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Abstract 10 

Genotype environment association (GEA) studies have the potential to elucidate the 11 
genetic basis of local adaptation in natural populations. Specifically, GEA approaches 12 
look for a correlation between allele frequencies and putatively selective features of the 13 
environment. Genetic markers with extreme evidence of correlation with the 14 
environment are presumed to be tagging the location of alleles that contribute to local 15 
adaptation. In this study, we propose a new method for GEA studies called the 16 
weighted-Z analysis (WZA) that combines information from closely linked sites into 17 
analysis windows in a way that was inspired by methods for calculating FST. We analyze 18 
simulations modelling local adaptation to heterogeneous environments either using a 19 
GEA method that controls for population structure or an uncorrected approach. In the 20 
majority of cases we tested, the WZA either outperformed single-SNP based 21 
approaches or performed similarly. The WZA outperformed individual SNP approaches 22 
when the measured environment is not perfectly correlated with the true selection 23 
pressure or when a small number of individuals or demes was sampled. We apply the 24 
WZA to previously published data from lodgepole pine and identified candidate loci that 25 
were not found in the original study. 26 

 27 
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 3 

Introduction 30 

Studying local adaptation can provide a window into the process of evolution, yielding 31 
insights about the nature of evolvability, constraints to diversification, and the how the 32 
interplay between a species and its environment shapes its genome (e.g. Savolainen 33 
2013). Understanding local adaptation can also benefit practical applications such as in 34 
forestry where many species of economic interest exhibit pronounced trade-offs in 35 
fitness across environments. Characterizing such trade-offs may help identify alleles 36 
involved in local adaptation, revealing candidate genes important for breeding or 37 
informing conservation management programs for buffering against the consequences 38 
of anthropogenic climate change (Aitken and Whitlock 2013). Whatever the aim or 39 
application, a first step in studying the basis of local adaptation is to identify the genes 40 
that are driving it. 41 

A potentially powerful method for identifying the genomic regions involved in local 42 
adaptation is genotype-environment association (GEA) analysis, which has been widely 43 
adopted in recent years. Alleles may vary in frequency across a species’ range in 44 
response to local environmental conditions that give rise to spatially varying selection 45 
pressures (Haldane 1948). For that reason, genetic variants that exhibit strong 46 
correlations with putatively selective features of the environment are often interpreted as 47 
a signature of local adaptation (Coop et al. 2010). Genotype-environment association 48 
(GEA) studies examine such correlations. Allele frequencies for many genetic markers, 49 
typically single nucleotide polymorphisms (hereafter SNPs), are estimated in numerous 50 
locations across a species’ range. Correlations between allele frequency and 51 
environmental variables are calculated then contrasted for sites across the genome. It is 52 
assumed in GEA studies that current heterogeneity in the environment (whether biotic 53 
or abiotic) reflects the history of selection. 54 

Numerous approaches for performing GEA analyses have been proposed. If individuals 55 
are sequenced, GEA can be performed by regressing environments on genotypes as a 56 
form of genome-wide association study, for example using the GEMMA package (Zhou 57 
et al. 2013). However, to estimate SNP effects with reasonable statistical power, many 58 
individuals may need to be sequenced. A cost-effective alternative is pooled sequencing 59 
(hereafter pooled-seq), where allele frequencies for populations of individuals are 60 
estimated rather than individual genotypes (Schlötterer et al. 2014). In this study, we 61 
focus on analyses that can be performed on pooled-seq datasets given the wide 62 
adoption of that protocol in the GEA literature. 63 

The most straightforward way to perform a GEA analysis is to simply examine the 64 
correlation between allele frequencies and environmental variables measured in 65 
multiple populations, for example using rank correlations such as Spearman’s 𝜌 or 66 
Kendall’s 𝜏. This simple approach may commonly lead to false positives, however, if 67 
there is environmental variation across the focal species’ range that is correlated with 68 
patterns of gene flow or historical selection (Meirmans 2012; Novembre and Di Rienzo 69 
2009). For example, consider a hypothetical species inhabiting a large latitudinal range. 70 
If this species had restricted migration and exhibited isolation-by-distance, neutral 71 
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alleles may be correlated with any environmental variable that happened to correlate 72 
with latitude, as population structure would also correlate with latitude. 73 

Several approaches have been proposed to identify genotype-environment correlations 74 
above and beyond what is expected given an underlying pattern of population structure 75 
and environmental variation. For example, the commonly used BayPass package 76 
(Gautier 2015), an extension of BayEnv by Coop et al. (2010), estimates correlations 77 
between alleles and environmental variables in a two-step process. First, a population 78 
covariance matrix (𝛀) is estimated from SNP data. Second, correlations between the 79 
frequencies of individual SNPs and environmental variables are estimated treating 𝛀 in 80 
a manner similar to a random effect in a generalized mixed model. In a recent study, 81 
Lotterhos (2019) compared several of the most commonly used packages for 82 
performing GEA on pooled-seq datasets; including BayPass (Gautier 2015), latent-83 
factor mixed models (LFMMs) as implemented in the LEA package (Frichot et al. 2013; 84 
Frichot and François 2015), redundancy analysis (RDA; see Forester et al. 2016, 2018) 85 
and a comparatively simple analysis calculating Spearman’s 𝜌 between allele frequency 86 
and environment. Of the methods they tested, Lotterhos (2019) found that the GEA 87 
approaches that did not correct for population structure (i.e., Spearman’s 𝜌 and RDA) 88 
had higher power to detect local adaptation compared to BayPass or LFMMs. In their 89 
standard application to genome-wide datasets, all the GEA analysis methods mentioned 90 
provide a summary statistic for each marker or SNP. 91 

Individual SNPs may provide very noisy estimates of summary statistics, but closely 92 
linked SNPs are not independently inherited and may have highly correlated 93 
evolutionary histories. As a way to reduce noise, genome scan studies often aggregate 94 
data across adjacent markers into analysis windows based on a fixed physical or 95 
genetic distance or number of SNPs (Hoban et al. 2016). In the case of 𝐹!", the 96 
standard measure of population differentiation, there are numerous methods for 97 
combining estimates across sites (see Bhatia et al. (2013)). In Weir and Cockerham’s 98 
(1984) method, for example, estimates of 𝐹!" for individual loci are combined into a 99 
single value with each marker’s contribution weighted by its expected heterozygosity.  100 

In the context of GEA studies, each marker or SNP provides a test of whether a 101 
particular genealogy is correlated with the pattern of environmental variation. In the 102 
extreme case of a non-recombining region, all SNPs would share the same genealogy 103 
and thus provide multiple tests of the same hypothesis. For recombining portions of the 104 
genome, however, linked sites will not have the same genealogy, but genealogies may 105 
be highly correlated. Similar to combining estimates of 𝐹!" to decrease statistical noise, 106 
combining GEA tests performed on individual markers may increase the power of GEA 107 
studies to identify genomic regions that contribute to local adaptation.  108 

In this study, we propose a general method for combining the results of single SNP 109 
GEA scores into analysis windows that we call the weighted-Z analysis (WZA), and test 110 
its efficacy using simulations. We generate datasets modelling a pooled-sequencing 111 
experiment where estimates of allele frequency are obtained for numerous populations 112 
across a species’ range. Using our simulated data, we compare the performance of the 113 
WZA to Kendall’s 𝜏 (because Lotterhos (2019) found that this method had high power) 114 
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as well as BayPass (Gautier 2015), as it is a widely used approach that corrects for 115 
population structure in GEA studies. Additionally, we compare the WZA to another 116 
window-based GEA approach proposed by Yeaman et al. (2016). We found that the 117 
WZA is particularly useful when GEA analysis is performed on small samples and when 118 
results for individual SNPs are statistically noisy. We re-analyze previously published 119 
lodgepole pine (Pinus contorta) data using the WZA and find several candidate loci that 120 
were not identified using the methods of the original study. 121 

The Weighted-Z Analysis 122 

In this study, we propose the Weighted-Z Analysis (hereafter, the WZA) for combining 123 
information across linked sites in the context of GEA studies. Specifically, we aim to 124 
combine information from multiple SNPS within the same small genomic region to ask 125 
whether that region shows associations between its local allele frequencies and local 126 
environment.   127 

The WZA uses the weighted-Z test from the meta-analysis literature that combines p-128 
values from multiple independent hypothesis tests into a single score (Mosteller and 129 
Bush 1954; Liptak 1958; Stouffer et al. 1949). In the weighted-Z test, each of the 𝑛 130 
independent tests is given a weight that is proportional to the inverse of its error 131 
variance (Whitlock 2005). We use the expected heterozygosity of each SNP in a gene 132 
or window for the weights in the WZA, following Weir and Cockerham (1984), as their 133 
classic method performs well in a similar evolutionary context, where the aim is to 134 
quantify divergence in allele frequencies among populations. At a given polymorphic 135 
site, we denote the average frequency of the minor allele across populations as 𝑝 (𝑞 136 
corresponds to the frequency of the major allele). Sites with higher values of  𝑝𝑞( will 137 
carry more information about the underlying genealogy.   138 

We combine information about genetic correlations with the environment from biallelic 139 
markers (typically SNPs) present in a focal genomic region into a single weighted-Z 140 
score (𝑍#). The genomic region in question could be a gene or genomic analysis 141 
window. For each SNP with a minor allele frequency greater than 0.05 in the genomic 142 
window, we measure the association between the SNP’s local allele frequency and the 143 
local environment in some way and use the p-value of a test of no association for each 144 
SNP. (The exact measure used here may vary; in this paper we test the use of two such 145 
measures, described below.)   146 

These p-values from each SNP in a window are combined using Stouffer’s weighted Z 147 
approach. We calculate 𝑍#,% for genomic region k, which contains n SNPs, as 148 

𝑍!,# =
∑ %̅!	()!*"	#
!$%

+∑ (#
!$% %̅!	()!)&

,      (1) 149 
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where 𝑝̅& is the mean allele frequency across populations and 𝑧& is the standard normal 150 
deviate calculated from the one-sided p-value for SNP i. A given p-value can be 151 
converted into a 𝑧& score by finding the corresponding quantile of the standard normal 152 
distribution, for example using the qnorm function in R.  153 

When we apply the WZA in this study, we compared two different statistics as input: 154 
empirical p-values calculated from the genome-wide distribution of parametric p-values 155 
from Kendall’s 𝜏 correlating the local environmental variable and local allele frequency 156 
(referred to as WZA𝜏), and empirical p-values calculated from the genome-wide 157 
distribution of Bayes factors as obtained using the BayPass program (referred to as 158 
WZABP; see below). 159 

Under the null hypothesis that there is no correlation between allele frequency and 160 
environment and no spatial population structure, the expected distribution of correlation 161 
coefficients in a GEA would be normal about 0, with a uniform distribution of p-values. 162 
However, as will often be the case in nature, there may be an underlying correlation 163 
between population structure and environmental variation that will cause these genome-164 
wide distributions to deviate from this null expectation. The average effect of population 165 
structure on individual SNP scores can be incorporated into an analysis by converting 166 
an individual SNP’s squared correlation coefficient or parametric p-value into empirical 167 
p-values based on the genome-wide distribution (following the approach of Hancock et 168 
al. [2011]). To calculate empirical p-values, we rank all values (from smallest to largest 169 
in the case of p-values) and divide the ranks by the total number of tests performed (i.e. 170 
the number of SNPs or markers in the analysis window). Note that in practice, we 171 
calculated empirical p-values after removing SNPs with minor allele frequency less than 172 
0.05 and would recommend that others perform similar filtering. In empirical studies with 173 
varying levels of missing data across the genome, it may be preferable to rank the 174 
parametric p-values rather than the correlation coefficients themselves as there may be 175 
varying power to calculate correlations across the genome. With the empirical p-value 176 
procedure, aggregating information using the WZA will identify genomic regions with a 177 
pattern of GEA statistics that deviate from the average genome-wide. A feature of the 178 
WZA is that many tests can potentially be used as input as long as individual p-values 179 
provide a measure for the strength of evidence against a null hypothesis. 180 

Materials and Methods 181 

In the previous section we described the mechanics of our new method, the WZA. The 182 
rest of this paper is devoted to a test of the relative efficacy of the WZA compared to 183 
other widely used approaches. Note that Lotterhos (2019) identified a simple rank 184 
correlation on individual SNPs as having among the highest power of the GEA analyses 185 
that have been tested, making such a method a good standard of comparison, and the 186 
most common GEA method used is BayPass (Gautier 2015). We use these two existing 187 
methods as our baseline of comparison for WZA. 188 
 189 
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To do these tests, we will simulate populations evolving on a variety of different 190 
environmental landscapes, with the selective optima varying over space. We use 191 
relatively weak selection, so that we are simulating the most difficult loci to find with a 192 
GEA. The present section describes the simulation conditions we used for these tests. 193 

Simulating local adaptation 194 

We performed forward-in-time population genetic simulations of local adaptation to 195 
determine how well the WZA was able to identify the genetic basis of local adaptation. 196 
GEA studies are often performed on large spatially extended populations that may be 197 
comprised of hundreds of thousands of individuals. However, it is computationally 198 
infeasible to model selection and linkage in long chromosomal segments (>1Mbp) for 199 
such large populations. For that reason, we simulated relatively small populations 200 
containing 19,600 diploid individuals in total and scaled population genetic parameters 201 
to model a large population. We based our choice of population genetic parameters on 202 
estimates for conifer species. A representative set of parameters is given in Table S1 203 
and in the Appendix we give a breakdown and justification of the parameters we chose. 204 
All simulations were performed in SLiM v3.4 (Messer and Haller 2019). 205 
 206 
We simulated meta-populations inhabiting and adapting to heterogeneous environments 207 
and modelled the population structure on an idealized conifer species. In conifers, 208 
strong isolation-by-distance has been reported and overall mean 𝐹!" < 0.10 has been 209 
estimated in several species (Mimura and Aitken 2007; Mosca et al. 2014). We thus 210 
simulated individuals inhabiting a 2-dimensional stepping-stone population made up of 211 
196 demes (i.e. a 14 × 14 grid). Each deme consisted of 𝑁' = 100 diploid individuals. 212 
We assumed a Wright-Fisher model so demes did not fluctuate in size over time. 213 
Migration was limited to neighboring demes in the cardinal directions and the reciprocal 214 
migration rate between demes (𝑚) was set to 0.0375 in each possible direction to 215 
achieve an overall 𝐹!" for the metapopulation of around 0.04 (Figure S1). As expected 216 
under restricted migration, our simulations exhibited a strong pattern of isolation-by-217 
distance (Figure S1). Additionally, we simulated metapopulations with no spatial 218 
structure (i.e., finite island models). In these simulations, we used the formula  219 

𝑚 =

1
𝐹!"

− 1

4𝑁'196
 220 

 221 

(Charlesworth and Charlesworth 2010; pp319) to determine that a migration rate 222 
between each pair of demes of m = 4.12 x 10-4 would give a target 𝐹!" of 0.03. 223 
 224 
The simulated organism had a genome containing 1,000 genes uniformly distributed 225 
onto 5 chromosomes. We simulated a chromosome structure in SLiM by including 226 
nucleotides that recombined at r = 0.5 at the hypothetical chromosome boundaries. 227 
Each chromosome contained 200 segments of 10,000bp each. We refer to these 228 
segments as genes for brevity, although we did not model an explicit exon/intron or 229 
codon structure. It has been reported that linkage disequilibrium (LD) decays rapidly in 230 
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conifers, with LD between pairs of SNPs decaying to background levels within 1,000bp 231 
or so in several species (Pavy et al. 2012). In our simulations, recombination within 232 
genes was uniform and occurred at a rate of 𝑟 = 10() per base-pair, giving a 233 
population-scaled recombination rate (4𝑁'𝑟) of 0.0004. The recombination rate between 234 
the genes was set to 0.005, effectively modelling a stretch of 50,000bp of intergenic 235 
sequence. Given these recombination rates, LD decayed rapidly in our simulations with 236 
SNPs that were approximately 600bp apart having, on average, half the LD of 237 
immediately adjacent SNPs in neutral simulations (Figure S1). Thus, patterns of LD 238 
decay in our simulations were broadly similar to the patterns reported for conifers. 239 
  240 
We incorporated spatial variation in the environment into our simulations using a 241 
discretized map of degree days below 0 (DD0) across British Columbia (BC). We 242 
generated the discretized DD0 map by first downloading the map of DD0 for BC from 243 
ClimateBC (http://climatebc.ca/; Wang et al. 2016; Figure 1A). Using Dog Mountain, BC 244 
as the reference point in the South-West corner (Latitude = 49.37, Longitude = -122.97), 245 
we extracted data in a rectangular grid with edges 3.6 degrees long in terms of both 246 
latitude and longitude, an area of approximately 266 × 400𝑘𝑚* (Figure 1A). We divided 247 
this map into a 14 × 14 grid, calculated the mean DD0 scores in each grid cell, 248 
converted them into standard normal deviates (i.e. Z-scores) and rounded up to the 249 
nearest third. We used the number of thirds of a Z-score as phenotypic optima in our 250 
simulations. We refer to this map of phenotypic optima as the BC map (Figure 1B). 251 
 252 
We used data from the BC map to generate two additional maps of environmental 253 
variation. First, we ordered the data from the BC map along one axis of the 14 × 14 grid 254 
and randomised optima along the non-ordered axis. We refer to this re-ordered map as 255 
the Gradient map (Figure 1C). Second, we generated a map where selection differed 256 
over only a small portion of the environmental range. For some species, fitness optima 257 
may differ only beyond certain environmental thresholds (e.g. temperature above vs. 258 
below 0oC), leading to a non-normal distribution of phenotypic optima. To model such a 259 
situation, we set the phenotypic optimum of 20 demes in the top-right corner of the 260 
meta-population to +3 and set the optimum for all other populations to –1. We chose 20 261 
demes as it represented approximately 10% of the total population. We refer to this map 262 
as the Truncated map (Figure 1D). 263 
 264 
We simulated local adaptation using models of either directional or stabilizing selection. 265 
In both cases, there were 12 causal genes distributed evenly across four simulated 266 
chromosomes that potentially contributed to local adaptation. With directional selection, 267 
mutations affecting fitness could only occur at a single nucleotide position in the center 268 
of the 12 potentially selected genes. Directionally selected mutations had a spatially 269 
antagonistic effect on fitness. In deme d with phenotypic optimum 𝜃', the fitness of an 270 
individual homozygous for the selected allele was 1 + 𝑠+𝜃' (selected alleles were semi-271 
dominant). The fitness affecting alleles had a mutation rate of 3	 ×	10() in simulations 272 
modelling directional selection and a fixed 𝑠+ = 0.003 (see Appendix). 273 
 274 
Under stabilizing selection, the mutations that occurred in the 12 genes had a normal 275 
distribution of phenotypic effects, with variance 𝜎+* = 0.5. Phenotype-affecting mutations 276 
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 9 

occurred at a rate of 10(,- per base-pair in the 12 genes, and could occur at any of the 277 
10,000 sites within a given gene. An individual’s phenotype was calculated as the sum 278 
of the effects of all phenotype-affecting mutations. We calculated an individual’s fitness 279 
using the standard expression for Gaussian stabilizing selection, 280 

𝑊&,. = exp F(/0!"(1#2
$

*3%
G, 281 

where 𝑧&,. is the phenotype of the 𝑖45 individual in environment 𝑗 and 𝑉6 is the variance of 282 
the Gaussian fitness function (Walsh and Lynch 2018). We set 𝑉6 = 196 so that there 283 
was a 40% fitness difference between individuals perfectly adapted to the two extremes 284 
of the distribution of phenotypic optima. This was motivated by empirical studies of local 285 
adaptation that have demonstrated such fitness differences in numerous species 286 
(Hereford 2009; Bontrager et al. 2020); see Appendix. 287 
 288 
We ran simulations for a total of 200,102 generations. The 19,600 individuals initially 289 
inhabited a panmictic population that evolved neutrally. After 100 generations, the 290 
panmictic population divided into a 14 × 14 stepping-stone population and evolved 291 
either strictly neutrally (when modelling directional selection) or with a phenotypic 292 
optimum of 0 for all demes (when modelling stabilizing selection). After 180,000 293 
generations, we imposed the various maps of phenotypic optima and simulated for a 294 
further 20,000 generations. For selected mutations, we used the "f" option for SLiM’s 295 
mutation stack policy, so only the first mutational change was retained. Using the tree-296 
sequence option in SLiM (Haller et al. 2019), we tracked the coalescent history of each 297 
individual in the population. At the end of each simulation, neutral mutations were added 298 
at a rate of 10(7 using PySLiM (https://pyslim.readthedocs.io/en/latest/). For each 299 
combination of map and mode of selection, we performed 20 replicate simulations. 300 
 301 

  302 
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 303 

Figure 1 A) Degree days below zero across British Columbia, the overlain grid in A 304 
shows the locations we used to construct phenotypes for our simulated populations. B) 305 
A discretized map of DD0 in Southern British Columbia, we refer to the map in B as the 306 
BC map. C) A 1-dimensional gradient of phenotypic optima, we refer to this as the 307 
Gradient map. D) A model of selection acting on a small proportion of the population, 308 
we refer to this map as the Truncated map. 309 

310 
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Classifying simulated genes as locally adapted 311 

To evaluate the performance of different GEA methods, we needed to identify which of 312 
the 12 causal genes contributed to local adaptation and which did not in each replicate 313 
of our simulated data. As described above, our simulations incorporated a stochastic 314 
mutation model so from replicate to replicate the genes that contributed to local 315 
adaptation varied and, in the case of stabilizing selection, so did the effect size of the 316 
alleles in those genes.  317 

For simulations modelling directional selection, we identified locally adapted genes 318 
based on the mean fitness of their alleles at the single variable site in each gene with a 319 
polymorphism. Our measure of local adaptation was the covariance between the mean 320 
fitness contributed by the selected allele in each population and the environment. 321 

For simulations modelling stabilizing selection, we identified locally adapted genes 322 
based on the covariance of the environment and the phenotypic effects of their alleles, 323 
summed across all variant sites within each gene. For a given gene, we summed the 324 
additive phenotypic effects of all non-neutral variants and took the average for each 325 
population. Our measure of local adaptation for each gene was the covariance between 326 
that average additive phenotypic effect and environmental variation (we refer to this as 327 
Cov(Phen, Env)).  328 

For both selection regimes, we defined locally adapted genes as those with a 329 
covariance between environment and allelic effect (in fitness or phenotypic terms) 330 
greater than 0.005. When modelling directional selection, an average of 6.35, 6.50 and 331 
5.80 genes (out of 12) contained genetic variants that established and contributed to 332 
local adaptation for the BC map, the Gradient map and the Truncated map, 333 
respectively. In our simulations modelling stabilizing selection, individuals’ and 334 
population mean phenotypes closely matched the phenotypic optima of their local 335 
environment (Figure S2). The average numbers of genes contributing to local 336 
adaptation in individual replicates in these simulations were 7.15, 6.45 and 5.35 for the 337 
BC map, the Gradient map and the Truncated map, respectively. However, when 338 
analyzing stabilizing selection simulations, we calculated the proportion of the total 339 
Cov(Phen, env) explained by a particular set of genes rather the number of true 340 
positives. 341 

Analysis of simulation data 342 

We performed GEA on our simulated data using either Kendall’s 𝜏-b (hereafter Kendall’s 343 
𝜏), a rank correlation that does not model population structure, or BayPass, which 344 
corrects for a population covariance matrix (Gautier 2015). For all analyses, except 345 
where specified, we analyzed data for a set of 40 randomly selected demes and 346 
sampled 50 individuals from each to estimate allele frequencies. We sampled 347 
individuals from the same set of demes for all analyses, shown in Figure S3. Each 348 
simulation replicate included 1,000 genes, and after excluding alleles with a minor allele 349 
frequency less than 0.05 there was an average of 23.3 SNPs per gene. We ran 350 
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BayPass following the "worked example" in section 5.1.2 of the manual provided with 351 
the software. 352 

We used three different methods to summarize the GEA results for each gene in each 353 
simulation replicate: a single SNP-based approach, the WZA and the top-candidate 354 
method developed by Yeaman et al. (2016). For all three tests, we used either the p-355 
values from Kendall’s 𝜏	or Bayes factors from BayPass. 356 

• For the implementation of the single SNP-based approach, the SNPs with the 357 
most extreme test statistic (i.e. smallest p-value or largest Bayes factor) for each 358 
gene were recorded and other SNPs in the gene were subsequently ignored. 359 
This was done to prevent multiple outliers that are closely linked from being 360 
counted as separate hits. The single-SNP based method is perhaps most similar 361 
to how GEA analyses are typically interpreted, as it relies upon the evidence from 362 
the most strongly associated SNP to assess significance for a closely linked 363 
gene.  364 

• We implemented a simplified version of the top-candidate method proposed by 365 
Yeaman et al. (2016). The top-candidate method attempts to identify regions of 366 
the genome involved in local adaptation under the assumption that such regions 367 
may contain multiple sites that exhibit strong correlation with environmental 368 
variables. The top-candidate method asks whether there is a significant excess 369 
of “outlier” SNPs in a region compared to what one would expect given the 370 
genome wide distribution. The number of outliers in each genomic region is 371 
compared to the expected number of outliers based on the genome-wide 372 
proportion of SNPs that are outliers, using a binomial test. We defined outliers as 373 
those within the 99th percentile of scores genome wide. The p-value from the 374 
binomial test is used as a continuous index. 375 

• For the implementation of the WZA, we converted the p-values (from Kendall’s 𝜏) 376 
or Bayes factors (from BayPass), into empirical p-values. For each of the 𝑛 SNPs 377 
present in a gene, empirical p-values were converted into 𝑧 scores and used to 378 
calculate WZA scores using Equation 1. 379 

We examined the effect of variation in recombination on the properties of the WZA by 380 
manipulating the tree-sequences that we recorded in SLiM. In our simulations, genes 381 
were 10,000 bp long, so to model genomic regions of low recombination rate, we 382 
extracted the coalescent trees that corresponded to the central 1,000bp or 100bp of 383 
each gene. For the 1,000bp and 100bp intervals, we added mutations at 10× and 100× 384 
the standard mutation rate, respectively. 385 

All SNPs present in each 10,000bp gene in our simulations were analyzed together. 386 
However, to explore the effect of window size on the performance of the WZA, we 387 
calculated WZA scores for variable numbers of SNPs. In these cases, we calculated 388 
WZA scores for all adjacent sets of g SNPs and retained the maximum WZA score for 389 
all sets of SNPs in the gene.  390 

Tree sequences were manipulated using the tskit package. Mutations were added to 391 
trees using the msprime (Kelleher et al. 2016; 392 
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https://tskit.dev/msprime/docs/stable/intro.html), tskit and PySLiM workflow 393 
(https://pyslim.readthedocs.io/en/latest/). 𝐹!" and 𝑟* (an estimator of linkage 394 
disequilibrium) were calculated using custom Python scripts that invoked the scikit-allel 395 
package (https://scikit-allel.readthedocs.io/en/stable/). 396 
 397 

Analysis of data from lodgepole pine 398 

We re-analyzed a previously published population genomic dataset for lodgepole pine, 399 
Pinus contorta, a conifer that is widely distributed across the Northwest of North 400 
America. Briefly, Yeaman et al. (2016) collected samples from 254 populations across 401 
British Columbia and Alberta, Canada and Northern Washington, USA. The lodgepole 402 
pine genome is very large (approximately 20Gbp), so Yeaman et al. (2016) used a 403 
sequence capture technique based on the P. contorta transcriptome. Allele frequencies 404 
were estimated for many markers across the captured portion of the genome by 405 
sequencing 1-4 individuals per population. Yeaman et al. (2016) performed GEA on 406 
each SNP using Spearman’s 𝜌 and used their top-candidate method (see above) to 407 
aggregate data across sites within genes. We downloaded the data for individual SNPs 408 
from the Dryad repository associated with Yeaman et al. (2016) 409 
(https://doi.org/10.5061/dryad.0t407). We converted Spearman’s 𝜌 p-values into 410 
empirical p-values and performed WZA on the same genes analyzed by Yeaman et al. 411 
(2016). We also repeated the top-candidate method, classifying SNPs with empirical p-412 
values < 0.01 as outliers. However, as above, we use the p-value from the top-413 
candidate method as a continuous index.  414 

Data and Code Availability 415 

The simulation configuration files and code to perform the analysis of simulated data 416 
and generate the associated plots are available at github/TBooker/GEA/WZA. Analyses 417 
were performed using a combination of R and Python. All plots were made using 418 
ggplot2 (Wickham 2016). Tree-sequence files for the simulated populations will be 419 
made available at Dryad and all processed GEA files are available on (details to be 420 
determined post-submission). 421 

Results 422 

The statistical properties of the WZA  423 

To assess the statistical properties of the WZA, we first performed GEA analyses on 424 
populations that were evolving neutrally. Figure 2A shows the distribution of WZA𝜏 425 
scores for stepping-stone populations simulated under neutrality. The null expectation 426 
for WZA scores is the standard normal distribution (mean of 0 and standard deviation of 427 
1), but we found that the distribution of WZA𝜏 scores deviated slightly from this even 428 
under neutrality, where the mean and standard deviation of WZA𝜏 scores from 429 
individual simulation replicates were approximately 0.089 and 1.38, respectively. 430 
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Additionally, the inset histogram in Figure 2A shows that distribution of WZA𝜏 scores 431 
had a somewhat thicker right-hand tail than expected under the normal distribution. A 432 
similar deviation from normality was observed when data were simulated under an 433 
island model, or when WZA was calculated using Bayes factors (Figure S4). 434 

 435 

 436 

Figure 2. The distribution of WZA scores under neutrality and a model of local 437 
adaptation. A) A histogram of WZA𝜏 scores under strict neutrality across a set of 20 438 
replicate simulations, inset is a close-up view of the upper tail of the distribution of ZW 439 
scores. The black line indicates the standard normal distribution. B) A density plot 440 
showing the separation of WZA𝜏 scores for genes that are locally adaptive versus 441 
evolving neutrally across the genome of 20 simulation replicates. GEA was performed 442 
on 40 demes sampled from the BC Map. 443 

 444 

The deviation from the standard normal distribution is driven by non-independence of 445 
SNPs within the analysis windows we used to calculate WZA𝜏 scores. To demonstrate 446 
this, we re-calculated WZA𝜏 scores, but permuted the locations of SNPs across the 447 
genome, effectively erasing the signal of linkage within genes. The distribution of WZA𝜏 448 
scores in this permuted dataset closely matched the null expectation and did not have a 449 
thick right-hand tail (Figure S4; shuffled); each of 20 simulation replicates had a mean 450 
WZA𝜏 indistinguishable from 0 with a standard deviation very close to 1. It is worth 451 
noting that we modelled populations that did not change in size over time. Non-452 
equilibrium population dynamics such as population expansion may influence the 453 
distribution of WZA scores.  454 

When evolution includes selection, WZA can often clearly distinguish regions of the 455 
genome containing loci that contribute to local adaptation from those that do not. Figure 456 
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2B shows separation of WZA𝜏 scores for genes that contribute to local adaptation from 457 
those that are evolving neutrally (similar results were found for both the Gradient and 458 
Truncated maps; Figure S5). The distributions of WZA𝜏 scores for locally adapted 459 
genes when modelling stabilizing selection was broader than when modelling directional 460 
selection (Figure S5), consistent with differences in the distributions of effect size for the 461 
genes involved in local adaptation under the two selection models (Figure S6). The 462 
separation of the distributions of WZA𝜏 scores for locally adaptive genes versus 463 
neutrally evolving genes indicates that it may be a powerful method for identifying the 464 
genetic basis of local adaptation. The use of 𝑝𝑞( as weights in the WZA improved 465 
performance over an unweighted version of the test (Figure S7A). 466 

 467 

Comparison of the WZA with other GEA approaches 468 

We compared WZA to two other methods for identifying genomic regions that contribute 469 
to local adaptation from GEA data (Figure 3). To assess the performance of the different 470 
methods, we examined the top 1, 2, 3, ... 50 genes in terms of WZA𝜏 scores, −𝑙𝑜𝑔,-(𝑝-471 
values) from the top-candidate method, or the single SNP Kendall’s 𝜏 approach. We 472 
calculated the proportion of all true positives that were identified in each case. In our 473 
simulations, there were 1,000 genes in total with approximately 6 locally adapted genes 474 
in each replicate (see Methods). For visualization purposes, we include Figure S8, 475 
which shows the −𝑙𝑜𝑔,-(𝑝-values) from Kendall’s 𝜏 represented as a Manhattan plot for 476 
individual simulation replicates as well as WZA𝜏 and top-candidate scores calculated 477 
from those data. Figure 3 compares the performance of the GEA methods across the 478 
three different maps of environmental variation that we simulated.  For each of the three 479 
maps we simulated, we analyzed samples of 10, 20 or 40 demes where allele 480 
frequencies were estimated from 50 individuals sampled in each location.  481 

Figure 3 shows that WZA𝜏 substantially outperformed both the top-candidate and single 482 
SNP-based Kendall’s t analyses in most cases. When analyzing simulations that used 483 
the BC map or the Truncated map, WZA𝜏 always outperformed the top-candidate and 484 
SNP-based methods, but particularly so when fewer demes were sampled (Figure 3). 485 
When simulations assumed the Gradient map, WZA𝜏 outperformed the other GEA 486 
methods when the sample was restricted to 10 demes, but with larger samples, the 487 
tests were more similar (Figure 3). This suggests that WZA𝜏 is a powerful method for 488 
identifying regions of the genome that contribute to local adaptation in empirical 489 
analyses, but particularly so when they are performed on small samples.  490 

An additional source of variation in GEA studies comes from the number of individuals 491 
sampled in each location. We also examined the effect that reduced sampling of 492 
individuals within each deme had on the performance of the methods. Figure S9 shows 493 
that the WZA outperforms the top-candidate and SNP-based methods when a small 494 
number of individuals is used to estimate allele frequencies.  495 
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 496 

Figure 3 The efficacy of three GEA methods based on simulations modelling local 497 
adaptation via directional selection. In each case and separately for each method, 498 
genes were ranked in descending order of evidence for association between allele 499 
frequency and environment, and the genes with the strongest evidence for local 500 
adaptation were retained in a “top set”. The x-axes indicate the fraction of the genes 501 
which were retained in this top set. The y-axes indicate the proportion of the genes that 502 
truly contributed to local adaptation which were found in this top set. Larger values 503 
indicate a more effective method. The rows of the plot show results obtained from 504 
samples of 10, 20 or 40 demes as indicated by the labels on the right-hand side. Lines 505 
represent the means of 20 simulation replicates. In these simulations 50 individuals 506 
were sampled for each of the included populations. 507 
 508 
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Effects of population structure correction 509 

In each of the maps of environmental variation that we simulated, there was a strong 510 
correlation between environmental variables and gene flow. There was also a strong 511 
pattern of isolation-by-distance in our simulated populations (Figure S1). These two 512 
factors may make it difficult to identify genes involved in local adaptation in GEA studies 513 
(Meirmans 2012). 514 

We compared the performance of the WZA to a widely adopted method for performing 515 
GEA that corrects for the confounding effects of population structure, BayPass (Gautier 516 
2015). In all cases, WZA performed as well, or better than, BayPass (Figure 4). WZA 517 
performed much better than BayPass when selection was directional, but WZA was also 518 
significantly more likely to identify the genes underlying local adaptation with stabilizing 519 
selection. 520 

Notably, even though the Kendall’s t analysis did not adjust for spatial population 521 
structure, the single SNP analyses based on Kendall’s t in most cases outperformed 522 
BayPass (with the exception of stabilizing selection on the Truncated map). The 523 
discriminatory power of GEAs does not seem to be improved consistently by careful 524 
accounting of the underlying pattern of genetic structure. 525 

 526 
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 527 

Figure 4 The performance of population structure correction. A) Results for simulations 528 
modelling directional selection and b) results for simulations modelling stabilizing 529 
selection. Lines represent the mean of 20 simulation replicates where samples of 50 530 
individuals were taken from each of 40 demes. For a description of the x-axis in this plot 531 
see the legend to Figure 3. 532 

 533 

The performance of WZA when environmental variables are 534 

weakly correlated with selection pressure 535 

 536 
In the previous section, we conducted GEA assuming perfect knowledge of the 537 
phenotypic optima in each sampled deme. However, environmental variables are often 538 
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obtained via interpolation and/or may be measured with error, and measured 539 
environments may only loosely correlate with the meaningful selective environments. 540 
Using the simulations modelling local adaptation on the BC map via stabilizing 541 
selection, we compared the performance of the WZA against the single-SNP GEA 542 
methods when the measured environment is imperfectly correlated with the phenotypic 543 
optima.  544 

 545 

 546 

Figure 5 The proportion of true positives recovered when the measured environment is 547 
imperfectly correlated with phenotypic optima. The correlation between environment 548 
and selection pressure is shown above each panel. Results are from the BC Map with 549 
stabilizing selection. Lines indicate the means from 20 simulation replicates, and each is 550 
based on samples of 50 individuals from each of 40 demes. For a description of the x-551 
axis in this plot see the legend to Figure 3. 552 

The WZA outperformed single SNP approaches (Kendall’s 𝜏 or BayPass) when the 553 
measured environment was not perfectly correlated with phenotypic optima, especially 554 
for weak to moderate correlation between the measured and selective environments 555 
(Figure 5). WZA𝜏 outperforms the single-SNP approaches when the measurement of 556 
the environment is a poor proxy for historical selection. 557 
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The effect of recombination rate variation on the WZA 558 

Random drift may cause genealogies in some regions of the genome to correlate with 559 
environmental variables more than others. Many of the SNPs present in an analysis 560 
window that consisted of genealogies that were highly correlated with the environment 561 
may be highly significant in a GEA analysis, leading to a large WZA score. This effect 562 
would lead to a larger variance in WZA scores for analysis windows that were present in 563 
regions of low recombination. To demonstrate this, we down-sampled the tree-564 
sequences we recorded for our simulated populations to model analysis windows 565 
present in low recombination regions and performed the WZA on the resulting data. As 566 
expected, we found that the variance of the distribution of WZA scores was greater 567 
when there was a lower recombination rate (Figure S10). This is a similar effect to that 568 
we described in a previous paper focusing on FST (Booker et al. 2020). 569 

Application of the WZA to lodgepole pine data 570 

We re-analyzed a previously published (Yeaman et al. 2016) lodgepole pine (Pinus 571 
contorta) dataset and compared the WZA to the top-candidate method, which had been 572 
developed for the original study. Overall, the WZA and top candidate statistic were 573 
broadly correlated and identified many of the same genes as the most strongly 574 
associated loci, but also differed in important ways. Across the lodgepole pine genome, 575 
there was a mean WZA score of 0.013 with a standard deviation 𝜎 = 1.67, and a fat 576 
right-hand tail (Figure S11). Figure  6A shows the relationship between WZA scores and 577 
the −𝑙𝑜𝑔,-(p-value) from the top-candidate method, which were positively correlated 578 
(Kendall’s 𝜏 = 0.245, p-value < 10(,8). When many of the SNPs in a gene had strongly 579 
associated statistics, both methods would tend to yield high scores (Figure 6B-C). When 580 
there were many SNPs with marginally significant empirical p-values (i.e. 0.05 < p < 581 
0.10) at relatively high frequencies, the WZA method would tend to yield a high score 582 
but the top candidate method would not (Figure 6B). By contrast, if the most strongly 583 
associated SNPs tended to have low minor allele frequencies, the top candidate method 584 
would tend to yield a high score but the WZA would not (Figure 6C). There were several 585 
genes that had WZA scores greater than 10 (approximately 6𝜎), but very modest top-586 
candidate scores (Figure 6A). Figure 6B shows that for one such region, there were 587 
several SNPs with high mean allele frequency that have small p-values. This particular 588 
region had a high score from the top-candidate method. Conversely, Figure 6C shows a 589 
region that only had a 𝑍# ≈ 5, but an extreme score from the top-candidate method. In 590 
this case, there were numerous SNPs that passed the top-candidate outlier threshold, 591 
but they were mostly at low allele frequency. Figures 6C-D show the relationship 592 
between allele frequency and the empirical p-value for SNPs present in two genes that 593 
had extreme scores from both the top-candidate method and the WZA. 594 

 595 
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 596 

Figure 6 The WZA applied to GEA results on lodgepole pine for degree days below 0 597 
(DD0). A) 𝑍9 scores compared to scores from the top-candidate method for each of the 598 
genes analyzed by Yeaman et al. (2016). Panels B-E show the results for −𝑙𝑜𝑔,-(p-599 
values) for Spearman’s 𝜌 applied to individual SNPs against minor allele frequency 600 
(MAF) for the colored points in A. The dashed horizontal lines in B-D indicates the 601 
significance threshold used for the top-candidate method (i.e. 9945 percentile of GEA 602 
−𝑙𝑜𝑔,-(p-values) genome-wide).  603 

604 
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Discussion  605 

In this study, we have shown that combining information across linked sites in GEA 606 
analyses is a potentially powerful way to identify genomic loci involved in local 607 
adaptation. The method we propose, the WZA, was usually more powerful than looking 608 
at individual sites in isolation, particularly when working with small samples or when the 609 
environmental variation being analyzed is only weakly correlated with selection (Figures 610 
3 and 5). In a hypothetical world where one had perfect knowledge of allele frequency 611 
variation across a species’ range for all sites across the genome, a single marker 612 
approach would likely be the best way to perform a GEA analysis, as one would be able 613 
to determine the true correlation between genetic and environmental variation for each 614 
site in the genome. Indeed, we found that when we had perfect knowledge of allele 615 
frequencies in all locations, the SNP-based GEA always outperformed or matched the 616 
WZA and top-candidate methods (Figure S12). However, such a situation is unrealistic, 617 
and empirical GEA studies will likely always be limited to samples from only some of the 618 
populations of interest. Thus, leveraging the correlated information present among 619 
closely linked sites in GEA studies may provide a powerful method for identifying the 620 
genetic basis of local adaptation.  621 

Theoretical studies of local adaptation suggest that we should expect regions of the 622 
genome subject to spatially varying selection pressures to exhibit elevated linkage 623 
disequilibrium (LD) relative to the genomic background for a number of reasons. Under 624 
local adaptation, alleles are subject to spatial fluctuation in the direction of selection. As 625 
a locally adaptive allele spreads in the locations where it is beneficial, it may cause 626 
some linked neutral variants to hitchhike along with it (Sakamoto and Innan 2019). LD 627 
can be increased further as non-beneficial genetic variants introduced to local 628 
populations via gene flow are removed by selection. This process can be thought of as 629 
a local barrier to gene flow acting in proportion to the linkage with a selected site 630 
(Barton and Bengtsson 1986). Beyond this hitchhiking signature, there is a selective 631 
advantage for alleles that are involved in local adaptation to cluster together, particularly 632 
in regions of low recombination (Rieseberg 2001; Noor et al. 2001; Kirkpatrick and 633 
Barton 2006; Yeaman 2013). For example, in sunflowers and Littorina marine snails, 634 
there is evidence that regions of suppressed recombination cause alleles involved in 635 
local adaptation to be inherited together (Morales et al. 2019; Todesco et al. 2020). The 636 
processes we have outlined are not mutually exclusive, but overall, genomic regions 637 
containing strongly selected alleles that contribute to local adaptation may have 638 
elevated LD and potentially exhibit GEA signals at multiple linked sites. Window-based 639 
GEA scans can potentially take advantage of the LD that is induced by local adaptation, 640 
aiding in the discovery of locally adaptive genetic variation.  641 

The two window-based GEA methods we compared in this study, the WZA and the top-642 
candidate method of Yeaman et al. (2016), were fairly similar in power in some cases, 643 
but the WZA was most often better (Figure 3). Moreover, there are philosophical 644 
reasons as to why WZA should be preferred over the top-candidate method. Firstly, the 645 
top-candidate method requires the use of an arbitrary significance threshold. This is 646 
undesirable, however, because genuine genotype-environment correlations may be 647 
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very weak and GEA may simply be an underpowered approach to identify alleles that 648 
contribute to local adaptation. If there were no detectable signal of local adaptation, 649 
ascribing significance to a fraction of the genome may lead to false positives. Secondly, 650 
the top-candidate method gives equal weight to all SNPs that have exceeded the 651 
significance threshold. For example, with a threshold of 𝛼 = 0.01, genomic regions with 652 
only a single outlier are treated in the same way whether that outlier has a p-value of 653 
0.009 or 10(:. It is desirable to retain information about particularly strong outliers. It 654 
should be kept in mind, however, that the WZA (and the top-candidate method for that 655 
matter) does not explicitly test for local adaptation and only provides an indication of 656 
whether a particular genomic region has a pattern that deviates from the genome-wide 657 
average. Indeed, numerous processes other than local adaptation may cause excessive 658 
correlation between environmental variables and allele frequencies in particular 659 
genomic regions. For example, population expansions can cause allelic surfing, where 660 
regions of the genome “surf" to high frequency at leading edges of expanding 661 
populations. Allelic surfing can leave heterogeneous patterns of variation across a 662 
species range leaving signals across the genome that may resemble local adaptation 663 
(Novembre and Di Rienzo 2009; Klopfstein, Currat, and Excoffier 2006).  664 

When performing a genome-scan using a windowed approach a question that inevitably 665 
arises is, how to choose the width of analysis windows? If analysis windows were too 666 
narrow, there may be little benefit in using a windowed approach over a single-SNP 667 
approach. In all the results presented above, 10,000bp analysis windows were used for 668 
the WZA. Analysis windows that were narrower than 10,000bp were intermediate in 669 
performance between the single-SNP and 10,000bp approaches (Figure S13). Of 670 
course, if analysis windows were too wide, the signal of local adaptation may be diluted 671 
and the WZA could have little power. It seems like the ideal width for analysis windows 672 
would be informed by the pattern of recombination rate variation, LD decay and SNP 673 
density across a species genome. In practice, it may be useful to perform the WZA on 674 
groups of SNPs, such as genes as in the Yeaman et al. (2016) study. Future study is 675 
required to determine the optimal size for analysis windows. 676 

A striking result from our comparison of the various GEA methods we tested in this 677 
study was the low power of BayPass compared to Kendall’s 𝜏 (Figure 4). As mentioned 678 
in the Introduction, Lotterhos (2019) obtained a similar result in a previous study, though 679 
they had used Spearman’s ρ rather than Kendall’s 𝜏. This presumably occurs because 680 
genome-wide population genetic structure is oriented along a similar spatial axis as 681 
adaptation, and the correction in BayPass therefore causes a reduction in the signal of 682 
association at genes involved in adaptation. In such cases, the use of simple rank 683 
correlations such as Spearman’s ρ or Kendall’s 𝜏, which assume that all demes are 684 
independent, may often yield a skewed distribution of p-values. Such a distribution 685 
would lead to a large number of false positives if a standard significance threshold is 686 
used (Meirmans 2012). Here, we avoid standard significance testing, and instead make 687 
use of an attractive quality of the distribution of p-values: SNPs in regions of the 688 
genome that contribute to adaptation tend to have extreme p-values, relative to the 689 
genome-wide distribution. By converting them to empirical p-values, we retain the 690 
information contained in the rank-order of p-values, but reduce the inflation of their 691 
magnitude, which increases the power of the test (Figure S7B). While the empirical p-692 
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value approach may partially and indirectly correct for false positives due to population 693 
structure genome-wide, it loses information contained in the raw p-value that represents 694 
the deviation of the data from the null model for our summary statistic of interest. It is 695 
possible that a GEA approach that produced parametric p-values that was adequately 696 
controlled for population structure may provide a more powerful input statistic to the 697 
WZA, although that was not the case when we tested WZA based on BayPass results 698 
(Figure 4).  699 

Perhaps more striking is that to identify most or all causal loci, all GEA analyses used 700 
here also included a large number of false positives. Previous work has shown that 701 
GEA methods are uniformly effective when selection is strong (Lotterhos and Whitlock 702 
2015), so we intentionally simulated weak selection to compare the performance of 703 
different methods. Given that we simulated weak selection it is not surprising that GEA 704 
methods were underpowered.  705 

Ultimately, performing GEA analyses using analysis windows is an attempt to leverage 706 
information from closely linked sites. As mentioned, the WZA could potentially be used 707 
with other statistics where LD is expected to result in correlated signals across 708 
physically linked nucleotides, for example p-values from genome-wide association 709 
studies on the basis of phenotypic standing variation, but power in this context would 710 
need to be assessed by further testing. With the advent of methods for reconstructing 711 
ancestral recombination graphs from population genomic data (Hejase et al. 2020), 712 
perhaps a GEA method could be developed that explicitly analyzes inferred genealogies 713 
rather than individual markers in a manner similar to regression of phenotypes on 714 
genealogies proposed by Ralph et al. (2020). Such a method would require large 715 
numbers of individuals with phased genome sequences, which may now be feasible 716 
given recent technological advances (Meier et al. 2021).  717 

However, there are scenarios where incorporating information from linked sites in GEA 718 
analyses may obscure the signal of local adaptation. For example, the power of the 719 
WZA could be reduced if causal alleles contributed to local adaptation along multiple 720 
gradients (e.g. to altitudinal gradients in several distinct mountain ranges). If such 721 
gradients were semi-independent (i.e. medium/high FST among gradients), and then 722 
there may be a different combination of neutral variants in high LD with the causal allele 723 
in each case. In such a scenario, the species-wide LD in regions flanking the causal 724 
locus may be reduced, which would likely also reduce the power of the WZA. 725 

In conclusion, theoretical models of local adaptation suggest that we should expect 726 
elevated LD in genomic regions subject to spatially varying selection pressures. For that 727 
reason, GEA analyses may gain power by making use of information encoded in 728 
patterns of tightly linked genetic variation. The method we propose in this study, the 729 
WZA, outperforms single-SNP approaches in a range of settings and so provides 730 
researchers with a powerful tool to characterize the genetic basis of local adaptation in 731 
population and landscape genomic studies. 732 
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Appendix 863 

Parametrizing simulations of local adaptation 864 

Consider a hypothetical species of conifer inhabiting British Columbia, Canada. There 865 
may be many hundreds of millions of individuals in this hypothetical species distributed 866 
across the landscape. It would be computationally intractable to simulate all individuals 867 
forward-in-time incorporating adaptation to environmental variation across the 868 
landscape with recombining chromosomes, even with modern population genetic 869 
simulators. In our simulations we scaled several population genetic parameters to 870 
model a large population when simulating a much smaller one. In the following sections, 871 
we outline and justify the approach we used to scale pertinent population genetic 872 
parameters. 873 

Mutation rate 874 

We set the neutral mutation rate such that there would be an average of around 20 875 
SNPs in each gene after applying a minor allele frequency threshold of >0.05. This 876 
number was motivated by the average number of SNPs per gene in the lodgepole pine 877 
dataset described by Yeaman et al. (2016). We found that a neutral mutation rate (𝜇;<=) 878 
of 10(7 in our simulations achieved an average of 23.3. Note that this 𝜇;<= gave a very 879 
low population-mutation rate within demes, 4𝑁'𝜇;<= = 4.0 × 10(8. 880 

There are no estimates available of the mutation rate to locally adaptive alleles. We 881 
opted to use mutation rates that resulted in multiple locally beneficial alleles establishing 882 
in our simulations. For directional selection, we found that a mutation rate of 𝜇+>?5+ =883 
3 × 10() resulted in around 6 locally adaptive genes establishing. For stabilizing 884 
selection, a mutation rate of 𝜇+>?5+ = 1 × 10(,-, resulted in similar numbers of genes 885 
establishing. Note that in our model of directional selection, only a single nucleotide in 886 
each of 12 genes could mutate to a locally beneficial allele. In the case of stabilizing 887 
selection, all 10,000bp in the simulated gene could give rise to mutations that affected 888 
phenotype. 889 

Recombination rates 890 

We based our choice of recombination rate on patterns of LD decay reported for 891 
conifers. The pattern of LD decay in a panmictic population can be predicted by the 892 
population-scaled recombination parameter (𝜌 = 4𝑁<𝑟; Charlesworth and Charlesworth 893 
2010), but the pattern of LD decay in structured populations is less well described. In 894 
conifers, LD decays very rapidly in conifers and 𝜌 ≈ 0.005 has been estimated (Pavy et 895 
al. 2012). However, per basepair recombination rates (𝑟) in conifers are extremely low, 896 
estimated to be on the order of 0.05 cM/Mbp - more than 10× lower than the average 897 
for humans (Stapley et al. 2017). This implies a very large effective population size of 898 
roughly -.--:

A×-.:×,-&'
= 2.5 × 108, much larger than is feasible to simulate. To acheive a 899 
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similar number of recombination events through time in our simulated populations, we 900 
needed to increase 𝑟 above what has been empirically estimated. We chose a 901 
recombination rate that gave us a pattern of LD decay that was similar to what has been 902 
observed in conifers. We found that a per base pair recombination 𝑟 = 1 × 10() (i.e. 903 
roughly 200 × greater than in natural populations) gave a pattern of LD in our simulated 904 
populations that was similar to what has been reported for conifers. 905 

Selection coefficients 906 

It is difficult to choose a realistic set of selection parameters for modelling local 907 
adaptation because there are, at present, no estimates of the distribution of fitness 908 
effects for mutations that have spatially divergent effects. However, common garden 909 
studies of a variety of taxa have estimated fitness differences of up to 35-45% between 910 
populations grown in home-like conditions versus away-like conditions (Hereford 2009; 911 
Bontrager et al. 2020). Motivated by such studies, we chose to parametrize selection 912 
using the fitness difference between home versus away environments. 913 
 914 
When modelling directional selection, our simulations contained 12 loci that could 915 
mutate to generate a locally beneficial allele. The phenotypic optima that we simulated 916 
ranged from -7 to 7 and we modelled selection on a locus as 1 + 𝑠+𝜃 for a homozygote 917 
and 1 + ℎ𝑠+𝜃 for a heterozygote, where 𝑠+ is the selection coefficient, 𝜃 is the 918 
phenotypic optimum and ℎ is the dominance coefficient. With a selection coefficient of 919 
𝑠+ = 0.003, the maximum relative fitness was (1 + 7 × 𝑠+),* = 1.28 for an individual 920 
homozygous for all locally beneficial alleles. An individual homozygous for those alleles, 921 
but in the oppositely selected environment (i.e. present in the wrong deme) had a 922 
fitness of (1 − 7 × 𝑠+),* = 0.775. Thus, there would be approximately 40% difference in 923 
fitness between well locally adapted individuals at home versus away in the most 924 
extreme case. Note, however, that approximately 6 genes established in each 925 
simulation replicate, so the realized fitness difference was closer to a 20% difference. 926 

As stated the main text, for stabilizing selection simulations we chose 𝑉6 = 192 as this 927 
gave a maximum of 50% difference in fitness between individuals grown in home-like 928 
conditions versus away-like conditions. 929 

Migration rate 930 

We wanted to model populations with 𝐹!" across the metapopulation of approximately 931 
0.05, as has been reported for widely distributed conifer species such as lodgepole pine 932 
and interior spruce (Yeaman et al. 2016). For the stepping-stone simulations, we chose 933 
a migration rate of ).:

*C#
 as we found that this gave a mean 𝐹!" of 0.04. For an island 934 

model, we used the analytical formulae given in the main text to set 𝑚 to achieve a 935 
mean 𝐹!" of 0.03. 936 

937 
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Table S1 Population genetic parameters of a hypothetical organism, and how they are 938 
scaled in the simulations. The meta-population inhabits a 14 × 14 2-dimensional 939 
stepping stone. Parameters are shown for a population with 12 loci subject to directional 940 
selection. 941 

Parameter Hypothetical 
Biological Value 

Scaled Parameter Unscaled 
(Simulation)  

Global population size (𝑁!) 10" - 19,600 
 

Number of demes (𝑑) 196 - 196 
 

Local population size (𝑁#) 5,100 - 100 
 

Recombination rate (r) 2.00 × 10$% 4𝑁#𝑟 = 0.00004 1 × 10$& 
 

Selection coefficient (𝑠') 0.0001 2𝑁#𝑠' = 0.6 0.003 
 

Migration rate (m) 7.35 × 10$( 2𝑁#𝑚 = 7.5 0.0375 
 

Neutral mutation rate (𝜇)!*) 2 × 10$+, 4𝑁!𝜇)!* = 0.000004 10$- 
 

Functional mutation rate (𝜇.) 2 × 10$% 4𝑁!𝜇. = 0.00004 3 × 10$& 
 

 942 
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 944 

Figure S1 Summary statistics from neutral simulations. A) 𝐹!" between pairs of demes 945 
in stepping-stone populations. The average across replicates is 0.042. B) LOESS 946 
smoothed LD, as measured by 𝑟*, between pairs of SNPs in genes that are either 947 
evolving neutrally are locally adaptation as indicated by the color. Smoothing was 948 
performed using the ggplot2 package in R. 949 
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 951 

Figure S2 Individual and population mean phenotypes observed in representative 952 
simulations for each of the environment maps simulated. A small amount of horizontal 953 
jitter was added to points for visualization purposes. Colors represent phenotype values 954 
but are for visualization purposes only. 955 
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 957 

Figure S3 Locations of sampled demes on the maps of environmental variation we 958 
assumed in the simulations. Triangles indicate the locations where individuals were 959 
sampled in each case. Colors represent the optimal phenotype in each population, 960 
using the same color scheme as Figure 1 in the main text.  961 
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 963 

Figure S4 The distribution of WZA scores from neutral simulations with details of the 964 
right tail in the insets. Overlaid on each panel is the normal distribution fitted to each 965 
dataset. In all cases, results from 20 simulation replicates are plotted together.  966 

  967 

0.000

0.025

0.050

0.075

0.100

4 6 8
ZW

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 10
ZW

D
en

si
ty

Island ModelA

0.000

0.025

0.050

0.075

0.100

2 4 6 8
ZW

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 10
ZW

D
en

si
ty

Island Model − ShuffledB

0.00

0.02

0.04

0.06

4 6 8
ZW

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 10
ZW

D
en

si
ty

BC Map − WZAτC

0.00

0.05

0.10

0.15

4 6 8 10
ZW

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 10
ZW

D
en

si
ty

BC Map − WZABPD

0.00

0.02

0.04

0.06

7 8 9 10 11 12
ZW

D
en

si
ty

0.0

0.1

0.2

0.3

0.4

0.5

0 10
ZW

D
en

si
ty

BC Map − WZA − Parametric p−valuesE

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449972
http://creativecommons.org/licenses/by-nc/4.0/


 37 

 968 

Figure S5 The distribution of WZA scores from simulations of local adaptation. Note, 969 
the plot does not indicate the relative frequency of genes that are or are not locally 970 
adaptive. Results shown are for samples of 40 demes with 50 individuals sampled in 971 
each. In all cases, results from 20 simulation replicates are plotted together. As 972 
indicated on the plot, the upper and lower rows contain results for simulations with 973 
directional and stabilizing selection, respectively.  974 
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 976 

Figure S6 The distribution of effect sizes per gene from simulations of local adaptation. 977 
For directional selection, the effect size was we used the covariance between the 978 
fitness of a gene and the environment. For stabilizing selection, the effect size was the 979 
covariance between phenotypic contribution of a gene and the environment. The 980 
vertical line indicates the threshold we applied to the simulated data to classify genes as 981 
locally adaptive or not.  982 
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984 
Figure S7 A) Comparison of the WZA performed using empirical p-values (WZA𝜏) or 985 
using parametric p-values from Kendall’s 𝜏 (WZA𝜏 – Parametric p-values). B) 986 
Comparison of the WZA using 𝑝𝑞( as weights in the Equation 1 (WZA𝜏) and an 987 
unweighted version of the WZA (WZA𝜏 - Unweighted). In each case, the results were 988 
obtained using a sample of 50 individuals sampled from each of 40 demes. Lines 989 
represent the means of 20 replicates. See the caption of Figure 3 for a description of the 990 
x-axis. 991 
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 992 

Figure S8 Plots demonstrating the genomic landscape of genotype-environment 993 
correlations for a single replicate for each of the three maps of environmental variation 994 
we simulated. From top to bottom, the three rows correspond to the BC Map (panels A-995 
D), the gradient map (panels E-H) and the truncated map (panels I-L), respectively. The 996 
leftmost panel in each row shows the Manhattan plot of −𝑙𝑜𝑔,-(p-values) from Kendall’s 997 
𝜏 (panels A, E and I). The central panels in each row show the distribution of 𝑍# scores 998 
from the WZA across the genome (B, F and J) and the distribution of results from the 999 
top-candidate method (C, G and K). The rightmost panels show the proportion of locally 1000 
adapted genes identified using the three different tests for an increasing number of 1001 
genes in the search effort. Results are shown for directional selection simulations. Note 1002 
that only SNPs with a minor allele frequency > 0.05 are shown in panels (A, E and I). 1003 
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 1004 

 1005 

Figure S9 Comparison of the WZA, the top-candidate and the single-SNP approaches 1006 
with varying numbers of individuals sampled per deme. Simulations shown used the BC 1007 
map and directional selection. Lines represent the mean of 20 simulation replicates. For 1008 
a description of the axes in this plot see the legend to Figure 3 in the main text. 1009 
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 1011 

Figure S10 The distribution of 𝑍# scores under different recombination rates. Results 1012 
are shown for neutral simulations using the BC Map. WZA scores were calculated from 1013 
a sample of 40 demes where 50 individuals were sampled in each. 1014 
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 1016 

Figure S11 The distribution of 𝑍# scores for the GEA on (DD0) across the populations 1017 
of P. contorta sampled by Yeaman et al. (2016). The curve shows a normal distribution 1018 
fitted to the data. 1019 
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 1021 

1022 
Figure S12 A comparison of three methods to identify the genetic basis of local 1023 
adaptation when one has complete information on all aspects of the metapopulation, 1024 
including full sequences for all individuals on all populations. Lines represent the means 1025 
of 20 replicates. For a description of the axes in this plot see the legend to Figure 3 in 1026 
the main text 1027 

  1028 

BC Map Gradient Truncated

Entire Population

0.00 0.01 0.02 0.03 0.04 0.050.00 0.01 0.02 0.03 0.04 0.050.00 0.01 0.02 0.03 0.04 0.05
0.00

0.25

0.50

0.75

1.00

Fraction of all genes in the top set

Pr
op

or
tio

n 
of

 tr
ue

 p
os

iti
ve

s 
de

te
ct

ed

Method
WZAt

Top−candidate

Kendall's t

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449972doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449972
http://creativecommons.org/licenses/by-nc/4.0/


 45 

 1029 

Figure S13 Comparing the performance of the WZA genes identified using the WZA, 1030 
using analysis windows analyzing a fixed number of SNPs. Lines represent the means 1031 
of 20 replicates. Analysis was performed on results for a sample of 40 demes with 50 1032 
individuals taken in each location. For a description of the axes in this plot see the 1033 
legend to Figure 3 in the main text 1034 
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