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Abstract

Genotype environment association (GEA) studies have the potential to elucidate the
genetic basis of local adaptation in natural populations. Specifically, GEA approaches
look for a correlation between allele frequencies and putatively selective features of the
environment. Genetic markers with extreme evidence of correlation with the
environment are presumed to be tagging the location of alleles that contribute to local
adaptation. In this study, we propose a new method for GEA studies called the
weighted-Z analysis (WZA) that combines information from closely linked sites into
analysis windows in a way that was inspired by methods for calculating Fst. We analyze
simulations modelling local adaptation to heterogeneous environments either using a
GEA method that controls for population structure or an uncorrected approach. In the
majority of cases we tested, the WZA either outperformed single-SNP based
approaches or performed similarly. The WZA outperformed individual SNP approaches
when the measured environment is not perfectly correlated with the true selection
pressure or when a small number of individuals or demes was sampled. We apply the
WZA to previously published data from lodgepole pine and identified candidate loci that
were not found in the original study.
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Introduction

Studying local adaptation can provide a window into the process of evolution, yielding
insights about the nature of evolvability, constraints to diversification, and the how the
interplay between a species and its environment shapes its genome (e.g. Savolainen
2013). Understanding local adaptation can also benefit practical applications such as in
forestry where many species of economic interest exhibit pronounced trade-offs in
fitness across environments. Characterizing such trade-offs may help identify alleles
involved in local adaptation, revealing candidate genes important for breeding or
informing conservation management programs for buffering against the consequences
of anthropogenic climate change (Aitken and Whitlock 2013). Whatever the aim or
application, a first step in studying the basis of local adaptation is to identify the genes
that are driving it.

A potentially powerful method for identifying the genomic regions involved in local
adaptation is genotype-environment association (GEA) analysis, which has been widely
adopted in recent years. Alleles may vary in frequency across a species’ range in
response to local environmental conditions that give rise to spatially varying selection
pressures (Haldane 1948). For that reason, genetic variants that exhibit strong
correlations with putatively selective features of the environment are often interpreted as
a signature of local adaptation (Coop et al. 2010). Genotype-environment association
(GEA) studies examine such correlations. Allele frequencies for many genetic markers,
typically single nucleotide polymorphisms (hereafter SNPs), are estimated in numerous
locations across a species’ range. Correlations between allele frequency and
environmental variables are calculated then contrasted for sites across the genome. It is
assumed in GEA studies that current heterogeneity in the environment (whether biotic
or abiotic) reflects the history of selection.

Numerous approaches for performing GEA analyses have been proposed. If individuals
are sequenced, GEA can be performed by regressing environments on genotypes as a
form of genome-wide association study, for example using the GEMMA package (Zhou
et al. 2013). However, to estimate SNP effects with reasonable statistical power, many
individuals may need to be sequenced. A cost-effective alternative is pooled sequencing
(hereafter pooled-seq), where allele frequencies for populations of individuals are
estimated rather than individual genotypes (Schlbtterer et al. 2014). In this study, we
focus on analyses that can be performed on pooled-seq datasets given the wide
adoption of that protocol in the GEA literature.

The most straightforward way to perform a GEA analysis is to simply examine the
correlation between allele frequencies and environmental variables measured in
multiple populations, for example using rank correlations such as Spearman’s p or
Kendall’s 7. This simple approach may commonly lead to false positives, however, if
there is environmental variation across the focal species’ range that is correlated with
patterns of gene flow or historical selection (Meirmans 2012; Novembre and Di Rienzo
2009). For example, consider a hypothetical species inhabiting a large latitudinal range.
If this species had restricted migration and exhibited isolation-by-distance, neutral
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72  alleles may be correlated with any environmental variable that happened to correlate
73 with latitude, as population structure would also correlate with latitude.

74 Several approaches have been proposed to identify genotype-environment correlations
75 above and beyond what is expected given an underlying pattern of population structure
76  and environmental variation. For example, the commonly used BayPass package

77  (Gautier 2015), an extension of BayEnv by Coop et al. (2010), estimates correlations

78  between alleles and environmental variables in a two-step process. First, a population
79  covariance matrix (Q) is estimated from SNP data. Second, correlations between the

80  frequencies of individual SNPs and environmental variables are estimated treating Q in
81 a manner similar to a random effect in a generalized mixed model. In a recent study,

82  Lotterhos (2019) compared several of the most commonly used packages for

83  performing GEA on pooled-seq datasets; including BayPass (Gautier 2015), latent-

84  factor mixed models (LFMMs) as implemented in the LEA package (Frichot et al. 2013;
85  Frichot and Frangois 2015), redundancy analysis (RDA; see Forester et al. 2016, 2018)
86 and a comparatively simple analysis calculating Spearman’s p between allele frequency
87 and environment. Of the methods they tested, Lotterhos (2019) found that the GEA

88 approaches that did not correct for population structure (i.e., Spearman’s p and RDA)
89  had higher power to detect local adaptation compared to BayPass or LFMMs. In their
90 standard application to genome-wide datasets, all the GEA analysis methods mentioned
91 provide a summary statistic for each marker or SNP.

92 Individual SNPs may provide very noisy estimates of summary statistics, but closely
93 linked SNPs are not independently inherited and may have highly correlated
94  evolutionary histories. As a way to reduce noise, genome scan studies often aggregate
95 data across adjacent markers into analysis windows based on a fixed physical or
96 genetic distance or number of SNPs (Hoban et al. 2016). In the case of Fsr, the
97  standard measure of population differentiation, there are numerous methods for
98 combining estimates across sites (see Bhatia et al. (2013)). In Weir and Cockerham’s
99  (1984) method, for example, estimates of Fg; for individual loci are combined into a
100  single value with each marker’s contribution weighted by its expected heterozygosity.

101  In the context of GEA studies, each marker or SNP provides a test of whether a

102  particular genealogy is correlated with the pattern of environmental variation. In the

103  extreme case of a non-recombining region, all SNPs would share the same genealogy
104  and thus provide multiple tests of the same hypothesis. For recombining portions of the
105 genome, however, linked sites will not have the same genealogy, but genealogies may
106  be highly correlated. Similar to combining estimates of Fs; to decrease statistical noise,
107  combining GEA tests performed on individual markers may increase the power of GEA
108  studies to identify genomic regions that contribute to local adaptation.

109 In this study, we propose a general method for combining the results of single SNP

110  GEA scores into analysis windows that we call the weighted-Z analysis (WZA), and test
111 its efficacy using simulations. We generate datasets modelling a pooled-sequencing
112  experiment where estimates of allele frequency are obtained for numerous populations
113 across a species’ range. Using our simulated data, we compare the performance of the
114  WZA to Kendall’s t (because Lotterhos (2019) found that this method had high power)
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115 as well as BayPass (Gautier 2015), as it is a widely used approach that corrects for

116  population structure in GEA studies. Additionally, we compare the WZA to another

117  window-based GEA approach proposed by Yeaman et al. (2016). We found that the
118  WZA is particularly useful when GEA analysis is performed on small samples and when
119  results for individual SNPs are statistically noisy. We re-analyze previously published
120  lodgepole pine (Pinus contorta) data using the WZA and find several candidate loci that
121 were not identified using the methods of the original study.

122 The Weighted-Z Analysis

123 In this study, we propose the Weighted-Z Analysis (hereafter, the WZA) for combining
124  information across linked sites in the context of GEA studies. Specifically, we aim to
125  combine information from multiple SNPS within the same small genomic region to ask
126 whether that region shows associations between its local allele frequencies and local
127  environment.

128  The WZA uses the weighted-Z test from the meta-analysis literature that combines p-
129  values from multiple independent hypothesis tests into a single score (Mosteller and
130 Bush 1954; Liptak 1958; Stouffer et al. 1949). In the weighted-Z test, each of the n
131  independent tests is given a weight that is proportional to the inverse of its error

132 variance (Whitlock 2005). We use the expected heterozygosity of each SNP in a gene
133 or window for the weights in the WZA, following Weir and Cockerham (1984), as their
134  classic method performs well in a similar evolutionary context, where the aim is to
135 quantify divergence in allele frequencies among populations. At a given polymorphic
136  site, we denote the average frequency of the minor allele across populations as p (q
137  corresponds to the frequency of the major allele). Sites with higher values of pg will
138  carry more information about the underlying genealogy.

139  We combine information about genetic correlations with the environment from biallelic
140  markers (typically SNPs) present in a focal genomic region into a single weighted-Z

141  score (Zy,). The genomic region in question could be a gene or genomic analysis

142 window. For each SNP with a minor allele frequency greater than 0.05 in the genomic
143  window, we measure the association between the SNP’s local allele frequency and the
144 local environment in some way and use the p-value of a test of no association for each
145  SNP. (The exact measure used here may vary; in this paper we test the use of two such
146  measures, described below.)

147  These p-values from each SNP in a window are combined using Stouffer's weighted Z
148  approach. We calculate Zy, ;, for genomic region k, which contains n SNPs, as

Y1 Di Gizi

: (1)
/Z?=1(25i qi)?

149 Zyk =


https://doi.org/10.1101/2021.06.25.449972
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449972; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

150  where p; is the mean allele frequency across populations and z; is the standard normal
151  deviate calculated from the one-sided p-value for SNP i. A given p-value can be

152  converted into a z; score by finding the corresponding quantile of the standard normal
153  distribution, for example using the gnorm function in R.

154  When we apply the WZA in this study, we compared two different statistics as input:
155  empirical p-values calculated from the genome-wide distribution of parametric p-values
156  from Kendall’s t correlating the local environmental variable and local allele frequency
157  (referred to as WZAr), and empirical p-values calculated from the genome-wide

158  distribution of Bayes factors as obtained using the BayPass program (referred to as
159  WZAgp; see below).

160  Under the null hypothesis that there is no correlation between allele frequency and

161  environment and no spatial population structure, the expected distribution of correlation
162  coefficients in a GEA would be normal about 0, with a uniform distribution of p-values.
163  However, as will often be the case in nature, there may be an underlying correlation

164  between population structure and environmental variation that will cause these genome-
165  wide distributions to deviate from this null expectation. The average effect of population
166  structure on individual SNP scores can be incorporated into an analysis by converting
167  an individual SNP’s squared correlation coefficient or parametric p-value into empirical
168  p-values based on the genome-wide distribution (following the approach of Hancock et
169  al. [2011]). To calculate empirical p-values, we rank all values (from smallest to largest
170  in the case of p-values) and divide the ranks by the total number of tests performed (i.e.
171 the number of SNPs or markers in the analysis window). Note that in practice, we

172 calculated empirical p-values after removing SNPs with minor allele frequency less than
173 0.05 and would recommend that others perform similar filtering. In empirical studies with
174  varying levels of missing data across the genome, it may be preferable to rank the

175  parametric p-values rather than the correlation coefficients themselves as there may be
176  varying power to calculate correlations across the genome. With the empirical p-value
177  procedure, aggregating information using the WZA will identify genomic regions with a
178  pattern of GEA statistics that deviate from the average genome-wide. A feature of the
179  WZA is that many tests can potentially be used as input as long as individual p-values
180 provide a measure for the strength of evidence against a null hypothesis.

181 Materials and Methods

182  In the previous section we described the mechanics of our new method, the WZA. The
183  rest of this paper is devoted to a test of the relative efficacy of the WZA compared to
184  other widely used approaches. Note that Lotterhos (2019) identified a simple rank

185  correlation on individual SNPs as having among the highest power of the GEA analyses
186  that have been tested, making such a method a good standard of comparison, and the
187  most common GEA method used is BayPass (Gautier 2015). We use these two existing
188  methods as our baseline of comparison for WZA.

189
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190 To do these tests, we will simulate populations evolving on a variety of different

191  environmental landscapes, with the selective optima varying over space. We use

192  relatively weak selection, so that we are simulating the most difficult loci to find with a
193  GEA. The present section describes the simulation conditions we used for these tests.

194  Simulating local adaptation

195  We performed forward-in-time population genetic simulations of local adaptation to

196  determine how well the WZA was able to identify the genetic basis of local adaptation.
197  GEA studies are often performed on large spatially extended populations that may be
198 comprised of hundreds of thousands of individuals. However, it is computationally

199 infeasible to model selection and linkage in long chromosomal segments (>1Mbp) for
200 such large populations. For that reason, we simulated relatively small populations

201  containing 19,600 diploid individuals in total and scaled population genetic parameters
202  to model a large population. We based our choice of population genetic parameters on
203  estimates for conifer species. A representative set of parameters is given in Table S1
204  and in the Appendix we give a breakdown and justification of the parameters we chose.
205  All simulations were performed in SLiM v3.4 (Messer and Haller 2019).

206

207  We simulated meta-populations inhabiting and adapting to heterogeneous environments
208 and modelled the population structure on an idealized conifer species. In conifers,

209  strong isolation-by-distance has been reported and overall mean Fg; < 0.10 has been
210  estimated in several species (Mimura and Aitken 2007; Mosca et al. 2014). We thus
211  simulated individuals inhabiting a 2-dimensional stepping-stone population made up of
212 196 demes (i.e. a 14 x 14 grid). Each deme consisted of N; = 100 diploid individuals.
213 We assumed a Wright-Fisher model so demes did not fluctuate in size over time.

214 Migration was limited to neighboring demes in the cardinal directions and the reciprocal
215  migration rate between demes (m) was set to 0.0375 in each possible direction to

216  achieve an overall Fs; for the metapopulation of around 0.04 (Figure S1). As expected
217  under restricted migration, our simulations exhibited a strong pattern of isolation-by-
218 distance (Figure S1). Additionally, we simulated metapopulations with no spatial

219  structure (i.e., finite island models). In these simulations, we used the formula

1 4
220 m=-ST__

4N,4196
221

222 (Charlesworth and Charlesworth 2010; pp319) to determine that a migration rate

223 between each pair of demes of m = 4.12 x 10* would give a target Fg of 0.03.

224

225  The simulated organism had a genome containing 1,000 genes uniformly distributed
226 onto 5 chromosomes. We simulated a chromosome structure in SLiM by including

227  nucleotides that recombined at r = 0.5 at the hypothetical chromosome boundaries.
228 Each chromosome contained 200 segments of 10,000bp each. We refer to these

229  segments as genes for brevity, although we did not model an explicit exon/intron or
230  codon structure. It has been reported that linkage disequilibrium (LD) decays rapidly in
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231  conifers, with LD between pairs of SNPs decaying to background levels within 1,000bp
232 orso in several species (Pavy et al. 2012). In our simulations, recombination within

233 genes was uniform and occurred at a rate of r = 10~7 per base-pair, giving a

234 population-scaled recombination rate (4N,r) of 0.0004. The recombination rate between
235 the genes was set to 0.005, effectively modelling a stretch of 50,000bp of intergenic
236  sequence. Given these recombination rates, LD decayed rapidly in our simulations with
237  SNPs that were approximately 600bp apart having, on average, half the LD of

238 immediately adjacent SNPs in neutral simulations (Figure S1). Thus, patterns of LD

239  decay in our simulations were broadly similar to the patterns reported for conifers.

240

241  We incorporated spatial variation in the environment into our simulations using a

242  discretized map of degree days below 0 (DDO0) across British Columbia (BC). We

243 generated the discretized DDO map by first downloading the map of DDO for BC from
244 ClimateBC (http://climatebc.ca/; Wang et al. 2016; Figure 1A). Using Dog Mountain, BC
245  as the reference point in the South-West corner (Latitude = 49.37, Longitude = -122.97),
246 we extracted data in a rectangular grid with edges 3.6 degrees long in terms of both
247  latitude and longitude, an area of approximately 266 x 400km? (Figure 1A). We divided
248  this map into a 14 x 14 grid, calculated the mean DDQO scores in each grid cell,

249  converted them into standard normal deviates (i.e. Z-scores) and rounded up to the
250 nearest third. We used the number of thirds of a Z-score as phenotypic optima in our
251  simulations. We refer to this map of phenotypic optima as the BC map (Figure 1B).

252

253  We used data from the BC map to generate two additional maps of environmental

254  variation. First, we ordered the data from the BC map along one axis of the 14 x 14 grid
255 and randomised optima along the non-ordered axis. We refer to this re-ordered map as
256  the Gradient map (Figure 1C). Second, we generated a map where selection differed
257  over only a small portion of the environmental range. For some species, fitness optima
258  may differ only beyond certain environmental thresholds (e.g. temperature above vs.
259  below 0°C), leading to a non-normal distribution of phenotypic optima. To model such a
260 situation, we set the phenotypic optimum of 20 demes in the top-right corner of the

261  meta-population to +3 and set the optimum for all other populations to —1. We chose 20
262 demes as it represented approximately 10% of the total population. We refer to this map
263  as the Truncated map (Figure 1D).

264

265  We simulated local adaptation using models of either directional or stabilizing selection.
266  In both cases, there were 12 causal genes distributed evenly across four simulated

267  chromosomes that potentially contributed to local adaptation. With directional selection,
268  mutations affecting fitness could only occur at a single nucleotide position in the center
269  of the 12 potentially selected genes. Directionally selected mutations had a spatially
270  antagonistic effect on fitness. In deme d with phenotypic optimum 6,, the fithess of an
271 individual homozygous for the selected allele was 1 + 5,0, (selected alleles were semi-
272 dominant). The fitness affecting alleles had a mutation rate of 3 x 1077 in simulations
273 modelling directional selection and a fixed s, = 0.003 (see Appendix).

274

275  Under stabilizing selection, the mutations that occurred in the 12 genes had a normal
276  distribution of phenotypic effects, with variance ¢ = 0.5. Phenotype-affecting mutations
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277  occurred at a rate of 1071° per base-pair in the 12 genes, and could occur at any of the
278 10,000 sites within a given gene. An individual’s phenotype was calculated as the sum
279  of the effects of all phenotype-affecting mutations. We calculated an individual’s fitness
280 using the standard expression for Gaussian stabilizing selection,

—(z;;—6 2
281 Wi,jzexp[%],

282 where z; ; is the phenotype of the i*" individual in environment j and V; is the variance of

283  the Gaussian fitness function (Walsh and Lynch 2018). We set I, = 196 so that there
284  was a 40% fitness difference between individuals perfectly adapted to the two extremes
285  of the distribution of phenotypic optima. This was motivated by empirical studies of local
286  adaptation that have demonstrated such fitness differences in numerous species

287  (Hereford 2009; Bontrager et al. 2020); see Appendix.

288

289  We ran simulations for a total of 200,102 generations. The 19,600 individuals initially
290 inhabited a panmictic population that evolved neutrally. After 100 generations, the

291  panmictic population divided into a 14 x 14 stepping-stone population and evolved

292  either strictly neutrally (when modelling directional selection) or with a phenotypic

293  optimum of O for all demes (when modelling stabilizing selection). After 180,000

294  generations, we imposed the various maps of phenotypic optima and simulated for a
295  further 20,000 generations. For selected mutations, we used the "f' option for SLiM's
296  mutation stack policy, so only the first mutational change was retained. Using the tree-
297  sequence option in SLiM (Haller et al. 2019), we tracked the coalescent history of each
298 individual in the population. At the end of each simulation, neutral mutations were added
299 atarate of 1078 using PySLiM (https://pyslim.readthedocs.io/en/latest/). For each

300 combination of map and mode of selection, we performed 20 replicate simulations.

301

302


https://doi.org/10.1101/2021.06.25.449972
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449972; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A
b \?‘L >:_\_'",.:‘-'?;"3\.‘" B
SR =
¥ %
B BC Map C Gradient Map D Truncated Map
EEEE EEENEENEENENEE EEEEEN
ogg OooES
O - EEEN
] |
OO
&
1
[
[ ] | O
EEEEEEN ENEEEENEEEYEEN

303

304 Figure 1 A) Degree days below zero across British Columbia, the overlain grid in A
305 shows the locations we used to construct phenotypes for our simulated populations. B)
306 A discretized map of DDO in Southern British Columbia, we refer to the map in B as the
307 BC map. C) A 1-dimensional gradient of phenotypic optima, we refer to this as the

308 Gradient map. D) A model of selection acting on a small proportion of the population,
309 we refer to this map as the Truncated map.

310
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311 Classifying simulated genes as locally adapted

312  To evaluate the performance of different GEA methods, we needed to identify which of
313 the 12 causal genes contributed to local adaptation and which did not in each replicate
314  of our simulated data. As described above, our simulations incorporated a stochastic
315  mutation model so from replicate to replicate the genes that contributed to local

316  adaptation varied and, in the case of stabilizing selection, so did the effect size of the
317 alleles in those genes.

318 For simulations modelling directional selection, we identified locally adapted genes

319 based on the mean fitness of their alleles at the single variable site in each gene with a
320 polymorphism. Our measure of local adaptation was the covariance between the mean
321 fitness contributed by the selected allele in each population and the environment.

322 For simulations modelling stabilizing selection, we identified locally adapted genes

323  based on the covariance of the environment and the phenotypic effects of their alleles,
324  summed across all variant sites within each gene. For a given gene, we summed the
325 additive phenotypic effects of all non-neutral variants and took the average for each

326  population. Our measure of local adaptation for each gene was the covariance between
327 that average additive phenotypic effect and environmental variation (we refer to this as
328  Cov(Phen, Env)).

329  For both selection regimes, we defined locally adapted genes as those with a

330 covariance between environment and allelic effect (in fitness or phenotypic terms)

331 greater than 0.005. When modelling directional selection, an average of 6.35, 6.50 and
332 5.80 genes (out of 12) contained genetic variants that established and contributed to
333 local adaptation for the BC map, the Gradient map and the Truncated map,

334  respectively. In our simulations modelling stabilizing selection, individuals’ and

335 population mean phenotypes closely matched the phenotypic optima of their local

336  environment (Figure S2). The average numbers of genes contributing to local

337 adaptation in individual replicates in these simulations were 7.15, 6.45 and 5.35 for the
338 BC map, the Gradient map and the Truncated map, respectively. However, when

339 analyzing stabilizing selection simulations, we calculated the proportion of the total

340  Cov(Phen, env) explained by a particular set of genes rather the number of true

341  positives.

342  Analysis of simulation data

343  We performed GEA on our simulated data using either Kendall’s t-b (hereafter Kendall’s
344 1), arank correlation that does not model population structure, or BayPass, which

345  corrects for a population covariance matrix (Gautier 2015). For all analyses, except

346  where specified, we analyzed data for a set of 40 randomly selected demes and

347 sampled 50 individuals from each to estimate allele frequencies. We sampled

348 individuals from the same set of demes for all analyses, shown in Figure S3. Each

349  simulation replicate included 1,000 genes, and after excluding alleles with a minor allele
350 frequency less than 0.05 there was an average of 23.3 SNPs per gene. We ran
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351 BayPass following the "worked example" in section 5.1.2 of the manual provided with
352  the software.

353  We used three different methods to summarize the GEA results for each gene in each
354  simulation replicate: a single SNP-based approach, the WZA and the top-candidate
355 method developed by Yeaman et al. (2016). For all three tests, we used either the p-
356 values from Kendall's T or Bayes factors from BayPass.

357 e For the implementation of the single SNP-based approach, the SNPs with the
358 most extreme test statistic (i.e. smallest p-value or largest Bayes factor) for each
359 gene were recorded and other SNPs in the gene were subsequently ignored.

360 This was done to prevent multiple outliers that are closely linked from being

361 counted as separate hits. The single-SNP based method is perhaps most similar
362 to how GEA analyses are typically interpreted, as it relies upon the evidence from
363 the most strongly associated SNP to assess significance for a closely linked

364 gene.

365 ¢ We implemented a simplified version of the top-candidate method proposed by
366 Yeaman et al. (2016). The top-candidate method attempts to identify regions of
367 the genome involved in local adaptation under the assumption that such regions
368 may contain multiple sites that exhibit strong correlation with environmental

369 variables. The top-candidate method asks whether there is a significant excess
370 of “outlier” SNPs in a region compared to what one would expect given the

371 genome wide distribution. The number of outliers in each genomic region is

372 compared to the expected number of outliers based on the genome-wide

373 proportion of SNPs that are outliers, using a binomial test. We defined outliers as
374 those within the 99" percentile of scores genome wide. The p-value from the

375 binomial test is used as a continuous index.

376 e For the implementation of the WZA, we converted the p-values (from Kendall’s t)
377 or Bayes factors (from BayPass), into empirical p-values. For each of the n SNPs
378 present in a gene, empirical p-values were converted into z scores and used to
379 calculate WZA scores using Equation 1.

380 We examined the effect of variation in recombination on the properties of the WZA by
381 manipulating the tree-sequences that we recorded in SLiM. In our simulations, genes
382  were 10,000 bp long, so to model genomic regions of low recombination rate, we

383 extracted the coalescent trees that corresponded to the central 1,000bp or 100bp of
384  each gene. For the 1,000bp and 100bp intervals, we added mutations at 10x and 100x
385 the standard mutation rate, respectively.

386  All SNPs present in each 10,000bp gene in our simulations were analyzed together.
387 However, to explore the effect of window size on the performance of the WZA, we

388 calculated WZA scores for variable numbers of SNPs. In these cases, we calculated
389  WZA scores for all adjacent sets of g SNPs and retained the maximum WZA score for
390 all sets of SNPs in the gene.

391 Tree sequences were manipulated using the tskit package. Mutations were added to
392 trees using the msprime (Kelleher et al. 2016;
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393  https://tskit.dev/imsprime/docs/stable/intro.html), tskit and PySLiM workflow

394  (https://pyslim.readthedocs.io/en/latest/). Fs; and r2 (an estimator of linkage

395 disequilibrium) were calculated using custom Python scripts that invoked the scikit-allel
396 package (https://scikit-allel.readthedocs.io/en/stable/).

397

3908  Analysis of data from lodgepole pine

399 We re-analyzed a previously published population genomic dataset for lodgepole pine,
400  Pinus contorta, a conifer that is widely distributed across the Northwest of North

401  America. Briefly, Yeaman et al. (2016) collected samples from 254 populations across
402  British Columbia and Alberta, Canada and Northern Washington, USA. The lodgepole
403  pine genome is very large (approximately 20Gbp), so Yeaman et al. (2016) used a

404  sequence capture technique based on the P. contorta transcriptome. Allele frequencies
405  were estimated for many markers across the captured portion of the genome by

406  sequencing 1-4 individuals per population. Yeaman et al. (2016) performed GEA on
407  each SNP using Spearman’s p and used their top-candidate method (see above) to
408  aggregate data across sites within genes. We downloaded the data for individual SNPs
409  from the Dryad repository associated with Yeaman et al. (2016)

410  (https://doi.org/10.5061/dryad.0t407). We converted Spearman’s p p-values into

411  empirical p-values and performed WZA on the same genes analyzed by Yeaman et al.
412 (2016). We also repeated the top-candidate method, classifying SNPs with empirical p-
413  values < 0.01 as outliers. However, as above, we use the p-value from the top-

414  candidate method as a continuous index.

415 Data and Code Availability

416  The simulation configuration files and code to perform the analysis of simulated data
417  and generate the associated plots are available at github/TBooker/GEA/WZA. Analyses
418  were performed using a combination of R and Python. All plots were made using

419  ggplot2 (Wickham 2016). Tree-sequence files for the simulated populations will be

420 made available at Dryad and all processed GEA files are available on (details to be

421  determined post-submission).

122 Results
423  The statistical properties of the WZA

424 To assess the statistical properties of the WZA, we first performed GEA analyses on
425  populations that were evolving neutrally. Figure 2A shows the distribution of WZAt

426  scores for stepping-stone populations simulated under neutrality. The null expectation
427  for WZA scores is the standard normal distribution (mean of 0 and standard deviation of
428 1), but we found that the distribution of WZAt scores deviated slightly from this even
429  under neutrality, where the mean and standard deviation of WZAr scores from

430 individual simulation replicates were approximately 0.089 and 1.38, respectively.
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431  Additionally, the inset histogram in Figure 2A shows that distribution of WZAz scores
432 had a somewhat thicker right-hand tail than expected under the normal distribution. A
433 similar deviation from normality was observed when data were simulated under an
434 island model, or when WZA was calculated using Bayes factors (Figure S4).

435
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437  Figure 2. The distribution of WZA scores under neutrality and a model of local

438  adaptation. A) A histogram of WZArt scores under strict neutrality across a set of 20
439 replicate simulations, inset is a close-up view of the upper tail of the distribution of Zw
440  scores. The black line indicates the standard normal distribution. B) A density plot

441  showing the separation of WZArt scores for genes that are locally adaptive versus

442  evolving neutrally across the genome of 20 simulation replicates. GEA was performed
443 on 40 demes sampled from the BC Map.

444

445  The deviation from the standard normal distribution is driven by non-independence of
446 SNPs within the analysis windows we used to calculate WZAt scores. To demonstrate
447  this, we re-calculated WZArt scores, but permuted the locations of SNPs across the

448  genome, effectively erasing the signal of linkage within genes. The distribution of WZAzt
449  scores in this permuted dataset closely matched the null expectation and did not have a
450  thick right-hand tail (Figure S4; shuffled); each of 20 simulation replicates had a mean
451  WZAr indistinguishable from O with a standard deviation very close to 1. It is worth

452  noting that we modelled populations that did not change in size over time. Non-

453  equilibrium population dynamics such as population expansion may influence the

454 distribution of WZA scores.

455  When evolution includes selection, WZA can often clearly distinguish regions of the
456  genome containing loci that contribute to local adaptation from those that do not. Figure
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457 2B shows separation of WZArt scores for genes that contribute to local adaptation from
458  those that are evolving neutrally (similar results were found for both the Gradient and
459  Truncated maps; Figure S5). The distributions of WZAz scores for locally adapted

460  genes when modelling stabilizing selection was broader than when modelling directional
461  selection (Figure S5), consistent with differences in the distributions of effect size for the
462  genes involved in local adaptation under the two selection models (Figure S6). The

463  separation of the distributions of WZAz scores for locally adaptive genes versus

464  neutrally evolving genes indicates that it may be a powerful method for identifying the
465  genetic basis of local adaptation. The use of pg as weights in the WZA improved

466  performance over an unweighted version of the test (Figure S7A).

467

468 Comparison of the WZA with other GEA approaches

469  We compared WZA to two other methods for identifying genomic regions that contribute
470  to local adaptation from GEA data (Figure 3). To assess the performance of the different
471  methods, we examined the top 1, 2, 3, ... 50 genes in terms of WZAr scores, —log,,(p-
472  values) from the top-candidate method, or the single SNP Kendall’s t approach. We
473  calculated the proportion of all true positives that were identified in each case. In our
474 simulations, there were 1,000 genes in total with approximately 6 locally adapted genes
475  in each replicate (see Methods). For visualization purposes, we include Figure S8,

476 which shows the —log;,(p-values) from Kendall’s 7 represented as a Manhattan plot for
477  individual simulation replicates as well as WZAt and top-candidate scores calculated
478  from those data. Figure 3 compares the performance of the GEA methods across the
479  three different maps of environmental variation that we simulated. For each of the three
480 maps we simulated, we analyzed samples of 10, 20 or 40 demes where allele

481  frequencies were estimated from 50 individuals sampled in each location.

482  Figure 3 shows that WZAt substantially outperformed both the top-candidate and single
483  SNP-based Kendall’s t analyses in most cases. When analyzing simulations that used
484  the BC map or the Truncated map, WZArt always outperformed the top-candidate and
485  SNP-based methods, but particularly so when fewer demes were sampled (Figure 3).
486  When simulations assumed the Gradient map, WZArt outperformed the other GEA

487  methods when the sample was restricted to 10 demes, but with larger samples, the

488  tests were more similar (Figure 3). This suggests that WZArz is a powerful method for
489 identifying regions of the genome that contribute to local adaptation in empirical

490 analyses, but particularly so when they are performed on small samples.

491  An additional source of variation in GEA studies comes from the number of individuals
492  sampled in each location. We also examined the effect that reduced sampling of

493  individuals within each deme had on the performance of the methods. Figure S9 shows
494  that the WZA outperforms the top-candidate and SNP-based methods when a small
495  number of individuals is used to estimate allele frequencies.
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497  Figure 3 The efficacy of three GEA methods based on simulations modelling local

498  adaptation via directional selection. In each case and separately for each method,

499  genes were ranked in descending order of evidence for association between allele

500 frequency and environment, and the genes with the strongest evidence for local

501 adaptation were retained in a “top set”. The x-axes indicate the fraction of the genes
502  which were retained in this top set. The y-axes indicate the proportion of the genes that
503 truly contributed to local adaptation which were found in this top set. Larger values

504 indicate a more effective method. The rows of the plot show results obtained from

505 samples of 10, 20 or 40 demes as indicated by the labels on the right-hand side. Lines
506 represent the means of 20 simulation replicates. In these simulations 50 individuals
507 were sampled for each of the included populations.

508
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soo  Effects of population structure correction

510 In each of the maps of environmental variation that we simulated, there was a strong
511 correlation between environmental variables and gene flow. There was also a strong
512  pattern of isolation-by-distance in our simulated populations (Figure S1). These two

513  factors may make it difficult to identify genes involved in local adaptation in GEA studies
514  (Meirmans 2012).

515  We compared the performance of the WZA to a widely adopted method for performing
516  GEA that corrects for the confounding effects of population structure, BayPass (Gautier
517  2015). In all cases, WZA performed as well, or better than, BayPass (Figure 4). WZA
518 performed much better than BayPass when selection was directional, but WZA was also
519  significantly more likely to identify the genes underlying local adaptation with stabilizing
520 selection.

521 Notably, even though the Kendall's t analysis did not adjust for spatial population
522  structure, the single SNP analyses based on Kendall’s t in most cases outperformed
523  BayPass (with the exception of stabilizing selection on the Truncated map). The

524  discriminatory power of GEAs does not seem to be improved consistently by careful
525  accounting of the underlying pattern of genetic structure.

526
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Figure 4 The performance of population structure correction. A) Results for simulations
modelling directional selection and b) results for simulations modelling stabilizing
selection. Lines represent the mean of 20 simulation replicates where samples of 50
individuals were taken from each of 40 demes. For a description of the x-axis in this plot
see the legend to Figure 3.

The performance of WZA when environmental variables are
weakly correlated with selection pressure

In the previous section, we conducted GEA assuming perfect knowledge of the
phenotypic optima in each sampled deme. However, environmental variables are often
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539  obtained via interpolation and/or may be measured with error, and measured

540 environments may only loosely correlate with the meaningful selective environments.
541  Using the simulations modelling local adaptation on the BC map via stabilizing

542  selection, we compared the performance of the WZA against the single-SNP GEA

543  methods when the measured environment is imperfectly correlated with the phenotypic
544  optima.

545
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547  Figure 5 The proportion of true positives recovered when the measured environment is
548 imperfectly correlated with phenotypic optima. The correlation between environment

549  and selection pressure is shown above each panel. Results are from the BC Map with
550 stabilizing selection. Lines indicate the means from 20 simulation replicates, and each is
551 based on samples of 50 individuals from each of 40 demes. For a description of the x-
552 axis in this plot see the legend to Figure 3.

553  The WZA outperformed single SNP approaches (Kendall's T or BayPass) when the
554  measured environment was not perfectly correlated with phenotypic optima, especially
555  for weak to moderate correlation between the measured and selective environments
556  (Figure 5). WZArt outperforms the single-SNP approaches when the measurement of
557  the environment is a poor proxy for historical selection.
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The effect of recombination rate variation on the WZA

Random drift may cause genealogies in some regions of the genome to correlate with
environmental variables more than others. Many of the SNPs present in an analysis
window that consisted of genealogies that were highly correlated with the environment
may be highly significant in a GEA analysis, leading to a large WZA score. This effect
would lead to a larger variance in WZA scores for analysis windows that were present in
regions of low recombination. To demonstrate this, we down-sampled the tree-
sequences we recorded for our simulated populations to model analysis windows
present in low recombination regions and performed the WZA on the resulting data. As
expected, we found that the variance of the distribution of WZA scores was greater
when there was a lower recombination rate (Figure S10). This is a similar effect to that
we described in a previous paper focusing on Fsr(Booker et al. 2020).

Application of the WZA to lodgepole pine data

We re-analyzed a previously published (Yeaman et al. 2016) lodgepole pine (Pinus
contorta) dataset and compared the WZA to the top-candidate method, which had been
developed for the original study. Overall, the WZA and top candidate statistic were
broadly correlated and identified many of the same genes as the most strongly
associated loci, but also differed in important ways. Across the lodgepole pine genome,
there was a mean WZA score of 0.013 with a standard deviation ¢ = 1.67, and a fat
right-hand tail (Figure S11). Figure 6A shows the relationship between WZA scores and
the —log,,(p-value) from the top-candidate method, which were positively correlated
(Kendall's T = 0.245, p-value < 1071¢). When many of the SNPs in a gene had strongly
associated statistics, both methods would tend to yield high scores (Figure 6B-C). When
there were many SNPs with marginally significant empirical p-values (i.e. 0.05 < p <
0.10) at relatively high frequencies, the WZA method would tend to yield a high score
but the top candidate method would not (Figure 6B). By contrast, if the most strongly
associated SNPs tended to have low minor allele frequencies, the top candidate method
would tend to yield a high score but the WZA would not (Figure 6C). There were several
genes that had WZA scores greater than 10 (approximately 6c), but very modest top-
candidate scores (Figure 6A). Figure 6B shows that for one such region, there were
several SNPs with high mean allele frequency that have small p-values. This particular
region had a high score from the top-candidate method. Conversely, Figure 6C shows a
region that only had a Z,, = 5, but an extreme score from the top-candidate method. In
this case, there were numerous SNPs that passed the top-candidate outlier threshold,
but they were mostly at low allele frequency. Figures 6C-D show the relationship
between allele frequency and the empirical p-value for SNPs present in two genes that
had extreme scores from both the top-candidate method and the WZA.
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Figure 6 The WZA applied to GEA results on lodgepole pine for degree days below 0
(DDO). A) Z,, scores compared to scores from the top-candidate method for each of the
genes analyzed by Yeaman et al. (2016). Panels B-E show the results for —log,,(p-
values) for Spearman’s p applied to individual SNPs against minor allele frequency
(MAF) for the colored points in A. The dashed horizontal lines in B-D indicates the
significance threshold used for the top-candidate method (i.e. 99" percentile of GEA
—log,(p-values) genome-wide).
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605 Discussion

606 In this study, we have shown that combining information across linked sites in GEA

607 analyses is a potentially powerful way to identify genomic loci involved in local

608 adaptation. The method we propose, the WZA, was usually more powerful than looking
609 atindividual sites in isolation, particularly when working with small samples or when the
610 environmental variation being analyzed is only weakly correlated with selection (Figures
611 3 and 5). In a hypothetical world where one had perfect knowledge of allele frequency
612  variation across a species’ range for all sites across the genome, a single marker

613  approach would likely be the best way to perform a GEA analysis, as one would be able
614  to determine the true correlation between genetic and environmental variation for each
615 site in the genome. Indeed, we found that when we had perfect knowledge of allele

616  frequencies in all locations, the SNP-based GEA always outperformed or matched the
617 WZA and top-candidate methods (Figure S12). However, such a situation is unrealistic,
618 and empirical GEA studies will likely always be limited to samples from only some of the
619  populations of interest. Thus, leveraging the correlated information present among

620 closely linked sites in GEA studies may provide a powerful method for identifying the
621  genetic basis of local adaptation.

622  Theoretical studies of local adaptation suggest that we should expect regions of the

623  genome subject to spatially varying selection pressures to exhibit elevated linkage

624  disequilibrium (LD) relative to the genomic background for a number of reasons. Under
625 local adaptation, alleles are subject to spatial fluctuation in the direction of selection. As
626  alocally adaptive allele spreads in the locations where it is beneficial, it may cause

627  some linked neutral variants to hitchhike along with it (Sakamoto and Innan 2019). LD
628 can be increased further as non-beneficial genetic variants introduced to local

629  populations via gene flow are removed by selection. This process can be thought of as
630 alocal barrier to gene flow acting in proportion to the linkage with a selected site

631 (Barton and Bengtsson 1986). Beyond this hitchhiking signature, there is a selective
632 advantage for alleles that are involved in local adaptation to cluster together, particularly
633  in regions of low recombination (Rieseberg 2001; Noor et al. 2001; Kirkpatrick and

634  Barton 2006; Yeaman 2013). For example, in sunflowers and Littorina marine snails,
635 there is evidence that regions of suppressed recombination cause alleles involved in
636 local adaptation to be inherited together (Morales et al. 2019; Todesco et al. 2020). The
637  processes we have outlined are not mutually exclusive, but overall, genomic regions
638  containing strongly selected alleles that contribute to local adaptation may have

639 elevated LD and potentially exhibit GEA signals at multiple linked sites. Window-based
640 GEA scans can potentially take advantage of the LD that is induced by local adaptation,
641 aiding in the discovery of locally adaptive genetic variation.

642  The two window-based GEA methods we compared in this study, the WZA and the top-
643  candidate method of Yeaman et al. (2016), were fairly similar in power in some cases,
644  but the WZA was most often better (Figure 3). Moreover, there are philosophical

645  reasons as to why WZA should be preferred over the top-candidate method. Firstly, the
646  top-candidate method requires the use of an arbitrary significance threshold. This is
647 undesirable, however, because genuine genotype-environment correlations may be
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648  very weak and GEA may simply be an underpowered approach to identify alleles that
649  contribute to local adaptation. If there were no detectable signal of local adaptation,

650  ascribing significance to a fraction of the genome may lead to false positives. Secondly,
651 the top-candidate method gives equal weight to all SNPs that have exceeded the

652  significance threshold. For example, with a threshold of « = 0.01, genomic regions with
653 only a single outlier are treated in the same way whether that outlier has a p-value of
654  0.009 or 107°. It is desirable to retain information about particularly strong outliers. It
655  should be kept in mind, however, that the WZA (and the top-candidate method for that
656  matter) does not explicitly test for local adaptation and only provides an indication of
657  whether a particular genomic region has a pattern that deviates from the genome-wide
658 average. Indeed, numerous processes other than local adaptation may cause excessive
659  correlation between environmental variables and allele frequencies in particular

660 genomic regions. For example, population expansions can cause allelic surfing, where
661  regions of the genome “surf" to high frequency at leading edges of expanding

662  populations. Allelic surfing can leave heterogeneous patterns of variation across a

663  species range leaving signals across the genome that may resemble local adaptation
664  (Novembre and Di Rienzo 2009; Klopfstein, Currat, and Excoffier 2006).

665  When performing a genome-scan using a windowed approach a question that inevitably
666  arises is, how to choose the width of analysis windows? If analysis windows were too
667  narrow, there may be little benefit in using a windowed approach over a single-SNP
668 approach. In all the results presented above, 10,000bp analysis windows were used for
669 the WZA. Analysis windows that were narrower than 10,000bp were intermediate in

670  performance between the single-SNP and 10,000bp approaches (Figure S13). Of

671  course, if analysis windows were too wide, the signal of local adaptation may be diluted
672  and the WZA could have little power. It seems like the ideal width for analysis windows
673  would be informed by the pattern of recombination rate variation, LD decay and SNP
674  density across a species genome. In practice, it may be useful to perform the WZA on
675 groups of SNPs, such as genes as in the Yeaman et al. (2016) study. Future study is
676  required to determine the optimal size for analysis windows.

677 A striking result from our comparison of the various GEA methods we tested in this

678  study was the low power of BayPass compared to Kendall’s 7 (Figure 4). As mentioned
679 in the Introduction, Lotterhos (2019) obtained a similar result in a previous study, though
680 they had used Spearman’s p rather than Kendall’s z. This presumably occurs because
681 genome-wide population genetic structure is oriented along a similar spatial axis as

682  adaptation, and the correction in BayPass therefore causes a reduction in the signal of
683  association at genes involved in adaptation. In such cases, the use of simple rank

684  correlations such as Spearman’s p or Kendall's 7, which assume that all demes are

685 independent, may often yield a skewed distribution of p-values. Such a distribution

686  would lead to a large number of false positives if a standard significance threshold is
687 used (Meirmans 2012). Here, we avoid standard significance testing, and instead make
688 use of an attractive quality of the distribution of p-values: SNPs in regions of the

689  genome that contribute to adaptation tend to have extreme p-values, relative to the

690 genome-wide distribution. By converting them to empirical p-values, we retain the

691 information contained in the rank-order of p-values, but reduce the inflation of their

692  magnitude, which increases the power of the test (Figure S7B). While the empirical p-
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693  value approach may partially and indirectly correct for false positives due to population
694  structure genome-wide, it loses information contained in the raw p-value that represents
695 the deviation of the data from the null model for our summary statistic of interest. It is
696  possible that a GEA approach that produced parametric p-values that was adequately
697  controlled for population structure may provide a more powerful input statistic to the

698 WZA, although that was not the case when we tested WZA based on BayPass results
699  (Figure 4).

700  Perhaps more striking is that to identify most or all causal loci, all GEA analyses used
701  here also included a large number of false positives. Previous work has shown that
702  GEA methods are uniformly effective when selection is strong (Lotterhos and Whitlock
703  2015), so we intentionally simulated weak selection to compare the performance of
704  different methods. Given that we simulated weak selection it is not surprising that GEA
705 methods were underpowered.

706  Ultimately, performing GEA analyses using analysis windows is an attempt to leverage
707  information from closely linked sites. As mentioned, the WZA could potentially be used
708  with other statistics where LD is expected to result in correlated signals across

709  physically linked nucleotides, for example p-values from genome-wide association

710  studies on the basis of phenotypic standing variation, but power in this context would
711  need to be assessed by further testing. With the advent of methods for reconstructing
712 ancestral recombination graphs from population genomic data (Hejase et al. 2020),
713 perhaps a GEA method could be developed that explicitly analyzes inferred genealogies
714  rather than individual markers in a manner similar to regression of phenotypes on

715 genealogies proposed by Ralph et al. (2020). Such a method would require large

716  numbers of individuals with phased genome sequences, which may now be feasible
717  given recent technological advances (Meier et al. 2021).

718  However, there are scenarios where incorporating information from linked sites in GEA
719  analyses may obscure the signal of local adaptation. For example, the power of the

720  WZA could be reduced if causal alleles contributed to local adaptation along multiple
721  gradients (e.g. to altitudinal gradients in several distinct mountain ranges). If such

722  gradients were semi-independent (i.e. medium/high Fsr among gradients), and then
723  there may be a different combination of neutral variants in high LD with the causal allele
724  in each case. In such a scenario, the species-wide LD in regions flanking the causal
725  locus may be reduced, which would likely also reduce the power of the WZA.

726 In conclusion, theoretical models of local adaptation suggest that we should expect

727  elevated LD in genomic regions subject to spatially varying selection pressures. For that
728  reason, GEA analyses may gain power by making use of information encoded in

729  patterns of tightly linked genetic variation. The method we propose in this study, the

730  WZA, outperforms single-SNP approaches in a range of settings and so provides

731  researchers with a powerful tool to characterize the genetic basis of local adaptation in
732 population and landscape genomic studies.
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ss3  Appendix

ss«  Parametrizing simulations of local adaptation

865  Consider a hypothetical species of conifer inhabiting British Columbia, Canada. There
866  may be many hundreds of millions of individuals in this hypothetical species distributed
867 across the landscape. It would be computationally intractable to simulate all individuals
868  forward-in-time incorporating adaptation to environmental variation across the

869 landscape with recombining chromosomes, even with modern population genetic

870  simulators. In our simulations we scaled several population genetic parameters to

871 model a large population when simulating a much smaller one. In the following sections,
872  we outline and justify the approach we used to scale pertinent population genetic

873  parameters.

s74  Mutation rate

875  We set the neutral mutation rate such that there would be an average of around 20

876  SNPs in each gene after applying a minor allele frequency threshold of >0.05. This

877  number was motivated by the average number of SNPs per gene in the lodgepole pine
878  dataset described by Yeaman et al. (2016). We found that a neutral mutation rate (u4,,.,,)
879  of 1078 in our simulations achieved an average of 23.3. Note that this ., gave a very
880 low population-mutation rate within demes, 4N, t,¢,, = 4.0 X 1076,

881  There are no estimates available of the mutation rate to locally adaptive alleles. We

882  opted to use mutation rates that resulted in multiple locally beneficial alleles establishing
883  in our simulations. For directional selection, we found that a mutation rate of 1,,n, =
884 3 x 1077 resulted in around 6 locally adaptive genes establishing. For stabilizing

885  selection, a mutation rate of yg,n, = 1 X 10719, resulted in similar numbers of genes
886  establishing. Note that in our model of directional selection, only a single nucleotide in
887  each of 12 genes could mutate to a locally beneficial allele. In the case of stabilizing

888  selection, all 10,000bp in the simulated gene could give rise to mutations that affected
889  phenotype.

890 Recombination rates

891  We based our choice of recombination rate on patterns of LD decay reported for

892  conifers. The pattern of LD decay in a panmictic population can be predicted by the
893  population-scaled recombination parameter (p = 4N,r; Charlesworth and Charlesworth
894  2010), but the pattern of LD decay in structured populations is less well described. In
895  conifers, LD decays very rapidly in conifers and p = 0.005 has been estimated (Pavy et
896 al. 2012). However, per basepair recombination rates (r) in conifers are extremely low,
897  estimated to be on the order of 0.05 cM/Mbp - more than 10x lower than the average
898 for humans (Stapley et al. 2017). This implies a very large effective population size of

899  roughly 0998 _ 7 5x 105, much larger than is feasible to simulate. To acheive a
4x0.5x1078
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900  similar number of recombination events through time in our simulated populations, we
901 needed to increase r above what has been empirically estimated. We chose a

902 recombination rate that gave us a pattern of LD decay that was similar to what has been
903 observed in conifers. We found that a per base pair recombination r = 1 x 1077 (i.e.

904 roughly 200 x greater than in natural populations) gave a pattern of LD in our simulated
905 populations that was similar to what has been reported for conifers.

906 Selection coefficients

907 ltis difficult to choose a realistic set of selection parameters for modelling local

908 adaptation because there are, at present, no estimates of the distribution of fithess

909 effects for mutations that have spatially divergent effects. However, common garden
910 studies of a variety of taxa have estimated fitness differences of up to 35-45% between
911  populations grown in home-like conditions versus away-like conditions (Hereford 2009;
912  Bontrager et al. 2020). Motivated by such studies, we chose to parametrize selection
913  using the fitness difference between home versus away environments.

914

915  When modelling directional selection, our simulations contained 12 loci that could

916  mutate to generate a locally beneficial allele. The phenotypic optima that we simulated
917 ranged from -7 to 7 and we modelled selection on a locus as 1 + s,0 for a homozygote
918 and 1 + hs,0 for a heterozygote, where s, is the selection coefficient, 6 is the

919 phenotypic optimum and h is the dominance coefficient. With a selection coefficient of
920 s, = 0.003, the maximum relative fitness was (1 + 7 x s,)*? = 1.28 for an individual
921  homozygous for all locally beneficial alleles. An individual homozygous for those alleles,
922  butin the oppositely selected environment (i.e. present in the wrong deme) had a

923 fitness of (1 — 7 x s,)'? = 0.775. Thus, there would be approximately 40% difference in
924  fitness between well locally adapted individuals at home versus away in the most

925 extreme case. Note, however, that approximately 6 genes established in each

926  simulation replicate, so the realized fitness difference was closer to a 20% difference.

927  As stated the main text, for stabilizing selection simulations we chose V; = 192 as this
928 gave a maximum of 50% difference in fithess between individuals grown in home-like
929  conditions versus away-like conditions.

930 Miqgration rate

931 We wanted to model populations with Fg across the metapopulation of approximately
932 0.05, as has been reported for widely distributed conifer species such as lodgepole pine
933  and interior spruce (Yeaman et al. 2016). For the stepping-stone simulations, we chose

934  a migration rate of% as we found that this gave a mean Fg of 0.04. For an island
d

935 model, we used the analytical formulae given in the main text to set m to achieve a
936 mean Fgp of 0.03.

937
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938 Table S1 Population genetic parameters of a hypothetical organism, and how they are
939 scaled in the simulations. The meta-population inhabits a 14 x 14 2-dimensional

940  stepping stone. Parameters are shown for a population with 12 loci subject to directional
941  selection.

Parameter Hypothetical Scaled Parameter Unscaled
Biological Value (Simulation)

Global population size (N,) 106 - 19,600
Number of demes (d) 196 - 196
Local population size (N;) 5,100 - 100
Recombination rate (r) 2.00 x 107° 4N,r = 0.00004 1x1077
Selection coefficient (s,) 0.0001 2Nys, = 0.6 0.003
Migration rate (m) 7.35 x 107* 2Nym =175 0.0375
Neutral mutation rate (e, ) 2x10710 4N, ey = 0.000004 1078
Functional mutation rate (u,) 2x107° 4N,u, = 0.00004 3x1077

942

943
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944

945  Figure 81 Summary statistics from neutral simulations. A) Fs; between pairs of demes
946 in stepping-stone populations. The average across replicates is 0.042. B) LOESS

947  smoothed LD, as measured by r2, between pairs of SNPs in genes that are either

948 evolving neutrally are locally adaptation as indicated by the color. Smoothing was

949  performed using the ggplot2 package in R.

950

33


https://doi.org/10.1101/2021.06.25.449972
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449972; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Gradient Truncated

Phenotype

4 0 4 4 4 4 0 4

0
Phenotypic Optimum

BC Map Gradient Truncated

o
o8
8o
®
®
SR

Population Mean Phenotype
8
o8
8 ©
oBRQ
ERRER
WA
0 Qew0 ©
Ao
Y
O@
o
8%
B
R
&3
B
[estevy

- 4 0 4 4 0 4
95 1 Phenotypic Optimum

952  Figure S2 Individual and population mean phenotypes observed in representative

953  simulations for each of the environment maps simulated. A small amount of horizontal
954  jitter was added to points for visualization purposes. Colors represent phenotype values
955  but are for visualization purposes only.
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Figure S3 Locations of sampled demes on the maps of environmental variation we
assumed in the simulations. Triangles indicate the locations where individuals were
sampled in each case. Colors represent the optimal phenotype in each population,
using the same color scheme as Figure 1 in the main text.
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964 Figure S4 The distribution of WZA scores from neutral simulations with details of the
965  right tail in the insets. Overlaid on each panel is the normal distribution fitted to each
966 dataset. In all cases, results from 20 simulation replicates are plotted together.
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968

969 Figure S5 The distribution of WZA scores from simulations of local adaptation. Note,
970 the plot does not indicate the relative frequency of genes that are or are not locally
971 adaptive. Results shown are for samples of 40 demes with 50 individuals sampled in
972  each. In all cases, results from 20 simulation replicates are plotted together. As

973 indicated on the plot, the upper and lower rows contain results for simulations with
974  directional and stabilizing selection, respectively.
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977  Figure S6 The distribution of effect sizes per gene from simulations of local adaptation.
978  For directional selection, the effect size was we used the covariance between the

979 fitness of a gene and the environment. For stabilizing selection, the effect size was the
980 covariance between phenotypic contribution of a gene and the environment. The

981 vertical line indicates the threshold we applied to the simulated data to classify genes as
982 locally adaptive or not.
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Figure S7 A) Comparison of the WZA performed using empirical p-values (WZAt) or
using parametric p-values from Kendall's T (WZAt — Parametric p-values). B)
Comparison of the WZA using pq as weights in the Equation 1 (WZArt) and an
unweighted version of the WZA (WZAz - Unweighted). In each case, the results were
obtained using a sample of 50 individuals sampled from each of 40 demes. Lines
represent the means of 20 replicates. See the caption of Figure 3 for a description of the
X-axis.
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993 Figure S8 Plots demonstrating the genomic landscape of genotype-environment
994  correlations for a single replicate for each of the three maps of environmental variation
995  we simulated. From top to bottom, the three rows correspond to the BC Map (panels A-
996 D), the gradient map (panels E-H) and the truncated map (panels I-L), respectively. The
997 leftmost panel in each row shows the Manhattan plot of —log,,(p-values) from Kendall’s
998 1 (panels A, E and I). The central panels in each row show the distribution of Z,, scores
999 from the WZA across the genome (B, F and J) and the distribution of results from the
1000 top-candidate method (C, G and K). The rightmost panels show the proportion of locally
1001  adapted genes identified using the three different tests for an increasing number of
1002  genes in the search effort. Results are shown for directional selection simulations. Note
1003  that only SNPs with a minor allele frequency > 0.05 are shown in panels (A, E and |).
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1006  Figure S9 Comparison of the WZA, the top-candidate and the single-SNP approaches
1007  with varying numbers of individuals sampled per deme. Simulations shown used the BC
1008  map and directional selection. Lines represent the mean of 20 simulation replicates. For
1009 a description of the axes in this plot see the legend to Figure 3 in the main text.
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Figure S10 The distribution of Z,, scores under different recombination rates. Results
are shown for neutral simulations using the BC Map. WZA scores were calculated from
a sample of 40 demes where 50 individuals were sampled in each.
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1017  Figure S$11 The distribution of Z;;, scores for the GEA on (DDO0) across the populations
1018  of P. contorta sampled by Yeaman et al. (2016). The curve shows a normal distribution
1019 fitted to the data.
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1023 Figure S$12 A comparison of three methods to identify the genetic basis of local

1024  adaptation when one has complete information on all aspects of the metapopulation,
1025 including full sequences for all individuals on all populations. Lines represent the means
1026 of 20 replicates. For a description of the axes in this plot see the legend to Figure 3 in
1027  the main text
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1030  Figure S$S13 Comparing the performance of the WZA genes identified using the WZA,
1031  using analysis windows analyzing a fixed number of SNPs. Lines represent the means
1032  of 20 replicates. Analysis was performed on results for a sample of 40 demes with 50
1033  individuals taken in each location. For a description of the axes in this plot see the
1034  legend to Figure 3 in the main text
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