

1 **Title:** Age-related change in adult chimpanzee social network integration

2 **Authors:** Nicole Thompson González^{1,2}, Zarin Machanda^{4,3}, Emily Otali³, Martin N. Muller^{1,3},

3 Drew K. Enigk¹, Richard Wrangham^{5,3}, Melissa Emery Thompson^{1,3}

4

5 ¹ University of New Mexico, Department of Anthropology, Albuquerque, NM, USA 87131

6 ² University of New Mexico, Academic Science Education and Research Training program,

7 Health Sciences Center, Albuquerque, NM, USA 87131

8 ³ Kibale Chimpanzee Project, Fort Portal, Uganda

9 ⁴ Tufts University, Department of Anthropology, Medford, MA, USA 02155

10 ⁵ Harvard University, Department of Human Evolutionary Biology, Cambridge, MA, USA 02138

11

12 **Abstract**

13 **Background:** Social isolation is a key risk factor for the onset and progression of age-related
14 disease and mortality in humans, yet older people commonly have narrowing social networks.
15 Few models explain why human networks shrink with age, despite the risk that small networks
16 and isolation pose. We evaluate models grounded in a life history perspective by studying social
17 aging in wild chimpanzees, which are long-lived and show physical decline with age.

18 **Methodology:** We applied social network analysis to examine age-related changes in social
19 integration in a 7+ year mixed-longitudinal dataset comprised of 38 wild adult chimpanzees (22
20 F, 16 M) in the Kanyawara community in the Kibale National Park, Uganda. Metrics of social
21 integration included social attractivity and overt effort (directed degree and strength),
22 gregariousness (undirected strength), social roles (betweenness and local transitivity), and
23 embeddedness (eigenvector centrality) in grooming and spatial association networks.

24 **Results:** Males reduced overt social effort yet increased in attractivity, roles in cliques, and
25 embeddedness. Females were overall less integrated than males, and their decreased integration
26 with age suggested social avoidance. Effects of age were largely independent of rank. Both sexes
27 maintained highly repeatable inter-individual differences in several aspects of integration,
28 particularly among mixed-sex partners.

29 **Conclusions and implications:** As in humans, chimpanzees experience age-related declines in
30 social effort. However, important facets of integration aged more similarly to humans in non-
31 industrialized vs. industrialized societies, suggesting an evolutionary social mismatch between
32 conserved declines in effort and dynamics of industrialized society. Lastly, individual and sex
33 differences have the potential to be important mediators of successful social aging in
34 chimpanzees, as in humans.

35 **Introduction**

36 Social isolation leads to an increased risk of age-related morbidity, mortality, and
37 cognitive decline across a number of industrialized human populations (Cohen, 2004; Holt-
38 Lunstad et al., 2010; Umberson & Karas Montez, 2010). Equally, social ties curb the risk of
39 mortality in a broad range of social animals (Snyder-Mackler et al., 2020; Thompson, 2019). The
40 social ties that individuals form with partners over time and the networks in which they are
41 integrated are important sources of support, i.e. social capital, including access to tangible help,
42 information, and secure and stable environments (Cohen, 2004; Thompson, 2019). Despite the
43 advantages of social integration, humans commonly shrink their network of social partners with
44 age and reallocate social effort towards a small subset of partners (Cornwell et al., 2008; David-
45 Barrett et al., 2016; Wrzus et al., 2013). A major goal in social gerontology has therefore been to
46 understand the patterns that distinguish “successful” social aging from pathological aging
47 (Cornwell et al., 2008; Rowe & Kahn, 2015). To contribute to this goal, our present study
48 examines patterns of social aging using a mixed-longitudinal behavioral dataset from one of our
49 closest evolutionary relatives, wild chimpanzees. Although human and chimpanzee social worlds
50 differ, recent evidence shows that male chimpanzees exhibit striking similarities to humans in
51 how their dyadic friendships change with age (Rosati et al., 2020). We expand on work from
52 Rosati et al. (2020), by evaluating several life-history based drivers of social aging, and
53 characterize multiple dimensions of sociality using a suite of social network integration measures
54 in both males and females (Table 1 & Supplement).

55 Hypotheses for age-related declines in sociality in humans have focused on human-specific
56 causes, such as shifts in cognitive-affective priorities with age that are driven by a perception of
57 remaining lifetime (Carstensen et al., 1999), broken-down systems of extended family support in

58 industrialized society (Cornwell et al., 2008), and/or significant life events that change social
59 circles (e.g., retirement, Wrzus et al., 2013). Humans, however, are not the only animals that
60 exhibit decreased social integration with age (e.g. red deer, Albery et al., 2021; macaques,
61 capuchins, lemurs, reviewed in Machanda & Rosati, 2020; yellow-bellied marmots, Wey &
62 Blumstein, 2010), and chimpanzees exhibit a suite of features associated with human social
63 aging, including a positivity bias and strengthening of close friendships (Machanda & Rosati,
64 2020; Rosati et al., 2020). Thus, valid interpretations of social aging require a more generalizable
65 framework, such as that offered by life history theory. Under such theory, individuals are
66 predicted to use social behavior to adjust to physiological priorities and environmental
67 challenges that vary by life stage and individual history. Key to this perspective, is that social
68 partners are a potential source of both stress and support (Cohen, 2004; Thompson, 2019).
69 Because of tradeoffs in the costs and benefits of sociality, older individuals' sociality may be
70 energetically constrained by physiological senescence and shifting reproductive priorities.
71 Comparative studies are essential for this perspective to spread in social gerontology because
72 they help situate human behavior and biology in its evolutionary context. Chimpanzees are a
73 useful model of such tradeoffs in human social aging as they provide a social and physiological
74 system that is similar to humans yet independent of advanced future-oriented cognition and
75 contemporary human societal structures.

76 *Chimpanzee social network data*

77 Chimpanzees are a tractable comparative model for human social aging, in part, because
78 they overcome common biases in human behavioral data (Althubaiti, 2016). Holt-Lunstad et al's
79 (2010) important meta-analysis emphasizes the importance of structural measures of social
80 integration (e.g. objective quantification) in predicting human morbidity and mortality, relative

81 to functional measures (i.e. perceived experience). Data from habituated non-human primates
82 consist of direct observations of social behavior that are suitable for constructing structural
83 measures of social integration, including number of social ties, frequency of social contact, social
84 roles, and overall embeddedness within networks, where each improves health outcomes and
85 lower mortality risk in humans (Cohen, 2004; Holt-Lunstad et al., 2010). In this study, we
86 employ social network analysis (SNA) as a powerful and standardized tool to quantify each of
87 these structural features of individual social integration, with the advantage of incorporating
88 direct and indirect ties that situate individuals within groups as a whole (Table 1 & Supplement).

89 *Study system*

90 We used social network analysis to measure age-related changes in social integration in
91 wild, adult chimpanzees (*Pan troglodytes*) in the Kanyawara community in the Kibale National
92 Park, Uganda. Chimpanzees live in large communities that are closed, facilitating
93 characterization of true global networks, and they associate in a fission-fusion pattern which
94 allows for inter-individual variation in social integration. Although chimpanzee social life lacks
95 important components of human social networks such as marriage, nuclear families, and a
96 grandmothering stage of life for females (Emery Thompson, Jones, et al., 2007), chimpanzees do
97 maintain strong ties with kin (Foerster et al., 2015; Mitani, 2009). They also have long lifespans
98 (maximum in the wild ca. 65 years, Wood et al., 2017) and experience age-related declines in
99 physical condition (Emery Thompson et al., 2020). Chimpanzees demonstrate stark differences
100 in social tendencies between sexes. Males interact more frequently than females and remain in
101 their natal communities for life, where they benefit from cooperative coalitions with other males
102 to rise in dominance rank and access mates (Gilby et al., 2013). Females, in contrast, are less
103 gregarious and less socially interactive than males (Wrangham, 2000), although this can vary

104 somewhat with local ecology and community demographics (Wittiger & Boesch, 2013).
105 Although female chimpanzees are less likely to form strong ties with one another than are males,
106 strong female-female ties do occur (Foerster et al., 2015). Both males and females form linear
107 dominance hierarchies that are associated with priority of access to fertile females for males
108 (Muller et al., 2020), high quality feeding areas for females (Emery Thompson, Kahlenberg, et
109 al., 2007), and higher reproductive success in both sexes (Emery Thompson, Kahlenberg, et al.,
110 2007; Pusey et al., 1997; Wroblewski et al., 2009).

111 We evaluated male and female age-related change in social dimensions quantified by 8
112 social network measures (Table 1 & Supplement): social attractivity or attention received (in-
113 degree, in-strength), overt social effort (out-degree, out-strength), gregariousness (i.e., overall
114 time in spatial association, or proximity strength), social roles (local transitivity and
115 betweenness), and overall embeddedness within the community (eigenvector centrality). For a
116 full explanation of the choice of network measures, including their functions and known changes
117 with age, see Supplement. We evaluated rates of grooming and spatial association as the
118 currencies of the network. Because inter- and intrasexual selective pressures have differentially
119 shaped the form and function of male-male, female-female, and male-female social relationships
120 in chimpanzees (e.g. Gilby & Wrangham, 2008; Machanda et al., 2013), we evaluated
121 integration within both mixed and same-sex adult networks to capture age-related changes in
122 these functionally distinct social realms. Because social status influences both sociality and
123 fitness, and varies with age (Braveman et al., 2011; Clutton-Brock & Huchard, 2013; Emery
124 Thompson, Jones, et al., 2007; Muller et al., 2006), we tested and controlled for the effects of
125 dominance rank and sexual receptivity on sociality. Lastly, we evaluated the consistency of
126 individual differences in social traits, because personality can influence morbidity and mortality

127 in humans and animals (Altschul et al., 2018; Cohen, 2004) and the efficacy of human social
128 interventions (Chapman et al., 2014).

129 We tested changes in social network integration for consistency with 5 explanatory
130 models (Table 1). First, under the physiological constraints model, the physical limitations of
131 aging are predicted to lead to progressive social isolation, associated with decreases in all
132 integration measures. Second, the social selectivity model posits that the benefits of particular
133 ties are balanced against age-related constraints, such that social interaction is prioritized towards
134 fewer, more valuable relationships. Under this model, we predict that individuals decrease the
135 number of social partners they direct effort toward (lower out-degree), but that the total effort
136 does not change (maintained out-strength). Further, under this model, partners become
137 collectively more familiar or more cliquish with age (higher transitivity), as observed in human
138 age-related selectivity. Third, under the social attractivity model, older animals attract more
139 social partners (regardless of their dominance status), resulting in greater attention received via
140 either more partners or increased duration of attention (higher in-degree or in-strength), and a
141 greater likelihood of bridging and/or being embedded among network members with age (higher
142 betweenness and/or centrality). Fourth, the social status model predicts that changes in sociality
143 over the life course are specifically linked to age-associated changes in dominance rank and/or
144 sexual status. This model predicts that aging *indirectly* influences sociality via changes in status
145 but does not have an independent effect. Finally, we examined the potential for individual
146 differences to shape levels of integration, alone or in combination with age effects.

147

148 **Table 1.** Guide to a) Individual network measures, where individual of interest is “ego” & b) Explanatory models of
 149 social aging tested in this study and their predicted changes in social integration.

a) Network measure	Functional Term	Technical description
<i>In -</i>	Social Attractivity	Attention received:
	<i>Degree</i>	Number of partners that groom ego
	<i>Strength</i>	Summed frequency of ego’s grooming received
<i>Out -</i>	Overt social effort	Attention given:
	<i>Degree</i>	Number of partners that ego grooms
	<i>Strength</i>	Summed duration of ego’s grooming given
<i>Strength</i> (undirected)	Gregariousness	Ego’s time spent in proximity (≤ 5 m) to a partner.
<i>Betweenness</i> *	Social role - Bridging	Number of shortest paths between any two network members that pass through ego
<i>Local Transitivity</i>	Social role – Clique member	Proportion of ego’s partner that are also partners with each other
<i>Eigenvector Centrality</i>	Embeddedness – influence & access to information	Individuals with high eigenvector centrality have many partners who themselves also have many partners.
b) Model of social aging	Predictions	
<i>Physiological constraints</i>	All network measures of integration \downarrow with age.	
<i>Social selectivity</i>	\downarrow Out-degree, same Out-strength, \uparrow Transitivity with age.	
<i>Social attractivity</i>	\uparrow In-degree, In-strength, Betweenness and/or Centrality with age.	
<i>Social status</i>	Dominance rank drives variation in integration with no independent effect of age. Sexual status moderates any age-effect on female integration with no main effect of age.	
<i>Individual differences</i>	Repeatable inter-individual differences explain significant amount of variation in integration, with or without age-effects.	

150 *All SNA measures from Betweenness down are calculated with weighted and undirected edges.

151

152 **Methods**

153 **[Figure 1]**

154 *Data Collection*

155 Data were collected on 38 permanent residents (22 F, 16 M) of the Kanyawara
156 Community in the Kibale National Forest, Uganda from Aug 2009 to Dec 2017 (full Data
157 collection methods and Ethical statement in Supplement). Subjects ranged from 12 – 57 years
158 old (Figure 1). In total, data consisted of 3371 focal follows, with subjects observed as focals for
159 133 ± 73 hours per year (mean ± sd) and as party members during focals for 1033 ± 588 hours
160 per year.

161 *Analysis*

162 We used the R package igraph v. 1.2.6 to create network graphs and measure individual-
163 level network integration in 4 types of annual networks: networks based on grooming or spatial
164 association within 5 m (proximity) and among members of both sexes (mixed-sex) or of the
165 same sex (i.e. all male, all female; Supplement). We calculated **in-degree**, **in-strength**, **out-
166 degree**, and **out-strength** for directed grooming networks; undirected **strength** in proximity
167 networks; and **local transitivity**, **betweenness**, and **eigenvector centrality** in both total
168 undirected grooming and proximity networks. Although grooming and spatial association
169 behavior are similar in their affiliative and tolerant tone, each integration measure from one
170 network behavior type was not on average correlated with the same measure from the other,
171 within individuals observed ≥ 3 years ($N = 30$, range average Spearman's rhos $-0.10 - 0.51$, all p
172 ≥ 0.39). All measures apart from in-degree and out-degree were weighted in an effort to capture
173 variation in both number of social partners and frequency of social interaction. We did not

174 calculate individual degree in proximity networks (i.e. an individual's unweighted number of
175 annual spatial associates) as such networks were often fully connected on an annual basis.

176 To evaluate changes in network integration with age, we constructed general additive
177 mixed models (GAMMs) in the R package mgcv v. 1.8-31 (S. N. Wood, 2017). General additive
178 models were useful for our age analysis because we expected social integration to vary over the
179 life course in a non-linear fashion, as reproductive priorities and physiological constraints
180 demonstrate non-monotonic changes with age. The curviness of non-linear relationships in
181 GAMMs (smooths) are determined by the number of basis functions for each fixed effect,
182 optimized for each model and effect (with mgcv::gam.check). All smooth parameters were
183 estimated with restricted maximum likelihood. Each network integration measure was modeled
184 as a response with either a Gaussian or Gamma error distribution and a log-link function, based
185 on model diagnostics with the mgcv::gam.check function. We ran our models in two sets to
186 evaluate age effects independent of social and reproductive status (Table 2). In both sets, we
187 included age as a smooth term (age calculation in Supplement), estimated by thin plate splines
188 with a k of 5 optimized by the mgcv::gam.check function, and individual ID as a smoothed
189 random intercept. In set 1, we included annual dominance ranks based on aggressive interactions
190 (calculation in Supplement) for both males and females in mixed and same sex networks. In set
191 2, we included annual time swollen (calculation in Supplement) for females' alone in mixed sex
192 networks. In time swollen models, we included an interaction between female age and time
193 swollen, as we expected females in estrus to be more attractive to males when they were older
194 (Muller et al. 2006). We lastly included an analysis of models with age alone as a predictor
195 (results in Tables S9-13) for readers interested in the unconditional effect of age on integration
196 measures.

197 Generalized additive models as implemented by the mgcv package are robust to
198 concurvity (Wood, 2017), an issue similar to collinearity but for non-linear models. Thus,
199 although male and female dominance rank, and female annual time swollen, were strongly
200 related to age (Table S1), estimates of their independent effects on integration were stable.
201 Permutation methods were used for significance testing of the influence of predictors on
202 integration measures (Supplement). This method, where effect sizes are compared to those from
203 models run on node-randomized permutations of observed data, reduces the risk of type I error
204 that typically grows with multiple testing, and so avoids the need for correction of multiple
205 comparisons (Farine & Whitehead, 2015). Consistent inter-individual differences in social
206 integration (repeatability) were evaluated by variance decomposition of each GAMM's random
207 effect of individual ID, identical to methods employed in linear models (Nakagawa et al., 2017)
208 and their significance calculated via permutation methods used in models of social aging.
209 (Supplement).

210

211 **Table 2.** GAMM compositions: testing effects of age on social integration independent of annual dominance rank
212 and time swollen.[†]

Approach	Network composition	Network behavior	Responses	Linear Predictors and Smooth Terms
Rank-independent age effects	Mixed-sex	Grooming & ≤ 5 m Proximity	In-Degree, Out-degree*, In-Strength, Out-Strength, Strength, Local Transitivity, Betweenness, Eigenvector centrality	Sex + s(Age, by = Sex, k = 5) + s(Rank, by = Sex, k = 5)
	Same-sex	Grooming & ≤ 5 m Proximity	“ ”	s(Age, k = 5) + s(Rank, k = 5)
Time swollen-independent age effects (females only)	Mixed-sex	Grooming & ≤ 5 m Proximity	“ ”	s(Age, k = 5) + s(Rank, k = 5) + s(Time swollen, k = 5) + ti(Age, Time swollen, k = 5)

213 [†] All models included individual ID as a random effect: s(ID, bs = “re”)

214 *In-Degree and Out-Degree calculated based on directed grooming networks, other measures on undirected networks.

215

216 **Results**

217 Age-related changes in social integration measures for both males and females overwhelmingly
218 occurred in grooming rather than proximity networks (Table 3). We therefore focus on age-
219 related changes in grooming networks in our presentation of results and their discussion.

220 **Males**

221 Across analyses, male chimpanzees exhibited three notable areas of changes in
222 integration with age (Table 3 & S3-6, Fig. 2 & S1). First, age significantly affected the number
223 of partners males groomed with (in/out-degree), but not their time spent grooming (in/out-
224 strength, Table 3 & S3). Older males declined in the number of mixed-sex partners that they
225 gave and received grooming from (out & in-degree), with males grooming with the most partners
226 of either sex in their late 20s (Fig. 2). Although this might suggest an influence of dominance
227 rank on male sociality, which also shows a concave relationship with age, these effects were

228 independent of rank (Table 3 & S3). In contrast, males received grooming from the most male
229 partners in their 30s and 40s (in-degree, Fig. 2), and while this declined somewhat amongst the
230 oldest males, they still received grooming from more partners than did the youngest adults. Age
231 only predicted a decrease in the number of partners males groomed with (out & in-degree) in
232 mixed-sex networks (Table 3 & S3-4), indicating that aging led males to groom with fewer
233 females, rather than males. Second, males' grooming partners in mixed-sex networks were more
234 likely to groom one another as males aged (linear increase in local transitivity, Fig. 2), indicating
235 that their reduction in grooming partners (out & in-degree) was accompanied by an increased
236 'cliquishness' with age (Table 3 & S3). Third, males' embeddedness among partners
237 (eigenvector centrality) changed with age in all networks examined, apart from mixed-sex
238 proximity. In each network, older males were more central than younger males, usually after
239 declining somewhat from their peak centrality in mid-adulthood (Table 3 & S3,4, & 6, Fig. 2 &
240 S1). The only instance in which male dominance rank had an effect on integration in the absence
241 of age was males' linear increase in centrality with rank in mixed-sex proximity networks (Table
242 S5, Fig. S3). Males also maintained highly repeatable inter-individual differences in overt social
243 effort (out-degree and out-strength) and their attractivity (in-degree and in-strength), particularly
244 among mixed sex partners (Table 3 & S8).

245

246 **Table 3. Summary of results:** Age-related changes in social network integration independent of
247 dominance rank. Shape and arrows describe significant relationships between age and a given
248 network measure (see Legend; full model results in Tables S3-8). Dots indicate a non-significant
249 relationship with age. Significant repeatability of integration measures given as IDE_{obs} (observed
250 deviance explained by individual ID in GAMM). Significance of IDE_{obs} was evaluated by the
251 proportion of 1000 deviances explained by ID in GAMMs on node-randomized data (IDE_{ran}) that
252 IDE_{obs} was less than (full Table S8).

Integration Measure	Network Behavior	Males (mixed sex)		Males (same sex)		Females (mixed sex)		Females (same sex)	
		Δ with age	IDE _{obs} [% > IDE _{ran}]	Δ with age	IDE _{obs} [% > IDE _{ran}]	Δ with age	IDE _{obs} [% > IDE _{ran}]	Δ with age	IDE _{obs} [% > IDE _{ran}]
<i>In-Degree</i>	<i>Grooming</i>	∅	0.34 [99]	∅	.	∅*	0.27 [99]	.	.
		∅	0.56 [100]	.	0.31 [100]	.	0.69 [100]	.	.
		0.15 [100]	.	.
		.	0.32 [100]	.	.	.	0.36 [100]	.	0.11 [100]
		0.16 [99]	.	.
<i>Out-degree</i>	<i>Proximity</i>	↑	.	.	.	∅*	0.22 [100]	.	.
	
	
	
<i>In-Strength</i>	<i>Total grooming</i>	↑	.	.	.	∅*	0.22 [100]	.	.
	
	
<i>Out-Strength</i>	<i>Proximity</i>	↑	.	.	.	∅*	0.22 [100]	.	.
	
	
<i>Strength</i>	<i>Total</i>	↑	.	.	.	∅*	0.22 [100]	.	.
	
	
<i>Betweenness</i>	<i>grooming</i>	↑	.	.	.	∅*	0.22 [100]	.	.
	
	
<i>Eigenvector centrality</i>	<i>Proximity</i>	↑	.	∅	.	∅	0.56 [100]	.	.
		.	.	∅	.	∅	0.15 [98]	.	.
		.	.	∅	.	∅	0.15 [98]	.	.

253 *Age effect no longer significant in models controlling for time swollen (Table S7).

254 **Legend:** Integration measure ↑ = increases with age, ∅ = increases and plateaus with age, ∅ = decreases after peak
255 in early adulthood, ∅ = increases in early to mid-adulthood and decreases in later adulthood

256 [Figure 2]

257

258 **Females**

259 Relative to males, females displayed low levels of integration and few age-related
260 changes in network measures (Table 3, Fig.2, direct sex comparisons in Supplemental Results &
261 Tables S3 & S5). Those rare instances of age-related change were typically declines. Females
262 received grooming from fewer partners with age (in-degree, Table 3 & S3, Fig. 2) and, in
263 contrast to males, females' grooming partners were less likely to groom one another with age in
264 mixed-sex but not same-sex networks (reduced grooming transitivity, Table 3 & S3-4, Fig. 2).
265 These declines with age signaled that females were grooming with fewer males, mirroring the
266 same pattern in male transitivity.

267 After controlling for female's annual time swollen, age no longer had any independent
268 effect on female social integration in mixed-sex networks (grooming in-degree, local transitivity)
269 although time swollen was not significantly related to either measure (Table 3 and S6). Annual
270 time swollen did, however, independently decrease grooming out-strength (Table S6A) and
271 interacted with age such that older females received more grooming (in-strength) and were more
272 central in proximity networks with more annual time fully swollen (Table S6B, Fig. S4a & b).
273 The single instance in which female dominance rank influenced integration, without an
274 independent effect of age, was a linear increase in time spent grooming fellow females with
275 increases in rank (out-strength, Table S4, Fig. S4). Females showed repeatable inter-individual
276 differences in all measures among mixed-sex partners except betweenness and local transitivity
277 in proximity networks (Table 3 & S8). Among all-female partners, females were repeatable only
278 in the time they spent grooming other females (out-strength).

279

280 **Table 4.** Summary of evidence consistent and inconsistent with 5 models of social aging.

Model of social aging	Evidence consistent with model in bold , inconsistent unbolded	
	Male	Female
<i>Physiological constraints</i>	$\downarrow \text{In-Degree}^{\text{MS}} \downarrow \text{Out-Degree}^{\text{MS}}$	$\downarrow \text{In-Degree}^{\text{MS}}, \downarrow \text{Transitivity}^{\text{MS}}$
<i>Social selectivity</i>	$\downarrow \text{Out-Degree}^{\text{MS}}, \text{same Out-Strength,}$ $\uparrow \text{grooming Transitivity}^{\text{MS}}$	
<i>Social attractivity</i>	$\uparrow \text{In-Degree}^{\text{SS}} \text{ and } \uparrow \text{grooming and proximity Centrality}$	$\downarrow \text{In-Degree}^{\text{MS}}$
<i>Social status</i>	Multitude of age-related changes in integration are independent of rank. $\uparrow \text{proximity Centrality with rank \& no age effect.}$	$\uparrow \text{Out-Strength}^{\text{SS}} \text{ with rank \& no age effect.}$ $\uparrow \text{proximity Centrality}^{\text{MS}} \text{ and grooming In-Strength}^{\text{MS}} \text{ with time swollen when older \& no main effect of age.}$
<i>Individual differences</i>	Measures of social attractivity^{MS} and overt social effort repeatable	Majority of network measures^{MS} are highly repeatable.

281 ^{MS} change occurs in mixed-sex networks only

282 ^{SS} change occurs in same-sex networks only

283

284 **Discussion**

285 In this study, we analyzed age-related changes in key dimensions of social integration
286 (social attractivity, overt effort, gregariousness, social roles, and embeddedness) in wild
287 chimpanzees, to evaluate 5 explanatory models of social aging: physiological constraints, social
288 selectivity, social attractivity, changing social status, and individual effects. Our results indicate
289 that aging influences sociality in both direct and indirect ways, but that these influences differ
290 between the sexes. We further find that overt social behavior, such as grooming, is a primary
291 way that chimpanzee social integration varies with age, whereas spatial association in close
292 proximity is less informative. Overall, our results argue against a simple physiological
293 constraints or social status-dependent model for social aging in chimpanzees and suggest that
294 male social integration, in particular, is more dependent on age than rank. Additionally, our data

295 provided evidence of individually-stable social phenotypes in both males and females,
296 suggesting that like humans, individual chimpanzees may be predisposed to more or less
297 successful aging trajectories (Rowe & Kahn, 2015). Here, we discuss patterns of male and
298 female social aging separately in light of our 5 explanatory models and consider the implications
299 of these patterns for human social aging and age-related disease.

300

301 *Males' age-related changes in integration*

302 Male patterns of social integration were broadly consistent with both social selectivity
303 and attractivity models of social aging, which posited an age-related focus on valuable social ties
304 and increases in attention received and embeddedness, respectively. Older males focused
305 grooming on a small set of partners that were increasingly connected with one another (lower in
306 & out-degree, maintained strength, higher transitivity, Fig. 2). Their selective focus parallels
307 other findings from this field site using different measures of sociality, where males formed more
308 equitable relationships with one another as they aged (Rosati et al., 2020). However, in this
309 analysis, the effects of aging on cliquishness (grooming transitivity) and overt social effort (out-
310 degree) were most affected by decreased interactions with females, as these two dimensions
311 changed in mixed-sex but not in all-male networks. Kanyawara males' selectivity does not result
312 from a narrow focus on kin, as few close kin pairs exist in our dataset. Though it is likely that
313 chimpanzees do not have knowledge of their impending mortality (a central feature of one major
314 theory of human social aging, Carstensen et al., 1999), aging male chimpanzees may
315 nevertheless shift their social goals with age. For example, males' strong increase in grooming
316 cliquishness (transitivity) may reflect a preference for predictability and stability that increases
317 with age. Further, young male chimpanzees cultivated a diversity of both male and female

318 grooming partners (in & out-degree) (Fig. 2 & S1), indicating motivation to secure allies and
319 affiliate with potential mates as young adults (Enigk et al., 2020), which is consistent with
320 ‘information gathering’ goals (Carstensen et al., 1999).

321 Male social patterns also indicated that age *per se* increased male attractivity, as older
322 males received grooming from more male partners (in-degree), were more cliquish (grooming
323 local transitivity), and were more embedded within the community than younger males
324 (grooming and proximity centrality) independently of dominance rank (Table 3, Fig. 2 & S1).

325 Older male chimpanzees exhibit declining physical condition (Emery Thompson et al. 2020),
326 which emphasizes that an older male’s value as a social partner lies in reasons other than
327 physical ability or rank-based benefits. Studies of other non-humans suggest that older
328 individuals are valued social partners due to their accumulated knowledge and experience
329 (reviewed in Brent et al., 2015). For chimpanzees, while it is possible that older males have
330 increased ecological knowledge that is of value to others, there is no direct evidence of this, and
331 it is not clear that grooming relationships would be necessary to benefit from such knowledge.

332 Instead, is it more plausible that older males’ have social and political experience that can assist
333 younger, less experienced partners to navigate competitive environments. Further, older males
334 exhibit less aggression (Muller et al., 2020), and tolerance is a potentially important factor in
335 their attractivity and the transmission of knowledge (Thornton & Clutton-Brock, 2011). Indeed,
336 older male chimpanzees have higher siring success than would be predicted by their ranks and
337 aggressive tendencies (Muller et al., 2020), one likely pay-off of knowledge and cooperative ties
338 (Gilby et al., 2013). Male chimpanzees’ maintenance of high embeddedness in old age was
339 similar to social patterns in the socially dominant sex in other primates (Machanda & Rosati,
340 2020).

341 *Females' age-related changes in integration*

342 Female social integration was consistently low relative to males' and, in their old age, females
343 appeared to neither groom nor maintain proximity with any adult partners (Fig. 2 & S1). They were
344 highest in the number of partners that groomed them (in-degree) and the cliquishness of their grooming
345 partners (local transitivity) in their late teens and 20's but declined thereafter (Fig. 2). That age-related
346 changes were exclusively declines paints a picture of older female chimpanzees' withdrawal from adult
347 social partners. It is unlikely that females, but not males, were constrained purely by physical
348 senescence, given that older males show more pronounced effects of declining physical condition than
349 do older females (Emery Thompson et al., 2020). Instead, age-related aspects of their reproductive and
350 social status appeared to shape female social integration.

351 One source of females' declining integration was decreased interactions with males. Although
352 our analyses attempted to control for mating interactions as a driving social force, we found that annual
353 time swollen did influence certain relationships between female integration and age, suggesting that
354 changes in other reproductive factors, such as sexual attractiveness or the presence of dependent
355 offspring (Otali & Gilchrist, 2006), could alter affiliative relationships with males. Older females are
356 more desirable mating partners for males (Muller et al., 2006), as evidenced in this study by their
357 increased grooming received and proximity centrality when sexually swollen (Fig. S4a & b), and this
358 puts them at increased risk of sexual coercion (Muller et al., 2007). Reducing interactions with males
359 overall may thus be a strategy to reduce coercion (Wrangham, 2002). Alternatively, avoiding males
360 could circumvent the particularly high feeding competition that associating with males imposes (Emery
361 Thompson et al., 2014). Indeed, although socializing offspring can bring females into association
362 (Lehmann & Boesch, 2009; Murray et al., 2014), energetically demanding states such as lactation lead
363 females to avoid social foraging (Otali & Gilchrist, 2006) and to spend considerable amounts of time

364 alone (Lee et al., 2021). Additionally, younger females who have newly immigrated to a community use
365 affiliation with males to protect them from other females, but they reduce these affiliations once they are
366 established in the community and begin to rise in status (Kahlenberg, Emery Thompson, et al., 2008;
367 Kahlenberg, Thompson, et al., 2008). Such underlying drivers of fewer interactions with males suggest
368 that females' declines in integration with age stem from social avoidance, a form of reduced effort.

369 Females' social status was a lone predictor explaining their social effort towards fellow females
370 (out-strength). Female dominance rank at Kanyawara increases with age (Kahlenberg, Emery
371 Thompson, et al., 2008), as at other sites (Foerster et al., 2016). Although females appeared to decrease
372 overt social effort towards fellow females with age (Fig. 2) they in fact invested more time in female
373 partners as they became higher-ranking. This effect of rank contrasts somewhat with that expected in
374 female-philopatric species, where high-ranking females often maintain more geographically central
375 positions among group members (Kalbitzer et al., 2017) and receive more grooming than low-ranking
376 females (Schino, 2001). In this study, high-ranking female chimpanzees groomed other females more
377 but were no more socially central and did not receive more grooming than low-ranking females. High-
378 ranking females tend to inhabit higher quality core areas in Kanyawara (Kahlenberg, Emery Thompson,
379 et al., 2008), and such access to resources may free females from either energetic or foraging-related
380 time constraints on social interaction. Additionally, young females are subject to harassment from older
381 females (Emery Thompson et al., 2010; Kahlenberg, Thompson, et al., 2008), thus higher rank conferred
382 by age may simply allow females the power and confidence to associate more freely, with fewer
383 concerns of aggressive competition. In either case, the result highlights a peculiar feature of female
384 chimpanzee social life, in which same-sex sociality is constrained by competition. Although the effects
385 of social status on female integration covaries, on average, with female age, they are not explained by
386 aging, *per se*.

387 *Significance of individual effects on integration*

388 Kanyawara chimpanzees maintained stable between-individual differences in several dimensions
389 of social integration (Table 3), i.e. certain chimpanzees were, for example, consistently more gregarious
390 or embedded than others, similar to chimpanzees in the Taï Forest, Côte d'Ivoire (Tkaczynski et al.,
391 2020). Thus, if social integration is important to health in chimpanzees, as it is in humans and many
392 other species, individuals' social phenotypes could be more or less conducive to successful aging (Rowe
393 & Kahn, 2015). In other species, such individual variation facilitates roles in cooperation (Bergmüller &
394 Taborsky, 2010) and, in male chimpanzees, may be involved in alternative strategies to achieve
395 dominance (Foster et al., 2009). As individual differences explained more variation in female social
396 integration than did rank or age, further examination of the attributes driving female chimpanzees'
397 differences in social integration is well warranted.

398

399 *Comparisons to and implications for human social aging*

400 Several patterns of social aging in chimpanzees were consistent with those in industrialized
401 human populations, but others diverged in important ways. Like industrialized humans, both
402 male and female chimpanzees at Kanyawara increased their number of social partners in early
403 and mid-adulthood and declined thereafter (David-Barrett et al., 2016; Fung et al., 2001; Wrzus
404 et al., 2013). Further, male chimpanzees participated in tighter social cliques with age, rather
405 than bridging otherwise unconnected partners, like many men (Cornwell et al., 2009). However,
406 unlike most men in industrialized societies, chimpanzee males sustained high overall levels of
407 integration into old age, with high attention received (in-degree) and embeddedness (centrality).
408 Relatedly, chimpanzees' sex differences in social aging were largely opposite to that observed in

409 industrialized populations, where women consistently have larger networks than men after early
410 adulthood (Bhattacharya et al., 2016; Cornwell et al., 2008). Further, there are no obvious sex
411 differences in social selectivity with age in studied humans (Carstensen et al., 1999), but
412 chimpanzee males appeared to be more socially selective with age than females, given males'
413 overall higher rates of integration and increased cliquishness with age (Fig. 2).

414 Where Kanyawara chimpanzees contrasted with industrialized humans, their sociality
415 appeared to age more similarly to humans in non-industrialized settings, where social networks
416 are primarily based within small communities. Although data on social aging from non-
417 industrialized societies are admittedly sparse and preclude indisputable comparisons, several
418 similarities are apparent. Men in non-industrialized societies, such as in Tsimane forager-
419 horticulturalists and Nyangatom agro-pastoralists, often retain significant prestige even in old
420 age, similar to male chimpanzees (Glowacki & von Rueden, 2015). Further, female
421 chimpanzees' low social integration relative to males resembles the situation of women in some
422 patrilocal and non-industrialized societies that disperse at marriage and are limited in replacing
423 kin relationships with new non-kin partners (Scelza, 2011; Wood & Eagly, 2002). For example,
424 in Himba semi-nomadic pastoralists, women are often hindered in their travel to visit kin for
425 social support because of mate-guarding within their marriage (Scelza, 2011). Among the
426 Tsimane and nomadic Saami, women also face trade-offs between having large, cooperative
427 social networks and attending to duties of intra-household labor and childcare (Anderson, 1983;
428 von Rueden et al., 2018). In each case, women are socially limited by male reproductive tactics
429 and their reproductive priorities, similar to female chimpanzees. Comparing social aging in this
430 community of chimpanzees with future studies on age-related changes in sociality in diverse
431 human cultures, other chimpanzee communities, and other closely-related apes, would allow

432 even greater inferences into how ecological variability in gender roles shapes social aging, and
433 into the nature of humans' ancestral social environments.

434 Similarities in non-human primate and human social aging suggest their similar and
435 potentially evolutionarily conserved drivers. Given that chimpanzees' and other primates' likely
436 lack abstract knowledge of their impending mortality, their decreasing sociality likely results
437 from the constraints of variable costs of social interaction, and their selectivity likely functions to
438 maintain the most beneficial of social ties. Sex-specific patterns of social aging in this study
439 emphasize that physiological priorities drive social decision-making.

440

441 *Implications for human age-related disease*

442 Although social integration is well-linked to fitness in non-human primates (Snyder-Mackler
443 et al., 2020; Thompson, 2019), whether social integration moderates age-related declines in
444 physical health in non-human primates is currently an open question. Although we did not yet
445 test these effects here, we hypothesize that chimpanzees' and humans' shared tendencies to
446 decrease social effort and become more socially selective with age are not in themselves
447 evidence of pathology. Instead, they may have been adaptive strategies for coping with the
448 constraints of aging in past social environments that are now disadvantageous in industrialized
449 society (Gurven & Lieberman, 2020).

450 In the evolutionarily novel environment of industrialized nations, humans' conserved
451 tendencies to decrease social effort and increase selectivity may be at particular risk of
452 developing into isolation, with strong physical consequences. In terms of physiology, advanced
453 physical and mental deterioration during humans' extended lifespans could make the effects of

454 decreased integration on physiological function particularly dramatic. In terms of culture, many
455 industrialized societies lack deference to older people (North & Fiske, 2015) and cohesive
456 communities that endure for a lifetime (Höllinger & Haller, 1990). In contrast, chimpanzees
457 experience a relatively permanent social community, and this alone could preserve older male
458 chimpanzees' network size and attention received, and older females' social status. Similarities
459 in social aging between chimpanzees and people in non-industrialized societies reinforces the
460 likelihood that industrialized humans have recently departed from social settings in which
461 community stability is a norm and social isolation unlikely. Again, greater research on social
462 aging in a diversity of non-industrialized societies can further elucidate and reinforce reference
463 points of successful social aging and vulnerabilities to related diseases. Such insights can inspire
464 and support the rationales of certain social interventions for older people, such as prioritizing
465 stability and control in older adults' social environments over a manufactured sense of belonging
466 or introduction of new social ties (Cohen, 2004; Fung et al., 2001; Umberson & Karas Montez,
467 2010).

468

469 **Acknowledgements**

470 We are grateful to the staff and field assistants of the Kibale Chimpanzee Project for their efforts
471 in collecting all behavioral data. We acknowledge and give thanks to Stephanie Fox, Kathrine
472 Starkweather, Kris Sabbi, and Shauhin Alavi for conversations that improved the interpretation
473 of our analyses. We also thank the Uganda Wildlife Association, Makerere University Biological
474 Field Station, and the Uganda National Council for Science and Technology for their support and
475 permission to conduct research in Kibale National Park.

476

477 **Data Availability Statement**

478 Relevant data and scripts for analysis are publicly available in author NTG's GitHub page at
479 <https://github.com/Gavago/Social-aging-in-wild-adult-chimpanzees>.

480

481 **Figure captions:**

482 **Figure 1.** Age ranges of observation for each study subject (22 F & 16 M; 122 female-years, 78
483 male-years). Focal observations were continuous over each age window.

484 **Figure 2.** Social integration measures by age in mixed and same-sex grooming networks. Male
485 data represented by blue triangles and blue dashed GAM smooth, female data represented by red
486 circles and red solid GAM smooth. Smooths are conditional effects of age on social integration,
487 controlling for rank, created using the R functions visreg and mgcv::gam within ggplot2.

488 **Figure S1.** All social integration measures by age in mixed and same-sex proximity networks.

489 Male data represented by blue triangles and blue dashed GAM smooth, female data represented
490 by red circles and red solid GAM smooth. Smooths are conditional effects of age on social
491 integration, controlling for rank, created using the R functions visreg and mgcv::gam within
492 ggplot2.

493 **Figure S2.** Social integration in mixed and same-sex grooming networks by dominance rank.

494 Male data represented by blue triangles and blue dashed GAM smooth, female data represented
495 by red circles and red solid GAM smooth. Smooths are conditional effects of age on social
496 integration, controlling for rank, created using the R functions visreg and mgcv::gam within
497 ggplot2.

498 **Figure S3.** Social integration in proximity networks by **dominance rank**. Male data represented
499 by blue triangles and blue dashed GAM smooth, female data represented by red circles and red
500 solid GAM smooth. Smooths are conditional effects of age on social integration, controlling for
501 rank, created using the R functions visreg and mgcv::gam within ggplot2.

502 **Figure S4.** Changes in female A) grooming in-strength and B) proximity centrality in mixed sex
503 networks as a product of age and annual time fully swollen. Plots created using the vis.gam
504 function in R's mgcv package.

505

506

507

508 **References**

509 Albery, G. F., Clutton-Brock, T. H., Morris, A., Morris, S., Pemberton, J. M., Nussey, D. H., & Firth, J.
510 A. (2021). Ageing red deer alter their spatial behaviour and become less social. *BioRxiv*,
511 2021.06.11.448092. <https://doi.org/10.1101/2021.06.11.448092>

512 Althubaiti, A. (2016). Information bias in health research: Definition, pitfalls, and adjustment methods.
513 *Journal of Multidisciplinary Healthcare*, 9, 211–217. <https://doi.org/10.2147/JMDH.S104807>

514 Altschul, D. M., Hopkins, W. D., Herrelko, E. S., Inoue-Murayama, M., Matsuzawa, T., King, J. E., Ross,
515 S. R., & Weiss, A. (2018). Personality links with lifespan in chimpanzees. *eLife*, 7, e33781.
516 <https://doi.org/10.7554/eLife.33781>

517 Anderson, M. (1983). Woman as generalist, as specialist, and as diversifier in Saami subsistence
518 activities. *Humboldt Journal of Social Relations*, 10(2), 175–197.

519 Bergmüller, R., & Taborsky, M. (2010). Animal personality due to social niche specialisation. *Trends in
520 Ecology & Evolution*, 25(9), 504–511. <http://dx.doi.org/10.1016/j.tree.2010.06.012>

521 Bhattacharya, K., Ghosh, A., Monsivais, D., Dunbar, R. I. M., & Kaski, K. (2016). Sex differences in
522 social focus across the life cycle in humans. *Royal Society Open Science*, 3(4), 160097.
523 <https://doi.org/10.1098/rsos.160097>

524 Braveman, P., Egerter, S., & Williams, D. R. (2011). The social determinants of health: Coming of age.
525 *Annual Review of Public Health*, 32, 381–398. <https://doi.org/10.1146/annurev-publhealth-031210-101218>

527 Brent, L. J. N., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., & Croft, D. P. (2015).
528 Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales. *Current Biology*,
529 25(6), 746–750. <https://doi.org/10.1016/j.cub.2015.01.037>

530 Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of
531 socioemotional selectivity. *American Psychologist*, 54(3), 165–181. <https://doi.org/10.1037/0003-066X.54.3.165>

533 Chapman, B. P., Hampson, S., & Clarkin, J. (2014). Personality-informed interventions for healthy aging:
534 Conclusions from a National Institute on Aging work group. *Developmental Psychology*, 50(5), 1426–
535 1441. <https://doi.org/10.1037/a0034135>

536 Clutton-Brock, T. H., & Huchard, E. (2013). Social competition and selection in males and females.
537 *Philosophical Transactions of the Royal Society B: Biological Sciences*, 368(1631), 20130074.

538 Cohen, S. (2004). Social Relationships and Health. *American Psychologist*, 59(8), 676–684.
539 <https://doi.org/10.1037/0003-066X.59.8.676>

540 Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The Social Connectedness of Older Adults: A
541 National Profile. *American Sociological Review*, 73(2), 185–203.
542 <https://doi.org/10.1177/000312240807300201>

543 Cornwell, B., Schumm, L. P., Laumann, E. O., & Graber, J. (2009). Social Networks in the NSHAP
544 Study: Rationale, Measurement, and Preliminary Findings. *The Journals of Gerontology: Series B*,
545 64B(suppl_1), i47–i55. <https://doi.org/10.1093/geronb/gbp042>

546 David-Barrett, T., Kertesz, J., Rotkirch, A., Ghosh, A., Bhattacharya, K., Monsivais, D., & Kaski, K.
547 (2016). Communication with Family and Friends across the Life Course. *PLOS ONE*, 11(11), e0165687.
548 <https://doi.org/10.1371/journal.pone.0165687>

549 Emery Thompson, M., Jones, J. H., Pusey, A. E., Brewer-Marsden, S., Goodall, J., Marsden, D.,
550 Matsuzawa, T., Nishida, T., Reynolds, V., Sugiyama, Y., & Wrangham, R. W. (2007). Aging and Fertility
551 Patterns in Wild Chimpanzees Provide Insights into the Evolution of Menopause. *Current Biology*,
552 17(24), 2150–2156. <https://doi.org/10.1016/j.cub.2007.11.033>

553 Emery Thompson, M., Kahlenberg, S. M., Gilby, I. C., & Wrangham, R. W. (2007). Core area quality is
554 associated with variance in reproductive success among female chimpanzees at Kibale National Park.
555 *Animal Behaviour*, 73(3), 501–512. <https://doi.org/10.1016/j.anbehav.2006.09.007>

556 Emery Thompson, M., Machanda, Z. P., Fox, S. A., Sabbi, K. H., Otali, E., Thompson González, N.,
557 Muller, M. N., & Wrangham, R. W. (2020). Evaluating the impact of physical frailty during ageing in
558 wild chimpanzees (*Pan troglodytes schweinfurthii*). *Philosophical Transactions of the Royal Society B: Biological Sciences*, 375(1811), 20190607. <https://doi.org/10.1098/rstb.2019.0607>

559

560 Emery Thompson, M., Muller, M. N., Kahlenberg, S. M., & Wrangham, R. W. (2010). Dynamics of
561 social and energetic stress in wild female chimpanzees. *Hormones and Behavior*, 58(3), 440–449.
562 <https://doi.org/10.1016/j.yhbeh.2010.05.009>

563 Emery Thompson, M., Muller, M. N., & Wrangham, R. W. (2014). Male chimpanzees compromise the
564 foraging success of their mates in Kibale National Park, Uganda. *Behavioral Ecology and Sociobiology*,
565 68(12), 1973–1983. <https://doi.org/10.1007/s00265-014-1803-y>

566 Enigk, D. K., Thompson, M. E., Machanda, Z. P., Wrangham, R. W., & Muller, M. N. (2020).
567 Competitive ability determines coalition participation and partner selection during maturation in wild
568 male chimpanzees (*Pan troglodytes schweinfurthii*). *Behavioral Ecology and Sociobiology*, 74(7), 89.
569 <https://doi.org/10.1007/s00265-020-02872-7>

570 Farine, D. R., & Whitehead, H. (2015). Constructing, conducting and interpreting animal social network
571 analysis. *Journal of Animal Ecology*, 84(5), 1144–1163. <https://doi.org/10.1111/1365-2656.12418>

572 Foerster, S., Franz, M., Murray, C. M., Gilby, I. C., Feldblum, J. T., Walker, K. K., & Pusey, A. E.
573 (2016). Chimpanzee females queue but males compete for social status. *Scientific Reports*, 6(1), 35404.
574 <https://doi.org/10.1038/srep35404>

575 Foerster, S., McLellan, K., Schroepfer-Walker, K., Murray, C. M., Krupenye, C., Gilby, I. C., & Pusey,
576 A. E. (2015). Social bonds in the dispersing sex: Partner preferences among adult female chimpanzees.
577 *Animal Behaviour*, 105(0), 139–152. <http://dx.doi.org/10.1016/j.anbehav.2015.04.012>

578 Foster, M. W., Gilby, I. C., Murray, C. M., Johnson, A., Wroblewski, E. E., & Pusey, A. E. (2009). Alpha
579 male chimpanzee grooming patterns: Implications for dominance “style.” *American Journal of
580 Primatology*, 71(2), 136–144. <https://doi.org/10.1002/ajp.20632>

581 Fung, H. H., Carstensen, L. L., & Lang, F. R. (2001). Age-related patterns in social networks among
582 European Americans and African Americans: Implications for socioemotional selectivity across the life
583 span. *The International Journal of Aging & Human Development*, 52(3), 185–206.
584 <https://doi.org/10.2190/1ABL-9BE5-M0X2-LR9V>

585 Gilby, I. C., Brent, L. J., Wroblewski, E. E., Rudicell, R. S., Hahn, B. H., Goodall, J., & Pusey, A. E.

586 (2013). Fitness benefits of coalitionary aggression in male chimpanzees. *Behavioral Ecology and*
587 *Sociobiology*, 67(3), 373–381. <https://doi.org/10.1007/s00265-012-1457-6>

588 Gilby, I. C., & Wrangham, R. W. (2008). Association patterns among wild chimpanzees (*Pan troglodytes*
589 *schweinfurthii*) reflect sex differences in cooperation. *Behavioral Ecology and Sociobiology*, 62(11),
590 1831–1842.

591 Glowacki, L., & von Rueden, C. (2015). Leadership solves collective action problems in small-scale
592 societies. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370(1683), 20150010.
593 <https://doi.org/10.1098/rstb.2015.0010>

594 Gurven, M. D., & Lieberman, D. E. (2020). WEIRD bodies: Mismatch, medicine and missing diversity.
595 *Evolution and Human Behavior*, 41(5), 330–340. <https://doi.org/10.1016/j.evolhumbehav.2020.04.001>

596 Höllinger, F., & Haller, M. (1990). Kinship and social networks in modern societies: A cross-cultural
597 comparison among seven nations. *European Sociological Review*, 6(2), 103–124.
598 <https://doi.org/10.1093/oxfordjournals.esr.a036553>

599 Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality risk: A meta-
600 analytic review. *PLOS Medicine*, 7(7), 1–20. <https://doi.org/10.1371/journal.pmed.1000316>

601 Kahlenberg, S. M., Emery Thompson, M., & Wrangham, R. W. (2008). Female Competition over Core
602 Areas in *Pan troglodytes schweinfurthii*, Kibale National Park, Uganda. *International Journal of*
603 *Primateology*, 29(4), 931. <https://doi.org/10.1007/s10764-008-9276-3>

604 Kahlenberg, S. M., Thompson, M. E., Muller, M. N., & Wrangham, R. W. (2008). Immigration costs for
605 female chimpanzees and male protection as an immigrant counterstrategy to intrasexual aggression.
606 *Animal Behaviour*, 76(5), 1497–1509. <https://doi.org/10.1016/j.anbehav.2008.05.029>

607 Kalbitzer, U., Bergstrom, M. L., Carnegie, S. D., Wikberg, E. C., Kawamura, S., Campos, F. A., Jack, K.
608 M., & Fedigan, L. M. (2017). Female sociality and sexual conflict shape offspring survival in a
609 Neotropical primate. *Proceedings of the National Academy of Sciences*, 114(8), 1892–1897.
610 <https://doi.org/10.1073/pnas.1608625114>

611 Lee, S. M., Hohmann, G., Lonsdorf, E. V., Fruth, B., & Murray, C. M. (2021). Gregariousness, foraging
612 effort, and affiliative interactions in lactating bonobos and chimpanzees. *Behavioral Ecology*, 32(1), 188–
613 198. <https://doi.org/10.1093/beheco/araa130>

614 Lehmann, J., & Boesch, C. (2009). Sociality of the dispersing sex: The nature of social bonds in West
615 African female chimpanzees, *Pan troglodytes*. *Animal Behaviour*, 77(2), 377–387.
616 <http://dx.doi.org/10.1016/j.anbehav.2008.09.038>

617 Machanda, Z. P., Gilby, I. C., & Wrangham, R. W. (2013). Male–Female Association Patterns Among
618 Free-ranging Chimpanzees (*Pan troglodytes schweinfurthii*). *International Journal of Primatology*, 34(5),
619 917–938. <https://doi.org/10.1007/s10764-013-9707-7>

620 Machanda, Z. P., & Rosati, A. G. (2020). Shifting sociality during primate ageing. *Philosophical*
621 *Transactions of the Royal Society B: Biological Sciences*, 375(1811), 20190620.
622 <https://doi.org/10.1098/rstb.2019.0620>

623 Mitani, J. C. (2009). Male chimpanzees form enduring and equitable social bonds. *Animal Behaviour*,
624 77(3), 633–640. <https://doi.org/10.1016/j.anbehav.2008.11.021>

625 Muller, M. N., Blurton Jones, N. G., Colchero, F., Thompson, M. E., Enigk, D. K., Feldblum, J. T., Hahn,
626 B. H., Langergraber, K. E., Scully, E. J., Vigilant, L., Walker, K. K., Wrangham, R. W., Wroblewski, E.
627 E., & Pusey, A. E. (2020). Sexual dimorphism in chimpanzee (*Pan troglodytes schweinfurthii*) and human
628 age-specific fertility. *Journal of Human Evolution*, 144, 102795.
629 <https://doi.org/10.1016/j.jhevol.2020.102795>

630 Muller, M. N., Kahlenberg, S. M., Emery Thompson, M., & Wrangham, R. W. (2007). Male coercion and
631 the costs of promiscuous mating for female chimpanzees. *Proceedings of the Royal Society B: Biological
632 Sciences*, 274(1612), 1009–1014. <https://doi.org/10.1098/rspb.2006.0206>

633 Muller, M. N., Thompson, M. E., & Wrangham, R. W. (2006). Male Chimpanzees Prefer Mating with
634 Old Females. *Current Biology*, 16(22), 2234–2238. <https://doi.org/10.1016/j.cub.2006.09.042>

635 Murray, C. M., Gilby, I. C., Mane, S. V., & Pusey, A. E. (2008). Adult Male Chimpanzees Inherit
636 Maternal Ranging Patterns. *Current Biology*, 18(1), 20–24. <https://doi.org/10.1016/j.cub.2007.11.044>

637 Murray, C. M., Lonsdorf, E. V., Stanton, M. A., Wellens, K. R., Miller, J. A., Goodall, J., & Pusey, A. E.
638 (2014). Early social exposure in wild chimpanzees: Mothers with sons are more gregarious than mothers
639 with daughters. *Proceedings of the National Academy of Sciences*, 111(51), 18189.
640 <https://doi.org/10.1073/pnas.1409507111>

641 Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R² and intra-
642 class correlation coefficient from generalized linear mixed-effects models revisited and expanded.
643 *Journal of The Royal Society Interface*, 14(134), 20170213. <https://doi.org/10.1098/rsif.2017.0213>

644 North, M. S., & Fiske, S. T. (2015). Modern attitudes toward older adults in the aging world: A cross-
645 cultural meta-analysis. *Psychological Bulletin*, 141(5), 993–1021. <https://doi.org/10.1037/a0039469>

646 Otali, E., & Gilchrist, J. S. (2006). Why chimpanzee (*Pan troglodytes schweinfurthii*) mothers are less
647 gregarious than nonmothers and males: The infant safety hypothesis. *Behavioral Ecology and
648 Sociobiology*, 59(4), 561–570. <https://doi.org/10.1007/s00265-005-0081-0>

649 Pusey, A., Williams, J., & Goodall, J. (1997). The influence of dominance rank on the reproductive
650 success of female chimpanzees. *Science*, 277(5327), 828–831.

651 Rosati, A. G., Hagberg, L., Enigk, D. K., Otali, E., Thompson, M. E., Muller, M. N., Wrangham, R. W.,
652 & Machanda, Z. P. (2020). Social selectivity in aging wild chimpanzees. *Science*, 370(6515), 473–476.
653 <https://doi.org/10.1126/science.aaz9129>

654 Rowe, J. W., & Kahn, R. L. (2015). Successful Aging 2.0: Conceptual Expansions for the 21st Century.
655 *The Journals of Gerontology: Series B*, 70(4), 593–596. <https://doi.org/10.1093/geronb/gbv025>

656 Scelza, B. (2011). Female Mobility and Postmarital Kin Access in a Patrilocal Society. *Human Nature*,
657 22(4), 377–393. <https://doi.org/10.1007/s12110-011-9125-5>

658 Schino, G. (2001). Grooming, competition and social rank among female primates: A meta-analysis.
659 *Animal Behaviour*, 62(2), 265–271.

660 Snyder-Mackler, N., Burger, J. R., Gaydosh, L., Belsky, D. W., Noppert, G. A., Campos, F. A.,
661 Bartolomucci, A., Yang, Y. C., Aiello, A. E., O'Rand, A., Harris, K. M., Shively, C. A., Alberts, S. C., &
662 Tung, J. (2020). Social determinants of health and survival in humans and other animals. *Science*,
663 368(6493), eaax9553. <https://doi.org/10.1126/science.aax9553>

664 Thompson, N. A. (2019). Understanding the links between social ties and fitness over the life cycle in
665 primates. *Behaviour*, 156(9), 1–50. <https://doi.org/10.1163/1568539X-00003552>

666 Thornton, A., & Clutton-Brock, T. H. (2011). Social learning and the development of individual and
667 group behaviour in mammal societies. *Philosophical Transactions of the Royal Society: Biological
668 Sciences*, 366, 978–987.

669 Tkaczynski, P. J., Mielke, A., Samuni, L., Preis, A., Wittig, R. M., & Crockford, C. (2020). Long-term
670 repeatability in social behaviour suggests stable social phenotypes in wild chimpanzees. *Royal Society
671 Open Science*, 7(8), 200454. <https://doi.org/10.1098/rsos.200454>

672 Umberson, D., & Karas Montez, J. (2010). Social Relationships and Health: A Flashpoint for Health
673 Policy. *Journal of Health and Social Behavior*, 51(1_suppl), S54–S66.
674 <https://doi.org/10.1177/0022146510383501>

675 von Rueden, C., Alami, S., Kaplan, H., & Gurven, M. (2018). Sex differences in political leadership in an
676 egalitarian society. *Evolution and Human Behavior*, 39(4), 402–411.
677 <https://doi.org/10.1016/j.evolhumbehav.2018.03.005>

678 Wey, T. W., & Blumstein, D. T. (2010). Social cohesion in yellow-bellied marmots is established through
679 age and kin structuring. *Animal Behaviour*, 79(6), 1343–1352.
680 <http://dx.doi.org/10.1016/j.anbehav.2010.03.008>

681 Wittiger, L., & Boesch, C. (2013). Female gregariousness in Western Chimpanzees (*Pan troglodytes
682 verus*) is influenced by resource aggregation and the number of females in estrus. *Behavioral Ecology and
683 Sociobiology*, 67(7), 1097–1111. <https://doi.org/10.1007/s00265-013-1534-5>

684 Wood, B. M., Watts, D. P., Mitani, J. C., & Langergraber, K. E. (2017). Favorable ecological
685 circumstances promote life expectancy in chimpanzees similar to that of human hunter-gatherers. *Journal
686 of Human Evolution*, 105, 41–56. <https://doi.org/10.1016/j.jhevol.2017.01.003>

687 Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R, Second Edition*. CRC Press.

688 Wood, W., & Eagly, A. H. (2002). A cross-cultural analysis of the behavior of women and men:
689 Implications for the origins of sex differences. *Psychological Bulletin*, 128(5), 699–727.
690 <https://doi.org/10.1037/0033-2909.128.5.699>

691 Wrangham, R. (2000). Why are male chimpanzees more gregarious than mothers? A scramble
692 competition hypothesis. *Male Primates*. <https://ci.nii.ac.jp/naid/10017456997/>

693 Wrangham, R. (2002). The cost-of-sexual-attraction hypothesis: A trade-off in female Pan between sex
694 appeal and received coercion. In *Behavioral Diversity of Chimpanzees and Bonobos*. Boesch C,
695 Marquardt L; Harvard University Press.

696 Wroblewski, E. E., Murray, C. M., Keele, B. F., Schumacher-Stankey, J. C., Hahn, B. H., & Pusey, A. E.
697 (2009). Male dominance rank and reproductive success in chimpanzees, *Pan troglodytes schweinfurthii*.
698 *Animal Behaviour*, 77(4), 873–885. <https://doi.org/10.1016/j.anbehav.2008.12.014>

699 Wrzus, C., Hänel, M., Wagner, J., & Neyer, F. J. (2013). Social network changes and life events across
700 the life span: A meta-analysis. *Psychological Bulletin*, 139(1), 53–80. <https://doi.org/10.1037/a0028601>

701

702 **Supplemental Background**

703 ***Justification of Social Network Measures: functions and changes with age***

704 Social network analysis has the distinct advantage of providing individual measures of
705 integration based on either direct or indirect ties, with the latter situating individuals within
706 groups as a whole (Table 1). The overall number of direct social partners an individual has (i.e.,
707 **degree** centrality) represents its range or flexibility in possible sources of social support and
708 resources (Donald & Ware, 1984; Thompson, 2019). Greater frequency of contact or association
709 with partners (i.e., **strength** or intensity of social ties), indicates individual gregariousness and
710 the presence of preferential relationships that can predict reliable support (Bray & Gilby, 2020;
711 Granovetter, 1983; James, 2000; Mitani, 2009; Young et al., 2014). In humans, although degree
712 generally decreases with age (Cornwell et al., 2008; David-Barrett et al., 2016; English &
713 Carstensen, 2014; Fung et al., 2001; Wrzus et al., 2013), strength does not always follow the
714 same pattern, sometimes decreasing and sometimes remaining the same, indicating a relative
715 increase among a smaller set of social partners (Carstensen, 1992; Cornwell et al., 2008).
716 Directional measures of degree/strength further tease apart overt forms of individual social
717 attractivity vs. social effort, or attention received vs. given. In Barbary macaques, for example,
718 adult females maintain the same number of groomers and amount of grooming received as they
719 age (**in-degree** and **in-strength**), but reduce their overt social effort by grooming fewer
720 individuals less often (out-degree and out-strength, Almeling et al., 2016). Across animals, both
721 social attractivity and effort change with age. For example, older individuals sometimes attract
722 more attention because of their experience, including greater political knowledge (men,
723 Glowacki & von Rueden, 2015; von Rueden et al., 2008), ecological knowledge (female orcas,
724 elephants, and bonobos Brent et al., 2015; McComb et al., 2001, 2011; Tokuyama & Furuichi,

725 2017), or reproductive parity (female chimpanzees, Anderson, 1986; Muller et al., 2006). Social
726 effort, on the other hand, often decreases with age in many primates (reviewed in Machanda &
727 Rosati, 2020), possibly because older and senescent individuals are simply less able to physically
728 compete, a direct cost of sociality (Emery Thompson et al., 2020; Silk, 2007).

729 In humans, social roles are positions held within a group that involve both direct and
730 indirect group ties. Roles in humans are thought to promote health by increasing one's sense of
731 identity and purpose (Cornwell et al., 2008; Holt-Lunstad et al., 2010) and potentially mirror
732 several aspects of animal social behavior that similarly promote homeostasis and environmental
733 stability (Matthews & Tye, 2019). In SNA, one measure of social role is participation in cliques,
734 i.e. when one's contacts interact with one another (**local transitivity**, Table 1). When social
735 contacts form cliques it increases the likelihood that cooperation and reciprocity will ensue (Sosa
736 et al., 2020), creating secure environments where information can be triangulated and where
737 resources such as food and vigilance can be pooled (Cornwell et al., 2008; Hanneman & Riddle,
738 2005). A second measure of social role, and one often inversely related to transitivity, is an
739 individual's ability to bridge disparate cliques or otherwise unconnected individuals
740 (**betweenness centrality**; Cornwell et al., 2009; Hanneman & Riddle, 2005). The benefit of
741 bridging otherwise unconnected individuals is to uniquely access and broker information and/or
742 to have access to distinct pools of resources (Brent, 2015; Keating et al., 2005). In dolphins
743 (*Tursiops spp.*), for example, highly 'between' individuals possess greater ecological knowledge
744 and are key in facilitating cohesion (Lusseau & Newman, 2004), and decision-making in
745 communities (Lusseau, 2007). No human or non-human animal studies have yet examined age-
746 related variation in social roles measured as local transitivity or betweenness *per se*. However,
747 people's increased participation in religious and volunteer organizations and focus on few, close

748 social contacts in late adulthood suggests that humans do increase in local transitivity with age
749 (Bhattacharya et al., 2016; Carstensen et al., 1999; Wrzus et al., 2013). Limited research
750 indicates that humans have little to no tendencies to bridge different partners in old age
751 (Cornwell et al., 2009; Wen Yuan et al., 2017).

752 Lastly, social “embeddedness” is a fundamental concept in the social determinants of
753 health literature, highlighting that individuals derive social capital from their position within a
754 global network of indirect ties, or “friends of friends”, including access to information and social
755 norms (Carstensen et al., 1999; Coleman, 1988; Cornwell et al., 2008; Keating et al., 2005;
756 Stowe & Cooney, 2015). Although widely referenced (e.g. Coleman, 1988; Granovetter, 1985),
757 embeddedness *per se* is rarely quantified in human health studies, but can be well captured in
758 SNA as **eigenvector centrality** (Andersen, 2013; hereafter, centrality, Table 1). High measures
759 of centrality derive from an individual’s many and strong social ties and those of their direct
760 contacts (Sosa et al., 2020). In non-human animals, centrality corresponds with greater food
761 discovery (Paridae songbirds, Aplin et al., 2012), and has been shown to decrease with age in
762 female yellow-bellied marmots (Blumstein et al., 2018), and in some primates (Barbary
763 macaques, Rathke & Fischer, 2021) but not all those examined (rhesus macaques, Liao et al.,
764 2018). In some species, embeddedness corresponds with decreased parasites and infection
765 (Balasubramaniam et al., 2016; Duboscq et al., 2016), however, under some circumstances it can
766 lead to greater pathogen exposure (Nunn, 2012; Page et al., 2017). In humans, embeddedness is
767 thought to decline with age alongside shrinking social networks (Cornwell et al., 2008).

768

769

770 **Supplemental Methods**

771 ***Ethical statement***

772 The Institutional Animal Care and Use Committees of Harvard University and the University of
773 New Mexico approved of this study's data collection protocol. All research was conducted in
774 compliance with Ugandan law, with research permissions granted by the Uganda Wildlife
775 Authority, Uganda National Council for Science and Technology, and Makerere University
776 Biological Field Station.

777

778 ***Data collection***

779 The Kanyawara community of wild chimpanzees lives in the northern part of Kibale
780 National Park, Uganda. From August 2009 to December 2017, pairs of field assistants of the
781 Kibale Chimpanzee Project conducted focal follows of individual chimpanzees, wherein they
782 attempted to follow the same chimpanzee (and that chimpanzee's associates) through the entire
783 active period from waking to nesting (mean \pm sd = 9.8 ± 2.7 hrs per follow, N = 3371 follows).
784 Focals were selected based on which individuals were located on a given day, prioritizing those
785 who had been followed less recently or less frequently. If a focal was lost, another was chosen, if
786 possible, to finish the observation day. One observer collected party composition data (all
787 individuals within 50 m of any other) via instantaneous scan sampling every 15 minutes, while a
788 second recorded the focal individual's activity (e.g., resting, grooming, feeding) each minute and
789 recorded all individuals within 5 m of the focal every 15 minutes. The average chimpanzee was a
790 focal subject for 133 ± 73 hours per year (130 ± 78 F, 138 ± 63 M) and a party member for 1033
791 ± 588 hours per year (937 ± 531 F, 1184 ± 642 M; annual values Table S1). Importantly, within

792 subjects, no annual measure of social integration in any network was, on average, correlated with
793 annual observation time as a focal or party member (subjects observed \geq 3 years N = 30, range of
794 average Spearman's rho for within-individual correlations -0.30 – 0.55, all p > 0.22).

795 The study examined social integration in the 22 female and 16 male adults that
796 permanently resided in the Kanyawara community between 2009 to 2017, for a total of 200
797 unique chimp-years. Networks were calculated on an annual basis, but because focal data
798 collection started late in 2009, we combined data from 2009 and 2010. Social networks included
799 only adult individuals, including males \geq 15 years and females \geq 12 years. Members ranged from
800 12 – 57 years old, with an average age of 26.5 +/- 11.6 years (mean +/- sd), and each member
801 contributed to 1 – 8 years of networks, with an average 5.26 +/- 2.7 years (Fig. 1). Individuals
802 were included as annual network members if present in the community for \geq 6 months of the
803 year (where absence was related to their pre-immigration status or death), and if observed either
804 > 50 hours as a focal or > 100 hours as a party member during focals. These criteria led us to
805 omit only 15 insufficient chimp-years, resulting in full adult networks that ranged from 22 to 27
806 individuals, male networks from 8 to 11 individuals, and female networks from 14 to 17
807 individuals.

808

809 ***Calculation of covariates: annual age, dominance rank, and time swollen***

810 We calculated two dyadic indices based on grooming and proximity. Each were
811 calculated by summing the number of focal point samples throughout the calendar year when the
812 dyad members were observed grooming or within 5 m of one another. We note that these two
813 measures are not mutually exclusive, as grooming partners were also recorded as within 5 m of a

814 focal. We then controlled for the dyad members' opportunity to associate by dividing this sum by
815 the number of point samples in which the two were seen in the same party and one was a focal
816 (as in Machanda et al., 2013).

817 We measured annual **age** at the mid-year (July 1) for all subjects. Birthdates of natal
818 community members born after 1987 were known to within one year. Birthdates of individuals
819 born before 1987 (most first encountered in 1983) were estimated based on body size, if
820 immature, or by signs of relative aging, including body hair and presence of dependent offspring
821 (see Muller & Wrangham, 2014). Immigrant, nulliparous females were assigned an age of 13, the
822 average age when natal females are seen to disperse from the community. To calculate individual
823 annual dominance **rank**, we averaged daily dominance ranks within sex-specific dominance
824 hierarchies across one year. Daily dominance ranks were based on Elo ratings informed by
825 decided agonistic interactions, as described in Emery Thompson *et al.* (2020), and standardized
826 relative to number of individuals in the hierarchy (1 = highest rank, 0 = lowest rank). Lastly, to
827 control for changes in reproductive activity with age, we calculated the proportion of observation
828 days in a given year that a female was seen with a maximally tumescent swelling (**time swollen**).
829 Mating primarily occurs when females are in this state (Muller & Wrangham, 2004), and
830 associations with males consequently increase.

831

832 *Assessing significant changes in integration with age in GAMM models*

833 To control for dyadic non-independence in network data, we tested the significance of
834 patterns of social integration related to age, sex, rank, and reproductive status in GAMM models
835 by creating 1000 randomized versions of each network, where node attributes such as sex, age,

836 rank, time swollen (among females alone), and ID were assigned randomly within years (Farine,
837 2017). Node randomization preserved, and thus controlled for, annual variation in network size,
838 sex and age composition, and potential stability in individual social tendencies. We ran our
839 original models on these randomized data sets 1000 times each and extracted the estimated F
840 statistics of the smooths of interest (e.g. age, rank, time swollen, age * time swollen) and linear
841 coefficients of the categorical predictor “sex”. We then calculated the proportion of randomized
842 F statistics and linear coefficients that fell below the observed models’ F statistic and coefficient,
843 where proportions > 0.95 indicated a significant pattern in the smooth term and > 0.95 and < 0.05
844 indicated a significantly positive or negative effect of the categorical predictor.

845

846 ***Calculating repeatable inter-individual differences***

847 To evaluate the individual differences model of social aging, we measured the
848 consistency of individual differences (i.e. **repeatability**) in each social integration measure. We
849 calculated a repeatability statistic by partitioning the deviance explained by individual intercept
850 (ID) in each GAMM, following methods for generalized linear models (Nakagawa et al., 2017;
851 Schielzeth & Nakagawa, 2020). In this approach, deviance explained is used as a coefficient of
852 variation, similar to the R^2 in linear models, that is generalized and appropriate for GAMs
853 (Wood, 2017). We evaluated the significance of the repeatability statistic by comparing the
854 observed deviance explained by individual ID to 1000 deviances explained by ID in models of
855 node-randomized data, i.e. data with randomized attributes of rank, time swollen, and ID, within
856 years, network behavior, network type, and individual sex. An integration measure was
857 significantly repeatable if its repeatability statistic was $\geq 95\%$ of its random statistics. Because
858 of large sex differences in social tendencies, we modeled male and female repeatability

859 separately, and controlled for annual rank, and annual time swollen (for females only in mixed
860 sex networks) as fixed effects. Significantly repeatable inter-individual differences in integration
861 in the absence of age effects in GAMMs would indicate variation in integration resulting
862 primarily from individual traits, whereas repeatable differences in combination with an age effect
863 on integration would represent differences in the extent of individual integration (intercept)
864 within an overall age-related pattern.

865

866 **Supplemental Results**

867 ***Average sex differences in integration measures***

868 Among partners of both sexes (mixed-sex networks), males were more socially integrated
869 than females according to all measures of grooming except for in-strength (i.e., in-degree, out-
870 degree, out-strength, local transitivity, betweenness, and centrality; Fig. 2 & Table S3). Males
871 also spent more time than females in association and embedded among proximity partners
872 (higher strength and centrality, Fig. S1 & Table S5). In proximity networks with mixed-sex
873 dyads, sexes did not differ in their tendency to form cliques or bridge otherwise unconnected
874 partners (local transitivity and betweenness, Fig. S1, Table S5).

875

876

877 **Table S1.** Average annual observation times per subject as focal or party member during focal follows.
878

Year	Sex	Mean ± sd focal hours per subject	Mean ± sd party hours per subject
2010*	F	133.9 ± 118.9	922.6 ± 489.9
2010*	M	153.2 ± 50.3	1248.3 ± 411.7
2011	F	66.3 ± 40.4	559.5 ± 169.7
2011	M	70 ± 17.7	752 ± 170.4
2012	F	85.5 ± 68.6	481.3 ± 181.4
2012	M	96.5 ± 37.1	504.1 ± 169.7
2013	F	116.5 ± 48.1	779.4 ± 219.4
2013	M	116.3 ± 44.2	911.4 ± 196.5
2014	F	137.4 ± 64.6	699.5 ± 216.3
2014	M	102.3 ± 45.1	743.8 ± 232.3
2015	F	160.9 ± 59.4	1808.3 ± 534.3
2015	M	180.5 ± 54.7	2289.7 ± 581.3
2016	F	186.8 ± 76.8	984.9 ± 429.3
2016	M	219.4 ± 48.6	1598.7 ± 424.7
2017	F	152.3 ± 64.8	1233.1 ± 391.1
2017	M	175.4 ± 37.3	1634.1 ± 455.4

879 *2010 = Aug-Dec 2009 & all 2010 combined

880

881 **Table S2.** Significant relationships in GAMM models between male and female age and annual dominance rank
882 (Elo scores) and female age and annual time swollen (N females = 22 individuals, 122 female-years; N males = 16
883 individuals, 78 male-years). Significance evaluated with model P values. Male rank showed a concave pattern with
884 age. Female rank a rise and plateau with age. Female time swollen decreased linearly with age.

Response	Predictor	F	P value
Annual dominance rank	female age	29.2	< 0.001
	male age	60.2	< 0.001
Annual time swollen	female age	19.4	< 0.001

885

886

887 **Table S3.** GAMM models for all integration measures in mixed-sex grooming networks. Significant effects in bold
 888 with *. DE = total model deviance explained. Significance of the categorical variable sex evaluated with linear β
 889 estimates, and all smooth terms (age & rank) evaluated with observed F statistics, each compared to β s and F
 890 statistics drawn from randomized networks.

Response	Netwo rk sex	Behavior	DE	Predictors	F_{obs} of smooths	β_{obs} of sex(M)	% $F_{\text{obs}} > F_{\text{ran}}$	% $\beta_{\text{obs}} > \beta_{\text{ran}}$
In-Degree	mixed	Grooming	0.81	sex(M) female age male age female rank male rank	4.4 6.2 3.59 5.01	0.66	0.95* 0.98* 0.96* 0.96*	1*
Out-Degree	mixed	Grooming	0.89	sex(M) female age male age female rank male rank	0.87 6.01 1.54 4.29	1.07	0.54 0.98* 0.69 0.94	1*
In-Strength	mixed	Grooming	0.67	sex(M) female age male age female rank male rank	1.06 7.63 0.83 9.7	0.52	0.19 0.8 0.19 0.89	0.84
Out-Strength	mixed	Grooming	0.73	sex(M) female age male age female rank male rank	1.81 1.04 1.2 2.81	1.72	0.6 0.44 0.54 0.77	1*
Local Transitivity	mixed	Grooming	0.31	sex(M) female age male age female rank male rank	4.54 12.23 3.7 0.03	0.18	0.98* 1* 0.95* 0.11	1*
Betweenness	mixed	Grooming	0.56	sex(M) female age male age female rank male rank	3.55 1.91 2.1 2.76	1.48	0.68 0.5 0.55 0.63	1*
Eigenvector Centrality	mixed	Grooming	0.84	sex female age male age female rank male rank		1.36		1*

891

892

893 **Table S4.** GAMM models for all integration measures in same-sex grooming networks. Significant effects in bold
894 with *. DE = total model deviance explained. Significance of all smooth terms (age & rank) evaluated with observed
895 F statistics compared to F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F _{obs} of smooths	% F _{obs} > F _{ran}
In-Degree	same	Grooming	0.09	female age female rank	0.76 0.65	0.45 0.39
In-Degree	same	Grooming	0.38	male age male rank	5 1.19	0.99* 0.69
Out-Degree	same	Grooming	0.09	female age female rank	0.76 0.65	0.24 0.2
Out-Degree	same	Grooming	0.54	male age male rank	0.74 0.54	0.57 0.5
In-Strength	same	Grooming	0.5	female age female rank	5.92 9.15	0.59 0.8
In-Strength	same	Grooming	0.64	male age male rank	4.24 2.34	0.85 0.87
Out-Strength	same	Grooming	0.5	female age female rank	5.92 9.15	0.93 1*
Out-Strength	same	Grooming	0.5	male age male rank	1.55 2.14	0.51 0.9
Local Transitivity	same	Grooming	0.02	female age	1.14	0.61
				female rank	1.46	0.67
Local Transitivity	same	Grooming	0.03	male age	0.34	0.39
				male rank	0.6	0.53
Betweenness	same	Grooming	0.52	female age female rank	1.9 1.84	0.27 0.23
Betweenness	same	Grooming	0.39	male age male rank	3.03 0.54	0.43 0.16
Eigenvector Centrality	same	Grooming	0.42	female age	2.1	0.79
				female rank	1.18	0.58
Eigenvector Centrality	same	Grooming	0.66	male age	6.07	0.98*
				male rank	0.08	0.16

896

897

898 **Table S5.** GAMM models for all SNA measures in mixed-sex proximity networks. Significant effects in bold with*.
 899 DE = total model deviance explained. Significance of the categorical variable sex evaluated with linear β estimates,
 900 and all smooth terms (age & rank) evaluated with observed F statistics, each compared to β s and F statistics drawn
 901 from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F_{obs} of smooths	β_{obs} of sex(M)	% $F_{\text{obs}} > F_{\text{ran}}$	% $\beta_{\text{obs}} > \beta_{\text{ran}}$
Strength	mixed	Prox	0.53	sex(M)		0.44		
				female age	3.49		0.94	
				male age	0.6		0.43	
				female rank	1.81		0.83	
				male rank	2.85		0.91	
Local Transitivity	mixed	Prox	0.02	sex(M)		0		0.35
				female age	0.2		0.25	
				male age	0.16		0.24	
				female rank	0.96		0.72	
				male rank	0.23		0.33	
Betweenness	mixed	Prox	0.37	sex(M)		-0.98		0.05
				female age	4.61		0.78	
				male age	0.2		0.14	
				female rank	3.52		0.71	
				male rank	0.19		0.14	
Eigenvector Centrality	mixed	Prox	0.71	sex(M)		0.5		1*
				female age	2.91		0.91	
				male age	2.35		0.87	
				female rank	1.26		0.68	
				male rank	21.25		1*	

902

903

904 **Table S6.** GAMM models for all integration measures in same-sex proximity networks. Significant effects in bold
905 with *. DE = total model deviance explained. Significance of all smooth terms (age & rank) evaluated with observed
906 F statistics compared to F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F _{obs} of smooths	% F _{obs} > F _{ran}
Strength	same	Prox	0.1	female age	3.1	0.93
				female rank	0.76	0.56
Strength	same	Prox	0.55	male age	4.16	0.91
				male rank	0.4	0.45
Betweenness	same	Prox	0.17	female age	3.11	0.74
				female rank	4.77	0.86
Betweenness	same	Prox	0.7	male age	0.98	0.19
				male rank	8.68	0.89
Local Transitivity	same	Prox	0.02	female age	0	0.01
				female rank	0.73	0.68
Local Transitivity	same	Prox	0.02	male age	0	0.03
				male rank	1.23	0.49
Eigenvector Centrality	same	Prox	0.05	female age	3.17	0.92
				female rank	1.03	0.63
Eigenvector Centrality	same	Prox	0.74	male age	7.62	1*
				male rank	10.71	1*

907

908 **Table S7. Age effects independent of rank and time sexually swollen on female social integration in mixed-sex**
 909 **networks.** Significant effects in bold with*. DE = total model deviance explained. Significance of all smooth terms
 910 (age, rank, time swollen, and their interaction) evaluated with observed F statistics compared to F statistics drawn
 911 from randomized networks.
 912

A. Grooming networks

Response	Network sex	Behavior	DE	Predictors	F _{obs} of smooths	% F _{obs} > F _{ran}
In-Degree	mixed-sex	Grooming	0.61	Age	1.75	0.79
				Rank	2.99	0.65
				Time swollen	1.59	0.88
				Age * Swollen	2	0.7
Out-Degree	mixed-sex	Grooming	0.76	Age	0.79	0.42
				Rank	3.29	0.43
				Time swollen	0.75	0.79
				Age * Swollen	0.09	0.07
In-Strength	mixed-sex	Grooming	0.35	Age	0.03	0.1
				Rank	0.14	1*
				Time swollen	23.53	0.26
				Age * Swollen	18.17	0.99*
Out-Strength	mixed-sex	Grooming	0.39	Age	2.54	0.8
				Rank	6.75	0.27
				Time swollen	0.21	0.99*
				Age * Swollen	0.48	0.41
Local Transitivity	mixed-sex	Grooming	0.33	Age	2.04	0.87
				Rank	2.85	0.59
				Time swollen	0.85	0.91
				Age * Swollen	1.62	0.77
Betweenness	mixed-sex	Grooming	0.66	Age	4.41	0.78
				Rank	2.7	0.68
				Time swollen	2.54	0.47
				Age * Swollen	1.9	0.29
Eigenvector Centrality	mixed-sex	Grooming	0.66	Age	1.75	0.64
				Rank	4.65	0.31
				Time swollen	0.47	0.85
				Age * Swollen	4.67	0.9

913 **B. Proximity networks**

Response	Network sex	Behavior	DE	Predictors	F _{obs} of smooths	% F _{obs} > F _{ran}
Out-Strength	mixed-sex	Proximity	0.37	Age	1.09	0.69
				Rank	2.18	0.62
				Time swollen	1.26	0.88
				Age * Swollen	1.08	0.62
Betweenness	mixed-sex	Proximity	0.36	Age	1.96	0.65
				Rank	2.3	0.15
				Time swollen	0.13	0.61
				Age * Swollen	1.54	0.42
Local Transitivity	mixed-sex	Proximity	0.07	Age	0.83	0.69

Eigenvector Centrality	mixed-sex	Proximity	0.32	Age	1.07	0.67
				Rank	1.31	0.66
				Time swollen	1.67	0.75
				Age * Swollen	7.02	0.99*

914

915

916 **Table S8. Repeatability of integration measures by behavior, network type, and sex.** Repeatability statistic
 917 calculated by the observed deviance explained by individual ID alone (IDE_{obs}) in Generalized Additive Mixed
 918 Models (GAMMs). Significance of IDE_{obs} evaluated by the proportion of 1000 deviances explained by ID in
 919 GAMMs on node-randomized data (IDE_{ran}) that IDE_{obs} is less than.

Behavior	Network	Sex	SNA measure	IDE_{obs}	% $IDE_{obs} < 1000 IDE_{ran}$
Grooming	Mixed sex	Male	In-Degree	0.34	0.99*
			Out-Degree	0.56	1*
			In-Strength	0.12	0.35
			Out-Strength	0.32	1*
			Local Transitivity	0	0.16
			Betweenness	0.33	0.86
			Eigenvector Centrality	0.16	0.91
Grooming	Mixed sex	Female	In-Degree	0.27	0.99*
			Out-Degree	0.69	1*
			In-Strength	0.15	1*
			Out-Strength	0.36	1*
			Local Transitivity	0.22	1*
			Betweenness	0.22	0.44
			Eigenvector Centrality	0.56	1*
Grooming	Same sex	Male	In-Degree	0.01	0.72
			Out-Degree	0.31	1*
			In-Strength	0.3	0.94
			Out-Strength	0.29	0.93
			Local Transitivity	0	0.22
			Betweenness	0.19	0.28
			Eigenvector Centrality	0.15	0.9
Grooming	Same sex	Female	In-Degree	0.06	0.55
			Out-Degree	0.5	0.88
			In-Strength	0.45	0.61
			Out-Strength	0.11	1*
			Local Transitivity	0	0.34
			Betweenness	0.48	0.62
			Eigenvector Centrality	0.2	0.94
Proximity	Mixed sex	Male	Strength	0.13	0.92
			Local Transitivity	0.03	0.74
			Betweenness	0	0.05
			Eigenvector Centrality	0.06	0.7
Proximity	Mixed sex	Female	Strength	0.16	0.99*
			Local Transitivity	0	0.07
			Betweenness	0.15	0.5
			Eigenvector Centrality	0.15	0.98*
Proximity	Same sex	Male	Strength	0.17	0.9
			Local Transitivity	0	0.54
			Betweenness	0.07	0.15
			Eigenvector Centrality	0.1	0.78
Proximity	Same sex	Female	Strength	0.05	0.83
			Local Transitivity	0	0.92
			Betweenness	0.12	0.56
			Eigenvector Centrality	0	0.04

920
 921

922 **Table S9. Summary of age-alone model results:** Age-related changes in social network integration with shape or
923 arrow describing any significant relationship between age and the given network measure. Effects are not
924 controlling for dominance rank or time swollen. Shape and arrows describe significant relationships between age
925 and a given network measure (see Legend; full model results in Tables S9-13). Dots indicate a non-significant
926 pattern. Shading indicates a difference in significant patterns from rank-independent age models.

Integration Measure	Network Behavior	Males (mixed sex)	Males (same sex)	Females (mixed sex)	Females (same sex)
<i>In-Degree</i>	<i>Grooming</i>	•	↖	•	•
<i>Out-degree</i>		↖	•	•	•
<i>In-Strength</i>		•	•	•	•
<i>Out-Strength</i>		•	•	•	↓
<i>Strength</i>	<i>Proximity</i>	•	↖	•	•
<i>Local Transitivity</i>	<i>Total grooming</i>	↑	•	↖	•
	<i>Proximity</i>	•	•	•	•
<i>Betweenness</i>	<i>Total grooming</i>	•	•	•	•
	<i>Proximity</i>	•	↓	•	•
<i>Eigenvector centrality</i>	<i>Total grooming</i>	↖	↖	•	↓
	<i>Proximity</i>	↖	↖	↖	•

927

928 **Legend:** Integration measure ↑ = increases with age, ↓ = decreases with age, ↖ = increases and plateaus with age,
929 ↖ = decreases after peak in early adulthood, ↗ = increases in early to mid-adulthood and decreases in later adulthood

930

931 **Table S10.** GAMM models with age alone as a predictor of integration measures in mixed-sex grooming networks.
932 Significant effects in bold with *. DE = total model deviance explained. Significance of the categorical variable sex
933 evaluated with linear β estimates, and smooth term age evaluated with observed F statistics, each compared to β s
934 and F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F_{obs} of smooths	β_{obs} of sex(M)	% $F_{\text{obs}} > F_{\text{ran}}$	% $\beta_{\text{obs}} > \beta_{\text{ran}}$
In-Degree	mixed	Grooming	0.76	sex(M) female age male age	2.81 1.9	0.7 0.9 0.79		1*
Out-Degree	mixed	Grooming	0.87	sex(M) female age male age	2.2 6.66	0.92 0.83 0.99*		1*
In-Strength	mixed	Grooming	0.6	sex(M) female age male age	0.94 3.13	1.27 0.3 0.54		0.96*
Out-Strength	mixed	Grooming	0.7	sex(M) female age male age	0.91 2.48	1.54 0.48 0.75		1*
Local Transitivity	mixed	Grooming	0.3	sex(M) female age male age	11.94	0.34 6.3 1*		1*
Betweenness	mixed	Grooming	0.53	sex(M) female age male age	2.61 4.41	1.41 0.69 0.83		1*
Eigenvector Centrality	mixed	Grooming	0.83	sex female age male age	0.45 4.57	1.36 0.39 0.96*		1*

935

936

937 **Table S11.** GAMM models with age alone as a predictor of integration measures in same-sex grooming networks.
938 Significant effects in bold with *. DE = total model deviance explained. Significance of smooth term age evaluated
939 with observed F statistics compared to F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	R	Predictors	F _{obs} of smooths	% F _{obs} > F _{ran}
In-Degree	same	Grooming	0.09	0.05	female age	0.46	0.38
In-Degree	same	Grooming	0.36	0.32	male age	7.1	1*
Out-Degree	same	Grooming	0.66	0.6	female age	6.92	0.89
Out-Degree	same	Grooming	0.55	0.46	male age	0.96	0.66
In-Strength	same	Grooming	0.19	0.14	female age	0.85	0.35
In-Strength	same	Grooming	0.62	0.55	male age	3.51	0.81
Out-Strength	same	Grooming	0.35	0.25	female age	61.01	1*
Out-Strength	same	Grooming	0.35	0.28	male age	2.24	0.68
Local Transitivity	same	Grooming	0.03	0.01	female age	0.46	0.42
Local Transitivity	same	Grooming	0.01	0	male age	0.77	0.57
Betweenness	same	Grooming	0.49	0.43	female age	4.36	0.63
Betweenness	same	Grooming	0.55	0.46	male age	0.96	0.3
Eigenvector Centrality	same	Grooming	0.42	0.36	female age	6.43	0.98*
Eigenvector Centrality	same	Grooming	0.65	0.6	male age	7.04	0.99*

940
941

942 **Table S12.** GAMM models with age alone as a predictor of integration measures in mixed-sex proximity networks.
943 Significant effects in bold with*. DE = total model deviance explained. Significance of the categorical variable sex
944 evaluated with linear β estimates, and smooth term age evaluated with observed F statistics, each compared to β s
945 and F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F_{obs} of smooths	β_{obs} of sex(M)	% $F_{\text{obs}} >$ F_{ran}	% $\beta_{\text{obs}} > \beta_{\text{ran}}$
Strength	mixed	Prox	0.6	sex(M) female age male age	1.93 2.96	0.52	1*	
Local Transitivity	mixed	Prox	0	sex(M) female age male age	0.01 0.12	0	0.35	
Betweenness	mixed	Prox	0.31	sex(M) female age male age	5.26 0.17	-1.02	0.01	
Eigenvector Centrality	mixed	Prox	0.71	sex(M) female age male age	3.65 4.24	0.55	1*	

946

947 **Table S13.** GAMM models with age alone as a predictor of integration measures in same-sex proximity networks.
948 Significant effects in bold with *. DE = total model deviance explained. Significance of smooth term age evaluated
949 with observed F statistics compared to F statistics drawn from randomized networks.

Response	Network sex	Behavior	DE	Predictors	F_{obs} of smooths	% $F_{\text{obs}} > F_{\text{ran}}$
Strength	same	Prox	0.12	female age	1.73	0.81
Strength	same	Prox	0.56	male age	5.34	0.95*
Local Transitivity	same	Prox	0	female age	0	0.02
Local Transitivity	same	Prox	0	male age	0.02	0.15
Betweenness	same	Prox	0	female age	0.27	0.26
Betweenness	same	Prox	0.47	male age	15.86	0.99*
Eigenvector Centrality	same	Prox	0.03	female age	2.11	0.84
Eigenvector Centrality	same	Prox	0.76	male age	7.24	0.99*

950

951

952 **Supplemental References:**

953 Almelung, L., Hammerschmidt, K., Sennhenn-Reulen, H., Freund, A. M., & Fischer, J. (2016).
954 Motivational shifts in aging monkeys and the origins of social selectivity. *Current Biology*, 26(13), 1744–
955 1749. <https://doi.org/10.1016/j.cub.2016.04.066>

956 Andersen, K. V. (2013). The problem of embeddedness revisited: Collaboration and market types.
957 *Research Policy*, 42(1), 139–148. <https://doi.org/10.1016/j.respol.2012.05.005>

958 Anderson, C. M. (1986). Female age: Male preference and reproductive success in primates. *International
959 Journal of Primatology*, 7(3), 305–326. <https://doi.org/10.1007/BF02736394>

960 Aplin, L. M., Farine, D. R., Morand-Ferron, J., & Sheldon, B. C. (2012). Social networks predict patch
961 discovery in a wild population of songbirds. *Proceedings of the Royal Society B: Biological Sciences*,
962 279(1745), 4199–4205. <https://doi.org/10.1098/rspb.2012.1591>

963 Balasubramaniam, K., Beisner, B., Vandeleest, J., Atwill, E., & McCowan, B. (2016). Social buffering
964 and contact transmission: Network connections have beneficial and detrimental effects on Shigella
965 infection risk among captive rhesus macaques. *PeerJ*, 4, e2630. <https://doi.org/10.7717/peerj.2630>

966 Bhattacharya, K., Ghosh, A., Monsivais, D., Dunbar, R. I. M., & Kaski, K. (2016). Sex differences in
967 social focus across the life cycle in humans. *Royal Society Open Science*, 3(4), 160097.
968 <https://doi.org/10.1098/rsos.160097>

969 Blumstein, D. T., Williams, D. M., Lim, A. N., Kroeger, S., & Martin, J. G. A. (2018). Strong social
970 relationships are associated with decreased longevity in a facultatively social mammal. *Proceedings of the
971 Royal Society B: Biological Sciences*, 285(1871), 20171934. <https://doi.org/10.1098/rspb.2017.1934>

972 Bray, J., & Gilby, I. C. (2020). Social relationships among adult male chimpanzees (*Pan troglodytes
973 schweinfurthii*): Variation in the strength and quality of social bonds. *Behavioral Ecology and
974 Sociobiology*, 74(9), 112. <https://doi.org/10.1007/s00265-020-02892-3>

975 Brent, L. J. N. (2015). Friends of friends: Are indirect connections in social networks important to animal
976 behaviour? *Animal Behaviour*, 103, 211–222. <http://dx.doi.org/10.1016/j.anbehav.2015.01.020>

977 Brent, L. J. N., Franks, D. W., Foster, E. A., Balcomb, K. C., Cant, M. A., & Croft, D. P. (2015).
978 Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales. *Current Biology*,
979 25(6), 746–750. <https://doi.org/10.1016/j.cub.2015.01.037>

980 Carstensen, L. L. (1992). Social and emotional patterns in adulthood: Support for socioemotional
981 selectivity theory. *Psychology and Aging*, 7(3), 331–338. <https://doi.org/10.1037/0882-7974.7.3.331>

982 Carstensen, L. L., Isaacowitz, D. M., & Charles, S. T. (1999). Taking time seriously: A theory of
983 socioemotional selectivity. *American Psychologist*, 54(3), 165–181. [https://doi.org/10.1037/0003-066X.54.3.165](https://doi.org/10.1037/0003-
984 066X.54.3.165)

985 Coleman, J. S. (1988). Social Capital in the Creation of Human Capital. *American Journal of Sociology*,
986 94, S95–S120. <https://doi.org/10.1086/228943>

987 Cornwell, B., Laumann, E. O., & Schumm, L. P. (2008). The Social Connectedness of Older Adults: A
988 National Profile. *American Sociological Review*, 73(2), 185–203.
989 <https://doi.org/10.1177/000312240807300201>

990 Cornwell, B., Schumm, L. P., Laumann, E. O., & Graber, J. (2009). Social Networks in the NSHAP
991 Study: Rationale, Measurement, and Preliminary Findings. *The Journals of Gerontology: Series B*,
992 64B(suppl_1), i47–i55. <https://doi.org/10.1093/geronb/gbp042>

993 David-Barrett, T., Kertesz, J., Rotkirch, A., Ghosh, A., Bhattacharya, K., Monsivais, D., & Kaski, K.
994 (2016). Communication with Family and Friends across the Life Course. *PLOS ONE*, 11(11), e0165687.
995 <https://doi.org/10.1371/journal.pone.0165687>

996 Donald, C. A., & Ware, J. E. (1984). The measurement of social support. *Research in Community &
997 Mental Health*, 4, 325–370.

998 Duboscq, J., Romano, V., Sueur, C., & MacIntosh, A. J. J. (2016). Network centrality and seasonality
999 interact to predict lice load in a social primate. *Scientific Reports*, 6, 22095.
1000 <https://doi.org/10.1038/srep22095> <http://www.nature.com/articles/srep22095#supplementary-information>

1001 Emery Thompson, M., Machanda, Z. P., Fox, S. A., Sabbi, K. H., Otali, E., Thompson González, N.,

1002 Muller, M. N., & Wrangham, R. W. (2020). Evaluating the impact of physical frailty during ageing in
1003 wild chimpanzees (*Pan troglodytes schweinfurthii*). *Philosophical Transactions of the Royal Society B:*
1004 *Biological Sciences*, 375(1811), 20190607. <https://doi.org/10.1098/rstb.2019.0607>

1005 English, T., & Carstensen, L. L. (2014). Selective narrowing of social networks across adulthood is
1006 associated with improved emotional experience in daily life. *International Journal of Behavioral*
1007 *Development*, 38(2), 195–202. <https://doi.org/10.1177/0165025413515404>

1008 Farine, D. R. (2017). A guide to null models for animal social network analysis. *Methods in Ecology and*
1009 *Evolution*, 8, 1309–1320. <https://doi.org/doi: 10.1111/2041-210X.12772>

1010 Fung, H. H., Carstensen, L. L., & Lang, F. R. (2001). Age-related patterns in social networks among
1011 European Americans and African Americans: Implications for socioemotional selectivity across the life
1012 span. *The International Journal of Aging & Human Development*, 52(3), 185–206.
1013 <https://doi.org/10.2190/1ABL-9BE5-M0X2-LR9V>

1014 Glowacki, L., & von Rueden, C. (2015). Leadership solves collective action problems in small-scale
1015 societies. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 370(1683), 20150010.
1016 <https://doi.org/10.1098/rstb.2015.0010>

1017 Granovetter, M. (1983). The Strength of Weak Ties: A Network Theory Revisited. *Sociological Theory*,
1018 1, 201–233. <https://doi.org/10.2307/202051>

1019 Granovetter, M. (1985). Economic Action and Social Structure: The Problem of Embeddedness.
1020 *American Journal of Sociology*, 91(3), 481–510. <https://doi.org/10.1086/228311>

1021 Hanneman, R. A., & Riddle, M. (2005). *Introduction to social network methods*. University of California,
1022 Riverside.

1023 Holt-Lunstad, J., Smith, T. B., & Layton, J. B. (2010). Social relationships and mortality risk: A meta-
1024 analytic review. *PLOS Medicine*, 7(7), 1–20. <https://doi.org/10.1371/journal.pmed.1000316>

1025 James, E. H. (2000). Race-Related Differences in Promotions and Support: Underlying Effects of Human
1026 and Social Capital. *Organization Science*, 11(5), 493–508. <https://doi.org/10.1287/orsc.11.5.493.15202>

1027 Keating, N., Swindle, J., & Foster, D. (2005). The Role of Social Capital in Aging Well. In *Social Capital*
1028 *in Action: Thematic Policy Studies* (pp. 24–50). Policy Research Initiative.

1029 Liao, Z., Sosa, S., Wu, C., & Zhang, P. (2018). The influence of age on wild rhesus macaques' affiliative
1030 social interactions. *American Journal of Primatology*, 80(2), e22733. <https://doi.org/10.1002/ajp.22733>

1031 Lusseau, D. (2007). Evidence for social role in a dolphin social network. *Evolutionary Ecology*, 21(3),
1032 357–366. <https://doi.org/10.1007/s10682-006-9105-0>

1033 Lusseau, D., & Newman, M. E. J. (2004). Identifying the role that animals play in their social networks.
1034 *Proceedings of the Royal Society of London. Series B: Biological Sciences*, 271(suppl_6), S477–S481.
1035 <https://doi.org/10.1098/rsbl.2004.0225>

1036 Machanda, Z. P., Gilby, I. C., & Wrangham, R. W. (2013). Male–Female Association Patterns Among
1037 Free-ranging Chimpanzees (*Pan troglodytes schweinfurthii*). *International Journal of Primatology*, 34(5),
1038 917–938. <https://doi.org/10.1007/s10764-013-9707-7>

1039 Machanda, Z. P., & Rosati, A. G. (2020). Shifting sociality during primate ageing. *Philosophical*

1040 1041 *Transactions of the Royal Society B: Biological Sciences*, 375(1811), 20190620.
<https://doi.org/10.1098/rstb.2019.0620>

1042 1043 Matthews, G. A., & Tye, K. M. (2019). Neural mechanisms of social homeostasis. *Annals of the New York Academy of Sciences*, 1457(1), 5–25. <https://doi.org/10.1111/nyas.14016>

1044 1045 1046 McComb, K., Moss, C., Durant, S. M., Baker, L., & Sayialel, S. (2001). Matriarchs As Repositories of Social Knowledge in African Elephants. *Science*, 292(5516), 491–494.
<https://doi.org/10.1126/science.1057895>

1047 1048 1049 McComb, K., Shannon, G., Durant, S. M., Sayialel, K., Slotow, R., Poole, J., & Moss, C. (2011). Leadership in elephants: The adaptive value of age. *Proceedings of the Royal Society B: Biological Sciences*.

1050 1051 Mitani, J. C. (2009). Male chimpanzees form enduring and equitable social bonds. *Animal Behaviour*, 77(3), 633–640. <https://doi.org/10.1016/j.anbehav.2008.11.021>

1052 1053 Muller, M. N., Thompson, M. E., & Wrangham, R. W. (2006). Male Chimpanzees Prefer Mating with Old Females. *Current Biology*, 16(22), 2234–2238. <https://doi.org/10.1016/j.cub.2006.09.042>

1054 1055 1056 Muller, M. N., & Wrangham, R. W. (2004). Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis.’ *Animal Behaviour*, 67(1), 113–123.
<https://doi.org/10.1016/j.anbehav.2003.03.013>

1057 1058 Muller, M. N., & Wrangham, R. W. (2014). Mortality rates among Kanyawara chimpanzees. *Journal of Human Evolution*, 66, 107–114. <https://doi.org/10.1016/j.jhevol.2013.10.004>

1059 1060 1061 Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. *Journal of The Royal Society Interface*, 14(134), 20170213. <https://doi.org/10.1098/rsif.2017.0213>

1062 1063 Nunn, C. L. (2012). Primate Disease Ecology in Comparative and Theoretical Perspective. *American Journal of Primatology*, 74(6), 497–509. <https://doi.org/10.1002/ajp.21986>

1064 1065 1066 Page, A. E., Chaudhary, N., Viguier, S., Dyble, M., Thompson, J., Smith, D., Salali, G. D., Mace, R., & Migliano, A. B. (2017). Hunter-Gatherer Social Networks and Reproductive Success. *Scientific Reports*, 7(1), 1153. <https://doi.org/10.1038/s41598-017-01310-5>

1067 1068 Rathke, E.-M., & Fischer, J. (2021). Social aging in male and female Barbary macaques. *American Journal of Primatology*, n/a(n/a), e23272. <https://doi.org/10.1002/ajp.23272>

1069 1070 1071 Schielzeth, H., & Nakagawa, S. (2020). Conditional repeatability and the variance explained by reaction norm variation in random slope models. *BioRxiv*, 2020.03.11.987073.
<https://doi.org/10.1101/2020.03.11.987073>

1072 1073 Silk, J. B. (2007). The adaptive value of sociality in mammalian groups. *Philosophical Transactions of the Royal Society Biological Sciences*, 362, 539–559. <https://doi.org/10.1098/rstb.2006.1994>

1074 1075 1076 Sosa, S., Sueur, C., & Puga-Gonzalez, I. (2020). Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. *Methods in Ecology and Evolution*, n/a(n/a).
<https://doi.org/10.1111/2041-210X.13366>

1077 Stowe, J. D., & Cooney, T. M. (2015). Examining Rowe and Kahn’s Concept of Successful Aging:

1078 Importance of Taking a Life Course Perspective. *The Gerontologist*, 55(1), 43–50.
1079 <https://doi.org/10.1093/geront/gnu055>

1080 Thompson, N. A. (2019). Understanding the links between social ties and fitness over the life cycle in
1081 primates. *Behaviour*, 156(9), 1–50. <https://doi.org/10.1163/1568539X-00003552>

1082 Tokuyama, N., & Furuichi, T. (2017). *Leadership of old females in collective departures in wild bonobos*
1083 (*Pan paniscus*) at Wamba. <https://pubag.nal.usda.gov/catalog/5756172>

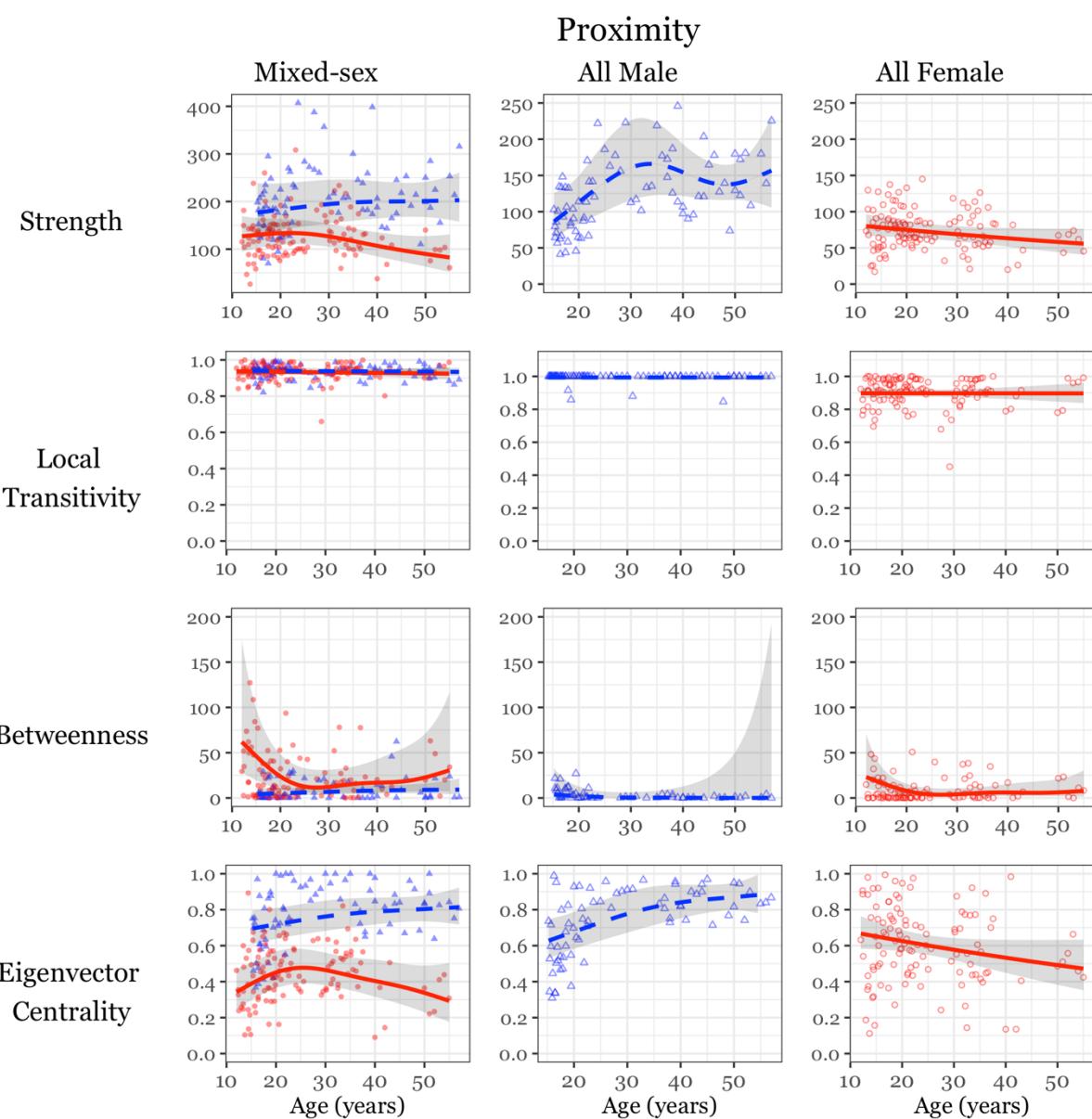
1084 von Rueden, C., Gurven, M., & Kaplan, H. (2008). The multiple dimensions of male social status in an
1085 Amazonian society. *Evolution and Human Behavior*, 29(6), 402–415.
1086 <https://doi.org/10.1016/j.evolhumbehav.2008.05.001>

1087 Wen Yuan, C., Kropczynski, J., Wirth, R., Rosson, M. B., & Carroll, J. M. (2017). Investigating Older
1088 Adults' Social Networks and Coproduction Activities for Health. *Proceedings of the 11th EAI*
1089 *International Conference on Pervasive Computing Technologies for Healthcare*, 68–77.
1090 <https://doi.org/10.1145/3154862.3154876>

1091 Wood, S. N. (2017). *Generalized Additive Models: An Introduction with R, Second Edition*. CRC Press.

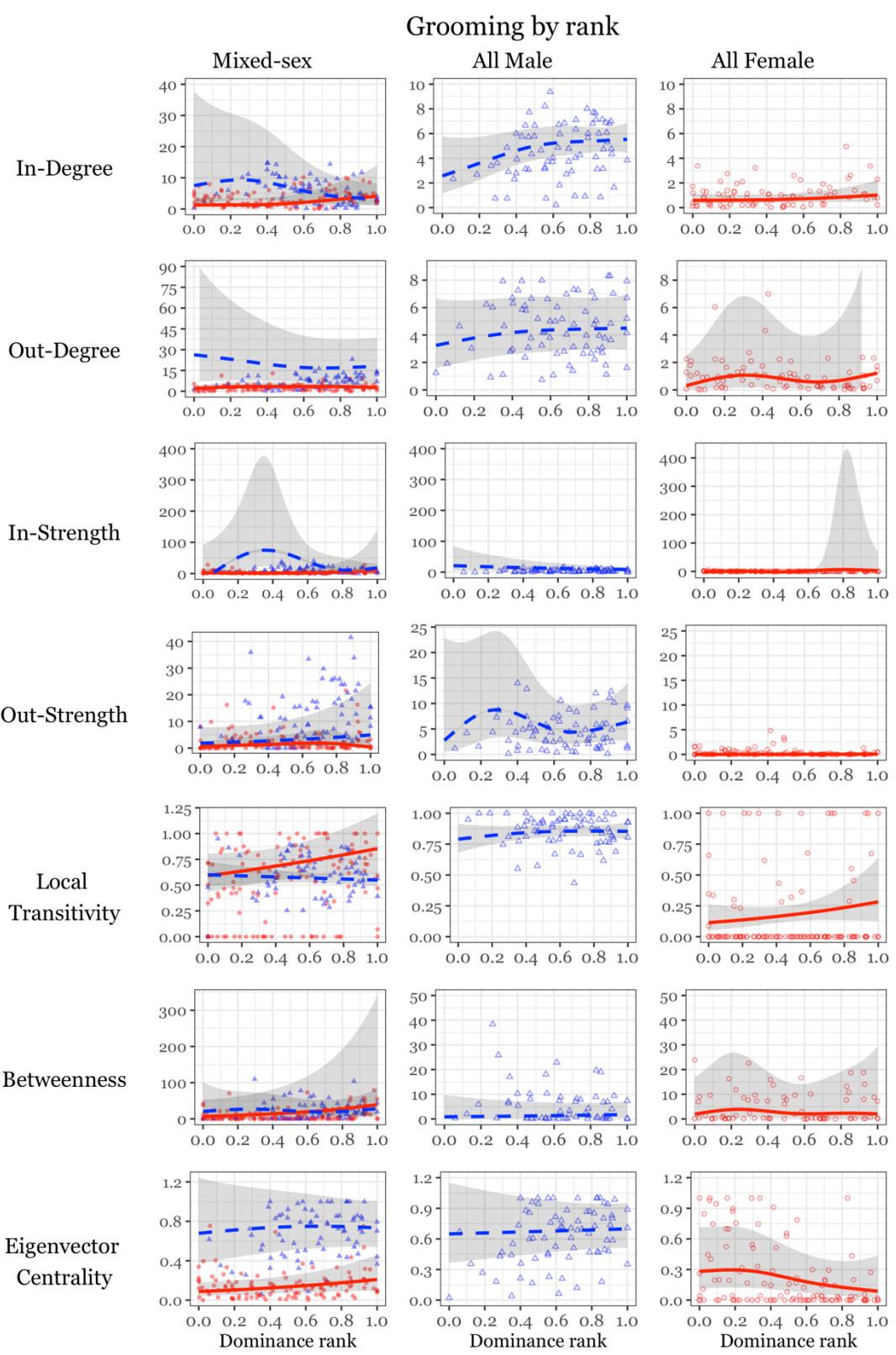
1092 Wrzus, C., Hänel, M., Wagner, J., & Neyer, F. J. (2013). Social network changes and life events across
1093 the life span: A meta-analysis. *Psychological Bulletin*, 139(1), 53–80. <https://doi.org/10.1037/a0028601>

1094 Young, C., Majolo, B., Schülke, O., & Ostner, J. (2014). Male social bonds and rank predict supporter
1095 selection in cooperative aggression in wild Barbary macaques. *Animal Behaviour*, 95, 23–32.
1096 <https://doi.org/10.1016/j.anbehav.2014.06.007>


1097

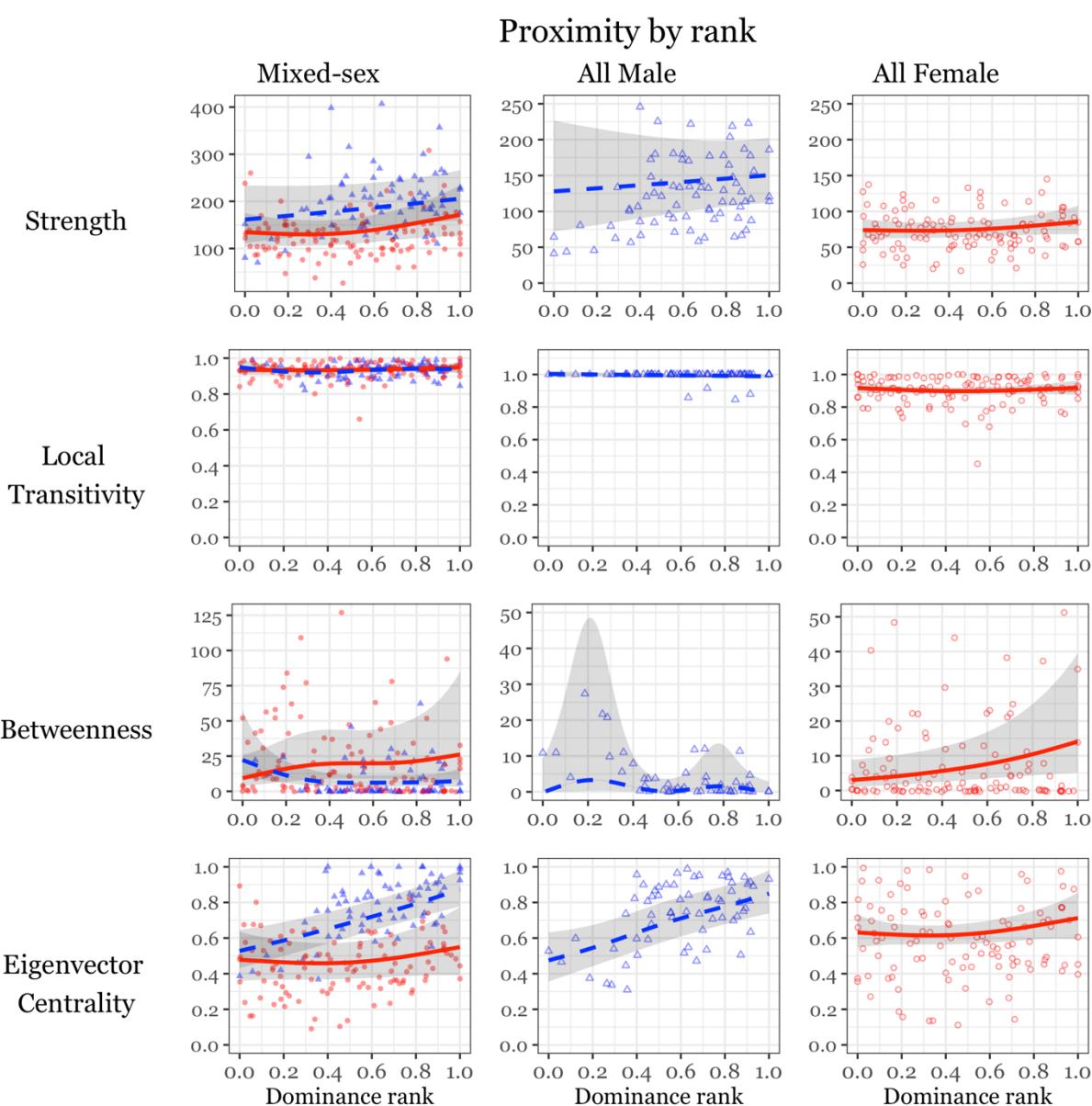
1098

1099


1100

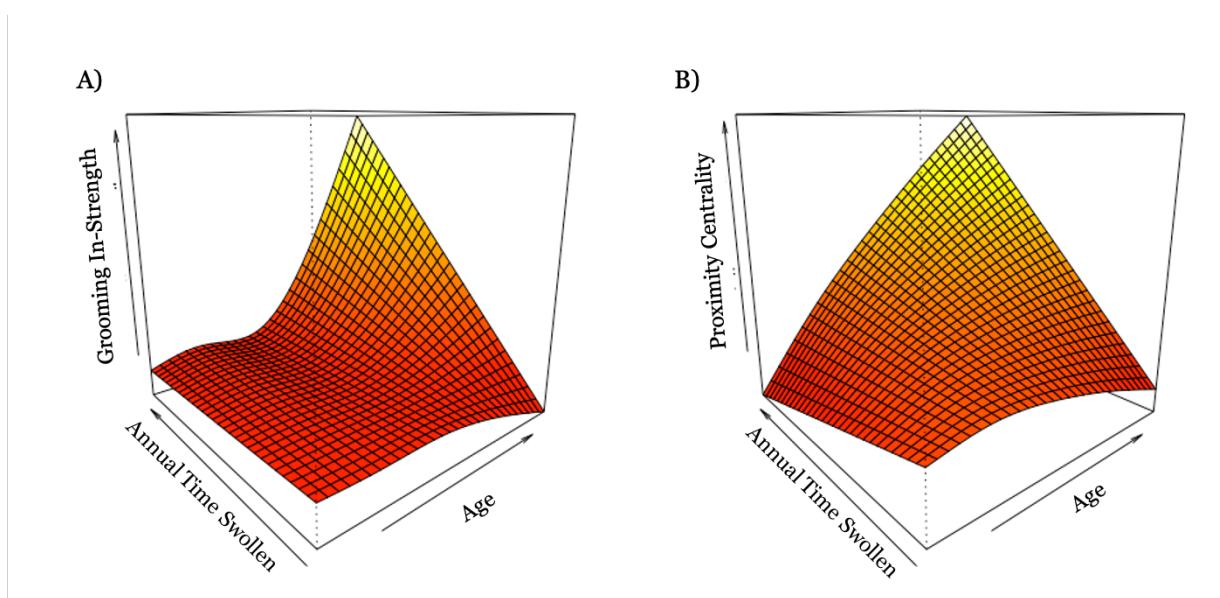
1101

1102


1103 **Figure S1.** All social integration measures by age in mixed and same-sex **proximity** networks.
1104 Male data represented by blue triangles and blue dashed GAM smooth, female data represented
1105 by red circles and red solid GAM smooth. Smooths are conditional effects of age on social
1106 integration, controlling for rank, created using the R functions visreg and mgcv::gam within
1107 ggplot2.

1109 **Figure S2.** Social integration in mixed and same-sex grooming networks by **dominance rank**.

1110 Male data represented by blue triangles and blue dashed GAM smooth, female data represented
1111 by red circles and red solid GAM smooth. Smooths are conditional effects of age on social
1112 integration, controlling for rank, created using the R functions visreg and mgcv::gam within
1113 ggplot2.


1114

1115

1116 **Figure S3.** Social integration in proximity networks by dominance rank. Male data represented
1117 by blue triangles and blue dashed GAM smooth, female data represented by red circles and red
1118 solid GAM smooth. Smooths are conditional effects of age on social integration, controlling for
1119 rank, created using the R functions visreg and mgcv::gam within ggplot2.

1120

1121

1122 **Figure S4.** Changes in female A) grooming in-strength and B) proximity centrality in mixed sex
1123 networks as a product of age and annual time fully swollen. Plots created using the vis.gam
1124 function in R's mgcv package.

1125