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Abstract 44 

Short-read sequencing provides a culture-independent method for the detection of 45 

antimicrobial resistance (AMR) genes from single bacterial genomes and metagenomic samples. 46 

However, the performance characteristics of these approaches have not been systematically 47 

characterized. We compared assembly- and read-based approaches to determine sensitivity, 48 

positive predictive value, and sequencing limits of detection required for AMR gene detection 49 

in an Escherichia coli ST38 isolate spiked into a synthetic microbial community at varying 50 

abundances. Using an assembly-based method the limit of detection was 15X genome 51 

coverage. We are confident in AMR gene detection at target relative abundances of 100% to 52 

1%, where a target abundance of 1% would require assembly of approximately 30 million reads 53 

to achieve 15X target coverage. Recent studies assessing AMR gene content in metagenomic 54 

samples may be inadequately sequenced to achieve high sensitivity. Our study informs future 55 

sequencing projects and analytical strategies for genomic and metagenomic AMR gene 56 

detection. 57 
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Introduction 65 

Increasing throughput and decreasing costs of DNA sequencing have made whole 66 

genome and metagenomic sequencing accessible for antimicrobial resistance (AMR) gene 67 

detection on a broad scale. This technology is a useful epidemiological tool1,2 and there are 68 

increased efforts to correlate isolate genotype with phenotypic resistance3,4.  The ‘resistome’5 is 69 

the total genetic content of the microbiome with the potential to confer resistance to 70 

antibiotics, and there has been significant interest in characterizing the AMR gene content in 71 

the environment6–8, humans9,10, and other mammals11,12. Large trials investigating antibiotic 72 

efficacy have also included the development of AMR in the gut microbiome as an outcome13.   73 

Novel methods for AMR gene detection have been developed to tackle the challenge of 74 

AMR gene identification from single isolates and metagenomic samples, generally using either 75 

assembly-based or read-based approaches, but there is currently no universal standard14. 76 

Notably, there are no recommendations for optimal sequencing depths required to identify 77 

AMR genes in complex metagenomic samples, and the performance characteristics of different 78 

sequencing depths using common AMR detection tools for genomes and metagenomes have 79 

not been established. 80 

In this study, we used the Resistance Gene Identifier (RGI) and the Comprehensive 81 

Antibiotic Resistance Gene Database (CARD) and compared an assembly- and read-based 82 

approach to assess the limits of detection, sensitivity, and PPV of sequencing to detect known 83 

AMR genes in a multidrug- resistant E. coli isolate that represented varying abundances in a 84 

complex metagenome. We highlight the importance of maintaining minimum target genome 85 

coverage to detect AMR genes when the target organism is at varying relative abundances in a 86 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449921doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449921
http://creativecommons.org/licenses/by/4.0/


5 
 

metagenomic sample and provide an estimate of minimum required sequencing depths of 87 

target organisms to maintain adequate sensitivity.  88 

Results 89 

Assembly-based AMR gene detection in Escherichia coli ST38  90 

To ensure that sequencing effort was not a limiting factor in AMR gene detection, we 91 

subjected an Escherichia coli (E. coli) ST38 isolate to deep sequencing and obtained 92 

approximately 136 million reads (  ̴6,800X genome coverage). To simulate sequencing at lower 93 

depths, we randomly subsampled 5,000,000 (  2̴50X), 1,000,000 (  ̴50X), 500,000 (  2̴5X), 94 

300,000 (  1̴5X), 250,000 (  ̴12.5X), 200,000 (  ̴10X), 150,000 (  7̴.5X), 100,000 (  ̴5X), 50,000 ( 95 

 2̴.5X), and 10,000 (  ̴0.5X) read pairs, and bootstrapped each subsample 100 times, with 96 

replacement, to provide confidence in the AMR genes detected in each subsample. We 97 

considered AMR genes detected with ≥90% detection frequency as high confidence genes, 98 

whereas those detected with ≤50% detection frequency were considered low confidence 99 

genes.  100 

Using the SPAdes genome assembler, a sequencing depth of 300,000 reads or 101 

approximately 15X coverage was sufficient to detect blaCTX-M-15, and parC and gyrA single 102 

nucleotide polymorphisms (SNPs) as well as 69 other genes with greater than ≥90% detection 103 

frequency (Fig. 1a). Other resistance genes included 3 different beta-lactamases (blaTEM-1, 104 

blaOXA-1, and blaAmpC), 5 unique aminoglycoside transferases, and 46 distinct efflux pump genes 105 

(Fig. 1b). A lower sequencing depth was adequate to detect the SNPs with ≥90% detection 106 

frequency (150,000 reads for gyrA and 100,000 for parC) compared to blaCTX-M-15 (200,000 107 

reads) (Fig. 1a).  There were AMR genes detected less frequently (≤50% detection frequency) 108 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 26, 2021. ; https://doi.org/10.1101/2021.06.25.449921doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.25.449921
http://creativecommons.org/licenses/by/4.0/


6 
 

across all sequencing depths except at 500,000 reads where no AMR genes were detected at 109 

≤50% detection frequency (Fig. 1a). 110 

To demonstrate how sequencing depth affects the performance of AMR gene detection, 111 

we used a single 5 million read subsample (  ̴250X coverage) as a reference to calculate 112 

sensitivity and positive predictive value (PPV) across subsamples. We did not use specificity as a 113 

metric to assess performance due to the high number of true negatives which would inflate 114 

specificity.  A depth of 300,000 reads performed similarly to 1 million reads for sensitivity (1.00 115 

± 0.00 vs 1.00 ± 0.00, Fig. 1c) and PPV (mean = 1.00 ± 0.00 vs 1.00 ± 0.00, Fig. 1d) with low false 116 

negatives (0.09 ± 0.29, Fig. 1e) and false positives (0.02 ± 0.14, Fig. 1f) (mean and standard 117 

deviation).   118 

The Basic Local Alignment Tool (BLAST) is a highly sensitive alignment tool in common 119 

use15. We aimed to compare high and low confidence AMR genes predicted using BLAST or 120 

DIAMOND, a faster alternative sequence alignment tool to BLAST15. Overall, BLAST predicted 121 

more AMR genes across all subsamples (Supplementary Fig. 1c). Using BLAST, as sequencing 122 

depth increased, 72 AMR genes achieved ≥90% detection frequency by 300,000 reads 123 

(Supplementary Fig. 1a), which is consistent with results using DIAMOND (Supplementary Fig. 124 

1b). Between BLAST and DIAMOND, the genes predicted with ≥90% detection frequency at 125 

subsamples ≥300,000 reads were similar in number (approximately 72 genes were detected by 126 

both methods) as well as annotation (Supplementary Fig. 1d & 1f). Across all subsamples, more 127 

genes were predicted with ≤50% detection frequency using BLAST. For example, in the 300,000 128 

read subsample, 2 genes were detected with ≤50% detection frequency using DIAMOND and 16 129 

genes were predicted using BLAST (Supplementary Fig. 1e). Of the total AMR genes detected by 130 
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BLAST and DIAMOND with ≤50% detection frequency, at subsamples 300,000, 500,000, 131 

1,000,000 and 5,000,000 reads, 14/16 (87%), 4/4 (100.0%), 8/11 (73%), and 22/25 (88%), 132 

respectively, were unique to BLAST (Supplementary Fig. 1f). We proceeded to use DIAMOND 133 

for the remainder of the study as fewer low confidence genes were predicted.  134 

Read-based AMR gene detection in E. coli ST38 135 

 We next compared AMR genes predicted using a read-based approach to AMR genes 136 

predicted with an assembly-based approach in the E. coli ST38 isolate. We chose to use KMA 137 

over other read alignment tools as it produces a consensus sequence which can be used for SNP 138 

detection16.  For these analyses, we compared the AMR genes predicted across subsamples 139 

using KMA to those predicted using SPAdes assemblies in the 5 million read subsample.  140 

We found that 200,000 reads (  ̴10X coverage) were sufficient to identify most AMR 141 

genes using KMA read alignment with ≥90% detection frequency (Fig. 2a) with a sensitivity of 142 

93% ± 0.0% and 5.0 ± 0.2 false negatives (mean ± standard deviation) (Fig 2c & 2e). However, 143 

there were genes that had ≤50% detection frequency at 200,000 reads including the known 144 

gyrA and parC SNPs as well as KpnE, KpnF, blaTEM-1, and the gene annotated as homologous to 145 

Haemophilus penicillin-binding protein 3 conferring resistance to beta-lactams. The AMR gene 146 

rsmA required 5 million reads to achieve a detection frequency of ≥90% (Fig. 2a). At 200,000 147 

reads there were 30 additional AMR genes predicted at ≥90% detection frequency that were 148 

not detected in the reference (Fig. 2b), with a PPV of 66% ± 0.0% and 34.8 ± 1.1 false positives 149 

at this depth (Fig. 2d & 2f).  150 

When a read-based approach is used to identify AMR genes, strategies are often applied 151 

to improve precision and remove false positives. However, there is a trade-off between 152 
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increased precision and decreased recall which is important to quantify. We assessed the 153 

effects of four AMR gene filtering strategies, at a range of cut-off values, on the performance of 154 

the 200,000 read depth for the detection of AMR genes in E. coli ST38 using KMA. The AMR 155 

gene filtering strategies included percent coverage, average depth of coverage, number of 156 

completely mapped reads, and the average mapping quality score (MAPQ score). The unfiltered 157 

precision and recall was 66% and 93%, respectively. No filtering strategy that we assessed 158 

significantly improved the precision, based on the precision-recall curve (precision = PPV; recall 159 

= sensitivity, Fig. 3). Out of the four strategies, percent coverage achieved the greatest increase 160 

in precision at the highest stringency cut-off of 100% allele coverage (unfiltered precision: 66%; 161 

filtered precision: 76%). However, at this cut-off, the recall decreased from 93% to 79%. When 162 

filtering by depth of coverage, completely mapped reads, or MAPQ score, the highest increase 163 

in precision was from 66% to 74% (recall: 76%), 74% (recall: 54%), and 69% (recall: 87%), 164 

respectively. As expected, as the cut-offs became more stringent for each filtering strategy, the 165 

recall decreased. Filtering based on percent coverage had the least affect on recall, even at the 166 

highest stringency cut-off (100% allele coverage) compared to the other strategies.  167 

Detection of E. coli ST38 AMR genes at a range of relative abundances in a complex 168 

metagenomic sample  169 

To demonstrate the effect of target organism relative abundance on AMR gene 170 

detection in a multi-species metagenome consisting of 34 bacterial species, the DNA of E. coli 171 

ST38 and the complex community were combined to create synthetic metagenomic samples 172 

where E. coli ST38 represented approximately 90%, 50%, 10%, and 1% of the total 173 

metagenome. Based on the sequencing limit of detection of 300,000 reads in the single E. coli 174 
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ST38 isolate (100% relative abundance), we estimated that at 90%, 50%, 10%, and 1% relative 175 

abundance, 333,333, 600,000, 3,000,000 and 30,000,000 reads, respectively, would be required 176 

to detect the known AMR genes (blaCTX-M-15, parC, gyrA SNPs) contributed by the E. coli ST38 177 

isolate with ≥90% detection frequency.  178 

Using metaSPAdes as the metagenomic assembly tool, we observed that as the E. coli 179 

ST38 relative abundance decreased, the number of reads necessary to detect the blaCTX-M-15 180 

(Fig. 4a), the gyrA SNPs (Fig. 4b), and the parC SNP (Fig. 4c), as well as the 5 aminoglycoside 181 

transferases, blaTEM-1, and blaOXA-1, increased (Supplementary Figure 2a-f). The detection rate 182 

approximated our expectations at relative abundances >1% (Fig. 4a-c). For the combined 183 

sample containing E. coli ST38 at 1% relative abundance, we did not detect the gyrA SNPs in any 184 

of the 10 bootstraps at 30,000,000 reads (Fig. 4b), while the blaCTX-M-15 and the parC SNP had a 185 

detection frequency of 90% (9/10 bootstraps) and 100% (10/10 bootstraps), respectively (Fig. 186 

4a & 4c).  187 

Although read-based approaches are often thought of as highly sensitive tools for AMR 188 

gene detection in low abundance organisms14, KMA did not significantly improve the limit of 189 

detection for blaCTX-M-15 (Fig. 4d), the 5 aminoglycoside transferases or blaOXA-1 (Supplementary 190 

Figure 3a-e & 3g) compared to assembly. The detection frequency was low for the gyrA and 191 

parC SNPs (Fig. 4e & 4f), as well as blaTEM-1 (Supplementary Figure 3f) across subsamples and 192 

metagenomic samples. Instead of blaTEM-1, KMA aligned reads to three TEM-variants with ≥90% 193 

detection frequency in at least one metagenomic sample, of which blaTEM-181 had the most 194 

reads aligning to the allele (Supplementary Figure 4d-f). In comparison, all TEM-variants 195 

predicted using KMA had low detection frequency using metaSPAdes (Supplementary Figure 196 
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4a-c). Sanger sequencing confirmed the presence of blaTEM-1 and not blaTEM-181 in the E. coli ST38 197 

isolate.  Lastly, the total number of high confidence AMR genes in the metagenomic samples 198 

was significantly higher using KMA compared to those genes detected using metaSPAdes.  199 

Validation of 15X coverage across E. coli isolates  200 

To validate the 300,000 read depth/15X coverage threshold, we applied our assembly-201 

based approach to 948 E. coli isolates17. The isolates were previously sequenced to an average 202 

of 100X coverage using 150-bp paired-end Illumina sequencing. We performed a subsample 203 

from each isolate at 300,000 reads and compared the AMR genes predicted at 300,000 reads to 204 

the AMR genes predicted at the original sequencing depth to calculate sensitivity, PPV, and F1 205 

score for each isolate. The F1 score is a harmonic measure of sensitivity and PPV, where a score 206 

of 1 would indicate perfect sensitivity and PPV.  207 

Across the E. coli isolate set, we observed a total of 322 unique AMR genes. 208 

Performance of the 300,000 read depth is summarized in Figure 5. The F1 score was 1 for 209 

658/948 (69.4%) isolates. There were 290/948 (30.6%) isolates with a F1 score of <1, where 210 

228/290 (78.6%) isolates had an F1 score between 0.99 – 0.98, 49/290 (16.9%) had an F1 score 211 

between 0.95 – 0.97, 11/290 (3.8%) had an F1 score between 0.90 – 0.94 and the remaining 212 

isolates had an F1 score 0.89 and 0.65. Of the 290 isolates with F1 score <1 (less than perfect 213 

agreement), 84 (29.0%) had a PPV of <1 and 261 (90.0%) had a sensitivity of <1. For the isolates 214 

with a PPV of <1, the median number of false positives was 1 (range 1-70). The isolate with 70 215 

false positives is an outlier. For the isolates with a sensitivity of <1, the median number of false 216 

negatives was 1 (range 1-15).  217 
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Of the 322 unique AMR genes, 21 genes (6.5%) were classified as true positive for all 218 

948 isolates, where 90.5% (19/21) were efflux-associated genes. The top three AMR genes that 219 

contributed the most false negatives were APH(6)-ld (n = 25), sul2 (n = 23), and mphA (n = 23), 220 

while the top three genes that contributed the most false positives were blaOXA-320 (n = 13), 221 

aadA (n = 6), and blaOXA-140 (n = 6).   222 

Validation of 15X coverage in metagenomic samples  223 

From a public dataset of 10 rectal surveillance swabs which were vancomycin resistant 224 

Enterococcus (VRE) positive by culture and vanA positive in 9/10 swabs by Illumina sequencing 225 

18, we validated 15X Enterococcus genome coverage for the detection of vanA. The study 226 

authors performed 2 X 75 bp sequencing and achieved a mean 9.1 million reads (range: 5.7 227 

million – 15 million reads), post-quality filtering and removal of human reads.  The rectal swab 228 

samples had a range of Enterococcus relative abundances (median: 0.10; range: 0.80 – 0.0002) 229 

and genome coverages (median: 21X; range: 375X – 0.07X) (Fig. 6a). Rectal swab number 8 had 230 

the highest Enterococcus relative abundance of 0.80 and, due to the large number of 231 

sequencing reads (125 million), had the largest estimated target genome coverage of   3̴75X. 232 

Rectal swab number 4 had the lowest Enterococcus relative abundance (0.0002) and 91 million 233 

sequences, which resulted in a target genome coverage of   0̴.07X for this sample.  234 

 To assess whether a minimum of 15X target genome coverage is sufficient to detect 235 

vanA in the rectal swab metagenomes, we subsampled reads to achieve a range of target 236 

genome coverages from 0.5X - 15X and then bootstrapped 10 times at each subsample to 237 

determine vanA detection frequency. The results of this analysis are shown in Figure 6b.  To 238 

achieve 100% detection frequency of the vanA gene across rectal swab samples, 5 samples 239 
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required Enterococcus genome coverage of less than 5X (rectal swabs 1,5-7, and 10), while 2 240 

required at least 15X coverage (rectal swabs 3 and 8).  At 15X Enterococcus genome coverage, 241 

vanA was detected in 10/10 bootstraps for all samples that had adequate sequencing depth for 242 

subsampling.  Rectal swab number 4 did not have enough reads to achieve 0.5X Enterococcus 243 

genome coverage and vanA was not detected when we analyzed all reads available, which is 244 

consistent with the authors’ published findings that describe their inability to detect vanA using 245 

paired-end Illumina sequencing18.  246 

Estimates of the sensitivity of sequencing depth for AMR gene detection in published data 247 

sets  248 

Recent publications assessing AMR gene content in metagenomic samples may not have 249 

achieved optimal sensitivity for AMR gene detection if they were to use a contig assembly 250 

approach. As we have observed, the relative abundance of the target organism affects 251 

sensitivity to detect AMR genes in a metagenomic sample. We gathered sequencing depths and 252 

read length information from three recently published studies that reported AMR genes in 253 

metagenomic samples.  Study 1 assessed and compared the resistome of 1174 gut and oral 254 

samples from previously published sources distributed by country9. For our analyses, we 255 

included 1132/1174 from Study 1 for which we had complete read length data (excluding 256 

42/1174, 3.6%). Study 2 performed a longitudinal assessment of the gut microbiota and 257 

resistome of healthy veterinary students exposed to a Chinese swine farm environment. A total 258 

63 metagenomic samples were sequenced which consisted of human stool and environmental 259 

samples6. Study 3 was conducted in Denmark and evaluated the changes in the gut microbiota 260 

composition and resistome of 12 healthy male volunteers before and after antimicrobial 261 
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exposure10. A total of 57 stool samples were subject to metagenomic analyses. Studies 1 and 3 262 

used a read-based approach for AMR gene prediction, while Study 2 used an assembly-based 263 

approach.  264 

We were interested in estimating AMR gene detection frequency from the published 265 

sample sequencing depths for a hypothetical target organism (presumed genome size 6 Mbp) 266 

at a range of potential relative abundances. Assuming detection frequency is related to 267 

sequencing sensitivity, we calculated coverage as an estimate of sequencing depth and 268 

interpolated detection frequency values from a sigmoidal curve fit to the E. coli ST38 blaCTX-M-15 269 

detection data as seen in Figure 4a.  270 

As the relative abundance of the hypothetical target organism decreased, more 271 

sequencing effort was required to achieve 100% estimated detection frequency of all AMR 272 

genes (Fig. 7). Most published samples had achieved ≥95% estimated detection frequency for 273 

all AMR genes for a target organism at relative abundance of 100% (1251/1252; 99.9%), 90% 274 

(1250/1252; 99.8%) and 50% (1247/1252; 99.6%). However, the proportion of samples with at 275 

least 90% estimated detection frequency was lower for a target organism relative abundance of 276 

10% (1090/1252; 87.1%) and 1% (454/1252; 36.3%). Additionally, 29.5% (369/1252) of samples 277 

were not sequenced sufficiently to achieve >50% estimated detection frequency for a target 278 

organism relative abundance of 1%, where 9.2% (115/1252) had less than 1% estimated 279 

detection frequency (Fig. 7), suggesting that in these studies, sequencing depth may be 280 

inadequate to achieve a high sensitivity for detection of AMR genes in low abundance 281 

organisms.   282 

Discussion 283 
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Our goal was to characterize the performance (sensitivity, PPV, and limits of detection) 284 

of genomic and metagenomic approaches for the detection of known predictors of AMR in 285 

microbes to inform the use of these approaches in human, animal, and environmental studies. 286 

It is axiomatic that sequencing depth affects AMR gene assay sensitivity in single isolates19,20 287 

and within a microbiome21, however, the performance characteristics of sequencing have not 288 

been systematically assessed. In published reports, a range of whole genome sequencing 289 

depths for single isolates, from 30X coverage up to 100X coverage, are often used to define 290 

quality control limits, but these are not considered standard3,19,22,23.  Estimating the coverage of 291 

the metagenome required to ensure high sensitivity is not a new concept24, but we are 292 

unaware of a study that attempts to precisely quantify sequencing depths required to detect 293 

AMR genes in a target organism across varying relative abundances in mixed metagenomes 294 

using standard methods.   295 

Using a de novo contig-assembly approach, we found that approximately 15X coverage 296 

(300,000, 2 X 150 bp paired-end reads of a 6 Mbp genome) provides similar sensitivity to higher 297 

sequencing depths for the detection of AMR genes in E. coli isolates and is sufficient for 298 

detecting SNPs and other resistance genes.  Although sequencing depths as low as 0.5 million 299 

reads have been proposed to capture the total compositional information of metagenomes25, 300 

greater sequencing depth is required for the detection of AMR genes in organisms with low 301 

relative abundance, which can require as many as 30 million reads to achieve adequate 302 

sensitivity for organisms at a relative abundance of 1%.  303 

For some study purposes, detection of AMR genes in low abundance organisms may be 304 

critical for study interpretation. Human observational studies have demonstrated that 305 
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pathogens at both high and low relative abundances in complex gut microbial communities are 306 

associated with subsequent infections or death. Dominance of a microbial community by a 307 

pathogen is associated with subsequent infection26–28, but even at relative abundances as low 308 

as 1% - 0.1%, pathogens detected in stool have been implicated in subsequent bacteremia in 309 

hematopoietic stem cell transplant recipients29, as well as bacteriuria and urinary tract 310 

infection30, indicating that detection of AMR genes may be clinically significant even at very low 311 

relative abundance thresholds.  Based on our findings, approximately 64% of the samples in 312 

recent studies evaluating AMR gene content in the metagenome are not sequenced at a 313 

sufficient depth to detect AMR genes in a target organism at 1% relative abundance. Thus, 314 

potentially clinically meaningful resistance determinants may not be detected with common 315 

sequencing depths such as those we analyzed in published studies.   316 

Assembly is time-consuming, requires large amounts of computing power for 317 

metagenomic samples, and may also contribute to loss of data31. Alternative approaches to 318 

assembly such as read alignment16,32–34 and kmer-based approaches31 may require less 319 

sequencing information for AMR gene detection, which is useful for detecting AMR genes in 320 

low abundance organisms in complex communities. Compared to assembly, our read-based 321 

approach (KMA) did not significantly improve the limit of detection in E. coli ST38 or 322 

metagenomes, even for a low abundance target, and at times suffered from the AMR allele 323 

network problem35, where reads from a single gene were aligned to multiple closely related 324 

reference alleles, e.g. blaTEM-181, despite its improvements over other read alignment tools for 325 

this issue16. Additionally, some genes (e.g. gyrA and parC SNPs and blaTEM-1) that had a high 326 

detection frequency with assembly, had a low detection frequency with KMA and there were a 327 
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large number of false positive genes that could not be filtered without affecting the overall 328 

sensitivity of the assay. Yet, our comparison of BLAST and DIAMOND with open reading frames 329 

predicted from assembled contigs illustrated that attention should also be paid to local 330 

alignment algorithm choice when using assembly-based approaches, as DIAMOND generated 331 

less low confidence predictions. 332 

A large majority of the AMR genes detected in the E. coli ST38 isolate and across the E. 333 

coli isolate set were efflux-associated AMR genes. Efflux-associated genes are of uncertain 334 

relevance for prediction of microbial phenotypes36,37. In some scenarios (e.g. human infections) 335 

it may be advantageous to limit AMR gene detection to acquired mechanisms of resistance by 336 

using a database such as ResFinder38, or by filtering efflux-associated genes from the total AMR 337 

genes detected, which has been previously shown to improve predictions of isolate 338 

antimicrobial susceptibility using CARD37.  Accurate prediction of plasmids, often associated 339 

with clinically important AMR genes, remains difficult as short-read Illumina sequencing 340 

provides highly accurate base calling, but repetitive DNA regions complicate genome assembly 341 

resulting in fragmented, short contigs39. AMR genes may be split between multiple contigs 40 342 

leaving plasmid sequences obscured41. Long-read sequencing technology provides a promising 343 

alternative to short-read sequencing and can overcome the issue of fragmented contig 344 

assembly39.  345 

Our approach has the following limitations. We modelled a single approach utilizing a 346 

widely used sequencing strategy, two bioinformatic pipelines and one AMR detection platform 347 

(CARD) for a single organism (E. coli). These selections were made to reflect dominant modes of 348 

metagenome analysis in a clinically relevant organism to define the ‘order of magnitude’ of 349 
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depth required for AMR gene detection from metagenomes, which may not be generalizable to 350 

all organisms, community types or modes of resistance. A main limitation of AMR gene 351 

prediction from sequencing data is the chosen database that can potentially increase false 352 

negatives. However, CARD is widely used, updated on a monthly basis, and is representative of 353 

known AMR gene diversity, especially for well-characterized pathogens such as E. coli42. Human 354 

metagenomic samples often have human DNA that can account for a large proportion of the 355 

total sample, which impacts sequencing strategies43,44. An understanding of the total genetic 356 

material contributed by human reads prior to sequencing would further inform sequencing 357 

effort required to maintain a minimum sequencing depth for AMR gene detection.   358 

We have quantified sequencing depths needed to detect AMR genes in E. coli whole 359 

genomes and in E. coli from high to low relative abundances among a complex community. A 360 

minimum of 15X coverage is needed for the detection of AMR genes in E. coli using our AMR 361 

gene identification approach.  For metagenomic samples, 15X coverage is also sufficient to 362 

detect known AMR genes in E. coli, but the number of sequences must increase proportionally 363 

to the decrease in relative abundance of the target organism. We believe that this analysis 364 

provides a robust benchmarking of sequencing effort for metagenomic studies in which 365 

detection of resistance is a specified outcome. 366 

Methods 367 

Sample preparation and sequencing  368 

From a collection of previously characterized E. coli isolates17, we selected a multidrug-369 

resistant E. coli ST38 with an extended spectrum beta-lactamase (blaCTX-M-15) and resistance-370 

conferring SNPs in parC (S80I) and gyrA (S83L, D87N). Briefly, E. coli ST38 isolate was cultured 371 
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from a glycerol stock on LB agar and a single colony was inoculated into 25 ml of LB broth, 372 

which was placed on a shaker incubator (130 rpm) at 37°C for 4 hours until media was turbid.  373 

Turbid media (25 ml) was transferred to a 50 ml conical tube, subject to centrifugation at 2500 374 

g, the supernatant removed, and the pellet re-suspended in 500 μl of LB broth. A description of 375 

the complex community (MET-1) preparation was described previously45. Aliquots of MET-1 376 

were stored at -80°C prior to use.  377 

DNA was extracted from thawed MET-1 (250 μl) and the E. coli isolate in LB broth (250 378 

μl) using the DNeasy PowerSoil kit (Qiagen) and DNA concentration was measured using a 379 

Qubit Fluorometer (Thermo Fisher), following the manufacturer’s instructions, respectively. E. 380 

coli and MET-1 DNA were combined to a final concentration of 20.1 ng/μl, while varying the 381 

concentration of E. coli so that it approximately represented 90%, 50%, 10%, 1%, 0.1%, 0.01%, 382 

0.001%, and 0.0001% relative to MET-1. Sequencing libraries were prepared using the Nextera 383 

DNA Flex kit (Illumina) following the manufacturer’s instructions and stored at -20°C. All 10 384 

samples (the E. coli ST38 isolate, MET-1, and 8 combined samples) were subject to paired-end 385 

sequencing at 2 X 150 bp on the NovaSeq 6000 at the Princess Margaret Genomics Centre. 386 

Since we did not achieve the minimum sequencing depth needed to detect AMR genes in the 387 

combined samples where E. coli ST38 represented 0.1%, 0.01%, 0.0001%, and 0.0001% we did 388 

not analyze these samples in our study.  389 

Bioinformatic analyses  390 

From each pair of fastq files, Seqtk46 was used to subsample n number of reads. At each 391 

subsample, bootstrapping was performed (sampling with replacement) 100 times unless 392 

otherwise stated, where all 100 bootstraps of a subsample had a unique seed number to ensure 393 
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every bootstrap was a random sampling of reads. Paired-end fastq files (read 1 and read 2) 394 

were assessed for quality using FastQC47. Nextera adapters were removed with Trimmomatic48 395 

v.0.39.  Reads for E. coli genomes as well as MET-1 and the combined samples were assembled 396 

into contigs using SPAdes49 v.3.13.1, specifying the --careful flag, and metaSPAdes50 v.3.13.1, 397 

respectively, using the recommended kmer lengths 21, 33, 55, and 77. We used Metaphlan251 398 

v.2.9.21 to confirm sample taxonomy, including the identity of all E. coli isolates and the 399 

relative abundance of Enterococcus species in the validation sets, respectively. 400 

To predict AMR genes from contigs, we used RGI main v.5.1.0 of the Comprehensive 401 

Antibiotic Resistance Database on default settings (perfect and strict hits identified only)42. We 402 

specified DIAMOND15 v.0.8.36, or BLAST52 v.2.9.0 (where stated) to perform local alignment of 403 

Prodigal-predicted genes within contigs against CARD v.3.1.042,53. For metagenome assembled 404 

contigs, we specified the –low_quality flag in RGI main to allow prediction of partial open 405 

reading frames by Prodigal.  406 

To predict AMR genes from raw reads, we used KMA16 v.1.3.8 within RGI bwt v.5.2.0 to 407 

align reads to CARD. To predict AMR-conferring SNPs in the parC (S80I) and gyrA (S83L, D87N) 408 

genes, we extracted the consensus sequences generated from these read alignments and used 409 

RGI main v.5.2.0.      410 

Quantification of AMR genes  411 

To quantify the occurrence of the parC (S80I) and gyrA (S83L, D87N) SNPs in 412 

bootstrapped subsamples of the E.coli ST38 isolate and combined samples, we extracted the 413 

individual accession numbers (from contig results only) and SNP information (contigs and raw 414 

reads) for each gene from all RGI or KMA output files. The parC and gyrA SNPs were considered 415 
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present if the mutated amino acid residues S80I in parC and S83L, D87N in gyrA were correctly 416 

predicted by RGI. If RGI predicted other mutated amino acid residues in the parC and gyrA 417 

genes or did not identify any mutated amino acid residues in the parC and gyrA gene, we did 418 

not consider these SNPs as present. For all other resistance genes, we extracted unique genes 419 

from the “Best_Hit_ARO” (contigs) or “ARO_Term” (raw reads) column of each sample RGI 420 

output file, to create a new “unique AMR genes” file for each sample. Then, using Metaphlan2 421 

v.2.9.14 we used the merge_metaphlan_tables.py command to merge the “unique AMR genes” 422 

files together, where the first column outlined the AMR genes predicted for all samples and the 423 

first row indicated the sample names.  AMR gene presence was indicated by 1 and absence 424 

indicated by 0. Merging the RGI output files allowed us to quantify the frequency at which 425 

individual AMR genes were present across samples. We considered an AMR gene present in a 426 

bootstrap if the gene occurred at least once. The number of AMR genes present across 427 

bootstrapped subsamples was visualized with rarefaction curves and plotted using GraphPad 428 

Prism version 9.  429 

Coverage estimation  430 

Sequencing coverage was estimated using the Lander-Waterman equation54. For E. coli 431 

ST38, we assumed a genome size of 6 Mbp. To estimate the number of reads required to detect 432 

E. coli ST38 at a range of relative abundances, the minimum read requirement (300,000 reads) 433 

was divided by the target relative abundance. For example, if the target relative abundance was 434 

10%, 300,000/0.10 would equal 3,000,000 reads.  435 

Performance analyses  436 
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The performance of AMR gene classification was calculated using sensitivity and positive 437 

predictive value. For the single E. coli ST38 isolate, the AMR genes predicted in each 438 

bootstrapped subsample using a contig assembly approach with SPAdes or a read-based 439 

approach with KMA were compared to the AMR genes predicted in a subsample assembled into 440 

contigs at 5 million reads (reference). If the AMR gene was present in the bootstrap and 441 

reference, this gene was considered a true positive. If an AMR gene was not present in neither 442 

the bootstrap nor the reference, this gene was considered a true negative. False positive AMR 443 

genes were present in the bootstrap but absent in the reference and false negative AMR genes 444 

were absent in the bootstrap but present in the reference. For each bootstrap sample, the true 445 

positives, true negatives, false positives, and false negatives were summed and sensitivity and 446 

PPV were calculated.  447 

Validation from external datasets  448 

To validate the performance of a 300,000 read depth across a set of E. coli isolates17, we 449 

subsampled 300,000 reads, once, from each isolate, assessed quality with FastQC and discarded 450 

isolates that failed per base sequence quality. We then compared the AMR genes detected at 451 

300,000 reads to the AMR genes detected from the original sequence depth. We summed the 452 

true positives, true negatives, false positives, and false negatives for each isolate, then 453 

calculated sensitivity, PPV and F1 score as a balanced measure of sensitivity and PPV.  454 

 To validate 15X target genome coverage in metagenomic samples18 and to demonstrate 455 

vanA detection frequency across a range of Enterococcus genome coverages (0.5X – 15X), we 456 

subsampled each metagenomic sample and bootstrapped each subsample 10 times. Each 457 

subsample depth was calculated using the Lander-Waterman equation, as described above, 458 
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while accounting for the Enterococcus relative abundance in the sample, as determined using 459 

Metaphlan2.  We assumed an Enterococcus genome size of 4 Mbp. 460 

AMR gene detection frequency assessment of published datasets  461 

We extracted the sequence depths after quality processing that were provided in each 462 

studies’ supplementary material for Study 19 ,26 and 310. For Study 3, we used the sequences 463 

reported under the heading “After human contamination removal” under the sub-heading 464 

“read-pairs”. Sequencing read lengths were reported in Study 2 (2 X 150 base pairs) and 3 (2 X 465 

100 base pairs), but for Study 1 we extracted the read lengths from the individual studies 466 

referenced within the paper. We then estimated coverage for each sample from the published 467 

datasets and for each subsample performed on the samples where E. coli ST38 represented 468 

100%, 90%, 50%, 10%, and 1% relative abundance, assuming a genome length of 6 Mbp, then 469 

log-transformed these values. Using GraphPad Prism version 9.1.2, sigmoidal curves were fit to 470 

detection frequency data for the blaCTX-M-15 for each sample where E. coli ST38 represented 471 

100%, 90%, 50%, 10%, and 1% relative abundance. The equations were constrained at 0 and 472 

100 and detection frequency was interpolated for relative abundances 100%, 90%, 50%, 10%, 473 

and 1% based on coverage estimation. 474 

Data availability 475 

The dataset generated during the current study are available in the NCBI sequence read archive 476 

under the accession number PRJNA649958.  477 
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 495 

Figure Legends 496 

Figure 1. a, A rarefaction plot of Escherichia coli ST38 AMR genes detected across subsamples 497 

using an assembly-based approach. Individual dots represent a single AMR gene and are 498 

connected by lines to demonstrate trends in detection across subsamples. blaCTX-M-15, gyrA SNPs 499 

(S83L, D87N), and parC SNP (S80I) are highlighted as previously identified resistance 500 

determinants for this strain. The horizontal dotted line marks 90% detection frequency. The red 501 

vertical dashed line marks the subsample at 300,000 reads. b, Histogram of the number of 502 
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unique AMR genes with ≥90% detection frequency summarized by categories detected across 503 

subsamples. (c-f) Performance of AMR gene classification across subsamples.  A 5 million read 504 

subsample was used as reference to calculate sensitivity (c), positive predictive value (d), false 505 

negatives (e), and false positives (f). c-f, the mean and standard deviation are plotted.     506 

 507 

Figure 2. a-b, Rarefaction plots of Escherichia coli ST38 AMR genes detected across subsamples 508 

using a read-based approach. Individual dots represent a single AMR gene and are connected 509 

by lines to demonstrate trends in detection across subsamples. blaCTX-M-15, gyrA SNPs (S83L, 510 

D87N), and parC SNP (S80I) are highlighted as previously identified resistance determinants for 511 

this strain. The horizontal dotted line marks 90% detection frequency. The red vertical dashed 512 

line marks the subsample at 200,000 reads. a, AMR genes detected across subsamples which 513 

are present in the reference, b, AMR genes detected across subsamples which are not present 514 

in the reference. (c-f) Performance of AMR gene classification across subsamples, where 515 

performance was measured by sensitivity(c), positive predictive value (d), false negatives (e), 516 

and false positives (f). c-f, the mean and standard deviation are plotted. a-e, the reference used 517 

was all AMR genes detected using an assembly-based approach in the E. coli ST 38 isolate 518 

subsampled at 5 million reads. 519 

     520 

Figure 3. Precision-recall curve for an assessment of the effects of filtering strategies on the 521 

read-based (KMA) classification of all AMR genes in Escherichia coli ST38 at 200,000 reads. 522 

Precision is a measure of positive predictive value and recall is a measure of sensitivity. 523 

  524 
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Figure 4. Detection of blaCTX-M-15 (a,d), gyrA (S83L, D87N) (b,e), and parC (S80I) (c,f) from E. coli 525 

ST38 isolate (100%) across subsamples at varying strain relative abundances (90%, 50%, 10%, 526 

1%) in a complex (multi-species) metagenomic sample using either an assembly-based 527 

approach (metaSPAdes)(a-c) or a read-based approach (KMA)(d-f). The horizontal dotted line 528 

marks 90% detection frequency. The vertical dotted lines represent the read depths where each 529 

gene was estimated to be detected with ≥90% detection frequency for each colour matched 530 

relative abundance using an assembly-based approach. The estimated read depths are 300,000, 531 

333,333, 600,000, 3,000,000, and 30,000,000 to detect blaCTX-M-15, gyrA, and parC SNPs in ≥90% 532 

detection frequency when E. coli ST38 is at 100%, 90%, 50%, 10%, and 1% relative abundance 533 

respectively. For all subsamples 100 bootstraps were performed, except for the 30,000,000 534 

read subsample where 10 bootstraps were performed, which is marked by an asterisk (*). The 535 

30,000,000 read subsample was performed on one combined sample where E. coli represented 536 

1% relative abundance. 537 

 538 

Figure 5. Relative frequency distribution of E. coli isolates (n = 948) by performance of 300,000 539 

reads for AMR gene detection using an assembly-based approach.  Performance is measured by 540 

sensitivity, positive predictive value (PPV), and F1 score.        541 

 542 

Figure 6. Detection of vanA in rectal swab samples postive for vancomycin-resistant 543 

Enterococcus from a public dataset. a Enterococcus relative abundance by estimated total 544 

genome coverage, each rectal swab sample is represented by an icon. b vanA detection 545 

frequency across genome coverages for each rectal swab sample. Rectal swab sample 4 is not 546 
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plotted as vanA was not detected with the total number of sequences available. For each 547 

sample, 10 bootstraps were performed at each genome coverage depth. To calculate 548 

Enterococcus genome coverage, we assumed a genome size of 4 Mbp.  549 

 550 

Figure 7. Estimated AMR gene detection frequency by sample coverage of a hypothetical target 551 

organism at different relative abundances. Sample sequencing information was extracted from 552 

three published datasets (n = 1252). Detection frequency was estimated by interpolating values 553 

from sigmoidal curves fit to the blaCTX-M-15 data from samples where E. coli represented 100%, 554 

90%, 50%, 10%, and 1% relative abundance. Coverage was estimated assuming a target 555 

genome size of 6 Mbp.     556 

 557 
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