

1 A cattle graph genome incorporating global breed 2 diversity

3

4 Talenti A.^{1*}, Powell J.¹, Hemmink J.D.², Cook E.A.J.², Wragg D.^{1,3}, Jayaraman S.¹, Paxton
5 E.¹, Ezeasor C.⁴, Obishakin E.T.^{5,6}, Agusi E.R.^{5,6}, Tijjani A.^{2,7}, Marshall K.^{2,7}, Fisch A.⁸,
6 Ferreira B.⁸, Qasim A.⁹, Chaudhry U.N.¹, Wiener P.¹, Toye P.², Morrison L.J.^{1,3}, Connelley
7 T.^{1,3}, Prendergast J.^{1,3,*}

8

9 ¹ The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh,
10 Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom

11 ² The International Livestock Research Institute, PO Box 30709, Nairobi, Kenya.

12 ³Centre for Tropical Livestock Genetics and Health, Easter Bush, Midlothian, EH25 9RG, UK

13 ⁴ Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka.
14 Enugu State, Nigeria

15 ⁵ Biotechnology Division, National Veterinary Research Institute, Vom, Plateau
16 State, Nigeria.

17 ⁶ Biomedical Research Centre, Ghent University Global Campus, Songdo, Incheon, South
18 Korea.

21 ⁷ Centre for Tropical Livestock Genetics and Health, ILRI Kenya, Nairobi, 30709-00100,
22 Kenya

24 ⁸ Ribeirão Preto College of Nursing, University of São Paulo, Avenida dos Bandeirantes, 3900,
25 14040-902 Ribeirão Preto Brazil

27 ⁹ Faculty of Veterinary and Animal Sciences, Gomal University, Dera Ismail Khan, Pakistan

28

30 *Corresponding authors

31

32 Correspondence to:

33 JP: James.Prendergast@roslin.ed.ac.uk

34 AT: Andrea.Talenti@ed.ac.uk

35

36 **Abstract**

37 Despite only 8% of cattle being found in Europe, European breeds dominate current genetic
38 resources. This adversely impacts cattle research in other important global cattle breeds. To
39 mitigate this issue, we have generated the first assemblies of African breeds, which have been
40 integrated with genomic data for 294 diverse cattle into the first graph genome that
41 incorporates global cattle diversity. We illustrate how this more representative reference
42 assembly contains an extra 116.1Mb (4.2%) of sequence absent from the current Hereford
43 sequence and consequently inaccessible to current studies. We further demonstrate how using
44 this graph genome increases read mapping rates, reduces allelic biases and improves the
45 agreement of structural variant calling with independent optical mapping data. Consequently,
46 we present an improved, more representative, reference assembly that will improve global
47 cattle research.

48

49 **Introduction**

50 Cattle are one of the most populous farmed animals worldwide, with their global population
51 of almost one billion second only to chickens¹. Due to their use as draft animals and their
52 ability to convert low quality forage into energy-dense muscle and milk, they provide a
53 significant source of nutrition and livelihood to over 6 billion people. Since their
54 domestication almost 10,000 years ago, hundreds of distinct cattle breeds have been
55 established, displaying a diverse range of heritable phenotypes, from differences in
56 production phenotypes such as milk yield, to environmental adaptation, disease tolerance and
57 altered physical characteristics such as horn shape and skin pigmentation^{2,3}.

58

59 This phenotypic diversity between cattle breeds is mirrored by substantial genetic diversity,
60 but this is poorly reflected by current reference resources. The primary reference genome is
61 derived from a single European Hereford cow⁴ and projects such as the 1,000 bulls genomes
62 project are heavily skewed towards European-derived breeds (*Bos taurus taurus*) due to a
63 number of factors such as geographic distribution and sample accessibility⁵. Although
64 European breeds largely all originate from the same domestication event that occurred in the
65 Middle East, at least one further domestication event occurred in South Asia giving rise to the
66 humped indicine breeds (*Bos taurus indicus*)⁶. These two *Bos* lineages have been estimated to
67 have last had a common ancestor over 210,000 years ago⁷ meaning the current Hereford
68 reference genome particularly poorly represents the indicus sub-species.

69 As well as this primary split, it has been suggested that introgression with further Auroch
70 populations has occurred in Africa, with the adaptation of certain African cattle breeds to
71 local diseases potentially the result of this historical introgression⁶. In Africa alone there are
72 over 150 indigenous cattle breeds, and almost 350 million head of cattle making up 23% of
73 the global cattle population¹. This compares to only 8% of cattle being located in Europe.
74 Africa's unique history, with multiple waves of migration of both *Bos indicus* and *Bos taurus*
75 cattle into the continent, along with its variety of environments, pathogens and cultures has
76 led to unusually high levels of diversity among the cattle in the region. However, this
77 diversity is not reflected in the genomic resources currently available.

78 The reliance of cattle research on the European Hereford reference genome has two main
79 limitations. First, because it represents one consensus haplotype of a single animal, large
80 sections of the cattle pan-genome are missing from this reference sequence. This is
81 exemplified by a recent human study that identified almost 300 million bases of DNA among
82 African individuals that were missing from the human reference genome⁸. This DNA
83 sequence, equivalent to 10% of the human pan-genome, is consequently inaccessible to

84 studies reliant upon the current human reference genome. The second major limitation,
85 common to all linear reference genomes, is that even where they contain the region being
86 studied, downstream analyses are biased towards the alleles and haplotypes present in the
87 reference sequence^{9,10}.

88 The emerging field of graph genomes aims to address these issues by incorporating genetic
89 variation and polymorphic haplotypes as alternative paths within a single graph
90 representation of the genome. This has the advantage that reads which do not directly match a
91 linear reference may still perfectly match a route through the graph, increasing the accuracy
92 of read alignment. Several recent studies have highlighted how the use of such genome
93 graphs can increase read mapping and variant calling accuracy, reduce mapping biases^{11,12},
94 identify ChIP-seq peaks not identified using linear genomes^{13,14}, and better characterise
95 transcription factor motifs¹⁵. However, there are currently few high-quality graph genomes
96 available. In livestock, the use of graph genomes has so far been restricted to studies simply
97 incorporating variants from short read sequencing data into the Hereford reference^{16,17} or to
98 only very large differences between the assemblies themselves¹⁸. Although not able to
99 capture wider cattle diversity, these studies illustrated that the variant calls using the graph
100 genome were more consistent between sire-son pairs than those obtained using the linear
101 Hereford reference, with the current standard variant calling algorithms GATK
102 HaplotypeCaller¹⁹ and FreeBayes²⁰. Graph genomes consequently have the potential to
103 improve the detection of genetic variants, including those potentially driving important
104 phenotypic differences between populations and breeds. However, the construction of high-
105 quality graph genomes is dependent upon the availability of representative reference
106 sequences, a resource which has been largely lacking for non-European cattle. In this study
107 we address the current lack of reference genomes for African cattle breeds by generating
108 novel assemblies for the N'Dama and Ankole breeds. These breeds display tolerance to two

109 of Africa's most important livestock diseases; African Animal Trypanosomiasis (AAT), a
110 disease that costs African livestock farmers billions of dollars a year²¹, and East Coast fever
111 (caused by *Theileria parva*), which causes an annual economic burden of approximately \$600
112 million²². We then combined these genomes with three public reference assemblies
113 representing Hereford, Angus and Brahman cattle, along with genetic variation data for 294
114 animals representative of global cattle breeds²³, to provide a high-quality cattle graph genome
115 spanning global breed diversity. We go on to show how this novel, more representative, cattle
116 graph genome can substantially improve omics studies across global cattle breeds relative to
117 the standard primary Hereford reference.

118

119 **Results**

120 **Generating African genome assemblies**

121 Global cattle breeds display high levels of genetic diversity (Figure 1). Whereas European
122 breeds represent only a small fraction of this diversity, African breeds display a broad
123 spectrum of indicine to taurine variation. As the currently published Hereford⁴, Brahman²⁴
124 and Angus²⁴ genomes poorly represent global diversity, and in particular that found in Africa,
125 we generated two new assemblies for the West African Taurine N'Dama and East African
126 Sanga Ankole (an ancient stabilized cross between indicine and taurine breeds). We
127 sequenced the genomes of N'Dama and Ankole bulls at an approximate coverage of 40X Pac
128 Bio long read data for the assembly process and 70X of Illumina paired end reads for the
129 genome polishing. The N'Dama contigs were scaffolded using the previously published cattle
130 genomes, whereas the Ankole was scaffold using 100X of novel monocyte-derived bionano
131 data. The genomes consisted of 1,210 and 7,581 sequences with scaffold N50s of 104.8Mb

132 and 84.5Mb for the N'Dama and Ankole genomes, respectively. The final contig N50s were
133 10.7Mb and 18.6Mb for the N'Dama and the Ankole respectively, with total genome lengths
134 of 2,766,829,411 and 2,921,040,163 bp (Figure 2). For further details on the assembly
135 process, see the methods section, Supplementary Tables 1 and 2, and Supplementary
136 Documents 1 and 2.

137 BUSCO (v3.0.2)²⁵ reported 92.6% and 93.1% complete mammalian universal single-copy
138 orthologs in the N'Dama and Ankole assemblies, respectively, comparable to the 92.6-93.7%
139 observed across the three previous cattle genomes²⁴. Likewise, the duplication levels of 1.4
140 and 2.1% are comparable to the range of 1.0-1.3% observed across the Hereford, Angus and
141 Brahman genomes. Similarly, the QUAST²⁶ software (v5.0.2) calculated that the two
142 assemblies cover 93.9% (N'Dama) and 94.0% (Ankole) of the ARS-UCD1.2 Hereford
143 genome, again consistent with the 94.2% and 96.2% of the Angus and Brahman assemblies.
144 Quality values (QV) were calculated using merqury (v1.1)²⁷ in combination with meryl (v1.2;
145 <https://github.com/marbl/meryl>), and were respectively 34.3 (37.9 autosomal) and 30.6 (34.2
146 autosomal) for the N'Dama and Ankole, with a base accuracy over 99.9%. Finally,
147 RepeatMasker shows that these two genomes share similar contents of the different classes of
148 repetitive elements (Supplementary Figure 2). These two novel African cattle assemblies are
149 consequently of good quality (Figure 2) and represent novel spaces in global cattle diversity.
150 Full details on the assembly processes and their statistics are reported in Supplementary Note
151 1 and 2.

152 **Characterising the across-breed pan-genome**

153 **Detection of non-Hereford sequence**

154 We first defined the novel, non-reference sequence present in the non-ARS-UCD1.2
155 (Hereford) genomes. We aligned the five genomes using the reference-free aligner
156 CACTUS²⁸, which generates multiple whole genome alignments (mWGA) in the form of a
157 cactus graph. We then converted the graph to PackedGraph format using hal2vg²⁹ (v2.1), and
158 used a series of custom scripts to extract all the nodes that were not present in the Hereford
159 genome. After excluding nodes encompassing an N-mer, an extra 257.2Mb of non-Hereford
160 reference sequence across over 29 million nodes was identified (76.7Mb was from over 23
161 million nodes in primary autosomal scaffolds; the remaining sequence was on sex
162 chromosome scaffolds or unplaced contigs; Table 1). This value is inclusive of a large
163 number of small nodes, including SNPs, small indels and repetitive elements. Therefore, we
164 excluded all nodes in potentially misassembled regions as identified by FRC_Align³⁰,
165 combined neighbouring regions (<=5bp) and filtered out sequences of short length (<60bp)
166 and those close to a telomere or gap, leaving a total of 116,098,017 bp in 62,337 sequences.
167 We further filtered down to sequences that were not significantly more repetitive compared to
168 the average level observed across the autosomes of the different genomes (Bonferroni-
169 corrected P-value > 0.05 using a genome-wide mean repetitiveness of 53.99%, see methods
170 for calculation). We finally removed any redundant sequences. This left a total of 16,665
171 sequences, for a total of 20.5Mb of high-quality, non-repetitive sequence not present in the
172 Hereford assembly (NOVEL set). The sequences presented a motif content analogous to the
173 genomes of origin, as highlighted by HOMER when using the 5 reference pooled genomes as
174 a background (Supplementary table 3).

175 The amount of unique and shared sequences within and across breeds is shown in Figure 3A.
176 The majority of additional sequence was representative of the indicine ancestry, shared
177 between the Brahman and Ankole, closely followed by the non-Hereford sequence shared
178 across all other genomes, and then from the non-European shared sequence (common across

179 N'Dama, Ankole and Brahman). Of the five breeds, the Ankole genome contained the most
180 non-Hereford sequence (12.4Mb of novel sequence, 7.1Mb of which resided on primary
181 autosomal scaffolds; Table 1), followed closely by the Brahman genome (12.0Mb, 7.4Mb on
182 primary autosomal scaffolds; Table 1). A key advantage of multiple genomes is improved
183 representation of divergent loci and Figure 3B illustrates the divergence between the
184 sequences at the important major histocompatibility complex (MHC). Alignments generated
185 through minimap2 over the whole chromosome 23 show an identity ranging between 98.77%
186 to 99.31% (for Brahman and Angus, respectively), whereas the 4Mb interval ranging from
187 25-29Mb shows an average identity ranging from 96.17% to 98.21%, with local values as
188 low as 43% for some multi-KB fragments (Supplementary Figure 3).

189 **Gene content in the novel sequences**

190 We assessed the NOVEL set of sequences for the presence of genes and gene structures using
191 three complementary approaches (see methods). Blastx alignment identified a total of 191
192 genes in 272 regions passing the filtering (see materials and methods). Augustus predicted
193 923 and 1,008 genes using the novel sequences and the novel sequences expanded with
194 100bp flanking regions where possible. After filtering out regions that matched, we predicted
195 182 and 169 using Augustus with and without the 100bp flanks. Complete genes were then
196 extracted, aligned using BLASTP and genes passing mapping filters were identified for both
197 sets. This identified a total of 132 genes in 158 sequences and 140 genes in 164 sequences in
198 the novel contigs and the novel contigs with flanking regions, respectively (Supplementary
199 Table 4).

200 We then combined the resulting 132, 140 and 191 genes from the three methods, and
201 identified a total of 76 genes that were found to be consistent across them. Consistent with
202 their recent origin, most of these genes represented multi-gene families including several

203 predicted immune genes (e.g. Ig lambda chain V-II region MGC, interferons alpha and T-cell
204 receptor beta chain V region LB2), melanoma-associated antigens (*MAGEB1*, *MAGEB3* and
205 *MAGEB4*) as well as a number of olfactory receptors (Supplementary Table 4).

206 **Constructing the graph**

207 We next assessed the potential of using these new assemblies as part of a graph genome. To
208 enable the comparison of graph-based variant calling performance, four versions of vg-
209 compatible genomes were generated (a schematic representation of these can be seen in
210 Figure 4A). The first contained the Hereford genome only (which we refer to as VG1). The
211 second was VG1 augmented with 11,215,339 million short variants called across 294, largely
212 unrelated, animals from a globally distributed selection of cattle breeds²³ (VG1p). The third
213 contained all five cattle assemblies (VG5), and the fourth contained all five assemblies again
214 augmented with the over 11 million variants (VG5p).

215 The graph genome based on the CACTUS alignment only (VG5) had an order of >147
216 million nodes (i.e. the number of fragments of sequences) and a size of >173 million edges
217 (i.e. the number of connections between nodes), doubling the order of the linear graph
218 produced using just the autosomal sequence of the Hereford genome (VG1), that had >77M
219 nodes and edges (Supplementary Table 5). Including the genetic variants from the 294 cattle
220 led to >105M nodes for VG1p and 163M nodes and 194M edges for VG5p (10% more nodes
221 and 12% more edges than VG5).

222 **Read mapping to linear and graph genomes**

223 To assess the performance of these genome versions we aligned short read sequencing data
224 from nine animals spanning three diverse breeds (three European taurine Angus animals,
225 three African taurine N'Dama and three indicine Sahiwal) to each version. Importantly,

226 genotypes from these animals had not been included when constructing the graphs. An
227 advantage with graph genomes is in theory they should increase the number of reads directly
228 matching a route through the graph and, consistent with this, we observed between 9 and
229 54% more reads perfectly mapped with vg to the CACTUS graph representation of the cattle
230 genome (VG5) than to the Hereford only version (VG1) (Figure 4B). The greatest increase in
231 perfect read mapping was for the indicine Sahiwal breed, followed by the N'Dama and
232 finally the Angus animals, mirroring the relative divergence of each from the Hereford breed.
233 A modest further improvement was observed when aligning to the full graph incorporating
234 the short variant data (VG5p) (an extra 0.52% of perfectly mapped reads among the Angus to
235 3.25% among the Sahiwal). Although direct comparisons across different software tools is
236 difficult and needs to be treated with caution, we found that vg aligned 7-10% more reads to
237 the graph than BWA to the primary chromosomal scaffolds of the ARS-UCD1.2
238 (Supplementary Table 6).

239 **Variant calling from linear and graph genomes**

240 We calculated several key metrics to describe the variants called using VG, GATK and
241 FreeBayes, and collected them in Supplementary Note 3, both considering the fixed set of
242 11M variants as “known” variants (case A) and considering the variants used to construct
243 each graph as “known” (case B). These plots show how the variants called using the three
244 algorithms (VG, FreeBayes and HaplotypeCaller) presented similar quality, depth, number of
245 variants, mapping quality and, generally, comparable metrics when looking at depth of
246 sequencing, quality of the variants and number of variants called (Supplementary Note 3).

247 A key metric when assessing the quality of read alignments to a genome is allelic balance
248 (AB). Ideally, reads carrying each allele at a polymorphic site should be equally well mapped
249 to the reference genome (i.e. have an AB = 0.5). In practice though, there is usually a bias

250 towards reads matching the sequence present in the reference genome at the location. Skewed
251 allelic balance can adversely affect variant calling and therefore reducing it can improve
252 downstream genetic analyses. The allelic balance observed across genomes, variant sizes and
253 types is shown in Figure 4C, with alternative representations which considers all the types of
254 graph considered shown in Supplementary Note 3. Consistent with previous studies in
255 humans, this figure illustrates that the allelic balance at short variants is generally comparable
256 for single nucleotide polymorphisms, and the allelic balance at small InDels (<15bp) doesn't
257 show a particular improvement compared to variants called using standard variant callers.
258 However, calls from the graph show an overall better allele balance for larger variants (>15
259 bp long) than both GATK and FreeBayes, staying closer to the desirable value of 0.5
260 (Supplementary Note 3). Defining the variants as known if used when constructing a
261 particular graph allows for a less uniform comparison, but still confirms the ability of the
262 graph to call larger variants with an overall better allelic balance than the standard variant
263 callers (Supplementary Note 3). Interestingly, while marginally more reads were successfully
264 mapped to the VG1p graph than to VG1, it displayed a less consistent allelic balance at
265 insertions between 10bp and 40bp long. The best results were achieved using the VG5p
266 graph, though with the largest gains observed in VG5 vs VG1 and VG1p, highlighting the
267 benefits of the additional assemblies in the graph (Supplementary Note 3).
268 We also evaluated other metrics for the different approaches, including depth of sequencing
269 (DP), average quality of the call (QUAL), number of variants called, transition/transversion
270 rate (Ti/Tv), that are presented in Supplementary Note 3. Overall, the metrics for the VG
271 graphs look similar to the classical callers, with just the Angus sample from public databases
272 presenting a lower Ti/Tv ratio.

273 **Assessment of graph genome structural variant calls**

274 One of the most important benefits of graph genomes is the ability to directly detect large
275 variants using short read sequencing data. Using the VG5p graph genome we were able to
276 genotype thousands of structural variants of 500bp or longer, i.e. longer than the length of the
277 reads being mapped (Supplementary Note 3). These SV regions are inaccessible and uncalled
278 using linear callers such as GATK or FreeBayes, making vg a suitable tool for explicit
279 genotyping of large variants. To assess the quality of these SV calls, and to test its utility
280 when applied to the study of African breeds, we compared the variants called on the VG5p
281 graph to independent Bionano optical mapping (OM) data for two additional N'Dama
282 samples. As OM is a distinct technique for identifying the location of SVs, based on staining
283 and imaging large DNA fragments, it provides an independent indication of SV location. It
284 should be noted that the N'Dama used for whole genome resequencing and the OM were
285 from completely different countries (Nigeria and Kenya, respectively) though the OM data
286 and N'Dama assembly was from animals from the same research institute.

287 In total, vg detected 12,306 structural variants of >500 bp across the nine samples, each of
288 which might have one or more alleles per region. Of these, 6,598 overlapped with regions
289 detected by the Bionano OM data. Despite the comparison with OM data of one breed only,
290 this number is approximately 3.4 times higher than expected from randomly selecting
291 sections of the genome of the same size (mean \pm standard deviation of $1,571.2 \pm 36.9$ across
292 10,000 permutations; Z-score = 136.1, $P < 2.2 \times 10^{-16}$; Supplementary Table 7). Further
293 supporting the validity of the indel calls, in-frame indels called from the graph were observed
294 to be more common than other coding indels, consistent with selection disproportionately
295 removing frameshift changes (Supplementary Figure 4).

296 Consistent with the OM data being deriving from the same breed, the number of graph SVs
297 >500bp overlapping the OM SV calls was greatest in the taurine N'Dama (2,932/7,280,

298 40.3%; average size 2,055.4 bp), followed closely by the taurine Angus (2,797/7,318, 38.2%;
299 average size 2,050.7 bp) with the lowest overlap with the indicine Sahiwal (3,368/10,046,
300 33.5%; average size 1,880.9 bp; Supplementary Table 8). Again, the number of variants
301 detected in each different breed is reflective of the distance from the reference genome
302 considered.

303 We detected 19, 49 and 299 high-quality, large structural variants found across all Angus,
304 N'Dama and Sahiwal samples, respectively, but not in the other breeds (i.e. that were specific
305 for a breed and with $\text{QUAL} > 30$, $20 < \text{DP} < 90$, alternate allele count ≥ 5 , $> 500\text{bp}$). These
306 SV are therefore common to a given group but not found across breeds, and the numbers
307 likely reflect the relative genetic divergence of each breed from the Hereford genome used as
308 the backbone for the graph.

309 To confirm the quality of these variants, we overlapped them with the N'Dama OM data.
310 Results for each breed are shown in Supplementary Table 7. Despite the OM data being
311 derived from different individuals, there was a substantial overlap between the N'Dama SV
312 calls, with 42 out of 49 overlapping across both approaches (85.7%), much more than the
313 number of overlaps expected by chance (mean \pm standard deviation of 6.2 ± 2.3 on 10,000
314 repetition; Z-score = 15.3, P-value = 1.40×10^{-52} ; Supplementary Table 7). Although the
315 overlap between the N'Dama OM and Angus and Sahiwal graph SV calls was lower, both
316 showed a significant overlap (10/19; 52.6% and 111/299; 37.1%, respectively;
317 Supplementary Table 7) The partial overlap with these breeds may reflect that not all of these
318 SV are actually breed specific but rather are just more common in the breeds, or potentially
319 the comparatively low resolution of the OM data results in false positive overlaps. Either way
320 a much higher overlap is observed with the N'Dama SV calls, consistent with these group-

321 restricted calls being much more enriched in this population, and consequently the genome
322 graphs appear effective at identifying these larger SV.

323 **Comparison with Delly**

324 Next, we compared the results from VG5p with structural variants called through a classical
325 SV caller, Delly (V2), using the linear Hereford genome as the reference. After excluding
326 SVs with low depth, imprecise positioning and translocations, we found on average 7,218
327 variants for the Angus (6,878 to 7,533), 15,978 for the N'Dama (15,061 to 17,399) and
328 30,856 for the Sahiwal samples (30,466 to 31,162) as shown in Supplementary Table 9.
329 These SVs were combined using SURVIVOR (v1.0.7) merging SV regions if less than 100bp
330 apart when accounting for the SV type. SVs were further filtered to those with at least 1
331 sample supporting it and with a size >500 bp to make them broadly comparable to the OM
332 data given the latter's resolution (Supplementary Table 9). This filtering excluded all the
333 insertions, since Delly is incapable of calling insertions with precise break points, limiting the
334 types of SV analysed to deletions, duplications and inversions. The filtering left 3,175 unique
335 SVs for the Angus (ranging from 1,940 to 2,167 genotyped in each samples), 5,206 unique
336 SVs for the N'Dama (ranging from 2,945 to 3,418 genotyped in each samples) and 8,421
337 unique SVs for the Sahiwal samples (ranging from 5,356 to 5,396 genotyped in each
338 samples).

339 In total, 11,562 precise non-translocation Delly SVs with suitable depth and size were
340 retained across all individuals. Of these less (5,371, 46.4%) overlapped with an SV called
341 from the OM data than for vg (6,598, 53.6%) (Supplementary Table 9). Therefore, from the
342 same sequencing data, more SVs were called using vg that were also more likely to overlap
343 an SV called from the independent OM data.

344 Figure 4D shows how the structural variants called by vg are confirmed by at least one of the
345 other methods, with only 274 out of 12,306 remaining unsupported (2.2%). In contrast Delly
346 called 4,936 SV unsupported by either other method. It should be noted though that Delly
347 called 2,219 SVs overlapping an SV in the OM data not identified by vg. These are
348 potentially sample-specific SVs, that being absent from the graph will be largely uncalled by
349 vg. Further improvements to the graph, for example by including further assemblies, would
350 be expected to reduce this number.

351 Finally, when looking specifically at deletions, the only class in common among the three
352 methods, we find that Delly calls a higher raw number of SVs compared to vg, detecting
353 3,186 deletions with a match in the OM data, whereas vg calls 1,887 SVs with overlaps.
354 However, in proportion to the number of deletions called by each, Delly has a lower
355 proportion of confirmed SVs ($3,186/9,030 = 35.3\%$) than VG ($1,887/3,972 = 47.5\%$),
356 highlighting the higher specificity of the graph approach.

357 An example of a high-quality 1,530bp sequence absent in the Hereford genome, but present
358 in the graph, is in an intronic region of *HS6ST3* (Heparan-sulfate 6-O-sulfotransferase;
359 [hereford.12: 73,579,158](#), Figure 5). This SV was identified by both OM samples (Figure 5A),
360 the three re-sequenced N'Dama genomes (Figure 5B) and was present as an alternate
361 sequence in the graph but not identified by Delly (Figure 5C).

362 In conclusion, assembly-based graphs are a viable solution for reliably calling SVs with
363 explicit alleles, including insertions that are generally of lower quality in classical SV callers.
364 Future additions of new breed-specific reference assemblies would be expected to further
365 improve the number of variants represented in these graphs, ultimately improving the
366 structural variant calling and analysis.

367 **ATAC-seq peak calling**

368 After analysing variant calling on the graph genome, we tried to investigate whether other
369 omics analyses may also benefit from these novel resources. To do so, we obtained ATAC-
370 seq data for three animals belonging to the three main clusters of cattle diversity: European
371 taurine (1 Holstein-Friesian), African taurine (1 N'Dama) and indicine (1 Nelore), plus a
372 nucleosome-free DNA as an input sample to remove likely false positive peaks.

373 Peak calling directly from graph genomes is currently an under-developed field, with ongoing
374 issues in supporting graphs inclusive of large variants; therefore, in the short-term, studies of
375 chromatin and the epigenome are likely to continue to use linear genomes. We consequently
376 took advantage of the NOVEL set of high-quality non-reference sequences described above
377 to create an expanded version of the current linear genome we term here ARS-UCD1.2+.
378 This expanded genome contained in total an additional 16,665 contigs across the over 20Mb
379 of sequence, with a mean length of 1.23kb (S.D. 3.87kb and a range of 61 to 103,683 bp long
380 Table 1). This increased the reference size by 0.7% to 2,780Mb.

381 To explore the potential benefits of these new data to such analyses we aligned the reads and
382 called the peaks for each sample separately to the five different linear genomes, as well as the
383 expanded ARS-UCD1.2+. We aimed to minimise the impact of multi-mapping reads (see
384 Methods) and after calling peaks, we excluded all peaks shared with the input sample for
385 more than 50% of their length.

386 Figure 6 shows using the ARS-UCD1.2+ genome leads to a modest increase in the number of
387 peaks called relative to the standard Hereford ARS-UCD1.2 sequence (Supplementary Table
388 10). This increase is confirmed also when using only uniquely mapped reads, with the ARS-
389 UCD1.2+ calling consistently more peaks than the standard ARS-UCD1.2 (Supplementary
390 Table 11).

391 Peak calling on the ARS-UCD1.2+ genome returned up to 3.7% more peaks when compared
392 to the ARS-UCD1.2 genome at the same significance thresholds despite ARS-UCD1.2 being
393 only 0.7% longer. This expanded genome worked particularly well for the Holstein, which
394 generally showed a higher number of peaks called compared to the ARS-UCD1.2 assembly
395 (+3.7% peaks called), followed by the N'Dama sample, with an extra 1.6% of additional
396 peaks called and finally the Nelore (+1.3% peaks called; Figure 6A and Supplementary Table
397 11). Intersecting these novel ATAC-seq peaks with the predicted genes in the 20.5Mb of non-
398 Hereford (Supplementary Table 12), non-highly repetitive sequences identified a general
399 enrichment around their predicted TSSs, consistent with these novel peaks marking
400 regulatory elements uncaptured by the Hereford genome (Figure 6B). Over 93-96% of these
401 peaks matched a peak in the genome of origin (i.e. a peak called on a novel sequence from
402 the Angus genome has a matching peak on the Angus genome in the same region), further
403 supporting the potential content of functional elements (Supplementary Table 11).
404 Consequently, the use of more representative pan-genome resources likely has utility to
405 downstream analyses beyond just variant calling, including identifying the location of novel
406 regulatory elements missed when using current reference resources.

407 **Discussion**

408 In this study we generated the first two cattle reference genomes of African taurine and Sanga
409 (an ancient stabilized cross between indicine and taurine breeds³¹) lineages. These assemblies
410 present quality metrics comparable to those of other currently available reference genomes,
411 and will likely be important resources for future bovine genomic studies, in particular those
412 studying non-European breeds.

413 By aligning the five cattle assemblies, we illustrate that a substantial portion of the cattle pan-
414 genome is likely missing from the Hereford reference. This has important implications for
415 cattle research as it suggests significant amounts of the bovine genome is inaccessible in most
416 current analyses. Although a proportion of this extra sequence is repetitive, unsurprisingly
417 given its recent origins and the simple fact that large parts of mammalian genomes are made
418 up of repeats, this does not preclude it from being functional. For example, the importance of
419 repetitive elements in gene regulation is becoming increasingly clear³². Consequently, the
420 study of these DNA segments that are not common to all animals may provide further
421 insights into the drivers of phenotypic diversity between breeds.

422 One noteworthy observation was that the amount of extra sequence in each genome matched
423 the prior assumptions of the relationships between the breeds: the two indicine genomes (the
424 Ankole and Brahman) had the highest amounts of unique, non-repetitive sequence.
425 Considering that the sequences identified might contain functional elements as predicted by
426 our analyses, there is the case for sequencing more genomes from the most distantly related
427 lineages from the reference Hereford assembly, such as the *Bos indicus* lineage, since they
428 might contribute further additional functional regions.

429 In this study we illustrate that the use of the graph cattle genome does not lead to substantial
430 improvements in the calling of SNPs and small indels, even when large numbers of them are
431 integrated into the graph. This likely reflects the relative maturity of short variant callers such
432 as GATK which are already highly accurate. Arguably, neither GATK HaplotypeCaller nor
433 FreeBayes is a structural variants caller, and this function typically requires specialised tools
434 such as Delly³³. However, our analyses show how the structural variants called using a multi-
435 genome graph are more consistent with SVs called using independent OM data than those
436 from Delly, with over 53% of SV called from a graph genome overlapping an SV region

437 called from OM data whereas the SV called through Delly overlap 46% of the time. When
438 looking specifically at overlapping deletion calls these numbers were 48% and 35%
439 respectively. Importantly, whereas tools such as Delly struggle to accurately call SVs such as
440 insertions from linear references, graph genomes enable these to be accurately genotyped
441 where present in the graph. The greater the diversity present in the graph, the better SV
442 calling will become. Unlike linear genomes whose content is largely fixed. Reassuringly, SVs
443 called among N'Dama samples using the genome graph were more consistent with N'Dama
444 OM data than the SV called in other breeds. Although a perfect overlap would not be
445 expected given different animals were being studied, the overlap among the N'Dama was
446 86% compared to 37% among the more distantly related Sahiwal.

447 In comparison to linear reference genomes there are currently few viable software tools for
448 epigenetic and chromatin analyses using graph genomes. However, using ATAC-seq data
449 across breeds we demonstrated it is possible to call substantially more peaks using an
450 expanded version of the linear reference genome incorporating the extra sequence found in
451 the other genomes. When applying the same thresholds and accounting for multi-mapping
452 reads, 3.7% more peaks were called across Holstein-Friesian ATAC-seq datasets compared to
453 using the standard linear reference. This is despite the expanded reference only being 0.7%
454 longer, and no less than 1.3% extra peaks being called on each individual considered.
455 Although the use of pan-genomes to study chromatin is a particularly immature field, pan-
456 genomes have the potential to reduce noise due to the more accurate representation of
457 structural variants and large rearrangements.

458 When looking across the results of both structural variants calling and ATAC-seq peak
459 analyses, we can see that our genomes work well, and in particular for breeds present or
460 closely related to ones used to generate the graph and expanded genome, highlighting the

461 need to increase the genetic diversity that underpins the graph, particularly for lineages that
462 are poorly represented.

463 Despite these improvements, graph genomes still have drawbacks. These methods are still
464 under active development, and still have a greater requirement of computer memory, disk
465 space and analytical time. Generating a whole genome assembly is time consuming,
466 generating the vg graph itself still requires large amount of memory (up to several terabytes),
467 and still can only be done on primary chromosomal scaffolds due to high storage demands.

468 Alignments are also more computationally intensive than with their linear counterparts, with
469 the requirements affected by the number of variants represented. Moreover, variant calling
470 currently relies on a pile-up approach, which is arguably less sophisticated than methods
471 implemented by GATK or FreeBayes, that likely helps explain the good performance of
472 traditional tools at calling SNPs and small indels³⁴. Methods for peak calling on graph
473 genomes are not always compatible with graphs generated through CACTUS or similar
474 software, which limits their application and was one of the stimuli for generating the ARS-
475 UCD1.2+ genome. Last but not least, although efforts are being made to resolve the
476 coordinate system for graph genomes, downstream analyses are more complicated due to
477 most current resources being referenced to the positions on one linear genome.

478 Nevertheless, it is clear graph genomes already have advantages in certain areas such as SV
479 calling. As the field of graph genomes is less mature, arguably there is greater scope for
480 further improvement. New genomes are being released at a much higher frequency than in
481 previous years, and initiatives such as the recently announced bovine pangenome project³⁵
482 will open new possibilities and allow a better understanding of cattle genetics and phenotypic
483 diversity.

484 We consequently present the first African cattle genome assemblies integrated into a cattle
485 graph genome representing global breed diversity. This graph, incorporating both large SVs
486 and millions of SNPs from across global breeds, is demonstrated to improve downstream
487 analyses such as SV calling and the detection of novel functional regions and therefore has
488 the promise to improve our insights into the genomics of this important livestock species.

489 **Online Methods**

490 **African breed assemblies**

491 Whole blood of the N'Dama bull N195 was collected in PAXgene DNA tubes. The bull was
492 located at ILRI's Kapiti research station in Machakos county, Kenya. The PAXgene DNA
493 tube was stored at room temperature overnight and then the fridge at 4°C for 1 day prior to
494 DNA extraction. The standard procedure was used as outlined in the PAXgene blood DNA
495 kit handbook. Resulting DNA was sequenced using the Pacific Biosciences (PacBio) Sequel
496 platform at Edinburgh Genomics, yielding a total of 13M reads and 109 Gbp, corresponding
497 to a genomic coverage of ~40X. In addition to long reads, the same animal was re-sequenced
498 using Illumina HiSeq X Ten paired-end short-read (PE-SR) sequencing, yielding 260Gbp
499 with an average insert size of 250bp, corresponding to a genomic coverage of ~80X.

500 A whole blood sample of the Ankole bull UG833 was collected in PAXgene DNA tubes from
501 a farm in Uganda, and DNA was extracted using the same protocol described for the N'Dama
502 sample. It was then sequenced by Dovetail genomics using the Pacific Biosciences Sequel
503 sequencing platform which yielded a total of 10M reads and 107Gbp, corresponding to a
504 genomic coverage of ~38X. the same animal was re-sequenced using Illumina HiSeq X Ten
505 paired-end short-reads, yielding 260Gbp with an average insert size of 250bp, corresponding
506 to a genomic coverage of 60X. Finally, OM samples were prepared starting from monocytes
507 using blood collected by jugular venupuncture into EDTA vacutainers. Following erythrocyte
508 lysis monocytes were purified from the leukocytes using a positive selection MACS protocol
509 with an anti-bovine SIRP α mono-clonal antibody (ILA-24 – Ellis et al. 1988). Agarose plugs
510 containing 5 x105 – 1x106 isolated monocytes were prepared using the Bionano Blood and
511 cell culture DNA isolation kit (Bionano Genomics, San Diego, US) according to the

512 manufacturer's instructions and the extracted DNA used for analysis on the Bionano Saphyr
513 platform. The procedure yielded 3.5M molecules with an N50 of 245.25 Kbp and spanning a
514 total length of 611Gb, corresponding to 120X haploid genomic coverage.

515 All protocols involving animals were approved prior to sampling by the relevant institutional
516 animal care and use committee (ILRI IACUC or Roslin Institute Animal Welfare Ethical
517 Review Body). All blood sampling was carried out by trained veterinarians, according to the
518 approved institutional protocols.

519 **N'Dama assembly**

520 Briefly, N'Dama long reads were assembled testing both the CANU (v1.8.0)³⁶ and
521 FALCON-Unzip pipeline (v1.2.5)³⁷, keeping the assembly with the highest contiguity. The
522 assembly generated with FALCON was retained due to presenting the highest contiguity and
523 polished twice using minimap2-mapped (v2.16-r922)³⁸ long reads and the racon (v1.4.3)
524 software³⁹, and then further polished once using Pilon v1.23⁴⁰ and the 80X of short reads.
525 After that step, contigs were aligned to the three high quality cattle reference genomes (ARS-
526 UCD1.2, UOA_Brahman_1, UOA_Angus_1 representative of Hereford⁴, Angus²⁴ and
527 Brahman²⁴, respectively) using SibeliaZ (v1.1.0)⁴¹ and then scaffolded into chromosomes
528 with Ragout2 (v2.1.1)⁴² allowing for the break of chimeras, and processing separately the
529 autosomes, mitogenome, X, Y and the remaining contigs (Supplementary Note 1). Briefly,
530 autosomes have been assembled using the complete set of polished contigs and considering
531 the autosomes from the Angus, Hereford and Brahman genomes as references. Then, we
532 identified the mitochondrial genome by aligning the unscaffolded contigs with the Hereford
533 mitogenome, and fixed misassemblies manually. The remaining unplaced fragments have
534 then been used to scaffold the sex chromosomes. By using the same set of contigs we tried to
535 a) overcome the limited number of reference sexual chromosomes available (X from

536 Hereford and Brahman, and Y from Hereford and Angus) and b) address the pseudo-
537 autosomal regions. Then, fragments unplaced in both X and Y were collected and used to
538 identify the N'Dama specific sequences by comparing them to the remaining contigs from the
539 three reference genomes (for details on the reference-assisted scaffolding, see Supplementary
540 Note 1).

541 Following the generation of chromosomes, we proceeded with the gap filling through
542 LR_GapCloser (v1.1)⁴³, using the PacBio long reads and performing three mapping and
543 filling iterations with chunks of 300 bp. Finally, the assembly has been polished five times
544 using Illumina PE-SR and the Pilon v1.23 software. By keeping tracks of the changes
545 introduced by each polishing it was possible to define at which step to freeze the genome
546 version. Resulting assembly statistics are show in **Error! Reference source not found.**
547 Table 1: after the scaffolding, there was a minor reduction of the contig N50 due to some
548 contigs being found to be chimeric and, therefore, fragmented at the breakpoints. However,
549 gap filling and subsequent polishing increased the N50 of the contigs to >10Mb, confirming
550 the high contiguity of the assembly. Scaffold N50 and L5 are 104,847,410bp and 11,
551 respectively. Several quality metrics have been collected, such as BUSCO (v3.0.2)²⁵
552 completeness scores, QUAST (v5.0.2)²⁶ evaluations, Merqury (v1.1)²⁷ quality values (QV)
553 and FRC_Align (v1.3.0)³⁰ to identify the candidate misassembled regions. Key metrics (N50,
554 L50, longest contigs, number of contigs, GC content, BUSCO scores) have been represented
555 as SnailPlots using BlobToolKit (v2.3.3)⁴⁴. Details of the assembly, with all the steps
556 performed, is reported in Supplementary Note 1.

557 **Ankole assembly**

558 The Ankole long reads were assembled using both the WTDBG2 (v2.3) ultra-fast assembler⁴⁵
559 and CANU³⁶. Both sets of contigs were polished twice using minimap2-mapped long reads

560 and the wtpoa-cns software⁴⁵. Then, to overcome the differences that can be produced by the
561 two assemblers, contigs from both software were joined using quickmerge⁴⁶ (v0.3;
562 parameters -hco 15.0 -c 5.0 -l 2,500,000 -ml 50,000). This generates a set of contigs with a
563 four-fold improvement in contiguity. The scaffolding step was performed on this set of
564 molecules using the OM data and the Bionano Solve assembly and hybrid scaffolding
565 pipelines, which has the additional advantage of detecting and fixing eventual chimeras
566 introduced by the assemblers and quickmerge pipelines.

567 Following the generation of chromosomes we proceeded with the gap filling through
568 LR_GapCloser⁴³, using the PacBio long reads and performing three mapping and filling
569 iterations with chunks of 300 bp. The gap filled assembly was polished 5 times using
570 Illumina PE-SR and the Pilon software (v1.23). The same metrics collected for the N'Dama
571 assembly have been used to freeze the genome version. Several quality metrics have been
572 collected, such as BUSCO²⁵ completeness scores, QUAST²⁶ evaluations, Merqury²⁷ quality
573 values (QV) and FRC_Align³⁰ to identify the candidate misassembled regions. Key metrics
574 (N50, L50, longest contigs, number of contigs, GC content, BUSCO scores) have been
575 represented as SnailPlot using BlobToolKit⁴⁴. Details of the assembly, with all the steps
576 performed, is reported in Supplementary Note 2.

577 **Genome alignment and comparison**

578 We compared the five genomes by first generating multiple whole genome alignments
579 (mWGA) using CACTUS²⁸ (v2019.03.01, installed through bioconda). CACTUS is a
580 mWGA tool allowing reference-free comparison of multiple mammalian-sized genomes. The
581 software requires only the soft-masked genomes (soft-masking largely decreases the
582 computational time) and a phylogenetic tree defining the relationships among the genomes
583 analysed used to guide the alignments.

584 We masked repetitive elements inside the assemblies using sequentially DustMasker (v1.0.0
585 from blast 2.9.0)⁴⁷, WindowMasker (v1.0.0 from blast 2.9.0)⁴⁸ and finally RepeatMasker
586 (v4.0.9, with trf v 4.09)⁴⁹. The reports generated by RepeatMasker on repetitive element
587 composition for the different sequences have been collected using an in-house script and
588 summarized in Supplementary Figure 2. Then, we generated a tree inclusive of the different
589 cattle breeds using mash (v2.2)⁵⁰ on a broader set of genomes, inclusive of water buffalo
590 (UMD_CASPUR_WB_2.0)⁵¹, goat (ARS1)⁵², sheep (Rambouillet_1.0), horse (EquCab3.0)
591 and pig (SScrofa_11)⁵³ in order to achieve a more stable tree and extracting from that the
592 specific branch of interest.

593 Following the generation of alignments with CACTUS, we used a custom pipeline to detect
594 nodes that were not present in the Hereford genome, ARS-UCD1.2, considered as the
595 reference genome. We first used a custom python script and the libbdsg⁵⁴ library to extract
596 the nodes not present in any Hereford paths. These nodes have then been screened for N-
597 mers, and then misassembled regions detected by FRC_Align³⁰ on the *two de novo*
598 assemblies here presented were discarded. Each node passing the filtering has been labelled
599 depending on which path it was found. We then combined regions that were less than 5bp
600 apart using bedtools (v2.30.0)⁵⁵, and classified depending on their length (short if < 10bp,
601 intermediate if < 60bp and large if \geq 60bp), position (telomeric if within 10Kb from the end
602 of the chromosome and flanking a gap if with 1Kb of a N-mer), type of sequence (novel if >
603 95% of the bases in the region are not present in any Hereford node, haplotype otherwise).
604 We then added the proportion of masked bases in the regions generated. We then applied
605 multiple filtering to retain only the high quality novel contigs, keeping a region if 1)
606 classified as large, 2) consisting of more than 50% novel bases, 3) not telomeric, 4) not
607 flanking a gap and 5) not significantly enriched for repetitive elements (retained a region if
608 Bonferroni-corrected P-value > 8e-7) when compared to the average number of soft-masked

609 bases in the autosomal sequences by calculating a z-score (54 % of masked bases). Finally,
610 we reduced the complexity of the contigs by overlapped the sequences with minimap2,
611 converting the alignments into blast tabular format and detected the most likely unique
612 sequences by a custom script. Briefly, we considered all alignments with >99% identity as
613 referring to the same sequence, and only if each alignment spanned 95% of the total length of
614 the shortest contigs involved. For example, an alignment of 296bp with identity of 99.5%
615 between contig1 (1,000bp) and contig2 (300bp) would be considered, and only contig1
616 would be kept for downstream analyses.

617 Intersections between the different genomes have been visualised using the SuperExactTest
618 package⁵⁶. Motif enrichment was computed using HOMER (4.10.4)⁵⁷ on the novel sequences
619 using all the genomes pooled together as background. Finally, sequences were characterized
620 for gene content.

621 The proteins prediction was performed three ways: 1) using Augustus⁵⁸ (v.3.3.3) on the novel
622 sequences with default parameters; 2) using Augustus (v3.3.3) on the sequences with 100bp
623 flanking regions included; and 3) aligning the sequences using DIAMOND (v2.0.6)⁵⁹
624 BLASTX to a database consisting of proteins from UniProtDB, SwissDB and 9 ruminants
625 (taxa id 9845) RefSeq genomes downloaded from NCBI (GCF_000247795.1,
626 GCF_000298355.1, GCF_000754665.1, GCF_001704415.1, GCF_002102435.1,
627 GCF_002263795.1, GCF_002742125.1, GCF_003121395.1, GCF_003369695.1). Predicted
628 proteins have been extracted through a custom python script and were aligned using
629 DIAMOND⁵⁹ BLASTP to the same protein database previously described. We considered a
630 high-confidence protein structure if the three methods consistently predicted the same
631 complete protein structure, inclusive of start and stop sites.

632 The full pipeline, including the custom scripts used to generate all outputs, is accessible on
633 GitHub (<https://github.com/evotools/CattleGraphGenomePaper/tree/master/detectSequences>).

634 **Linear expanded genome**

635 Due to memory and computational constraints, we could not use the full mWGA to generate
636 the set of vg indexes required to align and process short-read sequencing to a graph. Instead,
637 we used autosomal chromosome-by-chromosome alignments of the five assemblies to
638 generate a graph genome that can be successfully indexed with the vg¹² software allowing us
639 to align reads and perform variant calling.

640 We generated a linear expanded genome with the purpose of providing an easy to use,
641 expanded version of the cattle reference genome that is also easy to implement in current best
642 practice pipelines. We extracted all nodes not present in the linear Hereford genome, but that
643 were found in the other 4 assemblies considered using libbdsg (v0.3)⁵⁴. Nodes were then
644 labelled based on the genome in which they were found (i.e. a node can be from 1 to 4
645 different assemblies). The nodes were then trimmed for N-mers, and regions overlapping a
646 candidate misassembled region in the N'Dama or Ankole genome were excluded. We then
647 combined the regions if they were less than 5bp apart using bedtools, and then labelled the
648 regions depending on their proximity to a gap (less than 1000bp from a gap) or to a telomere
649 (10Kb from the end of a chromosome or scaffold >5Mb long), classified them based on their
650 length (short if <10bp, intermediate if between 10 and 60bp and long if >60bp) and whether
651 they were haplotypes (<95% of the bases coming from a non-reference node) or novel
652 (>=95% of the bases coming from a non-reference node). We retained all long regions
653 (<60bp), those not at telomeres and not flanking a gap. Finally, we excluded all regions that
654 were too repetitive in comparison to the autosomes in the different genomes and sequences
655 that were too similar, retaining only the largest of the two. For details of the selection of the
656 NOVEL set of contigs, see section “Genome alignment and comparison” in Materials and

657 Methods. This generated a final set of contigs that, once combined with ARS-UCD1.2,
658 formed the final extended linear pangenome (ARS-UCD1.2+).

659 **Graph Genome**

660 Comparatively few pieces of software capable of handling large genomes and graphs are
661 currently available. Two in particular prove to be particularly promising: the vg tools¹² and
662 Seven Bridges graph genome pipelines¹¹. In the current study we chose to apply the vg
663 pipeline, which is able to call structural variants detected through multiple assembly
664 comparisons. This is also supported by recent studies that have proven graph alignments to be
665 superior in performance when alignments were generated through a reference-free
666 comparison⁶⁰.

667 The cactus alignments were converted to a vg graph using hal2vg (v2.1)
668 (<https://github.com/ComparativeGenomicsToolkit/hal2vg>), dropping the ancestral genomes,
669 referencing to the Hereford assembly and processed as recommended on the vg wiki page
670 (VG5). We also generated second and third graphs with more and no diversity, respectively.
671 To create the second graph, hereon called VG5p, we added >11M short variants from 294
672 worldwide cattle²³ to the VG5 graph through the ‘vg add’ command. To create the third
673 graph, we simply provided the linear ARS-UCD1.2 genome to ‘vg construct’ specifying the
674 VCF with the 11M variants described in Dutta et al. (2020)²³(VG1p). To create the fourth
675 and last graph, we simply provided the linear ARS-UCD1.2 genome to ‘vg construct’,
676 without specifying any source of variation, and ultimately generating a graph representation
677 of this single linear genome (VG1). The script used to generate the graphs are available on
678 GitHub (<https://github.com/evotools/CattleGraphGenomePaper>).

679 We evaluated the performances of the graph genomes in two ways. We aligned to a variant-
680 free linear graph based on the Hereford genome using vg (VG1). We also aligned and called

681 variants using the standard BWA-HaplotypeCaller (bwa v 0.7.17; GATK v4.0.11.0)^{61,62} and
682 BWA-FreeBayes (FreeBayes v 1.3.1-16-g85d7bfc-dirty)²⁰ pipelines on the ARS-UCD1.2
683 genome.

684 All the graphs were generated using vg version 1.20.0. Short reads processing was performed
685 using vg v1.22.0. Despite the change of version, the graphs generated in the version 1.20 can
686 be used also in the next releases. All the script used for the analyses were generated through
687 bagpipe (https://bitbucket.org/renzo_tale/bagpipe/src/master/).

688 Reads for the nine samples of three different breeds (Angus, Nigerian N'Dama and Pakistani
689 Sahiwal) with a similar coverage (~30-50X) were considered for the analyses. Six of the nine
690 samples were novel to this study with the three Angus taken from databases^{63,64}
691 (Supplementary Table 13). Whole blood for the three novel N'Dama samples was collected
692 into PAXgene tubes, and DNA was extracted through the standard procedure as outlined in
693 the PAXgene blood DNA kit handbook. Whole blood for the three novel Sahiwal samples
694 was collected into EDTA tubes, and DNA was extracted through the standard procedure as
695 outlined in the TIANamp Blood DNA Kithandbook (TIANGEN Biotech Co. Ltd, Beijing).
696 Samples were then sequenced on a Illumina HiSeq X Ten at the Edinburgh Genomics
697 sequencing facility. Samples were aligned using the guidelines reported in the vg GitHub
698 wiki page, and implemented in the bagpipe pipeline
699 (https://bitbucket.org/renzo_tale/bagpipe/src/master/).

700 **Bionano optical mapping**

701 We generated ~100X OM data for two Kenyan N'Dama samples, one of which was an
702 offspring of the assembled individual. Blood was collected by jugular venupuncture into
703 EDTA vacutainers. Following erythrocyte lysis, monocytes were purified from the
704 leukocytes using a positive selection MACS protocol with an anti-bovine SIRP α mono-clonal

705 antibody (ILA-24 – Ellis et al. 1988). Agarose plugs containing 5x105 – 1x106 isolated
706 monocytes were prepared using the Bionano Blood and cell culture DNA isolation kit
707 (Bionano Genomics, San Diego, US) according to the manufacturer's instructions and the
708 extracted DNA used for analysis on the Bionano Saphyr platform. Resulting reads were
709 processed through the Bionano Solve pipeline (v3.3_10252018, refAligner v7915.7989rel).
710 We then converted the resulting outputs to vcf through smap_to_vcf_v2.py. Then, we
711 converted all non-translocation SVs into bed format expanding the initial and end positions
712 defined by the Bionano Solve pipeline with the largest values defined by the confidence
713 interval, and then added an additional kilobase to account for the resolution of OM data and
714 uncertainty in the positions inherent in OM.

715 After generating bed intervals for each of the two individuals, we concatenated the bed files,
716 sorted them, combined them through bedtools merge and, finally, retained the regions
717 mapped on an autosomal region.

718 **Benchmarking the graph**

719 To evaluate the performances of the graph genomes we collected different metrics, which can
720 be split into two categories: a) read-based metrics and b) variant-based metrics.

721 The first category includes the number of reads mapped to the genomes by the different
722 algorithms, and how many of the reads called by vg are perfectly mapped.

723 The second category includes metrics based on the variants called, including number of
724 variants identified, depth of sequencing, transitions/transversions rate and allelic balance (i.e.
725 the ratio of reads supporting the reference and the alternate allele used for the variant calling).

726 These metrics have been computed for different variant lengths to see how the callers
727 perform with different types of variants, using the script available on GitHub

728 (<https://github.com/evotools/CattleGraphGenomePaper>). The analyses have been carried out
729 considering a) the variants present in the given graph as known and all other as novel, and b)
730 the 11M variants as the set of known variants and all the other as novel.

731 After gathering overall metrics, we focused our attention on large structural variants called by
732 vg on the VG5p graph, since these are the hardest to genotype with current broadly adopted
733 methods. First, we combined variants across the nine samples using bcftools (v1.10) merge,
734 and checked how many overlapped with OM signals detected on two N'Dama samples.

735 Although being called for two different samples than the N'Dama sequenced, it can still
736 provide insights into N'Dama-shared variants not present in the current linear genome. We
737 assessed the significance of the overlap by randomly selecting 10,000 times regions of the
738 same sizes as the detected ones and overlapped them with the OM data to estimate a Z-score.

739 We defined the size of a structural variant as equal to the size of the reference allele. Also, we
740 checked whether the size distribution of indels in genes shows a higher number of in-frame
741 than out-of-frame variants (i.e. insertions and deletions of size multiple of 3 versus rest).
742 Second, we checked if the structural variants called for the different breeds overlapped
743 differently with the OM data to assess whether individuals genetically closer to the two
744 N'Dama genotyped with OM have a proportionally higher number of overlaps between
745 graph-based and OM structural variants.

746 Third, we investigated high-quality, group-specific large structural variants identified by vg.
747 We iteratively intersected individuals of a target breed with samples of the other two breeds
748 using bcftools isec, retaining a variant if found only in the target individual (e.g. we intersect
749 Angus1 with Sahiwal1; then, we keep the specific variants for Angus1, and intersect it with
750 Sahiwal2, and so on). Then, samples of the same breed are combined with bcftools merge,
751 that kept all variants found in at least one animal of the same breed. Then, we retained a
752 variant if they had high quality (QUAL > 30), depth of sequencing close to the expected

753 value ($20 < DP < 90$) and allowing no missingness and with sufficient evidence for the
754 alternate allele (non-reference allele count ≥ 5). Finally, we focused on variants with length
755 $> 500\text{bp}$ in order to keep the results comparable with the OM and allowing direct comparison
756 with the N'Dama samples.

757 We compared the structural variants from the graph with the ones called from Delly2
758 (v0.8.5)³³. Variants called by Delly2 for each individual with no soft-filter and high quality
759 (QUAL > 30) were retained. Individuals' SVs of the same type were combined using
760 SURVIVOR⁶⁵ (v1.0.7), allowing 100bp of distance between break points, not accounting for
761 the strand, retaining only SV longer than 500bp and excluding translocations. These were
762 then intersected with the OM regions. We also combined the samples of the same breed as
763 done for the graph genome, retaining variants with no missingness and sufficient support for
764 the alternative allele (non-reference allele count > 5), dropped translocations and finally,
765 intersected with the regions from the OM analysis.

766 Finally, we compared SVs called from Delly and VG5p based on their type (insertions,
767 deletions, inversions and duplications). This approach, though more consistent, comes with
768 limitations since the different callers call different types of SV: VG5p can only call
769 insertions, deletions and complex SV, with the latter inclusive of inversions and more
770 complicated rearrangements (e.g. a substitution and a deletion at the same site); Delly can
771 call only precise deletions, duplications and inversions; finally, the OM can call insertions,
772 deletions, inversions and duplications. SVs called from VG5p were first broken into single-
773 allele variants using vcfbreakmulti from vcflib (v1.0.1)⁶⁶ annotated using vcf-annotate --fill-
774 type from the vcftools library⁶⁷; the variants were then split by annotated type, multiallelic
775 SV recombined with vcfcreatemulti and converted to BED format using SnpSift⁶⁸ and a
776 series of custom scripts. Delly variants were separated based on the alternate allele field into
777 separate SVs, and similarly SVs from OM were split by the SVTYPE annotated field.

778 Insertions and deletions from VG5p were then intersected using bedtools (v2.30.0) with
779 insertions and deletions from OM, respectively. Analogously, deletions, duplications and
780 inversions from Delly were intersected with the same categories from OM data using
781 bedtools (v2.30.0). Resulting unique SVs were combined and counted as number of
782 consistent, overlapping SV.

783 **ATAC-seq data processing**

784 Illumina paired end reads for B-cells of three samples (1 Holstein-Friesian, 1 N'Dama and 1
785 Nelore) were generated using Illumina HiSeq X Ten at the Edinburgh Genomics facility.
786 Details on the preparation of the DNA libraries can be found in Supplementary Methods 1. In
787 addition to the three samples, one nucleosome-free DNA sample was processed to identify
788 and exclude false positives. All read accession numbers are listed in Supplementary Table 13.
789 We processed paired-end reads as follow: we first trimmed the reads, extracting only the
790 paired ones with length ≥ 36 bp using trim_galore (v0.6.3)⁶⁹. As a spike-in of mouse cells
791 had been used in these samples trimmed reads were aligned to the target genome
792 concatenated with the mouse genome GRCm38 using bowtie2 (v2.3.1) and only one mapping
793 per read was saved in order to account for repetitive elements (parameters -X 1000 --very-
794 sensitive). Reads aligned to the mouse genome and mitogenome were excluded with samtools
795 and peaks were called using Genrich (v 0.5_dev, parameters: -j -r -e MT -v). The full pipeline
796 to process the samples was generated using bagpipe
797 (https://bitbucket.org/renzo_tale/bagpipe/src/master). We also compared the effect of using
798 only uniquely mapped reads when peak calling. We aligned the reads as previously described
799 to ARS-UCD1.2 and ARS-UCD1.2+, and then retained only reads uniquely mapped using
800 Sambamba (v0.5.9; command view -h -f sam -F "[XS] == null and not unmapped and not
801 duplicate").

802 We called peaks on all five linear assemblies and ARS-UCD1.2+ separately. For each
803 sample, we excluded peaks overlapping a peak in the nucleosome-free DNA sample for more
804 than 50% of their length (bedtools subtract -A -f 0.5), which were considered as false positive
805 peaks. We then calculated the Q-scores for each peak using the Benjamini-Hochberg
806 correction, setting the number of independent tests to the theoretical size of the cattle genome
807 (2.7Gb). For each region, we also checked which one did not overlap a masked region in the
808 respective assembly for at least 40% of its length.
809 Heatmaps have been created using DeepTools (v3.5.1)⁷⁰ with the aligned reads as inputs, first
810 filtering out reads mapping to the mouse spike-in genome and then converting them to
811 bigWig using bamCoverage (options --minFragmentLength 35 --maxFragmentLength 150 --
812 normalizeUsing RPGC -bs 10 -e --effectiveGenomeSize 2779691414). The generated bigWig
813 files are then used as inputs to computeMatrix (reference-point mode with parameters -a 3000
814 -b 3000 --missingDataAsZero --skipZeros) using the ARS-UCD1.2 annotation (Ensembl
815 version 103) and the genes predicted by Augustus as annotations.

816 **Data availability**

817 DNA from Uganda was received under a license from the Uganda National Council for
818 Science and Technology (permit number A579). Long reads and short read data for the
819 Ankole assembly are available on ENA with project accession PRJEB39282. Long read and
820 short reads data for the N'Dama sample are available on ENA with project accessions
821 PRJEB39330 and PRJEB39334. Short read sequencing for the three Sahiwal and the three
822 N'Dama samples are publicly available on ENA with project accessions PRJEB39352 and
823 PRJEB39353, respectively. The N'Dama and Ankole assemblies have been deposited on
824 ENA with accession numbers GCA_905123515 and GCA_905123885, respectively. Output
825 for the analyses can be visualised in (BOmA)[www.bomabrowser.com/cattle].

826 **Acknowledgements**

827 The study was funded by grants BB/T019468/1, BB/R015155/1, BB/P024025/1,
828 BBS/E/D/10002070 and 5682306 from the BBSRC. Authors are grateful to Dr. Maryam
829 Muhammad and Dr. Edward Amali for assisting with the collection of the N'Dama samples
830 involved in this study. We thank Dr. Maria Eugenia Z. Mercadante for supplying samples of
831 Nelores from the herd of the Centro Avançado de Pesquisa Tecnológica do Agronegócio de
832 Bovinos de Corte, Sertãozinho, SP, Brazil and are very grateful for the help of Professor
833 Isabel Santos of the University of São Paulo for the assistance in processing the samples.
834 This research was also funded in part by the Bill & Melinda Gates Foundation and with UK
835 aid from the UK Foreign, Commonwealth and Development Office (Grant Agreement
836 OPP1127286) under the auspices of the Centre for Tropical Livestock Genetics and Health
837 (CTLGH), established jointly by the University of Edinburgh, SRUC (Scotland's Rural
838 College), and the International Livestock Research Institute. The findings and conclusions
839 contained within are those of the authors and do not necessarily reflect positions or policies
840 of the Bill & Melinda Gates Foundation nor the UK Government.

841

842 **References**

843 1. De Boer, H. Cattle genetic resources. *Livest. Prod. Sci.* **29**, 256–258 (1991).

844 2. Felius, M. *et al.* On the breeds of cattle-Historic and current classifications. *Diversity*
845 **3**, 660–692 (2011).

846 3. Ajmone-Marsan, P., Lenstra, J. A., Fernando Garcia, J. & The Globaldiv Consortium.
847 On the origin of cattle: how aurochs became domestic and colonized the world
848 Attenuation of the inflammatory phenomena in the transition period of dairy cows
849 View project Climate Genomics for Farm Animal Adaptation View project. *Evol.*

850 *Anthropol.* **19**, 148–157 (2010).

851 4. Rosen, B. D. *et al.* De novo assembly of the cattle reference genome with single-
852 molecule sequencing. *Gigascience* **9**, 1–9 (2020).

853 5. Sanchez, M.-P. *et al.* Within-breed and multi-breed GWAS on imputed whole-genome
854 sequence variants reveal candidate mutations affecting milk protein composition in
855 dairy cattle. *Genet. Sel. Evol.* **49**, 68 (2017).

856 6. Pitt, D. *et al.* Domestication of cattle: Two or three events? *Evol. Appl.* 1–18 (2018).
857 doi:10.1111/eva.12674

858 7. Loftus, R. T., MacHugh, D. E., Bradley, D. G., Sharp, P. M. & Cunningham, P.
859 Evidence for two independent domestications of cattle. *Proc. Natl. Acad. Sci. U. S. A.*
860 **91**, 2757–2761 (1994).

861 8. Sherman, R. M. *et al.* Assembly of a pan-genome from deep sequencing of 910
862 humans of African descent. *Nature Genetics* **51**, 30–35 (2019).

863 9. Günther, T. & Nettelblad, C. The presence and impact of reference bias on population
864 genomic studies of prehistoric human populations. *PLoS Genet.* **15**, 1–20 (2019).

865 10. Gopalakrishnan, S. *et al.* The wolf reference genome sequence (*Canis lupus lupus*) and
866 its implications for *Canis* spp. population genomics. *BMC Genomics* (2017).
867 doi:10.1186/s12864-017-3883-3

868 11. Biederstedt, E. *et al.* NovoGraph: Genome graph construction from multiple long-read
869 de novo assemblies. *F1000Research* **7**, 1391 (2018).

870 12. Garrison, E. *et al.* Variation graph toolkit improves read mapping by representing
871 genetic variation in the reference. *Nature Biotechnology* **36**, 875–881 (2018).

872 13. Grytten, I. *et al.* Graph peak caller: Calling chip-seq peaks on graph-based reference

873 genomes. *PLoS Comput. Biol.* **15**, (2019).

874 14. Groza, C., Kwan, T., Soranzo, N., Pastinen, T. & Bourque, G. Personalized and graph
875 genomes reveal missing signal in epigenomic data. *bioRxiv* **21**, 457101 (2019).

876 15. Tognon, M., Bonnici, V., Garrison, E., Giugno, R. & Pinello, L. GRAFIMO: variant
877 and haplotype aware motif scanning on pangenome graphs Author summary. *bioRxiv*
878 (2021).

879 16. Crysantho, D., Wurmser, C. & Pausch, H. Accurate sequence variant genotyping in
880 cattle using variation-aware genome graphs. *Genet. Sel. Evol.* **51**, (2019).

881 17. Crysantho, D. & Pausch, H. Bovine breed-specific augmented reference graphs
882 facilitate accurate sequence read mapping and unbiased variant discovery. *Genome
883 Biol.* **21**, (2020).

884 18. Crysantho, D., Leonard, A. S., Fang, Z.-H. & Pausch, H. Novel functional sequences
885 uncovered through a bovine multi-assembly graph. *bioRxiv* (2021).
886 doi:10.1101/2021.01.08.425845

887 19. Poplin, R. *et al.* Scaling accurate genetic variant discovery to tens of thousands of
888 samples. *bioRxiv* (2017). doi:10.1101/201178

889 20. Garrison, E. & Marth, G. Haplotype-based variant detection from short-read
890 sequencing. (2012).

891 21. Kanté Tagueu, S., Farikou, O., Njiokou, F. & Simo, G. Prevalence of *Sodalis
892 glossinidius* and different trypanosome species in *Glossina palpalis palpalis* caught in
893 the Fontem sleeping sickness focus of the southern Cameroon. *Parasite* **25**, (2018).

894 22. Salt, J. East Coast Fever (ECF). *GALVmed* Available at:
895 <https://www.galvmed.org/livestock-and-diseases/livestock-diseases/east-coast-fever/>.
896 (Accessed: 13th July 2020)

897 23. Dutta, P. *et al.* Whole genome analysis of water buffalo and global cattle breeds
898 highlights convergent signatures of domestication. *Nat. Commun.* **11**, 4739 (2020).

899 24. Koren, S. *et al.* De novo assembly of haplotype-resolved genomes with trio binning.
900 *Nat. Biotechnol.* (2018). doi:10.1109/BHI.2014.6864426

901 25. Waterhouse, R. M. *et al.* BUSCO Applications from Quality Assessments to Gene
902 Prediction and Phylogenomics. *Mol. Biol. Evol.* **35**, 543–548 (2018).

903 26. Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D. & Gurevich, A. Versatile
904 genome assembly evaluation with QUAST-LG. in *Bioinformatics* **34**, i142–i150
905 (Oxford University Press, 2018).

906 27. Rie, A., Walenz, B. P., Koren, S. & Phillippy, A. M. Merqury: Reference-free
907 quality, completeness, and phasing assessment for genome assemblies. *Genome Biol.*
908 **21**, (2020).

909 28. Armstrong, J. *et al.* Progressive Cactus is a multiple-genome aligner for the thousand-
910 genome era. *Nature* **587**, (2020).

911 29. Hickey, G., Paten, B., Earl, D., Zerbino, D. & Haussler, D. HAL: A hierarchical
912 format for storing and analyzing multiple genome alignments. *Bioinformatics* **29**,
913 1341–1342 (2013).

914 30. Vezzi, F., Narzisi, G. & Mishra, B. Feature-by-feature - evaluating De Novo sequence
915 assembly. *PLoS One* **7**, (2012).

916 31. Kim, J. *et al.* The genome landscape of indigenous African cattle. *Genome Biol.* **18**,
917 (2017).

918 32. Slotkin, R. K. The case for not masking away repetitive DNA. *Mobile DNA* (2018).
919 doi:10.1186/s13100-018-0120-9

920 33. Rausch, T. *et al.* DELLY: Structural variant discovery by integrated paired-end and
921 split-read analysis. *Bioinformatics* **28**, 333–339 (2012).

922 34. Hwang, S., Kim, E., Lee, I. & Marcotte, E. M. Systematic comparison of variant
923 calling pipelines using gold standard personal exome variants. *Sci. Rep.* (2015).
924 doi:10.1038/srep17875

925 35. Bickhart, D. M. The Bovine Pan-Genome Consortium. (2020). Available at:
926 <https://njdbickhart.github.io/>. (Accessed: 31st August 2020)

927 36. Koren, S. *et al.* Canu: Scalable and accurate long-read assembly via adaptive κ -mer
928 weighting and repeat separation. *Genome Res.* **27**, 722–736 (2017).

929 37. Chin, C. S. *et al.* Phased diploid genome assembly with single-molecule real-time
930 sequencing. *Nat. Methods* **13**, 1050–1054 (2016).

931 38. Li, H. Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
932 3094–3100 (2018).

933 39. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome
934 assembly from long uncorrected reads. *Genome Res.* **27**, 737–746 (2017).

935 40. Walker, B. J. *et al.* Pilon: An integrated tool for comprehensive microbial variant
936 detection and genome assembly improvement. *PLoS One* **9**, e112963 (2014).

937 41. Minkin, I. & Medvedev, P. Scalable multiple whole-genome alignment and locally
938 collinear block construction with SibeliaZ. *bioRxiv* 548123 (2019).
939 doi:10.1101/548123

940 42. Kolmogorov, M. *et al.* Chromosome assembly of large and complex genomes using
941 multiple references. *Genome Res.* **28**, 1720–1732 (2018).

942 43. Xu, G.-C. *et al.* LR_Gapcloser: a tiling path-based gap closer that uses long reads to

943 complete genome assembly. *Gigascience* **8**, (2018).

944 44. Challis, R., Richards, E., Rajan, J., Cochrane, G. & Blaxter, M. BlobToolKit -
945 interactive quality assessment of genome assemblies. *G3 Genes, Genomes, Genet.* **10**,
946 (2020).

947 45. Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. *bioRxiv* 530972
948 (2019). doi:10.1101/530972

949 46. Chakraborty, M., Baldwin-Brown, J. G., Long, A. D. & Emerson, J. J. Contiguous and
950 accurate de novo assembly of metazoan genomes with modest long read coverage.
951 *Nucleic Acids Res.* **44**, gkw654 (2016).

952 47. Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. A fast and symmetric
953 DUST implementation to mask low-complexity DNA sequences. *J. Comput. Biol.*
954 (2006). doi:10.1089/cmb.2006.13.1028

955 48. Morgulis, A., Gertz, E. M., Schäffer, A. A. & Agarwala, R. WindowMasker: Window-
956 based masker for sequenced genomes. *Bioinformatics* (2006).
957 doi:10.1093/bioinformatics/bti774

958 49. Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0. (2015). Available at:
959 <http://www.repeatmasker.org>. (Accessed: 28th May 2020)

960 50. Ondov, B. D. *et al.* Mash: Fast genome and metagenome distance estimation using
961 MinHash. *Genome Biol.* **17**, (2016).

962 51. Low, W. Y. *et al.* Chromosome-level assembly of the water buffalo genome surpasses
963 human and goat genomes in sequence contiguity. *Nat. Commun.* **10**, (2019).

964 52. Bickhart, D. M. *et al.* Single-molecule sequencing and chromatin conformation
965 capture enable de novo reference assembly of the domestic goat genome. *Nat. Genet.*
966 **49**, 643–650 (2017).

967 53. Warr, A. *et al.* An improved pig reference genome sequence to enable pig genetics and
968 genomics research. *Gigascience* (2020). doi:10.1093/gigascience/giaa051

969 54. Eizenga, J. M. *et al.* Efficient dynamic variation graphs. *Bioinformatics* **36**, (2021).

970 55. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
971 genomic features. *Bioinformatics* **26**, 841–2 (2010).

972 56. Wang, M., Zhao, Y. & Zhang, B. Efficient Test and Visualization of Multi-Set
973 Intersections. *Sci. Rep.* **5**, (2015).

974 57. Heinz, S. *et al.* Simple Combinations of Lineage-Determining Transcription Factors
975 Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. *Mol.*
976 *Cell* **38**, 576–589 (2010).

977 58. Stanke, M. *et al.* AUGUSTUS: A b initio prediction of alternative transcripts. *Nucleic*
978 *Acids Res.* **34**, (2006).

979 59. Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using
980 DIAMOND. *Nature Methods* **12**, (2014).

981 60. Hickey, G. *et al.* Genotyping structural variants in pangenome graphs using the vg
982 toolkit. *bioRxiv* 654566 (2019). doi:10.1101/654566

983 61. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
984 transform. *Bioinformatics* **25**, 1754–60 (2009).

985 62. Sandmann, S. *et al.* Evaluating Variant Calling Tools for Non-Matched Next-
986 Generation Sequencing Data. *Sci. Rep.* **7**, 43169 (2017).

987 63. Li, W. *et al.* Genomic structural differences between cattle and River Buffalo
988 identified through comparative genomic and transcriptomic analysis. *Data Br.* **19**,
989 236–239 (2018).

990 64. Hoff, J. L., Decker, J. E., Schnabel, R. D. & Taylor, J. F. Candidate lethal haplotypes
991 and causal mutations in Angus cattle. *BMC Genomics* (2017). doi:10.1186/s12864-
992 017-4196-2

993 65. The Bactrian Camels Genome Sequencing and Analysis Consortium. Genome
994 sequences of wild and domestic bactrian camels The Bactrian Camels Genome
995 Sequencing and Analysis Consortium*. *Nat. Commun.* **3**, 1202 (2012).

996 66. Garrison E. Vcflib, a simple C++ library for parsing and manipulating VCF files.
997 (2016). Available at: <https://github.com/vcflib/vcflib>. (Accessed: 19th May 2021)

998 67. Danecek, P. *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, (2011).

999 68. Cingolani, P. *et al.* A program for annotating and predicting the effects of single
1000 nucleotide polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster*
1001 strain w1118; iso-2; iso-3. *Fly (Austin)*. **6**, 80–92 (2012).

1002 69. Corces, M. R. *et al.* An improved ATAC-seq protocol reduces background and enables
1003 interrogation of frozen tissues. *Nat. Methods* (2017). doi:10.1038/nmeth.4396

1004 70. Ramírez, F. *et al.* deepTools2: a next generation web server for deep-sequencing data
1005 analysis. *Nucleic Acids Res.* **44**, (2016).

1006 71. Ankenbrand, M. J., Hohlfeld, S., Hackl, T. & Förster, F. AliTV-interactive
1007 visualization of whole genome comparisons. *PeerJ Comput. Sci.* **2017**, (2017).

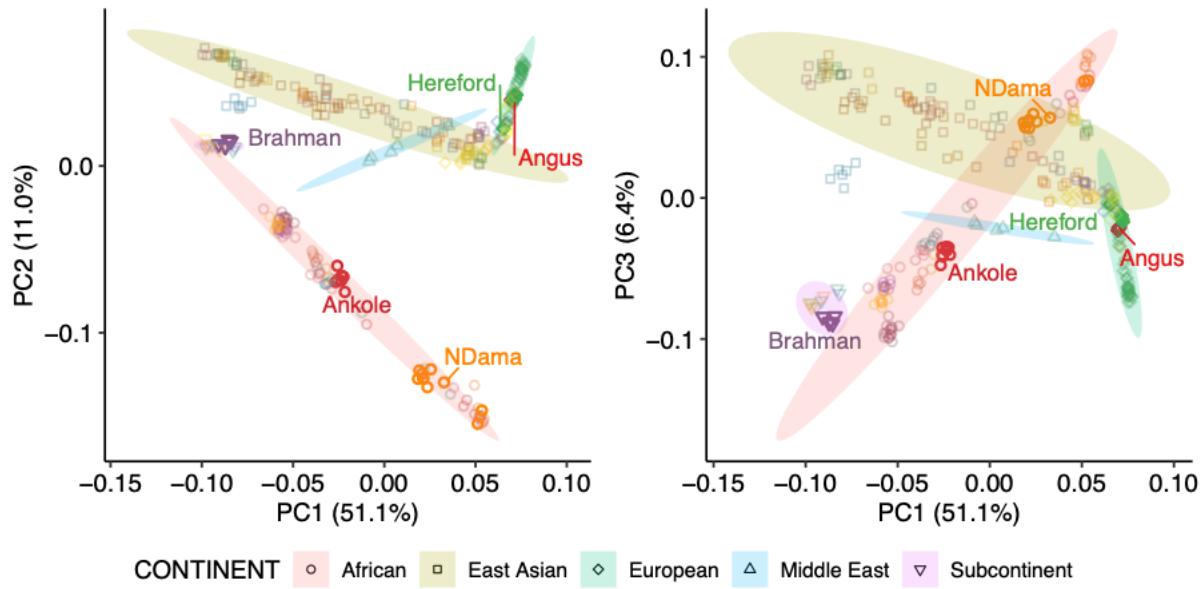
1008 72. Wick, R. R., Schultz, M. B., Zobel, J. & Holt, K. E. Bandage: Interactive visualization
1009 of de novo genome assemblies. *Bioinformatics* (2015).
1010 doi:10.1093/bioinformatics/btv383

1011

1012

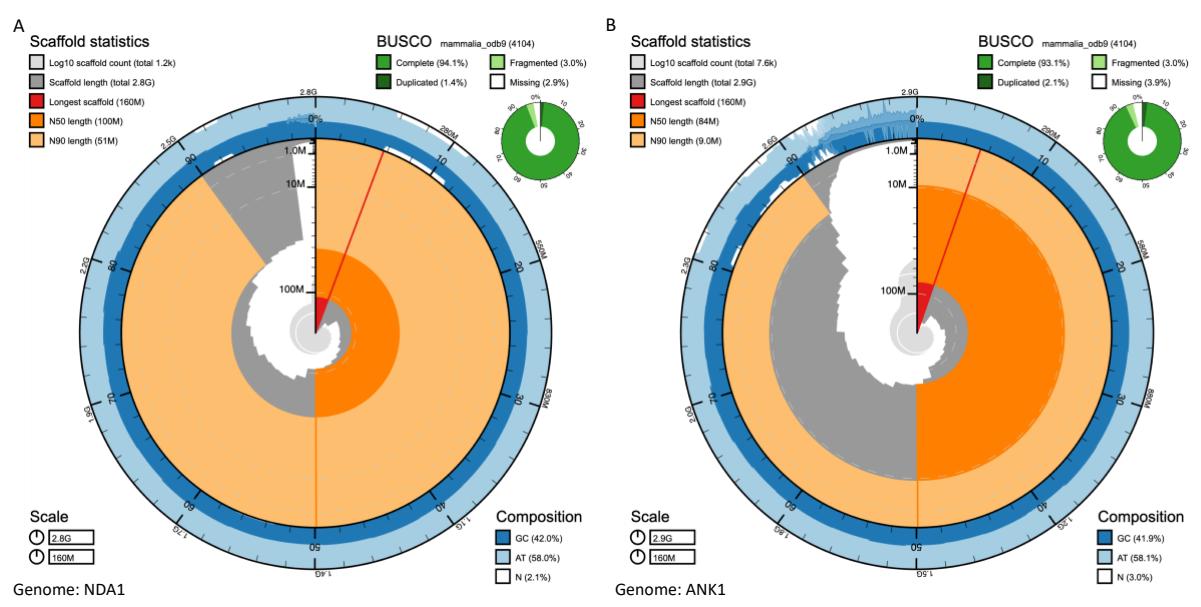
1013 **Figures**

1014 Figure 1. Principal component analysis of the 294 cattle, showing the positions of the
1015 populations of origin of the five assemblies considered in this study.



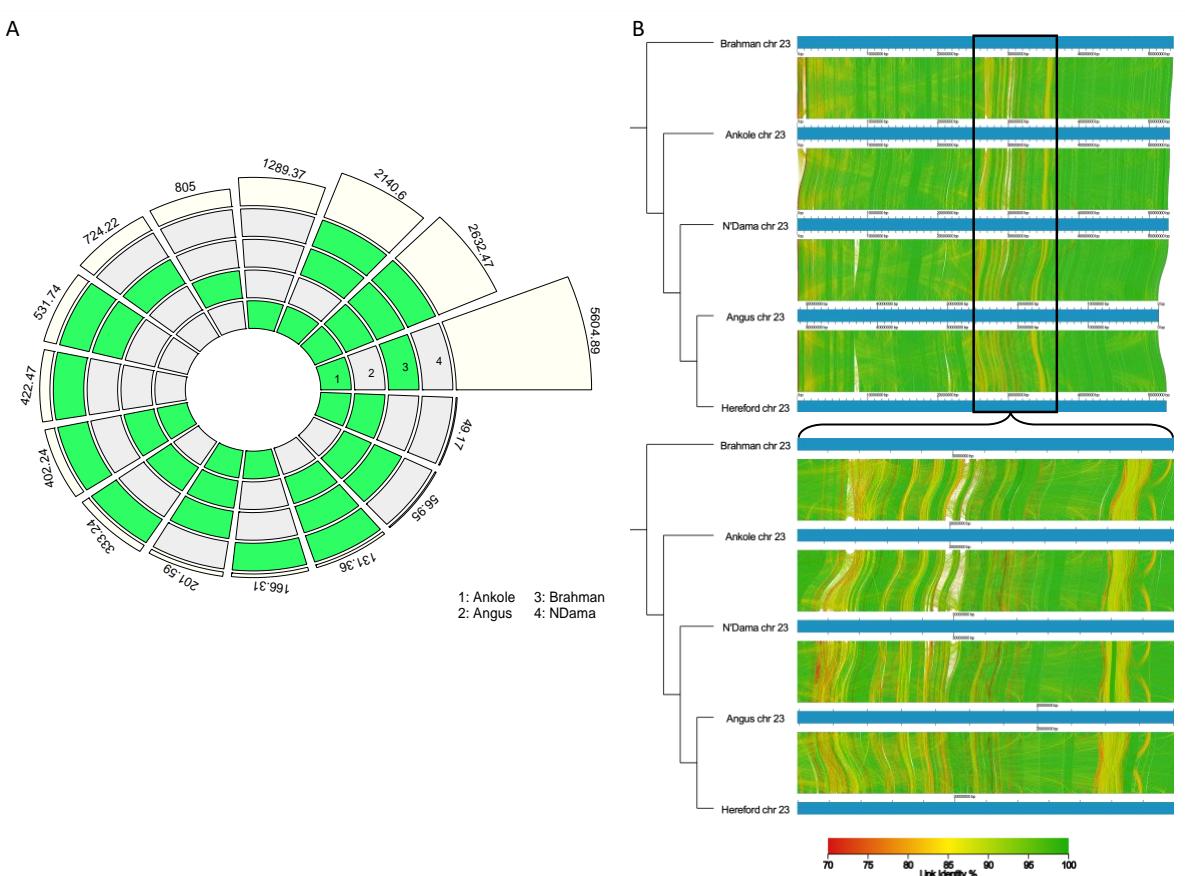
1017

Figure 2 – Snail plots of the N'Dama (NDA1) and Ankole (ANK1) genomes, showing key metrics such as the longest scaffold (red vertical line), N50 (orange track), N90 (light orange track), GC content (external blue track) and BUSCO scores (outer circular pie chart in green). The region of elevated N content in the N'Dama assembly corresponds to a 5Mb gap in one of the contigs matching a region of generalised low identity in all of the five assemblies (Supplementary Figure 1). Even though this region contained an unfilled gap we observe that the regions flanking the gap align to directly contiguous portions of the genome in other assemblies, and therefore that the gap in this region is potentially smaller than represented here.



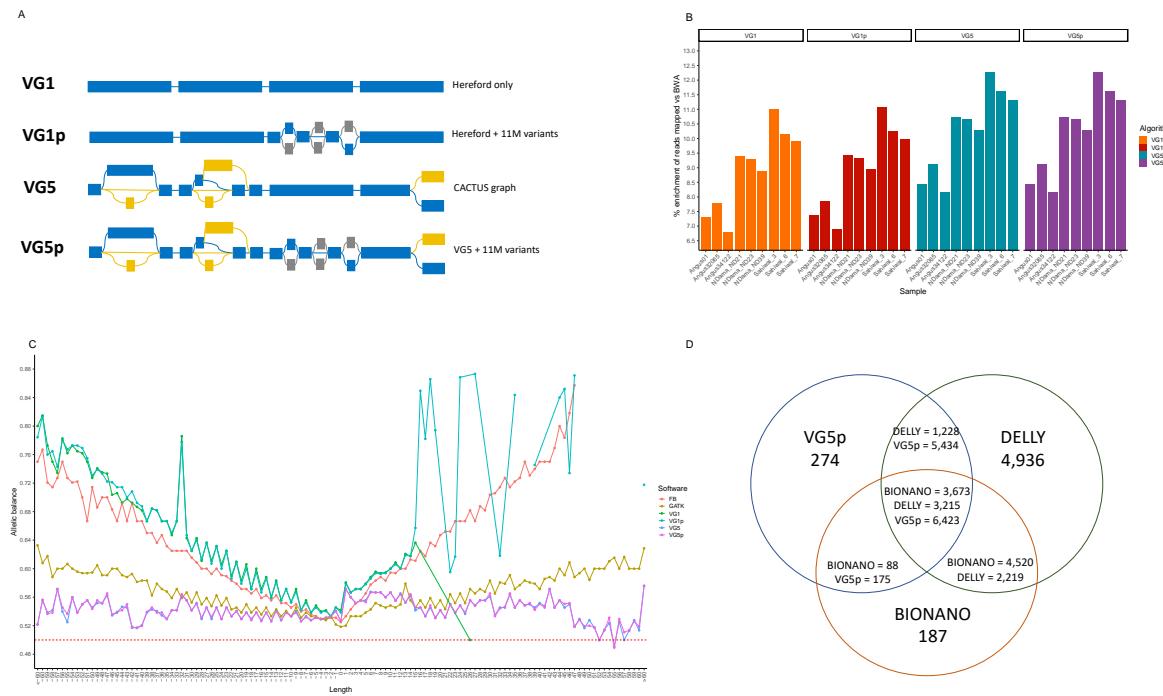
1027
1028

1029 Figure 3 – A) High-quality (NOVEL) sequence specific to, or shared among, each non-
1030 reference genome. Numbers represents the kilobases of non-Hereford sequence associated
1031 with the set of genomes defined by the group(s) highlighted in green. Each genome is
1032 indicated by a number (1 = Ankole, 2 = Angus, 3 = Brahman and 4 = N'Dama); B) Multiple
1033 genome alignments of the MHC region on chromosome 23 generated with AliTV (v1.0.6)⁷¹.
1034 The plot represents the shared sequences among the different genomes; green to red segments
1035 are representative of higher to lower similarity (100 to 70% respectively); the enlarged region
1036 is the MHC region, which shows a large amount of variation between the assemblies.



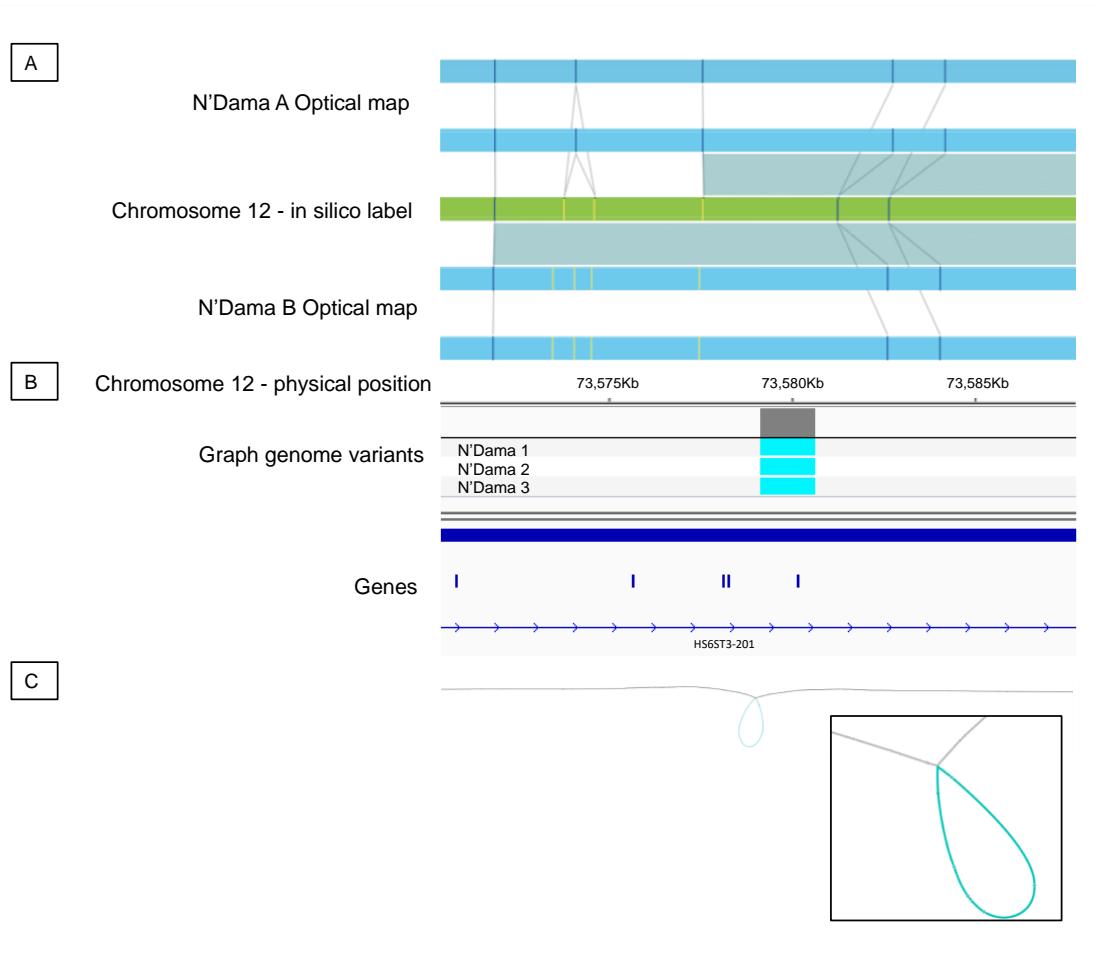
1037

1038 Figure 4 – Graph genome descriptions and their performances. A) a cartoon representation of
 1039 the four types of graph genomes considered (the linear VG1, VG1 expanded with 11M short
 1040 variants (VG1p), the CACTUS VG5 graph and the CACTUS graph expanded with the 11M
 1041 short variants (VG5p)). Regions indicated in blue are regions coming from the backbone
 1042 sequence, those in grey are the short variants from Dutta et al (2020), and in yellow the variants
 1043 derived from the CACTUS graph; B) the percent enrichment of reads mapped by vg (primary
 1044 axis) using the different graphs over the bwa mem linear mapper; and C) the allelic balance for
 1045 the linear callers FreeBayes and GATK HaplotypeCaller compared with vg call, showing how
 1046 the latter reduces the allelic bias for large variants. For other versions of this plot looking at
 1047 different sets of known and novel variants see Supplementary Note 3; and D) the intersection
 1048 of structural variants longer than 500bp called using the VG5p graph (blue), Delly V2 (green)
 1049 and the Bionano optical mapping (orange), showing how most variants called with vg are also
 1050 confirmed using one of the other methods.



1051

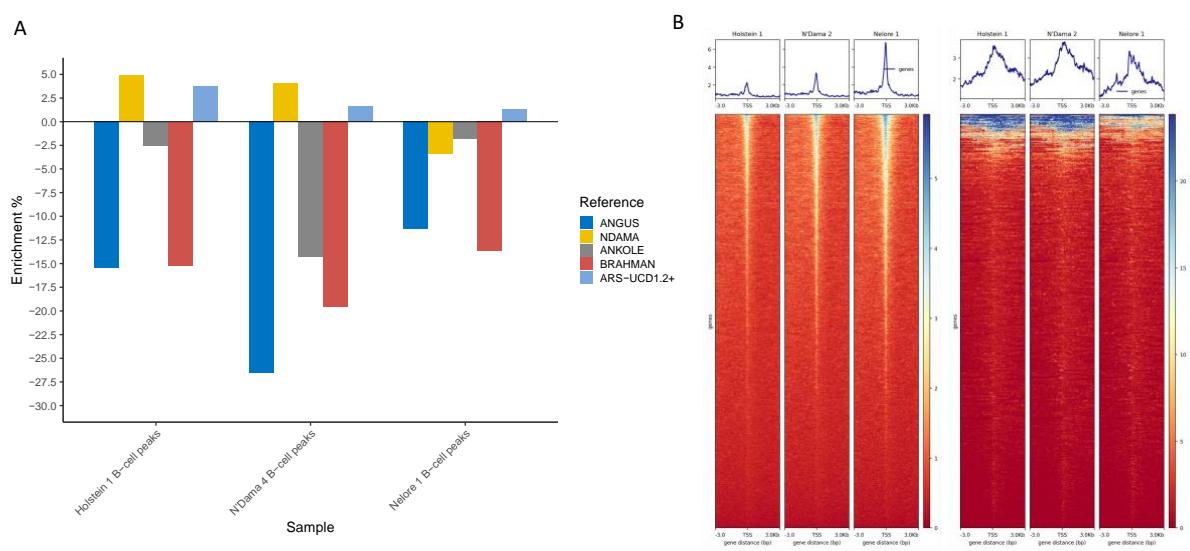
1052 Figure 5 – Example of an insertion relative to the Hereford reference detected A) in both
1053 Kenyan N'Dama OM samples as represented by an increase in the distance between labels
1054 (vertical lines) on each bionano haplotype (blue rectangles) over that expected given the labels'
1055 in silico locations in the Hereford reference (green rectangle). B) This SV was identified as
1056 homozygous in all three Nigerian N'Dama resequenced genomes when called against the graph
1057 genome. C) A Bandage⁷² representation of the graph genome in this region showing the large
1058 structural variant (blue loop) in the Hereford genome (grey line).



1059

1060

1061 Figure 6 – ATAC-seq analyses results A) Enrichment or depletion of the number of ATAC-
1062 seq peaks called in the different assemblies with respect to the number called in ARS-UCD1.2,
1063 showing more peaks were called using the expanded ARS-UCD1.2+ genome in all samples;
1064 and B) showing the enrichment around the TSS of both the ARS-UCD1.2 annotated genes (left
1065 three heatmaps) and of the 923 features predicted by Augustus in the novel contigs (right).



1067

1068 Tables

1069 Table 1 – Sequence contribution from the two African genomes. The table shows the amount
1070 of sequences from non-ARS-UCD1.2 genomes, and how much the two novel assemblies from
1071 African breeds contribute to the numbers.

		Angus	Ankole	Brahman	N'Dama	Total
Non-reference nodes (total)	#nodes	6,188,973	14,994,500	14,627,206	10,338,166	29,315,173
	bp	46,066,551	118,203,105	60,100,791	87,792,217	257,235,506
Non-reference nodes (autosomes)	#nodes	5,823,611	11,262,561	13,362,852	8,832,454	23,599,013
	bp	17,903,582	41,317,786	39,647,314	25,806,882	76,660,696
Filtered non-reference nodes (total)	#nodes	285,307	780,815	705,024	494,781	1,008,401
	bp	4,612,021	12,486,639	12,023,827	6,760,434	15,491,621
Filtered non-reference nodes (autosomes)	#nodes	198,393	429,652	443,737	313,670	571,123
	bp	3,290,022	7,093,645	7,435,063	4,595,327	9,046,464
Final set of contigs	Number of contigs	2,250	5,058	6,387	2,970	16,665
	Length (total)	3,274,775	4,508,339	10,507,420	2,246,905	20,537,439
	Length (min)	61	61	61	61	61
	Length (max)	92,590	34,789	103,683	29,488	103,683
	Length (mean)	1,455.00	891.00	1,645.00	757.00	1,232.37
	Length (std)	5,177.00	1,990.00	4,957.00	1,885.00	3,875.06

1072

1073

1074 Supplementary Material captions

1075 Supplementary Table 1 – Quality metrics for the N'Dama genome at the different stages of the

1076 assembly.

1077 Supplementary Table 2 – Quality metrics for the Ankole genome at the different stages of the

1078 assembly.

1079 Supplementary Table 3 – Motif enrichment analysis of the 20M high-quality novel sequences

1080 discovered from the 4 non-Hereford assemblies, using the five genomes as background.

1081 Supplementary Table 4 – Putative novel genes discovered in the NOVEL sequence using the

1082 three approaches described in the Materials and Methods (Augustus, Augustus on the

1083 sequences with 100bp flanking added and using BLASTX)

1084 Supplementary Table 5 – Nodes (i.e. fragments of sequence), edges (connections between

1085 nodes) and lengths for the four graph genomes generated using VG.

1086 Supplementary Table 6 – Alignment metrics using bwa, a linear VG graph (VG1), a linear VG

1087 graph expanded with 11M variants from Dutta et al (2020; VG1p), a CACTUS-derived graph

1088 with 5 assemblies (VG5) and using a CACTUS-derived graph with 5 assemblies expanded

1089 with the 11M variants from Dutta et al. (2020; VG5p).

1090 Supplementary Table 7 – Number of structural variants detected using the VG5p graph on all

1091 samples and those specific to the different breeds, with the number of overlaps with variants

1092 from optical mapping in comparison of 10,000 random regions of equal size and respective P

1093 values.

1094 Supplementary table 8 – Number of structural variants from the VG5p graph longer than 500

1095 bp and those overlapping an optical mapping SV.

1096 Supplementary Table 9 – Number of structural variants discovered using DellyV2 at the

1097 different filtering stages.

1098 Supplementary Table 10 – Number of ATAC-seq reads mapped to the different linear, breed-
1099 specific genomes and to the expanded linear Hereford genome (ARS-UCD1.2+), with the
1100 relative improvement in the latter in comparison with the standard Hereford genome.

1101 Supplementary Table 11 – Peaks called using the different linear, breed-specific assemblies
1102 and the expanded linear Hereford genome (ARS-UCD1.2+), with the number of peaks after
1103 excluding the signals in common with the nuclease-free peaks and the number overlapping a
1104 predicted gene from Augustus.

1105 Supplementary Table 12 – List of genes predicted by Augustus and histogram of their sizes.

1106 Supplementary Table 13 – List of samples used in the study, with their associated accessions.

1107

1108 Supplementary Figure 1 – Alignment of chromosome 12 of the five assemblies, showing the
1109 gap in the N'Dama genome is a high-complexity region across the assemblies.

1110 Supplementary Figure 2 – Repetitive elements composition in the five assemblies calculated
1111 using RepeatMasker, showing the similar compositions of the five genomes.

1112 Supplementary Figure 3 – Alignments generated by minimap2 over the whole chromosome
1113 23, showing the MHC region as a drop in alignment identity in all the assemblies.

1114 Supplementary Figure 4 – Allele size distribution in intergenic and intragenic portions of the
1115 genome, showing how in-frame indels from the graph were more common than other coding
1116 indels, consistent with selection disproportionately removing frameshift changes.

1117

1118 Supplementary Note 1 – In-depth description of the N'Dama assembly process, with detailed
1119 metrics and processes

1120 Supplementary Note 2 – In-depth description of the Ankole assembly process, with detailed

1121 metrics and processes

1122 Supplementary Note 3 – Collection of figures describing the quality metrics of variants called

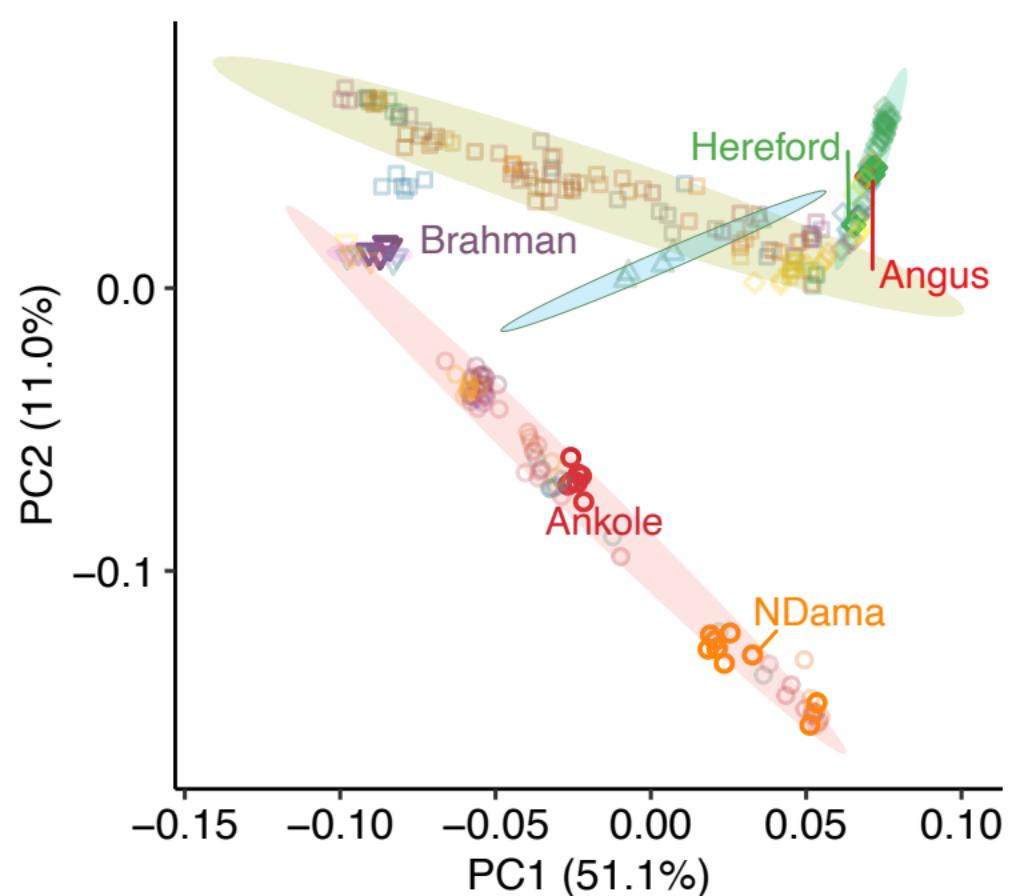
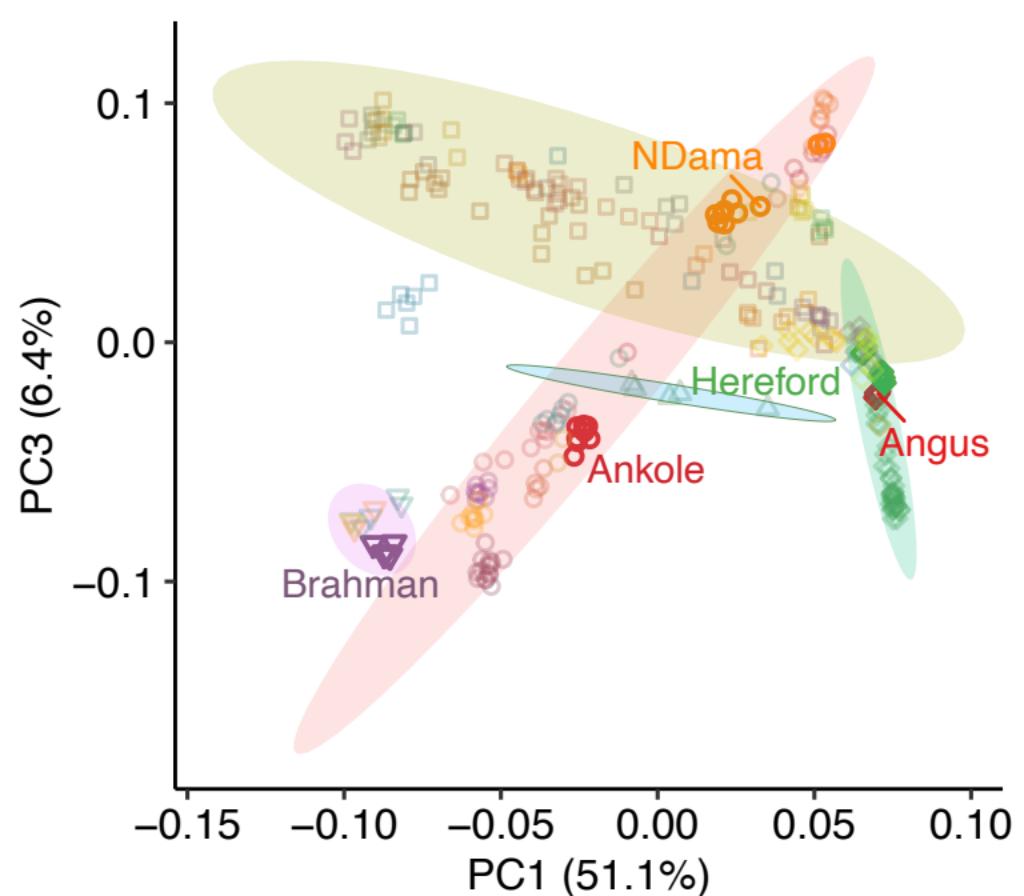
1123 using FreeBayes, GATK4, VG on a linear graph (VG1), VG on a graph with 11M variants

1124 from Dutta et al 2020 (VG1p), VG on a CACTUS-derived graph incorporating 5 different

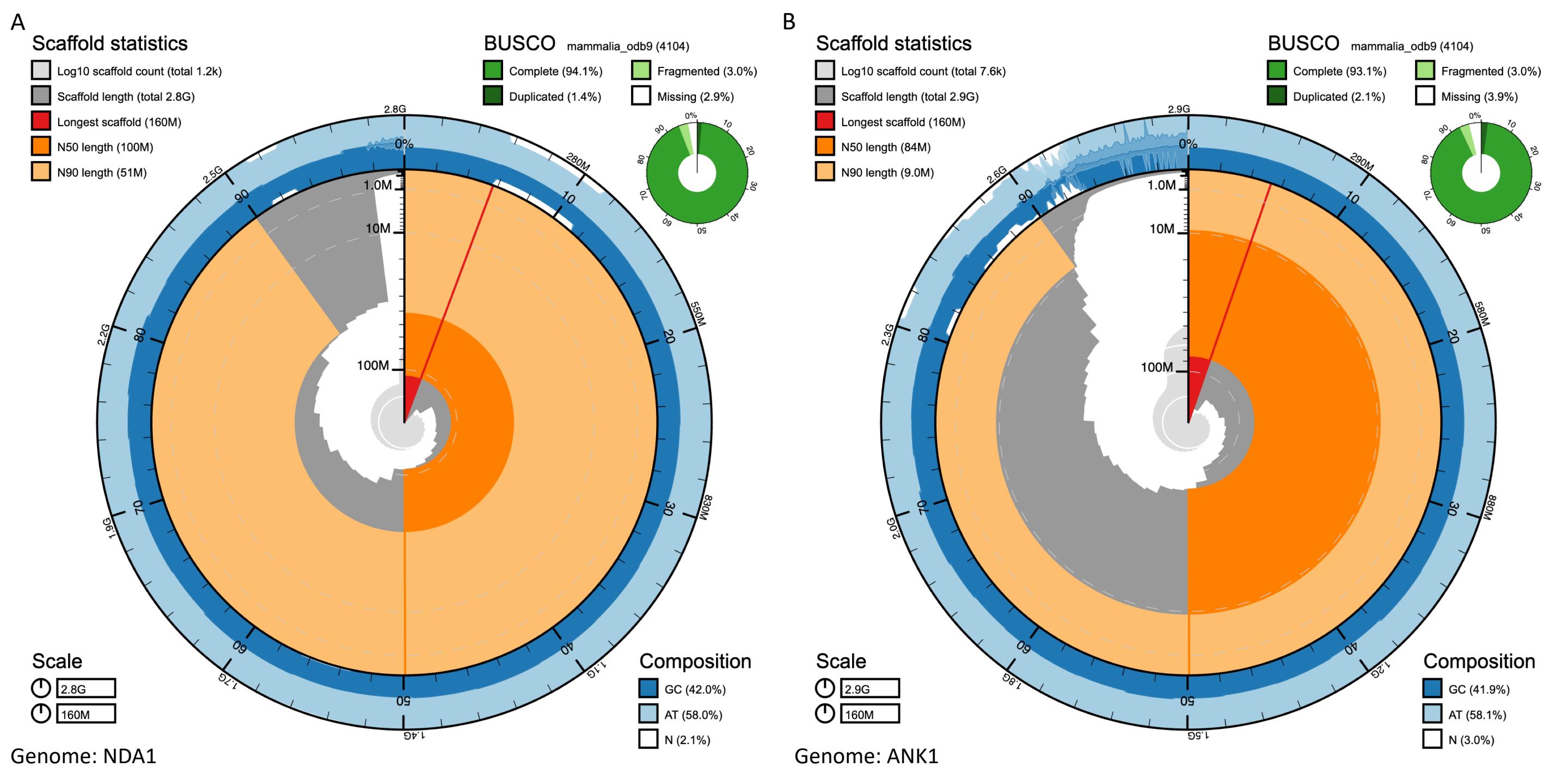
1125 assemblies, VG on the VG5 graph expanded with the 11M variants included in VG1p (VG5p).

1126 Supplementary Methods 1 – Detailed description of the preparation of the ATAC-seq samples.

1127

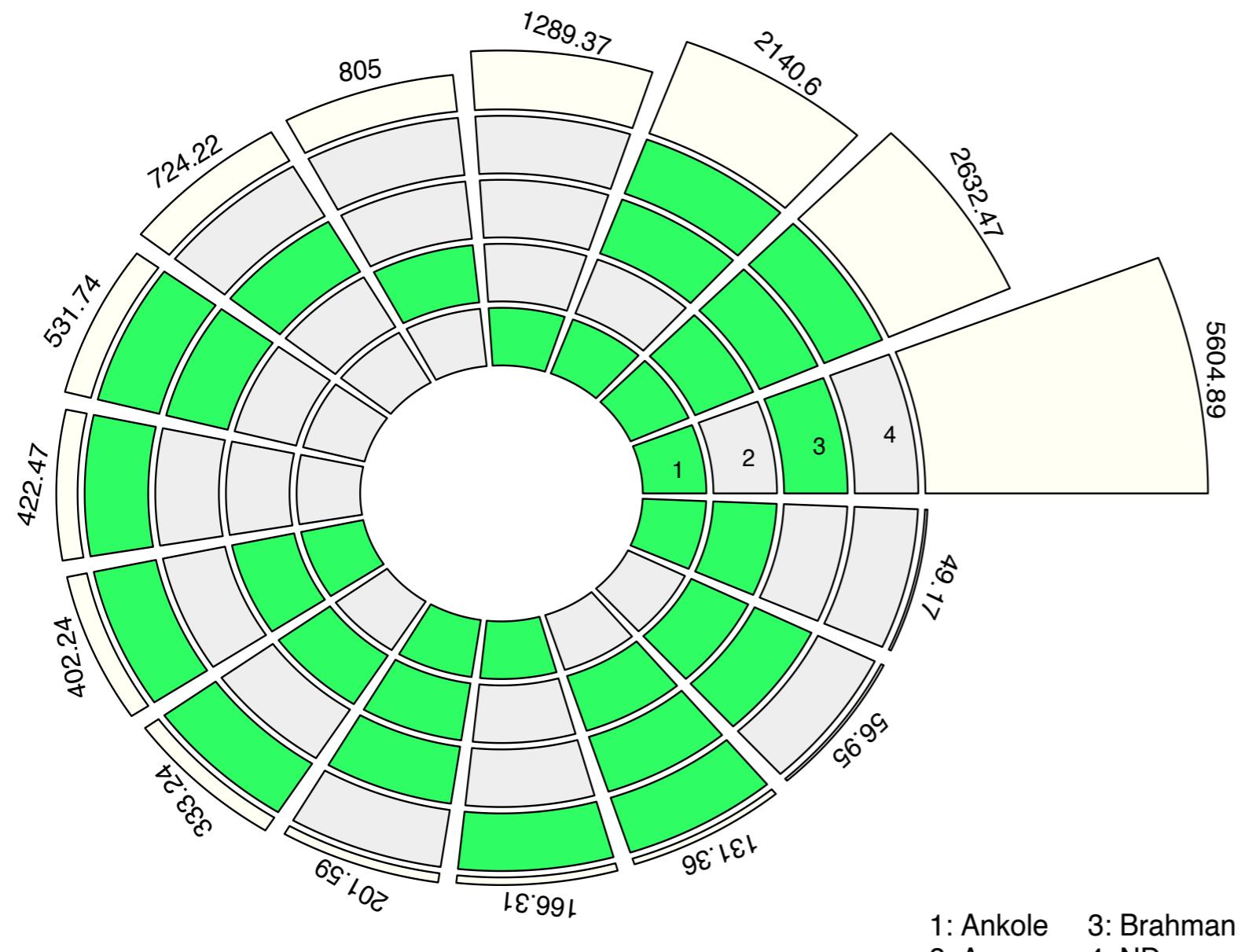


CONTINENT ◎ African □ East Asian ◆ European △ Middle East ▽ Subcontinent

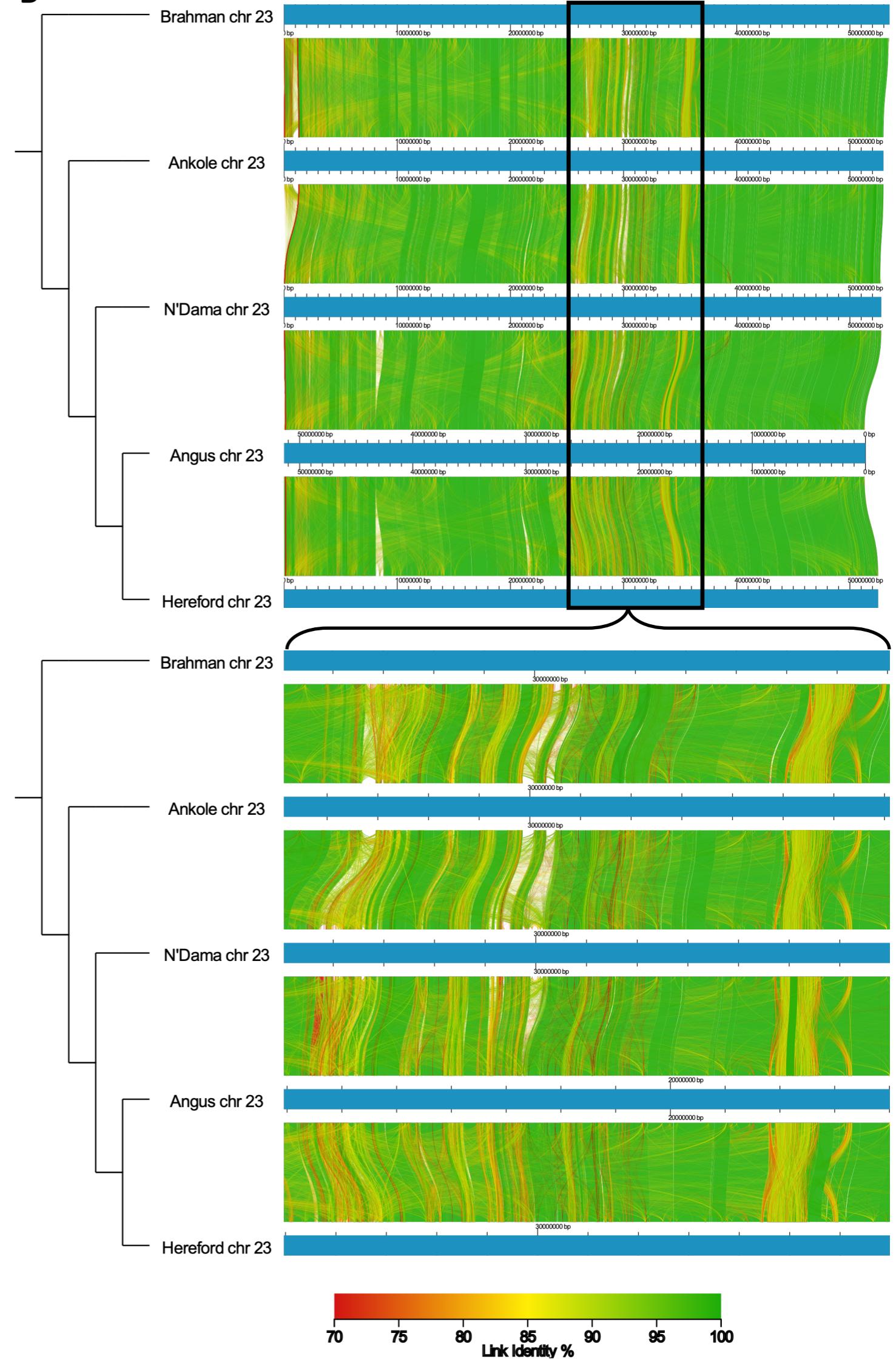


A

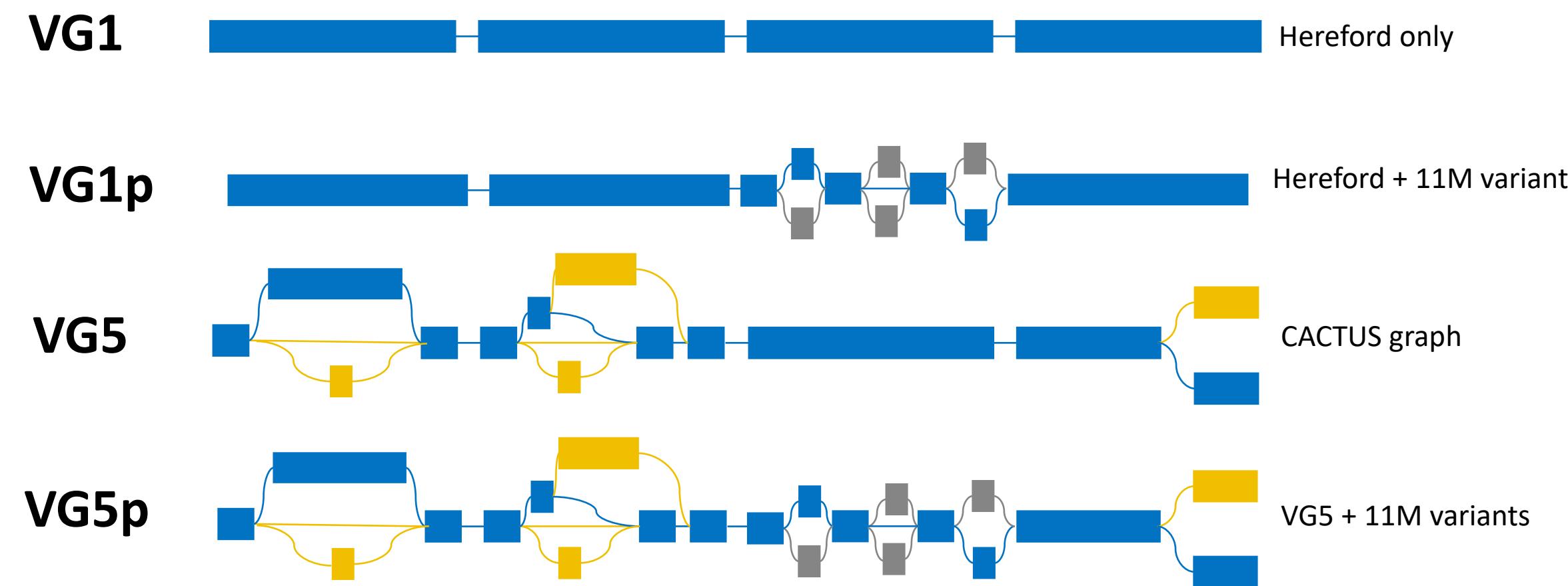
bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.23.449389>; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.



B

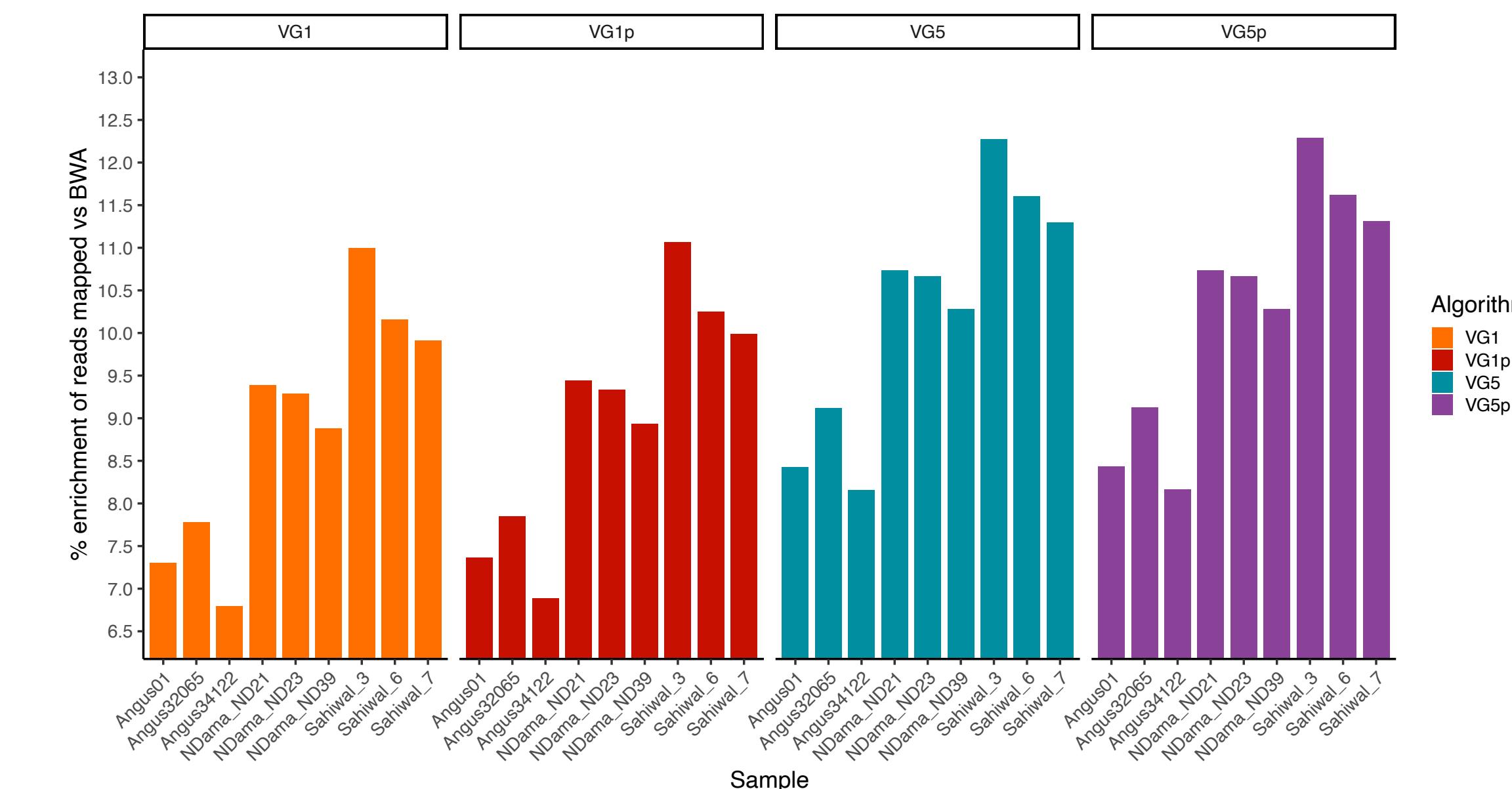


A

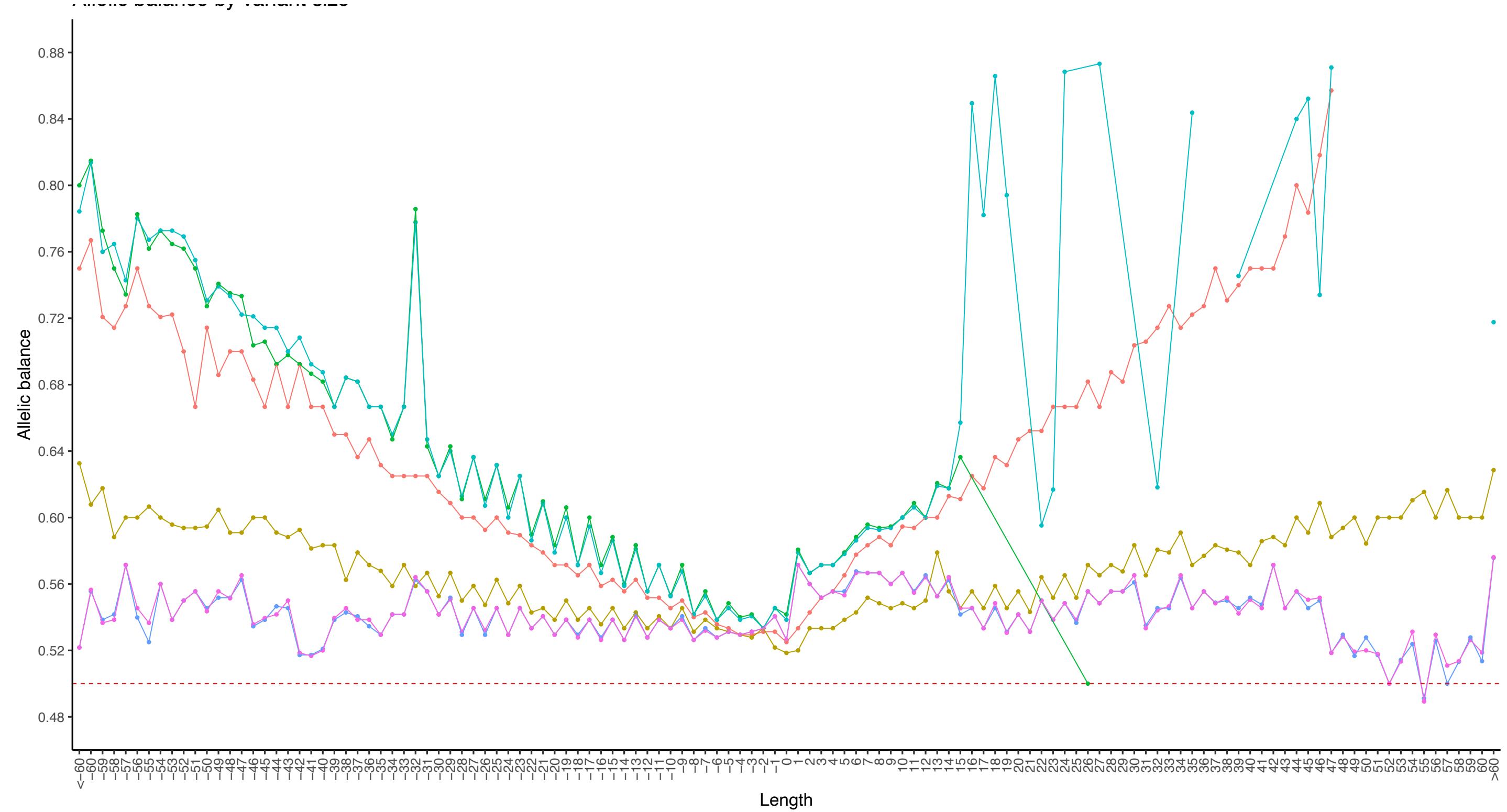


bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.23.449389>; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

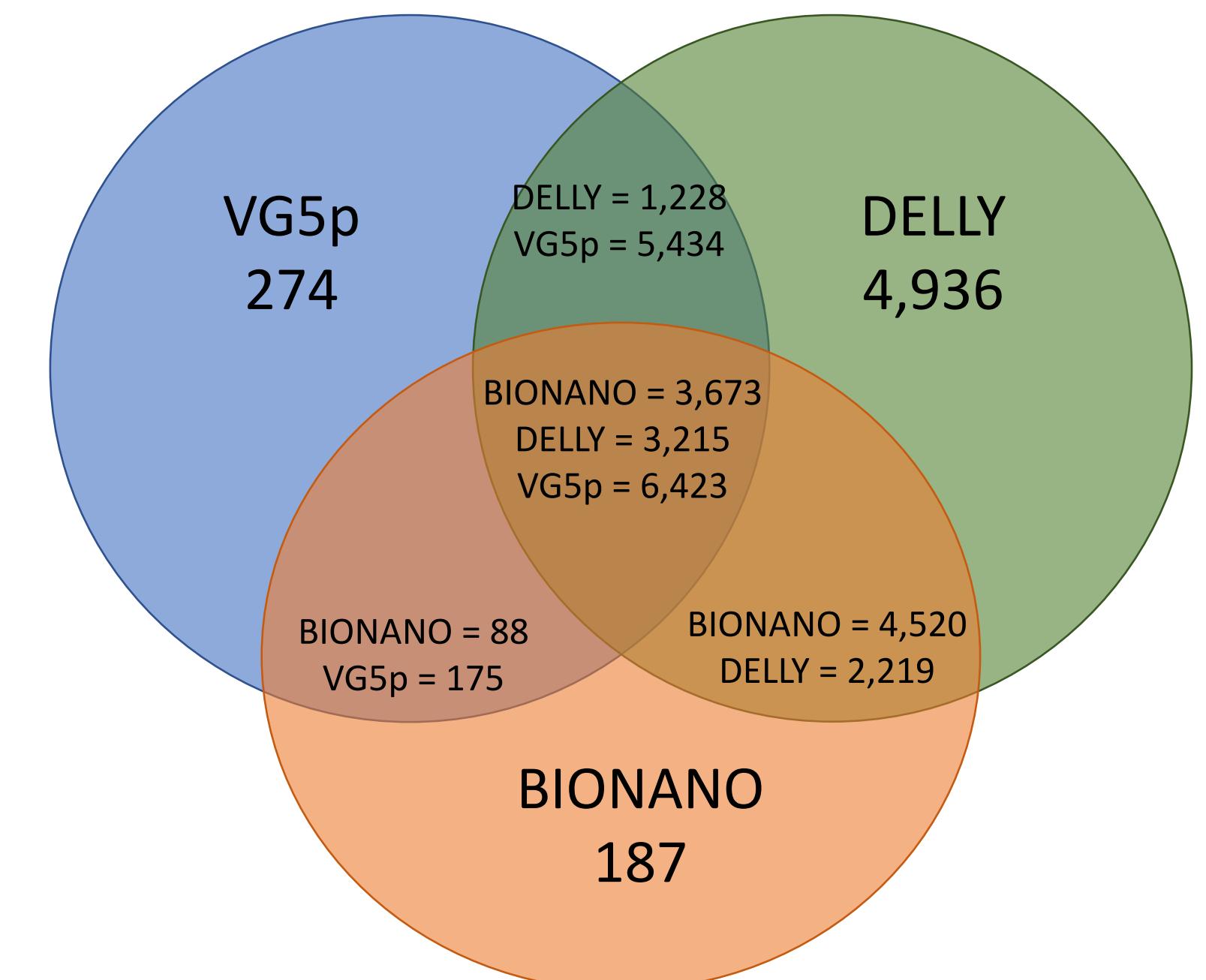
B



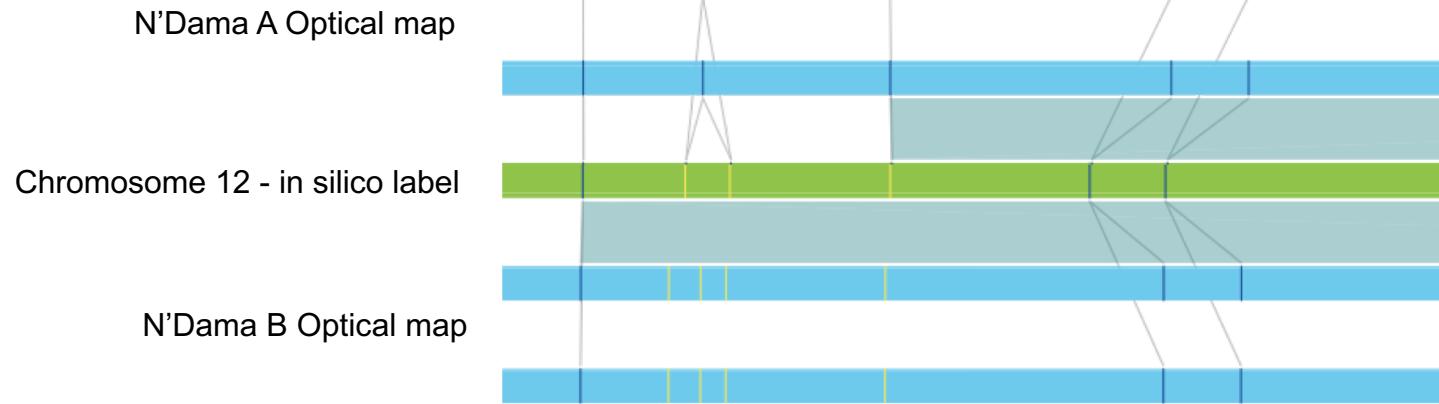
C



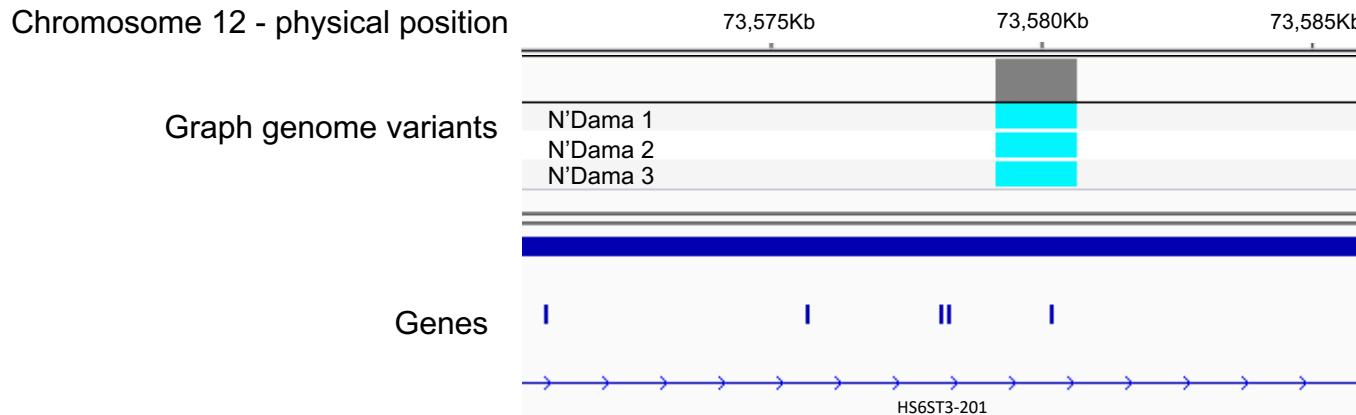
D



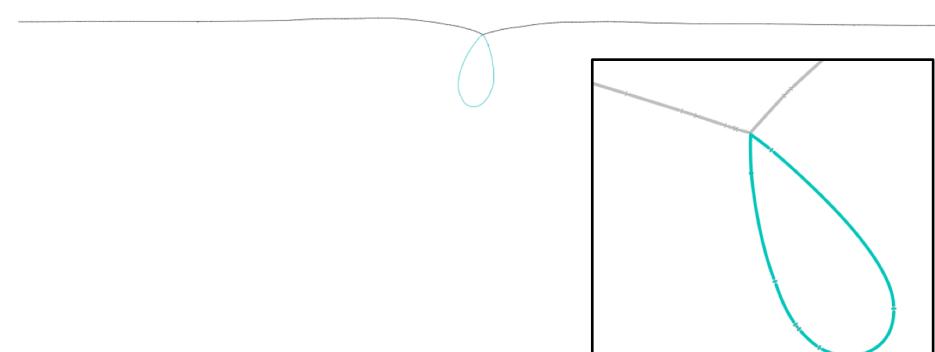
A

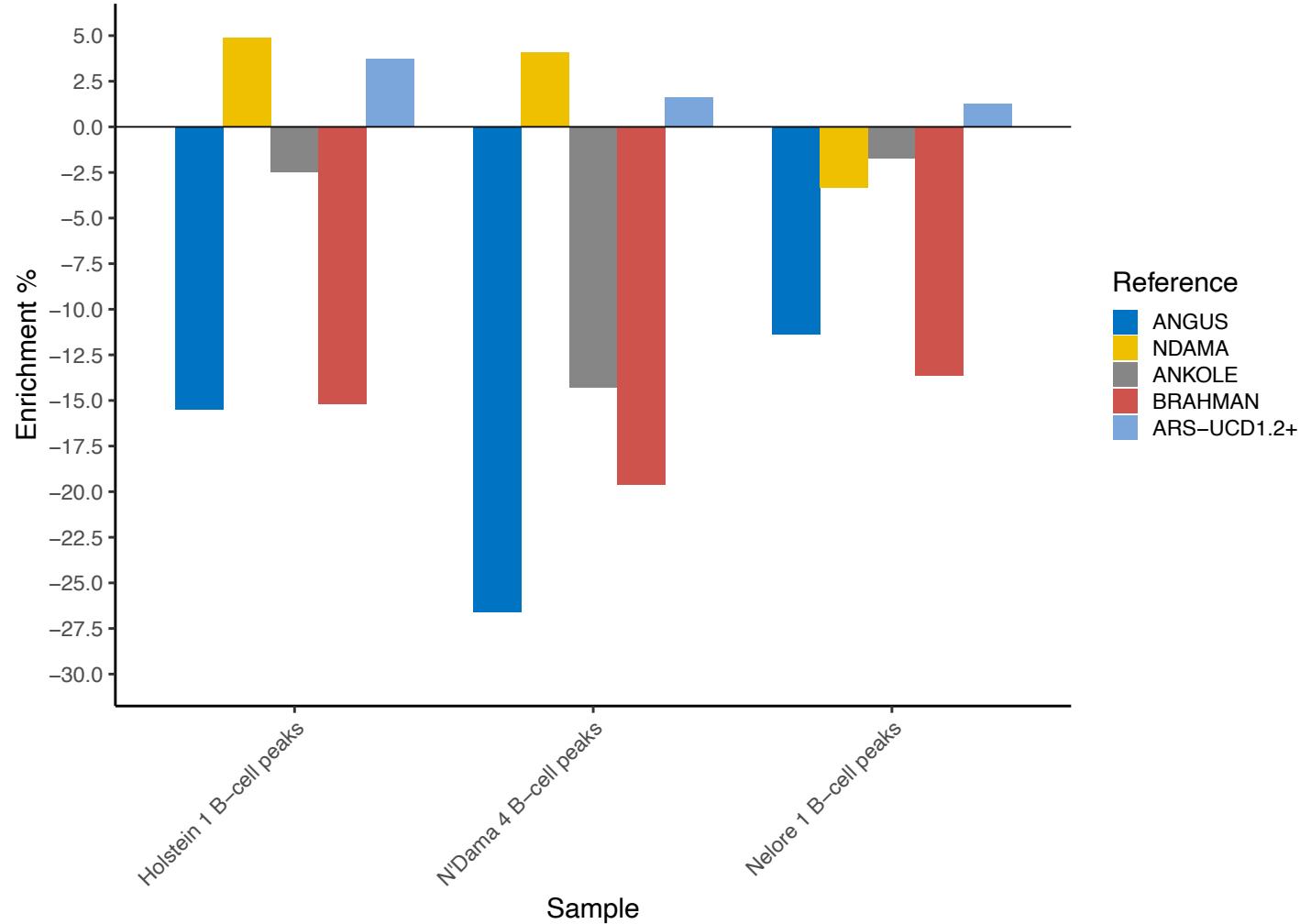


B



C



A**B**