), suggesting that
240 CTCF is not essential for re-activation of many genes, and validating that CTCF-deficient cells
241 progress normally from prometaphase to G1. Consistent with previous reports, only small fraction
242 of genes (426, ~5.7%) were differentially expressed in at least one post-mitotic time point ($q <$
243 0.05, fold change > 1.25 fold) with 203 up-regulated and 223 down-regulated after mitosis (Fig.
244 4a) (see methods). Of note, most of these gene expression changes were already detectable in early-
245 G1 phase, when transcription initiates, suggesting an instant effect of CTCF on these genes (Fig.
246 4a). The genes most down-regulated upon CTCF loss displayed the highest CTCF occupancy at
247 their TSS in CTCF replete cells (Fig. 4b, c; Extended Data Fig. 9e, f), which could be explained
248 by CTCF functioning as a direct transcription activator, or by mediating contacts with distal
249 enhancers.

250

251 To distinguish between these possibilities, we implemented the activity-by-contact (ABC) model
252 to call high confidence enhancer-promoter (E-P) contacts³² (Fig. 4d). Using a stringent ABC score
253 threshold of 0.04 (see methods), we identified 7,725 E-P pairs associated with active genes.

254 Unexpectedly, E-P pairs associated with down-regulated genes showed no significant reduction of
255 contact intensity upon CTCF loss across all tested cell cycle stages compared to non-regulated
256 genes (Fig. 4e; Extended Data Fig. 10a). This argues against CTCF-dependent looping as
257 predominant mechanism to normally activate these genes, and suggests that CTCF functions as a
258 transcriptional activator near the TSS.

259

260 **Gained enhancer-promoter interactions account for gene activation upon CTCF removal.**

261 We next explored how CTCF loss could lead to up-regulation of genes. We found that E-P pairs
262 associated with up-regulated genes were significantly strengthened in the absence of CTCF after
263 mitosis (Fig. 4e, g, h; Extended Data Fig. 10a). To quantify to what extent genes were regulated
264 by distal enhancers, we set out to identify significantly altered E-P pairs (differential E-P
265 interaction analysis) upon CTCF depletion. ~20.2% of up-regulated genes (e.g. Max) displayed
266 significantly strengthened E-P interactions after CTCF loss, while only ~6% and ~0.8% of non-
267 regulated and down-regulated genes respectively were associated with increased E-P contacts
268 (Extended Data Fig. 10b). This suggests that CTCF attenuates gene expression by interfering with
269 E-P interactions. Accordingly, E-P pairs associated with up-regulated genes were more likely to
270 be interrupted by structural loops, confirming an insulating role of structural loops in gene
271 regulation (Extended Data Fig 10c). The above observations held across various ABC score
272 thresholds (0.01-0.05), ruling out potential bias due to thresholding (Extended Data Fig. 10d, e).
273 We also identified 11,766 promoter-promoter (P-P) pairs, which were essentially unchanged in all
274 groups (up, down, non-reg) of genes (Fig. 4f; Extended Data Fig. 10a, e). This suggests that, in
275 contrast to E-P contacts, P-P interactions contribute little to post-mitotic transcription reactivation.
276 In sum, while overall CTCF depletion exerts modest effects on post-mitotic gene activation, proper

277 regulation of some genes requires CTCF for their activation while others require it for shielding
278 them from inappropriate enhancer influence.

279

280 **Compartment and boundary reformation was independent from transcription.**

281 The role of transcription in chromatin architecture is being debated. It was previously proposed
282 that inhibition of transcription does not compromise boundary strength, while others reported that
283 induction of transcription may lead to boundary formation at TSS and compartmental interactions
284 changes ²⁵. We next sought to investigate whether transcription facilitates post-mitotic
285 compartment and boundary reformation. We treated cells with triptolide, a drug that inhibits
286 transcription initiation, during the mitosis-to-G1 phase transition (Extended Data Fig. 11a) ^{33,34},
287 followed by *in-situ* Hi-C. Reformation of A/B compartments was ostensibly unperturbed in G1
288 upon transcription inhibition (Extended Data Fig. 2b-d, f). The CTCF independent cluster3
289 boundaries also remained intact after transcription inhibition (Extended Data Fig. 4h), ruling out
290 active PolII complexes as underlying mechanisms. Moreover, insulation at TSS was unperturbed
291 after transcription inhibition (Extended Data Fig. 11b). Consistent with this notion, insulation was
292 progressively gained after mitosis at the TSS of the 100 most spiking genes even after their
293 transcription was dialed down, suggesting that insulation as it occurs at TSS can be uncoupled
294 from the process of transcription (Extended Data Fig. 11c-e). To examine whether transcription
295 activity contributes to CTCF loss-induced chromatin changes, we removed CTCF and blocked
296 transcription re-initiation simultaneously in mitosis and examined compartmentalization in G1
297 phase (Extended Data Fig. 11a). CTCF loss-induced alterations of local compartmental
298 interactions (gain of B-B and loss of A-A) were also observed upon transcription inhibition
299 (Extended Data Fig. 3c, d, j, k). CTCF loss-mediated increases in loop intensities for cluster1-P

300 CRE loops were faithfully recapitulated in G1 upon transcription inhibition (Extended Data Fig.
301 6g). Furthermore, weakening of boundaries (cluster1 and 2 boundaries) as a result of CTCF
302 withdrawal was recapitulated in triptolide treated cells (Extended Data Fig. 4f, g). Together, our
303 results suggest that transcription is not a significant driving force for the formation of
304 compartments and boundaries, or CTCF-dependent chromatin remodeling after mitosis.

305

306 **Transcription dependent and independent mechanisms drive gene domain formation at G1
307 entry.**

308 Active genes can appear as distinct squares on Hi-C contact maps, which has been interpreted to
309 reflect gene domains caused by the process of transcription ^{21,22}. We examined to what extent
310 transcription reactivation may dynamically influence genome reconfiguration by performing an
311 integrative analysis of our Hi-C and post-mitotic PolII ChIP-seq datasets. A visually appreciable
312 gene domain at the *R fwd2* locus can be observed as early as in ana/telophase, even before PolII
313 reached the transcription end site (TES) (Fig. 5a, b), suggesting that gene domains may appear
314 quickly after mitosis prior to the completion of transcription elongation. To test this possibility
315 genome-wide, we quantified the post-mitotic recovery rates of gene domains and gene-body PolII
316 occupancy for all active genes. We found that small genes (30 to 50kb) displayed comparable rates
317 of recovery between gene domains and PolII occupancy (Fig. 5c). However, the recovery rate of
318 PolII was markedly reduced as gene size increased beyond 50kb and became significantly slower
319 compared to that of gene domains (Fig. 5c, d; Extended Data Fig. 12a-g). Of note, CTCF removal
320 had little impact on the recovery of gene domains after mitosis (Fig. 5c, d; Extended Data Fig.
321 12a-g). Transcription inhibition by triptolide diminished but did not abolish gene domain
322 formation after mitosis (Extended Data Fig. 12h), indicating that active transcription accounts

323 partially but not entirely for gene domain formation. Notably, gene domains were precisely
324 decorated by H3K36me3. This mark delineates active gene bodies, but unlike the process of
325 transcription itself, is stable throughout mitosis (Fig. 5b, d; Extended Data Fig. 12a-g)³⁴. This
326 suggests that re-establishment of gene domains that precedes the onset transcription might be
327 facilitated by this chromatin mark, nominating H3K36me3 as potential mitotic bookmark.

328

329 **Discussion**

330 Examination of the earliest stages of transition from pro-metaphase into G1 phase affords a unique
331 view into how chromatin is configured de novo in newborn nuclei. The AID protein degradation
332 system enabled investigation into the role of CTCF in this process. A meaningful interpretation of
333 the experiments in this study requires that CTCF degradation does not significantly impede cell
334 cycle progression. This was demonstrated by (1) flow cytometry measuring DNA content, cell size,
335 and GFP-MD levels, (2) the presence of highly comparable contact decay curves across all post-
336 mitotic time points, and (3) relatively stable post-mitotic gene expression patterns, including
337 widespread gene spiking. As observed previously, only prolonged depletion of CTCF (36h) was
338 found to delay cell cycle progression (Extended Data Fig. 1e), but this did not impact the present
339 study.

340

341 Our data suggest that CTCF influences chromatin structure at several levels during G1 entry. First,
342 CTCF based structural loops constrain short-range B-B compartmental interactions while
343 promoting local A-A compartmental interactions, revealing a previously underappreciated role for
344 CTCF in chromatin compartmentalization. We speculate that these observations are driven by
345 altered loop extrusion after CTCF loss. Removal of CTCF may allow cohesin to travel beyond

346 CTCF binding sites, thereby increasing loop sizes. Structural loops originating within A-type
347 compartment domains may thus extend into flanking B-type compartment domains and increase
348 their contact probability (Fig. 6a). The rising gains of B-B interactions during progression into G1
349 in the absence of CTCF are consistent with the gradual loading and advancement of cohesin after
350 mitosis. The spatial confinement in B-B interaction gains might be due to limitations of the loop
351 extrusion process. Our findings thus reveal that loop extrusion can elicit both positive and negative
352 effects on compartmentalization depending on the type and location of the compartment (Fig. 6a)
353^{12,28,35}. Second, the transient nature of many post-mitotic CRE contacts might be explained by the
354 disruptive nature of emerging nearby structural loops. Thus, considering the cell cycle dynamics
355 of structural as well as CRE loops during G1 progression allowed for the inference that CTCF's
356 ability to disrupt established CRE interactions, and hence function as an insulator, requires its
357 engagement in loops (Fig. 6b). Third, we uncovered a previously underappreciated role of the
358 genomic positioning of structural loop relative to CREs. Specifically, CRE contacts were most
359 sensitive to disruption when the structural loop anchor was close to the CRE (small s_i -min). While
360 the mechanism underlying this observation is unclear, it is possible that the distance sensitivity of
361 CRE contacts to the disruptive effects of extruding structural loops might be a function of the
362 cohesin complex reaching and being arrested at CTCF sites more frequently. Fourth, CTCF-
363 anchored loops may facilitate interactions between CREs by providing structural support. Weaker
364 CREs appear to be more reliant on such “supportive” structural loops.

365

366 Up-regulation of genes caused by CTCF loss was associated with enhanced interactions between
367 promoters and enhancers, and was observed at the earliest measurements (1h after mitosis),
368 suggesting a tight temporal relationship of promoter-enhancer proximity and transcription.

369 Additionally, we found that the down-regulated genes generally did not display measurable loss
370 in E-P contacts, but instead appear to depend on CTCF binding at their TSS. This implies that at
371 these genes CTCF might function as a transcriptional activator, independent of its role in chromatin
372 looping. This observation diverges from previous reports that CTCF depletion can diminish E-P
373 interactions and result in transcription loss^{15,36-38}. However, we cannot rule out that disruption of
374 shorter range E-P loops, undetectable in our Hi-C experiments, might account for down-regulation
375 gene transcription.

376

377 Prior studies reported a correlation between transcription activity and gene domains in
378 asynchronously growing cells^{21,22,39}. However, comparing the kinetics of transcription re-
379 activation and gene domain reformation, and inhibiting transcription pharmacologically revealed
380 that the process of transcription *per se* does not account for the entirety of post mitotic gene domain
381 formation (Fig. 6c). We speculate that additional mechanism (e.g. H3K36me3 histone
382 modification along gene body) may contribute to self-aggregation of genes and pre-configure
383 genes for subsequent activation.

384

385 In summary, by leveraging the auxin-inducible degron system and chemical transcription
386 inhibition in the context of cell cycle dynamics, we were able to deepen our insights into the
387 mechanisms by which CTCF and transcription reshape multiple facets of chromatin architecture
388 from a randomly organized state in mitosis to the fully established structures in interphase.

389

390

391

392 **Acknowledgements.**

393 We thank Andrew Katznelson and members of the Blobel lab for helpful discussions. We thank
394 Dr. Elphee Nora from UCSF and Dr. Leonid Mirny from MIT for constructive comments. We
395 thank the Flow cytometry core staff at the Children's Hospital of Philadelphia for expert technical
396 support on cell sorting. This work was supported by NIH grants DK058044 (G.A.B.) and
397 R24DK106766 (R.C.H and G.A.B.).

398

399 **Author Contributions.**

400 H.Z. and G.A.B conceived the study and designed experiments. H.Z. performed all experiments
401 with help from J.L., D.Z., A.K., M.V., C.K., B.G. and R.C.H. H.Z. performed all data analysis
402 with help from Y.L. H.Z. and G.A.B wrote the paper with contribution from all listed authors.

403

404 **REFERENCES**

- 405 1. Zhang, H. *et al.* Chromatin structure dynamics during the mitosis-to-G1 phase transition. *Nature* **576**, 158-162 (2019).
- 406 2. Abramo, K. *et al.* A chromosome folding intermediate at the condensin-to-cohesin
407 transition during telophase. *Nat Cell Biol* **21**, 1393-1402 (2019).
- 408 3. Gibcus, J.H. *et al.* A pathway for mitotic chromosome formation. *Science* **359**(2018).
- 409 4. Naumova, N. *et al.* Organization of the mitotic chromosome. *Science* **342**, 948-53 (2013).
- 410 5. Pelham-Webb, B. *et al.* H3K27ac bookmarking promotes rapid post-mitotic activation of
411 the pluripotent stem cell program without impacting 3D chromatin reorganization. *Mol
412 Cell* **81**, 1732-1748 e8 (2021).
- 413 6. Hsiung, C.C. *et al.* A hyperactive transcriptional state marks genome reactivation at the
414 mitosis-G1 transition. *Genes Dev* **30**, 1423-39 (2016).
- 415 7. Palozola, K.C. *et al.* Mitotic transcription and waves of gene reactivation during mitotic
416 exit. *Science* **358**, 119-122 (2017).
- 417 8. Dixon, J.R. *et al.* Topological domains in mammalian genomes identified by analysis of
418 chromatin interactions. *Nature* **485**, 376-80 (2012).
- 419 9. Fudenberg, G. *et al.* Formation of Chromosomal Domains by Loop Extrusion. *Cell Rep*
420 **15**, 2038-49 (2016).
- 421 10. Sanborn, A.L. *et al.* Chromatin extrusion explains key features of loop and domain
422 formation in wild-type and engineered genomes. *Proc Natl Acad Sci U S A* **112**, E6456-
423 65 (2015).

- 425 11. Nora, E.P. *et al.* Targeted Degradation of CTCF Decouples Local Insulation of
426 Chromosome Domains from Genomic Compartmentalization. *Cell* **169**, 930-944 e22
427 (2017).
- 428 12. Rao, S.S.P. *et al.* Cohesin Loss Eliminates All Loop Domains. *Cell* **171**, 305-320 e24
429 (2017).
- 430 13. Wutz, G. *et al.* Topologically associating domains and chromatin loops depend on
431 cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. *EMBO J* **36**, 3573-3599
432 (2017).
- 433 14. Stik, G. *et al.* CTCF is dispensable for immune cell transdifferentiation but facilitates an
434 acute inflammatory response. *Nat Genet* **52**, 655-661 (2020).
- 435 15. Hyle, J. *et al.* Acute depletion of CTCF directly affects MYC regulation through loss of
436 enhancer-promoter looping. *Nucleic Acids Res* **47**, 6699-6713 (2019).
- 437 16. Owens, N. *et al.* CTCF confers local nucleosome resiliency after DNA replication and
438 during mitosis. *Elife* **8**(2019).
- 439 17. Oomen, M.E., Hansen, A.S., Liu, Y., Darzacq, X. & Dekker, J. CTCF sites display cell
440 cycle-dependent dynamics in factor binding and nucleosome positioning. *Genome Res*
441 **29**, 236-249 (2019).
- 442 18. Ginno, P.A., Burger, L., Seebacher, J., Iesmantavicius, V. & Schubeler, D. Cell cycle-
443 resolved chromatin proteomics reveals the extent of mitotic preservation of the genomic
444 regulatory landscape. *Nat Commun* **9**, 4048 (2018).
- 445 19. Cai, Y. *et al.* Experimental and computational framework for a dynamic protein atlas of
446 human cell division. *Nature* **561**, 411-415 (2018).
- 447 20. Hug, C.B., Grimaldi, A.G., Kruse, K. & Vaquerizas, J.M. Chromatin Architecture
448 Emerges during Zygotic Genome Activation Independent of Transcription. *Cell* **169**, 216-
449 228 e19 (2017).
- 450 21. Rowley, M.J. *et al.* Evolutionarily Conserved Principles Predict 3D Chromatin
451 Organization. *Mol Cell* **67**, 837-852 e7 (2017).
- 452 22. Hsieh, T.S. *et al.* Resolving the 3D Landscape of Transcription-Linked Mammalian
453 Chromatin Folding. *Mol Cell* **78**, 539-553 e8 (2020).
- 454 23. Jiang, Y. *et al.* Genome-wide analyses of chromatin interactions after the loss of Pol I,
455 Pol II, and Pol III. *Genome Biol* **21**, 158 (2020).
- 456 24. Zhang, D. *et al.* Alteration of genome folding via contact domain boundary insertion. *Nat
457 Genet* (2020).
- 458 25. You, Q. *et al.* Direct DNA crosslinking with CAP-C uncovers transcription-dependent
459 chromatin organization at high resolution. *Nat Biotechnol* (2020).
- 460 26. Morawska, M. & Ulrich, H.D. An expanded tool kit for the auxin-inducible degron
461 system in budding yeast. *Yeast* **30**, 341-51 (2013).
- 462 27. Campbell, A.E., Hsiung, C.C. & Blobel, G.A. Comparative analysis of mitosis-specific
463 antibodies for bulk purification of mitotic populations by fluorescence-activated cell
464 sorting. *Biotechniques* **56**, 90-94 (2014).
- 465 28. Schwarzer, W. *et al.* Two independent modes of chromatin organization revealed by
466 cohesin removal. *Nature* **551**, 51-56 (2017).
- 467 29. Hansen, A.S., Pustova, I., Cattoglio, C., Tjian, R. & Darzacq, X. CTCF and cohesin
468 regulate chromatin loop stability with distinct dynamics. *Elife* **6**(2017).
- 469 30. Yu, W., He, B. & Tan, K. Identifying topologically associating domains and subdomains
470 by Gaussian Mixture model And Proportion test. *Nat Commun* **8**, 535 (2017).

- 471 31. Durand, N.C. *et al.* Juicer Provides a One-Click System for Analyzing Loop-Resolution
472 Hi-C Experiments. *Cell Syst* **3**, 95-8 (2016).
- 473 32. Fulco, C.P. *et al.* Activity-by-contact model of enhancer-promoter regulation from
474 thousands of CRISPR perturbations. *Nat Genet* **51**, 1664-1669 (2019).
- 475 33. Bensaude, O. Inhibiting eukaryotic transcription: Which compound to choose? How to
476 evaluate its activity? *Transcription* **2**, 103-108 (2011).
- 477 34. Chen, F., Gao, X. & Shilatifard, A. Stably paused genes revealed through inhibition of
478 transcription initiation by the TFIIH inhibitor triptolide. *Genes Dev* **29**, 39-47 (2015).
- 479 35. Rhodes, J.D.P. *et al.* Cohesin Disrupts Polycomb-Dependent Chromosome Interactions in
480 Embryonic Stem Cells. *Cell Rep* **30**, 820-835 e10 (2020).
- 481 36. Kubo, N. CTCF Promotes Long-range Enhancer-promoter Interactions and Lineage-
482 specific Gene Expression in Mammalian Cells. *bioRxiv* (2020).
- 483 37. Lee, J., Krivega, I., Dale, R.K. & Dean, A. The LDB1 Complex Co-opts CTCF for
484 Erythroid Lineage-Specific Long-Range Enhancer Interactions. *Cell Rep* **19**, 2490-2502
485 (2017).
- 486 38. Thiecke, M.J. *et al.* Cohesin-Dependent and -Independent Mechanisms Mediate
487 Chromosomal Contacts between Promoters and Enhancers. *Cell Rep* **32**, 107929 (2020).
- 488 39. Zhang, D. *et al.* Alteration of genome folding via contact domain boundary insertion. *Nat
489 Genet* **52**, 1076-1087 (2020).
- 490 40. Weiss, M.J., Yu, C. & Orkin, S.H. Erythroid-cell-specific properties of transcription
491 factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. *Mol Cell Biol*
492 **17**, 1642-51 (1997).
- 493 41. Servant, N. *et al.* HiC-Pro: an optimized and flexible pipeline for Hi-C data processing.
494 *Genome Biol* **16**, 259 (2015).
- 495 42. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic
496 features. *Bioinformatics* **26**, 841-2 (2010).
- 497 43. Crane, E. *et al.* Condensin-driven remodelling of X chromosome topology during dosage
498 compensation. *Nature* **523**, 240-4 (2015).
- 499 44. Behera, V. *et al.* Interrogating Histone Acetylation and BRD4 as Mitotic Bookmarks of
500 Transcription. *Cell Rep* **27**, 400-415 e5 (2019).
- 501 45. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
502 **9**, 357-9 (2012).
- 503 46. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**,
504 2078-9 (2009).
- 505 47. Zhang, Y. *et al.* Model-based analysis of ChIP-Seq (MACS). *Genome Biol* **9**, R137
506 (2008).
- 507 48. Dogan, N. *et al.* Occupancy by key transcription factors is a more accurate predictor of
508 enhancer activity than histone modifications or chromatin accessibility. *Epigenetics
509 Chromatin* **8**, 16 (2015).
- 510 49. Xiang, G. *et al.* An integrative view of the regulatory and transcriptional landscapes in
511 mouse hematopoiesis. *Genome Res* **30**, 472-484 (2020).
- 512 50. Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion
513 for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).
- 514 51. Flyamer, I.M., Illingworth, R.S. & Bickmore, W.A. Coolpup.py: versatile pile-up
515 analysis of Hi-C data. *Bioinformatics* **36**, 2980-2985 (2020).

- 516 52. Wu, W. *et al.* Dynamic shifts in occupancy by TAL1 are guided by GATA factors and
517 drive large-scale reprogramming of gene expression during hematopoiesis. *Genome Res*
518 **24**, 1945-62 (2014).
- 519 53. Luan, J. *et al.* Distinct properties and functions of CTCF revealed by a rapidly inducible
520 degron system. *Cell Rep* **34**, 108783 (2021).
- 521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542 **Materials and methods:**

543

544 **Cell culture and maintenance.** G1E-ER4 cells were cultured in suspension as previously
545 described and maintained at a density of not exceeding one million/ μ l⁴⁰. Construction of the G1E-
546 ER4 sub-line with AID-mCherry tagged CTCF has been described previously¹. We expressed
547 OsTiR-IRES-GFP (to isolate prometa, early-G1 and mid-G1 phase cells) or OsTiR-IRES-GFP-
548 MD (to isolate ana/telophase cells) in G1E-ER4 CTCF-AID-mCherry cells with the retro-viral
549 vector MigR1. OsTiR positive cells were enriched via FACS based on GFP signal.

550

551 To measure cell growth of G1E-ER4 CTCF-AID-mCherry cells with or without OsTiR-IRES-GFP,
552 10⁵ cells from each line were treated with or without 1mM auxin and cells were counted at 12h,
553 24h and 36h respectively.

554

555 **Validation of CTCF depletion upon auxin treatment.** G1E-ER4 CTCF-AID-mCherry cells
556 expressing OsTiR-IRES-GFP were treated with 1mM auxin for 0min, 30min, 60min, 120min or
557 240min. Cells were fixed with 1% formaldehyde and subject to flow cytometry for mCherry signal.
558 Wildtype G1E-ER4 cells were used as control.

559

560 **Cell synchronization and auxin treatment:**

561 For “+auxin” samples:

562 To enrich cells at prometaphase, early-G1 phase or mid-G1 phase, the G1E-ER4 CTCF-AID-
563 mCherry cells over expressing OsTiR-IRES-GFP were treated with nocodazole (200ng/ml) for 7-
564 8.5h at a density of around 0.7-1million/ml. To degrade CTCF during mitosis, auxin (1mM) was

565 added to the culture during the last 4 hours of nocodazole treatment so that CTCF was removed
566 by the end of prometaphase synchronization. To acquire post-mitotic populations, nocodazole
567 treated cells were pelleted at 1200rpm for 3min. Cells were then washed once and immediately re-
568 suspended in warm nocodazole-free medium containing 1mM auxin for 60min (early-G1) and
569 120min (mid-G1) respectively. To enrich for cells at ana/telophase, G1E-ER4 CTCF-AID-
570 mCherry cells over expressing OsTiR-IRES-GFP-MD were first synchronized as above described
571 and then released from nocodazole for 30min before harvest.

572

573 Control samples underwent the exact same treatment except that no auxin was added.

574

575 **Transcription inhibition**

576 For “+auxin” samples:

577 G1E-ER4 CTCF-AID-mCherry cells expressing OsTiR-IRES-GFP were arrested in prometaphase
578 with nocodazole (200ng/ml) as above. Auxin was added during the last 4h of nocodazole treatment.
579 Triptolide (1μM) was added to the cultures during the last hour of nocodazole exposure. Cells
580 were released into warm nocodazole free medium with 1μM triptolide and with or without 1mM
581 auxin for 2h.

582

583 **Cell sorting:**

584 Control and “+auxin” samples were acquired as described previously¹. Briefly, for *in-situ* Hi-C
585 experiments cells were pelleted at 1200rpm for 3min. Cells were then re-suspended in 1 x PBS
586 and crosslinked with 2% formaldehyde for 10min at RT. Crosslinking was quenched with 1M
587 (final concentration) glycine for 5min at RT. Cells were permeabilized by 0.1% Triton X-100 for

588 5min at RT and stained with antibody against the mitosis specific antigen pMPM2 (Millipore, 05-
589 368, 0.2µl/10million cells) for 50min at RT. Cells were then treated with APC-conjugated F(ab')2-
590 goat anti-mouse secondary antibody (Thermo Fisher Scientific, 17-4010-82, 2µl/10million cells)
591 for 30min at RT. Cells were pelleted and re-suspended in 1 x FACS sorting buffer (1 x PBS, 2%
592 FBS, 2mM EDTA and 0.02% NaN₃) containing 20ng/ml DAPI at a density of about 50-100 million
593 cells/ml. Prometaphase cells were purified via FACS on the basis of pMPM2 signal (+) and DAPI
594 signal (4N). To harvest populations after mitotic exit, cells were pelleted and crosslinked with 2%
595 formaldehyde at designated time points (ana/telophase, early-G1 and mid-G1 phase). Crosslinking
596 was halted with 1M (final concentration) glycine at RT, and cells were permeabilized with 0.1%
597 Triton X-100. Finally, cells were re-suspended in 1 x FACS sorting buffer and subjected to FACS
598 sorting. Ana/telophase cells were sorted based on GFP signal (reduced) and DAPI signal (4N).
599 Early-G1 and mid-G1 cells were sorted based on DAPI signal (2N). In addition, mCherry positive
600 and negative populations were gated to collect untreated control and auxin treated samples
601 respectively for all mitotic and post-mitotic time points. Sorted cells were snap-frozen and stored
602 at -80°C.

603
604 The exact same procedure was carried out for cells that had undergone triptolide treatment.
605
606 For PolII ChIP-seq: Cells with or without auxin treatment were harvested at 0min (prometa),
607 60min (early-G1), 120min (mid-G1) or 240min (late-G1) after nocodazole release. Cells were re-
608 suspended in 1 x PBS and crosslinked with 1% formaldehyde for 10min at RT. Crosslinking was
609 stopped with 1M glycine followed by permeabilization with Triton X-100. All samples (+/- auxin
610 at all cell cycle stages) were stained with anti-pMPM2 antibody (Millipore, 05-368,

611 0.2µl/10million cells) for 50min at RT, followed by APC-conjugated F(ab')2-goat anti-mouse
612 secondary antibody (Thermo Fisher Scientific, 17-4010-82, 2µl/10million cells) for 30min at RT.
613 Cells were re-suspended in 1 x FACS buffer containing DAPI and subjected to FACS sorting.
614 Prometaphase cells were purified via FACS based on pMPM2 signal (+) and DAPI signal (4N).
615 Early-, mid- and late-G1 cells were sorted based on DAPI signal (2N). mCherry positive and
616 negative populations were gated to collect untreated control and auxin treated samples for all
617 mitotic and post-mitotic time points. Sorted cells were snap-frozen and stored at -80°C. Note that
618 protease inhibitor and PMSF were added to all buffers during the entire sample preparation
619 procedure.

620

621 ***In-situ* Hi-C.** *In-situ* Hi-C experiments were performed as previously described ¹. Briefly, sorted
622 cells (5 million for prometaphase and ana/telophase and 10million for early- and mid-G1 phase)
623 were lysed in 1ml cold Cell Lysis Buffer (10mM Tris pH 8, 10mM NaCl, 0.2% NP-40/Igepal) for
624 10min on ice. Nuclei were pelleted at 4°C and washed with 1.2 x DpnII buffer. Nuclei were
625 permeabilized with 0.3% SDS for 1h at 37°C and quenched with 1.8% Triton X-100 for 1h at 37°C.
626 Chromatin was digested with 300U DpnII restriction enzyme (NEB, R0543M) *in-situ* at 37°C over
627 night with shaking. 300U DpnII restriction enzyme was added for an additional 4h at 37°C with
628 shaking. Nuclei were incubated at 65°C for 20min to inactivate DpnII. After cool down, digested
629 chromatin fragments were blunted with pCTP, pGTP, pTTP and Biotin-14-dATP (Thermal Fisher
630 Scientific, 19524016) using 40U DNA Polymerase I, Large (Klenow) fragment (NEB, M0210).
631 DNA was ligated *in-situ* with 4000U T4 DNA ligase (NEB, M0202M) for 4h at 16°C followed by
632 further incubation for 2h at RT. Nuclei were then incubated in 10% SDS containing proteinase K

633 (3115879 BMB) at 65°C overnight to reverse crosslinking. RNA was then digested with DNase-
634 free RNase at 37°C for 30min. DNA was then extracted by phenol-chloroform extraction,
635 precipitated, and dissolved in nuclease free water. DNA was sonicated to 200-300bp fragments
636 (Epishear, Active Motif, 100% amplitude, 30s ON and 30s OFF, 25-30min) and purified with
637 AMPure XP beads (Beckman Coulter). Biotin-labeled DNA was purified by incubation with 100µl
638 Dynabeads MyOne Streptavidin C1 beads (Thermal Fisher Scientific, 65002) at RT for 15min.
639 DNA libraries were constructed using the NEBNext DNA Library Prep Master Mix Set for
640 Illumina (NEB E6040, M0543L, E7335S). To elute DNA, streptavidin bead- bound DNA was
641 incubated in 0.1% SDS at 98°C for 10min. DNA was purified with AMPure XP beads and index
642 labeled with NEBNext multiplex oligos for 6 cycles on a thermal cycler, using the NEBNext Q5
643 Hot Start HIFI PCR master mix. Index labeled PCR products were then purified with AMPure XP
644 beads and sequenced on an Illumina NextSeq 500 sequencer.

645

646 **ChIP-seq.** Chromatin immunoprecipitation (ChIP) was performed using anti-RNA Polymerase II
647 antibody (Cell Signaling, 14958) as described previously ¹. Briefly, following sorting, cells were
648 re-suspended in 1ml pre-cooled Cell Lysis Buffer supplemented with protease inhibitors (PI) and
649 PMSF for 20min on ice. Nuclei were pelleted and re-suspended in 1ml Nuclear Lysis Buffer
650 (50mM Tris pH 8, 10mM EDTA, 1% SDS, fresh supplemented with PI and PMSF) for 10min on
651 ice. 0.6ml IP dilution buffer (20mM Tris pH 8, 2mM EDTA, 150mM NaCl, 1% Triton X-100,
652 0.01% SDS, fresh supplemented with PI and PMSF) was added followed by sonication (Epishear,
653 Active Motif, 100% amplitude, 30s ON and 30s OFF) for 45min. Samples were pelleted at
654 15000rpm for 10min at 4°C to remove cell debris. Supernatant was supplemented with 3.4ml IP
655 dilution buffer fresh supplemented with PI and PMSF, 50µg isotope-matched IgG and 50µl protein

656 A/G agarose beads (A:G = 1:1, ThermoFisher 15918014 and ThermoFisher 15920010) and rotated
657 at 4°C for 8h to preclear the chromatin. 200µl, chromatin was set aside as input chromatin.
658 Precleared chromatin was then incubated with 35µl A/G agarose beads (A:G = 1:1) pre-bound with
659 anti-RNA PolII antibody (5µg/IP) at 4°C for overnight. Beads were washed once with IP wash
660 buffer I (20mM Tris pH 8, 2mM EDTA, 50mMNaCl, 1% Triton X-100, 0.1% SDS), twice with
661 high salt buffer (20mMTris pH 8, 2mM EDTA, 500mMNaCl, 1% Triton X-100, 0.01% SDS),
662 once with IP wash buffer II (10mMTris pH 8, 1mM EDTA, 0.25 M LiCl, 1% NP-40/Igepal, 1%
663 sodium deoxycholate) and twice with TE buffer (10mM Tris pH 8, 1mM EDTA pH 8). All washing
664 steps were performed on ice. Beads were moved to RT and eluted in 200µl fresh made Elution
665 Buffer (100mM NaHCO3, 1%SDS). 12µl of 5M NaCl, 2µl RNaseA (10mg/ml) was added to IP
666 and input samples and incubated at 65°C for 2h, followed by addition of 3µl protease K (20mg/ml)
667 and incubated at 65°C overnight to reverse crosslinking. Finally, IP and input samples were
668 supplemented with 10ul of 3M sodium acetate (pH 5.2), and DNA was purified with QIAquick
669 PCR purification kit (QIAGEN 28106). ChIP-seq libraries were constructed using the Illumina's
670 TruSeq ChIP sample preparation kit (Illumina, catalog no. IP-202-1012). Libraries were size
671 selected using the SPRIselect beads (Beckman Coulter, catalog no. B23318) before PCR
672 amplification. Libraries were then quantified through real-time PCR with the KAPA Library Quant
673 Kit for Illumina (KAPA Biosystems catalog no. KK4835). Finally, libraries were pooled and
674 sequenced on a Illumina NextSeq 500 platform using Illumina sequencing reagents.

675

676 **Quantification and data analysis:**

677 **Hi-C data pre-processing.** For each biological replicate, paired end reads were aligned to the
678 mouse reference genome mm9 using bowtie2 (global parameters: --very-sensitive -L 30 --score-

679 min L,-0.6,-0.2 --end-to-end --reorder; local parameters: --very-sensitive -L 20 --score-min L,-0.6,-
680 0.2 --end-to-end --reorder) through the Hi-C Pro software ⁴¹. PCR duplicates were removed and
681 uniquely mapped reads were paired to generate a validPair file. The output validPair file was
682 converted into “.hic” file using the hicpro2juicebox utility. For merged samples, similar steps were
683 taken on reads merged from each biological replicate.

684

685 **A/B compartment calling and processing.** Compartments were called based on the “.hic” files
686 through eigenvector decomposition on the Pearson’s correlation matrix of the observed/expected
687 value of 100kb binned, Knight-Ruiz (KR) balanced *cis*-interaction maps (Eigenvector utility of
688 juicer_tools_1.13.02)³¹. Positive and negative EV1 values of each 100kb bin were assigned to A-
689 (active) and B- (inactive) compartments, respectively, based on gene density. Compartments were
690 called on both replicate-merged samples and individual biological replicates across all conditions.
691 Chromosome 3 was excluded from compartment analysis due to a chromosomal translocation.

692

693 **Saddle plotting and global compartment strength calculation.** To visualize compartment
694 strength, we generated saddle plots. Briefly, 100kb binned Knight-Ruiz (KR) balanced *cis*
695 observed/expected contact matrix was extracted from each “.hic” file through the DUMP utility of
696 juicer_tools (1.13.02)³¹. For untreated control samples, the contact matrices were transformed in
697 the same way such that each row and column of bins was reordered based on the eigenvector 1
698 (EV1) values associated with the mid-G1 sample, so that they fall into an ascending order from
699 top to bottom and from left to right. Similar transformation was applied onto auxin treated samples
700 across all cell cycle stages, based on their mid-G1 samples. Also, similar transformation was
701 performed on triptolide treated G1-phase samples either with or without auxin treatment. After the

702 transformation, bins at the top-left corner are associated with B-B compartment interactions. Bins
703 at the bottom-right corner are associated with A-A compartment interactions. Bins at the top-right
704 and bottom-left corners are associated with B-A and A-B compartment interactions respectively.
705 The transformed contact maps from each chromosome were divided into 50 equal sections and
706 averaged to create the genome wide saddle plots. The compartment strength of each individual
707 chromosome was computed as following: compartment strength = (median (top20% AA) + median
708 (top20% BB)) / (median (top20% AB) + median (top20% BA)). The compartment strength from
709 each individual chromosome was averaged and log2 transformed as genome wide compartment
710 strength. The compartment strength of individual replicates and merged samples were computed
711 independently.

712

713 **Compartmentalization expansion curve $R(s)$.** The analysis of the progressive
714 compartmentalization spreading across cell cycle stages has been described previously¹. $R(s)$ curve
715 was established to indicate the distance-dependent level of compartmentalization. To compute the
716 $R(s)$ curve, 100kb binned KR balanced *cis* observed/expected matrix was extracted from “.hic”
717 files. For each interaction bin-bin pair separated by a given genomic distance (s), we computed the
718 product of two EV1 values corresponding to the two bins. We then calculated the Spearman
719 correlation coefficient R between EV1 products and the observed/expected values of all bin-bin
720 pairs that are separated by s . $R(s)$ was then set to demarcate the level of compartmentalization for
721 genomic distance s . To generate the $R(s)$ curve across different genomic distances, we computed
722 R when s equals 100kb, 200kb, 300kb.....125Mb. $R(s)$ curve of each chromosome were then
723 averaged to generate the genome wide $R(s)$ curve. $R(s)$ curve of individual biological replicates
724 and merged samples for both untreated control and auxin treated samples were computed

725 independently across all cell cycle stages. For interactions close to the diagonal of contact maps,
726 well-compartmentalized regions, i.e. interactions between bins from the same type of
727 compartments (A-A or B-B) tend to display high observed/expected values and positive (>0) EV1
728 products, whereas interactions between bins from different types of compartments (A-B or B-A)
729 tend to exhibit low observed/expected values and negative (<0) EV1 product. Thus, R tends to be
730 high in well-compartmentalized regions. At weakly-compartmentalized regions, interactions
731 between bins tend to be low also when distant from the diagonal regardless of whether the two
732 bins are from the same type of compartment or not. Thus, R tends to be low in weakly-
733 compartmentalized regions.

734

735 **Interactions between local B-B or A-A compartments.** To quantify the interactions between
736 closely positioned compartments, we adopted a high resolution (50kb binned) A/B compartment
737 profile from the mid-G1 untreated control sample as reference. To measure interactions between
738 local B-B compartments (tier1, with one A-type compartment in between), we extracted genomic
739 coordinates of all A-type compartments from the reference A/B compartment file. For each A-type
740 compartment, we computed the average observed/expected values between the 250kb region up-
741 stream of the start site and the 250kb region down-stream of the end sites across all cell cycle
742 stages in both untreated control and auxin treated samples as well as G1-phase samples treated
743 with triptolide. The resulting observed/expected values were denoted as interaction strengths
744 between each closely spaced B-B compartment pair. We also computed more distally separated
745 tier2 (with two A-type compartment in between) B-B interactions. For each given tier2 B-B
746 compartment pair, we computed the average observed/expected values between the 250kb region
747 up-stream of the start site of the first A-type compartment and the 250kb region down-stream of

748 the end site of the second A-type compartment. A similar approach was taken to calculate tier3
749 (with three A-type compartment in between) and tier 4 (with four A-type compartment in between)
750 B-B interaction. Interactions between tier1 to 4 A-A compartment pairs were calculated using the
751 same approach.

752

753 For distance matched random controls, we randomly selected 500 A- or B-type compartments and
754 shuffled their genomic coordinates for each entry using the “shuffle” function of bedtools⁴².
755 Randomly shuffled bed files were used as input to compute the interaction strengths between
756 250kb up-stream and down-stream flanking regions for each entry.

757

758 **Loop calling and post-processing.** Chromatin loops were called using a previously described
759 HICCUPS method with modifications³¹. The following steps were taken to generate unique non-
760 redundant lists of loops in untreated controls and auxin treated samples across all cell cycle stages.
761 (1) We used HICCUPS to call preliminary loops on the untreated control samples at each cell cycle
762 stage using 10kb binned matrices with the Juicer_tool_1.13.02. The inner and outer diameters of
763 the donut filter was set to be 4bins and 16bins respectively and an FDR of 0.2 was adopted. (2)
764 We repeated the above step on 10kb binned auxin treated samples across all cell cycle stages with
765 the exact same parameter set. (3) Loop calls from (1) and (2) were merged to generate a non-
766 redundant loop list across all cell cycle stages and auxin treatment condition for 10kb matrices. (4)
767 False positive calls introduced by exceptionally high outlier pixels were usually present in all
768 samples irrespective of cell cycle stage and auxin treatment condition. To eliminate these artifacts,
769 we removed pixels that were called in more than 6 of the 8 total samples. (5) In certain scenarios,
770 pixels identified at different cell cycle stages or different auxin treatment conditions tended to

771 cluster together. These clusters of pixels could actually be considered as one loop instead of many.
772 Therefore, we implemented a method to merge these clustered pixels. To begin with, for a given
773 loop in the non-redundant list from step (4), we recorded a value q_{\min} which represents the lowest
774 q value across all cell cycle stages in both untreated controls and auxin treated samples. We then
775 ordered the loops in ascending order based on their q_{\min} . In this way, pixels at the top of the list
776 were the most confident calls. We then focused on the top pixel and scanned through the rest of
777 the list to identify pixels that were within a 20kb radius of the top pixel. If no additional pixel were
778 found nearby, we then considered the top pixel as a loop by itself without pixel clustering. If pixels
779 existed that fulfilled the above requirement, we then consider these pixels together with the top
780 pixel as a loop cluster. Pixels within the loop cluster were removed from the non-redundant loop
781 list. We then recalculated the centroid of the loop cluster and computed the distance s between the
782 centroid and the far cluster edge. We then started a second round of pixel merging by scanning the
783 rest of the list to identify pixels that are within a radius of $20\text{kb} + s$ from the centroid. Pixels within
784 the loop cluster after the second collapsing step were removed from the non-redundant loop list.
785 Next, we focused on the top pixel of the remaining list and repeated the above clustering steps,
786 until no further pixels remained in the pixel list. After pixel merging, we generated a list of loop
787 clusters which contained 1 or more pixels. For each loop cluster, we defined a cluster summit
788 which was represented by the pixel with lowest q_{\min} . If a loop cluster only contained pixels called
789 in the untreated controls but not in the auxin treated samples, we defined it as a “lost” loop.
790 Conversely, if a loop cluster did not contain pixels from the control samples, it was defined as
791 “gained” loop. The remaining loop clusters were categorized into “retained”, indicating that these
792 loops were detected in both “-auxin” and “+auxin” samples. (6) We next performed step (1)
793 through (5) on 25kb binned matrices with an inner donut filter diameter of 1 bin and outer donut

794 filter diameter of 6 bins. FDR of 0.01 was adopted. (7) Loops called on 25kb binned matrices were
795 then merged with those called on 10kb matrices. If a 25kb loop cluster overlaps with a 10kb loop
796 cluster, the 25kb loop was dropped.

797

798 We noticed that some visually solid loop-like pixels were dropped by the HICCUPS due to lack
799 of surrounding significant pixels. To recover these potentially false negative calls, we took
800 advantage of our biological replicates. Specifically, we continued to complement our non-
801 redundant loop calling list with the following steps. (8) For untreated control samples, we extracted
802 all raw significant pixels from HICCUPS before clustering across cell cycle stages and combined
803 them. (9) We then computed the donut FDR of the above pixels in all biological replicates across
804 cell cycle stages in the untreated control samples through juicer_tools_1.13.02. (10) To determine
805 if a pixel represented a loop, we implemented the below filters: <1>, For ana/telophase or early-
806 G1 phase, we required that a pixel must display an FDR < 0.2 in both replicate-merged and
807 individual biological replicates. <2>, For ana/telophase or early-G1 phase, a pixel was required to
808 show an observed/donut-expected value of over 1.5 in replicate-merged and individual biological
809 replicates. <3>, For ana/telophase or early-G1 phase, a pixel had to exhibit an observed value
810 of >10 in replicate-merged and individual biological replicates. <4> For mid-G1 phase, the above
811 three criteria had to be satisfied in at least 3 of the following 4: replicate-merged, biological
812 replicate 1, 2 and 3. A pixel had to fulfill all the above filters to be viewed as valid in a given cell
813 cycle stage, and it had to be valid in at least one post-mitotic cell cycle stage to be considered a
814 valid loop for the untreated controls. (11) We then repeated step (8) through (10) to get a list of
815 valid pixels in auxin treated samples. (12) We combined the valid pixels from untreated controls
816 and auxin treated samples and filter out pixels with highest 5% observed/donut-expected values in

817 prometaphase in untreated control samples as well as pixels with a distance of over 2Mb. (13) We
818 further removed pixels that were overlapping or next to the loops identified in step (9). In this
819 manner we obtained valid loops that had been previously missed by HICCUPS. (14) Finally, we
820 performed step (5) on the remaining pixels at (13) to merge valid pixels that were clustered together.
821 In total, we ended up with 16370 non-redundant loops across all samples.

822

823 **Loop categorization based on CTCF/cohesin/CRE.** We categorized loops into different classes
824 based on whether ChIP-seq peaks of CTCF and cohesin and annotations of promoters or enhancers
825 were present at their anchors. For a peak to intersect with a loop anchor, it had to have at least 1bp
826 overlap with a 30kb region centered on the midpoint of the loop anchor summit. We employed the
827 CTCF/cohesin co-occupied peak list and the peaks of H3K27ac (CRE) from our previous study¹.
828 Our analysis focused on the following possibilities: (1) Two loop anchors harbor CTCF/cohesin
829 co-occupied sites with neither harboring CREs. (2) Both loop anchors harbor CTCF/cohesin co-
830 occupied sites with one anchor also harboring a CRE. (3) Both loop anchors each harbor a
831 CTCF/cohesin co-occupied site and a CRE. (4) None of the loop anchors harbor CTCF/cohesin
832 co-occupied sites but both contain CREs. (5) One loop anchor a harbors CTCF/cohesin co-
833 occupied site and two anchors harbor CREs. Group (1) and (2) loops were defined as “structural
834 loops”, loops from group (3) as “dual-function loops”, and loops from group (4) and (5) as “CRE
835 loops”.

836

837 **K-means clustering of loops.** To measure the change of post-mitotic loop formation as well as the
838 impact of CTCF depletion on loop formation, we defined a metric to measure the strength of each
839 loop. For a given loop, we considered its summit pixel as well as 8 surrounding pixels and

840 computed their observed/donut-expected values across cell cycle stages in both untreated controls
841 and auxin treated samples. For a specific cell cycle stage and auxin treatment condition, the loop
842 strength was recorded as the average of the observed/donut-expected values from the 9 pixels. To
843 dissect the wildtype CRE loop reformation patterns after mitosis, we focused on the 3232 CRE
844 loops that were detected in untreated control samples. We then computed the *z*-scores of loop
845 strength across all cell cycle stages in untreated control samples and performed *k*-means clustering
846 using the 3 post-mitotic time points. We were able to recover 4 loop clusters with distinct
847 reformation kinetics. To assess the effect of CTCF depletion on cluster1 transient CRE loops, we
848 attempted to further sub-categorize them using the loop strength from both untreated controls and
849 auxin treated samples. We computed the *z*-scores of loop strength across all cell cycle stages in
850 both untreated as well as auxin treated samples. We then performed *k*-means clustering using the
851 3 post-mitotic time points from both untreated controls and auxin treated samples.

852

853 **Measuring the interplay between structural and CRE loops.** To quantify the degree by which
854 CRE loops are disrupted or supported by structural loops, we performed the following enrichment
855 analysis. We first focused on structural loop interpolation. For a given cluster of CRE loops (e.g.
856 cluster1-R), we defined two scenarios based on whether or not they are interpolated by structural
857 loops. The two scenarios were: (1) neither of the two CRE anchors were covered by a structural
858 loop (not interpolated) and (2) either one or both of the CRE anchors were covered by structural
859 loops (interpolated). For each scenario, we constructed a 2×2 contingency table based on in which
860 scenario a given cluster of CRE loops fell, and whether or not the rest of the CRE loops fell into
861 that scenario. Odds ratios and *P*-values were computed with the Fisher's exact test in R. Lastly,
862 we defined for each cluster of CRE loops whether or not they were supported by structural loops.

863 A similar approach was taken to calculate the odds ratio and *P*-values for each CRE loop cluster
864 at each scenario.

865
866 **Domain calling.** Domains were independently identified in untreated controls and auxin treated
867 samples across all cell cycle stages, using the rGMAP algorithm
868 (<https://github.com/tanlabcode/rGMAP>)³⁰. To call domains in untreated control samples, we
869 extracted 10kb binned KR balanced *cis* contact matrices from replicate-merged “.hic” files of each
870 cell cycle stage, using the DUMP utility of juicer_tool (1.13.02)³¹. The contact matrices were used
871 as input to feed in rGMAP for domain calling. For each cell cycle stage, we started by performing
872 the following domain sweep: (1) Maximally 3 levels of domains were allowed (dom_order=3). (2)
873 Maximal contact distances of 2Mb were allowed (maxDistInBin=200). This step generated a basic
874 list of domains. To capture sub-domain like structures, we performed an additional domain sweep,
875 which allowed a maximal contact distance of 500kb (maxDistInBin=50). Additional sub-domains
876 were then added to the basal list to create a preliminary list of domains for each cell cycle stage.
877 A similar approach was carried out to generate the preliminary domain list in the auxin treated
878 samples. As a reference, we also performed rGMAP to call domains in late-G1 phase parental cell
879 samples, using the same criteria as above.

880
881 **Domain & boundary detection across cell cycle stages.** For untreated control samples, domains
882 called at each cell cycle stage were merged to create a total domain list. Domains from the late-G1
883 wildtype samples were added into the above list to serve as a reference. To ensure the validity of
884 our domain calls, we established the following filters: (1) Domains called at prometaphase had to
885 overlap with at least three domains identified in the subsequent four cell cycle stages (ana/telo,

886 early-G1, mid-G1 and late-G1 from wildtype sample) to be considered valid. (2) Domains called
887 at ana/telo, early-G1 or mid-G1 had to overlap with at least one domain identified in subsequent
888 cell cycle stages to be considered valid. To claim that a domain detected in prometaphase is also
889 present at a later cell cycle stage, we require that at least one domain exists in the later time point,
890 whose upstream and downstream boundaries are within -/+ 8 bins of those of the original domain.
891 We performed this step across all subsequent cell cycle stages to identify all potentially
892 “overlapping” domains. If at least three subsequently identified domains overlap with our query
893 domain, we then separately average the up- and down-stream boundaries of all “overlapping”
894 domains to replace the boundaries of the original prometaphase domain. A similar approach was
895 carried out in ana/telo, early-G1 and mid-G1 phase. These steps produced a list of high confidence
896 domains that were detected across different cell cycle stages in the untreated control samples.

897
898 Next, we implemented a merging step to adjust boundary locations so that domains across cell
899 cycle stages with highly similar boundaries would share a single consistent boundary (It's
900 noteworthy that possibilities still remain that two highly similar boundaries represent true
901 biological differences instead of technical differences.). As a start, we generated an overall non-
902 redundant boundary list from all domains. Boundaries were then sorted based on their genomic
903 coordinates from 5' to 3'. Starting from the first boundary, we swept throughout the rest of the
904 boundaries on the same chromosome and removed boundaries that are less than 80kb away from
905 the first boundary. We then, merged these boundaries into one and applied the mean of their
906 genomic coordinates as the genomic coordinate of the final merged boundary. These boundaries
907 were then removed from the overall boundary list. We then performed this step iteratively on the
908 remaining boundaries until all boundaries were processed. The final averaged boundary

909 coordinates were then reassigned to corresponding domains. For a boundary shared by multiple
910 domains, the time point of emergence of this boundary is determined by the earliest associated
911 domain.

912

913 The same approach was carried out to process domains and boundaries identified in the auxin
914 treated samples across all cell cycle stages.

915

916 **Insulation score profiling.** Insulation scores were computed as previously described⁴³. Briefly,
917 we implemented a 12bin x 12bin window, which slides along the diagonals of the 10kb binned KR
918 balanced contact matrices. The sliding window was set to be one bin away from the diagonal.
919 Genomic regions with low read counts (<12 counts) were discarded from the analysis. Windows
920 interrupted by the starts or ends of chromosomes were also discarded. For each 10kb bin, the sum
921 of read counts of each window was then normalized to the chromosomal average and \log_2
922 transformed. A pseudo read count was added to the chromosomal mean as well as each window
923 before log transformation.

924

925 We noticed that in a few cases domain boundaries were shifted by several bins from the local
926 minima of insulation, and thus did not accurately reflect the “real” boundary position. To solve
927 this issue, we fine-tuned boundary positions such that boundaries were adjusted to the local minima
928 of insulation. This adjustment was performed on untreated control samples. For each given
929 boundary, we defined a wiggle room by sectioning a -6bin to +6bin genomic region that centered
930 around the boundary. We then recorded the mid-G1 phase insulation scores of each bin within the
931 wiggle room. The bin with lowest insulation score for mid-G1 phase was defined as the final

932 position of the boundary, representing local minima of insulation scores. The adjusted boundary
933 locations were then re-assigned to their corresponding domains. After boundary adjustment,
934 domains smaller than 100kb were filtered out to eliminate spurious domains. In some outlier cases,
935 boundaries after adjustment ended up being extremely close to each other (within 20kb). We
936 therefore implemented a final step to merge boundaries using the same approach as described
937 above.

938

939 **Integration of domains and boundaries from untreated control and auxin treated samples.**
940 After boundary position adjustment, we obtained an intermediate list of domains and boundaries
941 that were detected at each cell cycle stage for the untreated control samples. We then added
942 domains and boundaries from “+auxin” samples to this list to create a final complete domain list
943 before quality check. We carried out the following merging steps: For a given domain in the auxin
944 treated samples, if both of its boundaries were less than 80kb away from the up- and downstream
945 boundaries of a “-auxin” domain, we then considered these two domains as “overlapping” and
946 recorded the boundary coordinates of the “-auxin” domain in the final list. If the upstream (but
947 NOT downstream) boundary of the “+auxin” domain was less than 80kb away from any
948 boundaries in the “-auxin” list, we then considered this “+auxin” domain a new domain and
949 recorded the “-auxin” boundary coordinate as the upstream boundary for this “+auxin” domain.
950 Similarly, if the downstream (but NOT upstream) boundary of the “+auxin” domain was less than
951 80kb away from any boundaries in the “-auxin” list, we considered this “+auxin” domain as a new
952 domain and recorded the “-auxin” boundary coordinate as the downstream boundary for this
953 “+auxin” domain. Finally, if both upstream and downstream boundaries of the “+auxin” domain

954 were more than 80kb away from boundaries in the “-auxin” list, we considered this “+auxin”
955 domain as a new domain and recorded its own boundary coordinates in the final list of domains.

956

957 **Domain quality check and aggregated domain analysis (ADA).** We noticed that in some rare
958 cases, domains spanning large low-mappable regions were also called by the algorithm. To filter
959 out low confidence domains, we implemented an aggregated domain analysis which measures the
960 ratio between interactions just inside the domain and interactions just outside the domain. We
961 computed ADA scores on the 10kb binned KR balanced observed/expected contact matrices as
962 previously reported with modifications^{1,12}. For each domain, the start and end coordinates were
963 recorded as $i \times 10000$ and $j \times 10000$ respectively. Therefore, we could use (i, j) to mark the position
964 of the corner pixel. We then marked our 4 horizontal stripes and 4 vertical stripes that were just
965 inside the domains. The positions of the horizontal inner stripes are: $[i+1, j-8:j-4]$, $[i+2, j-7:j-3]$,
966 $[i+3, j-6:j-2]$ and $[i+4, j-5:j-1]$ respectively. The positions of vertical inner stripes are: $[i+1:i+5, j-4]$,
967 $[i+2:i+6, j-3]$, $[i+3:i+7, j-2]$ and $[i+4:i+8, j-1]$ respectively. We then also marked out additional
968 4 horizontal and 4 vertical stripes that were outside of the domain. The positions of horizontal
969 outer stripes were $[i-8, j-17:j-13]$, $[i-7, j-16:j-12]$, $[i-6, j-15:j-11]$ and $[i-5, j-14:j-13]$, respectively.
970 The positions of vertical outer stripes were $[i+10:i+14, j+5]$, $[i+11:i+15, j+6]$, $[i+12:i+16, j+7]$ and
971 $[i+13:i+17, j+8]$, respectively. The inner stripes and outer stripes had the same genomic separations.
972 We computed the sum of observed/expected values for pixels within inner stripes and then divided
973 this value by the sum of observed/expected values for pixels within outer stripes. The final result
974 was \log_2 transformed and recorded as the ADA score of the domain. Note that domains smaller
975 than 150kb was filtered to minimize the possibility of outer stripes stretching into another domain.

976

977 To eliminate domains covering low-mappable regions, we placed the following filters: (1) For a
978 given domain, we examined all pixels in the inner and outer stripe regions. If any pixel displayed
979 an observed/expected value of over 30, we dropped this domain from further analysis. This step
980 was to filter out high outlier pixels that are usually associated with low-mappable regions. (2) For
981 a given domain, if either or both of the two outer stripe regions contained less than 5 non-zero
982 pixels, the domain was dropped from further analysis. (3) For a given domain, if either or both of
983 the two inner stripe regions contain less than 10 non-zero pixels, the domain was dropped from
984 further analysis. To further ensure the validity of our domain calls, we also implemented a dynamic
985 filter. This filter was established based on the rationale that true domains would gradually become
986 stronger after mitotic exit and thus their ADA scores would be higher in post-mitotic time points
987 compared to prometaphase. Specifically, we require that for a domain to be valid, at least 1 of the
988 6 post-mitotic samples (“ana/telo -auxin”, “ana/telo +auxin”, “early-G1 -auxin”, “early-G1
989 +auxin”, “mid-G1 -auxin”, “mid-G1 +auxin”) had to show at least a 1.25-fold ADA score
990 enrichment compared to both prometaphase samples (“prometa -auxin”, “prometa +auxin”).

991

992 **Dynamic clustering of boundaries.** We quantified boundary strength as follows: We selected a -
993 120kb to +120kb region centered on a boundary of interest and searched for the highest insulation
994 score within this 240kb region. This maxi-IS value was then unlogged and subtracted by the
995 insulation score (unlogged) at the boundary itself. The resulting Δ IS was then denoted as the
996 strength of the target boundary.

997

998 To examine the reformation dynamics of boundaries and measure the effect of CTCF depletion on
999 the dynamic boundary formation after mitosis, we performed k -means clustering on the Δ IS of all

1000 boundaries across all 8 samples (4 cell cycle stages in both untreated control and auxin treated
1001 samples). Specifically, for each boundary, we computed the z -scores of their Δ IS across all 8
1002 samples. We then performed k-means clustering on the z -scores of 6 post-mitotic samples (ana/telo,
1003 early-G1 and mid-G1 \times 2 treatment conditions). We found that when we chose $k=5$ clusters, we
1004 were able to recover the most biologically interpretable clusters. Note, cluster5 was mostly
1005 spurious boundaries and thus were excluded from the analysis.

1006

1007 **PCA based interrogation of chromatin state transition at boundaries.** To assess histone
1008 modification features associated with different clusters of boundaries, we adopted a PCA based
1009 approach as previously described ⁴⁴. For each target boundary, we selected a -50kb to +50kb
1010 genomic region and sectioned it into 10bins (10kb/bin). To assess chromatin state transition, we
1011 adopted the two histone marks H3K36me3 and H3K27me3, the former and latter representing
1012 transcriptionally active and inactive chromatin, respectively. We then calculated the mean G1E-
1013 ER4 ChIP-seq signals of these two marks (from asynchronously growing cells) in each 10kb bin,
1014 using the UCSC toolkit (BigWigAverageOverBed). The ChIP-seq intensities of these marks were
1015 organized into two matrices such that each row represents the 100kb region around a boundary,
1016 and each of the 10 columns represents a 10kb bin. The columns were ordered based on their
1017 genomic positions from upstream to downstream. Each column was then normalized to the column
1018 sum such that the ChIP-seq intensity values from each column add up to 1. After normalization,
1019 the two matrices of H3k27me3 and H3K36me3 were stitched horizontally yielding a final matrix
1020 with 20 columns. We then applied principal component analysis (PCA) on the final matrix using
1021 the R package (“prcomp”). We noticed that PC1 was able to accurately describe the transition of
1022 chromatin states in a way that boundaries with either highest or lowest PC1 projection values were

1023 typically at chromatin transition points (5' active → 3' inactive or 5' inactive → 3' active), whereas

1024 boundaries with median level PC1 projection values were not.

1025

1026 **PolII ChIP-seq processing and peak calling.** Reads were aligned against the mm9 reference
1027 genome using Bowtie2 (v2.2.9) with default parameters and soft clipping allowed ("--local")⁴⁵.

1028 Alignments with MAPQ score lower than 10 and PCR duplicates were removed using SAMtools
1029 (v0.1.19)⁴⁶. Reads aligned to mitochondria, random contigs and ENCODE blacklisted regions
1030 were also removed for downstream analysis using BEDtools (v2.27.1)⁴². Peaks were called using

1031 MACS2 (v2.1.0) with default parameters and a 0.01 q-value cutoff. Fragment pileup and local
1032 lambda track files in bedGraph format were created during MACS2 peak calling and normalized
1033 to one million reads per library ("callpeak --bgd --SPMR")⁴⁷. The latter was track was subtracted
1034 from the former using MACS2 ("bdgcmp -m subtract"), negative values were reassigned as zeros,
1035 and converted to bigwig format for visualization using the UCSC Toolkit ("bedGraphToBigWig").

1036 Finally, a non-overlapping union set of peaks was created by merging peaks in all replicates using
1037 BEDtools such that all peaks that overlap by at least 1bp were merged.

1038

1039 **Identification of active genes.** Active genes were called based on the overall PolII ChIP-seq peak
1040 list with the following filters: (1) The TSS of a gene had to overlap with at least 1 positive PolII
1041 ChIP-seq peak. (2) The length of a gene had to be over 1kb to ensure that enough reads were
1042 obtained over the gene body (+500bp from TSS to TES) and discernible from the reads at the TSS.
1043 (3) We further filtered out the genes with the lowest (10%) H3K27ac signal or ATAC signal at the
1044 promoter regions (-250bp to 250bp of TSS, data from asynchronous G1E-ER4 cells)^{48,49}. A PolII
1045 ChIP-seq peak at the TSS does not necessarily mean that the corresponding gene is active. In

1046 certain cases, inactive genes positioned closely downstream of the 3' UTR of active genes could
1047 also display positive PolII signals at their TSS, potentially leading to false assignment as active
1048 gene. Therefore, we filtered out genes with low H3K27ac or ATAC signal to ensure that the genes
1049 were within “open” chromatin and more likely to be active. (4) The PolII ChIP-seq signal (+500bp
1050 from TSS to TES) of at least 1 of the six post-mitotic samples (“early-G1 -auxin”, “early-G1
1051 +auxin”, “mid-G1 -auxin”, “mid-G1 +auxin”, “late-G1 -auxin”, “late-G1 +auxin”) had to be \geq
1052 1.5 fold that of the two prometaphase (“-auxin” and “+auxin”) samples.

1053

1054 **PCA based interrogation of post-mitotic gene activation pattern.** PCA was performed
1055 separately on PolII ChIP-seq signals from control and auxin treated samples. For untreated samples,
1056 we computed the replicate-merged PolII ChIP-seq signals (+500bp from TSS to TES) of each
1057 active gene across all cell cycle stages, using the UCSC toolkit (BigWigAverageOverBed). The
1058 PolII signals from each cell cycle stage were then normalized such that they sum up to 1. PCA was
1059 performed on the last 3 cell cycle stages using the R package (prcomp). As described above, the
1060 PC1 values of each gene describe the “spikiness” of their post-mitotic reactivation pattern. We set
1061 the direction of PC1 projection values such that genes with high (positive) PC1 values were the
1062 most “spiky” after mitosis, whereas genes with low (negative) PC1 values displayed a gradual
1063 increase of PolII ChIP-seq signal after mitosis. The same procedure was performed on auxin
1064 treated samples. The PC1 values of each gene from control and auxin treated samples were highly
1065 correlated, suggesting that the post-mitotic transcriptional spiking was maintained after CTCF
1066 depletion.

1067

1068 **Differential gene expression analysis.** Gene expression levels were assessed by the number of
1069 PolII ChIP-seq read counts over the gene body (+500 from TSS to TES). To measure differential
1070 gene expression after CTCF depletion during mitotic exit, we first extracted raw PolII read counts
1071 over gene bodies from the bam files of each individual biological replicate using the “multicov”
1072 function of bedtools. This step was performed on the 3 post-mitotic cell cycle stages in both “-
1073 auxin” and “+auxin” samples. DESeq2 was adopted to perform differential expression analysis
1074 between “-auxin” and “+auxin” samples for each post-mitotic cell cycle stage independently. Raw
1075 read PolII ChIP-seq read counts were used as input for DESeq2 with default parameters⁵⁰. *P.adj*
1076 cutoff of 0.05 and fold change cutoff of 1.25 were adopted to call differentially expressed genes
1077 for each post-mitotic cell cycle stage. A gene was considered differentially expressed if it was
1078 significantly different in at least one post-mitotic time point. In total, we identified 426
1079 differentially expressed genes during mitotic exit after CTCF depletion. To determine whether
1080 these genes were up- or down-regulated over time, we performed *k*-means clustering using the
1081 log₂FC output of DESeq2 across early-, mid- and late-G1 phase. Finally, we identified 223 genes
1082 which were down-regulated after CTCF depletion, and 203 genes which were up-regulated after
1083 CTCF depletion during the mitosis to G1-phase transition.

1084
1085 **ABC model to predict functional enhancers of active genes.** To predict enhancers of active
1086 genes and establish E-P and P-P connections, we adopted a recently proposed ABC model
1087 (<https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction>)³². To simulate enhancer
1088 activity, we used H3K27ac ChIP-seq and ATAC-seq signals from asynchronously growing G1E-
1089 ER4 cells. These datasets were used in combination with 6 replicate-merged Hi-C datasets in this
1090 study (ana/telophase “-auxin”, ana/telophase “+auxin”, early-G1 “-auxin”, early-G1 “+auxin” ,

1091 mid-G1 “-auxin”, mid-G1 “+auxin”) to predict enhancers in each of the 3 post-mitotic cell cycle
1092 stage with or without auxin treatment independently. We called E-P and P-P connections in each
1093 sample when the ABC score threshold equals to 0.01, 0.02, 0.03, 0.04 and 0.05 respectively.
1094 Higher the ABC score thresholds resulted in fewer but higher confidence connections. Note that
1095 we identified on average ~1.86 (fewer than the recommended 3) enhancers per gene when the ABC
1096 score threshold was set to 0.04, suggesting that 0.04 is a relatively stringent threshold. For a given
1097 ABC threshold (e.g. 0.01), we combined the predicted connections in each sample to generate an
1098 overall non-redundant list of high confidence E-P and P-P pairs. Each E-P or P-P pair was then
1099 assigned to genes with different responses (up-reg, down-reg and non-reg) to CTCF depletion.

1100

1101 **Differential interaction analysis between E-P contacts.** Differential interaction analysis was
1102 carried out on E-P contacts called by ABC modeling with ABC score threshold set to 0.04. We
1103 adapted the E-P interaction strength values from ABC modeling and used as the input for LIMMA
1104 R package. Since the trend of CRE contact changing was overwhelmingly consistent between early
1105 and mid-G1 phase samples, we treated the samples from these two time points as equal biological
1106 replicates. Thus, we had 5 biological replicates (2 from early-G1 and 3 from mid-G1) for control
1107 and auxin treated samples. LIMMA was used to determine differentially interacting E-P contacts.
1108 *P* values were calculated with the eBayes function within LIMMA and adjusted with the
1109 Benjamini–Hochberg method. An FDR of 0.1 was used to call significantly strengthened or
1110 reduced E-P contacts.

1111

1112 **Aggregated plots for loops, domains and compartments.** Aggregated plots were generated
1113 using the python package “Coolpup”⁵¹. For unscaled aggregated peak analysis (APA), loops

1114 smaller than 100kb were removed from the plots to avoid influence from pixels close to the
1115 diagonal. For unscaled aggregated plots of compartment transition points, compartments smaller
1116 than 300kb were removed from the plots, again to minimize influence from pixels near the diagonal.

1117

1118 **Data availability.** HiC and PolII ChIP-seq data are deposited into GEO data base with accession
1119 number GSE168251. Additional external ChIP-seq data of histone modifications on asynchronous
1120 cells are available at: H3K27ac (GSE61349)⁴⁸, H3K4me1 (GSM946535)⁵², H3K4me3
1121 (GSM946533)⁵², H3K36me3 (GSM946529)⁵², H3K27me3 (GSM946531)⁵², H3K9me3
1122 (GSM946542)⁵². Additional external data of CTCF and Rad21 before and after CTCF depletion
1123 in asynchronous G1E-ER4 cells are available at GSE150418⁵³.

1124

1125

1126

1127

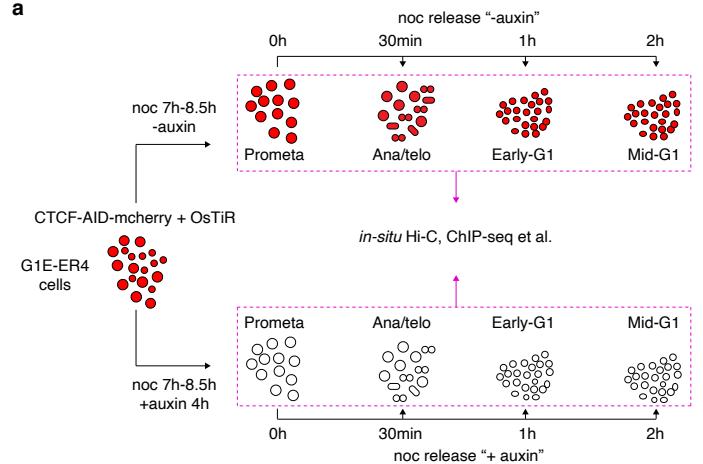
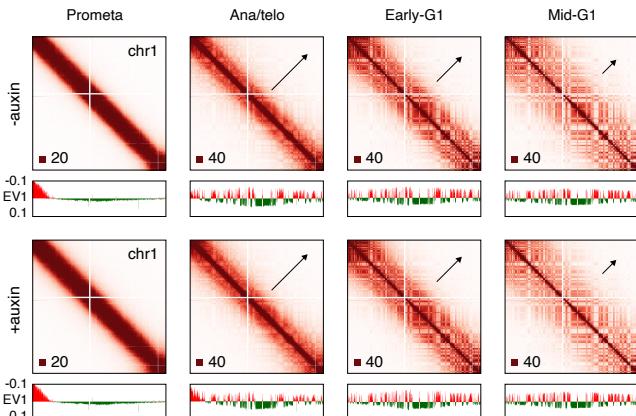
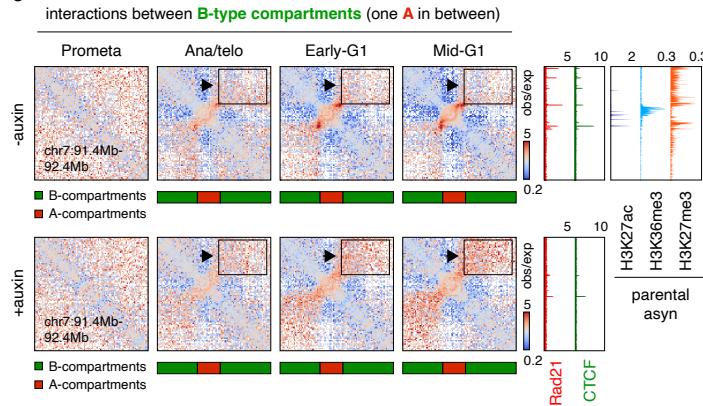
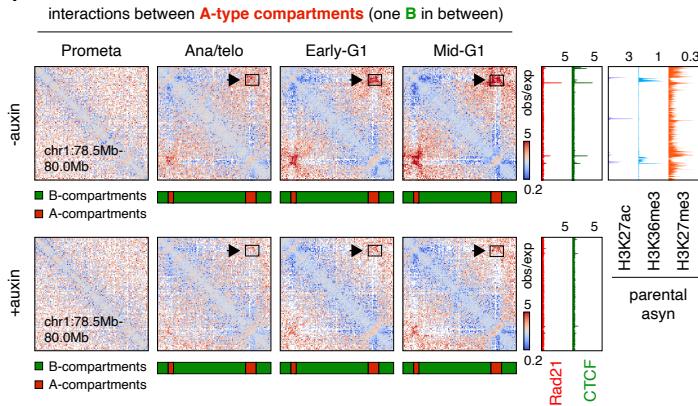
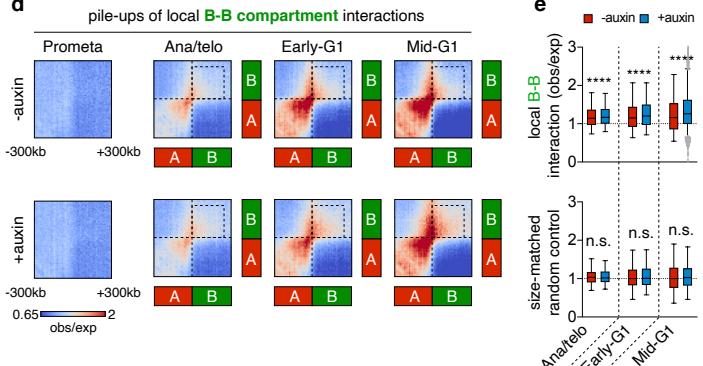
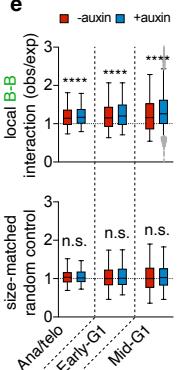
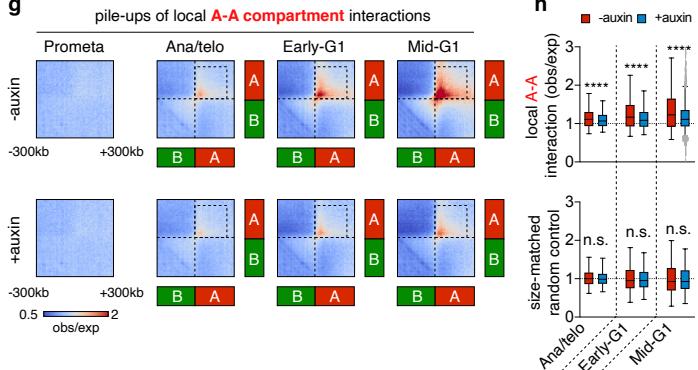
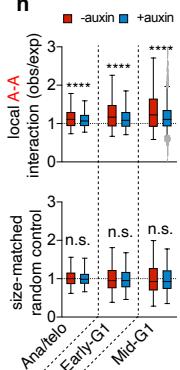
1128

1129

1130

1131

1132









1133

1134

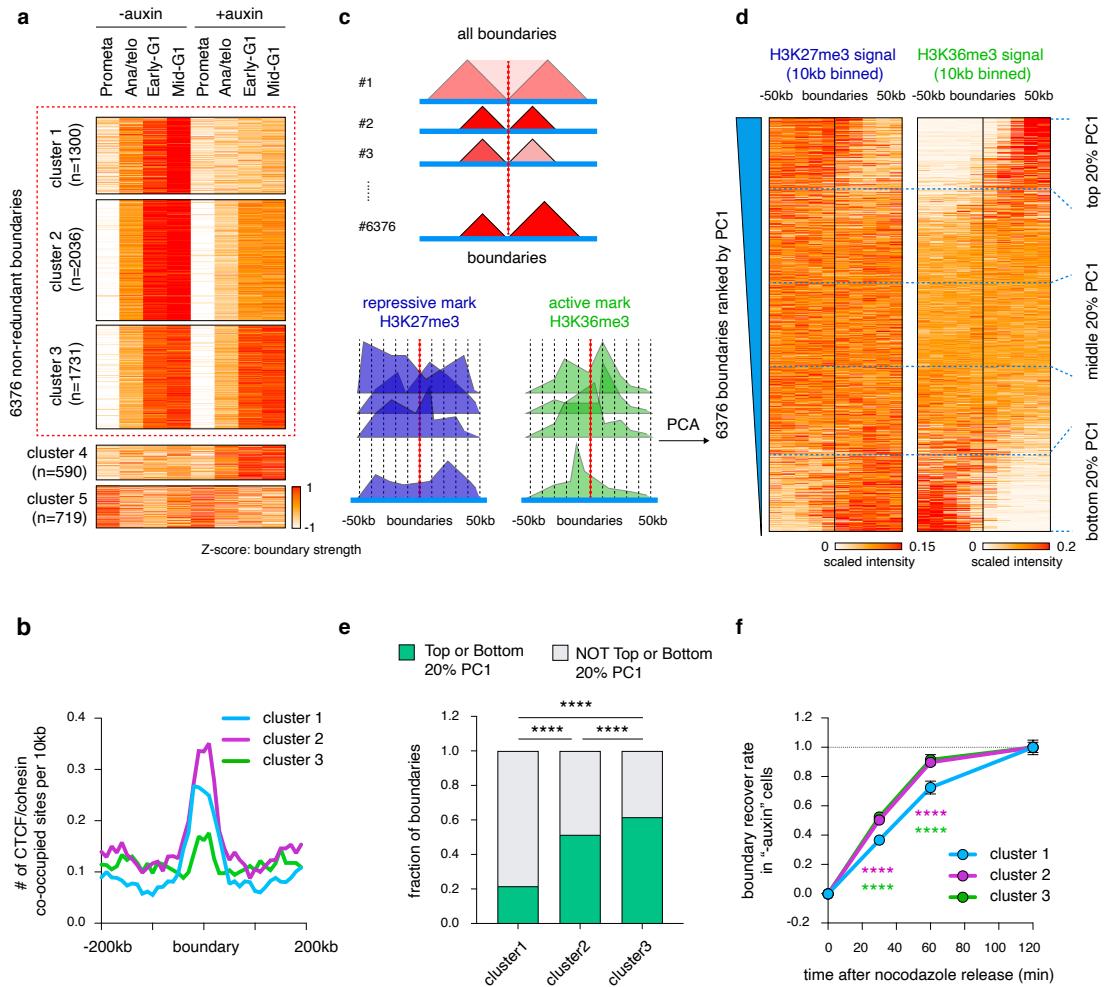
1135

1136

Figure 1

a**b****c****f****d****e****g****h**

1137 **Figure 1 | Alteration of local compartmentalization upon CTCF removal.**


1138 **a**, Strategy for harvesting mitotic and post-mitotic populations with or without CTCF. **b**, KR
1139 balanced Hi-C contact matrices showing global compartment reformation of chr1 in untreated and
1140 auxin treated cells after mitosis. Bin size: 100kb. Black arrows indicate the progressive spreading
1141 of compartments throughout the entire chromosome. Browser tracks with compartment PC1 values
1142 are shown for each contact map. **c**, KR balanced Hi-C contact matrices showing representative
1143 local B-B interaction changes with or without CTCF depletion after mitosis. Bin size: 10kb.
1144 Arrows and boxes highlight the increased local B-B interactions after CTCF depletion across cell
1145 cycle stages. Tracks of CTCF and Rad21 with or without auxin treatment as well as histone marks
1146 H3K27ac, H3K36me3 and H27me3 are from asynchronous G1E-ER4 cells. **d**, Pile-up Hi-C
1147 matrices showing the increased local interactions between all consecutive (with one A-type in
1148 between) B-type compartment domains. Bin size: 10kb. Dotted boxes indicate the increased local
1149 B-B interactions genome-wide. **e**, Upper panel: Boxplots showing quantification of interactions in
1150 the dotted boxes (250kb x 250kb) in **(d)**. Lower panel: Boxplots showing the effect of CTCF
1151 depletion on the interactions between randomly selected genomic pairs (n=500) that are distance-
1152 matched to the upper panel. For all boxplots, central lines denote medians; box limits denote 25th–
1153 75th percentile; whiskers denote 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and
1154 **** $P < 0.0001$. Two-sided paired Wilcoxon signed-rank test. **f-h**, Similar to **(c-e)**, showing
1155 examples, pile-ups and quantification of local consecutive (with one B-type in between) A-A
1156 interactions genome-wide.

1157

1158

1159

Figure 2

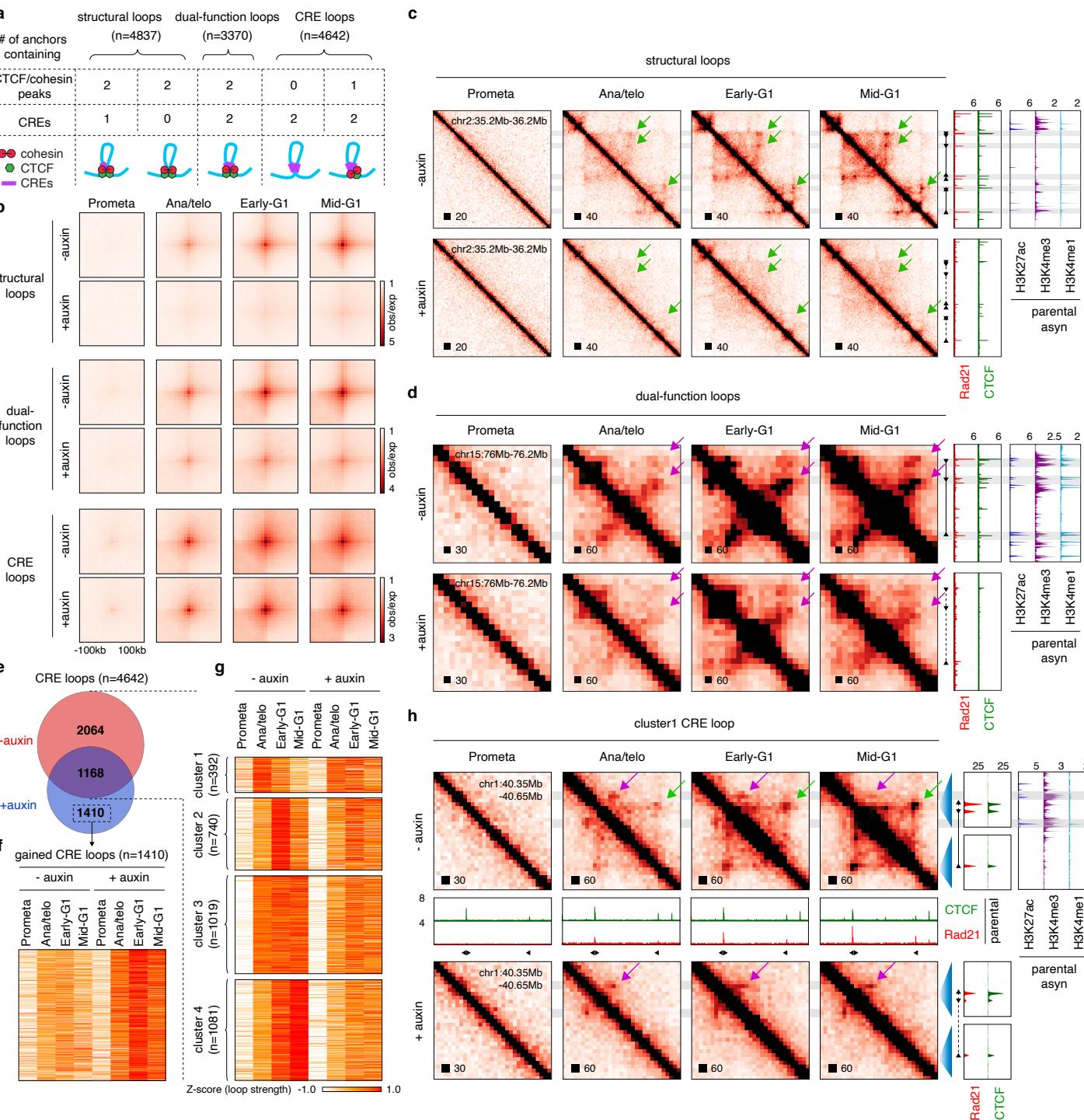
1160 **Figure 2 | Reformation of boundaries display distinct responses to CTCF loss.**

1161 **a**, *k*-means clustering of boundaries depending on their sensitivity to CTCF depletion. The z-scores
1162 in prometaphase for cluster1 boundaries should not be interpreted as the absolute insulation
1163 intensity, because they are calculated as relative values across all time points (see the absolute
1164 insulation intensity in Extended Data Fig. 4f-h). **b**, Average occupancy of CTCF/cohesin peaks
1165 per 10kb for boundaries from cluster 1-3. **c**, Schematic of the PCA based method using the
1166 H3k36me3 and H3K27me3 histone marks to assess boundaries as defined here as chromatin state
1167 transitions. **d**, ChIP-seq signal intensities of H3K27me3 and H3K36me3 in a 100kb window
1168 centered on boundaries. Boundaries were ranked by their PC1 projections in descending order.
1169 Top and bottom regions (20%) of the heatmap indicate transition of chromatin state from 5'
1170 inactive to 3' active and 5' active to 3' inactive respectively. **e**, Bar graphs showing the fraction of
1171 boundaries from each cluster with top or bottom 20% PC1 values. **** $P < 0.0001$. p values were
1172 computed by Fisher's exact test. **f**, Line graph showing the kinetics of boundary formation of
1173 clusters 1-3 in untreated cells. **** $P < 0.0001$. Purple and green asteroids indicate p values from
1174 comparisons between cluster1 and cluster2 or 3 boundaries, respectively. Two-sided Mann-
1175 Whitney U test.

1176

1177

1178


1179

1180

1181

1182

Figure 3

1183 **Figure 3 | CTCF loops constrain CRE contacts after mitosis.**

1184 **a**, Schematic showing the stratification of loops (“structural loops”, “dual-function loops” and
1185 “CRE loops”) based on the presence at their anchors of CTCF/cohesin co-occupied sites and CREs.
1186 **b**, APA plots showing the signals of loop categories before and after CTCF depletion across cell
1187 cycle stages. Bin size: 10kb. **c**, KR balanced Hi-C contact matrices of representative regions
1188 containing structural loops. Bin size: 10kb. Tracks of CTCF and Rad21 with or without auxin
1189 treatment as well as H3K27ac, H3K4me3 and H3K4me1 were from asynchronous G1E-ER4 cells.
1190 **d**, Similar to **(c)**, KR balanced Hi-C contact matrices of representative regions containing dual-
1191 function loops. Bin size: 10kb. **e**, Venn diagram of CRE loops. **f**, Heatmap displaying intensities
1192 of the 1410 newly gained loops after CTCF depletion. **g**, Heatmap showing the result of *k*-means
1193 clustering on the 3232 CRE loops detected in untreated control samples. **h**, Similar to **(c, d)**, KR
1194 balanced Hi-C contact matrices of a representative region containing a cluster1-P transient CRE
1195 loop. Additional tracks of CTCF and Rad21 from parental cells across designated cell cycle stages
1196 are shown¹.

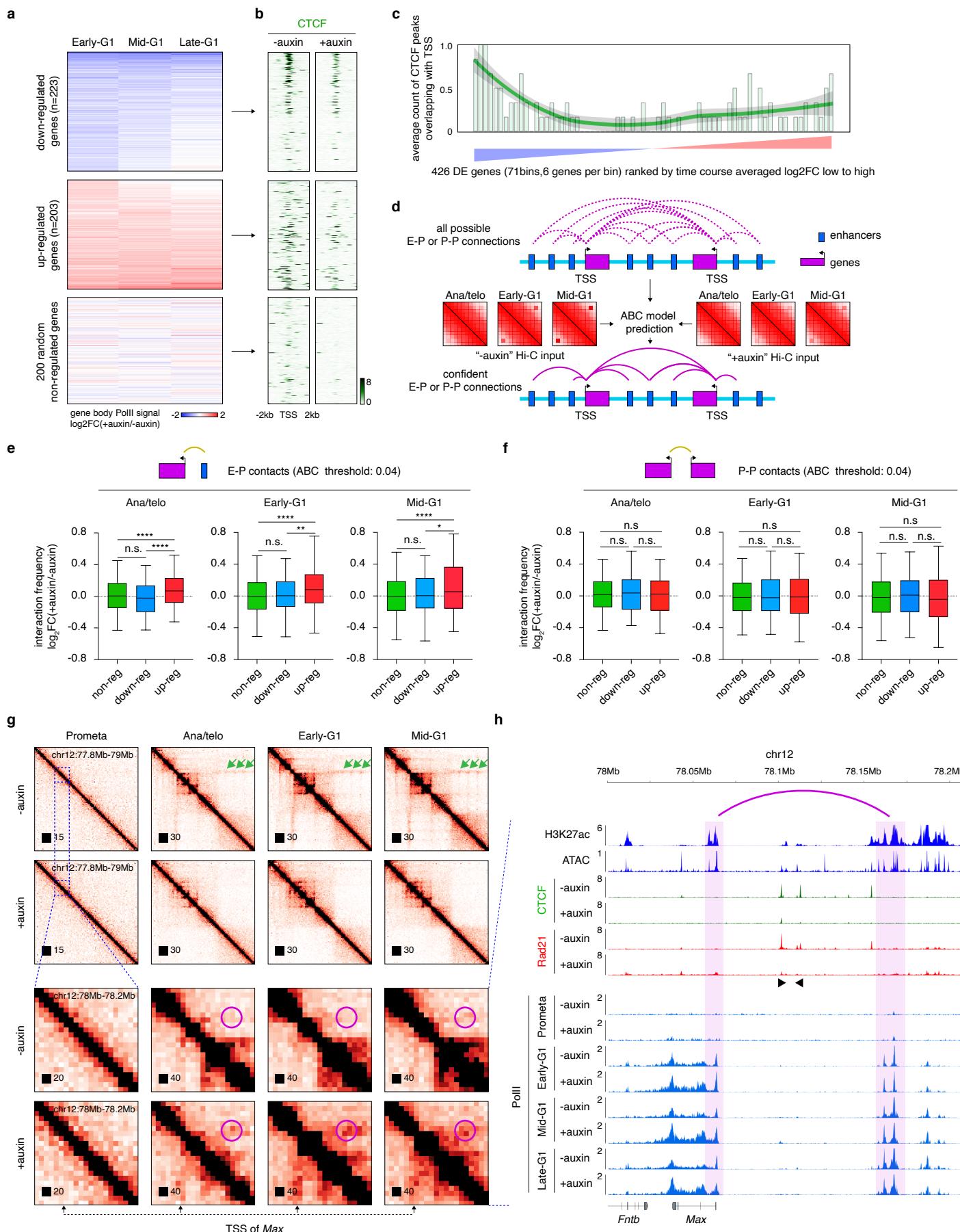
1197

1198

1199

1200

1201

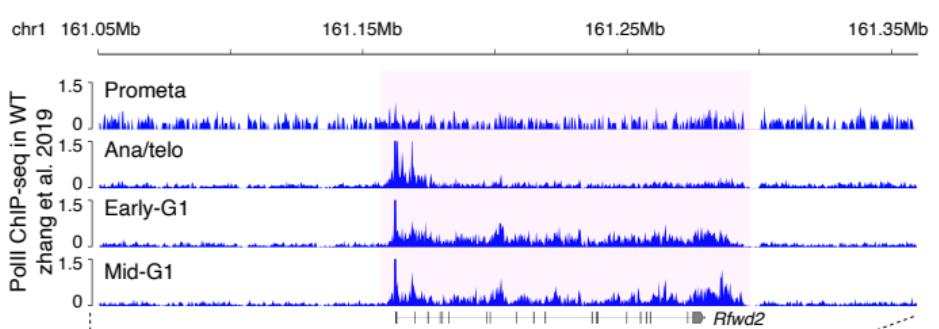

1202

1203

1204

1205

Figure 4


1206 **Figure 4 | CTCF loss alters transcription reactivation profiles after mitosis.**

1207 **a**, Heatmap displaying differentially expressed genes based on PolII ChIP-seq read counts over
1208 the gene bodies (+500 from TSS to TES), plotted as log₂ fold-change (FC). **b**, Meta-region plots
1209 of CTCF ChIP-seq signals from asynchronous cells before and after auxin treatment, centered on
1210 down-regulated, up-regulated, or 200 random non-regulated gene TSS. **c**, Quantification of (**b**)
1211 showing the number of CTCF peaks overlapping with TSS. The green line represents lowess
1212 smoothing of bar plots. **d**, Schematic showing the implementation of the ABC model to predict
1213 confident E-P and P-P interactions using as input asynchronous H3K27ac ChIP-seq and ATAC-
1214 seq data from G1E-ER4 cells as well as *in-situ* Hi-C datasets from this study. **e**, Boxplots showing
1215 the log₂ fold change upon CTCF depletion of interaction strength of E-P pairs (ABC score cutoff
1216 = 0.04) associated with either non-regulated, down-regulated, or up-regulated genes. log₂ fold
1217 change of interaction strength was calculated using the LIMMA R package for each cell cycle
1218 stage. For all boxplots, central lines denote medians; box limits denote 25th–75th percentile;
1219 whiskers denote 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$.
1220 Two-sided Mann-Whitney U test. **f**, Similar to (**e**) showing the interaction changes of promoter-
1221 promoter pairs after CTCF depletion. **g**, KR balanced Hi-C contact matrices showing the *Max*
1222 locus across cell cycle stages in control and auxin treated samples. Bin size: 10kb. Green arrows
1223 indicate the structural loops that insulate *Max* promoter from a nearby enhancer. Purple circles
1224 demarcate the increase of interactions between *Max* promoter and a nearby enhancer upon CTCF
1225 depletion after mitosis. Note that the gain in interactions occurs at the earliest tested time point. **h**,
1226 ChIP-seq genome browser tracks of the same region as that shown in the lower panel in (**g**). Note
1227 increased expression of *Max* after mitosis in auxin treated samples. Purple arch annotates the

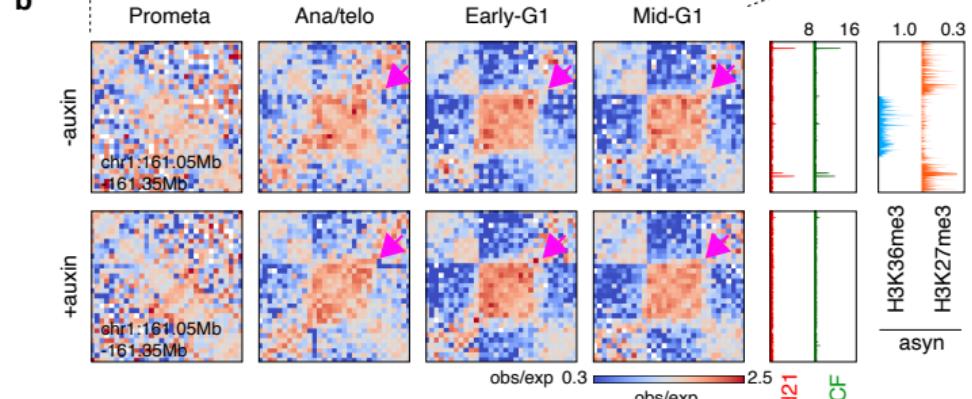
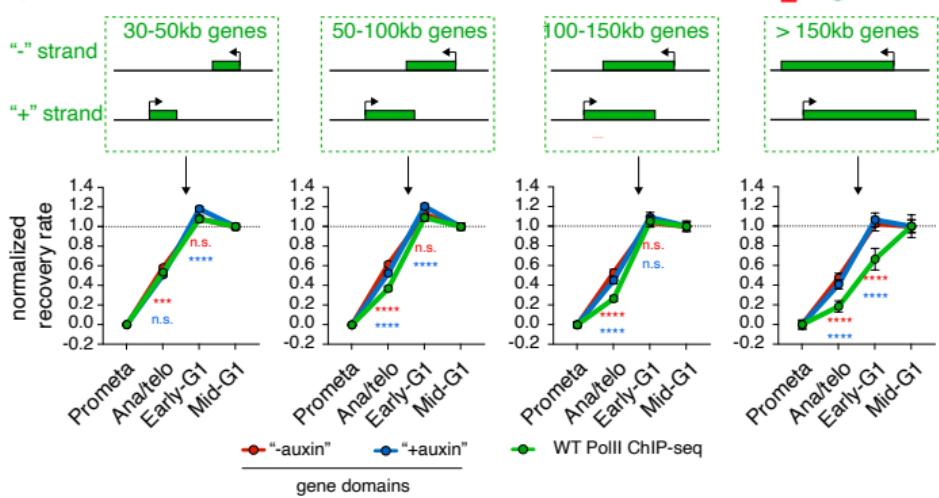
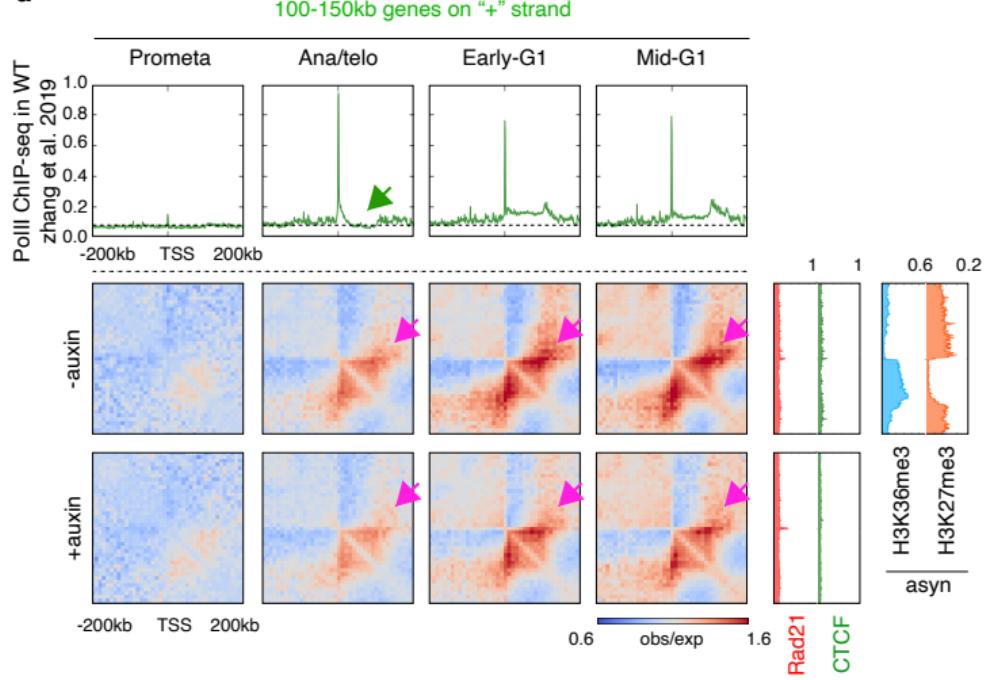

1228 elevated interaction between *Max* promoter and nearby enhancer. Black arrows indicate the motif
1229 orientation of CTCF binding sites.
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250

Figure 5


a


b

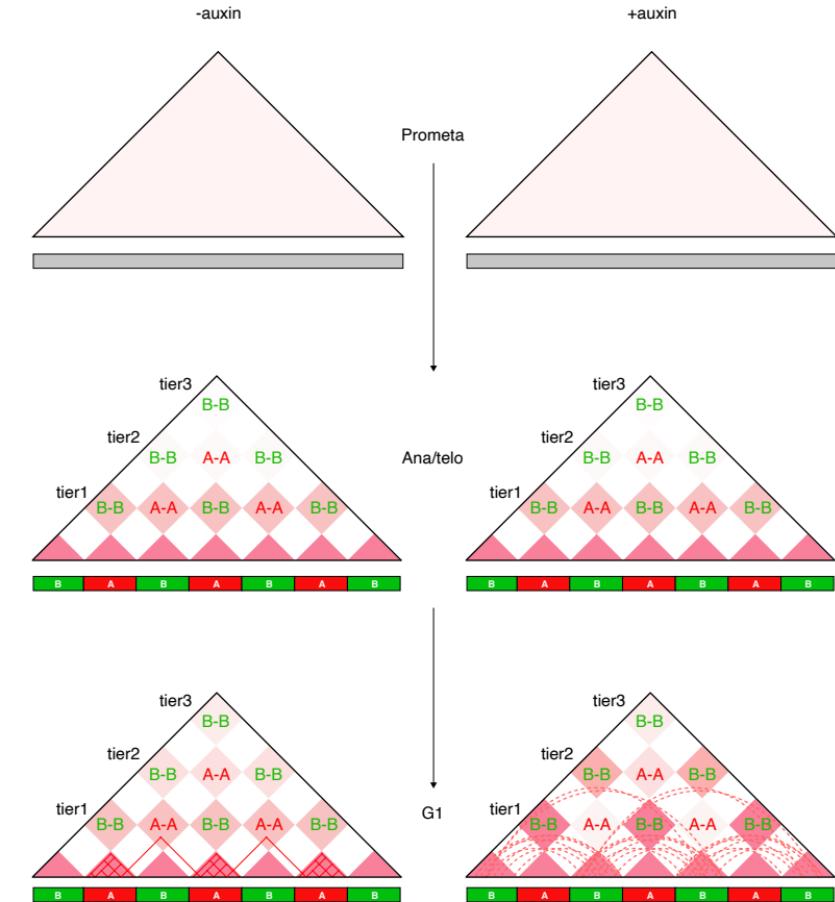
c

d

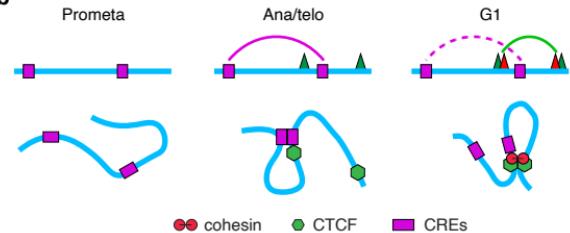
1251 **Figure 5 | Gene domains emerge prior to completion of the first round of transcription after**
1252 **mitosis.**

1253 **a**, PolII ChIP-seq genome browser tracks at the *Rfwd2* locus across cell cycle stages in parental
1254 cells. Note that in ana/telophase PolII is detected at the promoter region but the initial round of
1255 transcription has not been completed. **b**, KR balanced Hi-C contact matrices of the same region as
1256 in (a) across cell cycle stages in control and auxin treated samples. Bin size: 10kb. Purple arrows
1257 indicate domain of the *Rfwd2* gene in post-mitotic stages. Tracks of CTCF and Rad21 with or
1258 without auxin treatment as well as histone marks H3K36me3 and H27me3 are from
1259 asynchronously growing G1E-ER4 cells. **c**, Upper panel: Schematic of genes with different sizes.
1260 Lower panel: Line graphs of recovery rates of gene domains in the control and auxin treated
1261 samples, and the recovery rate of PolII occupancy over the gene body. Genes corresponding to the
1262 size ranges in the upper panel were separately plotted. *** $p < 0.001$ and **** $p < 0.0001$. Two-
1263 sided Mann-Whitney U test. Red and blue asterisks represent comparisons between PolII and gene
1264 domains in untreated control or auxin treated samples respectively. Error bars denotes SEM. **d**,
1265 Upper panel: Meta-region pile-up plots of PolII ChIP-seq signals corresponding to the 100kb-
1266 150kb genes on the plus strand across cell cycle stages. Plots are centered on TSS. Lower panel:
1267 Pile-up Hi-C matrices showing the domains of the genes corresponding to the upper panel across
1268 cell cycle stages in untreated and auxin treated samples. Bin size: 10kb. Plots are centered on TSS.
1269 Gene domains are labeled with purple arrows. Meta-region plots of CTCF and Rad21 with or
1270 without auxin treatment, as well as H3K36me3 and H3K27me3 are shown on the right.

1271


1272

1273


Figure 6

a

impact of CTCF depletion on local compartmental interactions

b

6

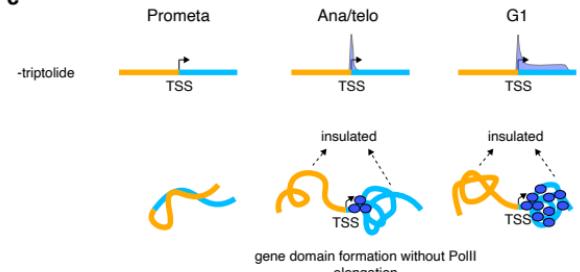


Diagram illustrating the effect of triptolide on transcription start sites (TSS) across three conditions: Prometa, Ana/telo, and G1. The legend indicates that orange represents upstream of TSS and blue represents H3K36me3 marked chromatin (gene body). RNA Pol II is shown transcribing the gene body. In Prometa, triptolide is upstream of the TSS. In Ana/telo, triptolide is upstream and insulated from the TSS by a loop. In G1, triptolide is upstream and insulated from the TSS by a loop. A label "gene domain without transcription" is shown below the G1 panel.

1274 **Figure 6 | Mechanistic models**

1275 **a**, Schematic showing how CTCF removal can impact local but not distal interactions between
1276 same type of compartments. Short-range B-B interactions were enhanced potentially due to
1277 increased extrusion loop size from A compartments after CTCF removal. Note, the effect was
1278 progressively observed in G1 phase because of the gradual action of loop extrusion. Solid lines in
1279 the bottom panel represents structural loops formed and stabilized within A-type compartment
1280 domains in CTCF repleted conditions. Dotted lines represent actively extruding loops that are
1281 unleashed from A-type compartment domains into flanking B-type compartment domains due to
1282 CTCF depletion. **b**, Schematic showing the rapid dissolution of established CRE loops as nearby
1283 disruptive structural loop emerge after mitosis. **c**, Schematic showing that gene domain is well-
1284 established without full coverage of PolII over gene body. Effects after transcription inhibition
1285 was at the bottom panel.

1286

1287

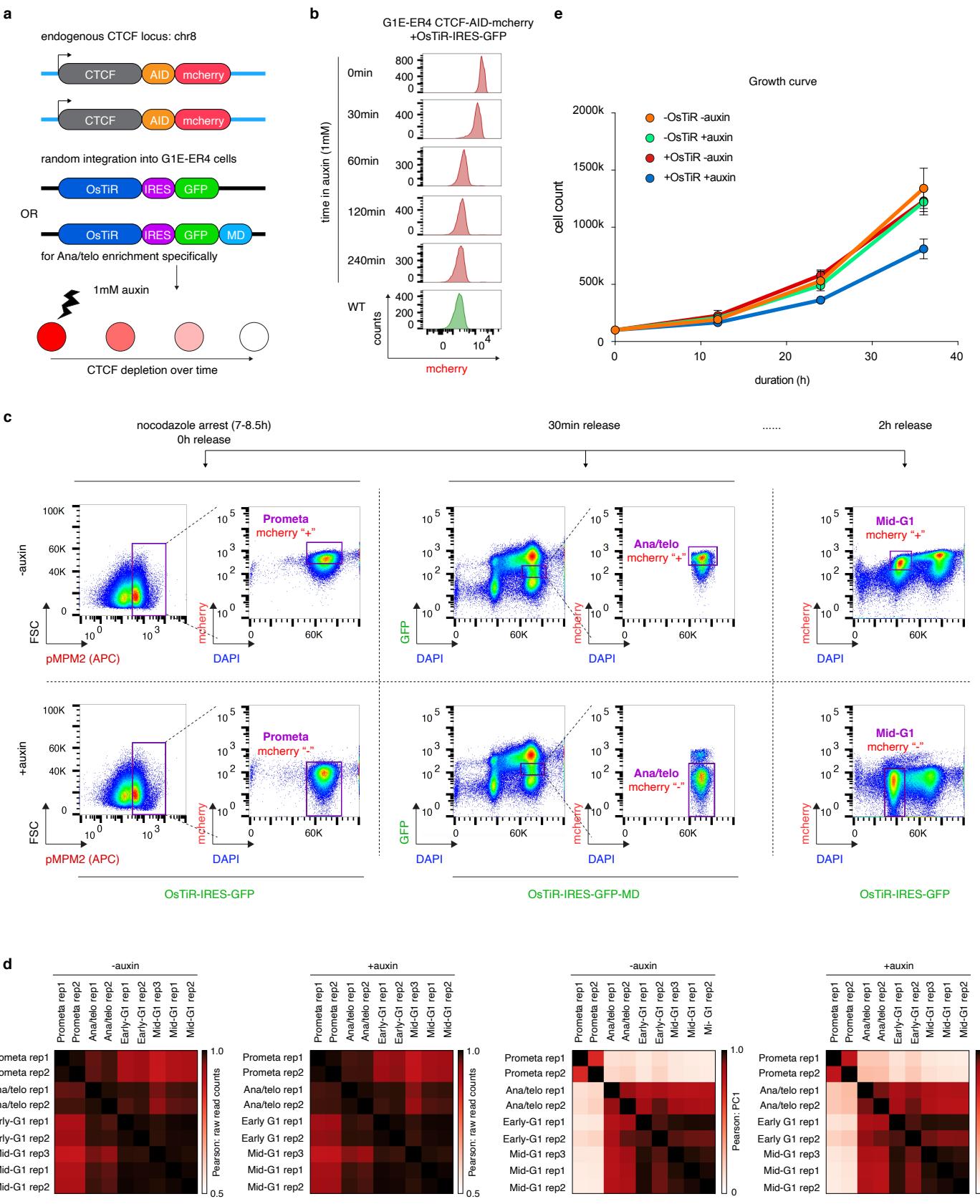
1288

1289

1290

1291

1292


1293

1294

1295

1296

Extended Data Fig.1

1297 **Extended Data Figure 1 | Engineering, purification, and characterization of cell lines.**

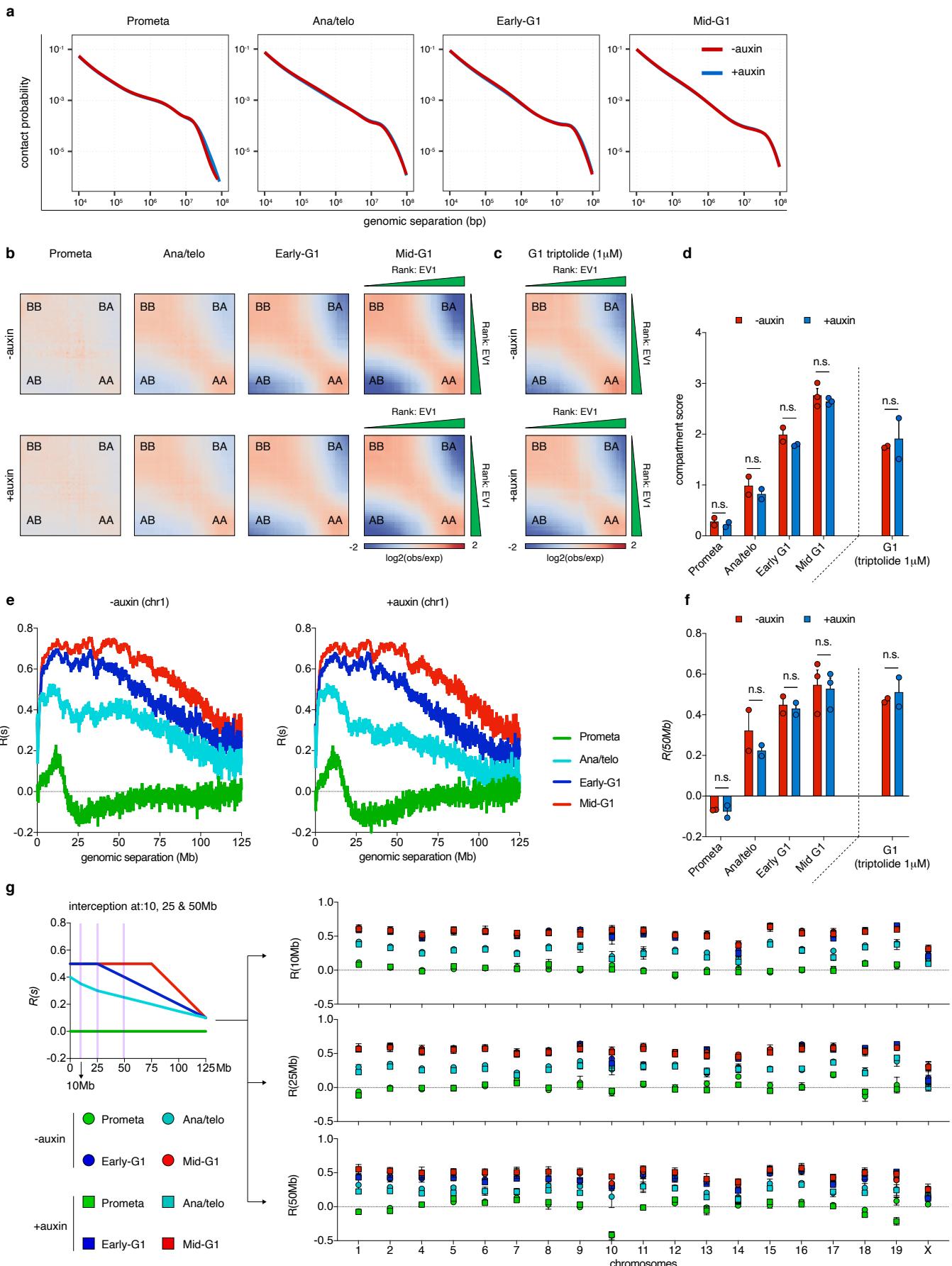
1298 **a**, Schematic showing the construction of G1E-ER4 CTCF-AID-mCherry cell line and ectopic
1299 expression of Os-TIR-IRES-GFP. Os-TIR-IRES-GFP was used for prometaphase, early- and mid-
1300 G1 phase. To enable enrichment of ana/telophase cells, we specifically over expressed Os-TiR-
1301 IRES-GFP-MD. **b**, Flow cytometry plot showing the acute depletion of mCherry signal in
1302 asynchronous cells upon auxin treatment. Flow plots are representative of two independent
1303 experiments. **c**, FACS plots and gates (purple boxes) used for purification of mitotic and post-
1304 mitotic populations with and without CTCF. One set of plots representative of two independent
1305 biological replicates is show. **d**, Heatmaps showing Pearson correlations among Hi-C samples
1306 based on 100kb binned raw read counts and eigenvector 1 values, respectively. Note that samples
1307 with or without auxin treatment were separately plotted. **e**, Growth curves showing cell
1308 proliferation with or without auxin treatment. Note, cells devoid of OsTiR were included as
1309 controls. Error bar denote SEM (n=3).

1310

1311

1312

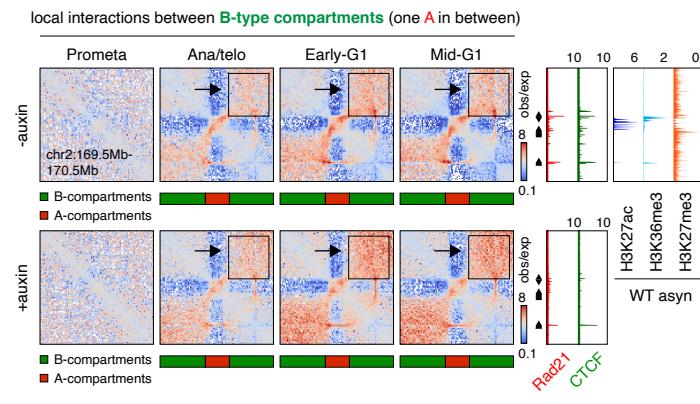
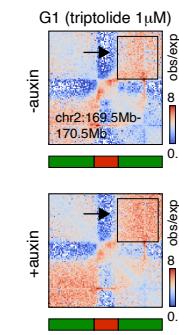
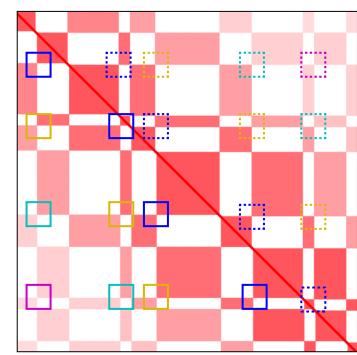
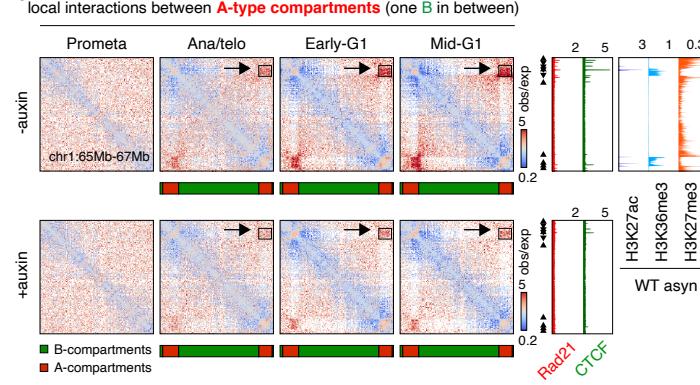
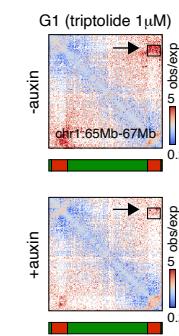
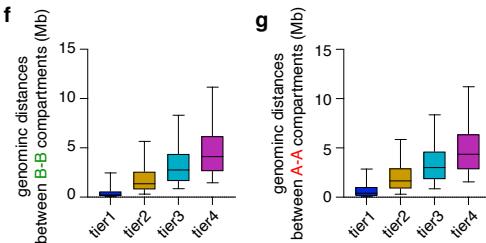
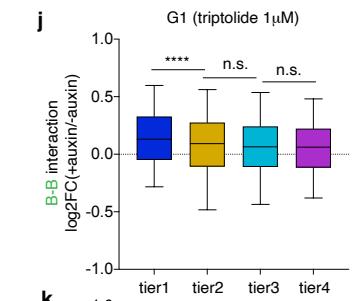
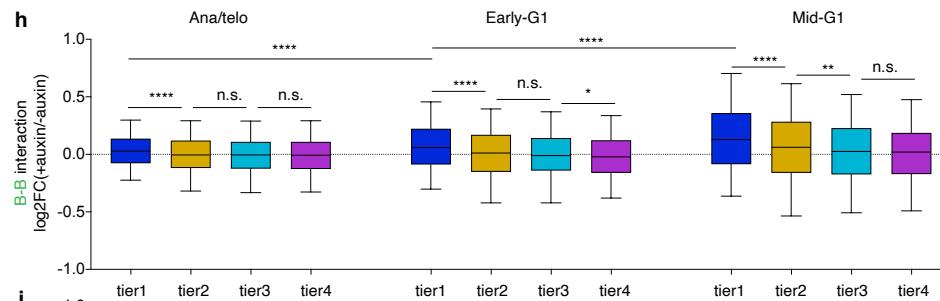
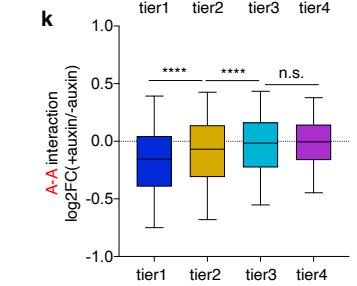
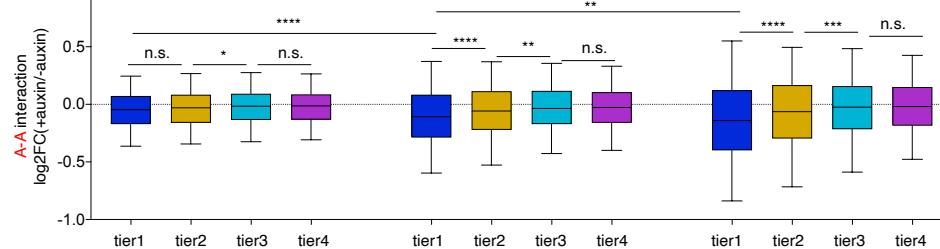
1313


1314

1315

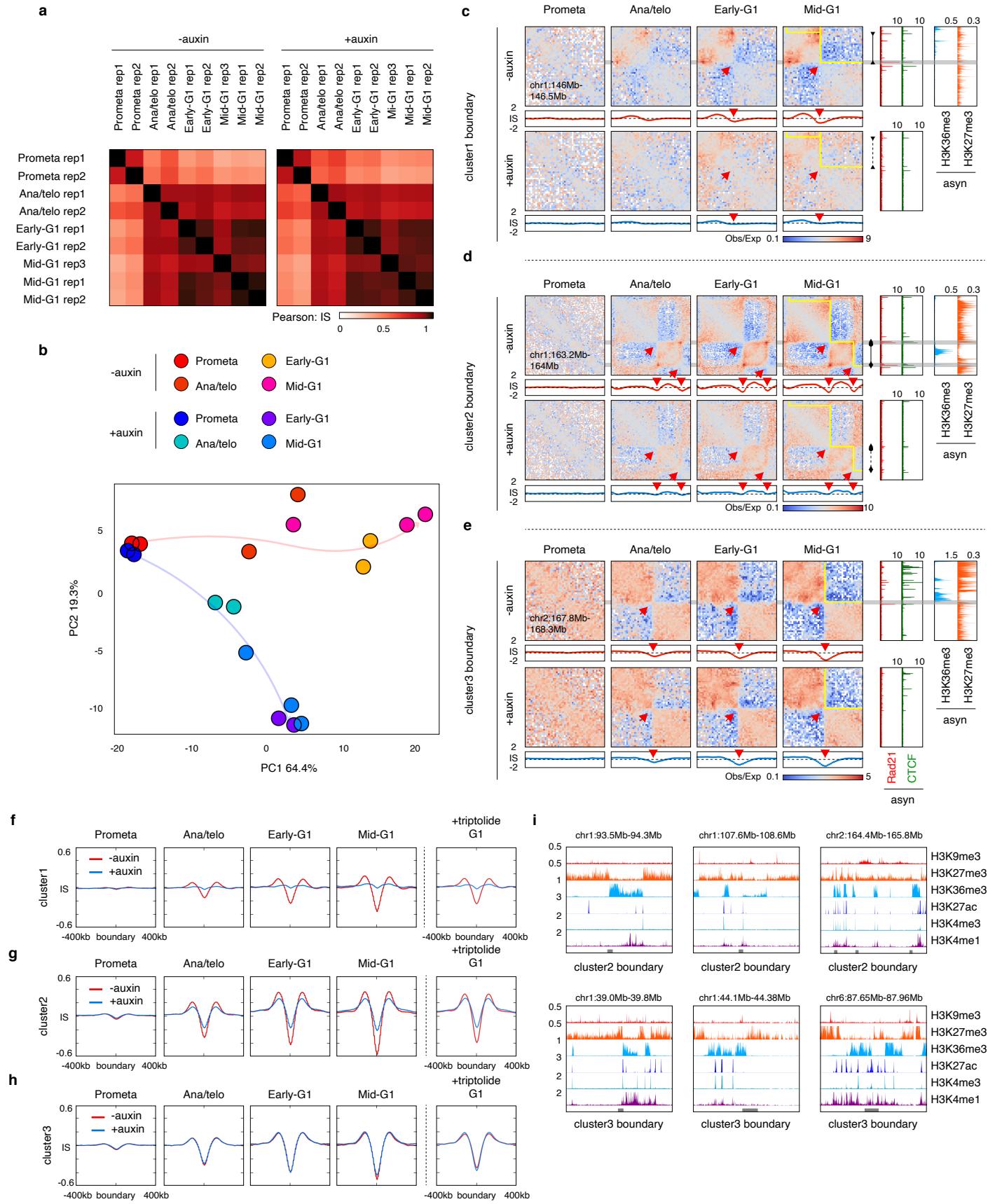
1316

1317











1318

1319 **Extended Data Figure 2 | Global compartment re-establishment is unperturbed by CTCF**
1320 **depletion after mitosis.**

1321 **a**, Chromosome averaged distance dependent contact frequency decay curves across cell cycle
1322 stages in control and auxin treated samples. **b**, Saddle plots showing compartment strengths across
1323 cell cycle stages in untreated and auxin treated samples. **c**, Saddle plots showing compartment
1324 strength in G1 phase cells after triptolide treatment. **d**, Bar graphs showing compartment scores
1325 for each cell cycle stage in untreated and auxin treated samples. Compartment scores of triptolide
1326 treated G1 samples were plotted on the right. Error bars denote SEM. Two-sided student's t test
1327 was applied. **e**, Line graphs showing the level of compartmentalization R vs. genomic separations
1328 s for chromosome 1 for each cell cycle stage in both untreated and auxin treated samples. The
1329 gradual flattening of curves as cells progress towards G1 suggests expansion of the plaid-like
1330 compartmental interaction patterns from diagonal proximal regions to diagonal distal regions. **f**,
1331 Bar graphs showing the level of compartmentalization at 50Mb $R(50Mb)$ for each cell cycle stage
1332 with or without CTCF. $R(50Mb)$ of the triptolide treated G1 samples were plotted on the right.
1333 Error bars denote SEM. Statistical test: two-sided student's t test. **g**, Left: Cartoon line plot of $R(s)$
1334 across different time points showing a series of intersections at 10Mb, 25Mb and 50Mb. Right:
1335 Replicate averaged $R(s)$ of each individual chromosome across all cell cycle stages in both
1336 untreated and auxin treated samples when s equals to 10Mb, 25Mb and 50Mb respectively.
1337
1338
1339
1340
1341


Extended Data Fig. 3

a**c****e****b****d****f****h****i**

1342 **Extended Data Figure 3 | CTCF depletion alters local chromatin compartmentalization.**

1343 **a**, Additional example of enhanced local B-B interactions after CTCF depletion. Bin size: 10kb.
1344 Arrows and boxes highlight the increased local B-B interactions after CTCF depletion across post-
1345 mitotic cell cycle stages. Tracks of CTCF and Rad21 with or without auxin treatment as well as
1346 H3K27ac, H3K36me3 and H27me3 are from asynchronously growing G1E-ER4 cells. **b**,
1347 Additional example of reduced local A-A interactions after CTCF depletion. **c**, KR balanced Hi-
1348 C contact matrices showing the same region as in **(a)** in G1 phase cells after triptolide treatment.
1349 **d**, KR balanced Hi-C contact matrices showing the same region as **(b)** in G1 phase cells after
1350 triptolide treatment. **e**, Schematic of the checkerboard pattern of compartments. Tier1-4 B-B
1351 interactions denote contacts between B-type compartments interspersed with 1-4 A-type
1352 compartments and are demarcated by dotted boxes. Tier1-4 A-A interactions denote contacts
1353 between A-type compartments interspersed with 1-4 B-type compartments and are demarcated by
1354 solidly lined boxes. **f and g**, Boxplots showing the distances between B-B or A-A interactions,
1355 respectively from different tiers. For all boxplots, central lines denote medians; box limits denote
1356 25th–75th percentile; whiskers denote 5th–95th percentile. **h**, Boxplots showing the \log_2 fold
1357 change of B-B interactions from different tiers, upon CTCF loss. Similar comparisons are shown
1358 across all post-mitotic cell cycle stages. Comparisons between tier1 B-B interactions across cell
1359 cycle stages suggest the progressively amplified CTCF depletion induced gains of B-B interactions
1360 after mitosis. For all boxplots, central lines denote medians; box limits denote 25th–75th percentile;
1361 whiskers denote 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$.
1362 Statistical comparisons within single time points are based on two-sided Mann-Whitney U tests.
1363 Comparisons across time points were computed by Two-sided paired Wilcoxon signed-rank test.
1364 **i**, Similar to **(h)**, displayed are \log_2 fold changes of A-A interactions from different tiers, upon

1365 CTCF loss. **j**, Boxplots showing the \log_2 fold change of B-B interactions from different tiers upon
1366 CTCF loss after triptolide treatment. For all boxplots, central lines denote medians; box limits
1367 denote 25th–75th percentile; whiskers denote 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** P
1368 <0.001 and **** $P <0.0001$. Two-sided Mann-Whitney U test. **k**, Similar to (j), shown are \log_2
1369 fold changes of A-A interactions from different tiers upon CTCF loss after triptolide treatment.
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386

1387 **Extended Data Figure 4 | Characterization of boundary re-establishment after mitosis upon**

1388 **CTCF loss.**

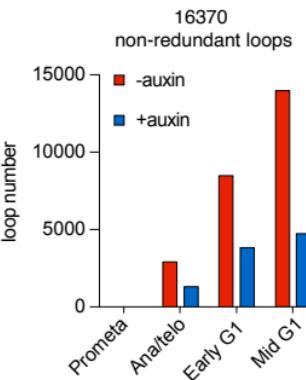
1389 **a**, Pearson correlations of boundary insulation scores between biological replicates in untreated or
1390 auxin treated samples. **b**, PCA analysis of the post-mitotic boundary reformation trajectories of
1391 with or without CTCF depletion. **c**, KR balanced Hi-C contact matrices and corresponding
1392 insulation score tracks of a representative region containing a cluster1 boundary across cell cycle
1393 stages in control and auxin treated samples. Bin size: 10kb. Read arrows indicate domain
1394 boundaries. Yellow lines denote TADs identified by rGMAP. Tracks of CTCF and Rad21 with or
1395 without auxin treatment as well as H3K36me3 and H27me3 are from asynchronously growing
1396 G1E-ER4 cells. Black arrow heads denote CTCF motif orientation, and dotted line demarcates loss
1397 of loop upon auxin treatment. **d & e**, Similar to **(c)**, KR balanced Hi-C contact matrices showing
1398 representative regions containing cluster2 and 3 boundaries respectively. **f-h**, Left panel: Meta-
1399 region plots of insulation score profiles centered on cluster1, 2 or 3 boundaries, across cell cycle
1400 stages in control and auxin treated samples. Right panel: Meta-region plots of insulation score
1401 profiles similar to the left in G1 samples after triptolide treatment. **i**, genome browser tracks
1402 showing the local histone modification profiles of representative cluster2 and 3 boundaries.

1403

1404

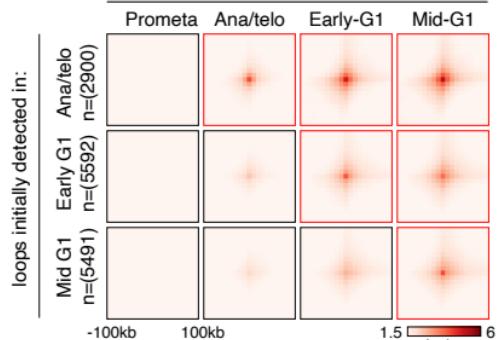
1405

1406

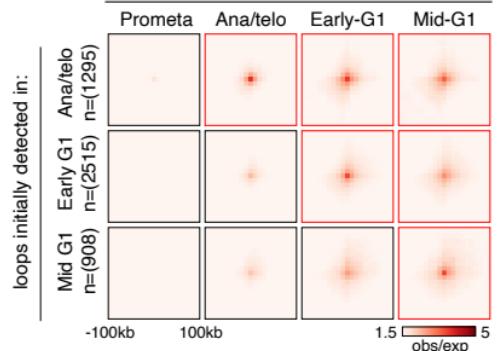

1407

1408

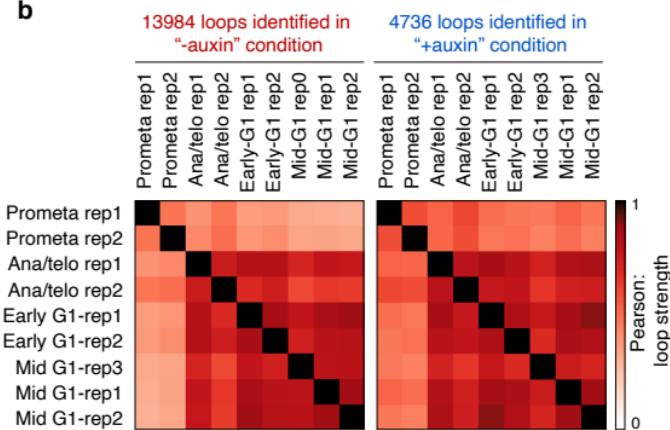
1409

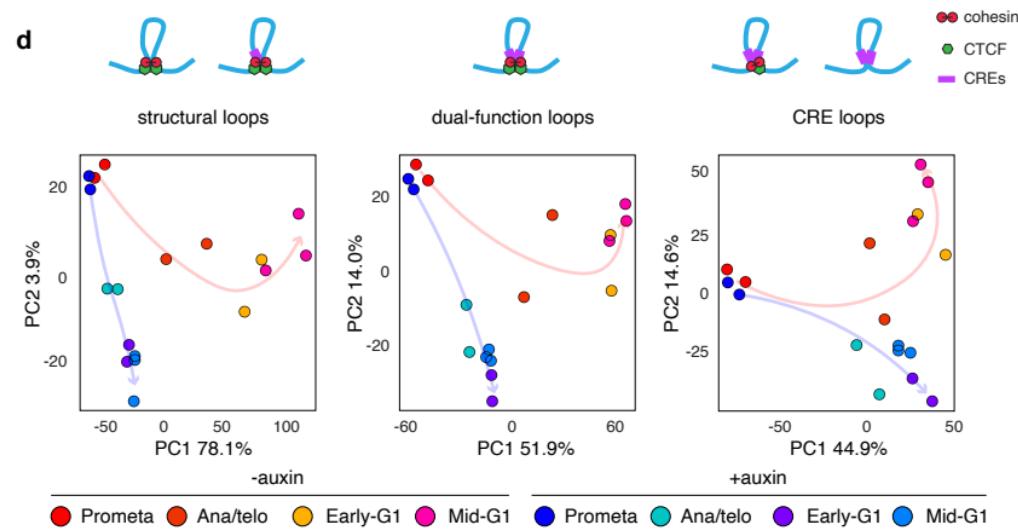

Extended Data Fig.5

a



c


APA: loops identified in “-auxin” condition


APA: loops identified in “+auxin” condition

b

d

1410 **Extended Data Figure 5 | Distinct responses to CTCF depletion in chromatin loop
1411 reformation after mitosis.**

1412 **a**, Bar graphs showing the number of loops called at each cell cycle stage in both untreated samples
1413 and auxin treated samples. **b**, Heatmaps showing the Pearson correlation of loops called in
1414 untreated and auxin treated samples, respectively. Pearson correlations were computed based on
1415 loop strength (obs/exp). **c**, Aggregated peak analysis (APA) plots showing time dependent
1416 emergence of loops called at each cell cycle stage in untreated and auxin treated samples. Bin size:
1417 10kb. Notably, weak APA signals were observable before the loops were called, likely due to
1418 thresholding by the loop calling algorithm. **d**, PCA analysis showing the reformation trajectories
1419 of structural loops (left), dual-function loops (middle) and CRE loops (right) respectively, in
1420 untreated as well as auxin treated samples.

1421

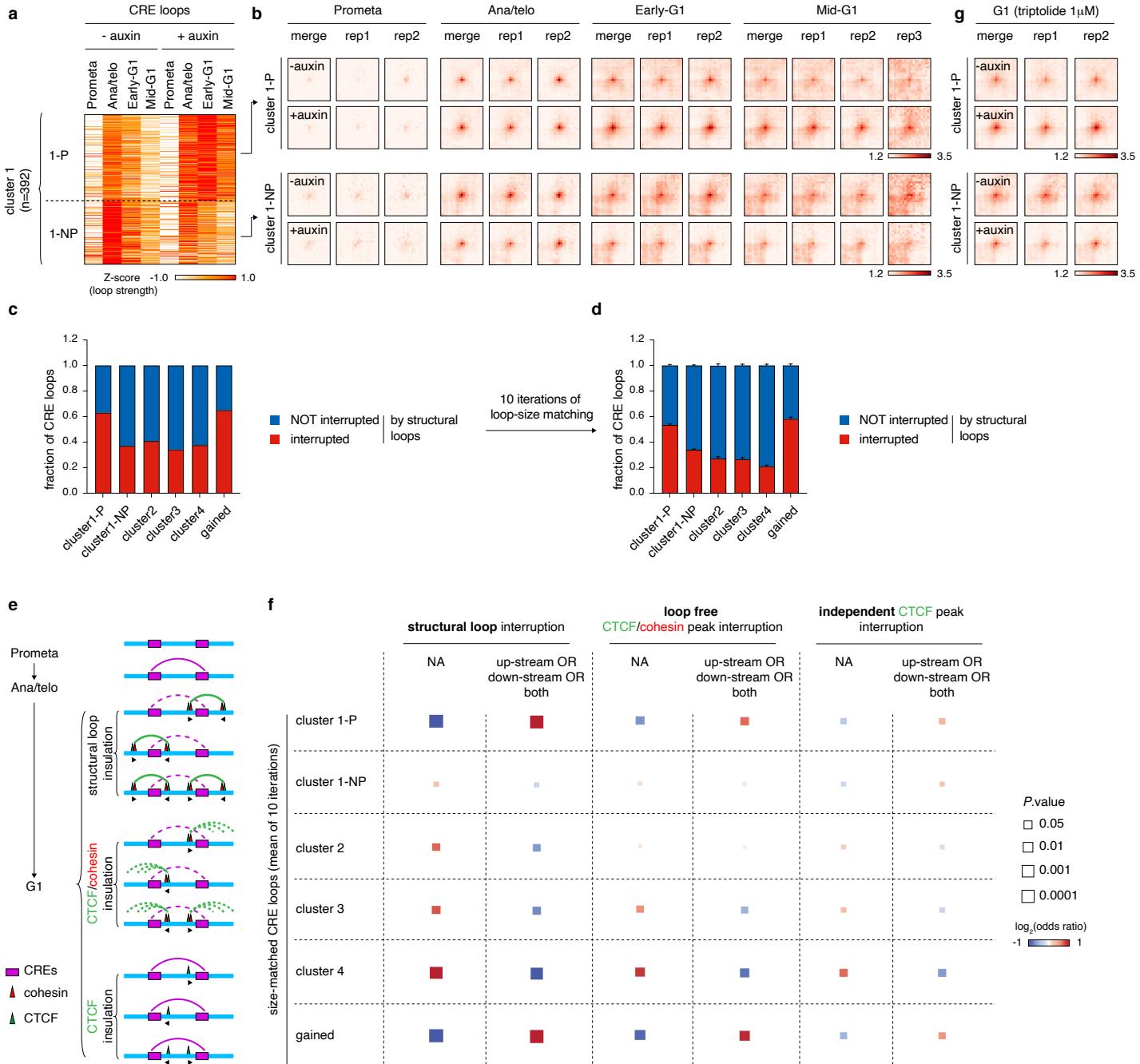
1422

1423

1424

1425

1426


1427

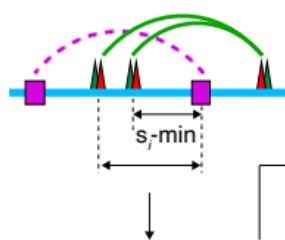
1428

1429

1430

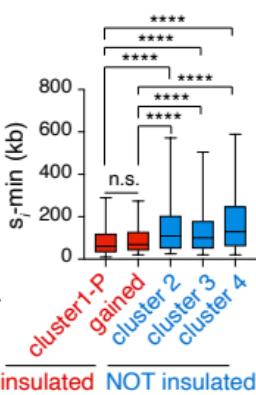
1431

1432 **Extended Data Figure 6 | Transient CRE loops are terminated with the emergence of**
1433 **interfering structural loops.**

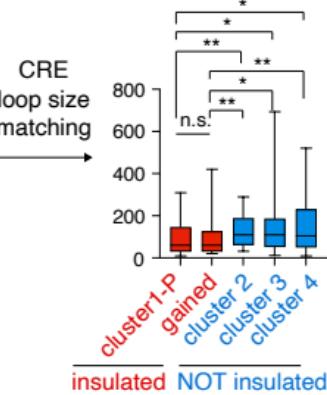

1434 **a**, Heatmaps showing the sub-clustering of cluster1-P (persistent upon CTCF depletion) and cluster
1435 1-NP (non-persistent upon CTCF depletion). **b**, APA plots of loop clusters from **(a)**. Bin size: 10kb.
1436 Plots for the replicate-merged as well as each individual replicates are shown. **c**, Bar graphs
1437 showing the fractions of CRE loops from indicated clusters that were interrupted by structural
1438 loops. **d**, Bar graphs depicting the fraction of size-matched CRE loops from indicated clusters that
1439 were interrupted by structural loops. Error bars denote the SEM of 10 iterations of random size-
1440 matching operations. **e**, Schematic showing potential mechanisms (structural loops, CTCF/cohesin
1441 loop extrusion, and loop-independent CTCF) through which CTCF may exert its insulation
1442 function to disrupt transient post-mitotic CRE loops. **f**, Enrichment analysis of each sub-cluster of
1443 CRE loops controlled by mechanisms in **(e)**. Left: relative enrichment analysis of whether CRE
1444 loops from each sub-cluster were interrupted by structural loops. Colors of the squares indicate
1445 \log_2 transformed odds ratio (Fisher's exact test). Sizes of squares indicate the significance of
1446 enrichment (p value from Fisher's exact test). Middle: similar to the left, showing relative
1447 enrichment of CRE loops from each sub-cluster to be interrupted by loop-free CTCF/cohesin co-
1448 occupied sites. Right: relative enrichment of CRE loops from each sub-cluster interrupted by
1449 cohesin and structural loop-independent CTCF peaks. **g**, APA plots showing the same pile-up Hi-
1450 C matrices of each CRE loop sub-cluster as **(a, b)**, in G1 cells after triptolide treatment. Bin size:
1451 10kb.

1452

1453

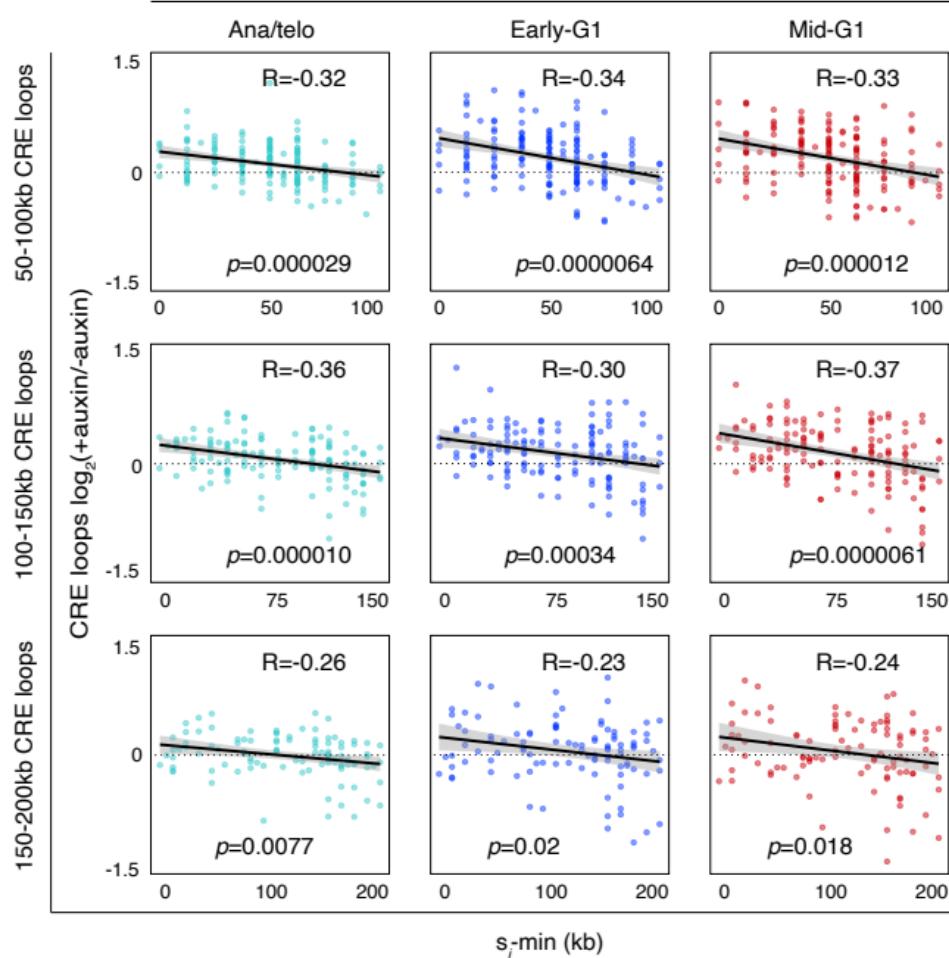

Extended Data Fig. 7

a



min distance (kb) between
interrupting structural loop anchor
& target CRE: s_i -min

b



c

d

CRE loops with one interrupting structural loop

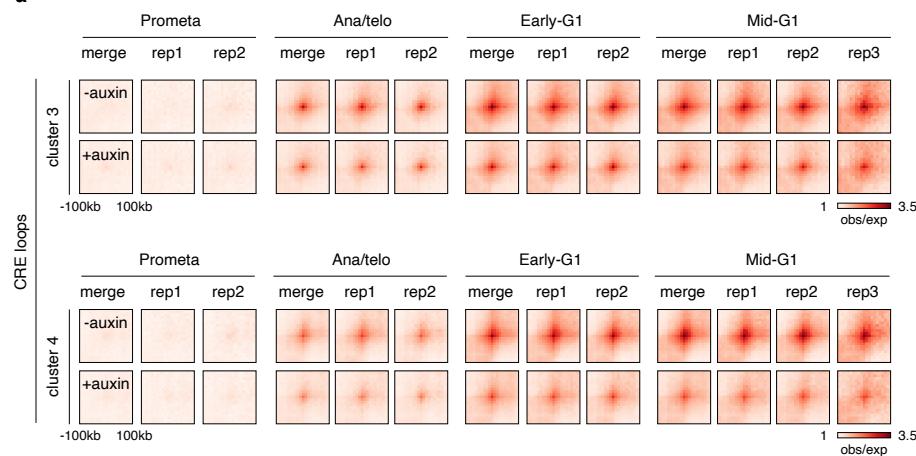
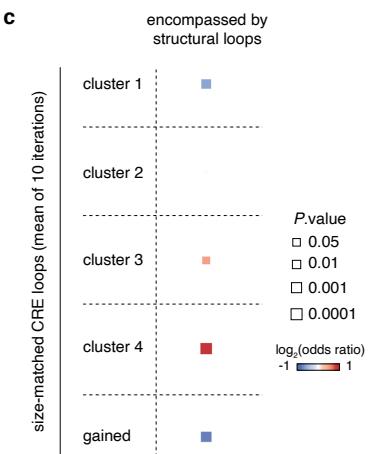
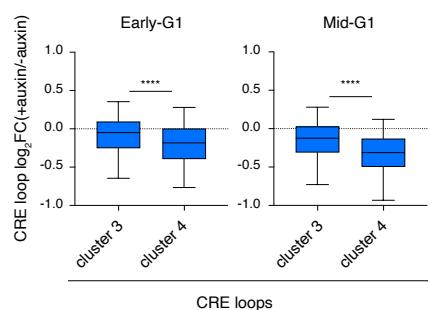
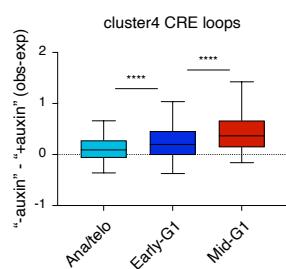
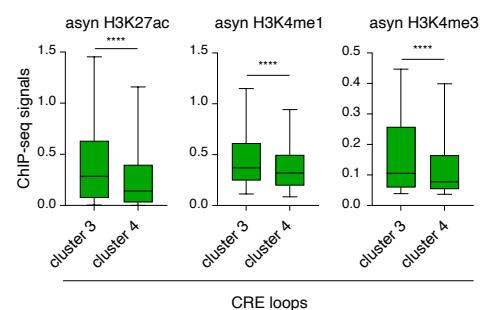
1454 **Extended Data Fig. 7 | Relative genomic position of structural loops determines their ability**
1455 **to disrupt CRE loops.**

1456 **a**, Definition of s_i -min. **b**, Boxplots showing significantly lower s_i -min in the insulated cluster1-P
1457 and newly gained CRE loops in comparison to the less insulated cluster2, 3 and 4 CRE loops. For
1458 all boxplots, central lines denote medians; box limits denote 25th–75th percentile; whiskers denote
1459 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$. Two-sided Mann-
1460 Whitney U test. **c**, Boxplots showing the same comparison as **(b)** after CRE loop size-matching.
1461 For all boxplots, central lines denote medians; box limits denote 25th–75th percentile; whiskers
1462 denote 5th–95th percentile. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$. Two-sided
1463 Mann-Whitney U test. **d**, Scatter plots showing the significant negative correlation across all post-
1464 mitotic cell cycle stages between insulation strength (\log_2 fold change +auxin/-auxin) and s_i -min
1465 for CRE loops with a single interrupting structural loop. Top panel: sizes of CRE loops were
1466 limited to 50-100kb. Middle panel: sizes of CRE loops were limited to 100-150kb. Bottom panel:
1467 CRE loop sizes were limited to 150-200kb. The correlation coefficient and p values were computed
1468 via the “cor.test” function in R.

1469

1470

1471






1472

1473

1474

1475

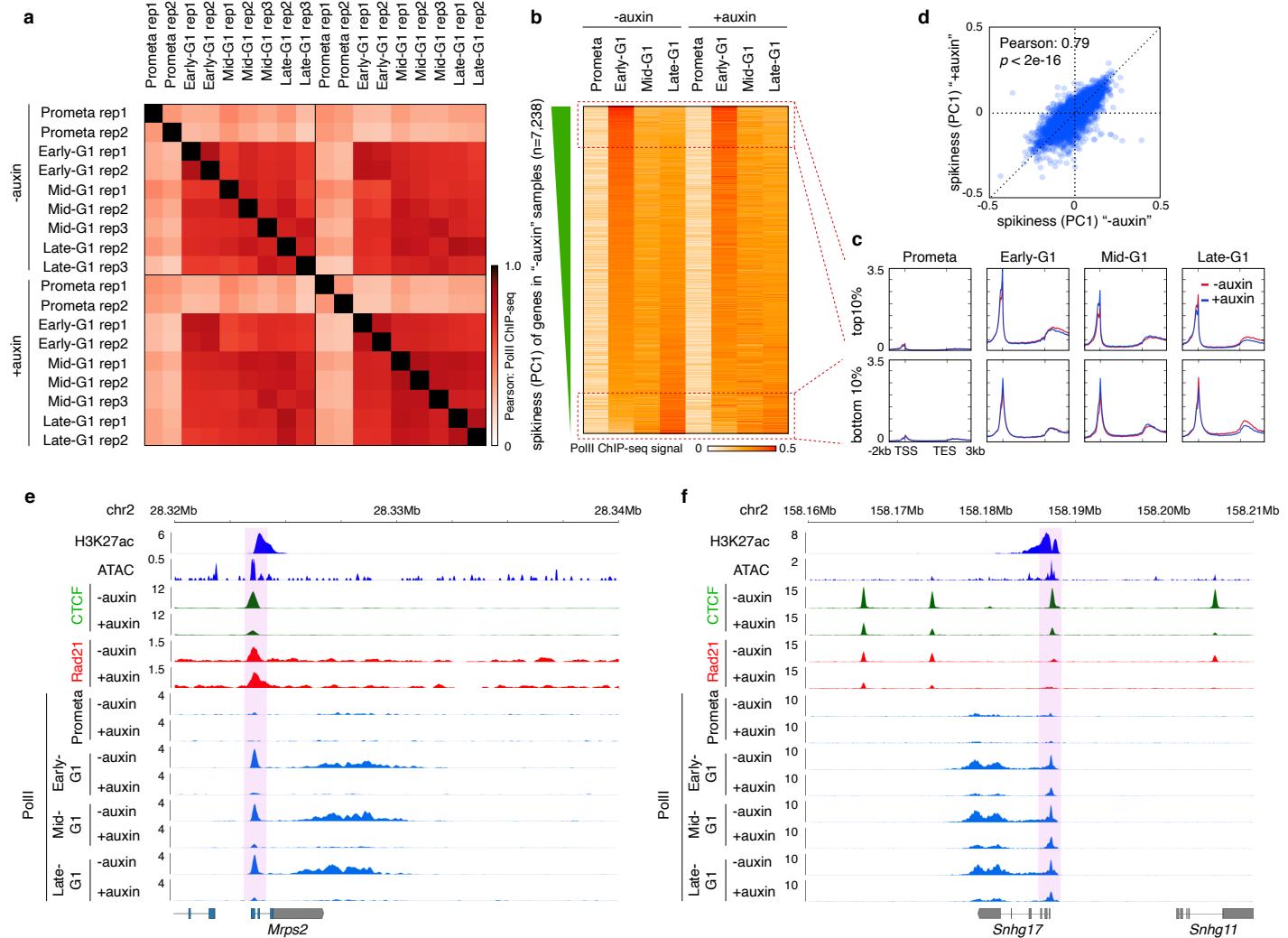
1476

a**c****b****d****e**

1477 **Extended Data Fig. 8 | Structural loops support the formation of interactions especially**
1478 **among weak CREs.**

1479 **a**, APA plots of the cluster3 and cluster4 CRE loops with or without auxin at all tested time points.
1480 Bin size: 10kb. Plots for the replicate-merged as well as each individual replicates are shown. **b**,
1481 Box plots showing the \log_2 fold change of cluster3 and cluster4 CRE loop strength after auxin
1482 treatment in early- and mid-G1 phase. For all boxplots, central lines denote medians; box limits
1483 denote 25th–75th percentile; whiskers denote 5th–95th percentile. **** $P <0.0001$. Two-sided
1484 Mann-Whitney U test. **c**, Enrichment analysis of each CRE loop cluster encompassed by structural
1485 loops. Colors of the squares indicate \log_2 transformed odds ratio (Fisher's exact test). Sizes of
1486 squares indicate the significance of enrichment (p values of Fisher's exact test). **d**, Box plots
1487 showing the progressively strengthened support (loop strength “-auxin” – “+auxin”, obs/exp) by
1488 structural loops of cluster4 CRE loops. For all boxplots, central lines denote medians; box limits
1489 denote 25th–75th percentile; whiskers denote 5th–95th percentile. **** $P <0.0001$. Two-sided
1490 paired Wilcoxon signed-rank test. **e**, Box plots showing the ChIP-seq signals of indicated histone
1491 marks at anchors of cluster3 or cluster4 CRE loops. For all boxplots, central lines denote medians;
1492 box limits denote 25th–75th percentile; whiskers denote 5th–95th percentile. **** $P <0.0001$.
1493 Two-sided Mann-Whitney U test.

1494


1495

1496

1497

1498

1499

1500 **Extended Data Figure 9 | Characterization of post-mitotic gene reactivation after CTCF
1501 depletion.**

1502 **a**, Pearson correlations of PolII ChIP-seq signals across biological replicates. **b**, Heatmap of post-
1503 mitotic transcriptional “spikiness” of genes in untreated and auxin treated samples. Active genes
1504 were ranked in a descending order of the PC1 of untreated samples. **c**, Meta-region plots (scaled
1505 from TSS to TES) showing the PolII ChIP-seq signals of the 10% most spiking and least spiking
1506 genes across cell cycle stages with or without CTCF. **d**, Scatter plot showing the positive
1507 correlation between PC1 values of untreated and auxin treated sample, confirming that post-mitotic
1508 spiking is largely preserved after CTCF depletion. **e**, Browser tracks of the *Mrps2* locus showing
1509 dramatically reduced PolII ChIP-seq signals after CTCF depletion. Note a strong CTCF peak
1510 located at the TSS that was diminished upon auxin treatment. However, the Rad21 signal was
1511 minimally perturbed after CTCF depletion at this site, suggesting that cohesin is loaded at this
1512 region. **f**, Similar to (e), showing the PolII signal reduction at *Snhg17* locus.

1513

1514

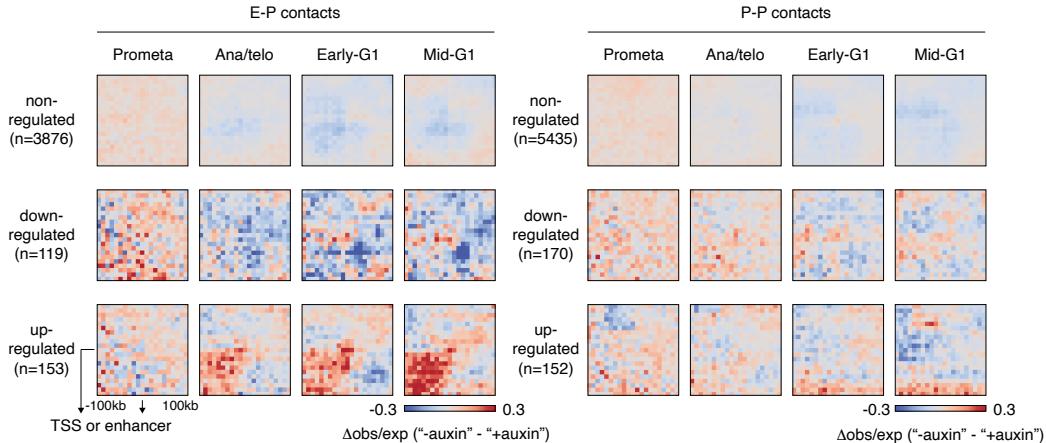
1515

1516

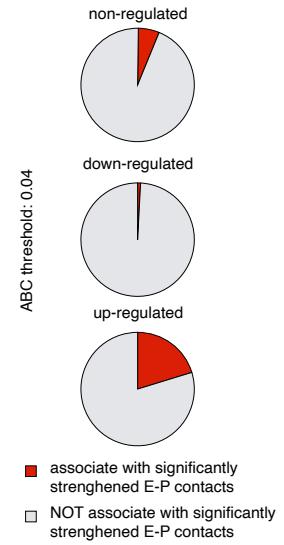
1517

1518

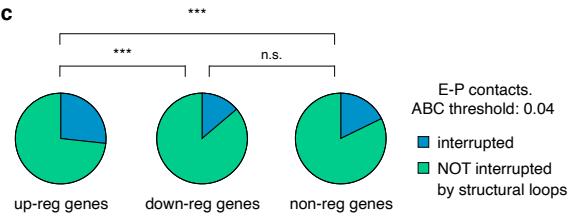
1519

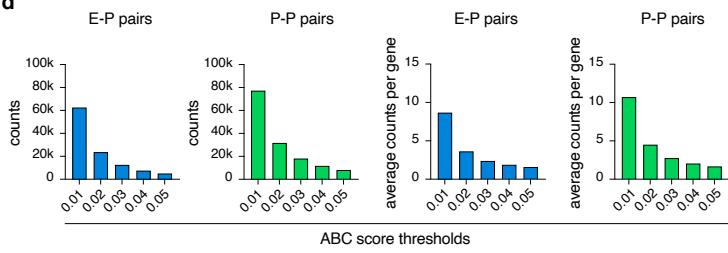

1520

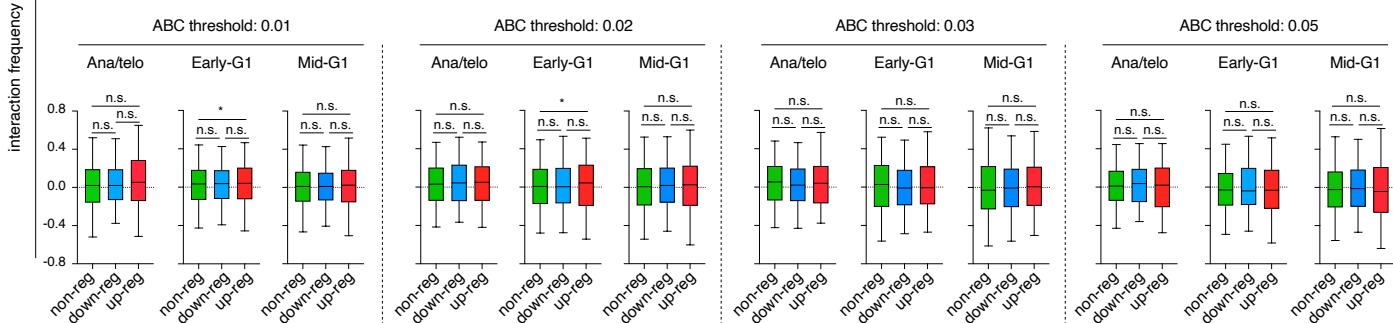
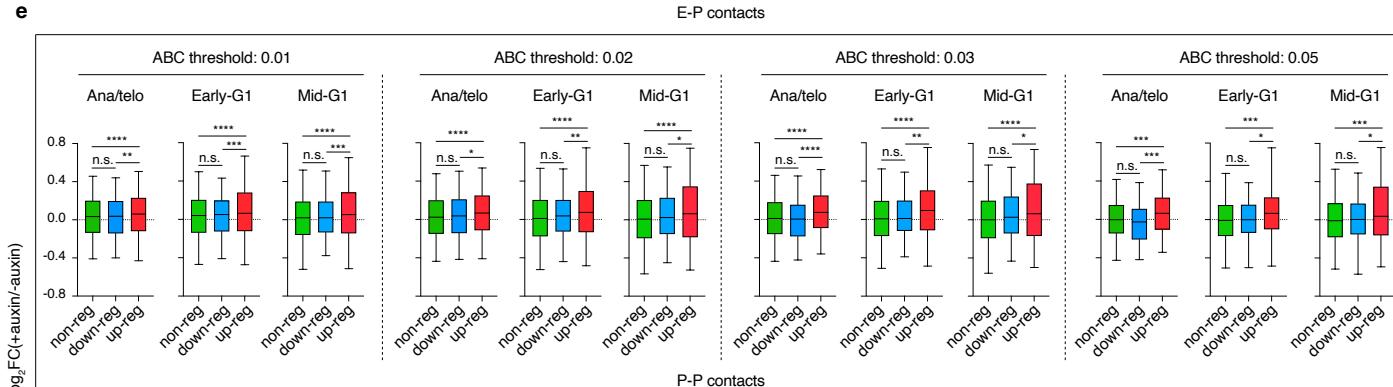
1521


Extended Data Fig. 10

a


ABC threshold: 0.04


b



c

d

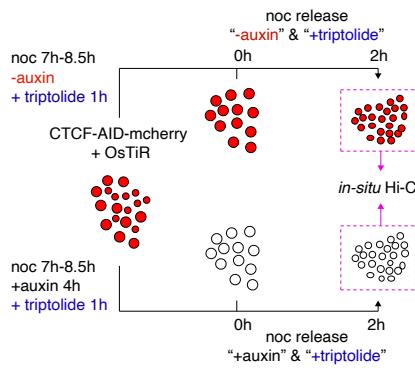
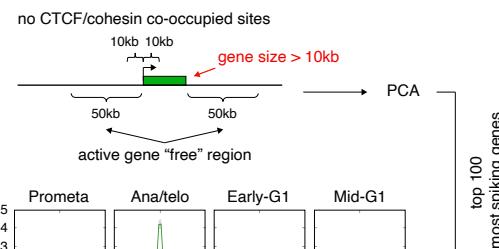
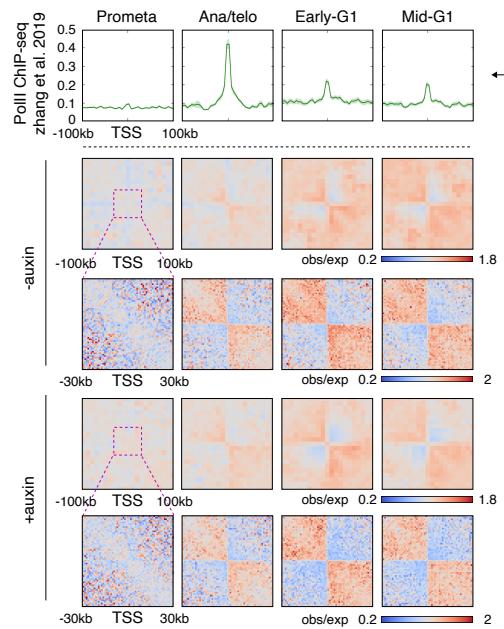
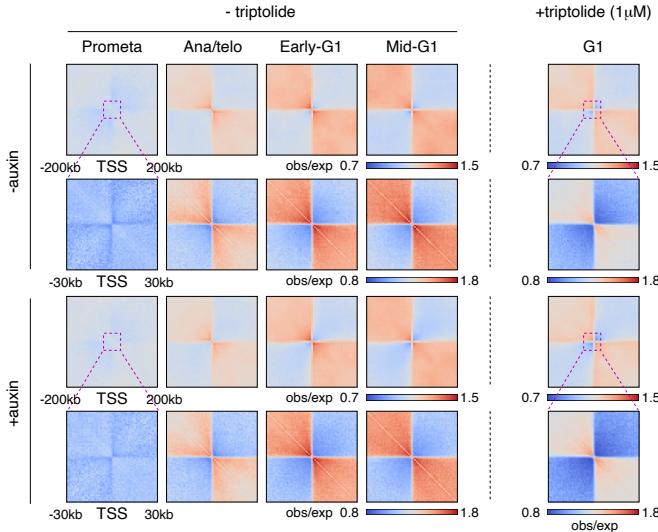
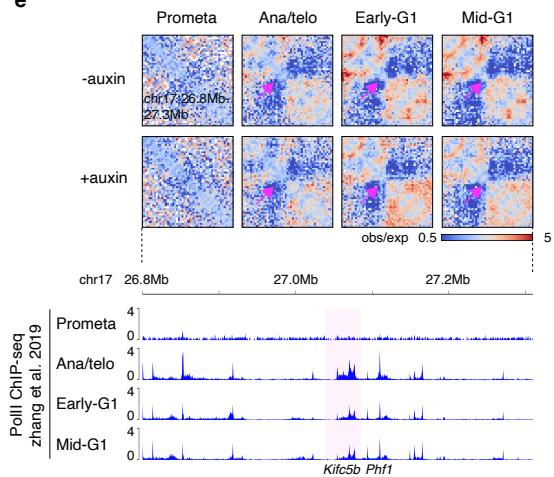
e

1522 **Extended Data Figure 10 | CTCF loss-actuated post-mitotic gene up-regulation is linked to**
1523 **elevated enhancer-promoter interactions.**

1524 **a**, Left: Pile-up Hi-C matrices showing the changes of E-P interactions associated with non-
1525 regulated, down-regulated or up-regulated genes after CTCF depletion. Bin size: 10kb. Note that
1526 increase of E-P interactions for up-regulated genes was observed as early as in ana/telophase. Right:
1527 Similar to left with pile-up analysis showing changes of P-P interactions. Bin size: 10kb. **b**, Pie
1528 charts showing the fraction of up-, down- or non-regulated genes that are associated with
1529 significantly strengthened E-P contacts. **c**, Pie charts showing the fraction of structural loop-
1530 interrupted E-P pairs associated with non-regulated, down-regulated or up-regulated genes when
1531 ABC cutoff equals 0.04. *** $P < 0.001$. P values were calculated using Fisher's exact test. **d**,
1532 Numbers of total and per gene confident E-P pairs or P-P pairs with ABC score cutoffs set to 0.01,
1533 0.02, 0.03, 0.04 or 0.05. **e**, Similar to **Figure 4e and f**, with Boxplots showing the \log_2 fold change
1534 of interactions between E-P pairs or P-P pairs associated with non-regulated, down-regulated and
1535 up-regulated respectively with ABC scores set to 0.01, 0.02, 0.03 or 0.05. For all boxplots, central
1536 lines denote medians; box limits denote 25th–75th percentile; whiskers denote 5th–95th percentile.
1537 * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$ and **** $P < 0.0001$. Two-sided Mann-Whitney U test.

1538

1539






1540

1541

1542

1543

1544

a**c****d****b****e**

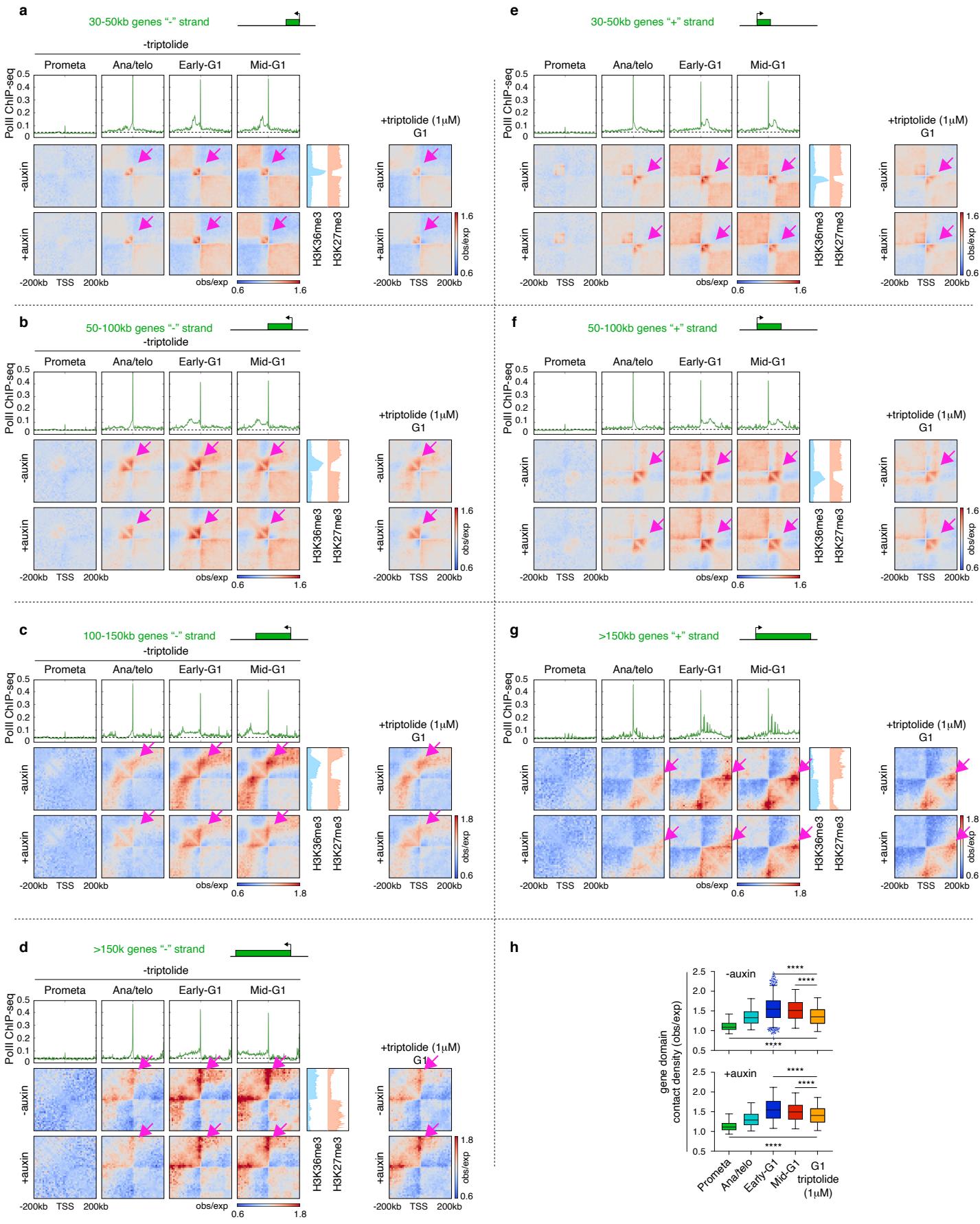
1545 **Extended Data Figure 11 | Relationship between TSS PolII binding and local insulation.**

1546 **a**, Outline of experimental flow involving transcriptional inhibition and CTCF depletion during
1547 the mitosis-to-G1 phase transition. **b**, Pile-up Hi-C matrices showing the insulation with or without
1548 triptolide treatment at all active TSS identified previously¹. Insulation plots were generated across
1549 cell cycle stages in both untreated control and auxin treated cells. Plots with bin size of 10kb and
1550 1kb (zoom-in view) are shown. **c**, Strategy of target gene selection (see methods) to find genes
1551 with PolII spiking at the TSS. **d**, Upper panel: Meta-region plots showing the PolII ChIP-seq
1552 profiles (from parental G1E-ER4 cells) of the top 100 most spiking TSS chosen from **(c)**. Plots
1553 were centered on TSS. Lower panel: Pile-up Hi-C matrices showing the insulation at the top 100
1554 most spiking TSS chosen from **(c)**. Plots with bin size of 10kb and 1kb (zoomed-in view) were
1555 plotted. **e**, Upper panel: KR balanced Hi-C contact matrices showing the progressive insulation
1556 gain at the *Kifc5b* and *Phfl* loci in untreated control and auxin treated samples. Insulation is
1557 indicated by purple arrows. Bin size: 10kb. Lower panel: Genome browser tracks showing PolII
1558 occupancy corresponding to genomic the region in upper panel across cell cycle stages in parental
1559 cells.

1560

1561

1562


1563

1564

1565

1566

1567

1568 **Extended Data Figure 12 | Partial uncoupling of gene domain formation from active**
1569 **transcription after mitosis.**

1570 **a**, Upper panels: Meta-region plots showing the parental PolII ChIP-seq profile of all minus strand
1571 genes between 30kb and 50kb across all cell cycle stages. Plots were centered on TSS. Bottom
1572 panels: Pile-up Hi-C matrices showing the progressive reformation of gene domains corresponding
1573 to the upper panel in samples with or without triptolide treatment. Corresponding samples after
1574 auxin treatment are also shown. Plots are centered around TSS. Gene domains are indicated by
1575 purple arrows. Meta-region plots of showing H3K36me3 and H3K27me3 ChIP-seq are sh. **b-g**,
1576 Similar to **(a)** showing PolII elongation and reformation of gene domains with indicated gene size
1577 range and strandedness in samples with or without triptolide treatment. Corresponding samples
1578 with auxin treatment are also shown. **h**, Box plots showing the strength of gene domains in post-
1579 mitotic samples without triptolide treatment as well as G1 samples with triptolide treatment. For
1580 all boxplots, central lines denote medians; box limits denote 25th–75th percentile; whiskers denote
1581 5th–95th percentile. **** $P < 0.0001$. Two-sided Paired Wilcoxon signed rank test.

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591 **Supplementary table 1: Hi-C data processing statistics**

1592 **Supplementary table 2: rGMAP boundary calls**

1593 **Supplementary table 3: Hiccups loop calls**

1594 **Supplementary table 4: Active genes**

1595

1596

1597

1598