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ABSTRACT

Candida albicans is a pathobiont that colonizes multiple niches in the body including the
gastrointestinal (Gl) tract, but is also responsible for both mucosal and systemic infections.
Despite its prevalence as a human commensal, the murine Gl tract is generally refractory to
colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans
isolates, 529L and CHNL1, that stably colonize the murine GI tract in three different animal
facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial
microbiota did not show notable differences between mice colonized with the three C. albicans
strains. We compared the genotypes and phenotypes of these three strains and identified
thousands of SNPs and multiple phenotypic differences, including their ability to grow and
filament in response to nutritional cues. Despite striking filamentation differences under
laboratory conditions, however, analysis of cell morphology in the Gl tract revealed that the
three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found
that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-
deficient mice increased the ability of SC5314 to colonize the Gl tract relative to CHN1 and
529L. These studies provide new insights into how strain-specific differences impact C. albicans
traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans

pathobiology in its natural host niche.

IMPORTANCE

Understanding how fungi colonize the Gl tract is increasingly recognized as highly
relevant to human health. The animal models used to study Candida albicans commensalism
commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to

establish successful Gl colonization by the C. albicans reference isolate SC5314. Here, we
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characterize two C. albicans isolates that can colonize the murine Gl tract without antibiotic
treatment and can therefore be used as tools for studying fungal commensalism. Importantly,
experiments were replicated in three different animal facilities and utilized three different mouse
strains. Differential colonization between fungal isolates was not associated with alterations in
the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial
peptide. This work emphasizes the importance of C. albicans intra-species variation as well as

host anti-microbial defense mechanisms in defining commensal interactions.

INTRODUCTION

The fungal component of the human microbiota, the mycobiota, is increasingly
recognized as playing key roles in host homeostasis (1-7). Candida albicans, a pathobiont that
is found in over 70% of individuals, is a prominent member of the gastrointestinal (GI) mycobiota
(8, 9). This species is present in multiple niches of the human body and can cause a variety of
opportunistic mucosal and systemic infections. Disseminated infections can arise when
Candida cells in the Gl tract translocate into the bloodstream (10, 11), as has been observed
in murine models of mucositis and neutropenia (12) and in patients undergoing allogeneic
hematopoietic cell transplants (13). C. albicans, as well as other Candida species, are also
linked to intestinal disease, with C. albicans consistently found at high levels in cohorts of
Crohn’s Disease and ulcerative colitis patients (14). The loss of host signaling pathways
involved in fungal recognition, such as those involving Dectin-1 or Dectin-3, may exacerbate
colitis due to increased Candida levels in the gut (15, 16).

The impact of the GI mycobiota is not limited to gut mucosal tissues but can also
modulate systemic responses distal to this organ. For example, C. albicans cells in the Gl tract

can drive the induction of systemic Th17 responses in both mice and humans (1, 4). These
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systemic responses can be a double-edged sword as they can provide protection against
systemic infections by fungi or other microbial pathogens but can cause increased airway
inflammation in response to antigens in the lung (1, 4). Understanding of GI colonization by
C. albicans and related fungal species therefore has far reaching consequences for
understanding immune homeostasis at both intestinal sites and sites distal to the gut.

Given their central role in host homeostasis, it is notable that most laboratory mice are
not readily colonized with C. albicans or other fungi (17, 18). The importance of commensal
fungi to the biology of laboratory mice was highlighted in a recent study in which lab mice were
rewilded by release and subsequent recapture from an outdoor facility (17). Notably, rewilded
mice showed enhanced differentiation of memory T cells and increased levels of circulating
granulocytes, and these changes were associated with increased fungal colonization of the Gl
tract (17). Inoculation of lab mice with fungi from rewilded mice or with C. albicans was sufficient
to enhance immune responses, further establishing that the gut mycobiota can play broad roles
in educating host immunity.

Relatively little is known about the fungal and host mechanisms that regulate Gl
colonization by species such as C. albicans. Most studies have relied on antibiotic
supplementation to allow the standard ‘laboratory’ strain of C. albicans, SC5314, to stably
colonize the Gl tract of mice (12, 19, 20). Several other Candida strains are also unable to
colonize the murine Gl tract without the use of antibiotics, including C. albicans strains WO-1,
Can098, 3153A, ATCC 18804, OH-1, Candida glabrata ATCC 15126, a Candida parapsilosis
clinical isolate, and Candida tropicalis ATCC 66029 (21-23).

Antibiotic treatment against bacterial taxa can enable fungal colonization as specific
bacterial commensals induce the transcription factor HIF-1a in enterocytes which in turn leads

to production of CRAMP, an antimicrobial peptide related to the human cathelicidin LL-37 (21).
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LL-37 has been shown to exhibit both antibacterial and antifungal activity (24), can inhibit
Candida adhesion and affect cell wall integrity by interacting with cell wall components,
including the exoglucanase Xog1l (25-27). CRAMP kills C. albicans cells in vitro (28) and inhibits
Gl colonization, as shown by increased C. albicans colonization in mice lacking CRAMP (21).
Conversely, on the fungal side, loss of filamentation has been linked to enhanced Gl
colonization by C. albicans cells in both antibiotic-treated and germ-free mice (29-32). Several
transcriptional regulators of the C. albicans mating circuit have also been shown to impact
fungal fitness levels in this niche (31, 33-35).

While SC5314 represents the standard isolate of C. albicans used by many in the field,
several studies have established that C. albicans isolates display a wide range of phenotypic
properties both in vitro and in models of infection (36-40). Intra-species variation can therefore
have a major impact on C. albicans strain behavior and determine the outcome of host-fungal
interactions. Understanding inter-strain differences is critical for determining the breadth of
properties displayed by a species and could lead to new insights into mechanisms of fungal
adaptation, niche specificity and pathogenesis (33, 41-44).

Here, we compared the ability of different C. albicans strains to colonize the murine Gl
tract without antibiotic treatment. We identified two isolates, 529L and CHN1, that stably
colonize the Gl tract under conditions where SC5314 is consistently lost from this niche. Similar
findings were obtained when using three different mouse lines in three different animal facilities,
highlighting the robustness of this finding. 529L and CHN1 also outcompeted SC5314 in direct
competition experiments in the murine intestine, establishing that these strains exhibit an
increased relative fitness for this niche. Analysis of the phenotypic properties of SC5314, CHN1,
and 529L revealed stark differences in filamentation and metabolism between these strains in

vitro. However, filamentation differences were not evident in the murine gut, highlighting how in
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vivo phenotypes can differ from those observed in vitro. Instead, we show that CHN1 and 529L
were more resistant to killing by the CRAMP peptide relative to SC5314 and linked these
differences to Gl colonization fitness using mice lacking CRAMP. Together, these studies
highlight how differences between C. albicans isolates can dictate differences in gut
colonization and establish CHN1 and 529L as relevant tools for the study of this fungus in its

commensal niche.

RESULTS
C. albicans strains 529L and CHN1 can stably colonize the murine GI tract without
antibiotics

We compared the ability of three C. albicans human isolates to each colonize the Gl
tract of three different strains of mice in the absence of antibiotic supplementation. The isolates
tested were SC5314, the standard ‘laboratory’ isolate originally obtained from a bloodstream
infection (45), 529L, isolated from the oral cavity (46), and CHNL, isolated from the lung (47).
These strains were orally gavaged to BALB/c (Charles River Laboratories), C57BL/6J (Jackson
Laboratories) and C3H/HeN (Envigo), mice fed a standard chow diet in animal facilities in Texas
(TX), New York (NY), or Rhode Island (RI). GI colonization levels were monitored by plating
mouse fecal pellets every 2-7 days.

SC5314 did not stably colonize the Gl of any of the mice tested. For example, CFU
levels decreased 1-2 logs in the first 7-14 days of infection in both C3H/HeN (TX) and C57BL/6J
(RI) mice and fell below detection levels at later time points (Figure 1A-D). In contrast, 529L
and CHN1 more stably colonized the GI tract in each of the mouse strain backgrounds,
particularly in C57BL/6J (RI, NY) and C3H/HeN (TX) mice, being maintained for 28-48 days

post inoculation (Figure 1A-D). For C57BL/6J (RI, NY) mice, colonization differences between
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isolates were readily apparent in the first week post gavage and in the RI facility these
differences increased out to 28 days of colonization (Figure 1A, B). Most C67BL/6J mice
cleared SC5314 cells whereas CHN1 and 529L were present at >103 CFUs/qg feces in both the
TX and RI facilities at the end of the experiment (Figure 1A-B and Supplemental Figure 1A). In
BALB/c (RI) mice, 529L and CHN1 had higher levels of colonization than SC5314 during the
first 5 days, although significance was not observed at later time points (Figure 1C). Finally, in
C3H/HeN (TX) mice, both 529L and CHN1 were present at higher levels than SC5314
throughout the time course with SC5314 cells no longer recovered from the fecal pellets of any
mice by day 21 (Figure 1D and Supplemental Figure 1A).

At the end of the experiment, colonization levels were also examined by recovery of
colony forming units (CFUs) from Gl organs in C57BL/6J and BALB/c mice. Analysis revealed
relatively high levels of 529L and CHNL1 present in C57BL/6J (RI, NY) organs, while SC5314
was typically not recovered from any Gl organs (Supplemental Figure 1B). For BALB/c (RI)
mice, we could not identify significant differences in organ colonization levels between the three
isolates at day 28, reflecting the fact that each isolate showed reduced colonization at these
time points in this mouse background (Supplemental Figure 1B).

Having established that 529L and CHN1 showed increased fitness relative to SC5314 in
mono-colonization experiments, we tested whether these strains showed fitness differences in
direct competition experiments. To distinguish the strains in a direct competition, SC5314 was
transformed with a nourseothricin resistance gene (SAT1) targeted to the NEUT5L on
chromosome (Chr) 5, which is a neutral locus for integration of ectopic constructs (48). To verify
that the presence of SAT1 at this site does not alter the fitness of isolates during gut
colonization, we performed competitions between SC5314 and two independently transformed

SC5314 isolates containing SAT1. A 1:1 mix of SAT1-marked and unmarked SC5314 was
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introduced into the Gl and relative strain abundance determined by calculating the proportion
of nourseothricin-resistant colonies recovered from fecal pellets over 14 days. Experiments
revealed no significant advantage between the two versions of SC5314, indicating that the
presence of SAT1 did not affect C. albicans fitness in the Gl tract (Supplemental Figure 2A-B).

Next, a 1:1 mix of SC5314 (SAT1-marked) and 529L or CHN1 was introduced into the
Gl tract and the relative proportions of each strain determined from fecal pellets of C57BL/6J
(RI) mice. By day 4 post gavage, both 529L and CHN1 began to dominate the colonizing
population, with SC5314 cells representing less than 10% of CFUs in fecal pellets (Figure 1E-
F). By day 14, CHN1 and 529L accounted for 100% and 98.5% of the cells recovered from the
feces, respectively, and similar proportions of isolates were observed across the different Gl
organs (stomach, small intestine, colon, and cecum; Supplemental Figure 3A-B). These results
indicate that both CHN1 and 529L display increased competitive fitness relative to SC5314
throughout the Gl tract.

To extend these findings, we performed similar competition experiments using both
SAT1-marked and unmarked versions of each isolate in different combinations in the C57BL/6J
(NY) murine background. Experiments confirmed the RI facility findings in that both CHN1 and
529L showed increased competitive fitness relative to SC5314 (Supplemental Figure 4A-B).
Experiments also showed that CHN1 exhibited a consistent fithess advantage over 529L
(Supplemental Figure 4C). We noted, however, that large fluctuations were observed in the
overall proportions of each isolate in these competitions. When competing CHN1 and SC5314,
differences between strains were apparent approximately 24 days post gavage, when CHN1
became dominant in fecal pellets (Supplemental Figure 4A). For 529L versus SC5314
competitions, 529L represented ~80% of the fungal population after 3 days or after 22 days

depending on which strain carried the SAT1 gene (Supplemental Figure 4B). Similarly, the
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fitness advantage of CHNL1 relative to 529L was evident much earlier in one competition than
in the other (Supplemental Figure 4C), illustrating variability in the dynamics of gut colonization.
Despite this variation, these findings establish that CHN1 and 529L consistently show increased

fitness in the murine Gl tract compared to SC5314.

C. albicans isolates do not significantly affect the composition of the gut bacterial
microbiome

Commensal bacterial gut microbiota (particularly the phylum Bacteroidetes and family
Lachnospiraceae) are important for murine resistance to C. albicans colonization (21), an
association that was recently corroborated in adult hematopoietic cell transplant recipients (13).
To assess the impact of colonization with different C. albicans isolates on the bacterial
microbiota, the 16S rRNA hypervariable region was sequenced from fecal pellets from both
BALB/c and C57BL/6J mice colonized with these isolates and was performed in mice housed
in different animal facilities (Rl and NY). We found that colonization with SC5314, 529L, or
CHN1 strains did not result in any significant differences in microbiome composition at phylum
or family levels in either animal facility (Figure 2A-C). Colonization also did not significantly
affect the alpha diversity of the bacterial microbiome as measured by the Shannon Diversity
Index or cause significant changes in beta diversity, with samples displaying no significant
clustering on the PCoA projection of Bray-Curtis distances for both BALB/c (Supplemental
Figure 5A) and C57BL/6J mice (Supplemental Figure 5B-C) in the two facilities (RI, NY). These
experiments establish that C. albicans colonization with these different isolates has a minimal
impact on the composition of the bacterial microbiota under the conditions evaluated in this

study.
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SC5314, 529L and CHN1 show distinct metabolic and filamentation properties in vitro

To investigate the mechanism by which 529L and CHN1 exhibit increased Gl fithess
relative to SC5314 we compared the phenotypes of the three isolates in a series of in vitro
assays. First, colony filamentation was examined on YPD, SCD, Spider and Lee’s + glucose
media (Figure 3A). Cells were plated on these media, incubated at 37°C for 4 days, and
assessed for filamentation. No visible differences were noted between the three strains when
grown on YPD, however 529L displayed markedly reduced colony filamentation on SCD, Spider
and Lee’s + glucose medium relative to both SC5314 and CHN1. Next, cell morphology was
examined in various liquid filamentation-inducing conditions after 6 h of growth at 37°C.
Consistent with colony phenotypes, 529L did not efficiently flament under these conditions and
only formed rare hyphae or pseudohyphae in medium supplemented with 10% fetal calf serum
(Figure 3B). In contrast, SC5314 and CHNL1 displayed a strong filamentation response across
all media tested.

To further characterize phenotypic differences between these strains, we utilized
Phenotype Microarrays (PM, Biolog) containing a set of 190 different carbon sources. The three
isolates were seeded on PM plates and incubated with shaking at 37°C for 24 h, both
aerobically and anaerobically. Growth was evaluated by taking biomass (ODeoo) readings and
individual wells were assessed for filamentation using a semi-quantitative score of 1 to 5. A
score of 1 indicates 0-20% hyphae observed, while a score of 5 indicates that 80-100% of the
population formed hyphae. Under aerobic conditions, the three isolates displayed different
growth capacity across carbon sources, with SC5314 being able to reach a higher biomass
(mean ODeoo across wells = 0.45 + 0.3 SD) than both 529L (0.30 + 0.17) and CHN1 (0.42 +
0.25) (Figure 3C, P < 0.01 for both isolates relative to SC5314, df = 191, two-way Anova).

Although smaller, differences in growth were also apparent when the isolates were incubated

10
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anaerobically (Figure 3C, P < 0.0001 for both isolates). Analysis of filamentation under aerobic
conditions revealed that 529L again displayed a severe filamentation defect across the
surveyed carbon sources (average filamentation score 1.2 + 0.5), while CHN1 displayed an
intermediate filamentation capacity (1.8 + 0.6) compared to SC5314 (2.8 £ 0.8, Figure 3C, P <
0.0001 for both isolates). Similar results were observed when comparing filamentation of the
three isolates under low oxygen conditions (Figure 3C, P < 0.0001 for both isolates).

Increased C. albicans GI colonization has been previously associated with decreased
levels of short chain or medium chain fatty acids (49, 50). In addition, the presence of short
chain carboxylic acids has been shown to reduce C. albicans filamentation by modulating
external pH and this effect could promote gut colonization (51-54). We therefore assessed the
impact of carboxylic acids (acetic, butyric, lactic, capric, succinic, propionic, and citric acid) on
the ability of the three strains to grow and form filaments. Aerobic growth on short chain
carboxylic acids revealed that CHN1 and 529L showed reduced filamentation relative to
SC5314, with a larger defect observed for 529L (P < 0.01 for both isolates relative to SC5314,
df =9, two-way Anova), which also displayed reduced growth (P < 0.05, Supplemental Figure
6A). Differences in filamentation were also observed for 529L under anaerobic conditions (P <
0.01), where isolates showed similar growth levels on this subset of carboxylic acids
(Supplemental Figure 6A).

While it is possible that reduced filamentation could simply be the result of reduced
growth, a correlation analysis between growth and filamentation levels across all carbon
sources tested revealed that this was not the case (Supplemental Figure 6C). This was most
apparent when the three isolates were grown under anaerobic conditions - a simple linear
regression resulted in a goodness of fit with R2 of 0-0.14, indicating the absence of a correlation

between growth and filamentation across these conditions (Supplemental Figure 6C). Overall,
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these results indicate that both 529L and CHN1 have reduced in vitro growth and filamentation

capacities relative to SC5314, with these differences being more pronounced for 529L.

SC5314, 529L and CHN1 show extensive genetic differences

Previous reports have associated the presence of C. albicans aneuploid chromosomes
with increased fitness for particular host niches, including trisomy of Chr 6 which was repeatedly
selected for during oral infection (55) and trisomy of Chr 7 which favored colonization of the
mouse Gl tract (56). Thus, we examined the whole genome sequences of the three isolates to
identify large and small genetic changes that could contribute to differential colonization of this
niche. 529L and SC5314 have been previously sequenced (37, 57), therefore only CHN1 was
de novo sequenced for this study. All three isolates were compared to the SC5314 reference
genome (assembly 22) and comparative genomic analyses were performed between
CHN1/529L and the SC5314 version examined here. Phylogenetic analysis revealed that
CHN1 and 529L isolates belong to the relatively rare clades A and 16, respectively, being
distinct from SC5314 which belongs to clade 1 (37, 41). This analysis also reveals that 529L
and CHNL1 are more closely related to each other than they are to SC5314 (41).

We found that all three isolates were euploid across all chromosomes (Supplemental
Figure 7A), eliminating aneuploidy of specific chromosomes as a potential explanation for
differences in Gl fitness. However, the isolates displayed differences in heterozygosity patterns
across their genome, with large homozygous regions (01-0.87 Mbp) present on multiple
chromosomes (Supplemental Figure 7B-C). Certain homozygous regions were shared in the
529L and CHN1 whole genome sequences, with telomeric regions of Chr 7R and Chr RR
displaying minimal heterozygosity (Supplemental Figure 7B-C). Variant calling comparing 529L

and CHN1 with SC5314 revealed 112,057 and 86,513 variants, respectively (Supplemental
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Figure 7D and detailed in Supplemental Tables 3-4). Approximately 48% of all variants were
found in coding regions, ~90% of the total variants were represented by SNPs while the
remaining 10% represented insertions/deletions (Supplemental Figure 7D). Given the large
number of genetic differences present between isolates, identification of variants associated
with increased stability in the host Gl tract would require extensive functional analyses which

are beyond the scope of the current study.

SC5314, 5291, and CHNL1 display similar morphologies in the Gl tract

Since the ability of C. albicans to colonize the mammalian Gl tract is associated closely
with its propensity to filament (29, 30, 32, 33, 35, 58, 59), we directly assessed the morphology
of CHN1, 529L and SC5314 cells in the gut of C57BL/6J mice (RI). We utilized an antibiotic
model of gut colonization to facilitate higher levels of fungal colonization than an antibiotic-free
model thereby enabling morphotypic analysis of fungal cells in Gl tissue sections (see
Supplemental Figure 8 for fecal and organ fungal burdens). Consistent with previous studies
(32, 35), analysis of colon tissue sections colonized with SC5314 showed the presence of both
yeast and filamentous forms (Figure 4A). Colonization with 529L and CHN1 also revealed the
presence of both morphological forms, both in the lumen and near the colon epithelium (Figure
4A). Quantification of yeast and filamentous cells from different segments of the Gl tract
revealed that 529L exhibited higher proportions of filamentous cells than SC5314 in the jejunum
(18% more filamentous), but similar proportions of flamentous cells in the other Gl segments
(Figure 4B). This result was unexpected given that 529L was defective for filamentation under
most in vitro growth conditions (Figure 3). In turn, CHN1 showed reduced filamentation in the
duodenum relative to SC5314 (29% fewer filamentous cells) but the opposite trend in the colon

(3% more filamentous cells; Figure 4B). This data demonstrates that, in general, clinical isolates
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529L and CHNL1 display a similar overall distribution of yeast and hyphal forms to SC5314 when
colonizing the murine GI tract. The absence of consistent differences in cell morphology
between the three isolates in vivo indicates that filamentation per se does not appear to drive

differences in Gl colonization.

529L and CHN1 exhibit increased resistance to the antimicrobial peptide CRAMP relative
to SC5314

The intestinal epithelial-derived antimicrobial peptide CRAMP was previously shown to
inhibit C. albicans colonization in the murine Gl tract (21). We hypothesized that C. albicans
strains could be differentially sensitive to CRAMP which may in turn affect their ability to
colonize the GI niche. To test this hypothesis, 529L, CHN1 and SC5314 were grown both
aerobically and anaerobically at 37°C with different concentrations of the CRAMP peptide and
growth rates were monitored in real time (aerobic) or as endpoints (anaerobic). Under aerobic
conditions, SC5314 growth was substantially inhibited by low concentrations of CRAMP (5 uM)
and no growth was observed with 10 uM CRAMP. In contrast, both 529L and CHN1 were more
resistant to CRAMP and showed some ability to grow in the presence of 10 uM of this peptide
(Figure 5A).

Similar trends were obtained when strains were grown anaerobically; SC5314 growth
was reduced by ~70% with 10 uM CRAMP whereas CHN1 and 529L showed a ~42% and a
~25% reduction in growth at this concentration (Figure 5B). Differences between strains were
also observed at higher concentrations, with 529L being the most resistant to CRAMP (Figure
5B). This data establishes that SC5314 is significantly more sensitive to CRAMP than CHN1
and 529L under both aerobic and anaerobic conditions in vitro. Inspection of XOG1, the C.

albicans gene which encodes for the -(1,3)-exoglucanase targeted by LL-37/CRAMP (27, 60),
14
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did not reveal genetic differences that could explain the differential sensitivity of the three
isolates to this antimicrobial peptide (Supplemental Figure 7E).

To determine whether differences in CRAMP sensitivity could affect Gl colonization, we
performed direct competition experiments between SC5314 and CHN1 or SC5414 and 529L in
both wild type C57BL/6J mice as well as in Camp knockout mice that lack the gene encoding
the CRAMP peptide. Mice were gavaged with an equal mix of strains and the relative
proportions of each strain determined by analyzing nourseothricin resistant/sensitive CFUs in
fecal pellets every two days. Notably, we found SC5314 showed a relative fitness defect to
CHN1 and 529L in mice regardless of whether they contained the Camp gene (Figure 5C).
However, SC5314 was present at a significantly higher proportion of the population in Camp
KO mice than in control mice at specific time points. Although a modest phenotype, this result
implicates differences in Gl colonization between CHN1/529L strains and SC5314 as being
due, at least in part, to their differential susceptibility to the CRAMP antimicrobial peptide. This
result is not unexpected given the variety of factors that promote C. albicans colonization
resistance in the gut, including other antimicrobial peptides (e.g., B-defensins (61)), metabolites
(e.g., short chain fatty acids (49)), and humoral factors (e.g., IgA (62)). As such, resistance to
a single immune effector such as CRAMP would not be sufficient to completely explain the

observed phenotypes.

Discussion

C. albicans is a prevalent commensal of the human Gl tract and yet is absent from the
Gl tract of most laboratory mouse strains. Moreover, colonization has typically required that
adult mice are pretreated with antibiotics to enable stable colonization with SC5314, the

standard C. albicans ‘laboratory’ isolate. Here, we demonstrate that two alternative clinical
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isolates, CHN1 and 529L, allow for long-term colonization of the gut of adult mice even without
antibiotic supplementation, whereas SC5314 is gradually lost from the Gl tract under the same
conditions. Colonization is particularly stable in C57BL/6J mice which is the most widely used
strain for biomedical research. We highlight that the increased stability of CHN1 and 529L over
SC5314 was observed in multiple murine strains (C57BL/6J, BALB/c, C3H/HeN) and in three
separate animal facilities located in New York, Rhode Island, and Texas. This establishes that
the increased colonization fithess of CHN1/529L relative to SC5314 is a general finding that is
not unique to a single animal facility or mouse line, and substantially expands the robustness
of the current study. This finding suggests that CHN1 and 529L will also stably colonize the Gl
tract of mice in other animal facilities, establishing these strains as useful tools for researchers
worldwide.

A range of murine models have been used to study C. albicans colonization, yet most of
these models use sustained antibiotic treatment with adult mice which results in variable
colonization levels (12, 19, 20, 63-65). Neonatal models that utilize infant mice (~5-7 days of
age) do not require antibiotic supplementation, which is attributed to an immature gut microbiota
that lacks Candida colonization resistance (66, 67). Similarly, germ-free mice do not require
antibiotics since they have no bacterial microbiota to inhibit Candida growth (21, 32, 68) .
Finally, diet modification using a low fiber purified chow has also been shown to facilitate stable
Candida gut colonization in mice even without antibiotics, presumably due to changes in the
bacterial microbiome (18).

The current study highlights that intra-species variation has a major impact on C.
albicans commensalism among other attributes. Several intra-species differences have
previously been documented for C. albicans both in vitro as well as in systemic and oral

infection models (36-38, 69). For example, while SC5314 is considered the standard lab isolate,

16


https://doi.org/10.1101/2021.06.27.450080
http://creativecommons.org/licenses/by-nd/4.0/

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450080; this version posted June 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

this strain is one of the most virulent C. albicans strains in the murine systemic model (69) and
shows a higher propensity to filament in vitro than other isolates (37). In most cases, the
mechanisms by which intra-species variation impacts fungal cell behavior have not been
defined, although decreased genome heterozygosity and homozygosity of the mating type-like
(MTL) locus have both been linked with reduced systemic virulence (36, 70, 71).

Interestingly, the niche from which clinical C. albicans strains are isolated generally does
not correlate with phenotypic properties, consistent with the idea that the same isolate can grow
in multiple host tissues. Notable exceptions to this include a sub-clade of low heterozygosity
strains (clade 13, Candida africana) that show decreased virulence in animal models of
infection and may be restricted to genital tract infections (41, 72), and hyper-filamentous nrgl
mutants that have been repeatedly recovered from the lungs of cystic fibrosis patients (73).
Loss of filamentation ability has also been observed in some clinical isolates and can enhance
Gl colonization of antibiotic-treated mice (33, 59). Previous findings have therefore established
that natural variation can impact C. albicans-host interactions, and the current study adds to
this concept by identifying strains that show differences in Gl fithess in the absence of antibiotic
treatment.

We note that 529L was obtained from a patient with oral candidiasis (46) while CHN1
was isolated from the human lung (47), indicating that these strains were not isolated from the
Gl tracts of their respective hosts. Laboratory experiments have shown that 529L can
persistently colonize the murine oral cavity, unlike SC5314 (46), and this was linked to a
decreased inflammatory response to 529L (38). Additional studies have documented instances
in which strain variation impacted immune responses to C. albicans during a systemic infection
and highlighted differences in cell wall architecture as possible causes for strain-specific

phenotypes (74).
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The CHN1 isolate has not been studied extensively yet was previously shown to stably
colonize the murine GI tract following pre-treatment with cefoperazone, a broad-spectrum
antibiotic (47, 75). SC5314 and CHN1 colonization behavior was subsequently compared and
both showed similar Gl colonization properties in mice pre-treated with this antibiotic (47). The
ability of these two strains to alter the bacterial microbiota following antibiotic treatment was
also evaluated and both antagonized the re-growth of Lactobacillus (after cessation of antibiotic
treatment) while promoting the growth of Enterococcus, indicating shared impacts on the
bacterial microbiota (47). In the current study, we did not observe changes in the bacterial
microbiota with colonization by SC5314, CHN1 or 529L. These differences in modulating the
bacterial population are presumably due to differences in experimental design, with the current
study showing that C. albicans colonization is not correlated with substantial changes to the
composition of the bacterial microbiome.

Analysis of the in vitro phenotypes of SC5314, CHN1, and 529L revealed stark
differences, with both CHN1 and 529L showing reduced metabolic and filamentation abilities
relative to SC5314. 529L showed a particularly marked defect in growth and filamentation under
a wide variety of conditions. However, all three strains showed similar propensities to filament
in the GI niche, and 529L and SC5314 were previously shown to also exhibit similar
filamentation phenotypes in the oral infection model (38). Our results indicate that in vivo
filamentation characteristics can be very different from those observed in vitro and extend
previous studies in which mutant C. albicans strains were shown to adopt different
morphologies in the Gl tract than those predicted based on in vitro phenotypes (35).

Sequencing of the 529L and CHN1 isolates did not reveal any obvious genetic
alterations that might enable these strains to colonize mice better than SC5314. Thus,

aneuploid configurations previously associated with increased fitness in the Gl tract were not
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detected in these strains, although some homozygous tracts were shared by CHN1 and 529L
that were absent in SC5314. However, the very large number of genetic differences between
the three isolates makes identification of causal genetic links hard to establish without an
extensive investigation of these differences.

It is likely that multiple mechanisms contribute to the observed strain differences in Gl
tract colonization. Genetic and phenotypic differences described here are likely to play
important roles. We report one mechanism by which strain-specific differences in susceptibility
to an intestinal-derived antimicrobial peptide (CRAMP) likely contribute to differences in
colonization capacity, with SC5314 being more sensitive to this peptide than 529L/CHNL.
Interestingly, certain prominent gut commensal bacteria (including Bacteroidetes) are also more
resistant to gut-derived antimicrobial peptides when compared to gut pathobionts (e.g., E. coli),
which can promote the dominance of commensal gut microbiota over pathobionts in the gut
(76). Thus, the multiple factors (e.g., genetic, phenotypic, environmental) that modulate
Candida strain-specific differences in antimicrobial peptide sensitivity merit further

investigation.
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METHODS
Growth of C. albicans isolates

All C. albicans isolates used in this study are listed in Supplemental Table 1. Unless
otherwise specified, isolates were cultured overnight in 2-3 mL of liquid YPD (2% bacto-
peptone, 1% yeast extract, 2% dextrose) at 30°C with shaking (200-250 RPM). Cell densities
were measured using optical densities of culture dilutions (ODeoo) in sterile water using a Biotek

Epoch 2 plate reader.

Strain construction
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To generate SAT1+ strains for GI competition assays, plasmid pDis3 was introduced
into the NEUTS5L neutral locus in the genome (48). The plasmid was linearized with NgoMIV
and transformed into SC5314, CHN1 and 529L strains to generate SAT1+ transformants
(Supplemental Table 1), which were selected on YPD+NAT (nourseothricin at 200 pg/ml,
Werner Bioagents). PCR with primers 3118 (CCCAGATGCGAAGTTAAGTGCGCAG) and
4926 (AAAAGGCCTGATAAGGAGAGATCCATTAAGAGCA) from (48) was used to check

correct integration of the SAT1 gene.

CRAMP in vitro assays

C. albicans isolates were grown overnight in Synthetic Complete Medium (SC) at 30°C
under aerobic conditions. Cells were inoculated in 3 ml of liquid SC at ODeoo 0.25, grown at
30°C until ODeoo of 1, harvested by centrifugation and washed twice with 10 mM Sodium
Phosphate Buffer pH 7.4 (NaPB). Cells were then resuspended in 3 ml of NaPB. 10 ul of cell
resuspension was added to 140 ul YPD media with or without the desired concentration of
CRAMP (Anaspec, AS-61305) and incubated for 1 h at 37°C with shaking. 40 pul of each culture
was then added to an individual well of 96-well plate containing 60 ul YPD with the respective
concentration of CRAMP. The plate was then incubated in a plate reader (Biotek Synergy HT)
at 37°C with orbital shaking for 16 h. Growth was assessed by taking ODsoo readings every
hour. Aerobic experiments were performed with 3 biological experiments (with 3 technical
replicates per biological experiment). For anaerobic growth in the presence of CRAMP, the 96-
well plate was incubated at 37°C in an anaerobic chamber without shaking. Growth was
evaluated by measuring the final biomass (ODeoo) at the end of the 16 h incubation period.
Anaerobic experiments were performed with 3 biological experiments (with 3 technical

replicates per biological experiment).
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Filamentation assays

For filamentation, C. albicans cells were grown overnight in YPD, washed in PBS and
resuspended in PBS at a concentration of 10° cells/ml. 1 ml of cell suspension was added to
24-well plates containing different media and plates were incubated for 4 h at 37°C with shaking.
Images of approximately 500-1000 cells were captured using an AxioVision Rel. 4.8 (Zeiss)

microscope. Assays were performed with 3 biological replicates.

Phenotype microarray plate assays

C. albicans isolates were grown in YPD medium and then resuspended in sterile water
to an ODsoo of 0.2. The cell suspension was diluted 1:48 into inoculating fluid (IFY-0) and 100
pL of the cell suspension was aliquoted into each well of Biolog PM1 and PM2 plates according
to manufacturer’s instructions (Biolog Inc., Hayward, CA). The plates were grown at 37°C for
24 h on a shaking platform at 200 RPM either aerobically or anaerobically (using Thermo Fisher
AnaeroPack Anaerobic Gas Generators in a sealed plastic bag). Following incubation, wells
were scored for filamentation on a scale of 1 to 5 with representing the proportion of flamentous
cells in the population (1: 0-20%; 2: 20-40%; 3: 40-60%; 4: 60-80%; 5: 80-100%). PM
experiments were performed with biological duplicates with growth (ODeoo) and filamentation
scores averaged across the two replicates. Correlation analyses between growth and

filamentation were performed using a simple linear regression model in GraphPad Prism 9.

Gastrointestinal colonization and competition experiments
Experiments in Rhode Island. For animal infections, 7—8-week-old female BALB/c (stock 028,

Charles River Laboratories) or C57BL/6J (stock 000664 from Jackson Laboratory, room MP14)
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female mice were housed together with free access to food (standard rodent chow, LabDiet
#5010, autoclaved) and water. After 4 days of acclimation in the animal facility, mice were orally
gavaged with 102 cells and fungal cells were isolated from fecal pellets every other day by
plating for CFUs. Pellets were homogenized in a PBS solution supplemented with an antibiotic
mixture (500 pg/mL penicillin, 500 pug/mL ampicillin, 250 pug/mL streptomycin, 225 pg/mL
kanamycin, 125 pg/mL chloramphenicol, and 125 pg/mL doxycycline). At the end of the
experiment, mice were sacrificed and the number of fungal cells in each of the Gl organs
(stomach, small intestine, cecum, and colon) were determined by plating multiple dilutions of
organ homogenates. For competition experiments, C. albicans cells were grown overnight in
YPD at 30°C, washed with sterile water and quantified. 108 cells (containing a 1:1 ratio of each
competing strain) were orally gavaged into the mouse Gl tract. For each competition, one strain
was nourseothricin sensitive (SAT1-) and one strain was nourseothricin resistant (SAT1+).
Fecal pellets were collected every other day for 14 days, after which mice were euthanized and
Gl organs collected for CFU determination. Abundance of each strain was quantified by plating
the inoculum, organ and fecal pellets homogenates onto YPD and YPD supplemented with
nourseothricin (200 pg/ml, Werner Bioagents).

Experiments in Texas. For Gl colonization experiments with single strain infection, 6-8 weeks
old C3H/HeN female mice were bought from Envigo (stock 040, C3H/HeNHsd). Mice were fed
Teklad Global 16% Protein Rodent Diet chow (Teklad 2916, irradiated). Mouse cages were
changed once weekly. C. albicans isolates SC5314, CHN1 and 529L were grown overnight in
YPD at 30°C with shaking under aerobic conditions. Cells were harvested, washed twice with
PBS, and resuspended in PBS at a concentration of 1 x 10° CFU/ml. C3H/HeN female mice
were gavaged with 200 pl of cell suspension containing a total of 2 x 108 Candida cells. To

determine fungal burdens, fecal pellets were collected every 7 days for 35 days, homogenized
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and plated on YPD agar supplemented with antibiotics (30 pg/ml of vancomycin and 30 pg/ml
of gentamicin).

For competition experiments, C. albicans isolates SC5314 (containing the SAT1 gene,
SAT1+), CHN1 and 529L were grown overnight in YPD at 30°C with shaking under aerobic
conditions. Cells were harvested, washed twice with PBS and resuspended in PBS at a
concentration of 1 x 10° CFU/ml. Equal cell numbers of SC5314 (SAT1+) and CHN1 or 529L
were mixed together. 6-8 weeks old C57BL/6J (Jackson Laboratories, room RB12) or Cramp
KO (Jackson Laboratories, stock 017799) female mice were gavaged with 200 ul of cell
suspension containing a total of 2 x 108 Candida cells. Equal strain ratios were confirmed by
plating the initial inoculum. Fecal pellets were collected every two days for 19 days,
homogenized and plated on YPD agar supplemented with nourseothricin (200 pg/ml) and
antibiotics (30 pg/ml of vancomycin and 30 pg/ml of gentamicin).

Experiments in New York. C57BL/6J (stock 00664, Jackson Laboratory, room MP14) female
mice were purchased in groups of 20 mice and redistributed between cages to normalize gut
microbiome one week prior to use. Mice were fed Lab Diet 5053 (PicoLab Rodent Diet 20,
Irradiated). Mouse cages were changed once weekly. For Gl colonization, Candida strains were
streaked on SAB agar from glycerol stock and grown overnight at 37°C. Colonies were collected
into YPD media and grown for an additional 18 h at 30°C with shaking (250 RPM). Cells were
then collected in water and densities were measured using a hemocytometer. Mice were
gavaged with 0.2 mL liquid culture containing a total of 107 cells per mouse. Fecal samples
were collected prior to gavage and regularly over 48 days during colonization. Gut fungal
burdens were determined by plating fecal pellet homogenates on SAB agar (BD Difco
Sabouraud Dextrose Agar, BD 210930) plates supplemented with 10 pg/ml of Vancomycin

(Hospira, NDC 0409-6510-01) and 100 pg/ml of Gentamicin (Gemini, 400108).
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For Gl competitions, SAT1- and SAT1+ Candida strains were grown as for Gl
colonization experiments. Mice were gavaged with 5 x 10° cells of each SAT1- and SAT1+
strains (total of 107 cells per mouse). Fecal samples were collected regularly over 2-6 weeks
and plated onto SAB and SAB with nourseothricin (100 pg/mL, Gold Biotechnology, N-500-1)

plates.

Analysis of C. albicans morphology in the mouse gut

Candida cells in the different Gl sections were imaged by Fluorescence In Situ
Hybridization (FISH) as described by (35). In brief, C57BL/6J mice were treated with an
antibiotic cocktail (penicillin 1.5 mg/mL, streptomycin 2 mg/mL, 2.5% glucose for taste) and
fluconazole (0.5 mg/ml, Sigma-Aldrich) for 3 days and followed by antibiotic treatment for one
day. At this point, the mice were colonized by adding C. albicans cells (2 x 10° cells/ml) to the
drinking water containing antibiotics. The antibiotic containing water was changed every 3-4
days. After 7 days of colonization, the mice were sacrificed, and the Gl organs were harvested.
1-2 cm pieces of different parts of the Gl tract were fixed in methacarn (American Master Tech
Scientific) overnight followed by two washes with 70% ethanol and subjected to paraffin block
preparation. 10 ym sections were first deparaffinized and then the protocol from (35) was
followed. Candida cells were stained with a Cy3-labelled PAN fungal 28s rRNA probe, epithelial
cells were stained with DAPI (Molecular Probes, Invitrogen), and the Gl mucosal layer was
stained with Fluorescein labelled WGA1 and UEAL (Vector Laboratories). Tissue imaging was
carried out using colon sections and images were captured using an AxioVision Rel. 4.8 (Zeiss)

fluorescence microscope. 8-10 Z-stacks were merged to generate the final images.
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To evaluate Candida morphology in the GI, 10 ym tissue sections were first
deparaffinized, blocked with 1X PBS + 5% FBS for 30 min at room temperature and then
incubated with an anti-Candida antibody coupled to FITC (1:500 dilution, BIODESIGN
International) overnight at 4°C. This was followed by 3 washes with PBS at room temperature
and then staining of the epithelium with DAPI. Cell counting was carried out using an AxioVision
Rel. 4.8 (Zeiss) fluorescence microscope. Two tissue sections from each mouse (n = 3 mice)
were imaged and 50-600 Candida cells per mouse were examined for morphology. The
proportions of yeast and hyphal morphotypes were averaged for the two sections for each

segment of the Gl tract.

Whole genome sequencing

To extract genomic DNA, isolates were grown overnight in YPD at 30°C and DNA
isolated from ~10° cells using a Qiagen Genomic Buffer Set and a Qiagen Genomic-tip 100/G
according to manufacturer’s instructions. Libraries were prepared using the Nextera XT DNA
Library preparation kit protocol (lllumina) with an input of 2 ng/pL in 10 uL. Each isolate was
sequenced using lllumina HiSeq 2000 generating 101 bp paired reads. The nuclear genome
sequences and General Feature Files (GFF) for C. albicans SC5314 reference genome
(version A22) were downloaded from the Candida Genome  Database
(http://lwww.candidagenome.org/). Alignment, coverage, ploidy, heterozygosity and variant
calling were performed as previously described (77). Average coverage levels for SC5314,
529L and CHN1 were 141X, 466X and 245X, respectively. Heterozygosity plots were
constructed using methods from (41). Phylogenetic assignment was performed using RAXML
(78) as described by (41) and using the isolates from the same study to classify the strains.

Large homozygous tracts were confirmed by visual inspection in IGV (79). Mutations in XOG1
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were identified using GATK4 (80) and manually inspected in IGV. Genetic variants identified

between SC5314 versus 529L/CHNL1 are included in Supplemental Tables 3 and 4.

16S Sequencing

Experiments in Rhode Island. DNA was extracted from samples using the ZymoBIOMICS
Fecal/Soil DNA 96 Kit from Zymo Research (D6011, Irvine, CA) as per the manufacturer
instructions. Total DNA was eluted in nuclease-free water and quantified using the dsDNA-HS
on a QubitTM 3.0 fluorometer (Thermo Fisher Scientific, Waltham, MA). The 16S rRNA V4
hypervariable region was amplified from DNA using the barcoded 515F forward primer and the
806RDb reverse primers from the Earth Microbiome Project (81). Amplicons were generated
using 5X Phusion High-Fidelity DNA Polymerase under the following cycling conditions: initial
denaturation at 98°C for 30 s, followed by 25 cycles of 98°C for 10 s, 57°C for 30 s, and 72°C
for 30 s, then a final extension at 72°C for 5 min. Gel electrophoresis was used to confirm the
amplicon size. The pooled amplicon library was sequenced at the Rhode Island Genomics and
Sequencing Center at the University of Rhode Island (Kingston, RI) on the lllumina MiSeq
platform with paired-end sequencing (2 x 250 bp), using the 600-cycle kit. Raw 16S rRNA reads
were subjected to quality filtering, trimming, de-noising, and merging using the Qiime2 pipeline
(version 2018.11) (82). Taxonomic classification was done using the pre-trained Naive Bayes
classifier and the g2-feature-classifier plugin trained on the SILVA 132 99% database. Beta
diversity was calculated using the phyloseq package (version 1.30.0) (83) in R (version 3.6.2)
and visualized using PCoA with a Bray-Curtis test. Raw sequence data were uploaded and
made available on the NCBI Sequence Read Archive under BioProject number PRINA735873.
Experiments in New York. 16S DNA was extracted and purified from fecal samples collected

days O (before Candida gavage), 5, 12, and 48 post Candida gavage with a QlAamp kit (catalog

27


https://doi.org/10.1101/2021.06.27.450080
http://creativecommons.org/licenses/by-nd/4.0/

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450080; this version posted June 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

no. 51306). The V4/V5 16S rDNA region was then PCR-amplified using modified universal
bacterial primers. PCR products were sent to IGO (Integrated Genomics Operation) for lllumina
sequencing and library preparation. The sequences were then compared to the NCBI RefSeq
RNA library and raw reads were preprocessed using DADA2 implemented in R. DADA2 was
used to perform quality filtering on resulting sequences, infer exact amplicon sequence variants
(ASVs) resulting sequences, and to filter and remove chimeras (84). A minority of samples of
insufficient quality were excluded from the analysis. Taxonomic assignment to species level
was performed using an algorithm incorporating nucleotide BLAST (85), with NCBI RefSeq (86)
as reference training set. The ASV tables, taxonomic assignment, and sample metadata were
assembled using the phyloseq package construct (83). Construction of the sequence table and
phyloseq object, and all subsequent end-analyses were performed using R (version 3.4). Raw
sequence data were uploaded on the NCBI Sequence Read Archive under BioProject number
PRJINA734639 (see Supplemental Table 2 for associated metadata). Beta diversity was
visualized using PCoA with a Bray-Curtis test. Between-group differences were tested using a

permanova (Adonis function via the Vegan package in RStudio 1.4) (87).

Data availability

Strains and plasmids are available upon request. Whole genome sequencing data for
SC5314, 529L, CHN2 are available at NCBI SRA as BioProject PRINA730828. The raw
sequence reads for SC5314 and 529L have been previously published on NCBI under
BioProject PRINA193498 (37) for SC5314, and under accession numbers SRX276261 and
SRX276262 for 529L (57). 16S raw reads are available on NCBI under BioProject numbers

PRJINA734639 and PRINA735873.
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Figure Legends

Figure 1. C. albicans isolates 529L and CHN1 can stably colonize the gastrointestinal tract of
C57BL/6J (A -RIl,n=8 mice; B - NY, n=10-18 mice), BALB/c (C - RI, n =8 mice) and C3H/HeN
(D - TX, n = 8 mice) mice without antibiotic treatment. Panels show geometric means with 95%
Cl of fecal colonization levels (CFUs/g) over time. Asterisks reflect comparisons between
isolates at individual time points using Mann-Whitney tests; *, P < 0.05, **, P < 0.01. Dotted
horizontal lines indicate the minimum CFU detection level for each experiment. (E-F) Direct
competitions between SC5314 and 529L (E) or CHN1 (F) in the GI of C57BL/6J mice (RI).
Isolates were co-inoculated in a 1:1 ratio and their proportions were determined using
nourseothricin selection upon recovery from fecal pellets. Panels show means + SEM from 4

single housed mice.

Figure 2. Microbiome composition of BALB/c (A, RI) and C57BL/6J (B, RI; C, NY) mice
colonized with C. albicans isolates SC5314, CHN1 and 529L. Plots show microbiome relative
abundances at the phylum and family levels for mice from Figure 1. Day 0 time points indicate

the microbiome composition prior to Candida gavage.

Figure 3. In vitro growth and filamentation of isolates SC5314, CHN1, 529L in different
laboratory media and nutritional conditions. Colony (A) and cell (B) morphology of isolates
grown at 37°C under aerobic conditions in different laboratory media. Scale bars, 1 mm (A) and
50 um (B). (C) Growth and filamentation of isolates SC5314, CHN1, 529L on Biolog carbon
source plates (PM01-02) under aerobic and anaerobic conditions. Carbon sources are grouped
according to their biochemical group. After 24 h of growth at 37°C, each well was scored for

filamentation on a 1 to 5 scale (1 and 5 represent conditions where 0-20% and 80-100% of cells
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showed visible filamentation, respectively). Bottom tables indicate means + SD from two

biological replicates for each condition.

Figure 4. Morphology of C. albicans cells in the Gl of C57B/6J mice (RI) using an antibiotic
model of colonization (n = 3 mice, single-housed). (A) FISH-stained Candida cells from colon
sections. The colon tissues from mice were stained with Cy3-coupled 28S rRNA fungal probe
to stain both yeast and hyphal cells. Epithelium and mucus were stained with DAPI and UEA1
and WGAL coupled with fluorescein, respectively. Scale bar, 50 um. Arrows indicate different
Candida cell morphologies - H, hyphae; Y, yeast. (B) Candida cells in the different Gl sections
of C57B/6J mice (RI) on antibiotics were stained with anti-Candida antibody coupled with FITC.
Histograms show the proportion (%) of yeast and hyphal cells in different Gl organs (means *
SEM). Asterisks indicate statistical significance using unpaired parametric t-tests, * P < 0.05, **

P < 0.01; ns, not significant, n = 50-600 cells per section.

Figure 5. Effect of CRAMP on C. albicans growth and Gl colonization. (A) In vitro susceptibility
of C. albicans isolates SC5314, CHN1 and 529L to different CRAMP concentrations under
aerobic growth at 37°C. Plots show means + SEM growth levels over 16 h from 3 biological
replicates. (B) In vitro susceptibility of C. albicans isolates to different CRAMP concentrations
at 37°C under anaerobic conditions. Histograms show mean relative fungal growth + SEM
values from 3 biological replicates. * P < 0.05, ** P < 0.01, *** P < 0.001 based on comparison
between SC5314 and CHN1 or 529L using unpaired parametric t tests. (C) Direct competitions
between SC5314 and 529L or CHNL1 in the Gl of C57BL/6J wild type (WT) and Camp KO mice
(both in TX). Isolates were co-inoculated in a 1:1 ratio and their proportions were determined

using nourseothricin selection upon recovery from fecal pellets. Plots show mean values + SEM

30


https://doi.org/10.1101/2021.06.27.450080
http://creativecommons.org/licenses/by-nd/4.0/

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.27.450080; this version posted June 27, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

from 8 mice per group, * P < 0.05, ** P < 0.01 based on comparisons of individual time points

between WT and Camp KO mice using Mann-Whitney tests.

Supplemental Figure and Table Legends

Supplemental Figure 1. (A) Percent of mice with detectable fecal C. albicans CFUs during Gl
colonization of C57BL/6J (Rl and NY), BALB/c (RI) and C3H/HeN (TX) mice from Figure 1. (B)
Gl organ colonization levels by isolates SC5314, 529L, CHN1 at the end of colonization (day

28) in C57BL/6J and BALB/c mice (RI) from (A). Panels show means + SEM.

Supplemental Figure 2. Integration of SAT1 at the NEUT5L locus does not affect fithess in the
mouse Gl. No significant differences were observed when SC5314 and SC5314-SAT1+ were
directly competed in the Gl tract of BALB/c mice (RI). Two independently transformed SC5314-
SAT1+ strains (#1, #2) were used for these experiments (A, B). Strains were gavaged in 1:1
ratios and colonization levels were monitored for 14 days. After 14 days, the proportion of each
strain was quantified from fecal pellets the Gl tract organs. Histograms show means + SEM

from 7 single housed mice for each strain mix.

Supplemental Figure 3. CHN1 (A) and 529L (B) outcompete SC5314 (SAT1+) in the Gl organs
of C57BL/6J mice (RI). Strains were gavaged in 1:1 ratios and colonization levels were
monitored for 14 days. After 14 days, the proportion of each strain was quantified from the Gl

organs. Histograms show means = SEM from 4 single housed mice.

Supplemental Figure 4. (A-B) CHN1 and 529L outcompete SC5314 in the Gl tract of C57BL/6J

mice (NY). Strains were gavaged in 1:1 ratios and colonization levels were monitored for 15-34
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days. The proportion of each strain (%) was quantified from fecal pellets every 2-7 days using
nourseothricin selection. (C) Direct competitions between CHN1 and 529L in the GI of

C57BL/6J mice (NY) using the same method. Plots show means + SEM from 5 mice.

Supplemental Figure 5. Bray Curtis PCoA plots showing strain effects for BalbC (A, RI) and
C57BL/6J (B, RI; C, NY) mice colonized with strains SC5314, 529L and CHN1 prior to gavage
and during GI colonization. No significant clustering of mice colonized with the same isolate

was identified.

Supplemental Figure 6. (A) Growth and filamentation of C. albicans isolates SC5314, CHN1
and 529L on 7 short chain carboxylic acids contained on Biolog PM plates. Heatmaps include
control wells (no carbon source), as well as means = SD values for each condition. (B)
Correlation analyses between growth and filamentation under aerobic and anaerobic conditions
for the three isolates. For each strain, R? values represent the coefficient of determination

indicating the goodness of fit for simple linear regressions.

Supplemental Figure 7. Genome sequencing of C. albicans SC5314, 529L and CHN1
illustrates extensive genetic differences between isolates. (A) Approximate ploidy levels for
strains SC5314, 529L and CHN1 across the 8 C. albicans chromosomes; black dots on the X
axis indicate centromere positions. (B) Size and position of large homozygous tracts (>0.1 Mbp)
identified in the three isolates relative to the SC5314 reference strain (assembly 22). L, R
indicate the left and right chromosome arms, respectively. (C) Density maps of heterozygous
positions for the three isolates, shown for each chromosome across 10 kbp windows. Black

bars indicate centromere positions. (D) Number of genetic changes identified in 529L and
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CHNL1 relative to the SC5314 version examined in this study. (E) Genetic changes identified in
the XOG1 gene in the three isolates relative to the SC5314 reference genome. Image shows
IGV coverage tracts with positions different from the reference genome highlighted in color. The
three sites reflect positions which differ in 529L relative to the other 2 isolates; syn, synonymous

mutation; nonsyn — nonsynonymous mutation.

Supplemental Figure 8. Fecal (A) and organ (day 7, B) fungal burdens of C57B/6J mice (RI)

using an antibiotic model of colonization. Plots show means + SEM from 3 single-housed mice.

Supplemental Table 1. Strains used in this study.

Supplemental Table 2. Metadata associated with NCBI BioProject PRINA734639.

Supplemental Table 3. Genetic variants identified in isolate 529L relative to SC5314. For each

variant, the table includes the type of mutation, genomic position and distances from the nearest

gene, exon or repeat.

Supplemental Table 4. Genetic variants identified in isolate CHN1 relative to SC5314. For

each variant, the table includes the type of mutation, genomic position and distances from the

nearest gene, exon or repeat.
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Figure 1. C. albicans isolates 529L and CHN1 can stably colonize the gastrointestinal tract of C57BL/6J (A - RI, n
= 8 mice; B - NY, n = 10-18 mice), BALB/c (C - RI, n = 8 mice) and C3H/HeN (D - TX, n = 8 mice) mice without
antibiotic treatment. Panels show geometric means with 95% CI of fecal colonization levels (CFUs/g) over time.
Asterisks reflect comparisons between isolates at individual time points using Mann-Whitney tests; *, P < 0.05, **,
P < 0.01. Dotted horizontal lines indicate the minimum CFU detection level for each experiment. (E-F) Direct
competitions between SC5314 and 529L (E) or CHN1 (F) in the Gl of C57BL/6J mice (RI). Isolates were co-
inoculated in a 1:1 ratio and their proportions were determined using nourseothricin selection upon recovery from
fecal pellets. Panels show means = SEM from 4 single housed mice.
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Figure 2. Microbiome composition of BALB/c (A, RI) and C57BL/6J (B, RI; C, NY) mice colonized with C. albicans
isolates SC5314, CHN1 and 529L. Plots show microbiome relative abundances at the phylum and family levels
for mice from Figure 1. Day 0 time points indicate the microbiome composition prior to Candida gavage.
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Figure 3. In vitro growth and filamentation of isolates SC5314, CHN1, 529L in different laboratory media and
nutritional conditions. Colony (A) and cell (B) morphology of isolates grown at 37°C under aerobic conditions in
different laboratory media. Scale bars, 1 mm (A) and 50 um (B). (C) Growth and filamentation of isolates SC5314,
CHN1, 529L on Biolog carbon source plates (PM01-02) under aerobic and anaerobic conditions. Carbon sources
are grouped according to their biochemical group. After 24 h of growth at 37°C, each well was scored for
filamentation on a 1 to 5 scale (1 and 5 represent conditions where 0-20% and 80-100% of cells showed visible
filamentation, respectively). Bottom tables indicate means + SD from two biological replicates for each condition.
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Figure 4. Morphology of C. albicans cells in the Gl of C57B/6J mice (RI) using an antibiotic model of colonization
(n = 3 mice, single-housed). (A) FISH-stained Candida cells from colon sections. The colon tissues from mice
were stained with Cy3-coupled 28S rRNA fungal probe to stain both yeast and hyphal cells. Epithelium and
mucus were stained with DAPI and UEA1 and WGA1 coupled with fluorescein, respectively. Scale bar, 50 um.
Arrows indicate different Candida cell morphologies - H, hyphae; Y, yeast. (B) Candida cells in the different Gl
sections of C57B/6J mice (RI) on antibiotics were stained with anti-Candida antibody coupled with FITC.
Histograms show the proportion (%) of yeast and hyphal cells in different Gl organs (means + SEM). Asterisks
indicate statistical significance using unpaired parametric t-tests, * P < 0.05, ** P < 0.01; ns, not significant, n =
50-600 cells per section.
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Figure 5. Effect of CRAMP on C. albicans growth and Gl colonization. (A) In vitro susceptibility of C. albicans
isolates SC5314, CHN1 and 529L to different CRAMP concentrations under aerobic growth at 37°C. Plots show
means + SEM growth levels over 16 h from 3 biological replicates. (B) In vitro susceptibility of C. albicans isolates
to different CRAMP concentrations at 37°C under anaerobic conditions. Histograms show mean relative fungal
growth £+ SEM values from 3 biological replicates. * P < 0.05, ** P < 0.01, *** P < 0.001 based on comparison
between SC5314 and CHN1 or 529L using unpaired parametric t tests. (C) Direct competitions between SC5314
and 529L or CHN1 in the Gl of C57BL/6J wild type (WT) and Camp KO mice (both in TX). Isolates were co-
inoculated in a 1:1 ratio and their proportions were determined using nourseothricin selection upon recovery from
fecal pellets. Plots show mean values + SEM from 8 mice per group, * P < 0.05, ** P < 0.01 based on
comparisons of individual time points between WT and Camp KO mice using Mann-Whitney tests.
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Supplemental Figure 1. (A) Percent of mice with detectable fecal C. albicans CFUs during Gl colonization of
C57BL/6J (Rl and NY), BALB/c (RI) and C3H/HeN (TX) mice from Figure 1. (B) Gl organ colonization levels by
isolates SC5314, 529L, CHN1 at the end of colonization (day 28) in C57BL/6J and BALB/c mice (RI) from (A).
Panels show means + SEM.
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Supplemental Figure 2. Integration of SAT1 at the NEUT5L locus does not affect fitness in the mouse GI. No
significant differences were observed when SC5314 and SC5314-SAT1+ were directly competed in the Gl tract of
BALB/c mice (RI). Two independently transformed SC5314-SAT71+ strains (#1, #2) were used for these
experiments (A, B). Strains were gavaged in 1:1 ratios and colonization levels were monitored for 14 days. After
14 days, the proportion of each strain was quantified from fecal pellets the Gl tract organs. Histograms show
means + SEM from 7 single housed mice for each strain mix.
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Supplemental Figure 3. CHN1 (A) and 529L (B) outcompete SC5314 (SAT17+) in the Gl organs of C57BL/6J
mice (RI). Strains were gavaged in 1:1 ratios and colonization levels were monitored for 14 days. After 14 days,
the proportion of each strain was quantified from the Gl organs. Histograms show means + SEM from 4 single
housed mice.
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Supplemental Figure 4. (A-B) CHN1 and 529L outcompete SC5314 in the Gl tract of C57BL/6J mice (NY).
Strains were gavaged in 1:1 ratios and colonization levels were monitored for 15-34 days. The proportion of each
strain (%) was quantified from fecal pellets every 2-7 days using nourseothricin selection. (C) Direct competitions
between CHN1 and 529L in the Gl of C57BL/6J mice (NY) using the same method. Plots show means £+ SEM

from 5 mice.
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Supplemental Figure 5. Bray Curtis PCoA plots showing strain effects for BalbC (A, RI) and C57BL/6J (B, RI; C,
NY) mice colonized with strains SC5314, 529L and CHN1 prior to gavage and during Gl colonization. No
significant clustering of mice colonized with the same isolate was identified.
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Supplemental Figure 6. (A) Growth and filamentation of C. albicans isolates SC5314, CHN1 and 529L on 7 short
chain carboxylic acids contained on Biolog PM plates. Heatmaps include control wells (no carbon source), as well
as means * SD values for each condition. (B) Correlation analyses between growth and filamentation under
aerobic and anaerobic conditions for the three isolates. For each strain, R2 values represent the coefficient of
determination indicating the goodness of fit for simple linear regressions.
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Supplemental Figure 7. Genome sequencing of C. albicans SC5314, 529L and CHN1 illustrates extensive
genetic differences between isolates. (A) Approximate ploidy levels for strains SC5314, 529L and CHN1 across
the 8 C. albicans chromosomes; black dots on the X axis indicate centromere positions. (B) Size and position of
large homozygous tracts (>0.1 Mbp) identified in the three isolates relative to the SC5314 reference strain
(assembly 22). L, R indicate the left and right chromosome arms, respectively. (C) Density maps of heterozygous
positions for the three isolates, shown for each chromosome across 10 kbp windows. Black bars indicate
centromere positions. (D) Number of genetic changes identified in 529L and CHN1 relative to the SC5314 version
examined in this study. (E) Genetic changes identified in the XOG1 gene in the three isolates relative to the
SC5314 reference genome. Image shows |GV coverage tracts with positions different from the reference genome
highlighted in color. The three sites reflect positions which differ in 529L relative to the other 2 isolates; syn,
synonymous mutation; nonsyn — nonsynonymous mutation.
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Supplemental Figure 8. Fecal (A) and organ (day 7, B) fungal burdens of C57B/6J mice (RI) using an antibiotic
model of colonization. Plots show means + SEM from 3 single-housed mice.
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