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Abstract

Amyloid-beta (AB) deposition is one of the hallmark pathologies in both sporadic
Alzheimer’s disease (sAD) and autosomal dominant Alzheimer’s disease (ADAD), the
latter of which is caused by mutations in genes involved in AP processing. Despite AP

deposition being a centerpiece to both sAD and ADAD,
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some differences between these AD subtypes have been observed with respect to the
spatial pattern of AP. Previous work has shown that the spatial pattern of A in
individuals spanning the sAD spectrum can be reproduced with high accuracy using an
epidemic spreading model (ESM), which simulates the diffusion of AP across neuronal
connections and is constrained by individual rates of AP production and clearance.
However, it has not been investigated whether AP deposition in the rarer ADAD can be
modeled in the same way, and if so, how congruent the spreading patterns of AP across
sAD and ADAD are. We leverage the ESM as a data-driven approach to probe
individual-level variation in the spreading patterns of AP across three different large-
scale imaging datasets (2 SAD, 1 ADAD). We applied the ESM separately to the
Alzheimer’s Disease Neuroimaging initiative (N=737), the Open Access Series of
Imaging Studies (N=510), and the Dominantly Inherited Alzheimer’s Network (N=249),
the latter two of which were processed using an identical pipeline. We assessed inter-
and intra-individual model performance in each dataset separately, and further identified
the most likely epicenter of AP spread for each individual. Using epicenters defined in
previous work in sAD, the ESM provided moderate prediction of the regional pattern of
AP deposition across all three datasets. We further find that, while the most likely
epicenter for most AB-positive subjects overlaps with the default mode network, 13% of
ADAD individuals were best characterized by a striatal origin of AP spread. These
subjects were also distinguished by being younger than ADAD subjects with a DMN Af3
origin, despite having a similar estimated age of symptom onset. Together, our results
suggest that most ADAD patients express AP spreading patters similar to those of sAD,
but that there may be a subset of ADAD patients with a separate, striatal phenotype.
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Introduction

To date, there is no cure for Alzheimer’s disease (AD), the principle
neurodegenerative cause of dementia. Treating patients with dementia is costly - in 2009,
the average cost for a patient with AD was roughly 57,000 USD!. The socioeconomic
gravity of treating AD has spurred research seeking to prevent or mitigate AD by first
developing biomarkers that can be used for early diagnosis and monitoring?. The two
main pathological signs of AD are neurofibrillary tau tangles and AP senile plaques, and
both are required to definitively confirm AD at autopsy>. Most hypothetical models of
AD progression have been rooted in the amyloid cascade hypothesis, which posits that
excessive amounts of soluble AP cause a buildup of insoluble AP, disrupting synaptic
function and accelerating tau hyperphosphorylation®. Most cases of AD are sporadic in
nature, and the much rarer autosomal dominant form of AD is caused by mutations in
genes - namely, APP, PSEN1, PSEN2 - that impact the processing of the amyloid
precursor protein from which the AP peptide is cleaved. While ample research has
pointed to accumulation of AP in the brain as being one of the earliest pathological
biomarkers in both sAD and ADAD, we know quite little about where and how A}
begins to accumulate, how it spreads in the brain, and whether either of these is variable
across individuals. An ADAD mutation virtual guarantees amyloidosis, making carriers
of these mutations incredibly important for the study of amyloid-related processes and
brain changes in AD. However, it is still unclear just how similar ADAD and sAD are
with respect to the progression of various biomarkers, including Af.

In general, most studies in this domain have focused less on inter-individual
variability and have primarily reported group differences. Unlike in sAD, where A}
deposition is highest in neocortical areas, several groups have reported significantly
increased striatal, thalamic, and neocortical AP deposition in ADAD mutation carriers
compared with noncarriers>®. One study evaluating differences between the PSENI,
PSEN2, and APP ADAD mutation types found that all mutation types had high striatal
PiB binding while some mutation carriers had higher cortical PiB binding. Interestingly,
PiB binding in the cortex was found to be lower in ADAD mutation carriers than age-
matched subjects with probable sSAD’. While the sample size of this study was small
(n=30 ADAD mutation carriers, n=30 sAD subjects), the findings suggest that the most
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probable area(s) of earliest A accumulation may not be homogenous amongst all
ADAD mutation carriers.

Recently, an event-based model of disease progression was applied to ADAD
mutation carriers. The authors found that the biomarker likeliest to exhibit the earliest
deviation from normal levels was a cortical AP deposition measure, followed by A
deposition in the caudate, putamen, accumbens, and thalamus®. In sAD, a separate model
leveraged CSF and A signals to stage subjects according to AP accumulation status. In
this study, subjects who were both CSF and A negative according to a set of data-
driven thresholds were deemed to be non-accumulators, whereas those who were CSF
positive but AP negative were deemed to be early Ap accumulators’. Regions pinpointed
as areas of earliest accumulation were those that had significantly increased A signal in
early accumulators compared with non-accumulators. According to this system, the
precuneus, medial orbitofrontal cortex, and posterior cingulate were all categorized as
regions of early accumulation whereas the caudal anterior cingulate was pinpointed as an
area of intermediate accumulation. Together, these studies suggest possible differences
between ADAD and sAD in the earliest regions to accumulate Ap.

While both data-driven approaches can be used to glean the order in which
biomarkers can be detected at either a regional or global level, neither of them is
mechanistic in nature. To better understand how A or tau spreads in the brain, we can
instead turn to an epidemic spreading model (ESM) developed to stochastically
reproduce the propagation and deposition of misfolded proteins such as AP, tau, and
alpha-synuclein. The overarching nonlinear differential equation of the model posits that
the change in misfolded protein deposition in each macroscopic region of interest (ROI)
is equal to the probability of endogenously producing and exogenously receiving
misfolded proteins from connected ROIs, minus the probability of clearing the deposited
misfolded proteins. This approach has previously been applied to model the spread of Af
and tau across anatomical connections in individuals along the sAD spectrum!'®!!. When
applied to over 700 subjects in the ADNI dataset, the ESM was able to explain 46-57%
of the variance in the mean regional A} deposition probabilities of the distinct clinical
subgroups and identified the posterior and anterior cingulate cortices as the seed regions

of AP propagation. These seed regions are in agreement with what has been established
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in the literature!2. Using the ESM, we can evaluate whether there is sufficient evidence
to suggest that AP spreads along neuronal connections in ADAD as well. Furthermore,
we can evaluate how similar ADAD and sAD are with respect to which regions A
begins spreading from. We tackle this question by applying the ESM within three
different datasets representing SAD and ADAD, to both evaluate differences between
ADAD and LOAD, as well as validate the previously published results in an independent

dataset.

Methods

Participants

Participants for this study are comprised of individuals from three multi-center
studies: the Dominantly Inherited Alzheimer’s Network (DIAN; https://dian.wustl.edu),
the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://adni.loni.usc.edu), and
the Open Access Series of Imaging Studies (OASIS; www.oasis-brains.org). While the
ESM had already been applied to ADNI, a dataset representative of LOAD, we include
an additional dataset for two reasons - (1) to validate the previously published results in
an independent cohort and (2) to compare results in DIAN with a dataset that used the
same radiotracer and was processed using the same pipeline.
The DIAN dataset represents individuals from families known to have mutations in the
amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes.
Both mutation carriers and non-carriers were used for different stages of the analysis.
We selected individuals who had at least one PIB PET scan and accompanying T1w scan
from the 12th semiannual DIAN data freeze. For this study, DIAN serves as the dataset
representative of ADAD.

The OASIS dataset is a compilation of participants from multiple studies, and the
participants range from older, cognitively normal adults to those at various stages of

cognitive decline and dementia.
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MRI and PET acquisition and preprocessing

MRI and PET acquisition procedures for the DIAN!?, ADNI
(http://adni.loni.usc.edu/methods/), and OASIS' datasets have previously been described in
detail.

It is important to note that the processing pipeline and the radiotracer for the
ADNI dataset diverge from those used for DIAN and OASIS. For ADNI, the
preprocessing pipeline is taken from the original ESM publication!®. Briefly, individual
AV45 PET scans were acquired and processed in the following order - dynamic co-
registration, averaging across time, re-sampling and reorientation from native space to a
standard voxel space, spatial filtering, and finally spatial normalization to MNI space.

For the DIAN and OASIS dataset, whole-brain T1w scans and individual PiB-PET scans
were acquired. Quality control was performed as per the ADNI protocol. FreeSurfer
version 5.3 (http://surfer.nmr.mgh.harvard.edu) was used to derive subject-specific
segmentations corresponding to regions in the Desikan-Killiany-Tourville atlas
(DKT,"). Only cortical and subcortical regions overlapping with the Mindboggle DKT
atlas were used, for a total of 78 regions'®.

For both OASIS and DIAN, the PET Unified Pipeline (PUP;
https://github.com/ysu001/PUP) was used to preprocess the PET scans. The processing steps
used include smoothing, interframe motion correction and co-registration. Specifically, PET
images in the 4dfp format are smoothed to achieve a common spatial resolution of 8mm to
minimize inter-scanner differences (Joshi et al., 2009). PET-MR registration was performed
using a vector-gradient algorithm (VGM) (Rowland et al., 2005). Co-registered summed PET
scans in the 4dfp file format were downloaded from the CNDA portal (https://cnda.wustl.edu),

and 4dfp images were subsequently converted to the Nifti file format for further analysis.

Regional AP Probabilities

Traditionally, static PET processing involves quantifying co-registered PET
images using standardized uptake value ratios (SUVR) for each ROI with respect to the
average signal in a reference region devoid of specific tracer binding. The reference
region typically used in AD AP PET imaging studies is the cerebellar cortex; however,

amyloid deposition has been observed in the cerebellar cortex of individuals with
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ADAD!’. Based on recent work seeking to clarify the optimal reference region for AB
measurement using PiB-PET and the DIAN cohort, we used the brainstem as the
reference region for the DIAN and OASIS datasets!®!?. For the ADNI dataset, we used
the AP deposition probabilities that had previously been generated (using a cerebellar
reference region)!’.

The original ESM paper introduced a voxelwise probability metric, which we
will refer to as V ECDF, RR EVD. For each subject this approach creates a bootstrapped
sampling consisting of 40,000 subsamples in the 5-95% of values in the reference
region. Subsequently, an extreme value distribution (EVD) is created using the
maximum value observed in each bootstrapped sample. The EVD is used to create an
extreme cumulative distribution function, and for each voxel in the PET image, the
probability of it being greater than every value in the EVD is computed. A final regional
AP deposition probability is calculated as the average of the probabilities corresponding
to each voxel within a given ROI. Given the overall higher PiB-PET signal in the
brainstem than the cerebellar cortex, we use the 75th percentile value rather than the
maximum in each bootstrap sampling to create the EVD when using the brainstem as the
reference region.

For the DIAN dataset, we observed that noncarriers’ AP deposition probabilities
were negligible in all ROIs except for the globus pallidus and thalamus, ROIs that have
previously been observed to have nonspecific uptake of PiB?*2!, Given their young age
(Table 1), we are confident that the DIAN non carriers are truly amyloid-negative and
are therefore a fully reliable control group. Subsequently, for each ROI, across all
available timepoints, the noncarriers’ signal was used to create a ROI-specific control
distribution. For each mutation carrier, we calculated a z-score for their AP binding
probability in the ROI with respect to the ROI-specific control distribution. Within each
ROI, we min-max scaled the absolute values of the z-scored signal across all timepoints

to have probabilities in the [0,1] range again.

Epidemic Spreading Model

The spread of AP was simulated using the ESM, a diffusion model that has

previously been used to simulate the spread of AP and tau in the ADNI dataset from an
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initial epicenter(s) and through an ROI network!%!!, In addition to the connectivity
between ROIs, subject specific propagation parameters influence the magnitude or
extent of the spreading pattern. These parameters correspond to a global clearance rate,
global production rate, and age of onset. These are fit by solving a non-linear differential
equation designed to reproduce the overall regional pattern of AP deposition. The ESM
is fit by searching the parameter space, and the set of parameters that yield the regional
pattern of AP deposition most like the reference (observed) pattern is selected.

The main data input to the ESM is the ROI by Subject matrix reflecting regional
AP deposition probabilities for each subject. Epicenters can either be supplied by the
user or selected in a data-driven way. In the data-driven context, the ROI or combination
of ROIs that best explain the average group-level pattern are returned as the epicenters.

For a more detailed overview of the equations underlying the ESM, please refer to'°.

Connectivity Measures

In order to propagate A signal across the brain, the ESM requires a matrix of
pairwise relationships between ROIs. This informs the final regional pattern of Ap.
Earlier applications of the ESM tested whether AP spreads along synapses by using a
structural connectivity matrix.

We used a structural connectivity matrix derived from diffusion spectrum
imaging (DSI) scans of 60 young healthy subjects from the CMU-60 DSI template®2.
The acquisition and pre-processing steps have been described in detail in the original

ESM paper and were based on methodology developed in an earlier paper®*!

. Briefly,
all images were non-linearly co-registered to MNI space, and orientation distribution
functions (ODF) representing nerve fiber orientations were calculated. All intravoxel
fiber ODF maps were averaged to create an ODF template, and an automated fiber
tractography method was used to calculate probabilistic axonal connectivity values for
each voxel and the surface of each grey matter region in the DKT atlas. Previously
described anatomical connection probabilities were then generated for each ROI-ROI

pair.
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AP Positivity

The ESM has previously been shown to be sensitive to spurious levels of signal,
so we opted to confine our analysis to A positive subjects!!. We used gaussian mixture
modelling to compute A positivity thresholds in a data-driven way for both the PUP
generated SUVRs and the probability values averaged across a composite set of regions
that are implicated in AD. Specifically, these include the bilateral precuneus, superior
frontal, rostral middle frontal, lateral orbitofrontal, medial orbitofrontal, superior
temporal, and middle temporal ROIs. For each metric, we fit a two-component mixture
model across the entire DIAN dataset - including non-carriers and mutation carriers -
and estimated a cut-off. Only subjects who were positive on both the SUVR and
probability metrics were considered A positive for subsequent analyses. Since the
DIAN and OASIS datasets were both processed using the WUSTL PET Unified
Pipeline, we applied the cut-offs generated using the DIAN dataset to the OASIS dataset
as well. AP positive subjects in these datasets were defined as those whose average AP
value across a set of previously defined cortical areas surpassed 0.81 and 0.01236 for
SUVR and deposition probability values, respectively. We illustrate the correspondence
between within-subject composite AR SUVRs and deposition probabilities, as well as the
GMM results in Figure S1. AP positive ADNI subjects were identified using a
previously defined composite A SUVR threshold of 1.11.

Statistical analysis

Using the structural connectivity matrix and the cross-sectional baseline subject
by region A probability deposition matrix, we fit the ESM across different possible
epicenters for the DIAN, ADNI, and OASIS datasets. Model performance for each
experiment was evaluated by mean within-subject and global fit. Within-subject
performance is evaluated as the Pearson r? between the subject-specific observed and
predicted regional AP deposition probabilities measured using PiB-PET. We evaluate
global fit by averaging the observed and predicted regional A probabilities across all
subjects, respectively, and calculating the Pearson r? between the averaged observed and

predicted patterns. To ensure that our results are statistically significant and specific to
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the connectivity matrix we used, we scrambled the original connectivity matrix 100
times while preserving degree and strength distributions using the Brain Connectivity
Toolbox (https:// sites.google.com/site/bctnet/). We used the null distribution of the
mean within-subject fit and global fit to calculate the mean and 95% confidence intervals
for each ESM experiment.

Building off previous results suggesting that A first accumulates in the posterior
cingulate (PC) and caudal anterior cingulate (cAC) and subsequently spreads to other
regions in the brain (in ADNI), we sought to evaluate whether this replicates in another
LOAD dataset, as well as the DIAN dataset. Given our objective of evaluating whether a
cortical or striatal epicenter better explains AP spreading patterns in ADAD, we repeated
this analysis for all three datasets using the caudate and putamen as the seed regions.

For a more data-driven approach to epicenter selection, in each dataset, we evaluated
global fit using each bilateral ROI as an independent epicenter. For each subject we
noted the epicenter that provided the best within-subject fit, and we assessed how
frequently specific epicenters were present within each dataset. Given the lack of
consensus about whether ADAD mutation carriers first accumulate A in the striatum or
neocortical regions that overlap with the default mode network, we further divided the
possible epicenters into three subgroups - default mode network (DMN)), striatum, and
other. ROIs falling into the DMN group included the posterior cingulate, caudal anterior
cingulate, rostral anterior cingulate, precuneus, and medial orbitofrontal cortex. The
striatum subgroup included the caudate and putamen, and the other group contained all
ROIs not in the other three subgroups. Using these data-driven epicenter subgroups, we
compared within-subject model performance using either the caudate and putamen or
cAC + PC as epicenters across the epicenter subgroups. We evaluated the statistical
difference in the models’ performance across epicenter subgroups using the non-
parametric Kolmogorov-Smirnov (K-S) test statistic.

After stratifying subjects across epicenter subgroups (DMN, Striatum, and
Other), we examined associations with age and EYO. We additionally ran ordinary least-
squares general linear models (GLMs) to assess the relationship between the epicenter
subgroup and the AP signal in all ROIs while covarying for age and sex. We FDR

corrected the relationships used the Benjamini—Hochberg approach.
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As a follow-up, we evaluated the test-retest reliability of the best within-subject

epicenter for each subject that had two scans.

Results

Sample information

Baseline PiB-PET scans measuring fibrillar AP load were available for 249
ADAD mutation carriers in the DIAN dataset. 124 of these mutation carriers had one
follow-up PiB-PET scan, and 44 of them had two follow-up scans. Baseline AV45-PET
scans were available for 737 individuals from the ADNI dataset, and baseline PiB-PET
scans were available for 510 individuals from the OASIS cohort. Demographic

information for this sample can be found in Table 1.

Table 1: Demographic information

DIAN ADNI OASIS

Dataset
Tl T2

N 249 124 737 510
Age (SD) 39.01 (10.7) 42.12 (9.7) 72.43 (7.2) 67.65 (9.8)
% Women 56.3% 60.1% 44.9% 57.8%
EYO (SD) -8.54 (10.9) -4.7 (9.8) - -
% ApoE4 30.1% 29.53% 51.7% -
% AP Positive 55% 63.7% 54% 25%
% Cognitively Normal 68.7% 58.8% 26.2% 86.5%

EYO = Estimated years to symptom onset; SD = Standard Deviation; T1 = Timepoint 1;
T2 = Timepoint 2

Putative areas of early Ap accumulation in LOAD do not

explain the full picture in ADAD
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To evaluate whether neuronal connectivity can explain the whole-brain pattern of
AP in both ADAD mutation carriers and individuals from the OASIS dataset, we fit the
ESM to regional A deposition probabilities derived using PiB-PET or AV45-PET data
(see Methods).

We first evaluated how well previously identified regions of early amyloid,
namely cingulate and striatal regions, recapitulate group-level whole-brain A patterns
across all three datasets. We will refer to the model using the caudal anterior cingulate
(CAC) and posterior cingulate (PC) as epicenters as the CAC + PC model, and the one
using the caudate and putamen as the striatal model. In the DIAN dataset, the model
using the CAC and PC as seed regions explained 27% (null model mean r2 [95% CI] =
0.119 [0.089, 0.164]; p < 0.01) of the aggregated pattern of AP, and on average
explained 14.6% (null model mean r2 [95% CI] = 0.07 [0.002, 0.179]; p = 0.1) of the
regional pattern of AP within individual subjects (Fig 1a). In AP positive subjects, the
global fit and the mean within subject fit improved to 31% and 20.7% (p < 0.05),
respectively. When stratifying performance across the three main mutation types, we
found that there was no significant difference between the three groups.

In line with the results that had been previously shown for the ADNI dataset in'°, the
CAC + PC model explained 53.9% (null model mean r2 [95% CI] = 0.103 [0.074,
0.148]; p < 0.01) of the aggregated pattern of AP and on average explained 39.1% (null
model mean r2 [95% CI] = 0.087 [0.002, 0.217]; p < 0.01) of the regional pattern of AP
in individual subjects. In A positive subjects, the global fit and the mean within subject
fit changed slightly to 51% and 38%, respectively.

In the LOAD validation dataset, OASIS, the performance was lower than what had
previously been reported for ADNI. Across the whole dataset, the CAC + PC model
explained 28% (null model mean 12 [95% CI] = 0.158 [0.123, 0.217]; p < 0.01) of the
aggregated pattern of AP and on average explained 9% (null model mean 12 [95% CI] =
0.063 [0.017, 0.139]; p = 0.15) of the within subject variance. However, when we only
look at A positive individuals, the global fit and the average within subject fit increased
to 40% (null model mean r2 [95% CI] = 0.14 [0.098,0.18]; p < 0.01) and 21% (null model
mean 12 [95% CI] = 0.082 [0.002, 0.196]; p = 0.04), respectively, and the results were

significant.
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Since a primary goal of this study was to identify whether a cortical or striatal
epicenter better explains the regional patterns of AP in DIAN, we additionally repeated
the same analysis using the caudate and putamen as the seed regions. When applied to
ADNI, the striatal model performed poorly. It explained 3% (null model mean 12 [95%
CI] =0.055[0.043, 0.072]; p = 1) of the aggregated pattern of Ap and on average
explained 5% (null model mean r2 [95% CI] = 0.05 [0.001, 0.139]) of the within-subject
AP patterns in AP positive subjects. In DIAN A positive subjects, the striatal model
explained 18% (null model mean 12 [95% CI] = 0.103 [0.072, 0.146]; p < 0.02) of the
aggregated pattern of AP and on average explained 17.2% (null model mean 12 [95% CI]
=0.085[0.001, 0.256]) of the within-subject pattern. In AR+ OASIS subjects, the striatal
model explained 14% (null model mean r2 [95% CI] = 0.084 [0.062, 0.133]; p < 0.02)
and on average 11.4% (null model mean r2 [95% CI] = 0.059 [0.001, 0.16]; p = 0.15) of

the global and within-subject results, respectively.
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Figure 1 Comparison of global model fit across datasets and epicenters. ESM performance
(global fit) across the ADNI, OASIS, and DIAN datasets using either the (a) posterior cingulate and
caudal anterior cingulate or (b) caudate and putamen as epicenters. Each dot represents the observed
and predicted mean signal for an ROI across all subjects within a dataset. Only A positive subjects
were included.
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Epicenter heterogeneity in DIAN compared with ADNI and
OASIS

We initially compared ESM performance between the ADNI and DIAN dataset
using a priori defined epicenters. Next, we ran the ESM using each bilateral ROI as the
model epicenter to evaluate which ROI best explains the whole-brain patterns of AP in
each dataset. We assigned each participant to an epicenter subgroup based on which ROI
yielded the best within-subject performance (as described in 2.7).

In Figure 2a-b we show the relative breakdown of epicenter subgroups within the
datasets in all subjects, and in AP positive subjects only. In AP positive subjects from
ADNI and OASIS, most subjects have an epicenter in the DMN, while the remaining
subjects fall into the Other category. Specifically, 89.2% of A positive ADNI subjects
and 72.7% of AP positive OASIS subjects have a DMN epicenter. In the DIAN dataset,
there was substantially more heterogeneity, with 59.1% of AP subjects falling into the
DMN group, 13.1% into the striatum group, and 27.7% into the Other group.

We next assessed the performance of the ESM in each “epicenter subgroup”
across different model epicenters. We hypothesized that ESM within-subject fit using the
caudate and putamen as epicenters would be highest within the DIAN striatum epicenter
subgroup, and this was substantiated by the results (Fig 2b). Encouragingly, we found
that the ESM within-subject fit using the CAC and PC as epicenters was highest across
the DMN epicenter subgroups across all the datasets, and it remained high in the Other
subgroup for ADNI. The CAC + PC model fit continued to be higher in ADNI than
OASIS (KS=0.42, p=1.6e-12) and DIAN (KS=0.41, p=7.3e-11) within the DMN groups.
Within the DIAN dataset, the striatal model significantly out-performed the CAC + PC
model in the striatal epicenter subgroup (KS=0.67, p=2.15¢-4).

Figure 2 Epicenter frequency and within-subject performance across all datasets.

(a) Epicenter frequency across all subjects in each dataset. (b) The same information

when only A positive subjects are included from each dataset. (c) and epicenter group,

14


https://doi.org/10.1101/2021.06.25.449939
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449939; this version posted June 28, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

using only AP positive subjects. (d) The ESM within-subject performance is shown

using the caudate and putamen as epicenter
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Figure 2 Epicenter frequency and within-subject performance across all datasets. (a) Epicenter
frequency across all subjects in each dataset. (b) The same information when only A positive subjects
are included from each dataset. (c) and epicenter group, using only A positive subjects. (d) The ESM
within-subject performance is shown using the caudate and putamen as epicenters.

Epicenter subgroup in DIAN associated with distinct whole-

brain AP patterns and age at symptom onset

Next, we were interested in parsing the heterogeneity observed within the DIAN
dataset with respect to best within-subject epicenter. Specifically, we sought to evaluate

any differences in whole brain A pattern and demographics.

As expected, we reaffirmed that individuals in the Other subgroup had significantly
lower global cortical AB-PET signal (Fig 3c), suggesting these subjects to be "false

positives’. In other words, individuals with ”Other” (i.e. not DMN or striatal) epicenters
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tended to be low amyloid AB- individuals, for whom the model was likely fitting non-

specific or off-target binding.

We further examined whole-brain A pattern differences amongst the different
epicenter groups. Individuals whose whole-brain A patterns are best described using a
DMN epicenter have more AP in the cortex compared with individuals in the other two
groups (FDR < 0.05; Figure 3a). Conversely, individuals in the Other epicenter subgroup
had less AP everywhere in the brain. Individuals with striatal epicenters showed greater
striatal PiB binding, but reduced binding in occipital and lateral temporoparietal cortex.

The epicenter groups were also associated with differences in age. Specifically, while
the DMN and striatum group did not differ with respect to EYO, individuals in the striatum
group were younger than those in the DMN group (Fig 3b). This may potentially suggest
that the striatal epicenter phenotype is associated with a younger age at symptom onset

and/or an altered disease time course.
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Figure 3 Demographic differences across epicenter subgroups in DIAN (only AB positive
individuals). (a) Within-subject A composite signal across the epicenter subgroups. (b) Comparison of
whole-brain AP signal across the epicenter sub-groups. Regions are color-coded based on their t-value for
the particular group, with red indicating that there is more A signal in the respective group compared
with the other two groups. (c) Within-subject EYO and age differences across the epicenter subgroups.
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Epicenter reliability across timepoints

With the availability of longitudinal PiB-PET data for a subset of our dataset, we
were able to assess how reliably the ESM selects an individual’s epicenter subgroup
when presented with data from subsequent timepoints. As shown in Table 1, 124 of the
DIAN mutation carriers had two timepoints available, and 44 had three available.
Subjects with a DMN or Other epicenter at timepoint 1 (T1) almost always stay that way
at timepoint 2 (T2), while there is more variability amongst subjects with a striatal
epicenter at T1. This may perhaps indicate that some individuals with a striatal epicenter
at T1 are in a temporally short-lived phase whereby AP first begins accumulating in the
striatum and subsequently in the DMN. In other words, individuals who are advancing
with respect to AP accumulation may first either show AP in the striatum, the striatum
then the DMN, or initially in the DMN.

To address this issue of conversion from a striatal epicenter to a different
epicenter, we assessed change in composite A deposition probabilities across the
different T1-T2 epicenter combinations. We find that individuals who persist with either
a striatum or DMN epicenter, or switch from a striatal to DMN epicenter, are gaining
amyloid over time (Fig 4b). We observe that those who switch from a DMN or a striatal
epicenter to an ’Other’ are exhibiting a loss of A signal, possibly due to cortical

atrophy.
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Figure 4 Evaluating epicenter reliability across timepoints in DIAN. A) Confusion matrix for epicenter
subgroups at timepoint 1 (T1) vs timepoint 2 (T2). Values along the diagonal represent individuals who remain the
same epicenter subgroup at visits 1 and 2. B) Swarmplot representing composite Ap change in each T1/T2 epicenter
subgroup combination.

Discussion

Throughout this study we have explored how well a model that simulates the
transneuronal spread of AP under biologically feasible constraints of Ap production and
clearance can explain regional AP probabilities for subjects who are either along the
sporadic or autosomal dominant Alzheimer’s disease continuum. While many cross-
sectional studies have attempted to elucidate differences in the regional A patterns
across these subtypes of Alzheimer’s disease, the present study provides a direct
comparison of hypothetical spreading patterns of AP using a mechanistic model.

The ESM generates within subject trajectories of A accumulation, and we leveraged
this to assess potential heterogeneity across subjects with respect to the earliest locations
of AP. Several earlier PiB-PET studies in ADAD have compared which areas begin to
accumulate AP earliest in the disease time courses of ADAD and LOAD. These studies
have reported significantly more amyloid in the striatum in presymptomatic ADAD vs
presymptomatic LOAD?, and it has been suggested that different mutation types may
contribute to heterogeneity amongst individuals with ADAD’->*, We found that there was
a portion of subjects in the DIAN dataset whose regional A patterns were best

reproduced using a striatal epicenter. All but two of these subjects were AP positive,
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suggesting that the results were not driven by false positive signal. Furthermore, these
subjects could be distinguished from those with a DMN epicenter by their younger age
and younger age of symptom onset, lending support to the idea that this group represents
an ADAD-specific phenotype distinct from one characterized by initial AP spread from
ROIs in the DMN. However, one of the difficulties with interpreting this result lies in the
small percentage of subjects with a best fitting striatal epicenter. It is difficult to
disentangle whether this striatal epicenter group is truly a separate group for whom A
definitively begins accumulating solely in the striatum, or the result of these subjects

being imaged during a short dynamic time period, or perhaps both.

However, not all subjects’ A patterns were best recapitulated using a striatal
epicenter, and this was supported by the group-level findings. While a hypothetical
striatal epicenter explained more variance in the DIAN dataset than in both the ADNI
dataset and our validation dataset, OASIS, a DMN epicenter still explained more
variance in DIAN within the entire AP positive cohort. This may suggest that the AP
pattern profiles are not homogeneous amongst ADAD mutation carriers, and that there
are individuals who are more similar to sporadic AD patients with respect to AB. We
were able to address this in part by showing that there is a subgroup of DIAN
participants whose AP patterns are explained as well as the ADNI cohort’s when using
the caudal anterior cingulate and posterior cingulate as epicenters.

Our findings provide data-driven corroboration of a neuropathological study finding that
ADAD mutation carriers have increased striatal vulnerability to accumulate A} due to
the regional distribution and metabolism of APP%. The same study showed an increased
accumulation of striatal tau in ADAD mutation carriers compared with sAD individuals,
and previous simulations of tau spreading in sAD shed additional light on how A}
facilitates the spread of tau and influences its spatial localization!!. In tandem, a study in
ADAD has indicated that striatal amyloid is a better predictor than cortical amyloid of
both tauopathy and cognitive decline in ADAD mutation carriers?®. With availability of
tau-PET data for the DIAN cohort, it would be worthwhile to assess this relationship

while accounting for the epicenter subgroup differences.
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In light of mounting evidence for striatal and network-level involvement in
ADAD both with respect to AP and tau, a recent study found that frontostriatal circuits
are structurally and functionally impacted by APP and PSEN1 mutations?’. Specifically,
the APP gene increased functional connectivity and altered axonal integrity in the
caudate to rostral middle frontal gyrus (caudate-rMFG) tract. While the ESM and other
mechanistic spreading models reproduce the spread of AP over a static network
reflecting anatomical connectivity in health, these results, along with those from a
separate study evaluating the sequence of changes in anatomical connectivity in elderly
individuals’ brains over the course of SAD progression?®, suggest that AB affects the

circuits or networks via which it spreads.

One objective of this study was to reproduce the findings in'? an independent
dataset. One of the issues we observed when modeling group-level results was that of a
significant disparity in overall AP levels across the three datasets. In particular, the
OASIS dataset had a high percentage of younger, cognitively normal adults who were
AP negative. As we discussed in the Results section, the ESM appears to be sensitive to
low levels of AP - i.e. the ESM is fit to non-specific or off-target signal not reflecting
true pathology, and this would have a particularly large impact on within-subject results
for the most likely epicenter(s). As such, we opted to focus on AP positive subjects for
the within-subject analyses. When we limited our analysis to AP subjects, we found that
the results across ADNI and OASIS were on par with one another, with a vast majority
of subjects being best described by an epicenter that overlaps with the default mode
network. This observation is in line with previous datadriven approaches used in both
cross-sectional and longitudinal studies to discern which regions begin to show increased
APB in early stage SAD?*".

This study has several limitations that pertain to measurement of A, anatomical
connectivity, and the ESM methodology. One limitation faced when directly comparing
the ADNI and DIAN sets is that the PET data was collected using the AV45 radiotracer
in ADNI and the PiB tracer in DIAN/OASIS. Additionally, we sought to use the results
in the original ESM publication as a benchmark, and this required using the derivatives
that had been produced for that paper. Both OASIS and DIAN had been processed using

PUP, and there were subsequently differences in the way that the PET scans were
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corrected for motion and co-registered to the MRI scans. As had been reported in!!, there
are many different choices that can be made in a PET data processing pipeline and the
connectivity matrix, and the downstream effects include variable model fit. To determine
the best epicenter and by extension epicenter subgroup for each subject, we selected the
bilateral ROI that yielded the best within-subject fit, but this method ignores potentially
close values across ROls.

Despite these limitations, our study made several important advances. We show
that the majority of A positive subjects in three independent datasets had whole-brain
AP patterns best reproduced using epicenters overlapping with the DMN. The presence
of the younger striatal epicenter subgroup in only the DIAN dataset supports the
importance of analyzing differences in individual trajectories, as variability in ADAD
disease courses may have important implications for efforts to reduce A burden and

improve cognitive impairment.

Data availability

OASIS-3 and ADNI are open access datasets for which access can be obtained at
https:// www.oasis-brains.org/ and http://adni.loni.usc.edu/data-samples/access-data/,
respectively. The DIAN data can be obtained by request through application, and more
information about requesting data access can be found here https://dian.wustl.edu/ our-
research/for-investigators/dian-observational-study-investigator-resources/ data-request-

terms-and-instructions/.

Code availability

The Matlab code for the Epidemic Spreading Model has been made available as a public
software release with an accompanying paper (neuropm-lab.com/software®?). All the Python

code used to analyze ESM results, perform statistical analysis, and visualize results can be

found at https://github.com/llevitis/DIAN ESM AmyloidBeta Project.git.
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