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Abstract 
Amyloid-beta (Aβ) deposition is one of the hallmark pathologies in both sporadic 

Alzheimer’s disease (sAD) and autosomal dominant Alzheimer’s disease (ADAD), the 

latter of which is caused by mutations in genes involved in Aβ processing. Despite Aβ 

deposition being a centerpiece to both sAD and ADAD,  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.25.449939doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449939
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

some differences between these AD subtypes have been observed with respect to the 

spatial pattern of Aβ. Previous work has shown that the spatial pattern of Aβ in 

individuals spanning the sAD spectrum can be reproduced with high accuracy using an 

epidemic spreading model (ESM), which simulates the diffusion of Aβ across neuronal 

connections and is constrained by individual rates of Aβ production and clearance. 

However, it has not been investigated whether Aβ deposition in the rarer ADAD can be 

modeled in the same way, and if so, how congruent the spreading patterns of Aβ across 

sAD and ADAD are. We leverage the ESM as a data-driven approach to probe 

individual-level variation in the spreading patterns of Aβ across three different large-

scale imaging datasets (2 SAD, 1 ADAD). We applied the ESM separately to the 

Alzheimer’s Disease Neuroimaging initiative (N=737), the Open Access Series of 

Imaging Studies (N=510), and the Dominantly Inherited Alzheimer’s Network (N=249), 

the latter two of which were processed using an identical pipeline. We assessed inter- 

and intra-individual model performance in each dataset separately, and further identified 

the most likely epicenter of Aβ spread for each individual. Using epicenters defined in 

previous work in sAD, the ESM provided moderate prediction of the regional pattern of 

Aβ deposition across all three datasets. We further find that, while the most likely 

epicenter for most Aβ-positive subjects overlaps with the default mode network, 13% of 

ADAD individuals were best characterized by a striatal origin of Aβ spread. These 

subjects were also distinguished by being younger than ADAD subjects with a DMN Aβ 

origin, despite having a similar estimated age of symptom onset. Together, our results 

suggest that most ADAD patients express Aβ spreading patters similar to those of sAD, 

but that there may be a subset of ADAD patients with a separate, striatal phenotype. 
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Introduction 
To date, there is no cure for Alzheimer’s disease (AD), the principle 

neurodegenerative cause of dementia. Treating patients with dementia is costly - in 2009, 

the average cost for a patient with AD was roughly 57,000 USD1. The socioeconomic 

gravity of treating AD has spurred research seeking to prevent or mitigate AD by first 

developing biomarkers that can be used for early diagnosis and monitoring2. The two 

main pathological signs of AD are neurofibrillary tau tangles and Aβ senile plaques, and 

both are required to definitively confirm AD at autopsy3. Most hypothetical models of 

AD progression have been rooted in the amyloid cascade hypothesis, which posits that 

excessive amounts of soluble Aβ cause a buildup of insoluble Aβ, disrupting synaptic 

function and accelerating tau hyperphosphorylation4. Most cases of AD are sporadic in 

nature, and the much rarer autosomal dominant form of AD is caused by mutations in 

genes - namely, APP, PSEN1, PSEN2 - that impact the processing of the amyloid 

precursor protein from which the Aβ peptide is cleaved. While ample research has 

pointed to accumulation of Aβ in the brain as being one of the earliest pathological 

biomarkers in both sAD and ADAD, we know quite little about where and how Aβ 

begins to accumulate, how it spreads in the brain, and whether either of these is variable 

across individuals. An ADAD mutation virtual guarantees amyloidosis, making carriers 

of these mutations incredibly important for the study of amyloid-related processes and 

brain changes in AD. However, it is still unclear just how similar ADAD and sAD are 

with respect to the progression of various biomarkers, including Aβ. 

In general, most studies in this domain have focused less on inter-individual 

variability and have primarily reported group differences. Unlike in sAD, where Aβ 

deposition is highest in neocortical areas, several groups have reported significantly 

increased striatal, thalamic, and neocortical Aβ deposition in ADAD mutation carriers 

compared with noncarriers5,6. One study evaluating differences between the PSEN1, 

PSEN2, and APP ADAD mutation types found that all mutation types had high striatal 

PiB binding while some mutation carriers had higher cortical PiB binding. Interestingly, 

PiB binding in the cortex was found to be lower in ADAD mutation carriers than age-

matched subjects with probable sAD7. While the sample size of this study was small 

(n=30 ADAD mutation carriers, n=30 sAD subjects), the findings suggest that the most 
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probable area(s) of earliest Aβ accumulation may not be homogenous amongst all 

ADAD mutation carriers. 

Recently, an event-based model of disease progression was applied to ADAD 

mutation carriers. The authors found that the biomarker likeliest to exhibit the earliest 

deviation from normal levels was a cortical Aβ deposition measure, followed by Aβ 

deposition in the caudate, putamen, accumbens, and thalamus8. In sAD, a separate model 

leveraged CSF and Aβ signals to stage subjects according to Aβ accumulation status. In 

this study, subjects who were both CSF and Aβ negative according to a set of data-

driven thresholds were deemed to be non-accumulators, whereas those who were CSF 

positive but Aβ negative were deemed to be early Aβ accumulators9. Regions pinpointed 

as areas of earliest accumulation were those that had significantly increased Aβ signal in 

early accumulators compared with non-accumulators. According to this system, the 

precuneus, medial orbitofrontal cortex, and posterior cingulate were all categorized as 

regions of early accumulation whereas the caudal anterior cingulate was pinpointed as an 

area of intermediate accumulation. Together, these studies suggest possible differences 

between ADAD and sAD in the earliest regions to accumulate Aβ. 

While both data-driven approaches can be used to glean the order in which 

biomarkers can be detected at either a regional or global level, neither of them is 

mechanistic in nature. To better understand how Aβ or tau spreads in the brain, we can 

instead turn to an epidemic spreading model (ESM) developed to stochastically 

reproduce the propagation and deposition of misfolded proteins such as Aβ, tau, and 

alpha-synuclein. The overarching nonlinear differential equation of the model posits that 

the change in misfolded protein deposition in each macroscopic region of interest (ROI) 

is equal to the probability of endogenously producing and exogenously receiving 

misfolded proteins from connected ROIs, minus the probability of clearing the deposited 

misfolded proteins. This approach has previously been applied to model the spread of Aβ 

and tau across anatomical connections in individuals along the sAD spectrum10,11. When 

applied to over 700 subjects in the ADNI dataset, the ESM was able to explain 46-57% 

of the variance in the mean regional Aβ deposition probabilities of the distinct clinical 

subgroups and identified the posterior and anterior cingulate cortices as the seed regions 

of Aβ propagation. These seed regions are in agreement with what has been established 
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in the literature12. Using the ESM, we can evaluate whether there is sufficient evidence 

to suggest that Aβ spreads along neuronal connections in ADAD as well. Furthermore, 

we can evaluate how similar ADAD and sAD are with respect to which regions Aβ 

begins spreading from. We tackle this question by applying the ESM within three 

different datasets representing sAD and ADAD, to both evaluate differences between 

ADAD and LOAD, as well as validate the previously published results in an independent 

dataset. 

Methods 

Participants 
Participants for this study are comprised of individuals from three multi-center 

studies: the Dominantly Inherited Alzheimer’s Network (DIAN; https://dian.wustl.edu), 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu), and 

the Open Access Series of Imaging Studies (OASIS; www.oasis-brains.org). While the 

ESM had already been applied to ADNI, a dataset representative of LOAD, we include 

an additional dataset for two reasons - (1) to validate the previously published results in 

an independent cohort and (2) to compare results in DIAN with a dataset that used the 

same radiotracer and was processed using the same pipeline. 

The DIAN dataset represents individuals from families known to have mutations in the 

amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes. 

Both mutation carriers and non-carriers were used for different stages of the analysis. 

We selected individuals who had at least one PIB PET scan and accompanying T1w scan 

from the 12th semiannual DIAN data freeze. For this study, DIAN serves as the dataset 

representative of ADAD. 

The OASIS dataset is a compilation of participants from multiple studies, and the 

participants range from older, cognitively normal adults to those at various stages of 

cognitive decline and dementia. 
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MRI and PET acquisition and preprocessing 
MRI and PET acquisition procedures for the DIAN13, ADNI 

(http://adni.loni.usc.edu/methods/), and OASIS14 datasets have previously been described in 

detail. 

It is important to note that the processing pipeline and the radiotracer for the 

ADNI dataset diverge from those used for DIAN and OASIS. For ADNI, the 

preprocessing pipeline is taken from the original ESM publication10. Briefly, individual 

AV45 PET scans were acquired and processed in the following order - dynamic co-

registration, averaging across time, re-sampling and reorientation from native space to a 

standard voxel space, spatial filtering, and finally spatial normalization to MNI space. 

For the DIAN and OASIS dataset, whole-brain T1w scans and individual PiB-PET scans 

were acquired. Quality control was performed as per the ADNI protocol. FreeSurfer 

version 5.3 (http://surfer.nmr.mgh.harvard.edu) was used to derive subject-specific 

segmentations corresponding to regions in the Desikan-Killiany-Tourville atlas 

(DKT,15). Only cortical and subcortical regions overlapping with the Mindboggle DKT 

atlas were used, for a total of 78 regions16. 

For both OASIS and DIAN, the PET Unified Pipeline (PUP; 

https://github.com/ysu001/PUP) was used to preprocess the PET scans. The processing steps 

used include smoothing, interframe motion correction and co-registration. Specifically, PET 

images in the 4dfp format are smoothed to achieve a common spatial resolution of 8mm to 

minimize inter-scanner differences (Joshi et al., 2009). PET-MR registration was performed 

using a vector-gradient algorithm (VGM) (Rowland et al., 2005). Co-registered summed PET 

scans in the 4dfp file format were downloaded from the CNDA portal (https://cnda.wustl.edu), 

and 4dfp images were subsequently converted to the Nifti file format for further analysis. 

Regional Aβ Probabilities 

Traditionally, static PET processing involves quantifying co-registered PET 

images using standardized uptake value ratios (SUVR) for each ROI with respect to the 

average signal in a reference region devoid of specific tracer binding. The reference 

region typically used in AD Aβ PET imaging studies is the cerebellar cortex; however, 

amyloid deposition has been observed in the cerebellar cortex of individuals with 
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ADAD17. Based on recent work seeking to clarify the optimal reference region for Aβ 

measurement using PiB-PET and the DIAN cohort, we used the brainstem as the 

reference region for the DIAN and OASIS datasets18,19. For the ADNI dataset, we used 

the Aβ deposition probabilities that had previously been generated (using a cerebellar 

reference region)10. 

The original ESM paper introduced a voxelwise probability metric, which we 

will refer to as V ECDF, RR EVD. For each subject this approach creates a bootstrapped 

sampling consisting of 40,000 subsamples in the 5-95% of values in the reference 

region. Subsequently, an extreme value distribution (EVD) is created using the 

maximum value observed in each bootstrapped sample. The EVD is used to create an 

extreme cumulative distribution function, and for each voxel in the PET image, the 

probability of it being greater than every value in the EVD is computed. A final regional 

Aβ deposition probability is calculated as the average of the probabilities corresponding 

to each voxel within a given ROI. Given the overall higher PiB-PET signal in the 

brainstem than the cerebellar cortex, we use the 75th percentile value rather than the 

maximum in each bootstrap sampling to create the EVD when using the brainstem as the 

reference region. 

For the DIAN dataset, we observed that noncarriers’ Aβ deposition probabilities 

were negligible in all ROIs except for the globus pallidus and thalamus, ROIs that have 

previously been observed to have nonspecific uptake of PiB20,21. Given their young age 

(Table 1), we are confident that the DIAN non carriers are truly amyloid-negative and 

are therefore a fully reliable control group. Subsequently, for each ROI, across all 

available timepoints, the noncarriers’ signal was used to create a ROI-specific control 

distribution. For each mutation carrier, we calculated a z-score for their Aβ binding 

probability in the ROI with respect to the ROI-specific control distribution. Within each 

ROI, we min-max scaled the absolute values of the z-scored signal across all timepoints 

to have probabilities in the [0,1] range again. 

Epidemic Spreading Model 

The spread of Aβ was simulated using the ESM, a diffusion model that has 

previously been used to simulate the spread of Aβ and tau in the ADNI dataset from an 
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initial epicenter(s) and through an ROI network10,11. In addition to the connectivity 

between ROIs, subject specific propagation parameters influence the magnitude or 

extent of the spreading pattern. These parameters correspond to a global clearance rate, 

global production rate, and age of onset. These are fit by solving a non-linear differential 

equation designed to reproduce the overall regional pattern of Aβ deposition. The ESM 

is fit by searching the parameter space, and the set of parameters that yield the regional 

pattern of Aβ deposition most like the reference (observed) pattern is selected. 

The main data input to the ESM is the ROI by Subject matrix reflecting regional 

Aβ deposition probabilities for each subject. Epicenters can either be supplied by the 

user or selected in a data-driven way. In the data-driven context, the ROI or combination 

of ROIs that best explain the average group-level pattern are returned as the epicenters. 

For a more detailed overview of the equations underlying the ESM, please refer to10. 

Connectivity Measures 

In order to propagate Aβ signal across the brain, the ESM requires a matrix of 

pairwise relationships between ROIs. This informs the final regional pattern of Aβ. 

Earlier applications of the ESM tested whether Aβ spreads along synapses by using a 

structural connectivity matrix. 

We used a structural connectivity matrix derived from diffusion spectrum 

imaging (DSI) scans of 60 young healthy subjects from the CMU-60 DSI template22. 

The acquisition and pre-processing steps have been described in detail in the original 

ESM paper and were based on methodology developed in an earlier paper23,10. Briefly, 

all images were non-linearly co-registered to MNI space, and orientation distribution 

functions (ODF) representing nerve fiber orientations were calculated. All intravoxel 

fiber ODF maps were averaged to create an ODF template, and an automated fiber 

tractography method was used to calculate probabilistic axonal connectivity values for 

each voxel and the surface of each grey matter region in the DKT atlas. Previously 

described anatomical connection probabilities were then generated for each ROI-ROI 

pair. 
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Aβ Positivity 

The ESM has previously been shown to be sensitive to spurious levels of signal, 

so we opted to confine our analysis to Aβ positive subjects11. We used gaussian mixture 

modelling to compute Aβ positivity thresholds in a data-driven way for both the PUP 

generated SUVRs and the probability values averaged across a composite set of regions 

that are implicated in AD. Specifically, these include the bilateral precuneus, superior 

frontal, rostral middle frontal, lateral orbitofrontal, medial orbitofrontal, superior 

temporal, and middle temporal ROIs. For each metric, we fit a two-component mixture 

model across the entire DIAN dataset - including non-carriers and mutation carriers - 

and estimated a cut-off. Only subjects who were positive on both the SUVR and 

probability metrics were considered Aβ positive for subsequent analyses. Since the 

DIAN and OASIS datasets were both processed using the WUSTL PET Unified 

Pipeline, we applied the cut-offs generated using the DIAN dataset to the OASIS dataset 

as well. Aβ positive subjects in these datasets were defined as those whose average Aβ 

value across a set of previously defined cortical areas surpassed 0.81 and 0.01236 for 

SUVR and deposition probability values, respectively. We illustrate the correspondence 

between within-subject composite Aβ SUVRs and deposition probabilities, as well as the 

GMM results in Figure S1. Aβ positive ADNI subjects were identified using a 

previously defined composite Aβ SUVR threshold of 1.11. 

Statistical analysis 

Using the structural connectivity matrix and the cross-sectional baseline subject 

by region Aβ probability deposition matrix, we fit the ESM across different possible 

epicenters for the DIAN, ADNI, and OASIS datasets. Model performance for each 

experiment was evaluated by mean within-subject and global fit. Within-subject 

performance is evaluated as the Pearson r2 between the subject-specific observed and 

predicted regional Aβ deposition probabilities measured using PiB-PET. We evaluate 

global fit by averaging the observed and predicted regional Aβ probabilities across all 

subjects, respectively, and calculating the Pearson r2 between the averaged observed and 

predicted patterns. To ensure that our results are statistically significant and specific to 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.25.449939doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449939
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

the connectivity matrix we used, we scrambled the original connectivity matrix 100 

times while preserving degree and strength distributions using the Brain Connectivity 

Toolbox (https:// sites.google.com/site/bctnet/). We used the null distribution of the 

mean within-subject fit and global fit to calculate the mean and 95% confidence intervals 

for each ESM experiment. 

Building off previous results suggesting that Aβ first accumulates in the posterior 

cingulate (PC) and caudal anterior cingulate (cAC) and subsequently spreads to other 

regions in the brain (in ADNI), we sought to evaluate whether this replicates in another 

LOAD dataset, as well as the DIAN dataset. Given our objective of evaluating whether a 

cortical or striatal epicenter better explains Aβ spreading patterns in ADAD, we repeated 

this analysis for all three datasets using the caudate and putamen as the seed regions. 

For a more data-driven approach to epicenter selection, in each dataset, we evaluated 

global fit using each bilateral ROI as an independent epicenter. For each subject we 

noted the epicenter that provided the best within-subject fit, and we assessed how 

frequently specific epicenters were present within each dataset. Given the lack of 

consensus about whether ADAD mutation carriers first accumulate Aβ in the striatum or 

neocortical regions that overlap with the default mode network, we further divided the 

possible epicenters into three subgroups - default mode network (DMN), striatum, and 

other. ROIs falling into the DMN group included the posterior cingulate, caudal anterior 

cingulate, rostral anterior cingulate, precuneus, and medial orbitofrontal cortex. The 

striatum subgroup included the caudate and putamen, and the other group contained all 

ROIs not in the other three subgroups. Using these data-driven epicenter subgroups, we 

compared within-subject model performance using either the caudate and putamen or 

cAC + PC as epicenters across the epicenter subgroups. We evaluated the statistical 

difference in the models’ performance across epicenter subgroups using the non-

parametric Kolmogorov-Smirnov (K-S) test statistic. 

After stratifying subjects across epicenter subgroups (DMN, Striatum, and 

Other), we examined associations with age and EYO. We additionally ran ordinary least-

squares general linear models (GLMs) to assess the relationship between the epicenter 

subgroup and the Aβ signal in all ROIs while covarying for age and sex. We FDR 

corrected the relationships used the Benjamini–Hochberg approach.  
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As a follow-up, we evaluated the test-retest reliability of the best within-subject 

epicenter for each subject that had two scans. 

 

Results 

Sample information 

Baseline PiB-PET scans measuring fibrillar Aβ load were available for 249 

ADAD mutation carriers in the DIAN dataset. 124 of these mutation carriers had one 

follow-up PiB-PET scan, and 44 of them had two follow-up scans. Baseline AV45-PET 

scans were available for 737 individuals from the ADNI dataset, and baseline PiB-PET 

scans were available for 510 individuals from the OASIS cohort. Demographic 

information for this sample can be found in Table 1. 

 

Table 1: Demographic information 

  
N 249 124 737 510 
Age (SD) 39.01 (10.7) 42.12 (9.7) 72.43 (7.2) 67.65 (9.8) 
% Women 56.3% 60.1% 44.9% 57.8% 
EYO (SD) -8.54 (10.9) -4.7 (9.8) - - 
% ApoE4 30.1% 29.53% 51.7% - 
% Aβ Positive 55% 63.7% 54% 25% 
% Cognitively Normal 68.7% 58.8% 26.2% 86.5% 

 
EYO = Estimated years to symptom onset; SD = Standard Deviation; T1 = Timepoint 1; 

T2 = Timepoint 2 

 

Putative areas of early Aβ accumulation in LOAD do not 

explain the full picture in ADAD 

 

Dataset DIAN ADNI OASIS 
T1 T2 
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To evaluate whether neuronal connectivity can explain the whole-brain pattern of 

Aβ in both ADAD mutation carriers and individuals from the OASIS dataset, we fit the 

ESM to regional Aβ deposition probabilities derived using PiB-PET or AV45-PET data 

(see Methods).  

We first evaluated how well previously identified regions of early amyloid, 

namely cingulate and striatal regions, recapitulate group-level whole-brain Aβ patterns 

across all three datasets. We will refer to the model using the caudal anterior cingulate 

(CAC) and posterior cingulate (PC) as epicenters as the CAC + PC model, and the one 

using the caudate and putamen as the striatal model. In the DIAN dataset, the model 

using the CAC and PC as seed regions explained 27% (null model mean r2 [95% CI] = 

0.119 [0.089, 0.164]; p < 0.01) of the aggregated pattern of Aβ, and on average 

explained 14.6% (null model mean r2 [95% CI] = 0.07 [0.002, 0.179]; p = 0.1) of the 

regional pattern of Aβ within individual subjects (Fig 1a). In Aβ positive subjects, the 

global fit and the mean within subject fit improved to 31% and 20.7% (p < 0.05), 

respectively. When stratifying performance across the three main mutation types, we 

found that there was no significant difference between the three groups. 

In line with the results that had been previously shown for the ADNI dataset in10, the 

CAC + PC model explained 53.9% (null model mean r2 [95% CI] = 0.103 [0.074, 

0.148]; p < 0.01) of the aggregated pattern of Aβ and on average explained 39.1% (null 

model mean r2 [95% CI] = 0.087 [0.002, 0.217]; p < 0.01) of the regional pattern of Aβ 

in individual subjects. In Aβ positive subjects, the global fit and the mean within subject 

fit changed slightly to 51% and 38%, respectively. 

In the LOAD validation dataset, OASIS, the performance was lower than what had 

previously been reported for ADNI. Across the whole dataset, the CAC + PC model 

explained 28% (null model mean r2 [95% CI] = 0.158 [0.123, 0.217]; p < 0.01) of the 

aggregated pattern of Aβ and on average explained 9% (null model mean r2 [95% CI] = 

0.063 [0.017, 0.139]; p = 0.15) of the within subject variance. However, when we only 

look at Aβ positive individuals, the global fit and the average within subject fit increased 

to 40% (null model mean r2 [95% CI] = 0.14 [0.098,0.18]; p < 0.01) and 21% (null model 

mean r2 [95% CI] = 0.082 [0.002, 0.196]; p = 0.04), respectively, and the results were 

significant. 
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Since a primary goal of this study was to identify whether a cortical or striatal 

epicenter better explains the regional patterns of Aβ in DIAN, we additionally repeated 

the same analysis using the caudate and putamen as the seed regions. When applied to 

ADNI, the striatal model performed poorly. It explained 3% (null model mean r2 [95% 

CI] = 0.055 [0.043, 0.072]; p = 1) of the aggregated pattern of Aβ and on average 

explained 5% (null model mean r2 [95% CI] = 0.05 [0.001, 0.139]) of the within-subject 

Aβ patterns in Aβ positive subjects. In DIAN Aβ positive subjects, the striatal model 

explained 18% (null model mean r2 [95% CI] = 0.103 [0.072, 0.146]; p < 0.02) of the 

aggregated pattern of Aβ and on average explained 17.2% (null model mean r2 [95% CI] 

= 0.085 [0.001, 0.256]) of the within-subject pattern. In Aβ+ OASIS subjects, the striatal 

model explained 14% (null model mean r2 [95% CI] = 0.084 [0.062, 0.133]; p < 0.02) 

and on average 11.4% (null model mean r2 [95% CI] = 0.059 [0.001, 0.16]; p = 0.15) of 

the global and within-subject results, respectively. 

 

 

 

 

 

 

 

 

 

 

Figure 1 Comparison of global model fit across datasets and epicenters. ESM performance 
(global fit) across the ADNI, OASIS, and DIAN datasets using either the (a) posterior cingulate and 
caudal anterior cingulate or (b) caudate and putamen as epicenters. Each dot represents the observed 
and predicted mean signal for an ROI across all subjects within a dataset. Only Aβ positive subjects 
were included. 
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Epicenter heterogeneity in DIAN compared with ADNI and 

OASIS 

We initially compared ESM performance between the ADNI and DIAN dataset 

using a priori defined epicenters. Next, we ran the ESM using each bilateral ROI as the 

model epicenter to evaluate which ROI best explains the whole-brain patterns of Aβ in 

each dataset. We assigned each participant to an epicenter subgroup based on which ROI 

yielded the best within-subject performance (as described in 2.7). 

In Figure 2a-b we show the relative breakdown of epicenter subgroups within the 

datasets in all subjects, and in Aβ positive subjects only. In Aβ positive subjects from 

ADNI and OASIS, most subjects have an epicenter in the DMN, while the remaining 

subjects fall into the Other category. Specifically, 89.2% of Aβ positive ADNI subjects 

and 72.7% of Aβ positive OASIS subjects have a DMN epicenter. In the DIAN dataset, 

there was substantially more heterogeneity, with 59.1% of Aβ subjects falling into the 

DMN group, 13.1% into the striatum group, and 27.7% into the Other group. 

We next assessed the performance of the ESM in each ”epicenter subgroup” 

across different model epicenters. We hypothesized that ESM within-subject fit using the 

caudate and putamen as epicenters would be highest within the DIAN striatum epicenter 

subgroup, and this was substantiated by the results (Fig 2b). Encouragingly, we found 

that the ESM within-subject fit using the CAC and PC as epicenters was highest across 

the DMN epicenter subgroups across all the datasets, and it remained high in the Other 

subgroup for ADNI. The CAC + PC model fit continued to be higher in ADNI than 

OASIS (KS=0.42, p=1.6e-12) and DIAN (KS=0.41, p=7.3e-11) within the DMN groups. 

Within the DIAN dataset, the striatal model significantly out-performed the CAC + PC 

model in the striatal epicenter subgroup (KS=0.67, p=2.15e-4). 

 

Figure 2 Epicenter frequency and within-subject performance across all datasets. 

(a) Epicenter frequency across all subjects in each dataset. (b) The same information 

when only Aβ positive subjects are included from each dataset. (c) and epicenter group, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.06.25.449939doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449939
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 

using only Aβ positive subjects. (d) The ESM within-subject performance is shown 

using the caudate and putamen as epicenter 

 
Figure 2 Epicenter frequency and within-subject performance across all datasets. (a) Epicenter 
frequency across all subjects in each dataset. (b) The same information when only Aβ positive subjects 
are included from each dataset. (c) and epicenter group, using only Aβ positive subjects. (d) The ESM 
within-subject performance is shown using the caudate and putamen as epicenters. 
 
Epicenter subgroup in DIAN associated with distinct whole-

brain Aβ patterns and age at symptom onset 

Next, we were interested in parsing the heterogeneity observed within the DIAN 

dataset with respect to best within-subject epicenter. Specifically, we sought to evaluate 

any differences in whole brain Aβ pattern and demographics. 

As expected, we reaffirmed that individuals in the Other subgroup had significantly 

lower global cortical Aβ-PET signal (Fig 3c), suggesting these subjects to be ’false 

positives’. In other words, individuals with ”Other” (i.e. not DMN or striatal) epicenters 
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tended to be low amyloid Aβ- individuals, for whom the model was likely fitting non-

specific or off-target binding. 

We further examined whole-brain Aβ pattern differences amongst the different 

epicenter groups. Individuals whose whole-brain Aβ patterns are best described using a 

DMN epicenter have more Aβ in the cortex compared with individuals in the other two 

groups (FDR < 0.05; Figure 3a). Conversely, individuals in the Other epicenter subgroup 

had less Aβ everywhere in the brain. Individuals with striatal epicenters showed greater 

striatal PiB binding, but reduced binding in occipital and lateral temporoparietal cortex. 

      The epicenter groups were also associated with differences in age. Specifically, while 

the DMN and striatum group did not differ with respect to EYO, individuals in the striatum 

group were younger than those in the DMN group (Fig 3b). This may potentially suggest 

that the striatal epicenter phenotype is associated with a younger age at symptom onset 

and/or an altered disease time course. 

 

 
Figure 3 Demographic differences across epicenter subgroups in DIAN (only Aβ positive 
individuals). (a) Within-subject Aβ composite signal across the epicenter subgroups. (b) Comparison of 
whole-brain Aβ signal across the epicenter sub-groups. Regions are color-coded based on their t-value for 
the particular group, with red indicating that there is more Aβ signal in the respective group compared 
with the other two groups. (c) Within-subject EYO and age differences across the epicenter subgroups. 
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Epicenter reliability across timepoints 

With the availability of longitudinal PiB-PET data for a subset of our dataset, we 

were able to assess how reliably the ESM selects an individual’s epicenter subgroup 

when presented with data from subsequent timepoints. As shown in Table 1, 124 of the 

DIAN mutation carriers had two timepoints available, and 44 had three available. 

Subjects with a DMN or Other epicenter at timepoint 1 (T1) almost always stay that way 

at timepoint 2 (T2), while there is more variability amongst subjects with a striatal 

epicenter at T1. This may perhaps indicate that some individuals with a striatal epicenter 

at T1 are in a temporally short-lived phase whereby Aβ first begins accumulating in the 

striatum and subsequently in the DMN. In other words, individuals who are advancing 

with respect to Aβ accumulation may first either show Aβ in the striatum, the striatum 

then the DMN, or initially in the DMN. 

To address this issue of conversion from a striatal epicenter to a different 

epicenter, we assessed change in composite Aβ deposition probabilities across the 

different T1-T2 epicenter combinations. We find that individuals who persist with either 

a striatum or DMN epicenter, or switch from a striatal to DMN epicenter, are gaining 

amyloid over time (Fig 4b). We observe that those who switch from a DMN or a striatal 

epicenter to an ’Other’ are exhibiting a loss of Aβ signal, possibly due to cortical 

atrophy.  
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Figure 4 Evaluating epicenter reliability across timepoints in DIAN. A) Confusion matrix for epicenter 
subgroups at timepoint 1 (T1) vs timepoint 2 (T2). Values along the diagonal represent individuals who remain the 
same epicenter subgroup at visits 1 and 2. B) Swarmplot representing composite Aβ change in each T1/T2 epicenter 
subgroup combination. 

 
Discussion 

Throughout this study we have explored how well a model that simulates the 

transneuronal spread of Aβ under biologically feasible constraints of Aβ production and 

clearance can explain regional Aβ probabilities for subjects who are either along the 

sporadic or autosomal dominant Alzheimer’s disease continuum. While many cross-

sectional studies have attempted to elucidate differences in the regional Aβ patterns 

across these subtypes of Alzheimer’s disease, the present study provides a direct 

comparison of hypothetical spreading patterns of Aβ using a mechanistic model. 

The ESM generates within subject trajectories of Aβ accumulation, and we leveraged 

this to assess potential heterogeneity across subjects with respect to the earliest locations 

of Aβ. Several earlier PiB-PET studies in ADAD have compared which areas begin to 

accumulate Aβ earliest in the disease time courses of ADAD and LOAD. These studies 

have reported significantly more amyloid in the striatum in presymptomatic ADAD vs 

presymptomatic LOAD5, and it has been suggested that different mutation types may 

contribute to heterogeneity amongst individuals with ADAD7,24. We found that there was 

a portion of subjects in the DIAN dataset whose regional Aβ patterns were best 

reproduced using a striatal epicenter. All but two of these subjects were Aβ positive, 
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suggesting that the results were not driven by false positive signal. Furthermore, these 

subjects could be distinguished from those with a DMN epicenter by their younger age 

and younger age of symptom onset, lending support to the idea that this group represents 

an ADAD-specific phenotype distinct from one characterized by initial Aβ spread from 

ROIs in the DMN. However, one of the difficulties with interpreting this result lies in the 

small percentage of subjects with a best fitting striatal epicenter. It is difficult to 

disentangle whether this striatal epicenter group is truly a separate group for whom Aβ 

definitively begins accumulating solely in the striatum, or the result of these subjects 

being imaged during a short dynamic time period, or perhaps both. 

 

However, not all subjects’ Aβ patterns were best recapitulated using a striatal 

epicenter, and this was supported by the group-level findings. While a hypothetical 

striatal epicenter explained more variance in the DIAN dataset than in both the ADNI 

dataset and our validation dataset, OASIS, a DMN epicenter still explained more 

variance in DIAN within the entire Aβ positive cohort. This may suggest that the Aβ 

pattern profiles are not homogeneous amongst ADAD mutation carriers, and that there 

are individuals who are more similar to sporadic AD patients with respect to Aβ. We 

were able to address this in part by showing that there is a subgroup of DIAN 

participants whose Aβ patterns are explained as well as the ADNI cohort’s when using 

the caudal anterior cingulate and posterior cingulate as epicenters. 

Our findings provide data-driven corroboration of a neuropathological study finding that 

ADAD mutation carriers have increased striatal vulnerability to accumulate Aβ due to 

the regional distribution and metabolism of APP25. The same study showed an increased 

accumulation of striatal tau in ADAD mutation carriers compared with sAD individuals, 

and previous simulations of tau spreading in sAD shed additional light on how Aβ 

facilitates the spread of tau and influences its spatial localization11. In tandem, a study in 

ADAD has indicated that striatal amyloid is a better predictor than cortical amyloid of 

both tauopathy and cognitive decline in ADAD mutation carriers26. With availability of 

tau-PET data for the DIAN cohort, it would be worthwhile to assess this relationship 

while accounting for the epicenter subgroup differences. 
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In light of mounting evidence for striatal and network-level involvement in 

ADAD both with respect to Aβ and tau, a recent study found that frontostriatal circuits 

are structurally and functionally impacted by APP and PSEN1 mutations27. Specifically, 

the APP gene increased functional connectivity and altered axonal integrity in the 

caudate to rostral middle frontal gyrus (caudate-rMFG) tract. While the ESM and other 

mechanistic spreading models reproduce the spread of Aβ over a static network 

reflecting anatomical connectivity in health, these results, along with those from a 

separate study evaluating the sequence of changes in anatomical connectivity in elderly 

individuals’ brains over the course of sAD progression28, suggest that Aβ affects the 

circuits or networks via which it spreads. 

One objective of this study was to reproduce the findings in10 an independent 

dataset. One of the issues we observed when modeling group-level results was that of a 

significant disparity in overall Aβ levels across the three datasets. In particular, the 

OASIS dataset had a high percentage of younger, cognitively normal adults who were 

Aβ negative. As we discussed in the Results section, the ESM appears to be sensitive to 

low levels of Aβ - i.e. the ESM is fit to non-specific or off-target signal not reflecting 

true pathology, and this would have a particularly large impact on within-subject results 

for the most likely epicenter(s). As such, we opted to focus on Aβ positive subjects for 

the within-subject analyses. When we limited our analysis to Aβ subjects, we found that 

the results across ADNI and OASIS were on par with one another, with a vast majority 

of subjects being best described by an epicenter that overlaps with the default mode 

network. This observation is in line with previous datadriven approaches used in both 

cross-sectional and longitudinal studies to discern which regions begin to show increased 

Aβ in early stage sAD29,?. 

This study has several limitations that pertain to measurement of Aβ, anatomical 

connectivity, and the ESM methodology. One limitation faced when directly comparing 

the ADNI and DIAN sets is that the PET data was collected using the AV45 radiotracer 

in ADNI and the PiB tracer in DIAN/OASIS. Additionally, we sought to use the results 

in the original ESM publication as a benchmark, and this required using the derivatives 

that had been produced for that paper. Both OASIS and DIAN had been processed using 

PUP, and there were subsequently differences in the way that the PET scans were 
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corrected for motion and co-registered to the MRI scans. As had been reported in11, there 

are many different choices that can be made in a PET data processing pipeline and the 

connectivity matrix, and the downstream effects include variable model fit. To determine 

the best epicenter and by extension epicenter subgroup for each subject, we selected the 

bilateral ROI that yielded the best within-subject fit, but this method ignores potentially 

close values across ROIs. 

Despite these limitations, our study made several important advances. We show 

that the majority of Aβ positive subjects in three independent datasets had whole-brain 

Aβ patterns best reproduced using epicenters overlapping with the DMN. The presence 

of the younger striatal epicenter subgroup in only the DIAN dataset supports the 

importance of analyzing differences in individual trajectories, as variability in ADAD 

disease courses may have important implications for efforts to reduce Aβ burden and 

improve cognitive impairment. 

 

Data availability 

OASIS-3 and ADNI are open access datasets for which access can be obtained at 

https:// www.oasis-brains.org/ and http://adni.loni.usc.edu/data-samples/access-data/, 

respectively. The DIAN data can be obtained by request through application, and more 

information about requesting data access can be found here https://dian.wustl.edu/ our-

research/for-investigators/dian-observational-study-investigator-resources/ data-request-

terms-and-instructions/. 

Code availability 

The Matlab code for the Epidemic Spreading Model has been made available as a public 

software release with an accompanying paper (neuropm-lab.com/software30). All the Python 

code used to analyze ESM results, perform statistical analysis, and visualize results can be 

found at https://github.com/llevitis/DIAN_ESM_AmyloidBeta_Project.git. 
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