

1 The WZA: A window-based method 2 for characterizing genotype- 3 environment association

4 Tom R. Booker^{1,2,3,*}, Sam Yeaman¹, Michael C. Whitlock^{2,3}

5 1. Department of Biological Sciences, University of Calgary, Calgary, Canada

6 2. Department of Zoology, University of British Columbia, Vancouver, Canada

7 3. Biodiversity Research Centre, University of British Columbia, Vancouver, Canada

8 *Corresponding author: booker@zoology.ubc.ca

10 Abstract

11 Genotype environment association (GEA) studies have the potential to elucidate the
12 genetic basis of local adaptation in natural populations. Specifically, GEA approaches
13 look for a correlation between allele frequencies and putatively selective features of the
14 environment. Genetic markers with extreme evidence of correlation with the
15 environment are presumed to be tagging the location of alleles that contribute to local
16 adaptation. In this study, we propose a new method for GEA studies called the
17 weighted-Z analysis (WZA) that combines information from closely linked sites into
18 analysis windows in a way that was inspired by methods for calculating F_{ST} . We analyze
19 simulations modelling local adaptation to heterogeneous environments either using a
20 GEA method that controls for population structure or an uncorrected approach. In the
21 majority of cases we tested, the WZA either outperformed single-SNP based
22 approaches or performed similarly. The WZA outperformed individual SNP approaches
23 when the measured environment is not perfectly correlated with the true selection
24 pressure or when a small number of individuals or demes was sampled. We apply the
25 WZA to previously published data from lodgepole pine and identified candidate loci that
26 were not found in the original study.

27

28 KEYWORDS: Local adaptation, population genetics, landscape genomics, GEA

29

30 Introduction

31 Studying local adaptation can provide a window into the process of evolution, yielding
32 insights about the nature of evolvability, constraints to diversification, and the how the
33 interplay between a species and its environment shapes its genome (e.g. Savolainen
34 2013). Understanding local adaptation can also benefit practical applications such as in
35 forestry where many species of economic interest exhibit pronounced trade-offs in
36 fitness across environments. Characterizing such trade-offs may help identify alleles
37 involved in local adaptation, revealing candidate genes important for breeding or
38 informing conservation management programs for buffering against the consequences
39 of anthropogenic climate change (Aitken and Whitlock 2013). Whatever the aim or
40 application, a first step in studying the basis of local adaptation is to identify the genes
41 that are driving it.

42 A potentially powerful method for identifying the genomic regions involved in local
43 adaptation is genotype-environment association (GEA) analysis, which has been widely
44 adopted in recent years. Alleles may vary in frequency across a species' range in
45 response to local environmental conditions that give rise to spatially varying selection
46 pressures (Haldane 1948). For that reason, genetic variants that exhibit strong
47 correlations with putatively selective features of the environment are often interpreted as
48 a signature of local adaptation (Coop et al. 2010). Genotype-environment association
49 (GEA) studies examine such correlations. Allele frequencies for many genetic markers,
50 typically single nucleotide polymorphisms (hereafter SNPs), are estimated in numerous
51 locations across a species' range. Correlations between allele frequency and
52 environmental variables are calculated then contrasted for sites across the genome. It is
53 assumed in GEA studies that current heterogeneity in the environment (whether biotic
54 or abiotic) reflects the history of selection.

55 Numerous approaches for performing GEA analyses have been proposed. If individuals
56 are sequenced, GEA can be performed by regressing environments on genotypes as a
57 form of genome-wide association study, for example using the *GEMMA* package (Zhou
58 et al. 2013). However, to estimate SNP effects with reasonable statistical power, many
59 individuals may need to be sequenced. A cost-effective alternative is pooled sequencing
60 (hereafter pooled-seq), where allele frequencies for populations of individuals are
61 estimated rather than individual genotypes (Schlötterer et al. 2014). In this study, we
62 focus on analyses that can be performed on pooled-seq datasets given the wide
63 adoption of that protocol in the GEA literature.

64 The most straightforward way to perform a GEA analysis is to simply examine the
65 correlation between allele frequencies and environmental variables measured in
66 multiple populations, for example using rank correlations such as Spearman's ρ or
67 Kendall's τ . This simple approach may commonly lead to false positives, however, if
68 there is environmental variation across the focal species' range that is correlated with
69 patterns of gene flow or historical selection (Meirmans 2012; Novembre and Di Rienzo
70 2009). For example, consider a hypothetical species inhabiting a large latitudinal range.
71 If this species had restricted migration and exhibited isolation-by-distance, neutral

72 alleles may be correlated with any environmental variable that happened to correlate
73 with latitude, as population structure would also correlate with latitude.

74 Several approaches have been proposed to identify genotype-environment correlations
75 above and beyond what is expected given an underlying pattern of population structure
76 and environmental variation. For example, the commonly used *BayPass* package
77 (Gautier 2015), an extension of *BayEnv* by Coop et al. (2010), estimates correlations
78 between alleles and environmental variables in a two-step process. First, a population
79 covariance matrix (Ω) is estimated from SNP data. Second, correlations between the
80 frequencies of individual SNPs and environmental variables are estimated treating Ω in
81 a manner similar to a random effect in a generalized mixed model. In a recent study,
82 Lotterhos (2019) compared several of the most commonly used packages for
83 performing GEA on pooled-seq datasets; including *BayPass* (Gautier 2015), latent-
84 factor mixed models (LFMMs) as implemented in the LEA package (Frichot et al. 2013;
85 Frichot and François 2015), redundancy analysis (RDA; see Forester et al. 2016, 2018)
86 and a comparatively simple analysis calculating Spearman's ρ between allele frequency
87 and environment. Of the methods they tested, Lotterhos (2019) found that the GEA
88 approaches that did not correct for population structure (i.e., Spearman's ρ and RDA)
89 had higher power to detect local adaptation compared to *BayPass* or LFMMs. In their
90 standard application to genome-wide datasets, all the GEA analysis methods mentioned
91 provide a summary statistic for each marker or SNP.

92 Individual SNPs may provide very noisy estimates of summary statistics, but closely
93 linked SNPs are not independently inherited and may have highly correlated
94 evolutionary histories. As a way to reduce noise, genome scan studies often aggregate
95 data across adjacent markers into analysis windows based on a fixed physical or
96 genetic distance or number of SNPs (Hoban et al. 2016). In the case of F_{ST} , the
97 standard measure of population differentiation, there are numerous methods for
98 combining estimates across sites (see Bhatia et al. (2013)). In Weir and Cockerham's
99 (1984) method, for example, estimates of F_{ST} for individual loci are combined into a
100 single value with each marker's contribution weighted by its expected heterozygosity.

101 In the context of GEA studies, each marker or SNP provides a test of whether a
102 particular genealogy is correlated with the pattern of environmental variation. In the
103 extreme case of a non-recombining region, all SNPs would share the same genealogy
104 and thus provide multiple tests of the same hypothesis. For recombining portions of the
105 genome, however, linked sites will not have the same genealogy, but genealogies may
106 be highly correlated. Similar to combining estimates of F_{ST} to decrease statistical noise,
107 combining GEA tests performed on individual markers may increase the power of GEA
108 studies to identify genomic regions that contribute to local adaptation.

109 In this study, we propose a general method for combining the results of single SNP
110 GEA scores into analysis windows that we call the weighted-Z analysis (WZA), and test
111 its efficacy using simulations. We generate datasets modelling a pooled-sequencing
112 experiment where estimates of allele frequency are obtained for numerous populations
113 across a species' range. Using our simulated data, we compare the performance of the
114 WZA to Kendall's τ (because Lotterhos (2019) found that this method had high power)

115 as well as *BayPass* (Gautier 2015), as it is a widely used approach that corrects for
116 population structure in GEA studies. Additionally, we compare the WZA to another
117 window-based GEA approach proposed by Yeaman et al. (2016). We found that the
118 WZA is particularly useful when GEA analysis is performed on small samples and when
119 results for individual SNPs are statistically noisy. We re-analyze previously published
120 lodepole pine (*Pinus contorta*) data using the WZA and find several candidate loci that
121 were not identified using the methods of the original study.

122 The Weighted-Z Analysis

123 In this study, we propose the Weighted-Z Analysis (hereafter, the WZA) for combining
124 information across linked sites in the context of GEA studies. Specifically, we aim to
125 combine information from multiple SNPs within the same small genomic region to ask
126 whether that region shows associations between its local allele frequencies and local
127 environment.

128 The WZA uses the weighted-Z test from the meta-analysis literature that combines *p*-
129 values from multiple independent hypothesis tests into a single score (Mosteller and
130 Bush 1954; Liptak 1958; Stouffer et al. 1949). In the weighted-Z test, each of the *n*
131 independent tests is given a weight that is proportional to the inverse of its error
132 variance (Whitlock 2005). We use the expected heterozygosity of each SNP in a gene
133 or window for the weights in the WZA, following Weir and Cockerham (1984), as their
134 classic method performs well in a similar evolutionary context, where the aim is to
135 quantify divergence in allele frequencies among populations. At a given polymorphic
136 site, we denote the average frequency of the minor allele across populations as \bar{p} (\bar{q}
137 corresponds to the frequency of the major allele). Sites with higher values of $\bar{p}\bar{q}$ will
138 carry more information about the underlying genealogy.

139 We combine information about genetic correlations with the environment from biallelic
140 markers (typically SNPs) present in a focal genomic region into a single weighted-Z
141 score (Z_W). The genomic region in question could be a gene or genomic analysis
142 window. For each SNP with a minor allele frequency greater than 0.05 in the genomic
143 window, we measure the association between the SNP's local allele frequency and the
144 local environment in some way and use the *p*-value of a test of no association for each
145 SNP. (The exact measure used here may vary; in this paper we test the use of two such
146 measures, described below.)

147 These *p*-values from each SNP in a window are combined using Stouffer's weighted Z
148 approach. We calculate $Z_{W,k}$ for genomic region *k*, which contains *n* SNPs, as

$$149 Z_{W,k} = \frac{\sum_{i=1}^n \bar{p}_i \bar{q}_i z_i}{\sqrt{\sum_{i=1}^n (\bar{p}_i \bar{q}_i)^2}}, \quad (1)$$

150 where \bar{p}_i is the mean allele frequency across populations and z_i is the standard normal
151 deviate calculated from the one-sided p -value for SNP i . A given p -value can be
152 converted into a z_i score by finding the corresponding quantile of the standard normal
153 distribution, for example using the *qnorm* function in R.

154 When we apply the WZA in this study, we compared two different statistics as input:
155 empirical p -values calculated from the genome-wide distribution of parametric p -values
156 from Kendall's τ correlating the local environmental variable and local allele frequency
157 (referred to as WZA_τ), and empirical p -values calculated from the genome-wide
158 distribution of Bayes factors as obtained using the *BayPass* program (referred to as
159 WZA_{BP} ; see below).

160 Under the null hypothesis that there is no correlation between allele frequency and
161 environment and no spatial population structure, the expected distribution of correlation
162 coefficients in a GEA would be normal about 0, with a uniform distribution of p -values.
163 However, as will often be the case in nature, there may be an underlying correlation
164 between population structure and environmental variation that will cause these genome-
165 wide distributions to deviate from this null expectation. The average effect of population
166 structure on individual SNP scores can be incorporated into an analysis by converting
167 an individual SNP's squared correlation coefficient or parametric p -value into empirical
168 p -values based on the genome-wide distribution (following the approach of Hancock et
169 al. [2011]). To calculate empirical p -values, we rank all values (from smallest to largest
170 in the case of p -values) and divide the ranks by the total number of tests performed (i.e.
171 the number of SNPs or markers in the analysis window). Note that in practice, we
172 calculated empirical p -values after removing SNPs with minor allele frequency less than
173 0.05 and would recommend that others perform similar filtering. In empirical studies with
174 varying levels of missing data across the genome, it may be preferable to rank the
175 parametric p -values rather than the correlation coefficients themselves as there may be
176 varying power to calculate correlations across the genome. With the empirical p -value
177 procedure, aggregating information using the WZA will identify genomic regions with a
178 pattern of GEA statistics that deviate from the average genome-wide. A feature of the
179 WZA is that many tests can potentially be used as input as long as individual p -values
180 provide a measure for the strength of evidence against a null hypothesis.

181 Materials and Methods

182 In the previous section we described the mechanics of our new method, the WZA. The
183 rest of this paper is devoted to a test of the relative efficacy of the WZA compared to
184 other widely used approaches. Note that Lotterhos (2019) identified a simple rank
185 correlation on individual SNPs as having among the highest power of the GEA analyses
186 that have been tested, making such a method a good standard of comparison, and the
187 most common GEA method used is BayPass (Gautier 2015). We use these two existing
188 methods as our baseline of comparison for WZA.
189

190 To do these tests, we will simulate populations evolving on a variety of different
191 environmental landscapes, with the selective optima varying over space. We use
192 relatively weak selection, so that we are simulating the most difficult loci to find with a
193 GEA. The present section describes the simulation conditions we used for these tests.

194 **Simulating local adaptation**

195 We performed forward-in-time population genetic simulations of local adaptation to
196 determine how well the WZA was able to identify the genetic basis of local adaptation.
197 GEA studies are often performed on large spatially extended populations that may be
198 comprised of hundreds of thousands of individuals. However, it is computationally
199 infeasible to model selection and linkage in long chromosomal segments (>1Mbp) for
200 such large populations. For that reason, we simulated relatively small populations
201 containing 19,600 diploid individuals in total and scaled population genetic parameters
202 to model a large population. We based our choice of population genetic parameters on
203 estimates for conifer species. A representative set of parameters is given in Table S1
204 and in the Appendix we give a breakdown and justification of the parameters we chose.
205 All simulations were performed in *SLiM* v3.4 (Messer and Haller 2019).

206
207 We simulated meta-populations inhabiting and adapting to heterogeneous environments
208 and modelled the population structure on an idealized conifer species. In conifers,
209 strong isolation-by-distance has been reported and overall mean $F_{ST} < 0.10$ has been
210 estimated in several species (Mimura and Aitken 2007; Mosca et al. 2014). We thus
211 simulated individuals inhabiting a 2-dimensional stepping-stone population made up of
212 196 demes (i.e. a 14×14 grid). Each deme consisted of $N_d = 100$ diploid individuals.
213 We assumed a Wright-Fisher model so demes did not fluctuate in size over time.
214 Migration was limited to neighboring demes in the cardinal directions and the reciprocal
215 migration rate between demes (m) was set to 0.0375 in each possible direction to
216 achieve an overall F_{ST} for the metapopulation of around 0.04 (Figure S1). As expected
217 under restricted migration, our simulations exhibited a strong pattern of isolation-by-
218 distance (Figure S1). Additionally, we simulated metapopulations with no spatial
219 structure (i.e., finite island models). In these simulations, we used the formula

$$220 m = \frac{\frac{1}{F_{ST}} - 1}{4N_d 196}$$

221

222 (Charlesworth and Charlesworth 2010; pp319) to determine that a migration rate
223 between each pair of demes of $m = 4.12 \times 10^{-4}$ would give a target F_{ST} of 0.03.

224

225 The simulated organism had a genome containing 1,000 genes uniformly distributed
226 onto 5 chromosomes. We simulated a chromosome structure in *SLiM* by including
227 nucleotides that recombined at $r = 0.5$ at the hypothetical chromosome boundaries.
228 Each chromosome contained 200 segments of 10,000bp each. We refer to these
229 segments as genes for brevity, although we did not model an explicit exon/intron or
230 codon structure. It has been reported that linkage disequilibrium (LD) decays rapidly in

231 conifers, with LD between pairs of SNPs decaying to background levels within 1,000bp
232 or so in several species (Pavy et al. 2012). In our simulations, recombination within
233 genes was uniform and occurred at a rate of $r = 10^{-7}$ per base-pair, giving a
234 population-scaled recombination rate ($4N_d r$) of 0.0004. The recombination rate between
235 the genes was set to 0.005, effectively modelling a stretch of 50,000bp of intergenic
236 sequence. Given these recombination rates, LD decayed rapidly in our simulations with
237 SNPs that were approximately 600bp apart having, on average, half the LD of
238 immediately adjacent SNPs in neutral simulations (Figure S1). Thus, patterns of LD
239 decay in our simulations were broadly similar to the patterns reported for conifers.
240

241 We incorporated spatial variation in the environment into our simulations using a
242 discretized map of degree days below 0 (DD0) across British Columbia (BC). We
243 generated the discretized DD0 map by first downloading the map of DD0 for BC from
244 ClimateBC (<http://climatebc.ca/>; Wang et al. 2016; Figure 1A). Using Dog Mountain, BC
245 as the reference point in the South-West corner (Latitude = 49.37, Longitude = -122.97),
246 we extracted data in a rectangular grid with edges 3.6 degrees long in terms of both
247 latitude and longitude, an area of approximately $266 \times 400 \text{ km}^2$ (Figure 1A). We divided
248 this map into a 14×14 grid, calculated the mean DD0 scores in each grid cell,
249 converted them into standard normal deviates (i.e. Z-scores) and rounded up to the
250 nearest third. We used the number of thirds of a Z-score as phenotypic optima in our
251 simulations. We refer to this map of phenotypic optima as the *BC* map (Figure 1B).
252

253 We used data from the *BC* map to generate two additional maps of environmental
254 variation. First, we ordered the data from the *BC* map along one axis of the 14×14 grid
255 and randomised optima along the non-ordered axis. We refer to this re-ordered map as
256 the *Gradient* map (Figure 1C). Second, we generated a map where selection differed
257 over only a small portion of the environmental range. For some species, fitness optima
258 may differ only beyond certain environmental thresholds (e.g. temperature above vs.
259 below 0°C), leading to a non-normal distribution of phenotypic optima. To model such a
260 situation, we set the phenotypic optimum of 20 demes in the top-right corner of the
261 meta-population to +3 and set the optimum for all other populations to -1. We chose 20
262 demes as it represented approximately 10% of the total population. We refer to this map
263 as the *Truncated* map (Figure 1D).
264

265 We simulated local adaptation using models of either directional or stabilizing selection.
266 In both cases, there were 12 causal genes distributed evenly across four simulated
267 chromosomes that potentially contributed to local adaptation. With directional selection,
268 mutations affecting fitness could only occur at a single nucleotide position in the center
269 of the 12 potentially selected genes. Directionally selected mutations had a spatially
270 antagonistic effect on fitness. In deme d with phenotypic optimum θ_d , the fitness of an
271 individual homozygous for the selected allele was $1 + s_a \theta_d$ (selected alleles were semi-
272 dominant). The fitness affecting alleles had a mutation rate of 3×10^{-7} in simulations
273 modelling directional selection and a fixed $s_a = 0.003$ (see *Appendix*).
274

275 Under stabilizing selection, the mutations that occurred in the 12 genes had a normal
276 distribution of phenotypic effects, with variance $\sigma_a^2 = 0.5$. Phenotype-affecting mutations

277 occurred at a rate of 10^{-10} per base-pair in the 12 genes, and could occur at any of the
278 10,000 sites within a given gene. An individual's phenotype was calculated as the sum
279 of the effects of all phenotype-affecting mutations. We calculated an individual's fitness
280 using the standard expression for Gaussian stabilizing selection,

281
$$W_{i,j} = \exp \left[\frac{-(z_{ij} - \theta_d)^2}{2V_s} \right],$$

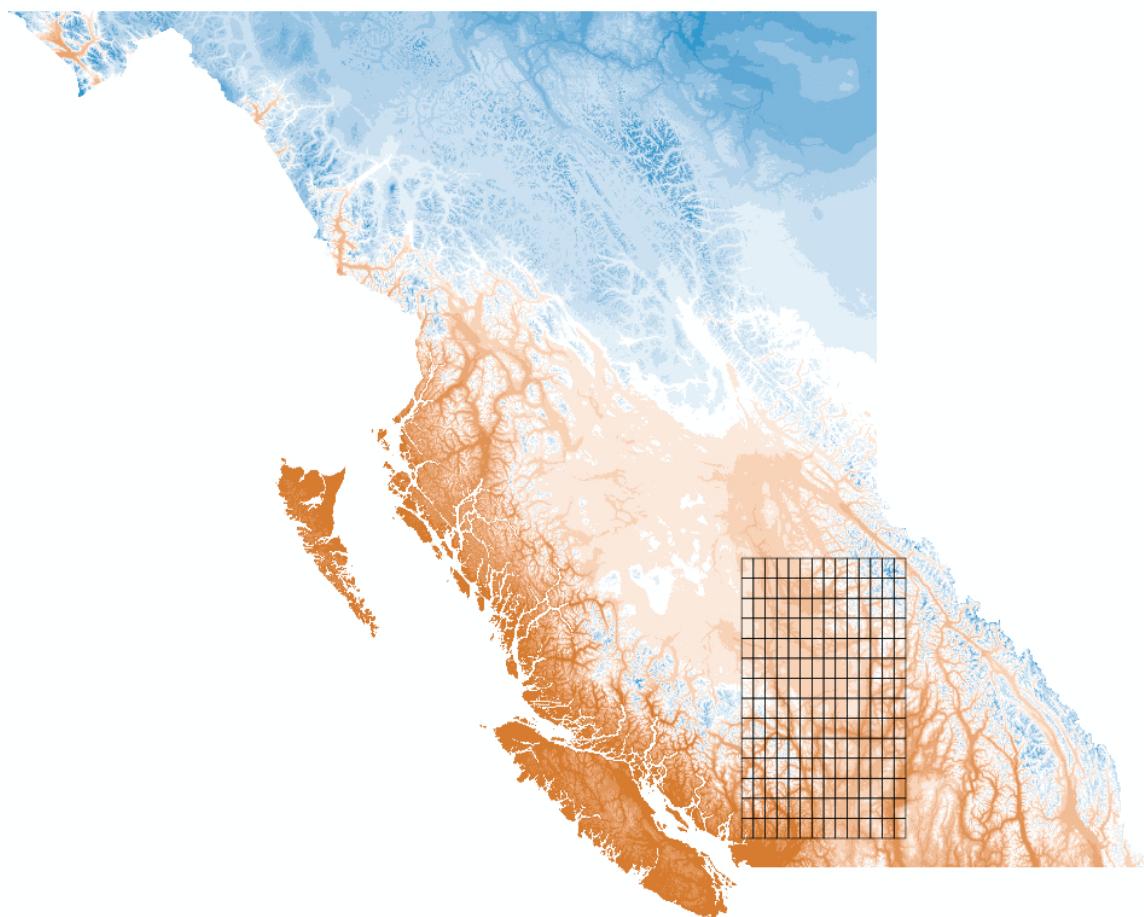
282 where $z_{i,j}$ is the phenotype of the i^{th} individual in environment j and V_s is the variance of
283 the Gaussian fitness function (Walsh and Lynch 2018). We set $V_s = 196$ so that there
284 was a 40% fitness difference between individuals perfectly adapted to the two extremes
285 of the distribution of phenotypic optima. This was motivated by empirical studies of local
286 adaptation that have demonstrated such fitness differences in numerous species
287 (Hereford 2009; Bontrager et al. 2020); see *Appendix*.

288
289 We ran simulations for a total of 200,102 generations. The 19,600 individuals initially
290 inhabited a panmictic population that evolved neutrally. After 100 generations, the
291 panmictic population divided into a 14×14 stepping-stone population and evolved
292 either strictly neutrally (when modelling directional selection) or with a phenotypic
293 optimum of 0 for all demes (when modelling stabilizing selection). After 180,000
294 generations, we imposed the various maps of phenotypic optima and simulated for a
295 further 20,000 generations. For selected mutations, we used the "*i*" option for *SLiM*'s
296 mutation stack policy, so only the first mutational change was retained. Using the tree-
297 sequence option in *SLiM* (Haller et al. 2019), we tracked the coalescent history of each
298 individual in the population. At the end of each simulation, neutral mutations were added
299 at a rate of 10^{-8} using *PySLiM* (<https://pyslim.readthedocs.io/en/latest/>). For each
300 combination of map and mode of selection, we performed 20 replicate simulations.

301

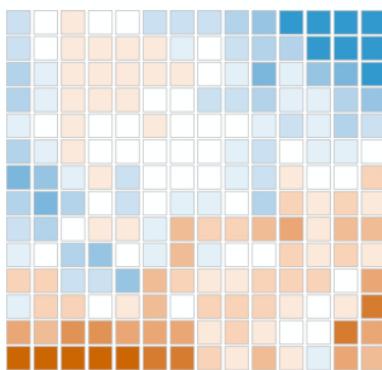
302

A



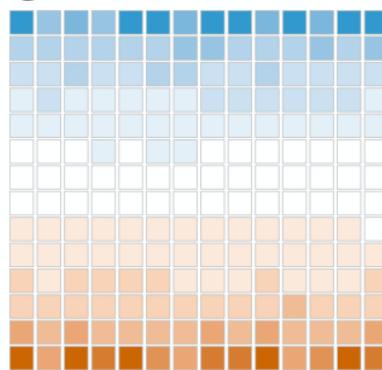
B

BC Map



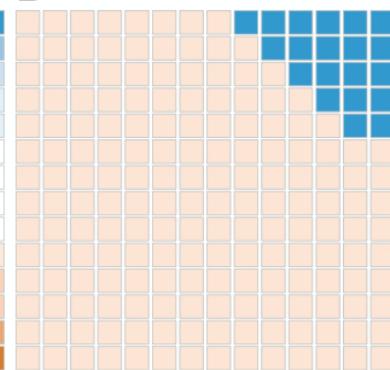
C

Gradient Map



D

Truncated Map



303

304 **Figure 1** A) Degree days below zero across British Columbia, the overlain grid in A
305 shows the locations we used to construct phenotypes for our simulated populations. B)
306 A discretized map of DD0 in Southern British Columbia, we refer to the map in B as the
307 *BC map*. C) A 1-dimensional gradient of phenotypic optima, we refer to this as the
308 *Gradient map*. D) A model of selection acting on a small proportion of the population,
309 we refer to this map as the *Truncated map*.

310

311 Classifying simulated genes as locally adapted

312 To evaluate the performance of different GEA methods, we needed to identify which of
313 the 12 causal genes contributed to local adaptation and which did not in each replicate
314 of our simulated data. As described above, our simulations incorporated a stochastic
315 mutation model so from replicate to replicate the genes that contributed to local
316 adaptation varied and, in the case of stabilizing selection, so did the effect size of the
317 alleles in those genes.

318 For simulations modelling directional selection, we identified locally adapted genes
319 based on the mean fitness of their alleles at the single variable site in each gene with a
320 polymorphism. Our measure of local adaptation was the covariance between the mean
321 fitness contributed by the selected allele in each population and the environment.

322 For simulations modelling stabilizing selection, we identified locally adapted genes
323 based on the covariance of the environment and the phenotypic effects of their alleles,
324 summed across all variant sites within each gene. For a given gene, we summed the
325 additive phenotypic effects of all non-neutral variants and took the average for each
326 population. Our measure of local adaptation for each gene was the covariance between
327 that average additive phenotypic effect and environmental variation (we refer to this as
328 $\text{Cov}(\text{Phen}, \text{Env})$).

329 For both selection regimes, we defined locally adapted genes as those with a
330 covariance between environment and allelic effect (in fitness or phenotypic terms)
331 greater than 0.005. When modelling directional selection, an average of 6.35, 6.50 and
332 5.80 genes (out of 12) contained genetic variants that established and contributed to
333 local adaptation for the *BC map*, the *Gradient map* and the *Truncated map*,
334 respectively. In our simulations modelling stabilizing selection, individuals' and
335 population mean phenotypes closely matched the phenotypic optima of their local
336 environment (Figure S2). The average numbers of genes contributing to local
337 adaptation in individual replicates in these simulations were 7.15, 6.45 and 5.35 for the
338 *BC map*, the *Gradient map* and the *Truncated map*, respectively. However, when
339 analyzing stabilizing selection simulations, we calculated the proportion of the total
340 $\text{Cov}(\text{Phen}, \text{env})$ explained by a particular set of genes rather the number of true
341 positives.

342 Analysis of simulation data

343 We performed GEA on our simulated data using either Kendall's τ -b (hereafter Kendall's
344 τ), a rank correlation that does not model population structure, or *BayPass*, which
345 corrects for a population covariance matrix (Gautier 2015). For all analyses, except
346 where specified, we analyzed data for a set of 40 randomly selected demes and
347 sampled 50 individuals from each to estimate allele frequencies. We sampled
348 individuals from the same set of demes for all analyses, shown in Figure S3. Each
349 simulation replicate included 1,000 genes, and after excluding alleles with a minor allele
350 frequency less than 0.05 there was an average of 23.3 SNPs per gene. We ran

351 BayPass following the "worked example" in section 5.1.2 of the manual provided with
352 the software.

353 We used three different methods to summarize the GEA results for each gene in each
354 simulation replicate: a single SNP-based approach, the WZA and the top-candidate
355 method developed by Yeaman et al. (2016). For all three tests, we used either the *p*-
356 values from Kendall's τ or Bayes factors from BayPass.

- 357 • For the implementation of the single SNP-based approach, the SNPs with the
358 most extreme test statistic (i.e. smallest *p*-value or largest Bayes factor) for each
359 gene were recorded and other SNPs in the gene were subsequently ignored.
360 This was done to prevent multiple outliers that are closely linked from being
361 counted as separate hits. The single-SNP based method is perhaps most similar
362 to how GEA analyses are typically interpreted, as it relies upon the evidence from
363 the most strongly associated SNP to assess significance for a closely linked
364 gene.
- 365 • We implemented a simplified version of the top-candidate method proposed by
366 Yeaman et al. (2016). The top-candidate method attempts to identify regions of
367 the genome involved in local adaptation under the assumption that such regions
368 may contain multiple sites that exhibit strong correlation with environmental
369 variables. The top-candidate method asks whether there is a significant excess
370 of "outlier" SNPs in a region compared to what one would expect given the
371 genome wide distribution. The number of outliers in each genomic region is
372 compared to the expected number of outliers based on the genome-wide
373 proportion of SNPs that are outliers, using a binomial test. We defined outliers as
374 those within the 99th percentile of scores genome wide. The *p*-value from the
375 binomial test is used as a continuous index.
- 376 • For the implementation of the WZA, we converted the *p*-values (from Kendall's τ)
377 or Bayes factors (from BayPass), into empirical *p*-values. For each of the *n* SNPs
378 present in a gene, empirical *p*-values were converted into *z* scores and used to
379 calculate WZA scores using Equation 1.

380 We examined the effect of variation in recombination on the properties of the WZA by
381 manipulating the tree-sequences that we recorded in *SLiM*. In our simulations, genes
382 were 10,000 bp long, so to model genomic regions of low recombination rate, we
383 extracted the coalescent trees that corresponded to the central 1,000bp or 100bp of
384 each gene. For the 1,000bp and 100bp intervals, we added mutations at 10 \times and 100 \times
385 the standard mutation rate, respectively.

386 All SNPs present in each 10,000bp gene in our simulations were analyzed together.
387 However, to explore the effect of window size on the performance of the WZA, we
388 calculated WZA scores for variable numbers of SNPs. In these cases, we calculated
389 WZA scores for all adjacent sets of *g* SNPs and retained the maximum WZA score for
390 all sets of SNPs in the gene.

391 Tree sequences were manipulated using the *tskit* package. Mutations were added to
392 trees using the *msprime* (Kelleher et al. 2016;

393 <https://tskit.dev/msprime/docs/stable/intro.html>), *tskit* and *PySLiM* workflow
394 (<https://pyslim.readthedocs.io/en/latest/>). F_{ST} and r^2 (an estimator of linkage
395 disequilibrium) were calculated using custom Python scripts that invoked the *scikit-allel*
396 package (<https://scikit-allel.readthedocs.io/en/stable/>).
397

398 Analysis of data from lodgepole pine

399 We re-analyzed a previously published population genomic dataset for lodgepole pine,
400 *Pinus contorta*, a conifer that is widely distributed across the Northwest of North
401 America. Briefly, Yeaman et al. (2016) collected samples from 254 populations across
402 British Columbia and Alberta, Canada and Northern Washington, USA. The lodgepole
403 pine genome is very large (approximately 20Gbp), so Yeaman et al. (2016) used a
404 sequence capture technique based on the *P. contorta* transcriptome. Allele frequencies
405 were estimated for many markers across the captured portion of the genome by
406 sequencing 1-4 individuals per population. Yeaman et al. (2016) performed GEA on
407 each SNP using Spearman's ρ and used their top-candidate method (see above) to
408 aggregate data across sites within genes. We downloaded the data for individual SNPs
409 from the Dryad repository associated with Yeaman et al. (2016)
410 (<https://doi.org/10.5061/dryad.0t407>). We converted Spearman's ρ p -values into
411 empirical p -values and performed WZA on the same genes analyzed by Yeaman et al.
412 (2016). We also repeated the top-candidate method, classifying SNPs with empirical p -
413 values < 0.01 as outliers. However, as above, we use the p -value from the top-
414 candidate method as a continuous index.

415 Data and Code Availability

416 The simulation configuration files and code to perform the analysis of simulated data
417 and generate the associated plots are available at github/TBooker/GEA/WZA. Analyses
418 were performed using a combination of R and Python. All plots were made using
419 *ggplot2* (Wickham 2016). Tree-sequence files for the simulated populations will be
420 made available at Dryad and all processed GEA files are available on (details to be
421 determined post-submission).

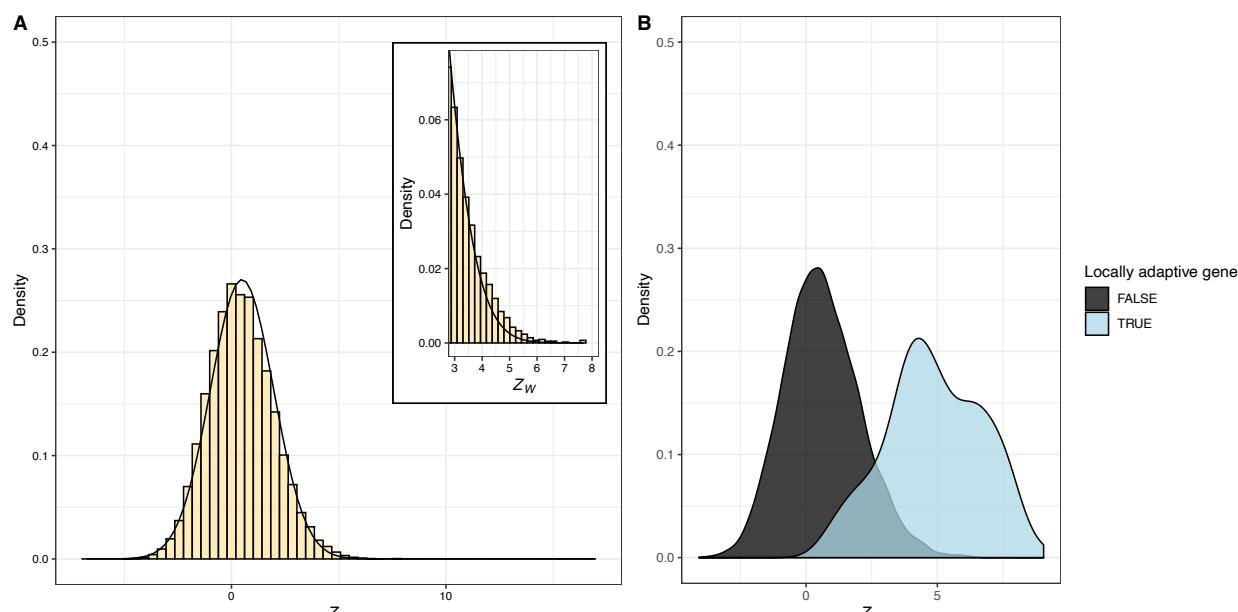
422 **Results**

423 The statistical properties of the WZA

424 To assess the statistical properties of the WZA, we first performed GEA analyses on
425 populations that were evolving neutrally. Figure 2A shows the distribution of WZA τ
426 scores for stepping-stone populations simulated under neutrality. The null expectation
427 for WZA scores is the standard normal distribution (mean of 0 and standard deviation of
428 1), but we found that the distribution of WZA τ scores deviated slightly from this even
429 under neutrality, where the mean and standard deviation of WZA τ scores from
430 individual simulation replicates were approximately 0.089 and 1.38, respectively.

431 Additionally, the inset histogram in Figure 2A shows that distribution of $WZA\tau$ scores
432 had a somewhat thicker right-hand tail than expected under the normal distribution. A
433 similar deviation from normality was observed when data were simulated under an
434 island model, or when WZA was calculated using Bayes factors (Figure S4).

435



436

437 **Figure 2.** The distribution of WZA scores under neutrality and a model of local
438 adaptation. A) A histogram of $WZA\tau$ scores under strict neutrality across a set of 20
439 replicate simulations, inset is a close-up view of the upper tail of the distribution of Z_W
440 scores. The black line indicates the standard normal distribution. B) A density plot
441 showing the separation of $WZA\tau$ scores for genes that are locally adaptive versus
442 evolving neutrally across the genome of 20 simulation replicates. GEA was performed
443 on 40 demes sampled from the *BC Map*.

444

445 The deviation from the standard normal distribution is driven by non-independence of
446 SNPs within the analysis windows we used to calculate $WZA\tau$ scores. To demonstrate
447 this, we re-calculated $WZA\tau$ scores, but permuted the locations of SNPs across the
448 genome, effectively erasing the signal of linkage within genes. The distribution of $WZA\tau$
449 scores in this permuted dataset closely matched the null expectation and did not have a
450 thick right-hand tail (Figure S4; shuffled); each of 20 simulation replicates had a mean
451 $WZA\tau$ indistinguishable from 0 with a standard deviation very close to 1. It is worth
452 noting that we modelled populations that did not change in size over time. Non-
453 equilibrium population dynamics such as population expansion may influence the
454 distribution of WZA scores.

455 When evolution includes selection, WZA can often clearly distinguish regions of the
456 genome containing loci that contribute to local adaptation from those that do not. Figure

457 2B shows separation of $WZA\tau$ scores for genes that contribute to local adaptation from
458 those that are evolving neutrally (similar results were found for both the *Gradient* and
459 *Truncated* maps; Figure S5). The distributions of $WZA\tau$ scores for locally adapted
460 genes when modelling stabilizing selection was broader than when modelling directional
461 selection (Figure S5), consistent with differences in the distributions of effect size for the
462 genes involved in local adaptation under the two selection models (Figure S6). The
463 separation of the distributions of $WZA\tau$ scores for locally adaptive genes versus
464 neutrally evolving genes indicates that it may be a powerful method for identifying the
465 genetic basis of local adaptation. The use of $\bar{p}\bar{q}$ as weights in the WZA improved
466 performance over an unweighted version of the test (Figure S7A).

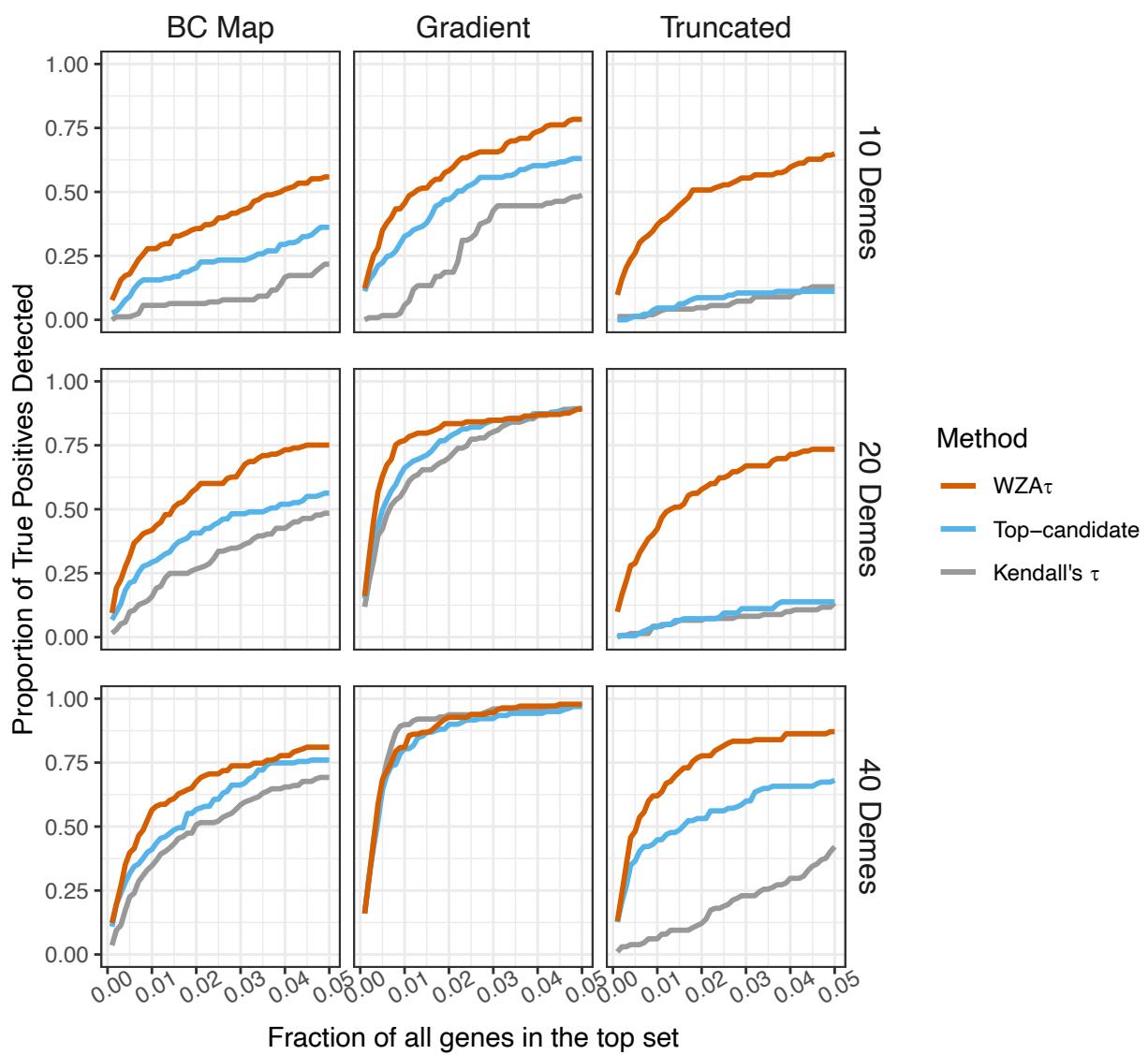
467

468 Comparison of the WZA with other GEA approaches

469 We compared WZA to two other methods for identifying genomic regions that contribute
470 to local adaptation from GEA data (Figure 3). To assess the performance of the different
471 methods, we examined the top 1, 2, 3, ... 50 genes in terms of $WZA\tau$ scores, $-\log_{10}(p$ -
472 values) from the top-candidate method, or the single SNP Kendall's τ approach. We
473 calculated the proportion of all true positives that were identified in each case. In our
474 simulations, there were 1,000 genes in total with approximately 6 locally adapted genes
475 in each replicate (see Methods). For visualization purposes, we include Figure S8,
476 which shows the $-\log_{10}(p$ -values) from Kendall's τ represented as a Manhattan plot for
477 individual simulation replicates as well as $WZA\tau$ and top-candidate scores calculated
478 from those data. Figure 3 compares the performance of the GEA methods across the
479 three different maps of environmental variation that we simulated. For each of the three
480 maps we simulated, we analyzed samples of 10, 20 or 40 demes where allele
481 frequencies were estimated from 50 individuals sampled in each location.

482 Figure 3 shows that $WZA\tau$ substantially outperformed both the top-candidate and single
483 SNP-based Kendall's τ analyses in most cases. When analyzing simulations that used
484 the *BC* map or the *Truncated* map, $WZA\tau$ always outperformed the top-candidate and
485 SNP-based methods, but particularly so when fewer demes were sampled (Figure 3).
486 When simulations assumed the *Gradient* map, $WZA\tau$ outperformed the other GEA
487 methods when the sample was restricted to 10 demes, but with larger samples, the
488 tests were more similar (Figure 3). This suggests that $WZA\tau$ is a powerful method for
489 identifying regions of the genome that contribute to local adaptation in empirical
490 analyses, but particularly so when they are performed on small samples.

491 An additional source of variation in GEA studies comes from the number of individuals
492 sampled in each location. We also examined the effect that reduced sampling of
493 individuals within each deme had on the performance of the methods. Figure S9 shows
494 that the WZA outperforms the top-candidate and SNP-based methods when a small
495 number of individuals is used to estimate allele frequencies.



496

497 **Figure 3** The efficacy of three GEA methods based on simulations modelling local
498 adaptation via directional selection. In each case and separately for each method,
499 genes were ranked in descending order of evidence for association between allele
500 frequency and environment, and the genes with the strongest evidence for local
501 adaptation were retained in a “top set”. The x-axes indicate the fraction of the genes
502 which were retained in this top set. The y-axes indicate the proportion of the genes that
503 truly contributed to local adaptation which were found in this top set. Larger values
504 indicate a more effective method. The rows of the plot show results obtained from
505 samples of 10, 20 or 40 demes as indicated by the labels on the right-hand side. Lines
506 represent the means of 20 simulation replicates. In these simulations 50 individuals
507 were sampled for each of the included populations.
508

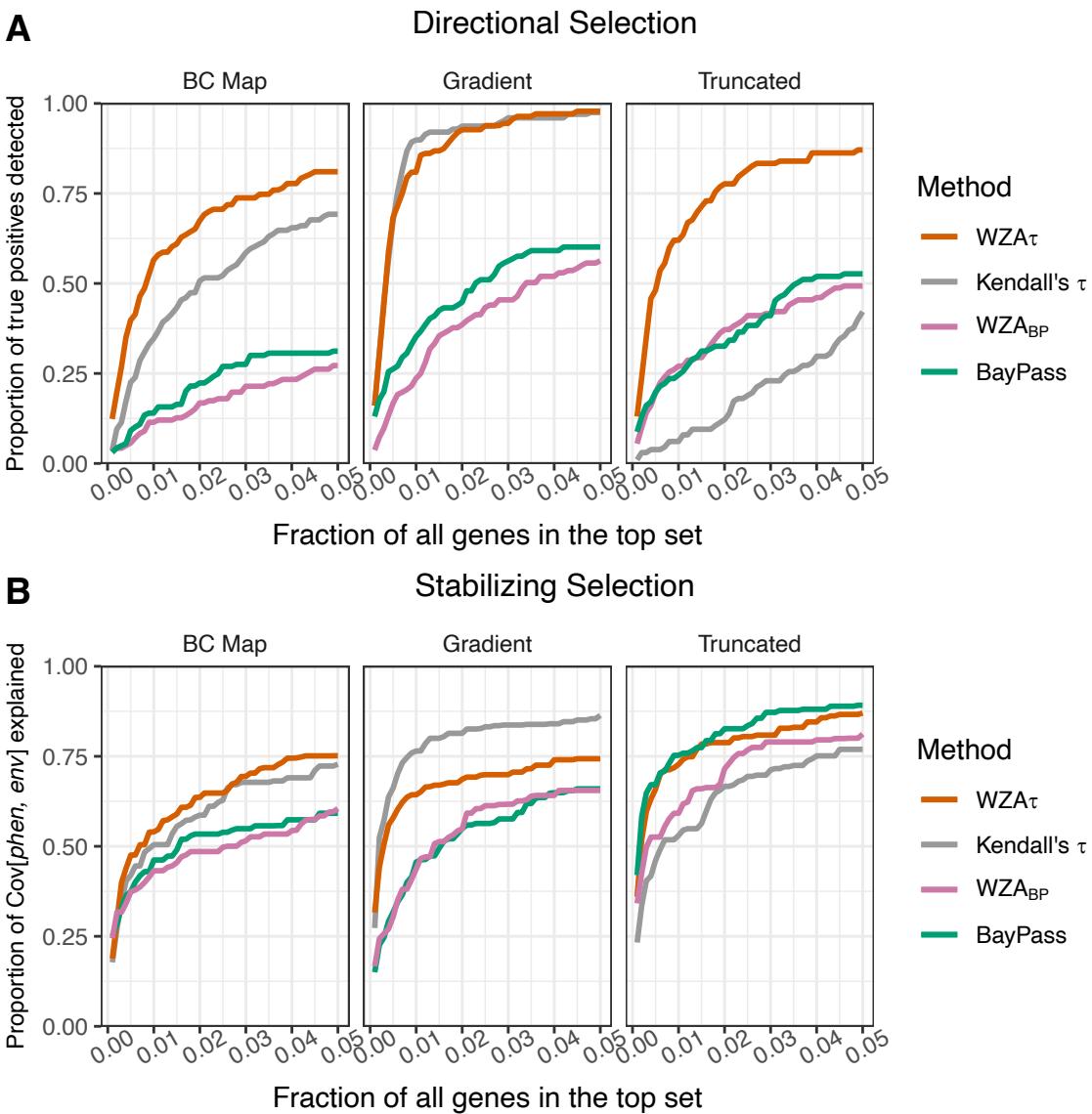
509 **Effects of population structure correction**

510 In each of the maps of environmental variation that we simulated, there was a strong
511 correlation between environmental variables and gene flow. There was also a strong
512 pattern of isolation-by-distance in our simulated populations (Figure S1). These two
513 factors may make it difficult to identify genes involved in local adaptation in GEA studies
514 (Meirmans 2012).

515 We compared the performance of the WZA to a widely adopted method for performing
516 GEA that corrects for the confounding effects of population structure, *BayPass* (Gautier
517 2015). In all cases, WZA performed as well, or better than, *BayPass* (Figure 4). WZA
518 performed much better than *BayPass* when selection was directional, but WZA was also
519 significantly more likely to identify the genes underlying local adaptation with stabilizing
520 selection.

521 Notably, even though the Kendall's τ analysis did not adjust for spatial population
522 structure, the single SNP analyses based on Kendall's τ in most cases outperformed
523 *BayPass* (with the exception of stabilizing selection on the *Truncated* map). The
524 discriminatory power of GEAs does not seem to be improved consistently by careful
525 accounting of the underlying pattern of genetic structure.

526



527

528 **Figure 4** The performance of population structure correction. A) Results for simulations
 529 modelling directional selection and b) results for simulations modelling stabilizing
 530 selection. Lines represent the mean of 20 simulation replicates where samples of 50
 531 individuals were taken from each of 40 demes. For a description of the x-axis in this plot
 532 see the legend to Figure 3.

533

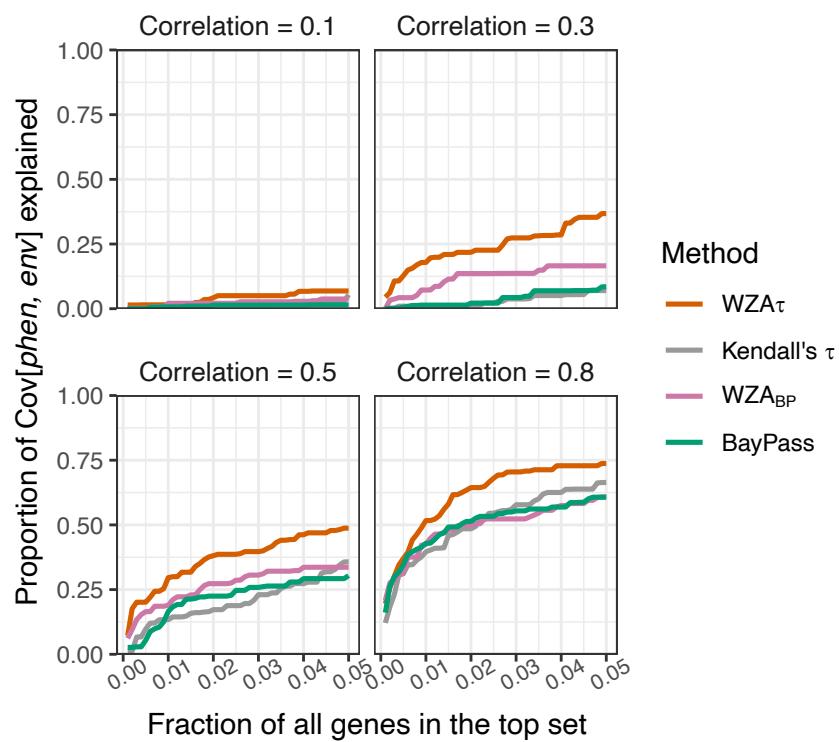
534 *The performance of WZA when environmental variables are*
 535 *weakly correlated with selection pressure*

536

537 In the previous section, we conducted GEA assuming perfect knowledge of the
 538 phenotypic optima in each sampled deme. However, environmental variables are often

539 obtained via interpolation and/or may be measured with error, and measured
540 environments may only loosely correlate with the meaningful selective environments.
541 Using the simulations modelling local adaptation on the *BC* map via stabilizing
542 selection, we compared the performance of the WZA against the single-SNP GEA
543 methods when the measured environment is imperfectly correlated with the phenotypic
544 optima.

545



546

547 **Figure 5** The proportion of true positives recovered when the measured environment is
548 imperfectly correlated with phenotypic optima. The correlation between environment
549 and selection pressure is shown above each panel. Results are from the *BC Map* with
550 stabilizing selection. Lines indicate the means from 20 simulation replicates, and each is
551 based on samples of 50 individuals from each of 40 demes. For a description of the x-
552 axis in this plot see the legend to Figure 3.

553 The WZA outperformed single SNP approaches (Kendall's τ or *BayPass*) when the
554 measured environment was not perfectly correlated with phenotypic optima, especially
555 for weak to moderate correlation between the measured and selective environments
556 (Figure 5). WZA τ outperforms the single-SNP approaches when the measurement of
557 the environment is a poor proxy for historical selection.

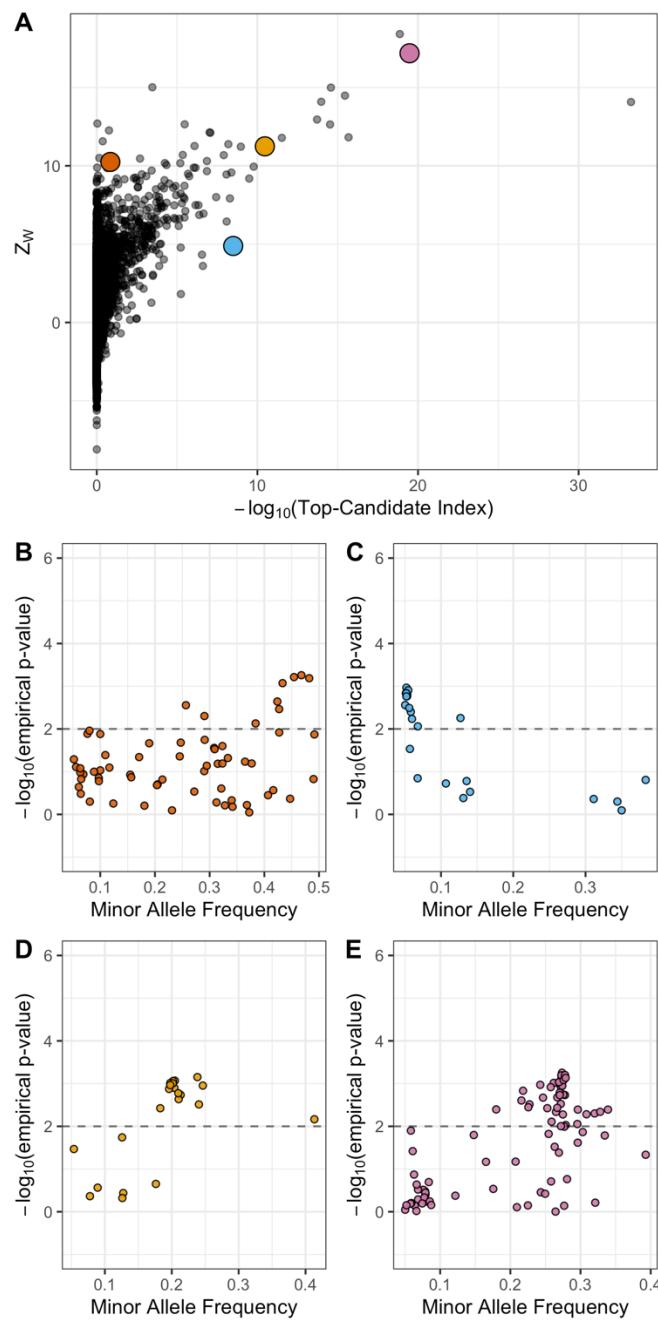
558 The effect of recombination rate variation on the WZA

559 Random drift may cause genealogies in some regions of the genome to correlate with
560 environmental variables more than others. Many of the SNPs present in an analysis
561 window that consisted of genealogies that were highly correlated with the environment
562 may be highly significant in a GEA analysis, leading to a large WZA score. This effect
563 would lead to a larger variance in WZA scores for analysis windows that were present in
564 regions of low recombination. To demonstrate this, we down-sampled the tree-
565 sequences we recorded for our simulated populations to model analysis windows
566 present in low recombination regions and performed the WZA on the resulting data. As
567 expected, we found that the variance of the distribution of WZA scores was greater
568 when there was a lower recombination rate (Figure S10). This is a similar effect to that
569 we described in a previous paper focusing on F_{ST} (Booker et al. 2020).

570 Application of the WZA to lodgepole pine data

571 We re-analyzed a previously published (Yeaman et al. 2016) lodgepole pine (*Pinus*
572 *contorta*) dataset and compared the WZA to the top-candidate method, which had been
573 developed for the original study. Overall, the WZA and top candidate statistic were
574 broadly correlated and identified many of the same genes as the most strongly
575 associated loci, but also differed in important ways. Across the lodgepole pine genome,
576 there was a mean WZA score of 0.013 with a standard deviation $\sigma = 1.67$, and a fat
577 right-hand tail (Figure S11). Figure 6A shows the relationship between WZA scores and
578 the $-\log_{10}(p\text{-value})$ from the top-candidate method, which were positively correlated
579 (Kendall's $\tau = 0.245$, $p\text{-value} < 10^{-16}$). When many of the SNPs in a gene had strongly
580 associated statistics, both methods would tend to yield high scores (Figure 6B-C). When
581 there were many SNPs with marginally significant empirical p -values (i.e. $0.05 < p <$
582 0.10) at relatively high frequencies, the WZA method would tend to yield a high score
583 but the top candidate method would not (Figure 6B). By contrast, if the most strongly
584 associated SNPs tended to have low minor allele frequencies, the top candidate method
585 would tend to yield a high score but the WZA would not (Figure 6C). There were several
586 genes that had WZA scores greater than 10 (approximately 6σ), but very modest top-
587 candidate scores (Figure 6A). Figure 6B shows that for one such region, there were
588 several SNPs with high mean allele frequency that have small p -values. This particular
589 region had a high score from the top-candidate method. Conversely, Figure 6C shows a
590 region that only had a $Z_w \approx 5$, but an extreme score from the top-candidate method. In
591 this case, there were numerous SNPs that passed the top-candidate outlier threshold,
592 but they were mostly at low allele frequency. Figures 6C-D show the relationship
593 between allele frequency and the empirical p -value for SNPs present in two genes that
594 had extreme scores from both the top-candidate method and the WZA.

595



596

597 **Figure 6** The WZA applied to GEA results on lodgepole pine for degree days below 0
598 (DD0). A) Z_w scores compared to scores from the top-candidate method for each of the
599 genes analyzed by Yeaman et al. (2016). Panels B-E show the results for $-\log_{10}(p$ -
600 values) for Spearman's ρ applied to individual SNPs against minor allele frequency
601 (MAF) for the colored points in A. The dashed horizontal lines in B-D indicates the
602 significance threshold used for the top-candidate method (i.e. 99th percentile of GEA
603 $-\log_{10}(p\text{-value})$ genome-wide).

604

605 Discussion

606 In this study, we have shown that combining information across linked sites in GEA
607 analyses is a potentially powerful way to identify genomic loci involved in local
608 adaptation. The method we propose, the WZA, was usually more powerful than looking
609 at individual sites in isolation, particularly when working with small samples or when the
610 environmental variation being analyzed is only weakly correlated with selection (Figures
611 3 and 5). In a hypothetical world where one had perfect knowledge of allele frequency
612 variation across a species' range for all sites across the genome, a single marker
613 approach would likely be the best way to perform a GEA analysis, as one would be able
614 to determine the true correlation between genetic and environmental variation for each
615 site in the genome. Indeed, we found that when we had perfect knowledge of allele
616 frequencies in all locations, the SNP-based GEA always outperformed or matched the
617 WZA and top-candidate methods (Figure S12). However, such a situation is unrealistic,
618 and empirical GEA studies will likely always be limited to samples from only some of the
619 populations of interest. Thus, leveraging the correlated information present among
620 closely linked sites in GEA studies may provide a powerful method for identifying the
621 genetic basis of local adaptation.

622 Theoretical studies of local adaptation suggest that we should expect regions of the
623 genome subject to spatially varying selection pressures to exhibit elevated linkage
624 disequilibrium (LD) relative to the genomic background for a number of reasons. Under
625 local adaptation, alleles are subject to spatial fluctuation in the direction of selection. As
626 a locally adaptive allele spreads in the locations where it is beneficial, it may cause
627 some linked neutral variants to hitchhike along with it (Sakamoto and Innan 2019). LD
628 can be increased further as non-beneficial genetic variants introduced to local
629 populations via gene flow are removed by selection. This process can be thought of as
630 a local barrier to gene flow acting in proportion to the linkage with a selected site
631 (Barton and Bengtsson 1986). Beyond this hitchhiking signature, there is a selective
632 advantage for alleles that are involved in local adaptation to cluster together, particularly
633 in regions of low recombination (Rieseberg 2001; Noor et al. 2001; Kirkpatrick and
634 Barton 2006; Yeaman 2013). For example, in sunflowers and *Littorina* marine snails,
635 there is evidence that regions of suppressed recombination cause alleles involved in
636 local adaptation to be inherited together (Morales et al. 2019; Todesco et al. 2020). The
637 processes we have outlined are not mutually exclusive, but overall, genomic regions
638 containing strongly selected alleles that contribute to local adaptation may have
639 elevated LD and potentially exhibit GEA signals at multiple linked sites. Window-based
640 GEA scans can potentially take advantage of the LD that is induced by local adaptation,
641 aiding in the discovery of locally adaptive genetic variation.

642 The two window-based GEA methods we compared in this study, the WZA and the top-
643 candidate method of Yeaman et al. (2016), were fairly similar in power in some cases,
644 but the WZA was most often better (Figure 3). Moreover, there are philosophical
645 reasons as to why WZA should be preferred over the top-candidate method. Firstly, the
646 top-candidate method requires the use of an arbitrary significance threshold. This is
647 undesirable, however, because genuine genotype-environment correlations may be

648 very weak and GEA may simply be an underpowered approach to identify alleles that
649 contribute to local adaptation. If there were no detectable signal of local adaptation,
650 ascribing significance to a fraction of the genome may lead to false positives. Secondly,
651 the top-candidate method gives equal weight to all SNPs that have exceeded the
652 significance threshold. For example, with a threshold of $\alpha = 0.01$, genomic regions with
653 only a single outlier are treated in the same way whether that outlier has a p -value of
654 0.009 or 10^{-5} . It is desirable to retain information about particularly strong outliers. It
655 should be kept in mind, however, that the WZA (and the top-candidate method for that
656 matter) does not explicitly test for local adaptation and only provides an indication of
657 whether a particular genomic region has a pattern that deviates from the genome-wide
658 average. Indeed, numerous processes other than local adaptation may cause excessive
659 correlation between environmental variables and allele frequencies in particular
660 genomic regions. For example, population expansions can cause allelic surfing, where
661 regions of the genome "surf" to high frequency at leading edges of expanding
662 populations. Allelic surfing can leave heterogeneous patterns of variation across a
663 species range leaving signals across the genome that may resemble local adaptation
664 (Novembre and Di Rienzo 2009; Klopfenstein, Currat, and Excoffier 2006).

665 When performing a genome-scan using a windowed approach a question that inevitably
666 arises is, how to choose the width of analysis windows? If analysis windows were too
667 narrow, there may be little benefit in using a windowed approach over a single-SNP
668 approach. In all the results presented above, 10,000bp analysis windows were used for
669 the WZA. Analysis windows that were narrower than 10,000bp were intermediate in
670 performance between the single-SNP and 10,000bp approaches (Figure S13). Of
671 course, if analysis windows were too wide, the signal of local adaptation may be diluted
672 and the WZA could have little power. It seems like the ideal width for analysis windows
673 would be informed by the pattern of recombination rate variation, LD decay and SNP
674 density across a species genome. In practice, it may be useful to perform the WZA on
675 groups of SNPs, such as genes as in the Yeaman et al. (2016) study. Future study is
676 required to determine the optimal size for analysis windows.

677 A striking result from our comparison of the various GEA methods we tested in this
678 study was the low power of *BayPass* compared to Kendall's τ (Figure 4). As mentioned
679 in the Introduction, Lotterhos (2019) obtained a similar result in a previous study, though
680 they had used Spearman's ρ rather than Kendall's τ . This presumably occurs because
681 genome-wide population genetic structure is oriented along a similar spatial axis as
682 adaptation, and the correction in *BayPass* therefore causes a reduction in the signal of
683 association at genes involved in adaptation. In such cases, the use of simple rank
684 correlations such as Spearman's ρ or Kendall's τ , which assume that all demes are
685 independent, may often yield a skewed distribution of p -values. Such a distribution
686 would lead to a large number of false positives if a standard significance threshold is
687 used (Meirmans 2012). Here, we avoid standard significance testing, and instead make
688 use of an attractive quality of the distribution of p -values: SNPs in regions of the
689 genome that contribute to adaptation tend to have extreme p -values, relative to the
690 genome-wide distribution. By converting them to empirical p -values, we retain the
691 information contained in the rank-order of p -values, but reduce the inflation of their
692 magnitude, which increases the power of the test (Figure S7B). While the empirical p -

693 value approach may partially and indirectly correct for false positives due to population
694 structure genome-wide, it loses information contained in the raw p -value that represents
695 the deviation of the data from the null model for our summary statistic of interest. It is
696 possible that a GEA approach that produced parametric p -values that was adequately
697 controlled for population structure may provide a more powerful input statistic to the
698 WZA, although that was not the case when we tested WZA based on *BayPass* results
699 (Figure 4).

700 Perhaps more striking is that to identify most or all causal loci, all GEA analyses used
701 here also included a large number of false positives. Previous work has shown that
702 GEA methods are uniformly effective when selection is strong (Lotterhos and Whitlock
703 2015), so we intentionally simulated weak selection to compare the performance of
704 different methods. Given that we simulated weak selection it is not surprising that GEA
705 methods were underpowered.

706 Ultimately, performing GEA analyses using analysis windows is an attempt to leverage
707 information from closely linked sites. As mentioned, the WZA could potentially be used
708 with other statistics where LD is expected to result in correlated signals across
709 physically linked nucleotides, for example p -values from genome-wide association
710 studies on the basis of phenotypic standing variation, but power in this context would
711 need to be assessed by further testing. With the advent of methods for reconstructing
712 ancestral recombination graphs from population genomic data (Hejase et al. 2020),
713 perhaps a GEA method could be developed that explicitly analyzes inferred genealogies
714 rather than individual markers in a manner similar to regression of phenotypes on
715 genealogies proposed by Ralph et al. (2020). Such a method would require large
716 numbers of individuals with phased genome sequences, which may now be feasible
717 given recent technological advances (Meier et al. 2021).

718 However, there are scenarios where incorporating information from linked sites in GEA
719 analyses may obscure the signal of local adaptation. For example, the power of the
720 WZA could be reduced if causal alleles contributed to local adaptation along multiple
721 gradients (e.g. to altitudinal gradients in several distinct mountain ranges). If such
722 gradients were semi-independent (i.e. medium/high F_{ST} among gradients), and then
723 there may be a different combination of neutral variants in high LD with the causal allele
724 in each case. In such a scenario, the species-wide LD in regions flanking the causal
725 locus may be reduced, which would likely also reduce the power of the WZA.

726 In conclusion, theoretical models of local adaptation suggest that we should expect
727 elevated LD in genomic regions subject to spatially varying selection pressures. For that
728 reason, GEA analyses may gain power by making use of information encoded in
729 patterns of tightly linked genetic variation. The method we propose in this study, the
730 WZA, outperforms single-SNP approaches in a range of settings and so provides
731 researchers with a powerful tool to characterize the genetic basis of local adaptation in
732 population and landscape genomic studies.

733 **Acknowledgements**

734 Thanks to Pooja Singh for many helpful discussions, to Tongli Wang for help with BC
735 climate data and to Simon Kapitza for help with wrangling raster files. Thanks to Finlay
736 Booker for moral support throughout the course of this project. Thanks to Jared
737 Grummer, Tyler Kent and Isabela Jerônimo Bezerra do Ó for comments on the
738 manuscript. Funding for this work was provided by Genome Canada, Genome Alberta
739 and NSERC Discovery Grants awarded to MCW and SY. SY is supported by an AIHS
740 research. Computational Support was provided by Compute Canada. This study is part
741 of the CoAdapTree project which is funded by Genome Canada (241REF), Genome BC
742 and 16 other sponsors (<http://coadaptree.forestry.ubc.ca/sponsors/>).
743

744 Bibliography

745 Aitken, SN, and Whitlock, MC. 2013. Assisted gene flow to facilitate local adaptation to
746 climate change. *Annu. Rev. Ecol. Evol. Syst.* 44 (1): 367–88.

747 Barton N., and Bengtsson B. O. 1986. The barrier to genetic exchange between
748 hybridising populations. *Heredity* 57 (3): 357–76.

749 Bhatia G., Patterson N., Sankararaman, S. and Price AL. 2013. Estimating and
750 interpreting FST: The impact of rare variants. *Genome Research* 23 (9): 1514–21.

751 Bontrager, M., Muir CD, Mahony C, Gamble DE, Germain RM, Hargreaves AL,
752 Kleynhans EJ, Thompson KA, and Angert AL. 2020. Climate warming weakens local
753 adaptation. bioRxiv. <https://doi.org/10.1101/2020.11.01.364349>.

754 Booker, TR., Yeaman S, and Whitlock MC. 2020. Variation in recombination rate affects
755 detection of outliers in genome scans under neutrality. *Molecular Ecology* 29 (22):
756 4274–9.

757 Charlesworth B and Charlesworth D. 2010. *Elements of Evolutionary Genetics*.
758 Greenwood Village, Colorado: Roberts & Company.

759 Coop, G, Witonsky D, Rienzo A, and Pritchard J. 2010. Using environmental
760 correlations to identify loci underlying local adaptation. *Genetics* 185 (4): 1411–23.

761 Forester BR, Jones MR, Joost S, Landguth EL, and Lasky JR. 2016. Detecting spatial
762 genetic signatures of local adaptation in heterogeneous landscapes. *Molecular Ecology*
763 25 (1): 104–20.

764 Forester, BR., Lasky JR, Wagner HH, and Urban DL. 2018. Comparing methods for
765 detecting multilocus adaptation with multivariate genotype-environment associations.
766 *Molecular Ecology* 27 (9): 2215–33.

767 Fritchot E, and François O. 2015. LEA: An R package for landscape and ecological
768 association studies. Edited by Brian O'Meara. *Methods in Ecology and Evolution* 6 (8):
769 925–29.

770 Fritchot E, Schoville SD, Bouchard G, and François O. 2013. Testing for associations
771 between loci and environmental gradients using latent factor mixed models. *Molecular
772 Biology and Evolution* 30 (7): 1687–99.

773 Gautier M. 2015. Genome-wide scan for adaptive divergence and association with
774 population-specific covariates. *Genetics* 201 (4): 1555–79.

775 Haldane JBS. 1948. The theory of a cline. *Journal of Genetics* 48 (3): 277–84.

776 Haller BC, Galloway J, Kelleher J, Messer PW, and Ralph PL. 2019. Tree-sequence
777 recording in SLiM opens new horizons for forward-time simulation of whole genomes.
778 *Molecular Ecology Resources* 19 (2): 552–66.

779 Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian
780 C, Roux F, and Bergelson J. 2011. Adaptation to climate across the *Arabidopsis*
781 *thaliana* genome. *Science* 334 (6052): 83–86.

782 Hejase HA, Dukler N, and Siepel A. 2020. From summary statistics to gene trees:
783 Methods for inferring positive selection. *Trends in Genetics* 36(4): 243–258.

784 Hereford, Joe. 2009. A quantitative survey of local adaptation and fitness trade-offs.
785 *American Naturalist* 173 (5): 579–8

786 Hoban S, Kelley JL, Lotterhos KE, Antolin MF, Bradburd G, Lowry DB, Poss ML, Reed
787 LK, Storfer A, and Whitlock MC. 2016. Finding the genomic basis of local adaptation:
788 Pitfalls, practical solutions, and future directions. *American Naturalist* 188 (4): 379–97.

789 Kelleher J, Etheridge AM, and McVean G. 2016. Efficient coalescent simulation and
790 genealogical analysis for large sample sizes. *PLOS Computational Biology*, 12(5),
791 e1004842.

792 Kirkpatrick M, and Barton N. 2006. Chromosome inversions, local adaptation and
793 speciation. *Genetics* 173 (1): 419–34.

794 Klopstein S, Currat M, and Excoffier L. 2006. The fate of mutations surfing on the wave
795 of a range expansion. *Molecular Biology and Evolution*. 23(3): 482-490.

796 Legendre P, and Legendre L. 2012. *Numerical Ecology*, Volume 24. 3rd English.
797 Elsevier. <https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0>.

799 Lotterhos KE. 2019. The effect of neutral recombination variation on genome scans for
800 selection. *G3* 9 (6): 1851–67.

801 Lotterhos KE and Whitlock MC. 2015. The relative power of genome scans to detect
802 local adaptation depends on sampling design and statistical method. *Molecular Ecology*
803 24(5) 1031-1046.

804 Meirmans PG. 2012. The trouble with isolation by distance. *Molecular Ecology* 21 (12):
805 2839–46.

806 Mimura M, and Aitken SN. 2007. Adaptive gradients and isolation-by-distance with
807 postglacial migration in *Picea sitchensis*. *Heredity* 99 (2): 224–32.

808 Morales HE, Faria R, Johannesson K, Larsson T, Panova M, Westram AM, and Butlin
809 RK. 2019. Genomic architecture of parallel ecological divergence: Beyond a single
810 environmental contrast. *Science Advances* 5 (12): eaav9963.

811 Mosca E, González-Martínez SC, and Neale DB. 2014. Environmental versus
812 geographical determinants of genetic structure in two subalpine conifers. *New*
813 *Phytologist* 201 (1): 180–92.

814 Noor MAF, Gratos KL, Bertucci LA and Reiland J. 2001. Chromosomal inversions and
815 the reproductive isolation of species. *Proceedings of the National Academy of Sciences*
816 *of the United States of America* 98 (21): 12084–8.

817 Novembre J, and Rienzo A. 2009. Spatial patterns of variation due to natural selection
818 in humans. *Nat Rev Genet.* 10: 645-755

819 Pavly N, Namroud MC, Gagnon F, Isabel N, and Bousquet J. 2012. The heterogeneous
820 levels of linkage disequilibrium in white spruce genes and comparative analysis with
821 other conifers. *Heredity* 108 (3): 273–84.

822 Ralph P, Thornton K, and Kelleher K. 2020. Efficiently summarizing relationships in
823 large samples: A general duality between statistics of genealogies and genomes.
824 *Genetics* 215 (3): 779–97.

825 Rieseberg LH. 2001. Chromosomal rearrangements and speciation. *Trends in Ecology*
826 & *Evolution* 16(7): 351-358.

827 Sakamoto T, and Innan H. 2019. The evolutionary dynamics of a genetic barrier to gene
828 flow: From the establishment to the emergence of a peak of divergence. *Genetics* 212
829 (4): 1383–98.

830 Schlötterer C, Tobler R, Kofler R, and Nolte V. 2014. Sequencing pools of individuals-
831 mining genome-wide polymorphism data without big funding. *Nature Reviews Genetics*
832 15: 749-763.

833 Stapley J, Feulner PGD, Johnston SE, Santure AW, and Smadja CM. 2017. Variation in
834 recombination frequency and distribution across eukaryotes: Patterns and processes.
835 *Philosophical Transactions of the Royal Society B: Biological Sciences* 372 (1736).

836 Todesco M, Owens GL, Bercovich N, Légaré JS, Soudi S, Burge DO, Huang K, et al.
837 2020. Massive haplotypes underlie ecotypic differentiation in sunflowers. *Nature* 584
838 (7822): 602–7.

839 Walsh B and Lynch M. 2018. *Evolution and Selection of Quantitative Traits*. Oxford
840 University Press.

841 Wang T, Hamann A, Spittlehouse D and Carroll C. 2016. Locally downscaled and
842 spatially customizable climate data for historical and future periods for North America.
843 *PLOS ONE* 11 (6): e0156720.

844 Weir BS and Cockerham CC. 1984. Estimating F-statistics for the analysis of population
845 structure. *Evolution* 38 (6): 1358–70.

846 Wickham H. 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
847 York. ISBN 978-3-319-24277-4, <https://ggplot2.tidyverse.org>.

848 Whitlock MC. 2005. Combining probability from independent tests: the weighted Z-
849 method is superior to Fisher's approach. *Journal of Evolutionary Biology* 18 (5): 1368–
850 73.

851 Yeaman S. 2013. Genomic rearrangements and the evolution of clusters of locally
852 adaptive loci. *Proceedings of the National Academy of Sciences of the United States of
853 America* 110 (19): E1743–E1751.

854 Yeaman S, Gerstein AC, Hodgins KA, and Whitlock MC. 2018. Quantifying how
855 constraints limit the diversity of viable routes to adaptation. *PLoS Genetics* 14 (10):
856 e1007717.

857 Yeaman S, Hodgins KA, Lotterhos KE, Suren H, Nadeau S, Degner JC, Nurkowski KA,
858 et al. 2016. Convergent local adaptation to climate in distantly related conifers. *Science*
859 353 (6306): 1431–3.

860 Zhou X, Carbonetto P, and Stephens M. 2013. Polygenic modeling with Bayesian
861 sparse linear mixed models. *PLoS Genetics* 9 (2): 1003264.

862

863 Appendix

864 Parametrizing simulations of local adaptation

865 Consider a hypothetical species of conifer inhabiting British Columbia, Canada. There
866 may be many hundreds of millions of individuals in this hypothetical species distributed
867 across the landscape. It would be computationally intractable to simulate all individuals
868 forward-in-time incorporating adaptation to environmental variation across the
869 landscape with recombining chromosomes, even with modern population genetic
870 simulators. In our simulations we scaled several population genetic parameters to
871 model a large population when simulating a much smaller one. In the following sections,
872 we outline and justify the approach we used to scale pertinent population genetic
873 parameters.

874 Mutation rate

875 We set the neutral mutation rate such that there would be an average of around 20
876 SNPs in each gene after applying a minor allele frequency threshold of >0.05 . This
877 number was motivated by the average number of SNPs per gene in the lodgepole pine
878 dataset described by Yeaman et al. (2016). We found that a neutral mutation rate (μ_{neu})
879 of 10^{-8} in our simulations achieved an average of 23.3. Note that this μ_{neu} gave a very
880 low population-mutation rate within demes, $4N_d\mu_{neu} = 4.0 \times 10^{-6}$.

881 There are no estimates available of the mutation rate to locally adaptive alleles. We
882 opted to use mutation rates that resulted in multiple locally beneficial alleles establishing
883 in our simulations. For directional selection, we found that a mutation rate of $\mu_{alpha} =$
884 3×10^{-7} resulted in around 6 locally adaptive genes establishing. For stabilizing
885 selection, a mutation rate of $\mu_{alpha} = 1 \times 10^{-10}$, resulted in similar numbers of genes
886 establishing. Note that in our model of directional selection, only a single nucleotide in
887 each of 12 genes could mutate to a locally beneficial allele. In the case of stabilizing
888 selection, all 10,000bp in the simulated gene could give rise to mutations that affected
889 phenotype.

890 Recombination rates

891 We based our choice of recombination rate on patterns of LD decay reported for
892 conifers. The pattern of LD decay in a panmictic population can be predicted by the
893 population-scaled recombination parameter ($\rho = 4N_e r$; Charlesworth and Charlesworth
894 2010), but the pattern of LD decay in structured populations is less well described. In
895 conifers, LD decays very rapidly and $\rho \approx 0.005$ has been estimated (Pavy et
896 al. 2012). However, per basepair recombination rates (r) in conifers are extremely low,
897 estimated to be on the order of 0.05 cM/Mbp - more than 10x lower than the average
898 for humans (Stapley et al. 2017). This implies a very large effective population size of
899 roughly $\frac{0.005}{4 \times 0.5 \times 10^{-8}} = 2.5 \times 10^6$, much larger than is feasible to simulate. To achieve a

900 similar number of recombination events through time in our simulated populations, we
901 needed to increase r above what has been empirically estimated. We chose a
902 recombination rate that gave us a pattern of LD decay that was similar to what has been
903 observed in conifers. We found that a per base pair recombination $r = 1 \times 10^{-7}$ (i.e.
904 roughly $200 \times$ greater than in natural populations) gave a pattern of LD in our simulated
905 populations that was similar to what has been reported for conifers.

906 Selection coefficients

907 It is difficult to choose a realistic set of selection parameters for modelling local
908 adaptation because there are, at present, no estimates of the distribution of fitness
909 effects for mutations that have spatially divergent effects. However, common garden
910 studies of a variety of taxa have estimated fitness differences of up to 35-45% between
911 populations grown in home-like conditions versus away-like conditions (Hereford 2009;
912 Bontrager et al. 2020). Motivated by such studies, we chose to parametrize selection
913 using the fitness difference between home versus away environments.
914

915 When modelling directional selection, our simulations contained 12 loci that could
916 mutate to generate a locally beneficial allele. The phenotypic optima that we simulated
917 ranged from -7 to 7 and we modelled selection on a locus as $1 + s_a \theta$ for a homozygote
918 and $1 + h s_a \theta$ for a heterozygote, where s_a is the selection coefficient, θ is the
919 phenotypic optimum and h is the dominance coefficient. With a selection coefficient of
920 $s_a = 0.003$, the maximum relative fitness was $(1 + 7 \times s_a)^{12} = 1.28$ for an individual
921 homozygous for all locally beneficial alleles. An individual homozygous for those alleles,
922 but in the oppositely selected environment (i.e. present in the wrong deme) had a
923 fitness of $(1 - 7 \times s_a)^{12} = 0.775$. Thus, there would be approximately 40% difference in
924 fitness between well locally adapted individuals at home versus away in the most
925 extreme case. Note, however, that approximately 6 genes established in each
926 simulation replicate, so the realized fitness difference was closer to a 20% difference.

927 As stated the main text, for stabilizing selection simulations we chose $V_s = 192$ as this
928 gave a maximum of 50% difference in fitness between individuals grown in home-like
929 conditions versus away-like conditions.

930 Migration rate

931 We wanted to model populations with F_{ST} across the metapopulation of approximately
932 0.05, as has been reported for widely distributed conifer species such as lodgepole pine
933 and interior spruce (Yeaman et al. 2016). For the stepping-stone simulations, we chose
934 a migration rate of $\frac{7.5}{2N_d}$ as we found that this gave a mean F_{ST} of 0.04. For an island
935 model, we used the analytical formulae given in the main text to set m to achieve a
936 mean F_{ST} of 0.03.

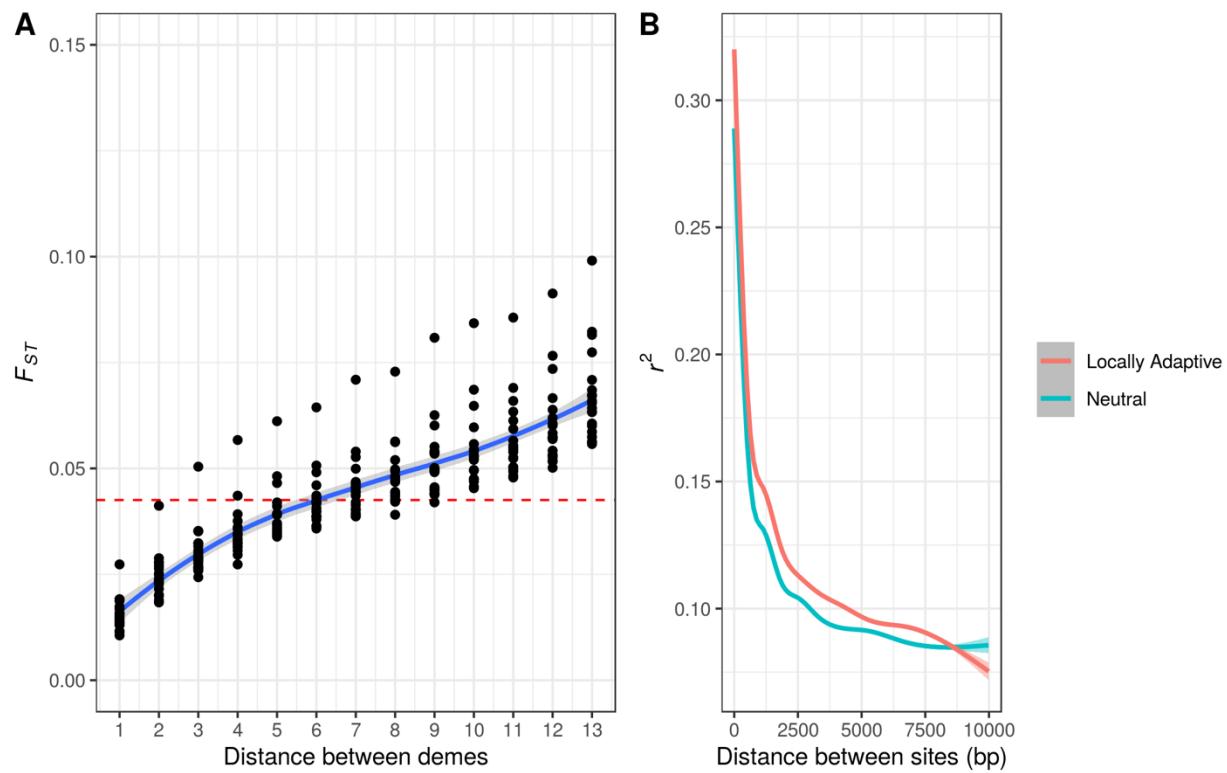
937

938 **Table S1** Population genetic parameters of a hypothetical organism, and how they are
939 scaled in the simulations. The meta-population inhabits a 14×14 2-dimensional
940 stepping stone. Parameters are shown for a population with 12 loci subject to directional
941 selection.

Parameter	Hypothetical Biological Value	Scaled Parameter	Unscaled (Simulation)
Global population size (N_e)	10^6	-	19,600
Number of demes (d)	196	-	196
Local population size (N_d)	5,100	-	100
Recombination rate (r)	2.00×10^{-9}	$4N_d r = 0.00004$	1×10^{-7}
Selection coefficient (s_a)	0.0001	$2N_d s_a = 0.6$	0.003
Migration rate (m)	7.35×10^{-4}	$2N_d m = 7.5$	0.0375
Neutral mutation rate (μ_{neu})	2×10^{-10}	$4N_e \mu_{neu} = 0.000004$	10^{-8}
Functional mutation rate (μ_α)	2×10^{-9}	$4N_e \mu_\alpha = 0.00004$	3×10^{-7}

942

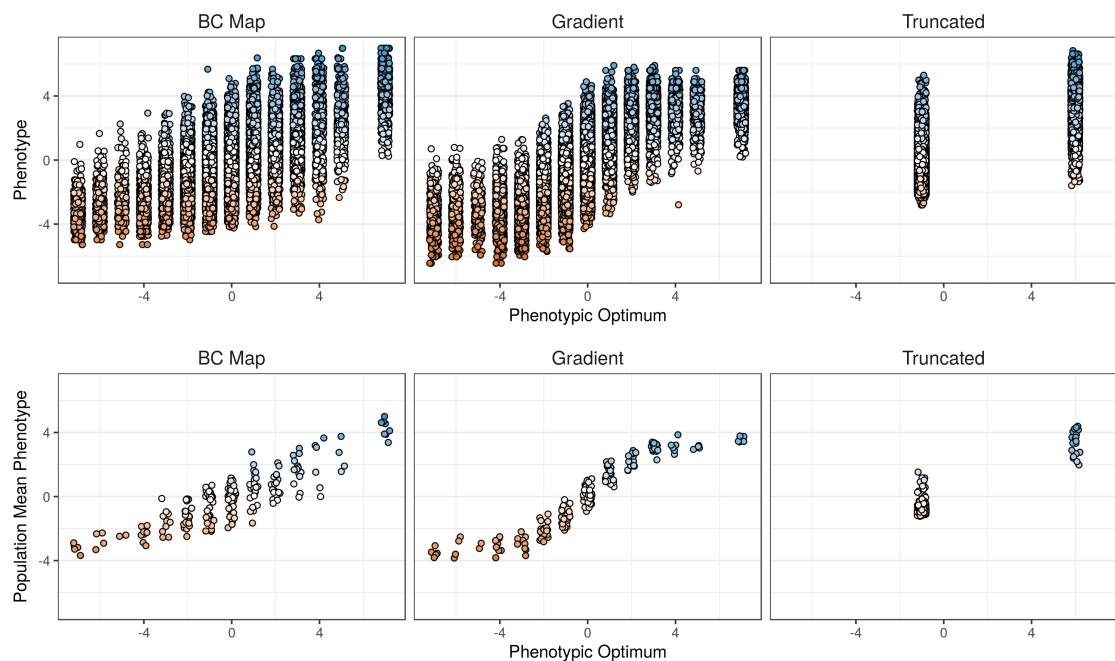
943



944

945 **Figure S1** Summary statistics from neutral simulations. A) F_{ST} between pairs of demes
946 in stepping-stone populations. The average across replicates is 0.042. B) LOESS
947 smoothed LD, as measured by r^2 , between pairs of SNPs in genes that are either
948 evolving neutrally are locally adaptation as indicated by the color. Smoothing was
949 performed using the ggplot2 package in R.

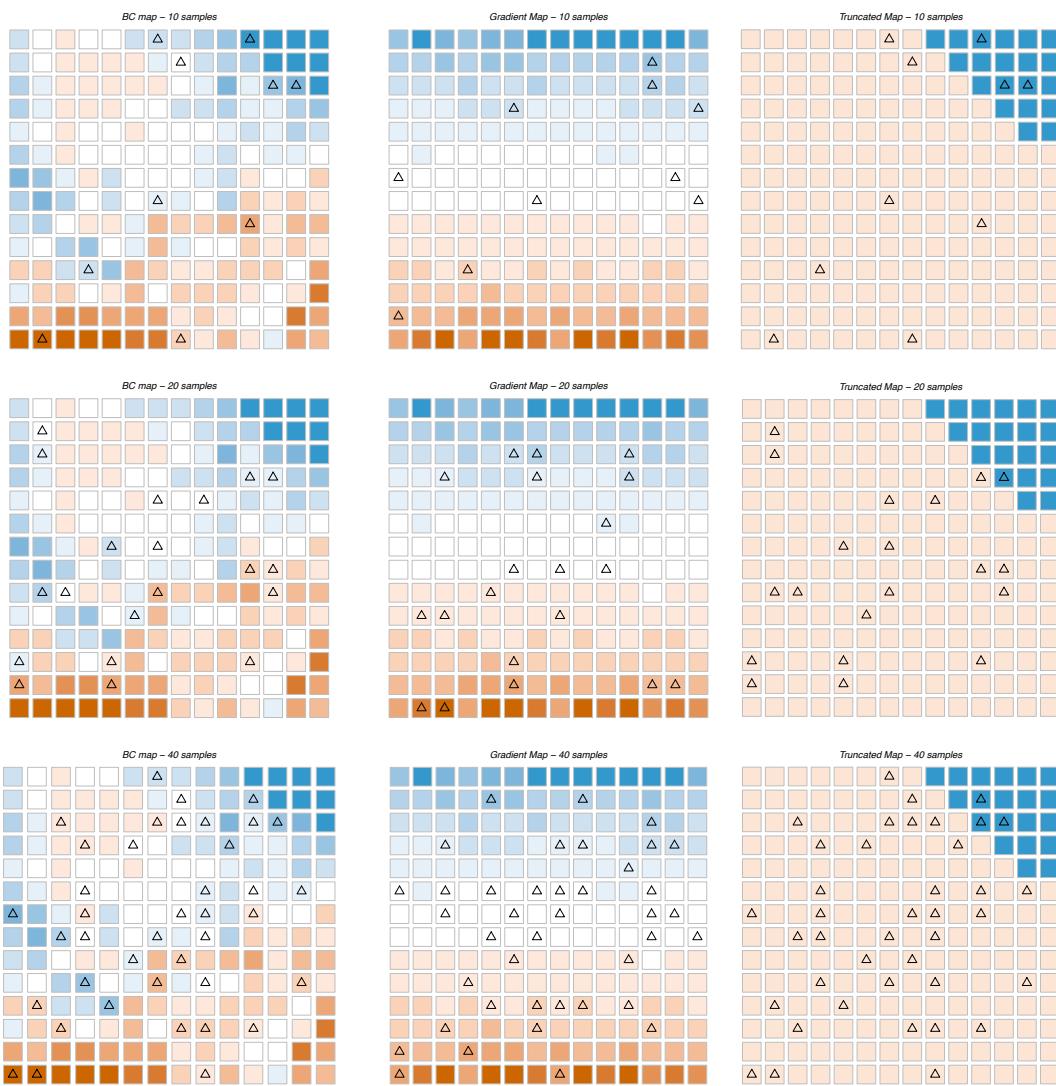
950



951

952 **Figure S2** Individual and population mean phenotypes observed in representative
953 simulations for each of the environment maps simulated. A small amount of horizontal
954 jitter was added to points for visualization purposes. Colors represent phenotype values
955 but are for visualization purposes only.

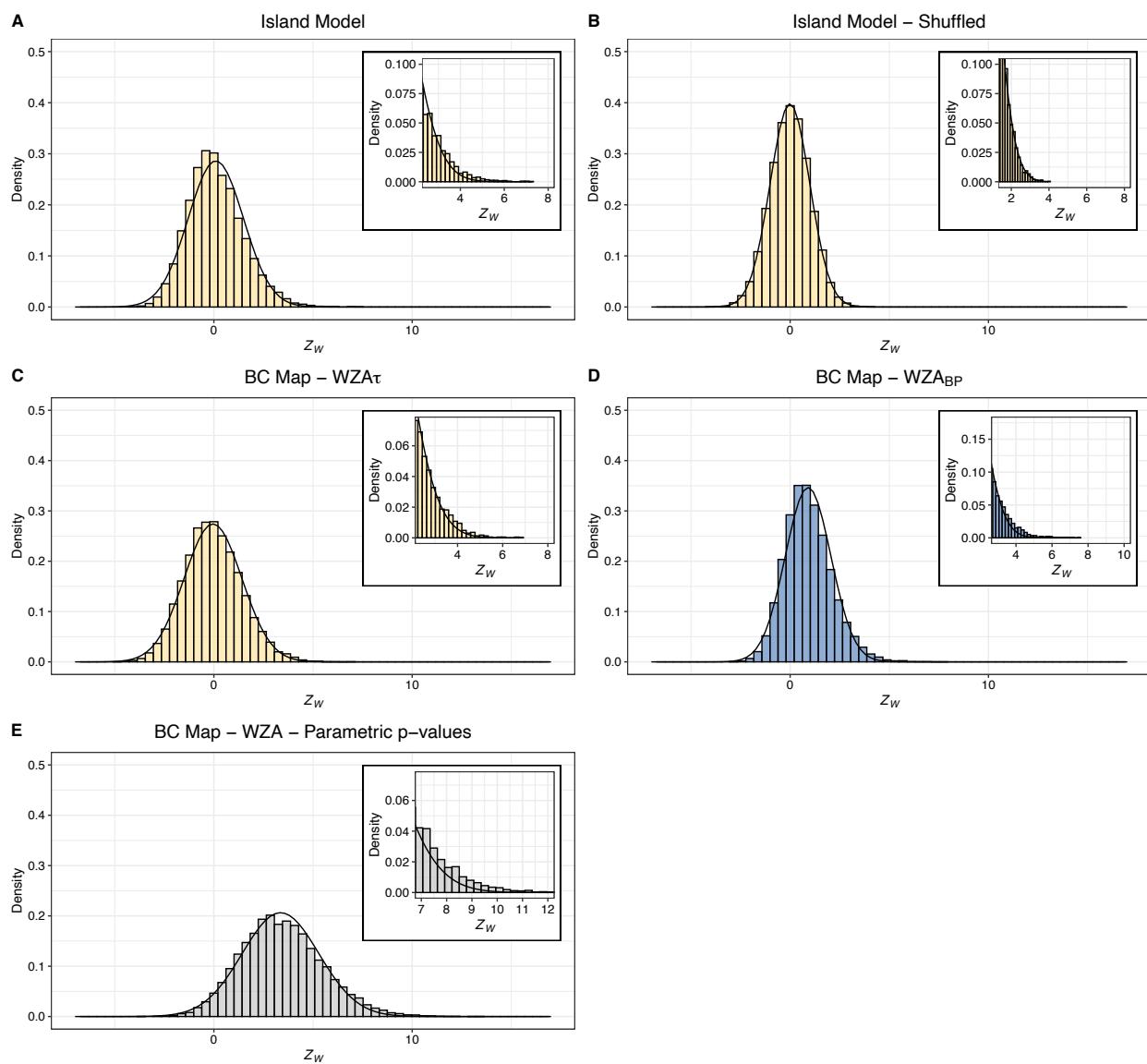
956



957

958 **Figure S3** Locations of sampled demes on the maps of environmental variation we
959 assumed in the simulations. Triangles indicate the locations where individuals were
960 sampled in each case. Colors represent the optimal phenotype in each population,
961 using the same color scheme as Figure 1 in the main text.

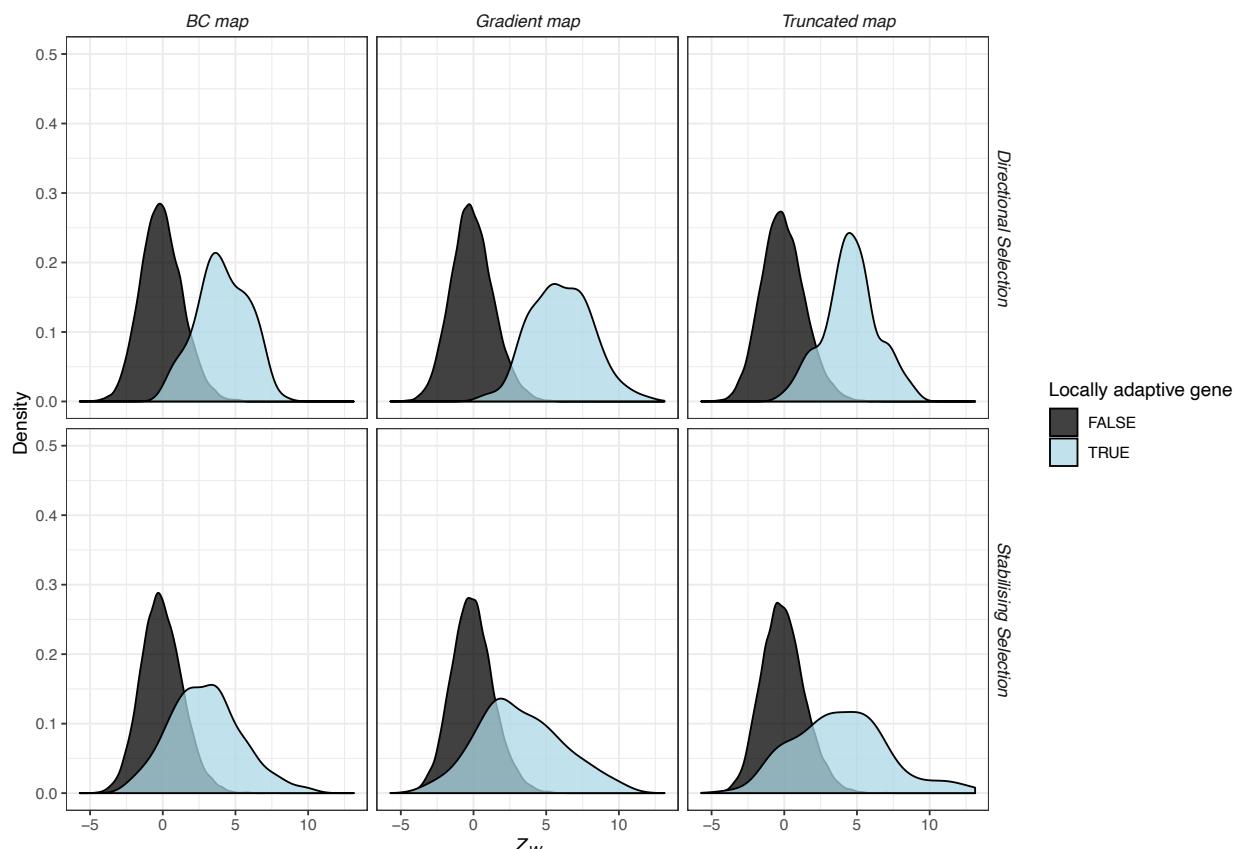
962



963

964 **Figure S4** The distribution of WZA scores from neutral simulations with details of the
965 right tail in the insets. Overlaid on each panel is the normal distribution fitted to each
966 dataset. In all cases, results from 20 simulation replicates are plotted together.

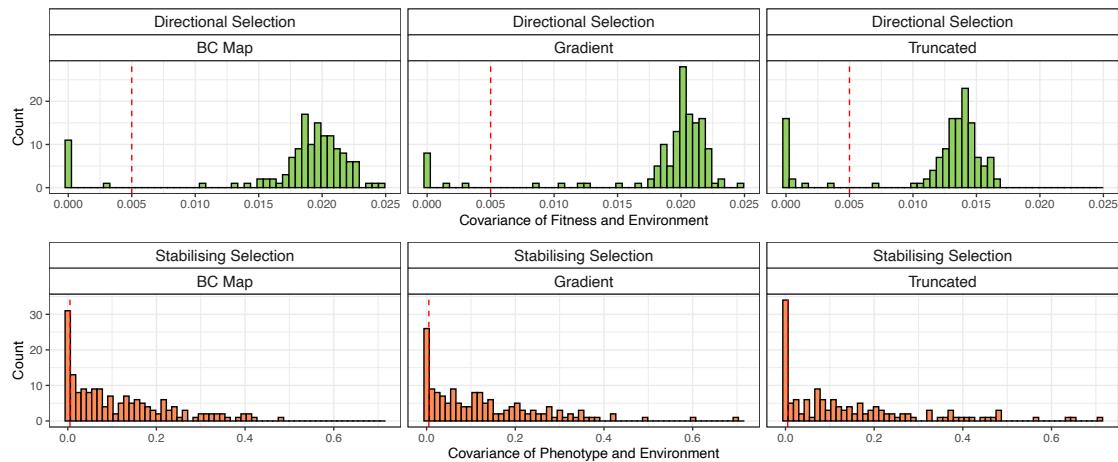
967



968

969 **Figure S5** The distribution of WZA scores from simulations of local adaptation. Note,
970 the plot does not indicate the relative frequency of genes that are or are not locally
971 adaptive. Results shown are for samples of 40 demes with 50 individuals sampled in
972 each. In all cases, results from 20 simulation replicates are plotted together. As
973 indicated on the plot, the upper and lower rows contain results for simulations with
974 directional and stabilizing selection, respectively.

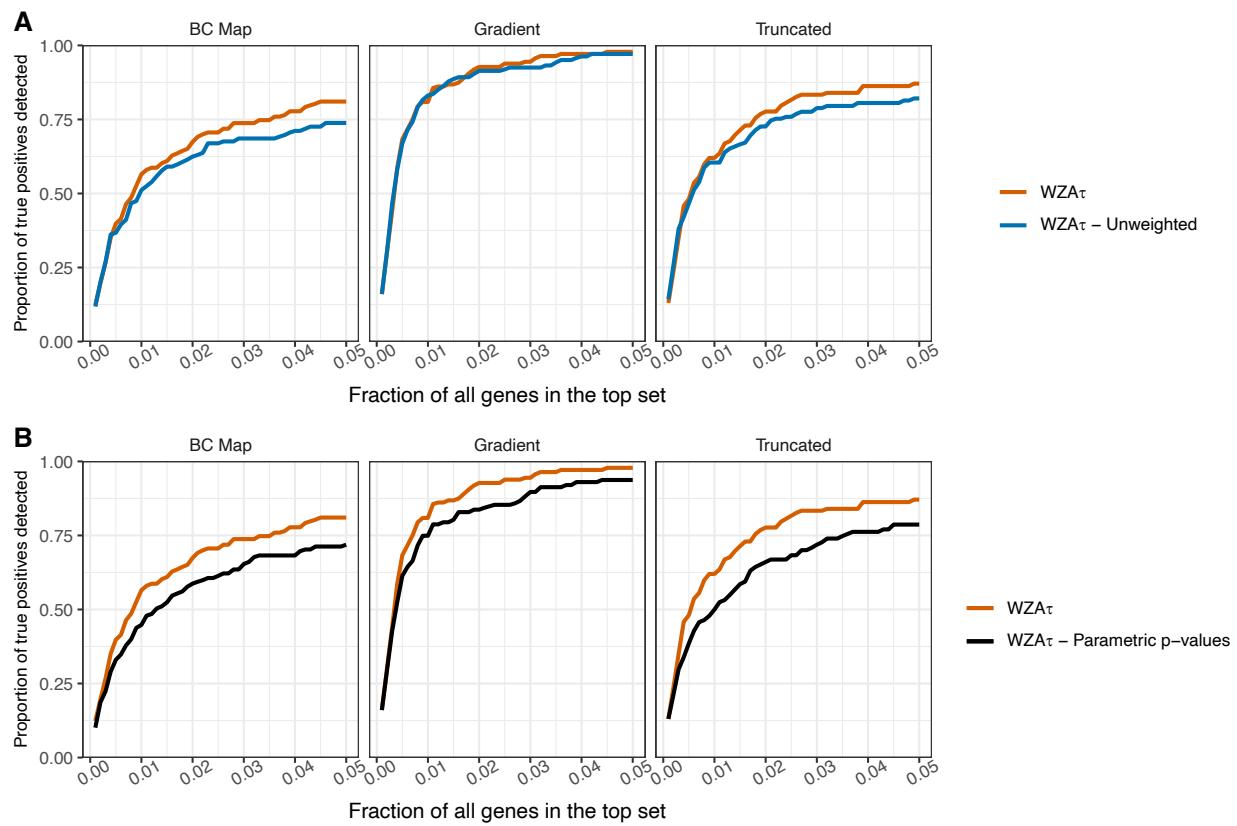
975



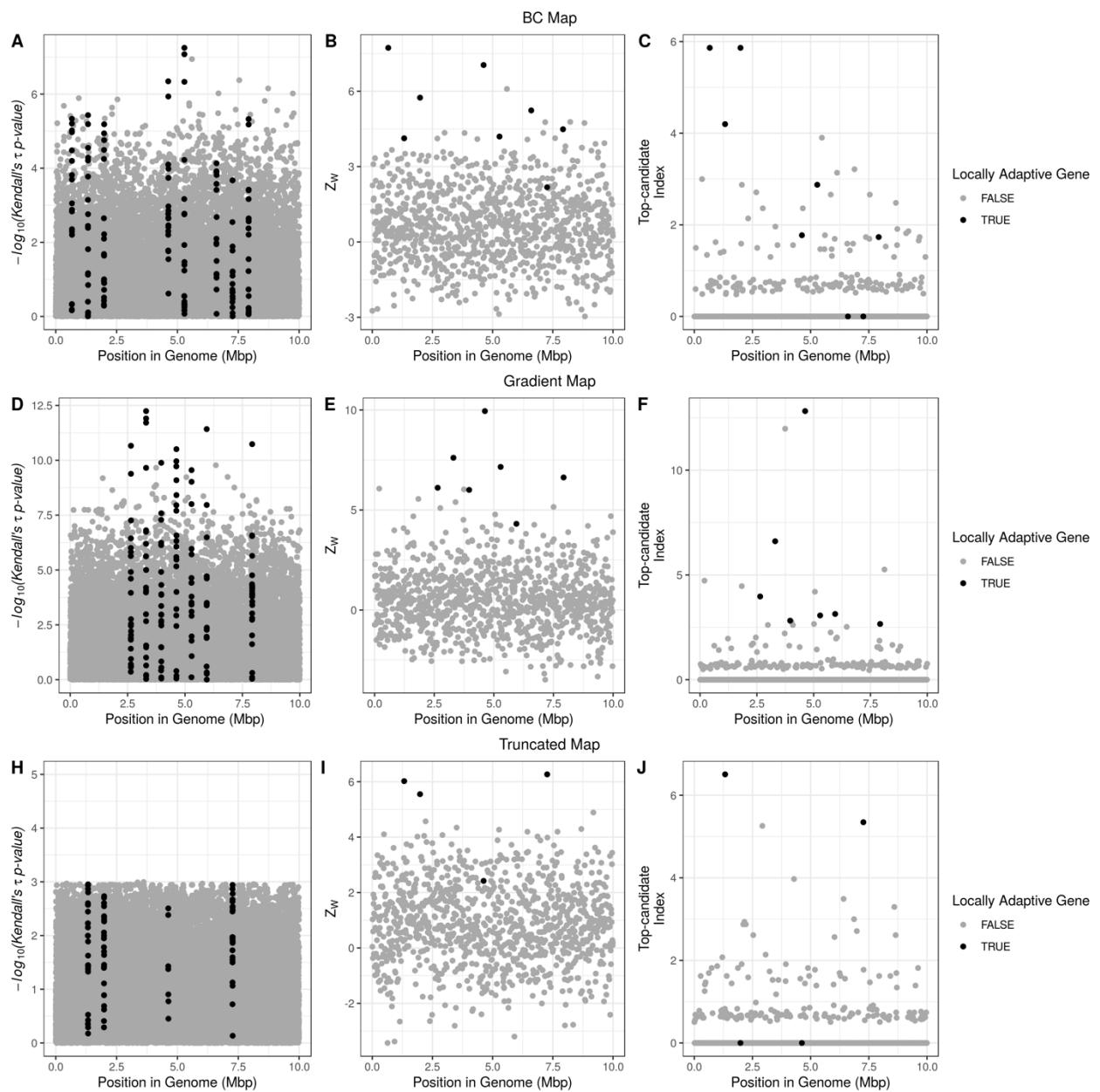
976

977 **Figure S6** The distribution of effect sizes per gene from simulations of local adaptation.
978 For directional selection, the effect size was we used the covariance between the
979 fitness of a gene and the environment. For stabilizing selection, the effect size was the
980 covariance between phenotypic contribution of a gene and the environment. The
981 vertical line indicates the threshold we applied to the simulated data to classify genes as
982 locally adaptive or not.

983



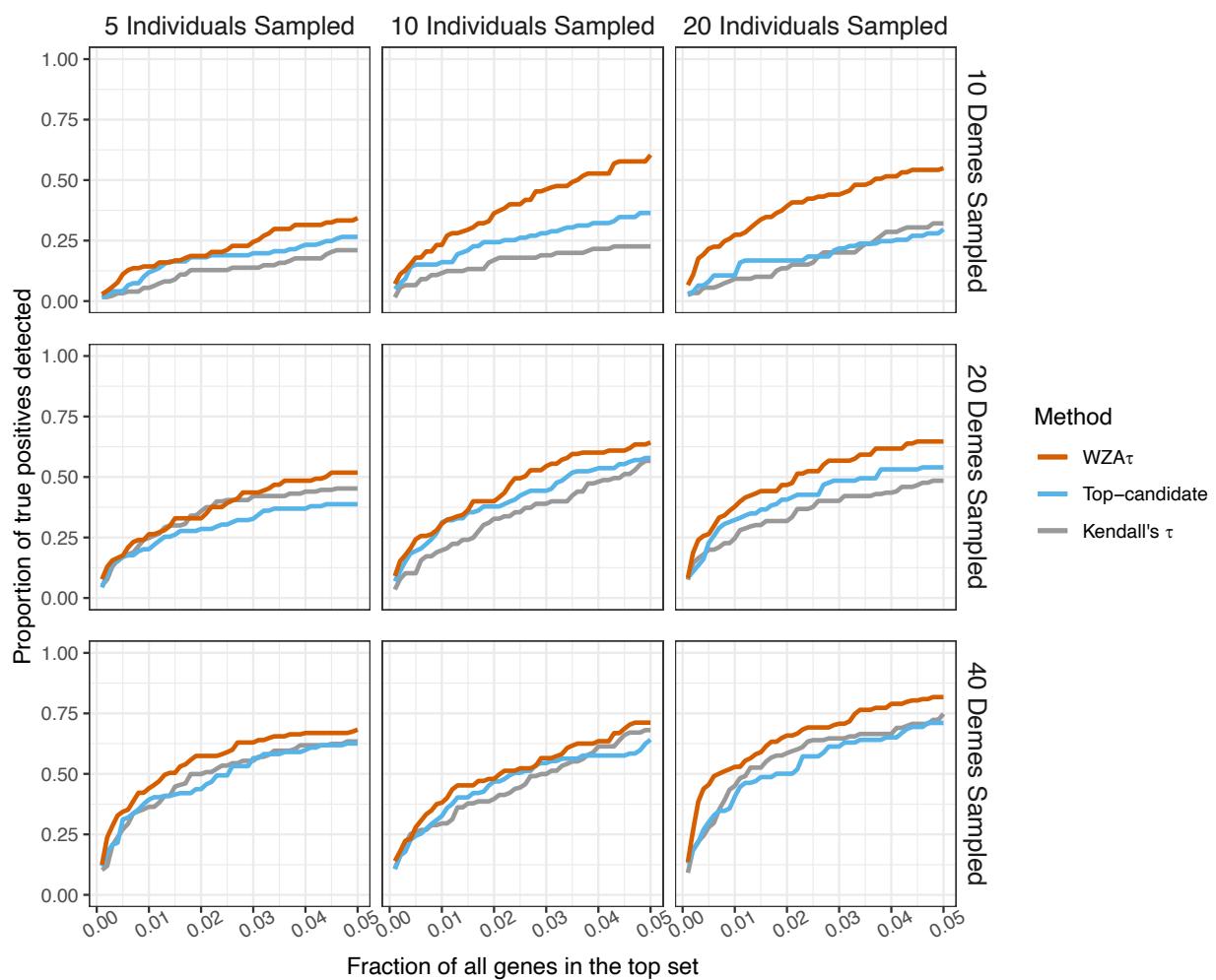
984
985 **Figure S7 A)** Comparison of the WZA performed using empirical p -values ($WZA\tau$) or
986 using parametric p -values from Kendall's τ ($WZA\tau$ – Parametric p -values). B)
987 Comparison of the WZA using $\bar{p}\bar{q}$ as weights in the Equation 1 ($WZA\tau$) and an
988 unweighted version of the WZA ($WZA\tau$ - Unweighted). In each case, the results were
989 obtained using a sample of 50 individuals sampled from each of 40 demes. Lines
990 represent the means of 20 replicates. See the caption of Figure 3 for a description of the
991 x-axis.



992

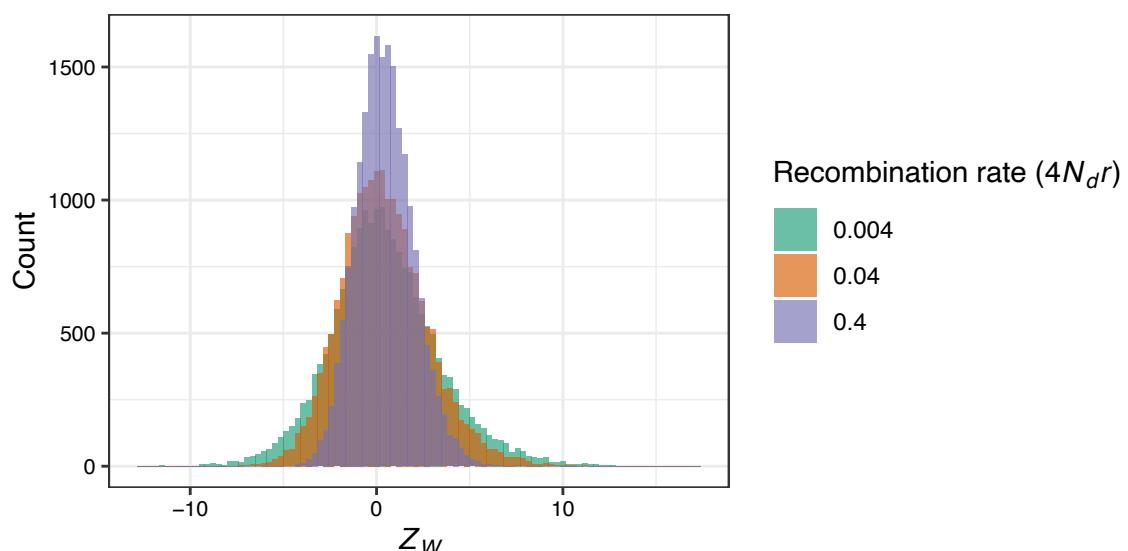
993 **Figure S8** Plots demonstrating the genomic landscape of genotype-environment
994 correlations for a single replicate for each of the three maps of environmental variation
995 we simulated. From top to bottom, the three rows correspond to the *BC Map* (panels A-
996 D), the gradient map (panels E-H) and the truncated map (panels I-L), respectively. The
997 leftmost panel in each row shows the Manhattan plot of $-\log_{10}(\text{p-values})$ from Kendall's
998 τ (panels A, E and I). The central panels in each row show the distribution of Z_W scores
999 from the WZA across the genome (B, F and J) and the distribution of results from the
1000 top-candidate method (C, G and K). The rightmost panels show the proportion of locally
1001 adapted genes identified using the three different tests for an increasing number of
1002 genes in the search effort. Results are shown for directional selection simulations. Note
1003 that only SNPs with a minor allele frequency > 0.05 are shown in panels (A, E and I).

1004



1005

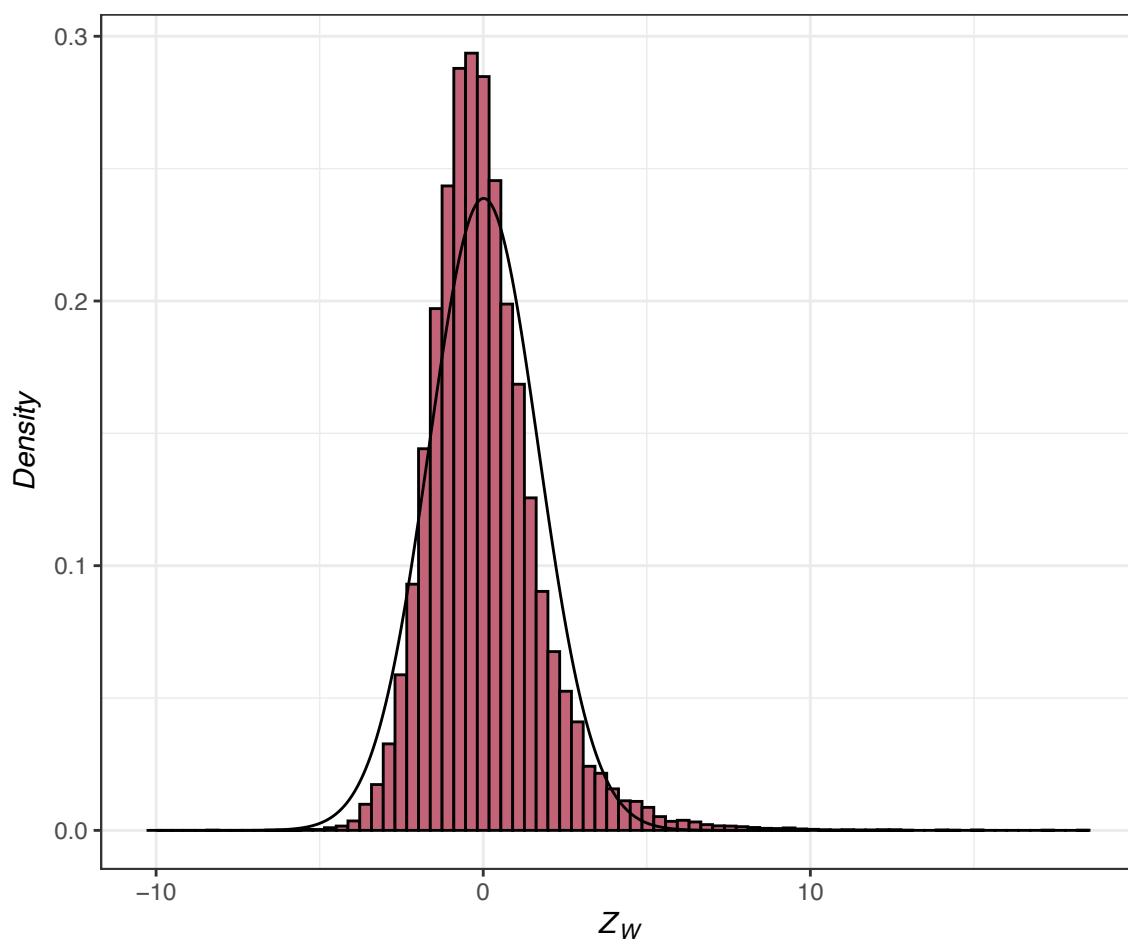
1006 **Figure S9** Comparison of the WZA, the top-candidate and the single-SNP approaches
1007 with varying numbers of individuals sampled per deme. Simulations shown used the *BC*
1008 *map* and directional selection. Lines represent the mean of 20 simulation replicates. For
1009 a description of the axes in this plot see the legend to Figure 3 in the main text.
1010



1011

1012 **Figure S10** The distribution of Z_W scores under different recombination rates. Results
1013 are shown for neutral simulations using the *BC Map*. WZA scores were calculated from
1014 a sample of 40 demes where 50 individuals were sampled in each.

1015

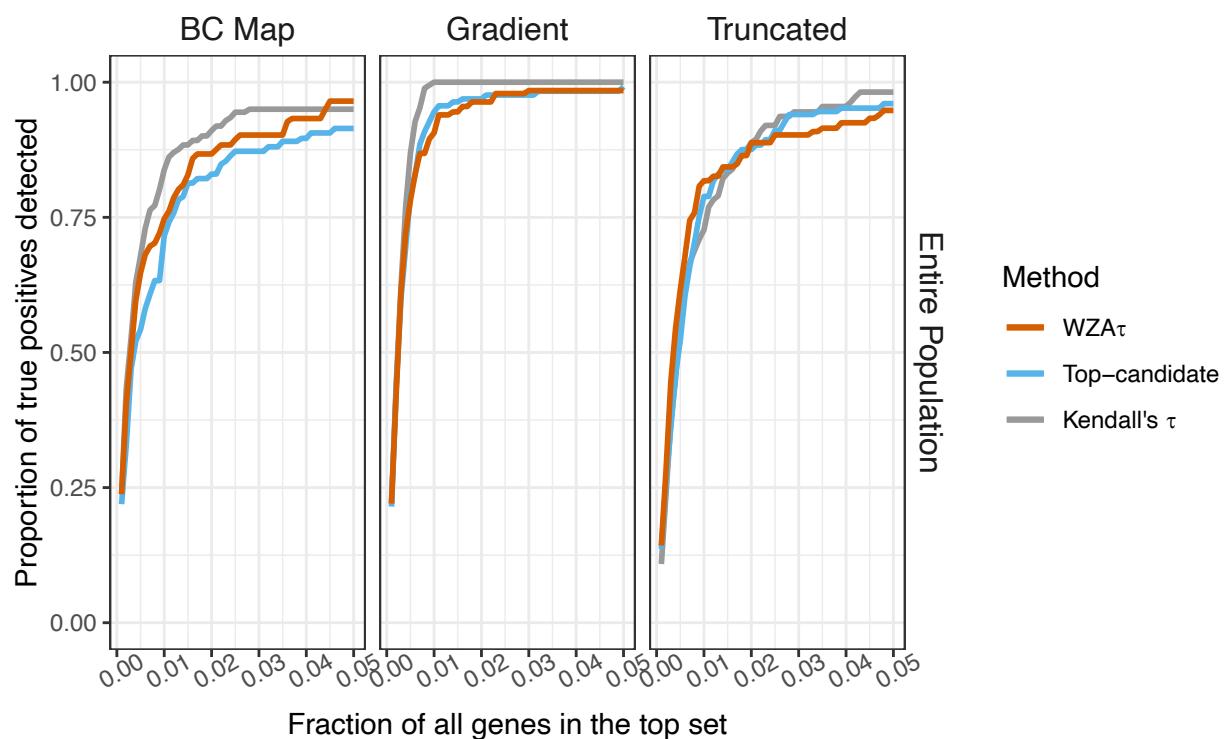


1016

1017 **Figure S11** The distribution of Z_w scores for the GEA on (DD0) across the populations
1018 of *P. contorta* sampled by Yeaman et al. (2016). The curve shows a normal distribution
1019 fitted to the data.

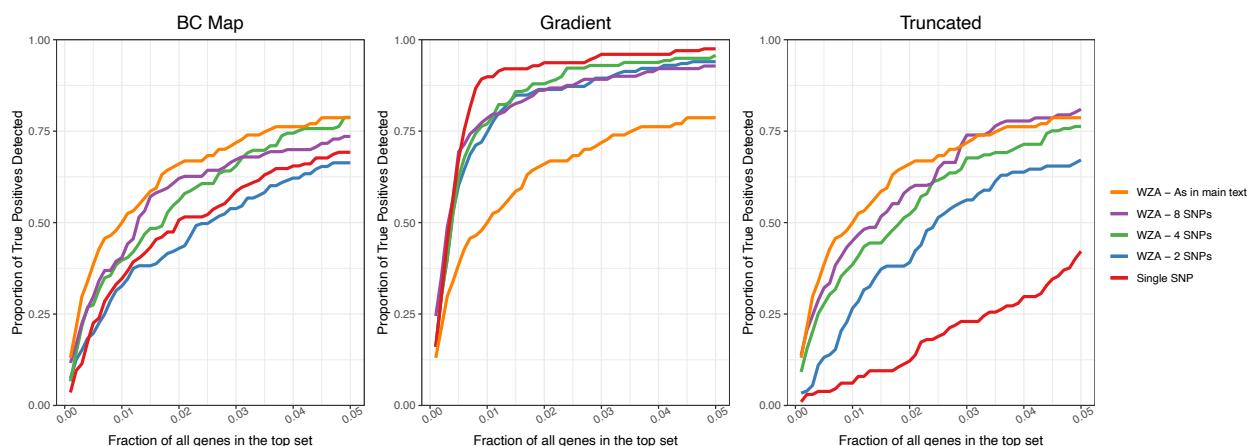
1020

1021



1022
1023 **Figure S12** A comparison of three methods to identify the genetic basis of local
1024 adaptation when one has complete information on all aspects of the metapopulation,
1025 including full sequences for all individuals on all populations. Lines represent the means
1026 of 20 replicates. For a description of the axes in this plot see the legend to Figure 3 in
1027 the main text

1028



1029

1030 **Figure S13** Comparing the performance of the WZA genes identified using the WZA,
1031 using analysis windows analyzing a fixed number of SNPs. Lines represent the means
1032 of 20 replicates. Analysis was performed on results for a sample of 40 demes with 50
1033 individuals taken in each location. For a description of the axes in this plot see the
1034 legend to Figure 3 in the main text

1035