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Abstract

Short-read sequencing provides a culture-independent method for the detection of
antimicrobial resistance (AMR) genes from single bacterial genomes and metagenomic samples.
However, the performance characteristics of these approaches have not been systematically
characterized. We compared assembly- and read-based approaches to determine sensitivity,
positive predictive value, and sequencing limits of detection required for AMR gene detection
in an Escherichia coli ST38 isolate spiked into a synthetic microbial community at varying
abundances. Using an assembly-based method the limit of detection was 15X genome
coverage. We are confident in AMR gene detection at target relative abundances of 100% to
1%, where a target abundance of 1% would require assembly of approximately 30 million reads
to achieve 15X target coverage. Recent studies assessing AMR gene content in metagenomic
samples may be inadequately sequenced to achieve high sensitivity. Our study informs future
sequencing projects and analytical strategies for genomic and metagenomic AMR gene

detection.
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Introduction

Increasing throughput and decreasing costs of DNA sequencing have made whole
genome and metagenomic sequencing accessible for antimicrobial resistance (AMR) gene
detection on a broad scale. This technology is a useful epidemiological tool'? and there are
increased efforts to correlate isolate genotype with phenotypic resistance®*. The ‘resistome’ is
the total genetic content of the microbiome with the potential to confer resistance to
antibiotics, and there has been significant interest in characterizing the AMR gene content in
the environment®2, humans®1°, and other mammals''12, Large trials investigating antibiotic
efficacy have also included the development of AMR in the gut microbiome as an outcome?3,

Novel methods for AMR gene detection have been developed to tackle the challenge of
AMR gene identification from single isolates and metagenomic samples, generally using either
assembly-based or read-based approaches, but there is currently no universal standard#.
Notably, there are no recommendations for optimal sequencing depths required to identify
AMR genes in complex metagenomic samples, and the performance characteristics of different
sequencing depths using common AMR detection tools for genomes and metagenomes have
not been established.

In this study, we used the Resistance Gene Identifier (RGI) and the Comprehensive
Antibiotic Resistance Gene Database (CARD) and compared an assembly- and read-based
approach to assess the limits of detection, sensitivity, and PPV of sequencing to detect known
AMR genes in a multidrug- resistant E. coli isolate that represented varying abundances in a
complex metagenome. We highlight the importance of maintaining minimum target genome

coverage to detect AMR genes when the target organism is at varying relative abundances in a
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87 metagenomic sample and provide an estimate of minimum required sequencing depths of
88  target organisms to maintain adequate sensitivity.
89  Results
90 Assembly-based AMR gene detection in Escherichia coli ST38
91 To ensure that sequencing effort was not a limiting factor in AMR gene detection, we
92  subjected an Escherichia coli (E. coli) ST38 isolate to deep sequencing and obtained
93  approximately 136 million reads (~6,800X genome coverage). To simulate sequencing at lower
94  depths, we randomly subsampled 5,000,000 (~250X), 1,000,000 (~50X), 500,000 (~25X),
95 300,000 (~15X), 250,000 (~12.5X), 200,000 (~10X), 150,000 (~7.5X), 100,000 (~5X), 50,000 (
96 ~2.5X), and 10,000 (~0.5X) read pairs, and bootstrapped each subsample 100 times, with
97 replacement, to provide confidence in the AMR genes detected in each subsample. We
98 considered AMR genes detected with 290% detection frequency as high confidence genes,
99  whereas those detected with <50% detection frequency were considered low confidence
100  genes.
101 Using the SPAdes genome assembler, a sequencing depth of 300,000 reads or
102  approximately 15X coverage was sufficient to detect blacrx-m-15, and parC and gyrA single
103  nucleotide polymorphisms (SNPs) as well as 69 other genes with greater than 290% detection
104 frequency (Fig. 1a). Other resistance genes included 3 different beta-lactamases (blaren-1,
105  blaoxa-1, and blaampc), 5 unique aminoglycoside transferases, and 46 distinct efflux pump genes
106  (Fig. 1b). A lower sequencing depth was adequate to detect the SNPs with 290% detection
107  frequency (150,000 reads for gyrA and 100,000 for parC) compared to blacrx-m-15 (200,000

108 reads)(Fig. 1a). There were AMR genes detected less frequently (<50% detection frequency)
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109  across all sequencing depths except at 500,000 reads where no AMR genes were detected at
110  <50% detection frequency (Fig. 1a).

111 To demonstrate how sequencing depth affects the performance of AMR gene detection,
112  we used a single 5 million read subsample (~250X coverage) as a reference to calculate

113  sensitivity and positive predictive value (PPV) across subsamples. We did not use specificity as a
114  metric to assess performance due to the high number of true negatives which would inflate

115  specificity. A depth of 300,000 reads performed similarly to 1 million reads for sensitivity (1.00
116  £0.00vs 1.00 £ 0.00, Fig. 1c) and PPV (mean = 1.00 + 0.00 vs 1.00 + 0.00, Fig. 1d) with low false
117  negatives (0.09 + 0.29, Fig. 1e) and false positives (0.02 + 0.14, Fig. 1f) (mean and standard

118  deviation).

119 The Basic Local Alignment Tool (BLAST) is a highly sensitive alignment tool in common
120  use®. We aimed to compare high and low confidence AMR genes predicted using BLAST or

121 DIAMOND, a faster alternative sequence alignment tool to BLAST*. Overall, BLAST predicted
122 more AMR genes across all subsamples (Supplementary Fig. 1c). Using BLAST, as sequencing
123 depth increased, 72 AMR genes achieved >90% detection frequency by 300,000 reads

124  (Supplementary Fig. 1a), which is consistent with results using DIAMOND (Supplementary Fig.
125  1b). Between BLAST and DIAMOND, the genes predicted with >90% detection frequency at

126 subsamples 300,000 reads were similar in number (approximately 72 genes were detected by
127  both methods) as well as annotation (Supplementary Fig. 1d & 1f). Across all subsamples, more
128  genes were predicted with <50% detection frequency using BLAST. For example, in the 300,000
129  read subsample, 2 genes were detected with <50% detection frequency using DIAMOND and 16

130 genes were predicted using BLAST (Supplementary Fig. 1e). Of the total AMR genes detected by
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131  BLAST and DIAMOND with <£50% detection frequency, at subsamples 300,000, 500,000,

132 1,000,000 and 5,000,000 reads, 14/16 (87%), 4/4 (100.0%), 8/11 (73%), and 22/25 (88%),

133 respectively, were unique to BLAST (Supplementary Fig. 1f). We proceeded to use DIAMOND
134  for the remainder of the study as fewer low confidence genes were predicted.

135 Read-based AMR gene detection in E. coli ST38

136 We next compared AMR genes predicted using a read-based approach to AMR genes
137  predicted with an assembly-based approach in the E. coli ST38 isolate. We chose to use KMA
138  over other read alignment tools as it produces a consensus sequence which can be used for SNP
139  detection®®. For these analyses, we compared the AMR genes predicted across subsamples
140  using KMA to those predicted using SPAdes assemblies in the 5 million read subsample.

141 We found that 200,000 reads (~10X coverage) were sufficient to identify most AMR
142 genes using KMA read alignment with 290% detection frequency (Fig. 2a) with a sensitivity of
143 93% + 0.0% and 5.0 £ 0.2 false negatives (mean * standard deviation) (Fig 2c & 2e). However,
144  there were genes that had <50% detection frequency at 200,000 reads including the known
145  gyrA and parC SNPs as well as KpnE, KpnF, blatenm-1, and the gene annotated as homologous to
146  Haemophilus penicillin-binding protein 3 conferring resistance to beta-lactams. The AMR gene
147  rsmA required 5 million reads to achieve a detection frequency of 290% (Fig. 2a). At 200,000
148  reads there were 30 additional AMR genes predicted at 290% detection frequency that were
149  not detected in the reference (Fig. 2b), with a PPV of 66% + 0.0% and 34.8 + 1.1 false positives
150  at this depth (Fig. 2d & 2f).

151 When a read-based approach is used to identify AMR genes, strategies are often applied

152  to improve precision and remove false positives. However, there is a trade-off between


https://doi.org/10.1101/2021.06.25.449921
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.25.449921; this version posted June 26, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

153  increased precision and decreased recall which is important to quantify. We assessed the

154  effects of four AMR gene filtering strategies, at a range of cut-off values, on the performance of
155  the 200,000 read depth for the detection of AMR genes in E. coli ST38 using KMA. The AMR
156  gene filtering strategies included percent coverage, average depth of coverage, number of

157 completely mapped reads, and the average mapping quality score (MAPQ score). The unfiltered
158  precision and recall was 66% and 93%, respectively. No filtering strategy that we assessed

159  significantly improved the precision, based on the precision-recall curve (precision = PPV; recall
160 = sensitivity, Fig. 3). Out of the four strategies, percent coverage achieved the greatest increase
161  in precision at the highest stringency cut-off of 100% allele coverage (unfiltered precision: 66%;
162  filtered precision: 76%). However, at this cut-off, the recall decreased from 93% to 79%. When
163 filtering by depth of coverage, completely mapped reads, or MAPQ score, the highest increase
164  in precision was from 66% to 74% (recall: 76%), 74% (recall: 54%), and 69% (recall: 87%),

165  respectively. As expected, as the cut-offs became more stringent for each filtering strategy, the
166  recall decreased. Filtering based on percent coverage had the least affect on recall, even at the
167  highest stringency cut-off (100% allele coverage) compared to the other strategies.

168  Detection of E. coli ST38 AMR genes at a range of relative abundances in a complex

169  metagenomic sample

170 To demonstrate the effect of target organism relative abundance on AMR gene

171  detection in a multi-species metagenome consisting of 34 bacterial species, the DNA of E. coli
172 ST38 and the complex community were combined to create synthetic metagenomic samples
173  where E. coli ST38 represented approximately 90%, 50%, 10%, and 1% of the total

174  metagenome. Based on the sequencing limit of detection of 300,000 reads in the single E. coli
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175  ST38isolate (100% relative abundance), we estimated that at 90%, 50%, 10%, and 1% relative
176  abundance, 333,333, 600,000, 3,000,000 and 30,000,000 reads, respectively, would be required
177  to detect the known AMR genes (blacrx-m-15, parC, gyrA SNPs) contributed by the E. coli ST38
178 isolate with 290% detection frequency.

179 Using metaSPAdes as the metagenomic assembly tool, we observed that as the E. coli
180  ST38 relative abundance decreased, the number of reads necessary to detect the blacrx-m-1s
181  (Fig. 4a), the gyrA SNPs (Fig. 4b), and the parC SNP (Fig. 4c), as well as the 5 aminoglycoside
182  transferases, blarenm-1, and blaoxa-1, increased (Supplementary Figure 2a-f). The detection rate
183  approximated our expectations at relative abundances >1% (Fig. 4a-c). For the combined

184  sample containing E. coli ST38 at 1% relative abundance, we did not detect the gyrA SNPs in any
185  of the 10 bootstraps at 30,000,000 reads (Fig. 4b), while the blacrx-m-15 and the parC SNP had a
186  detection frequency of 90% (9/10 bootstraps) and 100% (10/10 bootstraps), respectively (Fig.
187  4a & 4c).

188 Although read-based approaches are often thought of as highly sensitive tools for AMR
189  gene detection in low abundance organisms*4, KMA did not significantly improve the limit of
190 detection for blacrx-m-15 (Fig. 4d), the 5 aminoglycoside transferases or blaoxa-1 (Supplementary
191  Figure 3a-e & 3g) compared to assembly. The detection frequency was low for the gyrA and
192  parC SNPs (Fig. 4e & 4f), as well as blarenm-1 (Supplementary Figure 3f) across subsamples and
193  metagenomic samples. Instead of blarem-1, KMA aligned reads to three TEM-variants with 290%
194  detection frequency in at least one metagenomic sample, of which blarem-181 had the most

195 reads aligning to the allele (Supplementary Figure 4d-f). In comparison, all TEM-variants

196  predicted using KMA had low detection frequency using metaSPAdes (Supplementary Figure
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197  4a-c). Sanger sequencing confirmed the presence of blarem-1 and not blarenm-1s1 in the E. coli ST38
198 isolate. Lastly, the total number of high confidence AMR genes in the metagenomic samples
199  was significantly higher using KMA compared to those genes detected using metaSPAdes.

200 Validation of 15X coverage across E. coli isolates

201 To validate the 300,000 read depth/15X coverage threshold, we applied our assembly-
202  based approach to 948 E. coli isolates’. The isolates were previously sequenced to an average
203  of 100X coverage using 150-bp paired-end lllumina sequencing. We performed a subsample
204  from each isolate at 300,000 reads and compared the AMR genes predicted at 300,000 reads to
205 the AMR genes predicted at the original sequencing depth to calculate sensitivity, PPV, and F1
206  score for each isolate. The F1 score is a harmonic measure of sensitivity and PPV, where a score
207  of 1 would indicate perfect sensitivity and PPV.

208 Across the E. coli isolate set, we observed a total of 322 unique AMR genes.

209  Performance of the 300,000 read depth is summarized in Figure 5. The F1 score was 1 for

210  658/948 (69.4%) isolates. There were 290/948 (30.6%) isolates with a F1 score of <1, where

211 228/290 (78.6%) isolates had an F1 score between 0.99 — 0.98, 49/290 (16.9%) had an F1 score
212 between 0.95-0.97, 11/290 (3.8%) had an F1 score between 0.90 — 0.94 and the remaining
213  isolates had an F1 score 0.89 and 0.65. Of the 290 isolates with F1 score <1 (less than perfect
214  agreement), 84 (29.0%) had a PPV of <1 and 261 (90.0%) had a sensitivity of <1. For the isolates
215  with a PPV of <1, the median number of false positives was 1 (range 1-70). The isolate with 70
216  false positives is an outlier. For the isolates with a sensitivity of <1, the median number of false

217  negatives was 1 (range 1-15).

10
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218 Of the 322 unique AMR genes, 21 genes (6.5%) were classified as true positive for all
219  948isolates, where 90.5% (19/21) were efflux-associated genes. The top three AMR genes that
220  contributed the most false negatives were APH(6)-Id (n = 25), sul2 (n = 23), and mphA (n = 23),
221  while the top three genes that contributed the most false positives were blaoxa-320 (n = 13),
222 aadA (n=6), and blaoxa-140 (n = 6).

223 Validation of 15X coverage in metagenomic samples

224 From a public dataset of 10 rectal surveillance swabs which were vancomycin resistant
225  Enterococcus (VRE) positive by culture and vanA positive in 9/10 swabs by Illumina sequencing
226 8 we validated 15X Enterococcus genome coverage for the detection of vanA. The study

227  authors performed 2 X 75 bp sequencing and achieved a mean 9.1 million reads (range: 5.7
228  million — 15 million reads), post-quality filtering and removal of human reads. The rectal swab
229  samples had a range of Enterococcus relative abundances (median: 0.10; range: 0.80 — 0.0002)
230 and genome coverages (median: 21X; range: 375X — 0.07X) (Fig. 6a). Rectal swab number 8 had
231  the highest Enterococcus relative abundance of 0.80 and, due to the large number of

232 sequencing reads (125 million), had the largest estimated target genome coverage of ~375X.
233  Rectal swab number 4 had the lowest Enterococcus relative abundance (0.0002) and 91 million
234 sequences, which resulted in a target genome coverage of ~0.07X for this sample.

235 To assess whether a minimum of 15X target genome coverage is sufficient to detect
236  vanA in the rectal swab metagenomes, we subsampled reads to achieve a range of target

237  genome coverages from 0.5X - 15X and then bootstrapped 10 times at each subsample to

238  determine vanA detection frequency. The results of this analysis are shown in Figure 6b. To

239  achieve 100% detection frequency of the vanA gene across rectal swab samples, 5 samples

11
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240 required Enterococcus genome coverage of less than 5X (rectal swabs 1,5-7, and 10), while 2
241  required at least 15X coverage (rectal swabs 3 and 8). At 15X Enterococcus genome coverage,
242  vanA was detected in 10/10 bootstraps for all samples that had adequate sequencing depth for
243 subsampling. Rectal swab number 4 did not have enough reads to achieve 0.5X Enterococcus
244  genome coverage and vanA was not detected when we analyzed all reads available, which is
245  consistent with the authors’ published findings that describe their inability to detect vanA using
246  paired-end Illumina sequencing?®.

247  Estimates of the sensitivity of sequencing depth for AMR gene detection in published data
248 sets

249 Recent publications assessing AMR gene content in metagenomic samples may not have
250 achieved optimal sensitivity for AMR gene detection if they were to use a contig assembly

251  approach. As we have observed, the relative abundance of the target organism affects

252  sensitivity to detect AMR genes in a metagenomic sample. We gathered sequencing depths and
253  read length information from three recently published studies that reported AMR genes in

254  metagenomic samples. Study 1 assessed and compared the resistome of 1174 gut and oral

255  samples from previously published sources distributed by country®. For our analyses, we

256  included 1132/1174 from Study 1 for which we had complete read length data (excluding

257  42/1174, 3.6%). Study 2 performed a longitudinal assessment of the gut microbiota and

258 resistome of healthy veterinary students exposed to a Chinese swine farm environment. A total
259 63 metagenomic samples were sequenced which consisted of human stool and environmental
260  samples®. Study 3 was conducted in Denmark and evaluated the changes in the gut microbiota

261  composition and resistome of 12 healthy male volunteers before and after antimicrobial

12
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262  exposurel®, A total of 57 stool samples were subject to metagenomic analyses. Studies 1 and 3
263  used a read-based approach for AMR gene prediction, while Study 2 used an assembly-based
264  approach.

265 We were interested in estimating AMR gene detection frequency from the published
266  sample sequencing depths for a hypothetical target organism (presumed genome size 6 Mbp)
267  at arange of potential relative abundances. Assuming detection frequency is related to

268  sequencing sensitivity, we calculated coverage as an estimate of sequencing depth and

269 interpolated detection frequency values from a sigmoidal curve fit to the E. coli ST38 blacrx-m-15
270  detection data as seen in Figure 4a.

271 As the relative abundance of the hypothetical target organism decreased, more

272  sequencing effort was required to achieve 100% estimated detection frequency of all AMR

273  genes (Fig. 7). Most published samples had achieved >95% estimated detection frequency for
274  all AMR genes for a target organism at relative abundance of 100% (1251/1252; 99.9%), 90%
275  (1250/1252; 99.8%) and 50% (1247/1252; 99.6%). However, the proportion of samples with at
276  least 90% estimated detection frequency was lower for a target organism relative abundance of
277  10% (1090/1252; 87.1%) and 1% (454/1252; 36.3%). Additionally, 29.5% (369/1252) of samples
278  were not sequenced sufficiently to achieve >50% estimated detection frequency for a target
279  organism relative abundance of 1%, where 9.2% (115/1252) had less than 1% estimated

280 detection frequency (Fig. 7), suggesting that in these studies, sequencing depth may be

281 inadequate to achieve a high sensitivity for detection of AMR genes in low abundance

282  organisms.

283 Discussion

13
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284 Our goal was to characterize the performance (sensitivity, PPV, and limits of detection)
285  of genomic and metagenomic approaches for the detection of known predictors of AMR in

286  microbes to inform the use of these approaches in human, animal, and environmental studies.
287  Itis axiomatic that sequencing depth affects AMR gene assay sensitivity in single isolates!®?°
288  and within a microbiome?!, however, the performance characteristics of sequencing have not
289  been systematically assessed. In published reports, a range of whole genome sequencing

290 depths for single isolates, from 30X coverage up to 100X coverage, are often used to define
291  quality control limits, but these are not considered standard®1%2223, Estimating the coverage of
292  the metagenome required to ensure high sensitivity is not a new concept?*, but we are

293  unaware of a study that attempts to precisely quantify sequencing depths required to detect
294  AMR genes in a target organism across varying relative abundances in mixed metagenomes
295  using standard methods.

296 Using a de novo contig-assembly approach, we found that approximately 15X coverage
297 (300,000, 2 X 150 bp paired-end reads of a 6 Mbp genome) provides similar sensitivity to higher
298  sequencing depths for the detection of AMR genes in E. coli isolates and is sufficient for

299  detecting SNPs and other resistance genes. Although sequencing depths as low as 0.5 million
300 reads have been proposed to capture the total compositional information of metagenomes?>,
301 greater sequencing depth is required for the detection of AMR genes in organisms with low
302 relative abundance, which can require as many as 30 million reads to achieve adequate

303  sensitivity for organisms at a relative abundance of 1%.

304 For some study purposes, detection of AMR genes in low abundance organisms may be

305 critical for study interpretation. Human observational studies have demonstrated that
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306 pathogens at both high and low relative abundances in complex gut microbial communities are
307 associated with subsequent infections or death. Dominance of a microbial community by a
308 pathogen is associated with subsequent infection?®28, but even at relative abundances as low
309 as 1% -0.1%, pathogens detected in stool have been implicated in subsequent bacteremia in
310 hematopoietic stem cell transplant recipients?®, as well as bacteriuria and urinary tract

311  infection®, indicating that detection of AMR genes may be clinically significant even at very low
312  relative abundance thresholds. Based on our findings, approximately 64% of the samples in
313  recent studies evaluating AMR gene content in the metagenome are not sequenced at a

314  sufficient depth to detect AMR genes in a target organism at 1% relative abundance. Thus,
315 potentially clinically meaningful resistance determinants may not be detected with common
316  sequencing depths such as those we analyzed in published studies.

317 Assembly is time-consuming, requires large amounts of computing power for

318 metagenomic samples, and may also contribute to loss of data3!. Alternative approaches to
319  assembly such as read alignment!®323% and kmer-based approaches3! may require less

320 sequencing information for AMR gene detection, which is useful for detecting AMR genes in
321 low abundance organisms in complex communities. Compared to assembly, our read-based
322  approach (KMA) did not significantly improve the limit of detection in E. coli ST38 or

323  metagenomes, even for a low abundance target, and at times suffered from the AMR allele
324  network problem?, where reads from a single gene were aligned to multiple closely related
325 reference alleles, e.g. blarem-1s1, despite its improvements over other read alignment tools for
326  this issue'®. Additionally, some genes (e.g. gyrA and parC SNPs and blarem-1) that had a high

327 detection frequency with assembly, had a low detection frequency with KMA and there were a
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328 large number of false positive genes that could not be filtered without affecting the overall

329  sensitivity of the assay. Yet, our comparison of BLAST and DIAMOND with open reading frames
330 predicted from assembled contigs illustrated that attention should also be paid to local

331 alignment algorithm choice when using assembly-based approaches, as DIAMOND generated
332 less low confidence predictions.

333 A large majority of the AMR genes detected in the E. coli ST38 isolate and across the E.
334  coliisolate set were efflux-associated AMR genes. Efflux-associated genes are of uncertain

335 relevance for prediction of microbial phenotypes3®37. In some scenarios (e.g. human infections)
336 it may be advantageous to limit AMR gene detection to acquired mechanisms of resistance by
337  using a database such as ResFinder32, or by filtering efflux-associated genes from the total AMR
338  genes detected, which has been previously shown to improve predictions of isolate

339  antimicrobial susceptibility using CARD3’. Accurate prediction of plasmids, often associated
340  with clinically important AMR genes, remains difficult as short-read lllumina sequencing

341  provides highly accurate base calling, but repetitive DNA regions complicate genome assembly
342  resulting in fragmented, short contigs3°. AMR genes may be split between multiple contigs 4°
343  leaving plasmid sequences obscured*!. Long-read sequencing technology provides a promising
344  alternative to short-read sequencing and can overcome the issue of fragmented contig

345  assembly®.

346 Our approach has the following limitations. We modelled a single approach utilizing a
347  widely used sequencing strategy, two bioinformatic pipelines and one AMR detection platform
348 (CARD) for a single organism (E. coli). These selections were made to reflect dominant modes of

349 metagenome analysis in a clinically relevant organism to define the ‘order of magnitude’ of
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350 depth required for AMR gene detection from metagenomes, which may not be generalizable to
351  all organisms, community types or modes of resistance. A main limitation of AMR gene

352  prediction from sequencing data is the chosen database that can potentially increase false

353  negatives. However, CARD is widely used, updated on a monthly basis, and is representative of
354  known AMR gene diversity, especially for well-characterized pathogens such as E. coli*?>. Human
355 metagenomic samples often have human DNA that can account for a large proportion of the
356 total sample, which impacts sequencing strategies***. An understanding of the total genetic
357  material contributed by human reads prior to sequencing would further inform sequencing
358 effort required to maintain a minimum sequencing depth for AMR gene detection.

359 We have quantified sequencing depths needed to detect AMR genes in E. coli whole
360 genomes and in E. coli from high to low relative abundances among a complex community. A
361  minimum of 15X coverage is needed for the detection of AMR genes in E. coli using our AMR
362  gene identification approach. For metagenomic samples, 15X coverage is also sufficient to

363  detect known AMR genes in E. coli, but the number of sequences must increase proportionally
364  tothe decrease in relative abundance of the target organism. We believe that this analysis

365  provides a robust benchmarking of sequencing effort for metagenomic studies in which

366 detection of resistance is a specified outcome.

367 Methods

368 Sample preparation and sequencing

369 From a collection of previously characterized E. coli isolates!’, we selected a multidrug-
370 resistant E. coli ST38 with an extended spectrum beta-lactamase (blacrx-m-15) and resistance-

371  conferring SNPs in parC (S801) and gyrA (S83L, D87N). Briefly, E. coli ST38 isolate was cultured
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372  from a glycerol stock on LB agar and a single colony was inoculated into 25 ml of LB broth,

373  which was placed on a shaker incubator (130 rpm) at 37°C for 4 hours until media was turbid.
374  Turbid media (25 ml) was transferred to a 50 ml conical tube, subject to centrifugation at 2500
375 g, the supernatant removed, and the pellet re-suspended in 500 ul of LB broth. A description of
376  the complex community (MET-1) preparation was described previously*. Aliquots of MET-1
377  were stored at -80°C prior to use.

378 DNA was extracted from thawed MET-1 (250 ul) and the E. coli isolate in LB broth (250
379  ul) using the DNeasy PowerSoil kit (Qiagen) and DNA concentration was measured using a

380 Qubit Fluorometer (Thermo Fisher), following the manufacturer’s instructions, respectively. E.
381  coliand MET-1 DNA were combined to a final concentration of 20.1 ng/ul, while varying the
382  concentration of E. coli so that it approximately represented 90%, 50%, 10%, 1%, 0.1%, 0.01%,
383  0.001%, and 0.0001% relative to MET-1. Sequencing libraries were prepared using the Nextera
384  DNA Flex kit (Ilumina) following the manufacturer’s instructions and stored at -20°C. All 10
385 samples (the E. coli ST38 isolate, MET-1, and 8 combined samples) were subject to paired-end
386 sequencing at 2 X 150 bp on the NovaSeq 6000 at the Princess Margaret Genomics Centre.

387  Since we did not achieve the minimum sequencing depth needed to detect AMR genes in the
388 combined samples where E. coli ST38 represented 0.1%, 0.01%, 0.0001%, and 0.0001% we did
389  not analyze these samples in our study.

390 Bioinformatic analyses

391 From each pair of fastq files, Seqtk?® was used to subsample n number of reads. At each
392  subsample, bootstrapping was performed (sampling with replacement) 100 times unless

393  otherwise stated, where all 100 bootstraps of a subsample had a unique seed number to ensure
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394  every bootstrap was a random sampling of reads. Paired-end fastq files (read 1 and read 2)
395  were assessed for quality using FastQC*’. Nextera adapters were removed with Trimmomatic*®
396  v.0.39. Reads for E. coli genomes as well as MET-1 and the combined samples were assembled
397 into contigs using SPAdes*® v.3.13.1, specifying the --careful flag, and metaSPAdes*’ v.3.13.1,
398 respectively, using the recommended kmer lengths 21, 33, 55, and 77. We used Metaphlan2°!
399  v.2.9.21 to confirm sample taxonomy, including the identity of all E. coli isolates and the

400 relative abundance of Enterococcus species in the validation sets, respectively.

401 To predict AMR genes from contigs, we used RGI main v.5.1.0 of the Comprehensive
402  Antibiotic Resistance Database on default settings (perfect and strict hits identified only)*2. We
403  specified DIAMOND?® v.0.8.36, or BLAST>? v.2.9.0 (where stated) to perform local alignment of
404  Prodigal-predicted genes within contigs against CARD v.3.1.0%%°3, For metagenome assembled
405  contigs, we specified the —low_quality flag in RGl main to allow prediction of partial open

406  reading frames by Prodigal.

407 To predict AMR genes from raw reads, we used KMA1® v.1.3.8 within RGI bwt v.5.2.0 to
408  align reads to CARD. To predict AMR-conferring SNPs in the parC (S80I) and gyrA (S83L, D87N)
409 genes, we extracted the consensus sequences generated from these read alignments and used
410 RGI mainv.5.2.0.

411  Quantification of AMR genes

412 To quantify the occurrence of the parC (S80I) and gyrA (S83L, D87N) SNPs in

413  bootstrapped subsamples of the E.coli ST38 isolate and combined samples, we extracted the
414  individual accession numbers (from contig results only) and SNP information (contigs and raw

415  reads) for each gene from all RGI or KMA output files. The parC and gyrA SNPs were considered
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416  present if the mutated amino acid residues S80I in parC and S83L, D87N in gyrA were correctly
417  predicted by RGI. If RGI predicted other mutated amino acid residues in the parC and gyrA

418 genes or did not identify any mutated amino acid residues in the parC and gyrA gene, we did
419  not consider these SNPs as present. For all other resistance genes, we extracted unique genes
420 from the “Best_Hit_ARO” (contigs) or “ARO_Term” (raw reads) column of each sample RGI

421  output file, to create a new “unique AMR genes” file for each sample. Then, using Metaphlan2
422  v.2.9.14 we used the merge_metaphlan_tables.py command to merge the “unique AMR genes”
423  files together, where the first column outlined the AMR genes predicted for all samples and the
424  first row indicated the sample names. AMR gene presence was indicated by 1 and absence

425 indicated by 0. Merging the RGI output files allowed us to quantify the frequency at which

426  individual AMR genes were present across samples. We considered an AMR gene present in a
427  bootstrap if the gene occurred at least once. The number of AMR genes present across

428  bootstrapped subsamples was visualized with rarefaction curves and plotted using GraphPad
429  Prism version 9.

430 Coverage estimation

431 Sequencing coverage was estimated using the Lander-Waterman equation®*. For E. coli
432  ST38, we assumed a genome size of 6 Mbp. To estimate the number of reads required to detect
433  E. coli ST38 at a range of relative abundances, the minimum read requirement (300,000 reads)
434  was divided by the target relative abundance. For example, if the target relative abundance was
435  10%, 300,000/0.10 would equal 3,000,000 reads.

436  Performance analyses
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437 The performance of AMR gene classification was calculated using sensitivity and positive
438  predictive value. For the single E. coli ST38 isolate, the AMR genes predicted in each

439  bootstrapped subsample using a contig assembly approach with SPAdes or a read-based

440  approach with KMA were compared to the AMR genes predicted in a subsample assembled into
441  contigs at 5 million reads (reference). If the AMR gene was present in the bootstrap and

442  reference, this gene was considered a true positive. If an AMR gene was not present in neither
443  the bootstrap nor the reference, this gene was considered a true negative. False positive AMR
444  genes were present in the bootstrap but absent in the reference and false negative AMR genes
445  were absent in the bootstrap but present in the reference. For each bootstrap sample, the true
446  positives, true negatives, false positives, and false negatives were summed and sensitivity and
447 PPV were calculated.

448  Validation from external datasets

449 To validate the performance of a 300,000 read depth across a set of E. coli isolates'’, we
450  subsampled 300,000 reads, once, from each isolate, assessed quality with FastQC and discarded
451  isolates that failed per base sequence quality. We then compared the AMR genes detected at
452 300,000 reads to the AMR genes detected from the original sequence depth. We summed the
453  true positives, true negatives, false positives, and false negatives for each isolate, then

454  calculated sensitivity, PPV and F1 score as a balanced measure of sensitivity and PPV.

455 To validate 15X target genome coverage in metagenomic samples!® and to demonstrate
456  vanA detection frequency across a range of Enterococcus genome coverages (0.5X — 15X), we
457  subsampled each metagenomic sample and bootstrapped each subsample 10 times. Each

458  subsample depth was calculated using the Lander-Waterman equation, as described above,
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459  while accounting for the Enterococcus relative abundance in the sample, as determined using
460 Metaphlan2. We assumed an Enterococcus genome size of 4 Mbp.

461 AMR gene detection frequency assessment of published datasets

462 We extracted the sequence depths after quality processing that were provided in each
463  studies’ supplementary material for Study 1°,28 and 319, For Study 3, we used the sequences
464  reported under the heading “After human contamination removal” under the sub-heading
465  “read-pairs”. Sequencing read lengths were reported in Study 2 (2 X 150 base pairs) and 3 (2 X
466 100 base pairs), but for Study 1 we extracted the read lengths from the individual studies

467 referenced within the paper. We then estimated coverage for each sample from the published
468  datasets and for each subsample performed on the samples where E. coli ST38 represented
469  100%, 90%, 50%, 10%, and 1% relative abundance, assuming a genome length of 6 Mbp, then
470 log-transformed these values. Using GraphPad Prism version 9.1.2, sigmoidal curves were fit to
471  detection frequency data for the blacrx-m-15 for each sample where E. coli ST38 represented
472  100%, 90%, 50%, 10%, and 1% relative abundance. The equations were constrained at 0 and
473 100 and detection frequency was interpolated for relative abundances 100%, 90%, 50%, 10%,
474  and 1% based on coverage estimation.

475  Data availability

476  The dataset generated during the current study are available in the NCBI sequence read archive
477  under the accession number PRINA649958.
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496  Figure Legends

497  Figure 1. a, A rarefaction plot of Escherichia coli ST38 AMR genes detected across subsamples
498  using an assembly-based approach. Individual dots represent a single AMR gene and are

499  connected by lines to demonstrate trends in detection across subsamples. blacrx-m-15, gyrA SNPs
500 (S83L, D87N), and parC SNP (S80I) are highlighted as previously identified resistance

501 determinants for this strain. The horizontal dotted line marks 90% detection frequency. The red

502  vertical dashed line marks the subsample at 300,000 reads. b, Histogram of the number of
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503 unique AMR genes with 290% detection frequency summarized by categories detected across
504 subsamples. (c-f) Performance of AMR gene classification across subsamples. A 5 million read
505 subsample was used as reference to calculate sensitivity (c), positive predictive value (d), false
506 negatives (e), and false positives (f). c-f, the mean and standard deviation are plotted.

507

508  Figure 2. a-b, Rarefaction plots of Escherichia coli ST38 AMR genes detected across subsamples
509 using a read-based approach. Individual dots represent a single AMR gene and are connected
510 by lines to demonstrate trends in detection across subsamples. blacrx-m-15, gyrA SNPs (S83L,
511  D87N), and parC SNP (S80I) are highlighted as previously identified resistance determinants for
512  this strain. The horizontal dotted line marks 90% detection frequency. The red vertical dashed
513  line marks the subsample at 200,000 reads. a, AMR genes detected across subsamples which
514  are present in the reference, b, AMR genes detected across subsamples which are not present
515 in the reference. (c-f) Performance of AMR gene classification across subsamples, where

516  performance was measured by sensitivity(c), positive predictive value (d), false negatives (e),
517  and false positives (f). c-f, the mean and standard deviation are plotted. a-e, the reference used
518  was all AMR genes detected using an assembly-based approach in the E. coli ST 38 isolate

519  subsampled at 5 million reads.

520

521  Figure 3. Precision-recall curve for an assessment of the effects of filtering strategies on the
522  read-based (KMA) classification of all AMR genes in Escherichia coli ST38 at 200,000 reads.

523  Precision is a measure of positive predictive value and recall is a measure of sensitivity.

524
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525  Figure 4. Detection of blacrx-m-15 (a,d), gyrA (S83L, D87N) (b,e), and parC (S80l) (c,f) from E. coli
526  ST38isolate (100%) across subsamples at varying strain relative abundances (90%, 50%, 10%,
527  1%) in a complex (multi-species) metagenomic sample using either an assembly-based

528 approach (metaSPAdes)(a-c) or a read-based approach (KMA)(d-f). The horizontal dotted line
529  marks 90% detection frequency. The vertical dotted lines represent the read depths where each
530 gene was estimated to be detected with 290% detection frequency for each colour matched
531 relative abundance using an assembly-based approach. The estimated read depths are 300,000,
532 333,333, 600,000, 3,000,000, and 30,000,000 to detect blactx-m-15, gyrA, and parC SNPs in 290%
533  detection frequency when E. coli ST38 is at 100%, 90%, 50%, 10%, and 1% relative abundance
534  respectively. For all subsamples 100 bootstraps were performed, except for the 30,000,000

535 read subsample where 10 bootstraps were performed, which is marked by an asterisk (*). The
536 30,000,000 read subsample was performed on one combined sample where E. coli represented
537 1% relative abundance.

538

539  Figure 5. Relative frequency distribution of E. coli isolates (n = 948) by performance of 300,000
540 reads for AMR gene detection using an assembly-based approach. Performance is measured by
541  sensitivity, positive predictive value (PPV), and F1 score.

542

543  Figure 6. Detection of vanA in rectal swab samples postive for vancomycin-resistant

544  Enterococcus from a public dataset. a Enterococcus relative abundance by estimated total

545 genome coverage, each rectal swab sample is represented by an icon. b vanA detection

546  frequency across genome coverages for each rectal swab sample. Rectal swab sample 4 is not
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plotted as vanA was not detected with the total number of sequences available. For each
sample, 10 bootstraps were performed at each genome coverage depth. To calculate

Enterococcus genome coverage, we assumed a genome size of 4 Mbp.

Figure 7. Estimated AMR gene detection frequency by sample coverage of a hypothetical target
organism at different relative abundances. Sample sequencing information was extracted from
three published datasets (n = 1252). Detection frequency was estimated by interpolating values

from sigmoidal curves fit to the blacrx-m-15 data from samples where E. coli represented 100%,

90%, 50%, 10%, and 1% relative abundance. Coverage was estimated assuming a target

genome size of 6 Mbp.
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