

1 **SUCCESSIONAL STAGES IN INFANT GUT MICROBIOTA MATURATION**

2

3 Leen Beller^{1, #}, Ward Deboutte¹, Gwen Falony^{2,3}, Sara Vieira-Silva^{2,3}, Raul Yhossef Tito^{2,3},
4 Mireia Valles-Colomer^{2,3,4}, Leen Rymenans^{2,3}, Daan Jansen¹, Lore Van Espen¹, Maria
5 Ioanna Papadaki¹, Chenyan Shi¹, Claude Kwe Yinda^{1,5}, Mark Zeller⁶, Karoline Faust²,
6 Marc Van Ranst⁷, Jeroen Raes^{2,3,* #} Jelle Matthijnssens^{1,*, #}

7 Email addresses: leen.beller@kuleuven.be, ward.deboutte@kuleuven.be, gwen.falony@kuleuven.vib.be,
8 sara.vieirasilva@kuleuven.be, raulyhossef.titotadeo@kuleuven.vib.be, mireia.vallesc@gmail.com,
9 leen.rymenans@kuleuven.vib.be, daan.jansen@kuleuven.be, lore.vanespen@kuleuven.be,
10 mariaioanna.papadaki@kuleuven.be, shichenyan9@gmail.com, yinda.kweclaude@nih.gov,
11 zellerm@scripps.edu, karoline.faust@kuleuven.be, vanranstmarc@gmail.com,
12 jeroen.raes@kuleuven.vib.be, jelle.matthijnssens@kuleuven.be

13

14 KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute,
15 Laboratory of Viral Metagenomics, Leuven, Belgium¹; KU Leuven, Department of Microbiology,
16 Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, Leuven,
17 Belgium²; Center for Microbiology, VIB, B-3000 Leuven, Belgium³; CIBIO-University of Trento, 38123
18 Povo (Trento), Italy ⁴; NIAID/NIH, Rocky Mountain Laboratories, Laboratory of Virology, Virus
19 Ecology Unit⁵; Department of Immunology and Microbiology, Scripps Research, La Jolla, California,
20 United States of America⁶; KU Leuven, Department of Microbiology, Immunology and
21 Transplantation, Rega Institute, Laboratory of Clinical and Epidemiological Virology, Leuven,
22 Belgium⁷

23

24 * Authors contributed equally

25 **# Correspondent footnote**

26 Mailing address: Department of Microbiology, Immunology and transplantation, KU Leuven –
27 Campus Gasthuisberg

28 Rega Herestraat 49 – box 1040, B-3000 Leuven, Belgium.

29 Phone: +32 16 32 11 61 Fax: +32 16 33 00 26

30 Email: jelle.matthijnssens@kuleuven.be, jeroen.raes@kuleuven.be

31 **ABSTRACT**

32 **Background.** Disturbances in the primary colonization of the infant gut can result in
33 life-long consequences and have been associated with a range of host conditions.
34 Although early life factors have been shown to affect the infant gut microbiota
35 development, our current understanding of the human gut colonization in early life
36 remains limited.

37 To gain more insights in the unique dynamics of this rapidly evolving ecosystem, we
38 investigated the microbiota over the first year of life in eight densely sampled infants
39 (total number of samples, n=303). To evaluate gut microbiota maturation transition
40 towards an adult configuration, we compared the microbiome composition of the
41 infants to the Flemish Gut Flora Project population (n=1,106).

42 **Results.** We observed the infant gut microbiota to mature through three distinct,
43 conserved stages of ecosystem development. Across these successional gut microbiota
44 maturation stages, genus predominance was observed to shift from *Escherichia* over
45 *Bifidobacterium* to *Bacteroides*. Both disease and antibiotic treatment were observed to
46 be associated occasionally with gut microbiota maturation stage regression, a transient
47 setback in microbiota maturation dynamics. Although the studied microbiota
48 trajectories evolved to more adult-like constellations, microbiome community typing
49 against the background of the Flemish Gut Flora Project (FGFP) cohort clustered all
50 infant samples within the (in adults) potentially dysbiotic Bact2 enterotype.

51 **Conclusion.** We confirmed similarities between infant gut microbial colonization and
52 adult dysbiosis. A profound knowledge about the primary gut colonization process in
53 infants might provide crucial insights into how the secondary colonization of a dysbiotic
54 adult gut can be redirected.

55

56 **Key words:** infant, microbiota, primary succession, enterotypes

57 **BACKGROUND**

58 Development of a stable adult large-intestinal microbiota sets off with the primary
59 colonization of the infant gut. Disturbances in initial colonization or ecosystem
60 maturation can potentially result in life-long consequences and have been associated
61 with a broad range of host conditions, including inflammatory bowel disease[1],
62 asthma[2], and type I diabetes[3]. Although early life factors such as birth mode and
63 diet have been shown to affect the development of the infant gut microbiota[4, 5], our
64 current understanding of the human gut colonization in early life still remains limited.
65 Microbiome monitoring efforts combining high sampling frequency with prolonged
66 longitudinal design would enable gaining more insights in the unique dynamics of this
67 rapidly evolving ecosystem. Here, we investigated microbiome variation over the first
68 year of life in eight densely sampled infants, analysing on average 38 samples per
69 participant (total number of samples, n=303). We observed the infant gut microbiota to
70 mature through three distinct, conserved stages of ecosystem development. Across
71 these successional gut microbiota maturation stages, genus predominance was
72 observed to shift from *Escherichia* over *Bifidobacterium* to *Bacteroides*. A stable,
73 reproducible order of successive colonization could be established at genus level across
74 the BaBel infants. Both disease and antibiotic treatment were observed to be associated
75 occasionally with gut microbiota maturation stage regression – a transient setback in
76 microbiota maturation dynamics. Although the studied microbiota trajectories evolved
77 both in terms of richness and composition to more adult-like constellations,
78 microbiome community typing against the background of the n=1,106 Flemish Gut
79 Flora Project population cohort clustered all infant samples within the (in adults)
80 potentially dysbiotic Bact2 enterotype. While these observations reflect incomplete
81 microbiota maturation within the first year of life, the suggested parallel between

82 primary succession as observed in the healthy infant's gut and secondary colonization
83 upon ecosystem disruption could inform novel bio-therapeutic approaches based on
84 sequential recolonization of a dysbiotic community.

85 **RESULTS AND DISCUSSION**

86 An increasing number of diseases is being linked to gut dysbiosis. This state -
87 characterised by a low diversity and high abundance of facultative anaerobic bacteria in
88 adults – also resembles the microbiome composition of healthy infants[6]. A profound
89 knowledge about the primary gut colonization process in infants, going from (nearly)
90 sterile at birth towards a diverse and healthy gut microbiota later in life, might provide
91 crucial insights into how the secondary colonization of a dysbiotic adult gut can be
92 redirected.

93 **The colonization process in the healthy infant gut happens through distinct stages
94 of ecosystem development**

95 Setting out to map gut microbiota maturation dynamics in eight vaginally delivered,
96 healthy infants from Belgium (BaBel cohort), we analysed faecal microbiome profiles of
97 a core dataset of 142 samples collected on predefined time points distributed over the
98 first year of life (from the 159 samples at predefined time points, 17 were excluded
99 based on reported disease signs; Supplementary Table 1a; Supplementary Figure 1),
100 complemented with 144 post-hoc selected samples associated with clinically relevant
101 events such as disease/drug treatment. Applying Dirichlet Multinomial Mixtures (DMM)
102 modelling on the microbiome profiles, we screened for sub-communities among the
103 infants' microbiomes. Grouping samples potentially originating from a same community
104 through probabilistic modelling, DMM-based stratification of microbiome data
105 reproducibly identifies community constellations across datasets without making any

106 claims regarding the putative discrete nature of the strata detected[7]. In the present
107 dataset, community typing revealed the presence of four compositionally distinct
108 clusters or gut microbiota maturation stages, with only one of them restricted to a
109 single individual (Supplementary Table 1b; Figure 1a; Supplementary Figure 2). Three
110 out of four maturation stages (labelled A, B, and C) comprised almost exclusively
111 samples originating from seven out of eight individuals, reflecting conserved, structured
112 microbiome maturation rather than inter-individual variation. Although time-of-
113 transition varied between individuals (Figure 1b), maturation stage A-C succession
114 revealed a strong temporal organization following a conserved pattern across infants
115 (n=7, Kendall test, Kendall's w corrected=1, p-value=5e-4; Figure 1a), aligning with an
116 overall increase in microbiome richness (comparison maturation stage A with B and B
117 with C, n=[182:176], Kruskal-Walis [KW] with post-hoc Dunn test [phD], r=[-0.35:-0.60],
118 FDR<0.05; Supplementary Table 1c; Figure 1c). Highest richness values were however
119 noted for the divergent D maturation state (comparison maturation stage A, B and C vs
120 D, n=[127:119:121], KW with phD test, r=[-1:-0.72:-0.18], FDR<0.05; Supplementary
121 Table 1c; Figure 1c) – only observed in infant S011 and not linked to temporal variation.
122 Focusing on differences in microbiota composition between the gut microbiota
123 maturation stages, we found maturation stage A to be dominated by *Escherichia* spp.
124 (Figure 1d). Compared to both B and C, maturation stage A was characterized by higher
125 proportional abundances of not only *Escherichia*, but also *Staphylococcus*, *Enterococcus*,
126 *Enterobacter*, and *Lactobacillus*, among others (n=303, KW with phD test, r>0.3,
127 FDR<0.05; Supplementary Table 1d; Supplementary Figure 3). The reported top five (in
128 terms of effect size) of maturation stage A-associated genera consist exclusively of
129 facultative anaerobic genera, reflecting the higher oxygen levels present in the infant
130 gut shortly after birth[8]. Maturation stage B was dominated by bifidobacteria (Figure

131 1d), with *Bifidobacterium* being the only genus that was proportionally more abundant
132 in B when compared to both A and C (n=303, KW with phD tests, r>0.4, FDR<0.05;
133 Supplementary Table 1d; Supplementary Figure 3). At the end of their first year of life,
134 all studied infants eventually reached the *Bacteroides*-dominated C maturation stage
135 (Figure 1d). With respect to both A and B, the higher richness of the C maturation stage
136 was reflected in higher proportions of a broad range of bacteria, including butyrate-
137 producing taxa[9] such as *Anaerostipes*, *Faecalibacterium* and *Roseburia* (n=303, KW
138 with phD, r>0.3, FDR<0.05; Supplementary Table 1d; Supplementary Figure 3).

139 **Identification of covariates explaining infant gut microbiota variation**

140 To identify covariates of microbiome diversification within the first year of life, we
141 assessed the non-redundant explanatory power of diet, medication, health status,
142 environment, and infants' specific characteristics, such as having siblings or their blood
143 group, in genus-level compositional variation within the BaBel infants. Beyond inter-
144 individual variation (n=299, multivariate stepwise distance-based redundancy analysis
145 [dbRDA] on Bray-Curtis dissimilarity, $R^2=18.9\%$, $p.\text{adj}=0.002$), microbiome
146 composition was significantly associated with age ($R^2=15.0\%$), diet ($R^2=2.7\%$), stool
147 consistency ($R^2=0.8\%$), and attending day care ($R^2=0.8\%$; Supplementary Table 1e;
148 Figure 1e,f). Next, we applied a similar approach to assess potential associations
149 between metadata variables and the top 15 most dominant genera (covering in average
150 92.6 % of samples total abundance) as identified based on their average proportional
151 abundance over all samples (n=299, multivariate stepwise dbRDA with Euclidean
152 distance on composition, constraining for infant ID, FDR<0.05). Beyond inter-individual
153 variation, we found the effect size of diet to exceed the impact of age in 6 out of 15
154 genera (Supplementary Table 1f; Figure 2a). Among those, we highlight the complex

155 associations between the omnipresent *Bifidobacterium* spp. and changes in infants'
156 nutrition[3]. While the taxon as a whole was the lowest in the samples where the infant
157 was weaned (Breast-Milk Only:Non-Solid Food (i.e. breast and formula milk or formula
158 only) vs Solid Food, n=[236:185], phD test, $r>0.2$, FDR<0.05; Supplementary Table 1g),
159 divergent patterns could be observed when zooming in on the two main amplicon
160 sequence variants (ASV) detected (Figure 2c,d): while ASV1 proportions decreased
161 significantly upon weaning (with weaning defined as the first time solid foods are
162 introduced; Breast Milk Only:No Solid Food vs Solid Food, n=[236:185], phD test,
163 $r>0.25$, FDR<0.05), ASV2 increased substantially after the addition of formula milk to
164 the diet (Breast Milk Only vs No Solid Food:Solid Food, n=[177:236], phD, $r>0.3$,
165 FDR<0.05; Supplementary Table 1g; Figure 2e,f).

166 **Infant gut microbiota genera appear in a stable, reproducible order**

167 To assess whether microbiota maturation of the infant gut was determined by a series
168 of successional colonization events conserved across individuals, we zoomed in on the
169 genus rather than the community level, investigating the order of appearance of the top
170 15 most dominant genera within each one-year maturation timeline. Defining
171 appearance as the first occurrence of a genus (relative abundance >0.5 %), we
172 established an appearance ranking for the taxa in each infant. We observed the
173 appearance ranking to be significantly conserved across individuals (n=8, Kendall test,
174 Kendall's w corrected=0.523, p-value=2.08e-7; Figure 2b). Lowest ranks (i.e. primary
175 colonizers) were mainly attributed to genera that have been described as saccharolytic,
176 oxygen-tolerant, and/or lactate- and acetate producing[9–13]. While such taxa can
177 contribute to colonization resistance of the newborns through acidification of the large-
178 intestinal environment[14, 15], they also generate substrates that allow subsequent

179 recruitment of cross-feeders such as *Veillonella* and *Anaerostipes*[16]. Ranks correlated
180 negatively with estimated growth rates, with early colonizers displaying the shortest
181 minimal generation times (n=14, Pearson correlation, $r=-0.63$, p-value=0.016,
182 Supplementary Figure 4). Only at the end of the first year of life, the appearance of
183 highly oxygen-sensitive butyrate producers – including *Faecalibacterium*, the hallmark
184 of the healthy adult gut ecosystem[17]– was observed (data not shown). Microbial
185 production of butyrate is of key importance to create and maintain the anaerobic
186 conditions that characterize a healthy, adult colon environment[18].

187 **The effect of external factors on infant gut microbiota maturation**

188 Although maturation of the infant gut microbiota was identified to be a largely
189 unidirectional process, occasional transient regression towards a preceding gut
190 microbiota maturation stage could be observed (Figure 3a). Hypothesizing maturation
191 stage regression to be associated with disease or medical interventions, we developed
192 an ecosystem maturation index per sample based on presence/absence of genera
193 belonging to the BaBel average top 15. As discussed above, we ranked each genus
194 according to its order of appearance along the timeline of an infant's ecosystem
195 maturation process. Next, genera were attributed an overall cohort rank (1 to 10, Figure
196 2b) based on their median order of appearance across individual infants. A samples'
197 maturation index was calculated by averaging the ranks of the present genera (relative
198 abundance >0.5%, Figure 3b). We identified three time points (events) displaying a
199 lower maturation score than expected (*i.e.* outside the 95% CI of the regression of the
200 maturation score) concurring with a regression in maturation stage (Figure 3a). A first
201 event (E1; infant S004 at day 163, regression from maturation stage B to A) coincided
202 with the end of a seven-day oral antibiotic treatment (day 155 to 161; amoxicillin with

203 the adjuvant clavulanic acid, a β -lactamase inhibitor) for a urinary tract infection. After
204 treatment initiation, *Streptococcus* became the predominant genus, falling back below
205 detectable levels two days after the last dose of antibiotics (Figure 3c). Multivariate
206 analysis on the extended BaBel dataset (including all eight infants) identified
207 *Streptococcus* as the genus most significantly increased in abundance during antibiotic
208 treatment (n=299, dbRDA using all covariates, adjusted $R^2=0.12$, FDR<0.05; n=303,
209 MaAsLin2 testing all covariates on all genera, FDR=0.0011; Supplementary Table 1h;
210 Figure 2a). Genera with lowered proportional abundances upon amoxicillin treatment
211 included *Bifidobacterium* and *Veillonella*, both decreasing below detection limits and
212 reappearing after less than 18 and 6 days after cessation of treatment, respectively
213 (Figure 3c). After the disappearance of *Streptococcus*, *Escherichia* was the first genus to
214 re-establish, becoming the most dominant member of the gut microbiota less than 2
215 days after the last dose of amoxicillin (Figure 3c). These observations confirm the status
216 of oxygen-tolerant genera as pioneering colonizers in primary succession as well as
217 secondary colonization following antibiotic treatment-associated ecosystem disruption,
218 with gut microbiota maturation stage regression probably associated with an imbalance
219 in colon oxygen homeostasis[19] (Figure 3a,c). Of note, two other infants (S003, days
220 353-359; and S010, days 214-220) also received amoxicillin (without clavulanic acid),
221 in both cases prescribed to treat an ear infection. However, only less pronounced
222 microbiome alterations were observed upon treatment, possibly due to the absence of
223 an adjuvant or to the fact that the infants' microbiota had matured to the potentially
224 more stable C maturation stage. The second event (E2; infant S009 at day 251,
225 regression C to B) coincided with an untreated *Cryptosporidium* infection (days 248-
226 250), accompanied by fever and diarrhoea, which was characterized by a observed rise
227 in relative abundances of *Bifidobacterium* and *Streptococcus*, while the other genera

228 decrease (Figure 3 a,b,d). E3 (S011, days 13-21) co-occurred with the start of a period
229 of severe constipation in infant S011 (Figure 3e). While the baby's first samples taken at
230 days 6 and 7 were classified within the infant-specific maturation stage D (Figure 3a), a
231 transition to the *Bifidobacterium*-dominated B maturation stage could be noted on days
232 13, 17, and 21. During the period following maturation stage regression, infant S011
233 suffered from recurrent episodes of severe constipation, including three periods of 6 to
234 9 days without bowel movement (defecation on days 32, 40, 41, 47, and 53). However,
235 from day 32, the infant's faecal microbiome returned to the maturation state D
236 classification.

237 **Transition of the infant gut microbiota maturation towards an adult configuration**

238 To evaluate gut microbiota maturation during the first year of life in terms of ecosystem
239 transition towards an adult configuration, we mapped the microbiome composition of
240 the infant samples onto the background of inter-individual variation as observed in the
241 Flemish Gut Flora Project (FGFP) population cohort (n=1,106; Figure 4). Previously,
242 using DMM-based community typing[7], genus-level compositional differentiation of
243 the adult microbiome in the FGFP has been shown to revolve around four
244 enterotypes[20] – prevalent, non-discrete microbiome constellations that can be
245 identified reproducibly across datasets[20–22]. Having aligned not only DNA extraction
246 and sequencing methods, but also analytical procedures with the FGFP protocols[23],
247 we observed the faecal microbiomes of Flemish infants to differ substantially from
248 those obtained from adults inhabiting the same region (permutational MANOVA Adonis
249 test, n=1,407, $R^2=0.30$, p-value=0.001; Figure 4b,c,d). All infant samples were however
250 classified as *Bacteroides*2 (Bact2) communities (Supplementary Table 1i; Figure 4a,b) –
251 a recently described low-diversity/low cell density constellation characterised by high

252 *Bacteroides* and low *Faecalibacterium* proportional abundances. Bact2 communities
253 have previously been linked to loose stools[21], inflammation[21] and reduced
254 wellbeing[24], and have been hypothesized to reflect an ecosystem dysbiosis[20, 21,
255 25]. The similarities of infant microbiota constellations to adult dysbiotic states, as
256 previously noted[6], are likely attributable to convergences between primary
257 (ecosystem development) and secondary (perturbation recovery) succession[6, 26].
258 Like in adult dysbiosis, the infant gut ecosystem has been reported to display low
259 colonization resistance[15, 27], exemplified by the frequency of gastrointestinal
260 infections reported in the present cohort - with Babel infants experiencing on average
261 two (range = [0:3]) episodes of diarrhoea during the first year of their life - and
262 beyond[28]. At the same time, a shift in the infant microbiota composition towards a
263 more adult-like configuration could be observed over time. When comparing the
264 microbiota composition of BaBel age bins [0:3, 3:6, 6:9, and 9:12 months] with the FGFP
265 population cohort, effect sizes in microbiome variation were observed to decrease with
266 increasing infant age (permutational pair-wise MANOVA Adonis test,
267 n=[1206:1204:1153:1159], R²=[0.228:0.221:0.085:0.067]; FDR<0.01; Supplementary
268 Table 1j; Figure 4c). Moreover, a detailed analysis of DMM clustering result identified
269 six samples from three infants taken in the last month of their first year having a non-
270 zero probability of not belonging to the Bact2 community type (probability
271 range=[4.34e-6:1.20e-14]; Supplementary Table 1i). In all samples, the observed
272 transition towards a more adult microbiome constellation was accompanied by an
273 increase in observed genus richness over time- although adult richness was not
274 reached (infant age bins vs adults, KW and phD tests, n=[1207:1205:1154:1160], r=[-
275 0.52:-0.47:-0.32:-0.32], FDR<0.05, Supplementary Table 1k; Figure 4e).
276

CONCLUSION

277 We show that maturation of gut microbiota can be captured in a series of transitions
278 that remain conserved across the BaBel infants – both on the community/gut
279 microbiota maturation stage level as in order of appearance of prevalent genera.
280 Throughout the first year of life, successional colonization of the gut microbiota results
281 in a shift from a low richness, oxygen tolerant community dominated by pioneering
282 colonizers such as *Escherichia* to a more diverse community comprising anaerobic
283 butyrogens such as *Faecalibacterium* – with butyrate being a key metabolite in
284 maintenance of colonic hypoxia[18]. Our analyses confirm previously reported
285 similarities between the infant microbiota and adult dysbiosis[6, 29, 30] likely due to
286 shared features of primary and secondary succession. While temporary regression
287 following ecosystem-disrupting events such as infection or antibiotic treatment can be
288 observed, the microbiota of all studied infants matured to a more adult-like
289 constellation over the first year of their life, as reported before[31]. Given the
290 similarities observed between primary succession and secondary colonization upon
291 disruption, careful dissection of the succession events characterizing gut ecosystem
292 maturation could pave the way for the development of mimicking biotherapeutic
293 strategies in adult microbiome modulation.

294 **METHODS**

295 **Sample collection**

296 Between 2013 and 2017, stool samples of eight Belgian healthy infants, *i.e.* the BaBel
297 infants, were collected starting from birth at a frequency of 2-3 samples per week
298 (Supplementary Table 1a). Samples were kept at -20°C freezers at the participants'
299 homes and every three months transported to our laboratory on dry ice, where they
300 were stored at -80°C until further analysis. Every time a sample was collected, the

301 parents completed a questionnaire containing information about the date, consistency
302 of the stool (aqueous/soft/solid), diet (breastmilk/formula milk/vegetables/fruit),
303 clinical signs or disease (diarrhoea/vomiting/fever/...), and the location of the infant
304 when the sample was taken (at home/day care/holiday location/...). All infants were
305 vaginally born, the mothers did not take antibiotics during pregnancy or delivery, and
306 no complications during pregnancy were reported. The histo-blood group antigen
307 (HBGA) specificities (ABO group antigens, Lewis antigens, FUT2 and FUT3 genotype)
308 were determined as described before[32], from a saliva sample from each infant
309 collected at the end of the study period. For the investigation of the overall effect of
310 metadata on the microbiome composition, only covariates present in at least three
311 infants were used (infant ID, time after birth, presence of furry pets, secretor-status,
312 Lewis antigens, ABO blood group, diet pattern (BreastOnly/NoSolid/Solid), consistency,
313 diarrhoea, fever, respiratory illness and other general sickness signs, painkillers,
314 antibiotics and day care).

315 **Sample selection**

316 To study the longitudinal dynamics in the gut microbiome, 21 stool samples from
317 predefined days 0, 3 7, 10, 15, 21, 30, 45, 60, 75, 80, 105,120, 150, 180, 210,240, 270,
318 300, 330 and 360 were selected from each of the eight infants (Supplementary Figure
319 1). When an infant showed clinical signs at any of these time points, we selected the
320 closest available sample without clinical signs present, or this time point was excluded.
321 In total, we included 159 samples at predefined timepoints, of which 17 fell together
322 with clinical signs (and were not replaceable by a close timepoint with no signs) and
323 142 did not fall together with clinical signs (Supplementary Table 1a, Supplementary
324 Figure 1). In addition, we selected 144 additional samples *ad hoc* from before, during

325 and after specific external events to study how they influence the gut microbiome
326 (events included vaccination history, type of food consumed, occurrence of diseases, use
327 of antibiotics, use of pre- or probiotics; Supplementary Figure 1).

328 **16S rRNA gene library preparation and sequencing**

329 Bacterial profiling was carried out as described by Falony and colleagues[23]. Briefly,
330 nucleic acids were extracted from frozen faecal aliquots using the RNeasy
331 PowerMicrobiome kit (Qiagen). The manufacturer's protocol was modified by the
332 addition of a heating step at 90°C for 10min after vortexing and by the exclusion of
333 DNA-removal steps. Microbiome characterization was performed as previously
334 described[33], in short, the extracted DNA was further amplified in triplicate using 16S
335 primers 515F(5'-GTGYCAGCMGCCGCGGTAA-3') and 806R(5'-
336 GGAATACNVGGGTWTCTAAT-3') targeting the V4 region, modified to contain a barcode
337 sequence between each primer and the Illumina adaptor sequences to produce dual-
338 barcoded libraries. Deep sequencing was performed on a MiSeq platform (2x250PE
339 reads, Illumina). All samples were randomized and negative controls were taken along
340 and sequenced.

341 **Sequenced read analysis**

342 After demultiplexing with sdm as part of the LotuS pipeline[34] without allowing for
343 mismatches, fastq sequences were further analysed per sample using DADA2 pipeline
344 (v. 1.6)[35]. Briefly, we removed the primer sequences and the first 10 nucleotides after
345 the primer. After merging paired sequences and removing chimeras, taxonomy was
346 assigned using formatted RDP training set 'rdp_train_set_16'. The decontam[36] R
347 package was used to remove contaminating Amplicon Sequencing Variants (ASVs) using
348 the frequency prevalence method(Supplementary Table 1l). After quality control steps,

349 the ASV table contained on average 46,330 reads per sample (range = 15427-131451).
350 In total 197 ASVs were obtained all belonging to the kingdom Bacteria. No Archaea were
351 detected. All samples were rarefied to 14,668 reads per sample and ASVs with an
352 overall relative abundance <0.0001 were removed. From three samples (S009-1, S004-1
353 and S010-1), of three different infants the first sample taken, we were not able to
354 extract enough DNA to be amplifiable.

355 **Statistical analyses**

356 All statistical analyses were performed and visualized in R (<http://www.R-project.org>)
357 using the ggplot2[37], phyloseq[38], synchrony[39], DirichletMultinomial[40],
358 dunn.test[41] and vegan[42] packages. To test median differences between two or more
359 groups of continuous variables, Mann-Whitney U test and Kruskal-Wallis (KW) test
360 were performed respectively. The KW test was always followed by post hoc Dunn's
361 (phD) test for all pairs of comparisons between groups. Multiple testing correction was
362 performed where appropriate using the Benjamini-Hochberg procedure (FDR-
363 adjustment set at <0.05).

364 **DMM clustering to identify the colonization stages**

365 To determine the stages of the colonization process, a Dirichlet Multinomial Mixtures
366 (DMM) based approach was followed, as described by Holmes *et al.*[7] using the
367 DirichletMultinomial[40] R package on the genus level (rarefied) read matrix (n=303).
368 The optimal number of stages was determined based on Bayesian information criterion
369 (BIC) and the mean probability for the samples to belong to the assigned Dirichlet
370 component was on average 0.99 (median=1, stdev=0.05, Supplementary Table 1b).

371 **Determination of the order of appearance of the top genera**

372 Per infant, the 15 most abundant genera (present in more than 3 infants) were ranked
373 based on the first timepoint in which they were present (with an abundance >0.5%).
374 Rankings were scored using Kendal w-test using the R function *kendall.w* of the
375 synchrony[39] package with 10,000 permutations. A final order of appearance was set,
376 based on the order of the medians of the ranks per infant. Finally, a maturation score
377 was calculated for every sample by averaging the ranks of the genera weighted by the
378 presence or absence of that specific genus. Growth rates (GR) of the different genera
379 were calculated from the predicted generation times (GT=1/GR), as published
380 before[43].

381 **Alpha and Beta diversity**

382 Alpha-diversity (richness and Shannon diversity) and beta-diversity indices (Bray-
383 Curtis dissimilarity) were calculated by using the phyloseq[38] package. Ordinations
384 were visualized on a principle coordinate analysis (PCoA) using Bray-Curtis
385 dissimilarity. The univariate effect of the metadata variables on the first two axis of the
386 ordination are determined using *envfit* function of the vegan[42] package (univariate
387 distance-based redundancy analysis (dbRDA)) and plotted as arrows on the PCoA
388 (InfantID was excluded for clarity). Community-level differences between groups were
389 tested with Adonis non-parametric test of the vegan[42] package. If more than two
390 groups are compared, a post-hoc Adonis test was used in a pairwise way, correcting for
391 multiple testing.

392 **Multivariate analysis of the effect of metadata variables on microbial composition**

393 To investigate which metadata covariates contribute to the variation in microbiota
394 community, dbRDA was performed on genus level (Bray Curtis distance), using the
395 *capscale* function in the vegan[42] R-package. Covariates found to significantly

396 contribute to the ordination outcome were further implemented in forward model
397 selection on dbRDA using the *ordiR2step* function in the vegan[42] package, to
398 determine the non-redundant cumulative contribution of metadata variables to the
399 variation (stepwise dbRDA). To test the effect of metadata variables on specific genera,
400 the same approach as previously described was followed by first pruning the
401 community to only contain the genus of interest (for each of the top 15 genera),
402 followed by dbRDA on the Euclidean distances measured on the abundances of that
403 genus and forward model selection as described above, constraining for infant ID. To
404 confirm results from the previous step, MaAsLin2[44] was used, which performs
405 boosted additive general linear models to discover associations between metadata and
406 the relative taxonomic abundances (default settings). Note, that only for the dbRDA four
407 samples were excluded for which consistency was unknown (n=299).

408 **Projection to the adult FGFP dataset**

409 Enterotypes of the infant samples were computed against a background of adult non-
410 disease-associated microbiomes (FGFP dataset, genus-level abundance matrix, n=1,106)
411 by DMM clustering using the DirichletMultinomial package as described by Holmes *et*
412 *al.*[7] Samples were rarefied to 10,000 reads. To avoid interference by non-independent
413 samples, enterotyping was performed iteratively on one randomly-selected sample of
414 each infant against the FGFP background (n=42 enterotyping rounds). The optimal
415 number of Dirichlet components based on BIC was four in all iterations, and the clusters
416 were named *Prevotella*, *Bacteroides1*, *Bacteroides2*, and *Ruminococcaceae* as described
417 before[20].

418

419 **DECLARATIONS**

420 **Ethics approval**

421 The study was approved by the IRB at KU Leuven (ML8699, S54745, B322201215465).

422 **Consent for publication**

423 Not applicable.

424 **Availability of data and materials**

425 16S sequencing data used in this study is available at the European Nucleotide Archive
426 (ENA, <https://www.ebi.ac.uk/ena>, PRJEB40751, not accessible for public yet). The code
427 to perform analysis and make figures starting from the ASV abundance table will be
428 made available at <https://github.com/Matthijnssenslab/BabyGut16S/>.

429 **Competing interests**

430 The authors declare that they have no competing interests.

431 **Funding**

432 This research was supported by the 'Fonds Wetenschappelijk Onderzoek' (Research
433 foundation Flanders) (Leen Beller: 1S61618N, Mireia Valles-Colomer: 1110918N, Daan
434 Jansen: 1S78019N, Lore Van Espen: 1S25720N) and by a KU Leuven OT-grant (OT-14-
435 113).

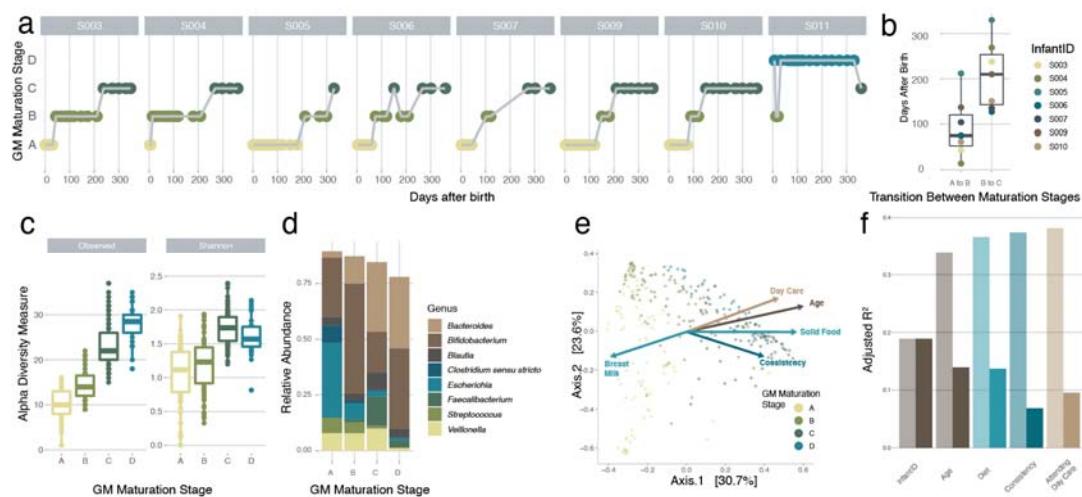
436 **Authors' contributions**

437 The study was conceived by JM, JR and MVR. Experiments were designed by JM, JR, LB,
438 MZ and RT. Sampling was set up and carried out by CS, JM, KCY, KF, LB and WD.
439 Experiments were performed by DJ, LB, LVE and LR. LB, MIP and RT performed the bio-
440 informatics analyses of the sequenced reads. Statistical analyses were designed and

441 performed by GF, LB, MV-C, SV-S and WD. LB, JM, GF, SV-S, MIP, MZ and WD drafted the
442 manuscript. All authors revised the article and approved the final version for
443 publication.

444 **Acknowledgements**

445 We would like to thank all participating infants and parents for their contribution. We
446 thank Dr. Johan Nordgren for the characterisation of the saliva samples.

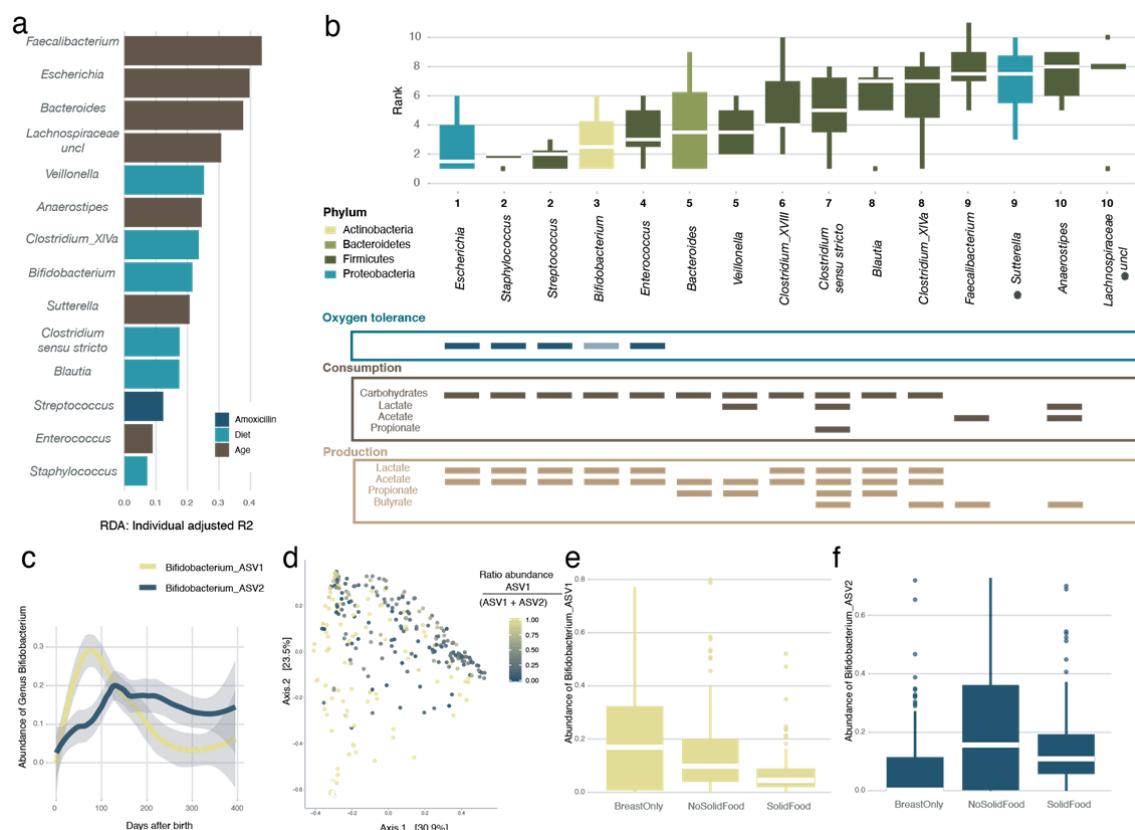

447 **Authors' information**

448 Correspondence should be addressed to JM (jelle.matthijnsens@kuleuven.be) and JR
449 (jeroen.raes@kuleuven.be).

450

451 **FIGURES WITH LEGENDS**

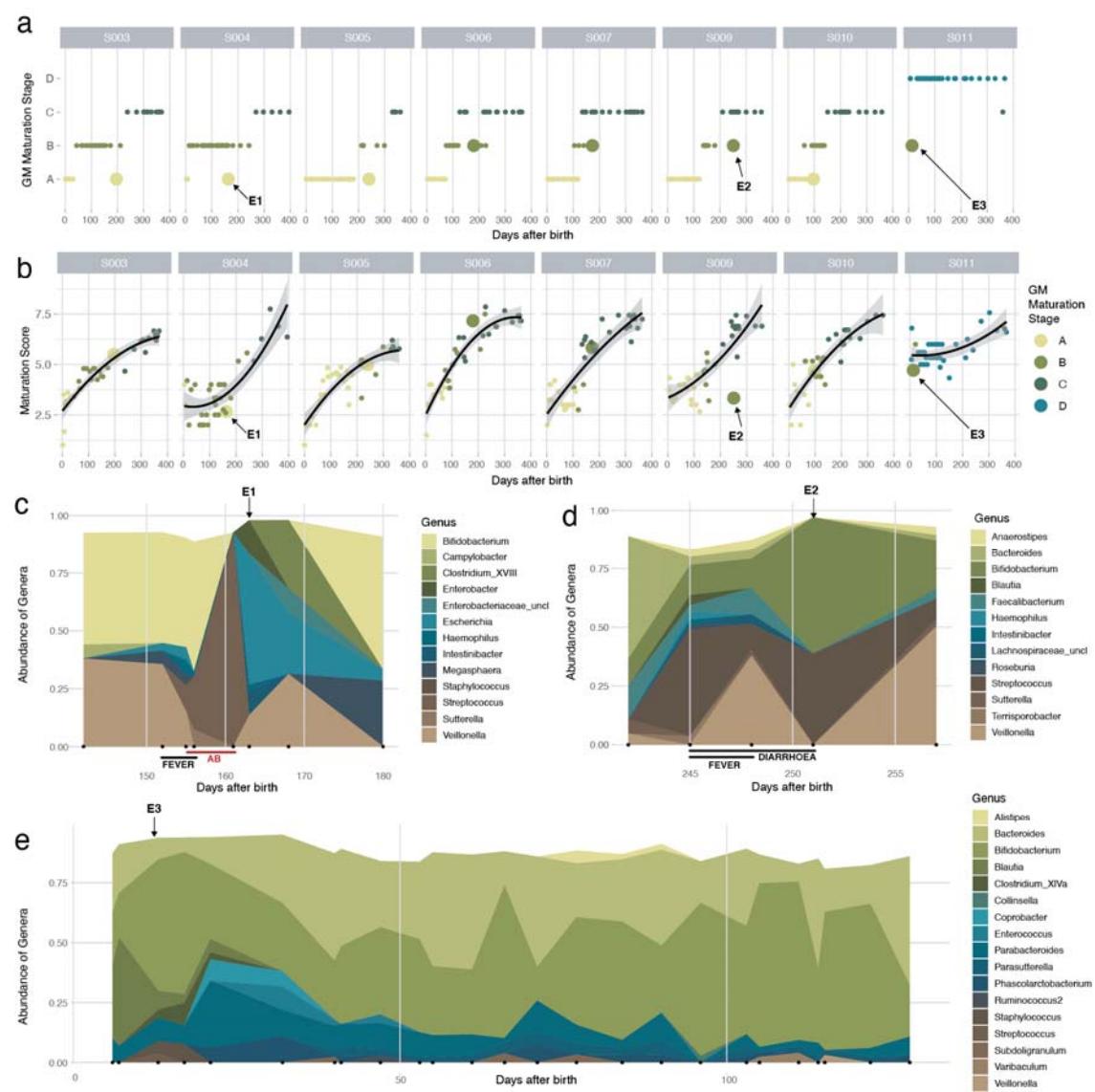
452



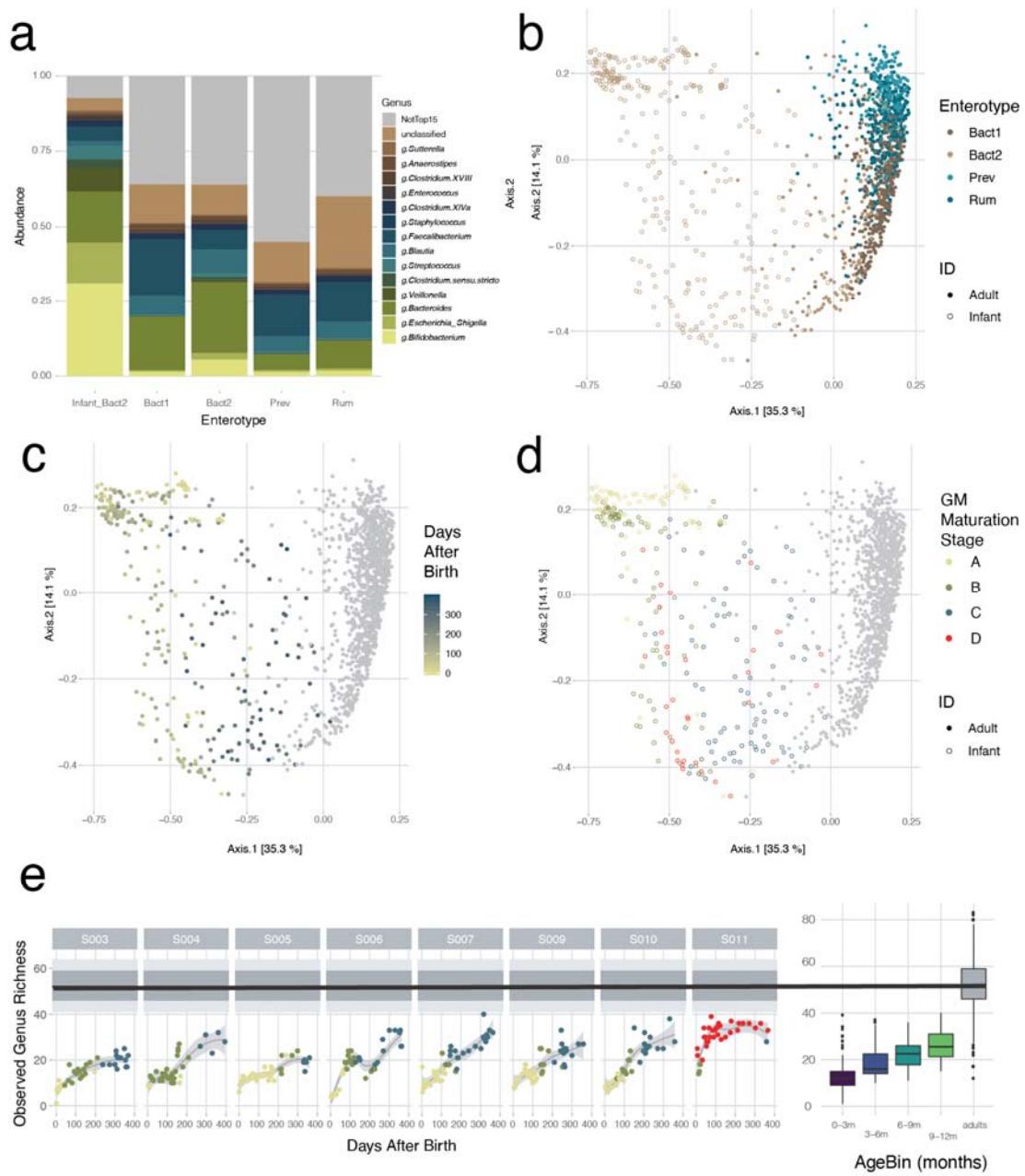
453

454 **Figure 1. Detailed overview of the colonization process in the healthy infant gut at**
455 **genus level.** (a) Overview of the gut microbiota maturation stage succession of the
456 samples of all the infants over time, coloured by the assigned gut microbiota maturation
457 stages determined using the DMM approach (calculated on all samples ($n = 303$) and
458 shown here for the samples at predefined time points where the infants were not sick
459 ($n = 142$)). (b) Variation in timing of transition between the gut microbiota maturation
460 stages in the different infants. The body of the box plots represent the first and third
461 quartiles of the distribution and the median line. (c) Alpha diversity measures
462 (observed ASV richness and Shannon diversity) of the samples within every gut
463 microbiota maturation stage, increasing from A-C (comparison gut microbiota
464 maturation stage A with B and B with C, $n = [182:176]$, post-hoc Dunn test [phD], $r = [-$
465 0.35:-0.60], $FDR < 0.05$.) (d) Mean relative abundance of the most common genera at
466 every gut microbiota maturation stage. (e) Principle coordinate analysis (PCoA, Bray-
467 Curtis dissimilarity) representing genus-level microbiome variation in our infant cohort
468 ($n = 299$). Dots represent one sample and are coloured by their assigned gut microbiota

469 maturation stage. The arrows represent the effect size and direction of the post-hoc fit
470 of variables significantly associated to microbiota compositional variation (univariate
471 dbRDA, infant ID was excluded for clarity). (f) Covariates with non-redundant
472 explanatory power on the genus level ordination, determined by multivariate distance-
473 based redundancy analysis at genus-level (dbRDA, Bray-Curtis dissimilarity, FDR <
474 0.05). The light bars represent the cumulative explanatory power (stepwise dbRDA R^2)
475 and the darker bars represent the individual univariate explanatory power of the
476 variables (dbRDA R^2). Covariates present in less than three infants were excluded.


477

478


479 **Figure 2. Order of appearance of the most common genera in the infant gut.** (a)
480 Overview of the covariates with highest explanatory power for the variation of the top
481 15 genera in our infant cohort, beyond intra-infant variability (note that for *Clostridium*
482 *cluster XVIII* no significance was reached). A multivariate redundancy analysis was
483 carried out on the relative abundances of each genus, after constraining for infant ID
484 (multivariate dbRDA, FDR <0.05). The length of the horizontal bars represents the
485 explanatory power of the most significant covariate (stepwise dbRDA R²). (b) Order of
486 appearance (presence defined as abundance > 0.5 %) of the top 15 most abundant
487 genera in the infant gut. The boxplots are coloured according to the phylum the genus
488 belongs to. Shown below the boxplots, is the oxygen tolerance of the different genera
489 (note that *Bifidobacterium*, while normally assumed to be strictly anaerobe, is found to
490 be oxygen-tolerant in the human gut[10]), and the consumption and production of
491 different short chain fatty acids (SCFA) by the different genera[11] [12] [9]. The body

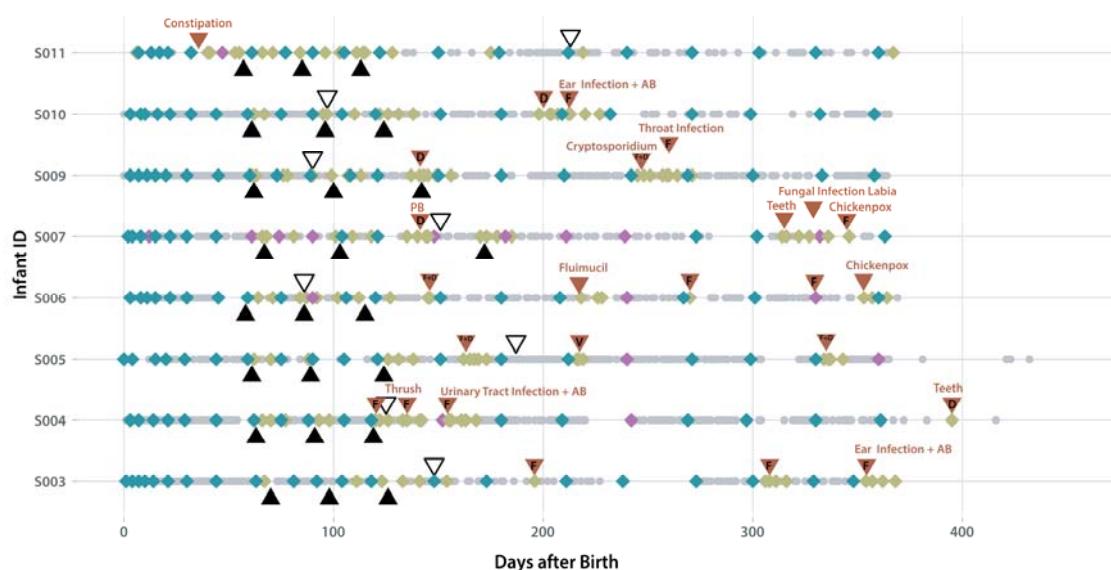
492 of the box plots represent the first and third quartiles of the distribution and the median
493 line. The asterisks (*) indicate the genera for which no information was available. (c)
494 The average relative abundances of the different *Bifidobacterium* Amplicon Sequencing
495 Variants (ASVs) over time averaged over all infants (Loess smoothing). (d) Genus level
496 principle coordinate analysis (n = 299, PCoA, Bray-Curtis dissimilarity), coloured for the
497 ratio of the two most abundant *Bifidobacterium* ASVs. (e) Effect of food on the relative
498 abundance of *Bifidobacterium* ASV1 showing a higher absence during weaning (Breast
499 Milk Only : No Solid Food vs Solid Food, n = [236 : 185], post-hoc Dunn test [phD] test, r
500 > 0.25, FDR < 0.05). (f) Effect of food on the relative abundance of *Bifidobacterium* ASV2
501 showing an increase in samples where the infants was having a formula milk-based diet
502 (with or without solid food)(Breast Milk Only vs No Solid Food : Solid Food, n = [177:
503 236], phD, r > 0.3, FDR < 0.05; Supplementary Table 1g).
504
505
506

507 **Figure 3. The effect of external factors on the infant gut microbiome.** (a) Succession
 508 of the gut microbiota maturation stages over time, including all 303 time points from
 509 the BaBel dataset. Time points representing a return to a previous gut microbiota
 510 maturation stage (after at least 2 samples in the next gut microbiota maturation stage),
 511 are represented with larger dots. (b) The change in maturation score of the samples
 512 over time. The maturation score was calculated by averaging the ranks (based on their
 513 order of appearance) of the present genera in every sample. The black line represents
 514 the quadratic regression with 95% confidence interval (all p-values of the quadratic fits
 515 to the data points are < 0.05). (c-e) Abundance of genera over time, showing peaks and
 516 troughs corresponding to external factors: (c) FEVER, (d) DIARRHOEA, and (e) E3. The
 517 x-axis for (c-e) is 'Days after birth' (0 to 100, 150 to 180, and 245 to 255 respectively). The
 518 y-axis is 'Abundance of Genera' (0.00 to 1.00). The legends list the genera contributing to
 519 these peaks and troughs.

516 < 0.0002). Three events, for which the succession goes back to a previous gut
517 microbiota maturation stage (shown in 4a) and the maturation score drops (outside the
518 confidence interval) are indicated with the arrows. (c) Changes in bacterial abundance
519 during the antibiotic event in infant S004 (“E1” at day 163, abundances >0.02 shown).
520 The red line indicates the duration of the treatment (7 days) with antibiotics
521 (amoxicillin and clavulanic acid). (d) Changes in abundance during a *Cryptosporidium*
522 infection in infant S009 (“E2” at day 251, abundances >0.02 shown). (e) Changes in
523 abundances in the first half year in infant S011 (“E3”, at days 13-21, abundances >0.05
524 shown).

525

526 **Figure 4. Projection of the infant sample to adult samples of the Flemish Gut Flora**


527 **Project (FGFP) dataset.** (a) Barplots showing the average relative abundances of the
 528 top 15 most common bacterial genera of the infant samples and the adult samples, per
 529 enterotype. (b) Projection of the infant samples to the adult FGFP dataset, visualized on
 530 a principle coordinate analysis (PCoA, Bray-Curtis dissimilarity), colored for enterotype,
 531 (c) colored for time after birth (for the infant samples), (d) colored per gut microbiota

532 maturation stage. (e) Observed genus-level richness over time of the BaBel dataset
533 (Loess smoothing), compared to the observed genus level richness of the FGFP dataset
534 (black line is the median, dark gray area represents the 25-75 IQR and the light gray
535 area represents the 10-90 IQR). On the right side, the boxplots represent the genus level
536 richness for the different infant age bins, compared to the adult FGFP dataset. The body
537 of the box plots represent the first and third quartiles of the distribution and the median
538 line.

539

540 **SUPPLEMENTARY FIGURES WITH LEGENDS**

541

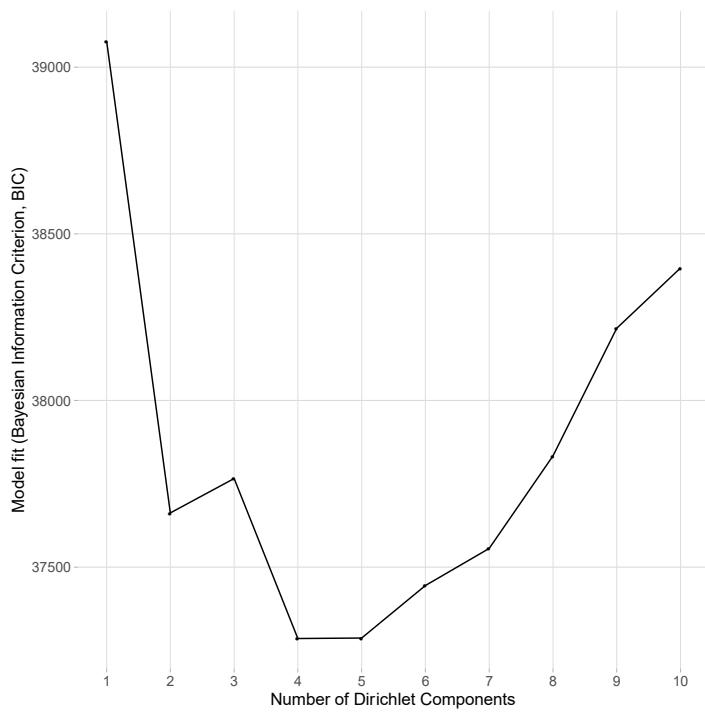
542

543 **Supplementary Figure 1. Overview of the collected and selected samples per**
544 **infant.**

545 Grey dots (●): All samples collected by the parents of the enrolled infants

546 Blue diamonds (◆): Samples selected for the study of the longitudinal dynamics at predefined
547 timepoints with no clinical signs (n = 142)

548 Purple diamonds (●): Samples selected for the study of the longitudinal dynamics at predefined
549 timepoints with clinical signs (n = 17) (See supplementary Table 1a for the signs)

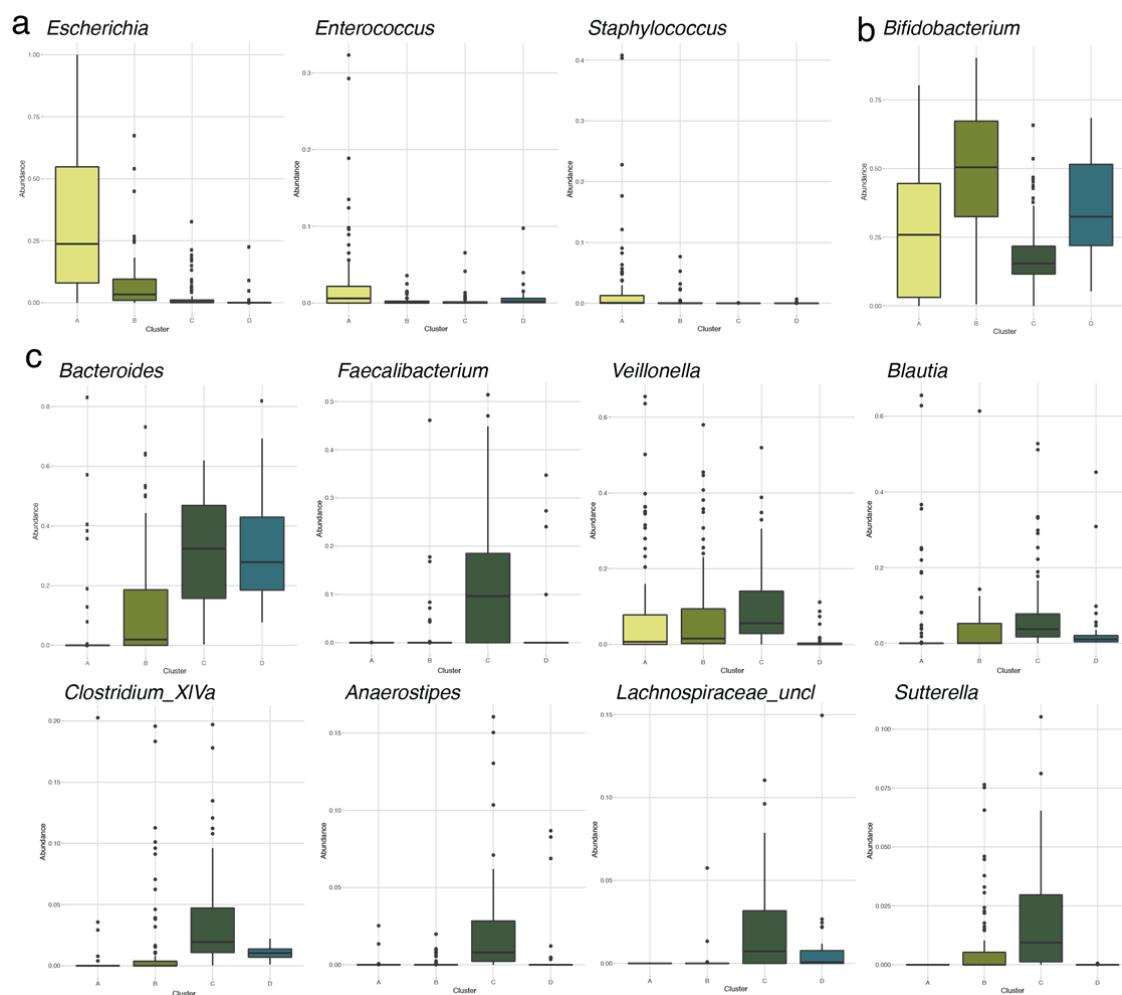

550 Green diamonds (◆): Additional *ad hoc* selected samples at specific external events (n = 144)

551 Black filled triangles (▲): Three vaccinations events in every infant

552 Black open triangles (▽): Day care entrance

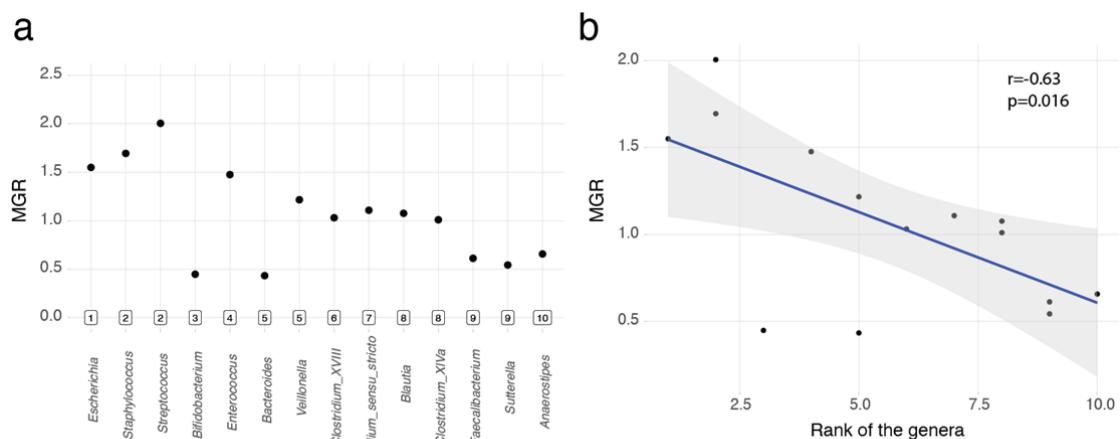
553 Red triangles (▼): External events around which extra samples were selected. Abbreviations: fever
554 (F), diarrhoea (D), vomit (V), antibiotics (AB), Probiotics (PB)

555



556

557 **Supplementary Figure 2. Determination of the optimal number of clusters in the**
558 **DMM approach.**


559 Identification of the optimal number of Dirichlet components in the BaBel dataset
560 (N=303) based on the Bayesian Information Criterion (BIC). The optimal number of
561 clusters is four (minimum BIC= 37285.6).

562

563

564 **Supplementary Figure 3. Most abundant genera that are differentially abundant**
565 **per gut microbiota maturation stage determined using DMM clustering.** (a)
566 Distribution of the relative abundances of the most abundant genera in gut microbiota
567 maturation stage A, that are significantly more abundant in maturation stage A than in B
568 and C. (b) Distribution of the relative abundances of the most abundant genera in gut
569 microbiota maturation stage B, that are significantly more abundant in maturation stage
570 B than in A and C. (c) Distribution of the relative abundances of the most abundant
571 genera in gut microbiota maturation stage C, that are significantly more abundant in
572 maturation stage C than in A and B. (n = 303, KW with phD test, r > 0.3, FDR < 0.05;
573 Supplementary Table 1d)

574

575 **Supplementary Figure 4. Average predicted growth rates for the top genera of the**
576 **infant gut.** (a) The maximum growth rates (MGR) of the top 15 most abundant genera
577 in the infant gut, ordered by their rank of appearance, calculated like reported
578 before[43]. Note that for one genus, *Lachnospiraceae* unclassified, no growth rate could
579 be obtained. (b) Negative correlation between the ranks of the top genera and their
580 growth rates (Pearson correlation coefficient, $n = 14$).

581

582 REFERENCES

583

- 584 1. Lewis JD, Chen EZ, Baldassano RN, et al (2015) Inflammation, Antibiotics, and Diet as
585 Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. *Cell Host Microbe*
586 18:489–500
- 587 2. Arrieta MC, Arévalo A, Stiemsma L, et al (2018) Associations between infant fungal and bacterial
588 dysbiosis and childhood atopic wheeze in a nonindustrialized setting. *J Allergy Clin Immunol*
589 142:424-434.e10
- 590 3. Vatanen T, Franzosa EA, Schwager R, et al (2018) The human gut microbiome in early-onset type
591 1 diabetes from the TEDDY study. *Nature* 562:589–594
- 592 4. Stewart CJ, Ajami NJ, O'Brien JL, et al (2018) Temporal development of the gut microbiome in
593 early childhood from the TEDDY study. *Nature* 562:583–588
- 594 5. Bäckhed F, Roswall J, Peng Y, et al (2015) Dynamics and Stabilization of the Human Gut
595 Microbiome during the First Year of Life. *Cell Host Microbe* 17:852
- 596 6. Kriss M, Hazleton KZ, Nusbacher NM, Martin CG, Lozupone CA (2018) Low diversity gut
597 microbiota dysbiosis: drivers, functional implications and recovery. *Curr Opin Microbiol* 44:34–40
- 598 7. Holmes I, Harris K, Quince C (2012) Dirichlet multinomial mixtures: generative models for
599 microbial metagenomics. *PLoS One* 7:e30126
- 600 8. Espey MG (2013) Role of oxygen gradients in shaping redox relationships between the human
601 intestine and its microbiota. *Free Radic Biol Med* 55:130–140
- 602 9. Rajilić-Stojanović M, de Vos WM (2014) The first 1000 cultured species of the human
603 gastrointestinal microbiota. *FEMS Microbiol Rev* 38:996–1047
- 604 10. Andriantsoanirina V, Allano S, Butel MJ, Aires J (2013) Tolerance of *Bifidobacterium* human
605 isolates to bile, acid and oxygen. *Anaerobe* 21:39–42
- 606 11. Oliphant K, Allen-Vercoe E (2019) Macronutrient metabolism by the human gut microbiome:
607 major fermentation by-products and their impact on host health. *Microbiome* 7:91
- 608 12. Ramsey M, Hartke A, Huycke M (2014) The Physiology and Metabolism of Enterococci.
- 609 13. Vieira-Silva S, Falony G, Darzi Y, et al (2016) Species–function relationships shape ecological
610 properties of the human gut microbiome. *Nat Microbiol* 1:16088
- 611 14. Roe AJ, O'Byrne C, McLaggan D, Booth IR (2002) Inhibition of *Escherichia coli* growth by acetic
612 acid: A problem with methionine biosynthesis and homocysteine toxicity. *Microbiology*
613 148:2215–2222
- 614 15. Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ (2019) Gut
615 Microbiota and Colonization Resistance against Bacterial Enteric Infection. *Microbiol Mol Biol Rev.*
616 <https://doi.org/10.1128/mmbr.00007-19>
- 617 16. Duncan SH, Louis P, Flint HJ (2004) Lactate-utilizing bacteria, isolated from human feces, that
618 produce butyrate as a major fermentation product. *Appl Environ Microbiol* 70:5810–5817
- 619 17. Miquel S, Martin R, Bridonneau C, Robert V, Sokol H, Bermúdez-Humarán LG, Thomas M, Langella
620 P (2014) Ecology and metabolism of the beneficial intestinal commensal bacterium

621 Faecalibacterium prausnitzii. *Gut Microbes* 5:146–51

622 18. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation
623 in the human colon. *FEMS Microbiol Lett* 217:133–139

624 19. Rivera-Chávez F, Lopez CA, Bäumler AJ (2017) Oxygen as a driver of gut dysbiosis. *Free Radic Biol
625 Med* 105:93–101

626 20. Vandeputte D, Kathagen G, D’Hoe K, et al (2017) Quantitative microbiome profiling links gut
627 community variation to microbial load. *Nature* 551:507–511

628 21. Vieira-Silva S, Sabino J, Valles-Colomer M, Falony G, Kathagen G, Caenepeel C, Cleynen I, van der
629 Merwe S, Vermeire S, Raes J (2019) Quantitative microbiome profiling disentangles inflammation-
630 and bile duct obstruction-associated microbiota alterations across PSC/IBD diagnoses. *Nat
631 Microbiol* 4:1826–1831

632 22. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the
633 human body. *Nature* 509:357–360

634 23. Falony G, Joossens M, Vieira-Silva S, et al (2016) Population-level analysis of gut microbiome
635 variation. *Science* (80-) 352:560–564

636 24. Valles-Colomer M, Falony G, Darzi Y, et al (2019) The neuroactive potential of the human gut
637 microbiota in quality of life and depression. *Nat Microbiol* 4:623–632

638 25. Vieira-Silva S, Falony G, Belda E, et al (2020) Statin therapy is associated with lower prevalence of
639 gut microbiota dysbiosis. *Nature* 1–6

640 26. Valles-Colomer M, Bacigalupe R, Vieira-Silva S, Suzuki S, Darzi Y, Tito RY, Yamada T, Raes J, Falony
641 G (2020) Transmission and persistence of the human gut microbiota across generations.

642 27. Houghteling PD, Walker WA (2015) Why is initial bacterial colonization of the intestine important
643 to infants’ and children’s health? *J Pediatr Gastroenterol Nutr* 60:294–307

644 28. Mughini-Gras L, Pijnacker R, Heusinkveld M, Enserink R, Zuidema R, Duizer E, Kortbeek T, van Pelt
645 W (2016) Societal Burden and Correlates of Acute Gastroenteritis in Families with Preschool
646 Children. *Sci Rep* 6:22144

647 29. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011)
648 Succession of microbial consortia in the developing infant gut microbiome. *Proc Natl Acad Sci U S
649 A* 108 Suppl:4578–4585

650 30. Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J, Gordon JI, Knight R (2012) Identifying
651 genomic and metabolic features that can underlie early successional and opportunistic lifestyles
652 of human gut symbionts. *Genome Res* 22:1974–1984

653 31. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant
654 intestinal microbiota. *PLoS Biol* 5:e177

655 32. Nordgren J, Sharma S, Bucardo F, et al (2014) Both Lewis and Secretor Status Mediate
656 Susceptibility to Rotavirus Infections in a Rotavirus Genotype-Dependent Manner. *Clin Infect Dis*
657 59:1567–1573

658 33. Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, Van den Bosch F, De Vos M, Raes
659 J, Elewaut D (2017) Brief Report: Dialister as a Microbial Marker of Disease Activity in
660 Spondyloarthritis. *Arthritis Rheumatol* 69:114–121

661 34. Hildebrand F, Tadeo R, Voigt AY, Bork P, Raes J (2014) LotuS: an efficient and user-friendly OTU
662 processing pipeline. *Microbiome* 2:30

663 35. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-
664 resolution sample inference from Illumina amplicon data. *Nat Methods* 13:581–583

665 36. Callahan B, Davis NM (2019) decontam: Identify Contaminants in Marker-gene and Metagenomics
666 Sequencing Data.

667 37. Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K (2019) Ggplot2: Create
668 Elegant Data Visualisations Using the Grammar of Graphics. 2018. URL <https://CRAN.R-project.org/package=ggplot2> R Packag version 2:2

670 38. McMurdie APJ, Holmes S, Jordan G, Chamberlain S (2014) Package ‘phyloseq’: Handling and
671 analysis of high-throughput microbiome census data.

672 39. Gouhier TC (2018) synchrony: Methods for Computing Spatial, Temporal, and Spatiotemporal
673 Statistics.

674 40. Morgan M (2016) DirichletMultinomial: Dirichlet-Multinomial Mixture Model machine learning
675 for microbiome data.

676 41. Dinno A (2017) dunn.test: Dunn’s Test of Multiple Comparisons Using Rank Sums.

677 42. Oksanen J, Blanchet FG, Friendly M, et al (2019) vegan: Community Ecology Package.

678 43. Vieira-Silva S, Rocha EPC (2010) The Systemic Imprint of Growth and Its Uses in Ecological
679 (Meta)Genomics. *PLoS Genet* 6:e1000808

680 44. Mallick H, Tickle T, McIver L, et al (2020) Multivariable Association in Population-scale Meta’omic
681 Surveys. In submussion.

682

683

684 **FIGURES LEGENDS**

685 **Figure 1. Detailed overview of the colonization process in the healthy infant gut at**
686 **genus level.** (a) Overview of the gut microbiota maturation stage succession of the
687 samples of all the infants over time, coloured by the assigned gut microbiota maturation
688 stages determined using the DMM approach (calculated on all samples (n = 303) and
689 shown here for the samples at predefined time points where the infants were not sick
690 (n = 142)). (b) Variation in timing of transition between the gut microbiota maturation
691 stages in the different infants. The body of the box plots represent the first and third
692 quartiles of the distribution and the median line. (c) Alpha diversity measures
693 (observed ASV richness and Shannon diversity) of the samples within every gut
694 microbiota maturation stage, increasing from A-C (comparison gut microbiota
695 maturation stage A with B and B with C, n = [182:176], post-hoc Dunn test [phD], r = [-
696 0.35:-0.60], FDR < 0.05.) (d) Mean relative abundance of the most common genera at
697 every gut microbiota maturation stage. (e) Principle coordinate analysis (PCoA, Bray-
698 Curtis dissimilarity) representing genus-level microbiome variation in our infant cohort
699 (n = 299). Dots represent one sample and are coloured by their assigned gut microbiota
700 maturation stage. The arrows represent the effect size and direction of the post-hoc fit
701 of variables significantly associated to microbiota compositional variation (univariate
702 dbRDA, infant ID was excluded for clarity). (f) Covariates with non-redundant
703 explanatory power on the genus level ordination, determined by multivariate distance-
704 based redundancy analysis at genus-level (dbRDA, Bray-Curtis dissimilarity, FDR <
705 0.05). The light bars represent the cumulative explanatory power (stepwise dbRDA R²)
706 and the darker bars represent the individual univariate explanatory power of the
707 variables (dbRDA R²). Covariates present in less than three infants were excluded.

708

709 **Figure 2. Order of appearance of the most common genera in the infant gut. (a)**
710 Overview of the covariates with highest explanatory power for the variation of the top
711 15 genera in our infant cohort, beyond intra-infant variability (note that for *Clostridium*
712 *cluster XVIII* no significance was reached). A multivariate redundancy analysis was
713 carried out on the relative abundances of each genus, after constraining for infant ID
714 (multivariate dbRDA, FDR <0.05). The length of the horizontal bars represents the
715 explanatory power of the most significant covariate (stepwise dbRDA R^2). (b) Order of
716 appearance (presence defined as abundance > 0.5 %) of the top 15 most abundant
717 genera in the infant gut. The boxplots are coloured according to the phylum the genus
718 belongs to. Shown below the boxplots, is the oxygen tolerance of the different genera
719 (note that *Bifidobacterium*, while normally assumed to be strictly anaerobe, is found to
720 be oxygen-tolerant in the human gut[10]), and the consumption and production of
721 different short chain fatty acids (SCFA) by the different genera[11]-[12]-[9]. The body
722 of the box plots represent the first and third quartiles of the distribution and the median
723 line. The asterisks (*) indicate the genera for which no information was available. (c)
724 The average relative abundances of the different *Bifidobacterium* Amplicon Sequencing
725 Variants (ASVs) over time averaged over all infants (Loess smoothing). (d) Genus level
726 principle coordinate analysis (n = 299, PCoA, Bray-Curtis dissimilarity), coloured for the
727 ratio of the two most abundant *Bifidobacterium* ASVs. (e) Effect of food on the relative
728 abundance of *Bifidobacterium* ASV1 showing a higher absence during weaning (Breast
729 Milk Only : No Solid Food vs Solid Food, n = [236 : 185], post-hoc Dunn test [phD] test, r
730 > 0.25, FDR < 0.05). (f) Effect of food on the relative abundance of *Bifidobacterium* ASV2
731 showing an increase in samples where the infants was having a formula milk-based diet
732 (with or without solid food)(Breast Milk Only vs No Solid Food : Solid Food, n = [177:
733 236], phD, r > 0.3, FDR < 0.05; Supplementary Table 1g).

734 **Figure 3. The effect of external factors on the infant gut microbiome.** (a) Succession
735 of the gut microbiota maturation stages over time, including all 303 time points from
736 the BaBel dataset. Time points representing a return to a previous gut microbiota
737 maturation stage (after at least 2 samples in the next gut microbiota maturation stage),
738 are represented with larger dots. (b) The change in maturation score of the samples
739 over time. The maturation score was calculated by averaging the ranks (based on their
740 order of appearance) of the present genera in every sample. The black line represents
741 the quadratic regression with 95% confidence interval (all p-values of the quadratic fits
742 < 0.0002). Three events, for which the succession goes back to a previous gut
743 microbiota maturation stage (shown in 4a) and the maturation score drops (outside the
744 confidence interval) are indicated with the arrows. (c) Changes in bacterial abundance
745 during the antibiotic event in infant S004 (“E1” at day 163, abundances >0.02 shown).
746 The red line indicates the duration of the treatment (7 days) with antibiotics
747 (amoxicillin and clavulanic acid). (d) Changes in abundance during a *Cryptosporidium*
748 infection in infant S009 (“E2” at day 251, abundances >0.02 shown). (e) Changes in
749 abundances in the first half year in infant S011 (“E3”, at days 13-21, abundances >0.05
750 shown).

751 **Figure 4. Projection of the infant sample to adult samples of the Flemish Gut Flora
752 Project (FGFP) dataset.** (a) Barplots showing the average relative abundances of the
753 top 15 most common bacterial genera of the infant samples and the adult samples, per
754 enterotype. (b) Projection of the infant samples to the adult FGFP dataset, visualized on
755 a principle coordinate analysis (PCoA, Bray-Curtis dissimilarity), colored for enterotype,
756 (c) colored for time after birth (for the infant samples), (d) colored per gut microbiota
757 maturation stage. (e) Observed genus-level richness over time of the BaBel dataset
758 (Loess smoothing), compared to the observed genus level richness of the FGFP dataset

759 (black line is the median, dark gray area represents the 25-75 IQR and the light gray
760 area represents the 10-90 IQR). On the right side, the boxplots represent the genus level
761 richness for the different infant age bins, compared to the adult FGFP dataset. The body
762 of the box plots represent the first and third quartiles of the distribution and the median
763 line.

764 **Supplementary Figure 1. Overview of the collected and selected samples per**
765 **infant.**

766 Grey dots (●): All samples collected by the parents of the enrolled infants
767 Blue diamonds (◆): Samples selected for the study of the longitudinal dynamics at predefined
768 timepoints with no clinical signs (n = 142)
769 Purple diamonds (●): Samples selected for the study of the longitudinal dynamics at predefined
770 timepoints with clinical signs (n = 17) (See supplementary Table 1a for the signs)
771 Green diamonds (◆): Additional *ad hoc* selected samples at specific external events (n = 144)
772 Black filled triangles (▲): Three vaccinations events in every infant
773 Black open triangles (▽): Day care entrance
774 Red triangles (▼): External events around which extra samples were selected. Abbreviations: fever
775 (F), diarrhoea (D), vomit (V), antibiotics (AB), Probiotics (PB)

776 **Supplementary Figure 2. Determination of the optimal number of clusters in the**
777 **DMM approach.**

778 Identification of the optimal number of Dirichlet components in the BaBel dataset
779 (N=303) based on the Bayesian Information Criterion (BIC). The optimal number of
780 clusters is four (minimum BIC= 37285.6).

781 **Supplementary Figure 3. Most abundant genera that are differentially abundant**
782 **per gut microbiota maturation stage determined using DMM clustering.** (a)
783 Distribution of the relative abundances of the most abundant genera in gut microbiota
784 maturation stage A, that are significantly more abundant in maturation stage A than in B

785 and C. (b) Distribution of the relative abundances of the most abundant genera in gut
786 microbiota maturation stage B, that are significantly more abundant in maturation stage
787 B than in A and C. (c) Distribution of the relative abundances of the most abundant
788 genera in gut microbiota maturation stage C, that are significantly more abundant in
789 maturation stage C than in A and B. (n = 303, KW with phD test, $r > 0.3$, FDR < 0.05;
790 Supplementary Table 1d)

791 **Supplementary Figure 4. Average predicted growth rates for the top genera of the**
792 **infant gut.** (a) The maximum growth rates (MGR) of the top 15 most abundant genera
793 in the infant gut, ordered by their rank of appearance, calculated like reported
794 before[43]. Note that for one genus, *Lachnospiraceae* unclassified, no growth rate could
795 be obtained. (b) Negative correlation between the ranks of the top genera and their
796 growth rates (Pearson correlation coefficient, n = 14).

797