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Abstract 36 

Despite only 8% of cattle being found in Europe, European breeds dominate current genetic 37 

resources. This adversely impacts cattle research in other important global cattle breeds. To 38 

mitigate this issue, we have generated the first assemblies of African breeds, which have been 39 

integrated with genomic data for 294 diverse cattle into the first graph genome that 40 

incorporates global cattle diversity. We illustrate how this more representative reference 41 

assembly contains an extra 116.1Mb (4.2%) of sequence absent from the current Hereford 42 

sequence and consequently inaccessible to current studies. We further demonstrate how using 43 

this graph genome increases read mapping rates, reduces allelic biases and improves the 44 

agreement of structural variant calling with independent optical mapping data. Consequently, 45 

we present an improved, more representative, reference assembly that will improve global 46 

cattle research. 47 

 48 

Introduction 49 

Cattle are one of the most populous farmed animals worldwide, with their global population 50 

of almost one billion second only to chickens1. Due to their use as draft animals and their 51 

ability to convert low quality forage into energy-dense muscle and milk, they provide a 52 

significant source of nutrition and livelihood to over 6 billion people. Since their 53 

domestication almost 10,000 years ago, hundreds of distinct cattle breeds have been 54 

established, displaying a diverse range of heritable phenotypes, from differences in 55 

production phenotypes such as milk yield, to environmental adaptation, disease tolerance and 56 

altered physical characteristics such as horn shape and skin pigmentation2,3. 57 

 58 
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This phenotypic diversity between cattle breeds is mirrored by substantial genetic diversity, 59 

but this is poorly reflected by current reference resources. The primary reference genome is 60 

derived from a single European Hereford cow4 and projects such as the 1,000 bulls genomes 61 

project are heavily skewed towards European-derived breeds (Bos taurus taurus) due to a 62 

number of factors such as geographic distribution and sample accessibility5. Although 63 

European breeds largely all originate from the same domestication event that occurred in the 64 

Middle East, at least one further domestication event occurred in South Asia giving rise to the 65 

humped indicine breeds (Bos taurus indicus)6. These two Bos lineages have been estimated to 66 

have last had a common ancestor over 210,000 years ago7 meaning the current Hereford 67 

reference genome particularly poorly represents the indicus sub-species.  68 

As well as this primary split, it has been suggested that introgression with further Auroch 69 

populations has occurred in Africa, with the adaptation of certain African cattle breeds to 70 

local diseases potentially the result of this historical introgression6. In Africa alone there are 71 

over 150 indigenous cattle breeds, and almost 350 million head of cattle making up 23% of 72 

the global cattle population1. This compares to only 8% of cattle being located in Europe. 73 

Africa’s unique history, with multiple waves of migration of both Bos indicus and Bos taurus 74 

cattle into the continent, along with its variety of environments, pathogens and cultures has 75 

led to unusually high levels of diversity among the cattle in the region. However, this 76 

diversity is not reflected in the genomic resources currently available.  77 

The reliance of cattle research on the European Hereford reference genome has two main 78 

limitations. First, because it represents one consensus haplotype of a single animal, large 79 

sections of the cattle pan-genome are missing from this reference sequence. This is 80 

exemplified by a recent human study that identified almost 300 million bases of DNA among 81 

African individuals that were missing from the human reference genome8. This DNA 82 

sequence, equivalent to 10% of the human pan-genome, is consequently inaccessible to 83 
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studies reliant upon the current human reference genome. The second major limitation, 84 

common to all linear reference genomes, is that even where they contain the region being 85 

studied, downstream analyses are biased towards the alleles and haplotypes present in the 86 

reference sequence9,10. 87 

The emerging field of graph genomes aims to address these issues by incorporating genetic 88 

variation and polymorphic haplotypes as alternative paths within a single graph 89 

representation of the genome. This has the advantage that reads which do not directly match a 90 

linear reference may still perfectly match a route through the graph, increasing the accuracy 91 

of read alignment. Several recent studies have highlighted how the use of such genome 92 

graphs can increase read mapping and variant calling accuracy, reduce mapping biases11,12, 93 

identify ChIP-seq peaks not identified using linear genomes13,14, and better characterise 94 

transcription factor motifs15. However, there are currently few high-quality graph genomes 95 

available. In livestock, the use of graph genomes has so far been restricted to studies simply 96 

incorporating variants from short read sequencing data into the Hereford reference16,17 or to 97 

only very large differences between the assemblies themselves18. Although not able to 98 

capture wider cattle diversity, these studies illustrated that the variant calls using the graph 99 

genome were more consistent between sire-son pairs than those obtained using the linear 100 

Hereford reference, with the current standard variant calling algorithms GATK 101 

HaplotypeCaller19 and FreeBayes20. Graph genomes consequently have the potential to 102 

improve the detection of genetic variants, including those potentially driving important 103 

phenotypic differences between populations and breeds. However, the construction of high-104 

quality graph genomes is dependent upon the availability of representative reference 105 

sequences, a resource which has been largely lacking for non-European cattle. In this study 106 

we address the current lack of reference genomes for African cattle breeds by generating 107 

novel assemblies for the N’Dama and Ankole breeds. These breeds display tolerance to two 108 
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of Africa’s most important livestock diseases; African Animal Trypanosomiasis (AAT), a 109 

disease that costs African livestock farmers billions of dollars a year21, and East Coast fever 110 

(caused by Theileria parva), which causes an annual economic burden of approximately $600 111 

million22. We then combined these genomes with three public reference assemblies 112 

representing Hereford, Angus and Brahman cattle, along with genetic variation data for 294 113 

animals representative of global cattle breeds23, to provide a high-quality cattle graph genome 114 

spanning global breed diversity. We go on to show how this novel, more representative, cattle 115 

graph genome can substantially improve omics studies across global cattle breeds relative to 116 

the standard primary Hereford reference. 117 

 118 

Results 119 

Generating African genome assemblies 120 

Global cattle breeds display high levels of genetic diversity (Figure 1). Whereas European 121 

breeds represent only a small fraction of this diversity, African breeds display a broad 122 

spectrum of indicine to taurine variation. As the currently published Hereford4, Brahman24 123 

and Angus24 genomes poorly represent global diversity, and in particular that found in Africa, 124 

we generated two new assemblies for the West African Taurine N’Dama and East African 125 

Sanga Ankole (an ancient stabilized cross between indicine and taurine breeds). We 126 

sequenced the genomes of N’Dama and Ankole bulls at an approximate coverage of 40X Pac 127 

Bio long read data for the assembly process and 70X of Illumina paired end reads for the 128 

genome polishing. The N’Dama contigs were scaffolded using the previously published cattle 129 

genomes, whereas the Ankole was scaffold using 100X of novel monocyte-derived bionano 130 

data.  The genomes consisted of 1,210 and 7,581 sequences with scaffold N50s of 104.8Mb 131 
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and 84.5Mb for the N’Dama and Ankole genomes, respectively. The final contig N50s were 132 

10.7Mb and 18.6Mb for the N’Dama and the Ankole respectively, with total genome lengths 133 

of 2,766,829,411 and 2,921,040,163 bp (Figure 2). For further details on the assembly 134 

process, see the methods section, Supplementary Tables 1 and 2, and Supplementary 135 

Documents 1 and 2.  136 

BUSCO (v3.0.2)25 reported 92.6% and 93.1% complete mammalian universal single-copy 137 

orthologs in the N’Dama and Ankole assemblies, respectively, comparable to the 92.6-93.7% 138 

observed across the three previous cattle genomes24. Likewise, the duplication levels of 1.4 139 

and 2.1% are comparable to the range of 1.0-1.3% observed across the Hereford, Angus and 140 

Brahman genomes. Similarly, the QUAST26 software (v5.0.2) calculated that the two 141 

assemblies cover 93.9% (N’Dama) and 94.0% (Ankole) of the ARS-UCD1.2 Hereford 142 

genome, again consistent with the 94.2% and 96.2% of the Angus and Brahman assemblies. 143 

Quality values (QV) were calculated using merqury (v1.1)27 in combination with meryl (v1.2; 144 

https://github.com/marbl/meryl), and were respectively 34.3 (37.9 autosomal) and 30.6 (34.2 145 

autosomal) for the N’Dama and Ankole, with a base accuracy over 99.9%. Finally, 146 

RepeatMasker shows that these two genomes share similar contents of the different classes of 147 

repetitive elements (Supplementary Figure 2). These two novel African cattle assemblies are 148 

consequently of good quality (Figure 2) and represent novel spaces in global cattle diversity. 149 

Full details on the assembly processes and their statistics are reported in Supplementary Note 150 

1 and 2. 151 

Characterising the across-breed pan-genome 152 

Detection of non-Hereford sequence 153 
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We first defined the novel, non-reference sequence present in the non-ARS-UCD1.2 154 

(Hereford) genomes. We aligned the five genomes using the reference-free aligner 155 

CACTUS28, which generates multiple whole genome alignments (mWGA) in the form of a 156 

cactus graph. We then converted the graph to PackedGraph format using hal2vg29 (v2.1), and 157 

used a series of custom scripts to extract all the nodes that were not present in the Hereford 158 

genome. After excluding nodes encompassing an N-mer, an extra 257.2Mb of non-Hereford 159 

reference sequence across over 29 million nodes was identified (76.7Mb was from over 23 160 

million nodes in primary autosomal scaffolds; the remaining sequence was on sex 161 

chromosome scaffolds or unplaced contigs; Table 1). This value is inclusive of a large 162 

number of small nodes, including SNPs, small indels and repetitive elements. Therefore, we 163 

excluded all nodes in potentially misassembled regions as identified by FRC_Align30, 164 

combined neighbouring regions (<=5bp) and filtered out sequences of short length (<60bp) 165 

and those close to a telomere or gap, leaving a total of 116,098,017 bp in 62,337 sequences. 166 

We further filtered down to sequences that were not significantly more repetitive compared to 167 

the average level observed across the autosomes of the different genomes (Bonferroni-168 

corrected P-value > 0.05 using a genome-wide mean repetitiveness of 53.99%, see methods 169 

for calculation). We finally removed any redundant sequences. This left a total of 16,665 170 

sequences, for a total of 20.5Mb of high-quality, non-repetitive sequence not present in the 171 

Hereford assembly (NOVEL set). The sequences presented a motif content analogous to the 172 

genomes of origin, as highlighted by HOMER when using the 5 reference pooled genomes as 173 

a background (Supplementary table 3). 174 

The amount of unique and shared sequences within and across breeds is shown in Figure 3A. 175 

The majority of additional sequence was representative of the indicine ancestry, shared 176 

between the Brahman and Ankole, closely followed by the non-Hereford sequence shared 177 

across all other genomes, and then from the non-European shared sequence (common across 178 
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N’Dama, Ankole and Brahman). Of the five breeds, the Ankole genome contained the most 179 

non-Hereford sequence (12.4Mb of novel sequence, 7.1Mb of which resided on primary 180 

autosomal scaffolds; Table 1), followed closely by the Brahman genome (12.0Mb, 7.4Mb on 181 

primary autosomal scaffolds; Table 1). A key advantage of multiple genomes is improved 182 

representation of divergent loci and Figure 3B illustrates the divergence between the 183 

sequences at the important major histocompatibility complex (MHC). Alignments generated 184 

through minimap2 over the whole chromosome 23 show an identity ranging between 98.77% 185 

to 99.31% (for Brahman and Angus, respectively), whereas the 4Mb interval ranging from 186 

25-29Mb shows an average identity ranging from 96.17% to 98.21%, with local values as 187 

low as 43% for some multi-KB fragments (Supplementary Figure 3).  188 

Gene content in the novel sequences 189 

We assessed the NOVEL set of sequences for the presence of genes and gene structures using 190 

three complementary approaches (see methods). Blastx alignment identified a total of 191 191 

genes in 272 regions passing the filtering (see materials and methods). Augustus predicted 192 

923 and 1,008 genes using the novel sequences and the novel sequences expanded with 193 

100bp flanking regions where possible. After filtering out regions that matched, we predicted 194 

182 and 169 using Augustus with and without the 100bp flanks. Complete genes were then 195 

extracted, aligned using BLASTP and genes passing mapping filters were identified for both 196 

sets. This identified a total of 132 genes in 158 sequences and 140 genes in 164 sequences in 197 

the novel contigs and the novel contigs with flanking regions, respectively (Supplementary 198 

Table 4). 199 

We then combined the resulting 132, 140 and 191 genes from the three methods, and 200 

identified a total of 76 genes that were found to be consistent across them. Consistent with 201 

their recent origin, most of these genes represented multi-gene families including several 202 
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predicted immune genes (e.g. Ig lambda chain V-II region MGC, interferons alpha and T-cell 203 

receptor beta chain V region LB2), melanoma-associated antigens (MAGEB1, MAGEB3 and 204 

MAGEB4) as well as a number of olfactory receptors (Supplementary Table 4). 205 

Constructing the graph 206 

We next assessed the potential of using these new assemblies as part of a graph genome. To 207 

enable the comparison of graph-based variant calling performance, four versions of vg-208 

compatible genomes were generated (a schematic representation of these can be seen in 209 

Figure 4A). The first contained the Hereford genome only (which we refer to as VG1). The 210 

second was VG1 augmented with 11,215,339 million short variants called across 294, largely 211 

unrelated, animals from a globally distributed selection of cattle breeds23 (VG1p). The third 212 

contained all five cattle assemblies (VG5), and the fourth contained all five assemblies again 213 

augmented with the over 11 million variants (VG5p). 214 

The graph genome based on the CACTUS alignment only (VG5) had an order of >147 215 

million nodes (i.e. the number of fragments of sequences) and a size of >173 million edges 216 

(i.e. the number of connections between nodes), doubling the order of the linear graph 217 

produced using just the autosomal sequence of the Hereford genome (VG1), that had >77M 218 

nodes and edges (Supplementary Table 5). Including the genetic variants from the 294 cattle  219 

led to >105M nodes for VG1p and 163M nodes and 194M edges for VG5p (10% more nodes 220 

and 12% more edges than VG5). 221 

Read mapping to linear and graph genomes 222 

To assess the performance of these genome versions we aligned short read sequencing data 223 

from nine animals spanning three diverse breeds (three European taurine Angus animals, 224 

three African taurine N’Dama and three indicine Sahiwal) to each version. Importantly, 225 
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genotypes from these animals had not been included when constructing the graphs. An 226 

advantage with graph genomes is in theory they should increase the number of reads directly 227 

matching a route through the graph and, consistent with this, we observed between 9 and 228 

54% more reads perfectly mapped with vg to the CACTUS graph representation of the cattle 229 

genome (VG5) than to the Hereford only version (VG1) (Figure 4B). The greatest increase in 230 

perfect read mapping was for the indicine Sahiwal breed, followed by the N’Dama and 231 

finally the Angus animals, mirroring the relative divergence of each from the Hereford breed. 232 

A modest further improvement was observed when aligning to the full graph incorporating 233 

the short variant data (VG5p) (an extra 0.52% of perfectly mapped reads among the Angus to 234 

3.25% among the Sahiwal). Although direct comparisons across different software tools is 235 

difficult and needs to be treated with caution, we found that vg aligned 7-10% more reads to 236 

the graph than BWA to the primary chromosomal scaffolds of the ARS-UCD1.2 237 

(Supplementary Table 6). 238 

Variant calling from linear and graph genomes 239 

We calculated several key metrics to describe the variants called using VG, GATK and 240 

FreeBayes, and collected them in Supplementary Note 3, both considering the fixed set of 241 

11M variants as “known” variants (case A) and considering the variants used to construct 242 

each graph as “known” (case B). These plots show how the variants called using the three 243 

algorithms (VG, FreeBayes and HaplotypeCaller) presented similar quality, depth, number of 244 

variants, mapping quality and, generally, comparable metrics when looking at depth of 245 

sequencing, quality of the variants and number of variants called (Supplementary Note 3).  246 

A key metric when assessing the quality of read alignments to a genome is allelic balance 247 

(AB). Ideally, reads carrying each allele at a polymorphic site should be equally well mapped 248 

to the reference genome (i.e. have an AB = 0.5). In practice though, there is usually a bias 249 
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towards reads matching the sequence present in the reference genome at the location. Skewed 250 

allelic balance can adversely affect variant calling and therefore reducing it can improve 251 

downstream genetic analyses. The allelic balance observed across genomes, variant sizes and 252 

types is shown in Figure 4C, with alternative representations which considers all the types of 253 

graph considered shown in Supplementary Note 3. Consistent with previous studies in 254 

humans, this figure illustrates that the allelic balance at short variants is generally comparable 255 

for single nucleotide polymorphisms, and the allelic balance at small InDels (<15bp) doesn’t 256 

show a particular improvement compared to variants called using standard variant callers. 257 

However, calls from the graph show an overall better allele balance for larger variants (>15 258 

bp long) than both GATK and FreeBayes, staying closer to the desirable value of 0.5 259 

(Supplementary Note 3). Defining the variants as known if used when constructing a 260 

particular graph allows for a less uniform comparison, but still confirms the ability of the 261 

graph to call larger variants with an overall better allelic balance than the standard variant 262 

callers (Supplementary Note 3). Interestingly, while marginally more reads were successfully 263 

mapped to the VG1p graph than to VG1, it displayed a less consistent allelic balance at 264 

insertions between 10bp and 40bp long. The best results were achieved using the VG5p 265 

graph, though with the largest gains observed in VG5 vs VG1 and VG1p, highlighting the 266 

benefits of the additional assemblies in the graph (Supplementary Note 3). 267 

We also evaluated other metrics for the different approaches, including depth of sequencing 268 

(DP), average quality of the call (QUAL), number of variants called, transition/transversion 269 

rate (Ti/Tv), that are presented in Supplementary Note 3. Overall, the metrics for the VG 270 

graphs look similar to the classical callers, with just the Angus sample from public databases 271 

presenting a lower Ti/Tv ratio.  272 

Assessment of graph genome structural variant calls 273 
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One of the most important benefits of graph genomes is the ability to directly detect large 274 

variants using short read sequencing data. Using the VG5p graph genome we were able to 275 

genotype thousands of structural variants of 500bp or longer, i.e. longer than the length of the 276 

reads being mapped (Supplementary Note 3). These SV regions are inaccessible and uncalled 277 

using linear callers such as GATK or FreeBayes, making vg a suitable tool for explicit 278 

genotyping of large variants. To assess the quality of these SV calls, and to test its utility 279 

when applied to the study of African breeds, we compared the variants called on the VG5p 280 

graph to independent Bionano optical mapping (OM) data for two additional N’Dama 281 

samples. As OM is a distinct technique for identifying the location of SVs, based on staining 282 

and imaging large DNA fragments, it provides an independent indication of SV location. It 283 

should be noted that the N’Dama used for whole genome resequencing and the OM were 284 

from completely different countries (Nigeria and Kenya, respectively) though the OM data 285 

and N’Dama assembly was from animals from the same research institute. 286 

In total, vg detected 12,306 structural variants of >500 bp across the nine samples, each of 287 

which might have one or more alleles per region. Of these, 6,598 overlapped with regions 288 

detected by the Bionano OM data. Despite the comparison with OM data of one breed only, 289 

this number is approximately 3.4 times higher than expected from randomly selecting 290 

sections of the genome of the same size (mean  standard deviation of 1,571.2  36.9 across 291 

10,000 permutations; Z-score = 136.1, P<2.2x10-16; Supplementary Table 7). Further 292 

supporting the validity of the indel calls, in-frame indels called from the graph were observed 293 

to be more common than other coding indels, consistent with selection disproportionately 294 

removing frameshift changes (Supplementary Figure 4).  295 

Consistent with the OM data being deriving from the same breed, the number of graph SVs 296 

>500bp overlapping the OM SV calls was greatest in the taurine N’Dama (2,932/7,280, 297 
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40.3%; average size 2,055.4 bp), followed closely by the taurine Angus (2,797/7,318, 38.2%; 298 

average size 2,050.7 bp) with the lowest overlap with the indicine Sahiwal (3,368/10,046, 299 

33.5%; average size 1,880.9 bp; Supplementary Table 8). Again, the number of variants 300 

detected in each different breed is reflective of the distance from the reference genome 301 

considered.  302 

We detected 19, 49 and 299 high-quality, large structural variants found across all Angus, 303 

N’Dama and Sahiwal samples, respectively, but not in the other breeds (i.e. that were specific 304 

for a breed and with QUAL > 30, 20 < DP < 90, alternate allele count >=5, >500bp). These 305 

SV are therefore common to a given group but not found across breeds, and the numbers 306 

likely reflect the relative genetic divergence of each breed from the Hereford genome used as 307 

the backbone for the graph. 308 

To confirm the quality of these variants, we overlapped them with the N’Dama OM data. 309 

Results for each breed are shown in Supplementary Table 7. Despite the OM data being 310 

derived from different individuals, there was a substantial overlap between the N’Dama SV 311 

calls, with 42 out of 49 overlapping across both approaches (85.7%), much more than the 312 

number of overlaps expected by chance (mean  standard deviation of 6.2  2.3 on 10,000 313 

repetition; Z-score = 15.3, P-value = 1.40x10-52; Supplementary Table 7). Although the 314 

overlap between the N’Dama OM and Angus and Sahiwal graph SV calls was lower, both 315 

showed a significant overlap (10/19; 52.6% and 111/299; 37.1%, respectively; 316 

Supplementary Table 7) The partial overlap with these breeds may reflect that not all of these 317 

SV are actually breed specific but rather are just more common in the breeds, or potentially 318 

the comparatively low resolution of the OM data results in false positive overlaps. Either way 319 

a much higher overlap is observed with the N’Dama SV calls, consistent with these group-320 
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restricted calls being much more enriched in this population, and consequently the genome 321 

graphs appear effective at identifying these larger SV. 322 

Comparison with Delly 323 

Next, we compared the results from VG5p with structural variants called through a classical 324 

SV caller, Delly (V2), using the linear Hereford genome as the reference. After excluding 325 

SVs with low depth, imprecise positioning and translocations, we found on average 7,218 326 

variants for the Angus (6,878 to 7,533), 15,978 for the N’Dama (15,061 to 17,399) and 327 

30,856 for the Sahiwal samples (30,466 to 31,162) as shown in Supplementary Table 9. 328 

These SVs were combined using SURVIVOR (v1.0.7) merging SV regions if less than 100bp 329 

apart when accounting for the SV type. SVs were further filtered to those with at least 1 330 

sample supporting it and with a size >500 bp to make them broadly comparable to the OM 331 

data given the latter’s resolution (Supplementary Table 9). This filtering excluded all the 332 

insertions, since Delly is incapable of calling insertions with precise break points, limiting the 333 

types of SV analysed to deletions, duplications and inversions. The filtering left 3,175 unique 334 

SVs for the Angus (ranging from 1,940 to 2,167 genotyped in each samples), 5,206 unique 335 

SVs for the N’Dama (ranging from 2,945 to 3,418 genotyped in each samples) and 8,421 336 

unique SVs for the Sahiwal samples (ranging from 5,356 to 5,396 genotyped in each 337 

samples). 338 

In total, 11,562 precise non-translocation Delly SVs with suitable depth and size were 339 

retained across all individuals. Of these less (5,371, 46.4%) overlapped with an SV called 340 

from the OM data than for vg (6,598, 53.6%) (Supplementary Table 9). Therefore, from the 341 

same sequencing data, more SVs were called using vg that were also more likely to overlap 342 

an SV called from the independent OM data.  343 
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Figure 4D shows how the structural variants called by vg are confirmed by at least one of the 344 

other methods, with only 274 out of 12,306 remaining unsupported (2.2%). In contrast Delly 345 

called 4,936 SV unsupported by either other method. It should be noted though that Delly 346 

called 2,219 SVs overlapping an SV in the OM data not identified by vg. These are 347 

potentially sample-specific SVs, that being absent from the graph will be largely uncalled by 348 

vg. Further improvements to the graph, for example by including further assemblies, would 349 

be expected to reduce this number.  350 

Finally, when looking specifically at deletions, the only class in common among the three 351 

methods, we find that Delly calls a higher raw number of SVs compared to vg, detecting 352 

3,186 deletions with a match in the OM data, whereas vg calls 1,887 SVs with overlaps. 353 

However, in proportion to the number of deletions called by each, Delly has a lower 354 

proportion of confirmed SVs (3,186/9,030 = 35.3%) than VG (1,887/3,972 = 47.5%), 355 

highlighting the higher specificity of the graph approach. 356 

An example of a high-quality 1,530bp sequence absent in the Hereford genome, but present 357 

in the graph, is in an intronic region of HS6ST3 (Heparan-sulfate 6-O-sulfotransferase; 358 

hereford.12: 73,579,158, Figure 5). This SV was identified by both OM samples (Figure 5A), 359 

the three re-sequenced N’Dama genomes (Figure 5B) and was present as an alternate 360 

sequence in the graph but not identified by Delly (Figure 5C). 361 

In conclusion, assembly-based graphs are a viable solution for reliably calling SVs with 362 

explicit alleles, including insertions that are generally of lower quality in classical SV callers. 363 

Future additions of new breed-specific reference assemblies would be expected to further 364 

improve the number of variants represented in these graphs, ultimately improving the 365 

structural variant calling and analysis. 366 
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ATAC-seq peak calling 367 

After analysing variant calling on the graph genome, we tried to investigate whether other 368 

omics analyses may also benefit from these novel resources. To do so, we obtained ATAC-369 

seq data for three animals belonging to the three main clusters of cattle diversity: European 370 

taurine (1 Holstein-Friesian), African taurine (1 N’Dama) and indicine (1 Nelore), plus a 371 

nucleosome-free DNA as an input sample to remove likely false positive peaks.  372 

Peak calling directly from graph genomes is currently an under-developed field, with ongoing 373 

issues in supporting graphs inclusive of large variants; therefore, in the short-term, studies of 374 

chromatin and the epigenome are likely to continue to use linear genomes. We consequently 375 

took advantage of the NOVEL set of high-quality non-reference sequences described above 376 

to create an expanded version of the current linear genome we term here ARS-UCD1.2+. 377 

This expanded genome contained in total an additional 16,665 contigs across the over 20Mb 378 

of sequence, with a mean length of 1.23kb (S.D. 3.87kb and a range of 61 to 103,683 bp long 379 

Table 1). This increased the reference size by 0.7% to 2,780Mb. 380 

To explore the potential benefits of these new data to such analyses we aligned the reads and 381 

called the peaks for each sample separately to the five different linear genomes, as well as the 382 

expanded ARS-UCD1.2+. We aimed to minimise the impact of multi-mapping reads (see 383 

Methods) and after calling peaks, we excluded all peaks shared with the input sample for 384 

more than 50% of their length.  385 

Figure 6 shows using the ARS-UCD1.2+ genome leads to a modest increase in the number of 386 

peaks called relative to the standard Hereford ARS-UCD1.2 sequence (Supplementary Table 387 

10). This increase is confirmed also when using only uniquely mapped reads, with the ARS-388 

UCD1.2+ calling consistently more peaks than the standard ARS-UCD1.2 (Supplementary 389 

Table 11). 390 
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Peak calling on the ARS-UCD1.2+ genome returned up to 3.7% more peaks when compared 391 

to the ARS-UCD1.2 genome at the same significance thresholds despite ARS-UCD1.2 being 392 

only 0.7% longer. This expanded genome worked particularly well for the Holstein, which 393 

generally showed a higher number of peaks called compared to the ARS-UCD1.2 assembly 394 

(+3.7% peaks called), followed by the N’Dama sample, with an extra 1.6% of additional 395 

peaks called and finally the Nelore (+1.3% peaks called; Figure 6A and Supplementary Table 396 

11). Intersecting these novel ATAC-seq peaks with the predicted genes in the 20.5Mb of non-397 

Hereford (Supplementary Table 12), non-highly repetitive sequences identified a general 398 

enrichment around their predicted TSSs, consistent with these novel peaks marking 399 

regulatory elements uncaptured by the Hereford genome (Figure 6B). Over 93-96% of these 400 

peaks matched a peak in the genome of origin (i.e. a peak called on a novel sequence from 401 

the Angus genome has a matching peak on the Angus genome in the same region), further 402 

supporting the potential content of functional elements (Supplementary Table 11). 403 

Consequently, the use of more representative pan-genome resources likely has utility to 404 

downstream analyses beyond just variant calling, including identifying the location of novel 405 

regulatory elements missed when using current reference resources. 406 

Discussion 407 

In this study we generated the first two cattle reference genomes of African taurine and Sanga 408 

(an ancient stabilized cross between indicine and taurine breeds31) lineages. These assemblies 409 

present quality metrics comparable to those of other currently available reference genomes, 410 

and will likely be important resources for future bovine genomic studies, in particular those 411 

studying non-European breeds. 412 
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By aligning the five cattle assemblies, we illustrate that a substantial portion of the cattle pan-413 

genome is likely missing from the Hereford reference. This has important implications for 414 

cattle research as it suggests significant amounts of the bovine genome is inaccessible in most 415 

current analyses. Although a proportion of this extra sequence is repetitive, unsurprisingly 416 

given its recent origins and the simple fact that large parts of mammalian genomes are made 417 

up of repeats, this does not preclude it from being functional. For example, the importance of 418 

repetitive elements in gene regulation is becoming increasingly clear32. Consequently, the 419 

study of these DNA segments that are not common to all animals may provide further 420 

insights into the drivers of phenotypic diversity between breeds. 421 

One noteworthy observation was that the amount of extra sequence in each genome matched 422 

the prior assumptions of the relationships between the breeds: the two indicine genomes (the 423 

Ankole and Brahman) had the highest amounts of unique, non-repetitive sequence. 424 

Considering that the sequences identified might contain functional elements as predicted by 425 

our analyses, there is the case for sequencing more genomes from the most distantly related 426 

lineages from the reference Hereford assembly, such as the Bos indicus lineage, since they 427 

might contribute further additional functional regions. 428 

In this study we illustrate that the use of the graph cattle genome does not lead to substantial 429 

improvements in the calling of SNPs and small indels, even when large numbers of them are 430 

integrated into the graph. This likely reflects the relative maturity of short variant callers such 431 

as GATK which are already highly accurate. Arguably, neither GATK HaplotypeCaller nor 432 

FreeBayes is a structural variants caller, and this function typically requires specialised tools 433 

such as Delly33. However, our analyses show how the structural variants called using a multi-434 

genome graph are more consistent with SVs called using independent OM data than those 435 

from Delly, with over 53% of SV called from a graph genome overlapping an SV region 436 
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called from OM data whereas the SV called through Delly overlap 46% of the time. When 437 

looking specifically at overlapping deletion calls these numbers were 48% and 35% 438 

respectively. Importantly, whereas tools such as Delly struggle to accurately call SVs such as 439 

insertions from linear references, graph genomes enable these to be accurately genotyped 440 

where present in the graph. The greater the diversity present in the graph, the better SV 441 

calling will become. Unlike linear genomes whose content is largely fixed. Reassuringly, SVs 442 

called among N’Dama samples using the genome graph were more consistent with N’Dama 443 

OM data than the SV called in other breeds. Although a perfect overlap would not be 444 

expected given different animals were being studied, the overlap among the N’Dama was 445 

86% compared to 37% among the more distantly related Sahiwal. 446 

In comparison to linear reference genomes there are currently few viable software tools for 447 

epigenetic and chromatin analyses using graph genomes. However, using ATAC-seq data 448 

across breeds we demonstrated it is possible to call substantially more peaks using an 449 

expanded version of the linear reference genome incorporating the extra sequence found in 450 

the other genomes. When applying the same thresholds and accounting for multi-mapping 451 

reads, 3.7% more peaks were called across Holstein-Friesian ATAC-seq datasets compared to 452 

using the standard linear reference. This is despite the expanded reference only being 0.7% 453 

longer, and no less than 1.3% extra peaks being called on each individual considered. 454 

Although the use of pan-genomes to study chromatin is a particularly immature field, pan-455 

genomes have the potential to reduce noise due to the more accurate representation of 456 

structural variants and large rearrangements. 457 

When looking across the results of both structural variants calling and ATAC-seq peak 458 

analyses, we can see that our genomes work well, and in particular for breeds present or 459 

closely related to ones used to generate the graph and expanded genome, highlighting the 460 
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need to increase the genetic diversity that underpins the graph, particularly for lineages that 461 

are poorly represented.  462 

Despite these improvements, graph genomes still have drawbacks. These methods are still 463 

under active development, and still have a greater requirement of computer memory, disk 464 

space and analytical time. Generating a whole genome assembly is time consuming, 465 

generating the vg graph itself still requires large amount of memory (up to several terabytes), 466 

and still can only be done on primary chromosomal scaffolds due to high storage demands. 467 

Alignments are also more computationally intensive than with their linear counterparts, with 468 

the requirements affected by the number of variants represented. Moreover, variant calling 469 

currently relies on a pile-up approach, which is arguably less sophisticated than methods 470 

implemented by GATK or FreeBayes, that likely helps explain the good performance of 471 

traditional tools at calling SNPs and small indels34. Methods for peak calling on graph 472 

genomes are not always compatible with graphs generated through CACTUS or similar 473 

software, which limits their application and was one of the stimuli for generating the ARS-474 

UCD1.2+ genome. Last but not least, although efforts are being made to resolve the 475 

coordinate system for graph genomes, downstream analyses are more complicated due to 476 

most current resources being referenced to the positions on one linear genome.  477 

Nevertheless, it is clear graph genomes already have advantages in certain areas such as SV 478 

calling. As the field of graph genomes is less mature, arguably there is greater scope for 479 

further improvement. New genomes are being released at a much higher frequency than in 480 

previous years, and initiatives such as the recently announced bovine pangenome project35 481 

will open new possibilities and allow a better understanding of cattle genetics and phenotypic 482 

diversity. 483 
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We consequently present the first African cattle genome assemblies integrated into a cattle 484 

graph genome representing global breed diversity. This graph, incorporating both large SVs 485 

and millions of SNPs from across global breeds, is demonstrated to improve downstream 486 

analyses such as SV calling and the detection of novel functional regions and therefore has 487 

the promise to improve our insights into the genomics of this important livestock species.   488 
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Online Methods 489 

African breed assemblies 490 

Whole blood of the N’Dama bull N195 was collected in PAXgene DNA tubes. The bull was 491 

located at ILRI’s Kapiti research station in Machakos county, Kenya. The PAXgene DNA 492 

tube was stored at room temperature overnight and then the fridge at 4oC for 1 day prior to 493 

DNA extraction. The standard procedure was used as outlined in the PAXgene blood DNA 494 

kit handbook. Resulting DNA was sequenced using the Pacific Biosciences (PacBio) Sequel 495 

platform at Edinburgh Genomics, yielding a total of 13M reads and 109 Gbp, corresponding 496 

to a genomic coverage of ~40X. In addition to long reads, the same animal was re-sequenced 497 

using Illumina HiSeq X Ten paired-end short-read (PE-SR) sequencing, yielding 260Gbp 498 

with an average insert size of 250bp, corresponding to a genomic coverage of ~80X.  499 

A whole blood sample of the Ankole bull UG833 was collected in PAXgene DNA tubes from 500 

a farm in Uganda, and DNA was extracted using the same protocol described for the N’Dama 501 

sample. It was then sequenced by Dovetail genomics using the Pacific Biosciences Sequel 502 

sequencing platform which yielded a total of 10M reads and 107Gbp, corresponding to a 503 

genomic coverage of ~38X. the same animal was re-sequenced using Illumina HiSeq X Ten 504 

paired-end short-reads, yielding 260Gbp with an average insert size of 250bp, corresponding 505 

to a genomic coverage of 60X. Finally, OM samples were prepared starting from monocytes 506 

using blood collected by jugular venupuncture into EDTA vacutainers. Following erthyrocyte 507 

lysis monocytes were purified from the leukocytes using a positive selection MACS protocol 508 

with an anti-bovine SIRPα mono-clonal antibody (ILA-24 – Ellis et al. 1988). Agarose plugs 509 

containing 5 x105 – 1x106 isolated monocytes were prepared using the Bionano Blood and 510 

cell culture DNA isolation kit (Bionano Genomics, San Diego, US) according to the 511 
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manufacturer’s instructions and the extracted DNA used for analysis on the Bionano Saphyr 512 

platform. The procedure yielded 3.5M molecules with an N50 of 245.25 Kbp and spanning a 513 

total length of 611Gb, corresponding to 120X haploid genomic coverage.  514 

All protocols involving animals were approved prior to sampling by the relevant institutional 515 

animal care and use committee (ILRI IACUC or Roslin Institute Animal Welfare Ethical 516 

Review Body). All blood sampling was carried out by trained veterinarians, according to the 517 

approved institutional protocols. 518 

N’Dama assembly 519 

Briefly, N’Dama long reads were assembled testing both the CANU (v1.8.0)36 and 520 

FALCON-Unzip pipeline (v1.2.5)37, keeping the assembly with the highest contiguity. The 521 

assembly generated with FALCON was retained due to presenting the highest contiguity and 522 

polished twice using minimap2-mapped (v2.16-r922) 38 long reads and the racon (v1.4.3) 523 

software39, and then further polished once using Pilon v1.2340 and the 80X of short reads. 524 

After that step, contigs were aligned to the three high quality cattle reference genomes (ARS-525 

UCD1.2, UOA_Brahman_1, UOA_Angus_1 representative of Hereford4, Angus24 and 526 

Brahman24, respectively) using SibeliaZ (v1.1.0)41 and then scaffolded into chromosomes 527 

with Ragout2 (v2.1.1)42 allowing for the break of chimeras, and processing separately the 528 

autosomes, mitogenome, X, Y and the remaining contigs (Supplementary Note 1). Briefly, 529 

autosomes have been assembled using the complete set of polished contigs and considering 530 

the autosomes from the Angus, Hereford and Brahman genomes as references. Then, we 531 

identified the mitochondrial genome by aligning the unscaffolded contigs with the Hereford 532 

mitogenome, and fixed misassemblies manually. The remaining unplaced fragments have 533 

then been used to scaffold the sex chromosomes. By using the same set of contigs we tried to 534 

a) overcome the limited number of reference sexual chromosomes available (X from 535 
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Hereford and Brahman, and Y from Hereford and Angus) and b) address the pseudo-536 

autosomal regions. Then, fragments unplaced in both X and Y were collected and used to 537 

identify the N’Dama specific sequences by comparing them to the remaining contigs from the 538 

three reference genomes (for details on the reference-assisted scaffolding, see Supplementary 539 

Note 1). 540 

Following the generation of chromosomes, we proceeded with the gap filling through 541 

LR_GapCloser (v1.1)43, using the PacBio long reads and performing three mapping and 542 

filling iterations with chunks of 300 bp. Finally, the assembly has been polished five times 543 

using Illumina PE-SR and the Pilon v1.23 software. By keeping tracks of the changes 544 

introduced by each polishing it was possible to define at which step to freeze the genome 545 

version. Resulting assembly statistics are show in Error! Reference source not found. 546 

Table 1: after the scaffolding, there was a minor reduction of the contig N50 due to some 547 

contigs being found to be chimeric and, therefore, fragmented at the breakpoints. However, 548 

gap filling and subsequent polishing increased the N50 of the contigs to >10Mb, confirming 549 

the high contiguity of the assembly. Scaffold N50 and L5 are 104,847,410bp and 11, 550 

respectively. Several quality metrics have been collected, such as BUSCO (v3.0.2)25 551 

completeness scores, QUAST (v5.0.2)26 evaluations, Merqury (v1.1)27 quality values (QV) 552 

and FRC_Align (v1.3.0)30 to identify the candidate misassembled regions. Key metrics (N50, 553 

L50, longest contigs, number of contigs, GC content, BUSCO scores) have been represented 554 

as SnailPlots using BlobToolKit (v2.3.3)44. Details of the assembly, with all the steps 555 

performed, is reported in Supplementary Note 1. 556 

Ankole assembly 557 

The Ankole long reads were assembled using both the WTDBG2 (v2.3) ultra-fast assembler45 558 

and CANU36. Both sets of contigs were polished twice using minimap2-mapped long reads 559 
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and the wtpoa-cns software45. Then, to overcome the differences that can be produced by the 560 

two assemblers, contigs from both software were joined using quickmerge46 (v0.3; 561 

parameters -hco 15.0 -c 5.0 -l 2,500,000 -ml 50,000). This generates a set of contigs with a 562 

four-fold improvement in contiguity. The scaffolding step was performed on this set of 563 

molecules using the OM data and the Bionano Solve assembly and hybrid scaffolding 564 

pipelines, which has the additional advantage of detecting and fixing eventual chimeras 565 

introduced by the assemblers and quickmerge pipelines. 566 

Following the generation of chromosomes we proceeded with the gap filling through 567 

LR_GapCloser43, using the PacBio long reads and performing three mapping and filling 568 

iterations with chunks of 300 bp. The gap filled assembly was polished 5 times using 569 

Illumina PE-SR and the Pilon software (v1.23). The same metrics collected for the N’Dama 570 

assembly have been used to freeze the genome version. Several quality metrics have been 571 

collected, such as BUSCO25 completeness scores, QUAST26 evaluations, Merqury27 quality 572 

values (QV) and FRC_Align30 to identify the candidate misassembled regions. Key metrics 573 

(N50, L50, longest contigs, number of contigs, GC content, BUSCO scores) have been 574 

represented as SnailPlot using BlobToolKit44. Details of the assembly, with all the steps 575 

performed, is reported in Supplementary Note 2. 576 

Genome alignment and comparison 577 

We compared the five genomes by first generating multiple whole genome alignments 578 

(mWGA) using CACTUS28 (v2019.03.01, installed through bioconda). CACTUS is a 579 

mWGA tool allowing reference-free comparison of multiple mammalian-sized genomes. The 580 

software requires only the soft-masked genomes (soft-masking largely decreases the 581 

computational time) and a phylogenetic tree defining the relationships among the genomes 582 

analysed used to guide the alignments.  583 
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We masked repetitive elements inside the assemblies using sequentially DustMasker (v1.0.0 584 

from blast 2.9.0)47, WindowMasker (v1.0.0 from blast 2.9.0)48 and finally RepeatMasker 585 

(v4.0.9, with trf v 4.09)49. The reports generated by RepeatMasker on repetitive element 586 

composition for the different sequences have been collected using an in-house script and 587 

summarized in Supplementary Figure 2. Then, we generated a tree inclusive of the different 588 

cattle breeds using mash (v2.2)50 on a broader set of genomes, inclusive of water buffalo 589 

(UMD_CASPUR_WB_2.0)51, goat (ARS1)52, sheep (Rambouillet_1.0), horse (EquCab3.0) 590 

and pig (SScrofa_11)53 in order to achieve a more stable tree and extracting from that the 591 

specific branch of interest.  592 

Following the generation of alignments with CACTUS, we used a custom pipeline to detect 593 

nodes that were not present in the Hereford genome, ARS-UCD1.2, considered as the 594 

reference genome. We first used a custom python script and the libbdsg54 library to extract 595 

the nodes not present in any Hereford paths. These nodes have then been screened for N-596 

mers, and then misassembled regions detected by FRC_Align30 on the two de novo 597 

assemblies here presented were discarded. Each node passing the filtering has been labelled 598 

depending on which path it was found. We then combined regions that were less than 5bp 599 

apart using bedtools (v2.30.0)55, and classified depending on their length (short if < 10bp, 600 

intermediate if < 60bp and large if > 60bp), position (telomeric if within 10Kb from the end 601 

of the chromosome and flanking a gap if with 1Kb of a N-mer), type of sequence (novel if > 602 

95% of the bases in the region are not present in any Hereford node, haplotype otherwise). 603 

We then added the proportion of masked bases in the regions generated. We the applied 604 

multiple filtering to retain only the high quality novel contigs, keeping a region if 1) 605 

classified as large, 2) consisting of more than 50% novel bases, 3) not telomeric, 4) not 606 

flanking a gap and 5) not significantly enriched for repetitive elements (retained a region if 607 

Bonferroni-corrected P-value > 8e-7) when compared to the average number of soft-masked 608 
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bases in the autosomal sequences by calculating a z-score (54 % of masked bases). Finally, 609 

we reduced the complexity of the contigs by overlapped the sequences with minimap2, 610 

converting the alignments into blast tabular format and detected the most likely unique 611 

sequences by a custom script. Briefly, we considered all alignments with >99% identity as 612 

referring to the same sequence, and only if each alignment spanned 95% of the total length of 613 

the shortest contigs involved. For example, an alignment of 296bp with identity of 99.5% 614 

between contig1 (1,000bp) and contig2 (300bp) would be considered, and only contig1 615 

would be kept for downstream analyses. 616 

Intersections between the different genomes have been visualised using the SuperExactTest 617 

package56. Motif enrichment was computed using HOMER (4.10.4)57 on the novel sequences 618 

using all the genomes pooled together as background. Finally, sequences were characterized 619 

for gene content.  620 

The proteins prediction was performed three ways: 1) using Augustus58 (v.3.3.3) on the novel 621 

sequences with default parameters; 2) using Augustus (v3.3.3) on the sequences with 100bp 622 

flanking regions included; and 3) aligning the sequences using DIAMOND (v2.0.6)59 623 

BLASTX to a database consisting of proteins from UniProtDB, SwissDB and 9 ruminants 624 

(taxa id 9845) RefSeq genomes downloaded from NCBI (GCF_000247795.1, 625 

GCF_000298355.1, GCF_000754665.1, GCF_001704415.1, GCF_002102435.1, 626 

GCF_002263795.1, GCF_002742125.1, GCF_003121395.1, GCF_003369695.1). Predicted 627 

proteins have been extracted through a custom python script and were aligned using 628 

DIAMOND59 BLASTP to the same protein database previously described. We considered a 629 

high-confidence protein structure if the three methods consistently predicted the same 630 

complete protein structure, inclusive of start and stop sites.  631 

The full pipeline, including the custom scripts used to generate all outputs, is accessible on 632 

GitHub (https://github.com/evotools/CattleGraphGenomePaper/tree/master/detectSequences).  633 
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Linear expanded genome  634 

Due to memory and computational constrains, we could not use the full mWGA to generate 635 

the set of vg indexes required to align and process short-read sequencing to a graph. Instead, 636 

we used autosomal chromosome-by-chromosome alignments of the five assemblies  to 637 

generate a graph genome that can be successfully indexed with the vg12 software allowing us 638 

to align reads and perform variant calling.  639 

We generated a linear expanded genome with the purpose of providing an easy to use, 640 

expanded version of the cattle reference genome that is also easy to implement in current best 641 

practice pipelines. We extracted all nodes not present in the linear Hereford genome, but that 642 

were found in the other 4 assemblies considered using libbdsg (v0.3)54. Nodes were then 643 

labelled based on the genome in which they were found (i.e. a node can be from 1 to 4 644 

different assemblies). The nodes were then trimmed for N-mers, and regions overlapping a 645 

candidate misassembled region in the N’Dama or Ankole genome were excluded. We then 646 

combined the regions if they were less than 5bp apart using bedtools, and then labelled the 647 

regions depending on their proximity to a gap (less than 1000bp from a gap) or to a telomere 648 

(10Kb from the end of a chromosome or scaffold >5Mb long), classified them based on their 649 

length (short if <10bp, intermediate if between 10 and 60bp and long if >60bp) and whether 650 

they were haplotypes (<95% of the bases coming from a non-reference node) or novel 651 

(>=95% of the bases coming from a non-reference node). We retained all long regions 652 

(<60bp), those not at telomeres and not flanking a gap. Finally, we excluded all regions that 653 

were too repetitive in comparison to the autosomes in the different genomes and sequences 654 

that were too similar, retaining only the largest of the two. For details of the selection of the 655 

NOVEL set of contigs, see section “Genome alignment and comparison” in Materials and 656 
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Methods. This generated a final set of contigs that, once combined with ARS-UCD1.2, 657 

formed the final extended linear pangenome (ARS-UCD1.2+). 658 

Graph Genome 659 

Comparatively few pieces of software capable of handling large genomes and graphs are 660 

currently available. Two in particular prove to be particularly promising: the vg tools12 and 661 

Seven Bridges graph genome pipelines11. In the current study we chose to apply the vg 662 

pipeline, which is able to call structural variants detected through multiple assembly 663 

comparisons. This is also supported by recent studies that have proven graph alignments to be 664 

superior in performance when alignments were generated through a reference-free 665 

comparison60.  666 

The cactus alignments were converted to a vg graph using hal2vg (v2.1) 667 

(https://github.com/ComparativeGenomicsToolkit/hal2vg), dropping the ancestral genomes, 668 

referencing to the Hereford assembly and processed as recommended on the vg wiki page 669 

(VG5). We also generated second and third graphs with more and no diversity, respectively. 670 

To create the second graph, hereon called VG5p, we added >11M short variants from 294 671 

worldwide cattle23 to the VG5 graph through the ‘vg add’ command. To create the third 672 

graph, we simply provided the linear ARS-UCD1.2 genome to ‘vg construct’ specifying the 673 

VCF with the 11M variants described in Dutta et al. (2020) 23(VG1p). To create the fourth 674 

and last graph, we simply provided the linear ARS-UCD1.2 genome to ‘vg construct’, 675 

without specifying any source of variation, and ultimately generating a graph representation 676 

of this single linear genome (VG1). The script used to generate the graphs are available on 677 

GitHub (https://github.com/evotools/CattleGraphGenomePaper).  678 

We evaluated the performances of the graph genomes in two ways. We aligned to a variant-679 

free linear graph based on the Hereford genome using vg (VG1). We also aligned and called 680 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.23.449389doi: bioRxiv preprint 

https://github.com/ComparativeGenomicsToolkit/hal2vg
https://github.com/evotools/CattleGraphGenomePaper
https://doi.org/10.1101/2021.06.23.449389
http://creativecommons.org/licenses/by/4.0/


variants using the standard BWA-HaplotypeCaller (bwa v 0.7.17; GATK v4.0.11.0)61,62 and 681 

BWA-FreeBayes (FreeBayes v 1.3.1-16-g85d7bfc-dirty)20 pipelines on the ARS-UCD1.2 682 

genome. 683 

All the graphs were generated using vg version 1.20.0. Short reads processing was performed 684 

using vg v1.22.0. Despite the change of version, the graphs generated in the version 1.20 can 685 

be used also in the next releases. All the script used for the analyses were generated through 686 

bagpipe (https://bitbucket.org/renzo_tale/bagpipe/src/master/). 687 

Reads for the nine samples of three different breeds (Angus, Nigerian N’Dama and Pakistani 688 

Sahiwal) with a similar coverage (~30-50X) were considered for the analyses. Six of the nine 689 

samples were novel to this study with the three Angus taken from databases63,64 690 

(Supplementary Table 13). Whole blood for the three novel N’Dama samples was collected 691 

into PAXgene tubes, and DNA was extracted through the standard procedure as outlined in 692 

the PAXgene blood DNA kit handbook. Whole blood for the three novel Sahiwal samples 693 

was collected into EDTA tubes, and DNA was extracted through the standard procedure as 694 

outlined in the TIANamp Blood DNA Kithandbook (TIANGEN Biotech Co. Ltd, Beijing). 695 

Samples were then sequenced on a Illumina HiSeq X Ten at the Edinburgh Genomics 696 

sequencing facility. Samples were aligned using the guidelines reported in the vg GitHub 697 

wiki page, and implemented in the bagpipe pipeline 698 

(https://bitbucket.org/renzo_tale/bagpipe/src/master).  699 

Bionano optical mapping 700 

We generated ~100X OM data for two Kenyan N’Dama samples, one of which was an 701 

offspring of the assembled individual. Blood was collected by jugular venupuncture into 702 

EDTA vacutainers. Following erthyrocyte lysis, monocytes were purified from the 703 

leukocytes using a positive selection MACS protocol with an anti-bovine SIRPα mono-clonal 704 
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antibody (ILA-24 – Ellis et al. 1988). Agarose plugs containing 5x105 – 1x106 isolated 705 

monocytes were prepared using the Bionano Blood and cell culture DNA isolation kit 706 

(Bionano Genomics, San Diego, US) according to the manufacturer’s instructions and the 707 

extracted DNA used for analysis on the Bionano Saphyr platform. Resulting reads were 708 

processed through the Bionano Solve pipeline (v3.3_10252018, refAligner v7915.7989rel). 709 

We then converted the resulting outputs to vcf through smap_to_vcf_v2.py. Then, we 710 

converted all non-translocation SVs into bed format expanding the initial and end positions 711 

defined by the Bionano Solve pipeline with the largest values defined by the confidence 712 

interval, and then added an additional kilobase to account for the resolution of OM data and 713 

uncertainty in the positions inherent in OM.  714 

After generating bed intervals for each of the two individuals, we concatenated the bed files, 715 

sorted them, combined them through bedtools merge and, finally, retained the regions 716 

mapped on an autosomal region. 717 

Benchmarking the graph 718 

To evaluate the performances of the graph genomes we collected different metrics, which can 719 

be split into two categories: a) read-based metrics and b) variant-based metrics.  720 

The first category includes the number of reads mapped to the genomes by the different 721 

algorithms, and how many of the reads called by vg are perfectly mapped.  722 

The second category includes metrics based on the variants called, including number of 723 

variants identified, depth of sequencing, transitions/transversions rate and allelic balance (i.e. 724 

the ratio of reads supporting the reference and the alternate allele used for the variant calling). 725 

These metrics have been computed for different variant lengths to see how the callers 726 

perform with different types of variants, using the script available on GitHub 727 
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(https://github.com/evotools/CattleGraphGenomePaper). The analyses have been carried out 728 

considering a) the variants present in the given graph as known and all other as novel, and b) 729 

the 11M variants as the set of known variants and all the other as novel. 730 

After gathering overall metrics, we focused our attention on large structural variants called by 731 

vg on the VG5p graph, since these are the hardest to genotype with current broadly adopted 732 

methods. First, we combined variants across the nine samples using bcftools (v1.10) merge, 733 

and checked how many overlapped with OM signals detected on two N’Dama samples. 734 

Although being called for two different samples than the N’Dama sequenced, it can still 735 

provide insights into N’Dama-shared variants not present in the current linear genome. We 736 

assessed the significance of the overlap by randomly selecting 10,000 times regions of the 737 

same sizes as the detected ones and overlapped them with the OM data to estimate a Z-score. 738 

We defined the size of a structural variant as equal to the size of the reference allele. Also, we 739 

checked whether the size distribution of indels in genes shows a higher number of in-frame 740 

than out-of-frame variants (i.e. insertions and deletions of size multiple of 3 versus rest). 741 

Second, we checked if the structural variants called for the different breeds overlapped 742 

differently with the OM data to assess whether individuals genetically closer to the two 743 

N’Dama genotyped with OM have a proportionally higher number of overlaps between 744 

graph-based and OM structural variants. 745 

Third, we investigated high-quality, group-specific large structural variants identified by vg. 746 

We iteratively intersected individuals of a target breed with samples of the other two breeds 747 

using bcftools isec, retaining a variant if found only in the target individual (e.g. we intersect 748 

Angus1 with Sahiwal1; then, we keep the specific variants for Angus1, and intersect it with 749 

Sahiwal2, and so on). Then, samples of the same breed are combined with bcftools merge, 750 

that kept all variants found in at least one animal of the same breed. Then, we retained a 751 

variant if they had high quality (QUAL > 30), depth of sequencing close to the expected 752 
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value (20 < DP < 90) and allowing no missingness and with sufficient evidence for the 753 

alternate allele (non-reference allele count >= 5). Finally, we focused on variants with length 754 

> 500bp in order to keep the results comparable with the OM and allowing direct comparison 755 

with the N’Dama samples.  756 

We compared the structural variants from the graph with the ones called from Delly2 757 

(v0.8.5)33. Variants called by Delly2 for each individual with no soft-filter and high quality 758 

(QUAL > 30) were retained. Individuals’ SVs of the same type were combined using 759 

SURVIVOR65 (v1.0.7), allowing 100bp of distance between break points, not accounting for 760 

the strand, retaining only SV longer than 500bp and excluding translocations. These were 761 

then intersected with the OM regions. We also combined the samples of the same breed as 762 

done for the graph genome, retaining variants with no missingness and sufficient support for 763 

the alternative allele (non-reference allele count > 5), dropped translocations and finally, 764 

intersected with the regions from the OM analysis. 765 

Finally, we compared SVs called from Delly and VG5p based on their type (insertions, 766 

deletions, inversions and duplications). This approach, though more consistent, comes with 767 

limitations since the different callers call different types of SV: VG5p can only call 768 

insertions, deletions and complex SV, with the latter inclusive of inversions and more 769 

complicated rearrangements (e.g. a substitution and a deletion at the same site); Delly can 770 

call only precise deletions, duplications and inversions; finally, the OM can call insertions, 771 

deletions, inversions and duplications. SVs called from VG5p were first broken into single-772 

allele variants using vcfbreakmulti from vcflib (v1.0.1)66 annotated using vcf-annotate --fill-773 

type from the vcftools library67; the variants were then split by annotated type, multiallelic 774 

SV recombined with vcfcreatemulti and converted to BED format using SnpSift68 and a 775 

series of custom scripts. Delly variants were separated based on the alternate allele field into 776 

separate SVs, and similarly SVs from OM were split by the SVTYPE annotated field. 777 
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Insertions and deletions from VG5p were then intersected using bedtools (v2.30.0) with 778 

insertions and deletions from OM, respectively. Analogously, deletions, duplications and 779 

inversions from Delly were intersected with the same categories from OM data using 780 

bedtools (v2.30.0). Resulting unique SVs were combined and counted as number of 781 

consistent, overlapping SV. 782 

ATAC-seq data processing 783 

Illumina paired end reads for B-cells of three samples (1 Holstein-Friesian, 1 N’Dama and 1 784 

Nelore) were generated using Illumina HiSeq X Ten at the Edinburgh Genomics facility. 785 

Details on the preparation of the DNA libraries can be found in Supplementary Methods 1. In 786 

addition to the three samples, one nucleosome-free DNA sample was processed to identify 787 

and exclude false positives. All read accession numbers are listed in Supplementary Table 13.  788 

We processed paired-end reads as follow: we first trimmed the reads, extracting only the 789 

paired ones with length >=36bp using trim_galore (v0.6.3)69. As a spike-in of mouse cells 790 

had been used in these samples trimmed reads were aligned to the target genome 791 

concatenated with the mouse genome GRCm38 using bowtie2 (v2.3.1) and only one mapping 792 

per read was saved in order to account for repetitive elements (parameters -X 1000 --very-793 

sensitive). Reads aligned to the mouse genome and mitogenome were excluded with samtools 794 

and peaks were called using Genrich (v 0.5_dev, parameters: -j -r -e MT -v). The full pipeline 795 

to process the samples was generated using bagpipe 796 

(https://bitbucket.org/renzo_tale/bagpipe/src/master). We also compared the effect of using 797 

only uniquely mapped reads when peak calling. We aligned the reads as previously described 798 

to ARS-UCD1.2 and ARS-UCD1.2+, and then retained only reads uniquely mapped using 799 

Sambamba (v0.5.9; command view -h -f sam -F "[XS] == null and not unmapped and not 800 

duplicate"). 801 
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We called peaks on all five linear assemblies and ARS-UCD1.2+ separately. For each 802 

sample, we excluded peaks overlapping a peak in the nucleosome-free DNA sample for more 803 

than 50% of their length (bedtools subtract -A -f 0.5), which were considered as false positive 804 

peaks. We then calculated the Q-scores for each peak using the Benjamini-Hochberg 805 

correction, setting the number of independent tests to the theoretical size of the cattle genome 806 

(2.7Gb). For each region, we also checked which one did not overlap a masked region in the 807 

respective assembly for at least 40% of its length.  808 

Heatmaps have been created using Deeptools (v3.5.1)70 with the aligned reads as inputs, first 809 

filtering out reads mapping to the mouse spike-in genome and then converting them to 810 

bigWig using bamCoverage (options --minFragmentLength 35 --maxFragmentLength 150 --811 

normalizeUsing RPGC -bs 10 -e --effectiveGenomeSize 2779691414). The generated bigWig 812 

files are then used as inputs to computeMatrix (reference-point mode with parameters -a 3000 813 

-b 3000 --missingDataAsZero --skipZeros) using the ARS-UCD1.2 annotation (Ensembl 814 

version 103) and the genes predicted by Augustus as annotations. 815 

Data availability 816 

DNA from Uganda was received under a license from the Uganda National Council for 817 

Science and Technology (permit number A579). Long reads and short read data for the 818 

Ankole assembly are available on ENA with project accession PRJEB39282. Long read and 819 

short reads data for the N’Dama sample are available on ENA with project accessions 820 

PRJEB39330 and PRJEB39334. Short read sequencing for the three Sahiwal and the three 821 

N’Dama samples are publicly available on ENA with project accessions PRJEB39352 and 822 

PRJEB39353, respectively. The N’Dama and Ankole assemblies have been deposited on 823 

ENA with accession numbers GCA_905123515 and GCA_905123885, respectively. Output 824 

for the analyses can be visualised in (BOmA)[www.bomabrowser.com/cattle]. 825 
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Figures 1013 

Figure 1. Principal component analysis of the 294 cattle, showing the positions of the 1014 

populations of origin of the five assemblies considered in this study. 1015 
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Figure 2 – Snail plots of the N’Dama (NDA1) and Ankole (ANK1) genomes, showing key 1018 

metrics such as the longest scaffold (red vertical line), N50 (orange track), N90 (light orange 1019 

track), GC content (external blue track) and BUSCO scores (outer circular pie chart in green). 1020 

The region of elevated N content in the N’Dama assembly corresponds to a 5Mb gap in one 1021 

of the contigs matching a region of generalised low identity in all of the five assemblies 1022 

(Supplementary Figure 1). Even though this region contained an unfilled gap we observe that 1023 

the regions flanking the gap align to directly contiguous portions of the genome in other 1024 

assemblies, and therefore that the gap in this region is potentially smaller than represented 1025 

here.  1026 
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Figure 3 – A) High-quality (NOVEL) sequence specific to, or shared among, each non-1029 

reference genome. Numbers represents the kilobases of non-Hereford sequence associated 1030 

with the set of genomes defined by the group(s) highlighted in green. Each genome is 1031 

indicated by a number (1 = Ankole, 2 = Angus, 3 = Brahman and 4 = N’Dama); B) Multiple 1032 

genome alignments of the MHC region on chromosome 23 generated with AliTV (v1.0.6)71. 1033 

The plot represents the shared sequences among the different genomes; green to red segments 1034 

are representative of higher to lower similarity (100 to 70% respectively); the enlarged region 1035 

is the MHC region, which shows a large amount of variation between the assemblies. 1036 
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Figure 4 – Graph genome descriptions and their performances. A) a cartoon representation of 1038 

the four types of graph genomes considered (the linear VG1, VG1 expanded with 11M short 1039 

variants (VG1p), the CACTUS VG5 graph and the CACTUS graph expanded with the 11M 1040 

short variants (VG5p)). Regions indicated in blue are regions coming from the backbone 1041 

sequence, those in grey are the short variants from Dutta et al (2020), and in yellow the variants 1042 

derived from the CACTUS graph; B) the percent enrichment of reads mapped by vg (primary 1043 

axis) using the different graphs over the bwa mem linear mapper; and C) the allelic balance for 1044 

the linear callers FreeBayes and GATK HaplotypeCaller compared with vg call, showing how 1045 

the latter reduces the allelic bias for large variants. For other versions of this plot looking at 1046 

different sets of known and novel variants see Supplementary Note 3; and D) the intersection 1047 

of structural variants longer than 500bp called using the VG5p graph (blue), Delly V2 (green) 1048 

and the Bionano optical mapping (orange), showing how most variants called with vg are also 1049 

confirmed using one of the other methods. 1050 
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Figure 5 – Example of an insertion relative to the Hereford reference detected A) in both 1052 

Kenyan N’Dama OM samples as represented by an increase in the distance between labels 1053 

(vertical lines) on each bionano haplotype (blue rectangles) over that expected given the labels’ 1054 

in silico locations in the Hereford reference (green rectangle). B) This SV was identified as 1055 

homozygous in all three Nigerian N’Dama resequenced genomes when called against the graph 1056 

genome. C) A Bandage72 representation of the graph genome in this region showing the large 1057 

structural variant (blue loop) in the Hereford genome (grey line).  1058 
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Figure 6 – ATAC-seq analyses results A) Enrichment or depletion of the number of ATAC-1061 

seq peaks called in the different assemblies with respect to the number called in ARS-UCD1.2, 1062 

showing more peaks were called using the expanded ARS-UCD1.2+ genome in all samples; 1063 

and B) showing the enrichment around the TSS of both the ARS-UCD1.2 annotated genes (left 1064 

three heatmaps) and of the 923 features predicted by Augustus in the novel contigs (right). 1065 
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Tables 1068 

Table 1 – Sequence contribution from the two African genomes. The table shows the amount 1069 

of sequences from non-ARS-UCD1.2 genomes, and how much the two novel assemblies from 1070 

African breeds contribute to the numbers.  1071 

    Angus  Ankole  Brahman  N'Dama  Total  

Non-reference nodes 
(total)  

#nodes  6,188,973  14,994,500  14,627,206  10,338,166  29,315,173  

bp  46,066,551  118,203,105  60,100,791  87,792,217  257,235,506  

Non-reference nodes 
(autosomes)  

#nodes  5,823,611  11,262,561  13,362,852  8,832,454  23,599,013  

bp  17,903,582  41,317,786  39,647,314  25,806,882  76,660,696  

Filtered non-reference 
nodes (total)  

#nodes  285,307  780,815  705,024  494,781  1,008,401  

bp  4,612,021  12,486,639  12,023,827  6,760,434  15,491,621  

Filtered non-reference 
nodes (autosomes)  

#nodes  198,393  429,652  443,737  313,670  571,123  

bp  3,290,022  7,093,645  7,435,063  4,595,327  9,046,464  

Final set of contigs  

Number of contigs  2,250  5,058  6,387  2,970  16,665  

Length (total)  3,274,775  4,508,339  10,507,420  2,246,905  20,537,439  

Length (min)  61  61  61  61  61  

Length (max)  92,590  34,789  103,683  29,488  103,683  

Length (mean)  1,455.00  891.00  1,645.00  757.00  1,232.37  

Length (std)  5,177.00  1,990.00  4,957.00  1,885.00  3,875.06  

 1072 

  1073 
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Supplementary Material captions 1074 

Supplementary Table 1 – Quality metrics for the N’Dama genome at the different stages of the 1075 

assembly. 1076 

Supplementary Table 2 – Quality metrics for the Ankole genome at the different stages of the 1077 

assembly. 1078 

Supplementary Table 3 – Motif enrichment analysis of the 20M high-quality novel sequences 1079 

discovered from the 4 non-Hereford assemblies, using the five genomes as background. 1080 

Supplementary Table 4 – Putative novel genes discovered in the NOVEL sequence using the 1081 

three approached described in the Materials and Methods (Augustus, Augustus on the 1082 

sequences with 100bp flanking added and using BLASTX) 1083 

Supplementary Table 5 – Nodes (i.e. fragments of sequence), edges (connections between 1084 

nodes) and lengths for the four graph genomes generated using VG. 1085 

Supplementary Table 6 – Alignment metrics using bwa, a linear VG graph (VG1), a linear VG 1086 

graph expanded with 11M variants from Dutta et al (2020; VG1p), a CACTUS-derived graph 1087 

with 5 assemblies (VG5) and using a CACTUS-derived graph with 5 assemblies expanded 1088 

with the 11M variants from Dutta et al. (2020; VG5p). 1089 

Supplementary Table 7 – Number of structural variants detected using the VG5p graph on all 1090 

samples and those specific to the different breeds, with the number of overlaps with variants 1091 

from optical mapping in comparison of 10,000 random regions of equal size and respective P 1092 

values. 1093 

Supplementary table 8 – Number of structural variants from the VG5p graph longer than 500 1094 

bp and those overlapping an optical mapping SV. 1095 

Supplementary Table 9 – Number of structural variants discovered using DellyV2 at the 1096 

different filtering stages. 1097 
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Supplementary Table 10 – Number of ATAC-seq reads mapped to the different linear, breed-1098 

specific genomes and to the expanded linear Hereford genome (ARS-UCD1.2+), with the 1099 

relative improvement in the latter in comparison with the standard Hereford genome. 1100 

Supplementary Table 11 – Peaks called using the different linear, breed-specific assemblies 1101 

and the expanded linear Hereford genome (ARS-UCD1.2+), with the number of peaks after 1102 

excluding the signals in common with the nuclease-free peaks and the number overlapping a 1103 

predicted gene from Augustus. 1104 

Supplementary Table 12 – List of genes predicted by Augustus and histogram of their sizes. 1105 

Supplementary Table 13 – List of samples used in the study, with their associated accessions. 1106 

 1107 

Supplementary Figure 1 – Alignment of chromosome 12 of the five assemblies, showing the 1108 

gap in the N’Dama genome is a high-complexity region across the assemblies. 1109 

Supplementary Figure 2 – Repetitive elements composition in the five assemblies calculated 1110 

using RepeatMasker, showing the similar compositions of the five genomes. 1111 

Supplementary Figure 3 – Alignments generated by minimap2 over the whole chromosome 1112 

23, showing the MHC region as a drop in alignment identity in all the assemblies. 1113 

Supplementary Figure 4 – Allele size distribution in intergenic and intragenic portions of the 1114 

genome, showing how in-frame indels from the graph were more common than other coding 1115 

indels, consistent with selection disproportionately removing frameshift changes. 1116 

 1117 

Supplementary Note 1 – In-depth description of the N’Dama assembly process, with detailed 1118 

metrics and processes 1119 

Supplementary Note 2 – In-depth description of the Ankole assembly process, with detailed 1120 
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metrics and processes 1121 

Supplementary Note 3 – Collection of figures describing the quality metrics of variants called 1122 

using FreeBayes, GATK4, VG on a linear graph (VG1), VG on a graph with 11M variants 1123 

from Dutta et al 2020 (VG1p), VG on a CACTUS-derived graph incorporating 5 different 1124 

assemblies, VG on the VG5 graph expanded with the 11M variants included in VG1p (VG5p). 1125 

Supplementary Methods 1 – Detailed description of the preparation of the ATAC-seq samples. 1126 

 1127 
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