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Abstract

Despite only 8% of cattle being found in Europe, European breeds dominate current genetic
resources. This adversely impacts cattle research in other important global cattle breeds. To
mitigate this issue, we have generated the first assemblies of African breeds, which have been
integrated with genomic data for 294 diverse cattle into the first graph genome that
incorporates global cattle diversity. We illustrate how this more representative reference
assembly contains an extra 116.1Mb (4.2%) of sequence absent from the current Hereford
sequence and consequently inaccessible to current studies. We further demonstrate how using
this graph genome increases read mapping rates, reduces allelic biases and improves the
agreement of structural variant calling with independent optical mapping data. Consequently,
we present an improved, more representative, reference assembly that will improve global

cattle research.

Introduction

Cattle are one of the most populous farmed animals worldwide, with their global population
of almost one billion second only to chickens!. Due to their use as draft animals and their
ability to convert low quality forage into energy-dense muscle and milk, they provide a
significant source of nutrition and livelihood to over 6 billion people. Since their
domestication almost 10,000 years ago, hundreds of distinct cattle breeds have been
established, displaying a diverse range of heritable phenotypes, from differences in
production phenotypes such as milk yield, to environmental adaptation, disease tolerance and

altered physical characteristics such as horn shape and skin pigmentation?2,
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This phenotypic diversity between cattle breeds is mirrored by substantial genetic diversity,
but this is poorly reflected by current reference resources. The primary reference genome is
derived from a single European Hereford cow* and projects such as the 1,000 bulls genomes
project are heavily skewed towards European-derived breeds (Bos taurus taurus) due to a
number of factors such as geographic distribution and sample accessibility®. Although
European breeds largely all originate from the same domestication event that occurred in the
Middle East, at least one further domestication event occurred in South Asia giving rise to the
humped indicine breeds (Bos taurus indicus)®. These two Bos lineages have been estimated to
have last had a common ancestor over 210,000 years ago’ meaning the current Hereford
reference genome particularly poorly represents the indicus sub-species.

As well as this primary split, it has been suggested that introgression with further Auroch
populations has occurred in Africa, with the adaptation of certain African cattle breeds to
local diseases potentially the result of this historical introgression®. In Africa alone there are
over 150 indigenous cattle breeds, and almost 350 million head of cattle making up 23% of
the global cattle population?. This compares to only 8% of cattle being located in Europe.
Africa’s unique history, with multiple waves of migration of both Bos indicus and Bos taurus
cattle into the continent, along with its variety of environments, pathogens and cultures has
led to unusually high levels of diversity among the cattle in the region. However, this
diversity is not reflected in the genomic resources currently available.

The reliance of cattle research on the European Hereford reference genome has two main
limitations. First, because it represents one consensus haplotype of a single animal, large
sections of the cattle pan-genome are missing from this reference sequence. This is
exemplified by a recent human study that identified almost 300 million bases of DNA among
African individuals that were missing from the human reference genome®. This DNA

sequence, equivalent to 10% of the human pan-genome, is consequently inaccessible to
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84  studies reliant upon the current human reference genome. The second major limitation,
85 common to all linear reference genomes, is that even where they contain the region being
86  studied, downstream analyses are biased towards the alleles and haplotypes present in the
87  reference sequence®1°,
88  The emerging field of graph genomes aims to address these issues by incorporating genetic
89  variation and polymorphic haplotypes as alternative paths within a single graph
90 representation of the genome. This has the advantage that reads which do not directly match a
91 linear reference may still perfectly match a route through the graph, increasing the accuracy
92  of read alignment. Several recent studies have highlighted how the use of such genome
93  graphs can increase read mapping and variant calling accuracy, reduce mapping biases!*2,
94 identify ChIP-seq peaks not identified using linear genomes'®4, and better characterise
95 transcription factor motifs'®. However, there are currently few high-quality graph genomes
96 available. In livestock, the use of graph genomes has so far been restricted to studies simply
97 incorporating variants from short read sequencing data into the Hereford reference'®!’ or to
98  only very large differences between the assemblies themselves®®. Although not able to
99  capture wider cattle diversity, these studies illustrated that the variant calls using the graph
100  genome were more consistent between sire-son pairs than those obtained using the linear
101  Hereford reference, with the current standard variant calling algorithms GATK
102  HaplotypeCaller® and FreeBayes®°. Graph genomes consequently have the potential to
103  improve the detection of genetic variants, including those potentially driving important
104  phenotypic differences between populations and breeds. However, the construction of high-
105  quality graph genomes is dependent upon the availability of representative reference
106  sequences, a resource which has been largely lacking for non-European cattle. In this study
107  we address the current lack of reference genomes for African cattle breeds by generating

108  novel assemblies for the N’Dama and Ankole breeds. These breeds display tolerance to two
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109  of Africa’s most important livestock diseases; African Animal Trypanosomiasis (AAT), a
110  disease that costs African livestock farmers billions of dollars a year?!, and East Coast fever
111  (caused by Theileria parva), which causes an annual economic burden of approximately $600
112 million?%. We then combined these genomes with three public reference assemblies

113 representing Hereford, Angus and Brahman cattle, along with genetic variation data for 294
114  animals representative of global cattle breeds?3, to provide a high-quality cattle graph genome
115  spanning global breed diversity. We go on to show how this novel, more representative, cattle
116  graph genome can substantially improve omics studies across global cattle breeds relative to
117  the standard primary Hereford reference.

118

119 Results

120  Generating African genome assemblies

121  Global cattle breeds display high levels of genetic diversity (Figure 1). Whereas European
122 breeds represent only a small fraction of this diversity, African breeds display a broad

123 spectrum of indicine to taurine variation. As the currently published Hereford*, Brahman?*
124  and Angus® genomes poorly represent global diversity, and in particular that found in Africa,
125  we generated two new assemblies for the West African Taurine N’Dama and East African
126  Sanga Ankole (an ancient stabilized cross between indicine and taurine breeds). We

127  sequenced the genomes of N’Dama and Ankole bulls at an approximate coverage of 40X Pac
128  Bio long read data for the assembly process and 70X of Illumina paired end reads for the

129  genome polishing. The N’Dama contigs were scaffolded using the previously published cattle
130  genomes, whereas the Ankole was scaffold using 100X of novel monocyte-derived bionano

131 data. The genomes consisted of 1,210 and 7,581 sequences with scaffold N50s of 104.8Mb
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132  and 84.5Mb for the N’Dama and Ankole genomes, respectively. The final contig N50s were
133  10.7Mb and 18.6Mb for the N’Dama and the Ankole respectively, with total genome lengths
134  of 2,766,829,411 and 2,921,040,163 bp (Figure 2). For further details on the assembly

135  process, see the methods section, Supplementary Tables 1 and 2, and Supplementary

136 Documents 1 and 2.

137  BUSCO (v3.0.2)% reported 92.6% and 93.1% complete mammalian universal single-copy
138  orthologs in the N’Dama and Ankole assemblies, respectively, comparable to the 92.6-93.7%
139  observed across the three previous cattle genomes?*. Likewise, the duplication levels of 1.4
140  and 2.1% are comparable to the range of 1.0-1.3% observed across the Hereford, Angus and
141  Brahman genomes. Similarly, the QUAST?® software (v5.0.2) calculated that the two

142  assemblies cover 93.9% (N’Dama) and 94.0% (Ankole) of the ARS-UCD1.2 Hereford

143 genome, again consistent with the 94.2% and 96.2% of the Angus and Brahman assemblies.
144  Quality values (QV) were calculated using merqury (v1.1)?’ in combination with meryl (v1.2;

145  https://github.com/marbl/meryl), and were respectively 34.3 (37.9 autosomal) and 30.6 (34.2

146  autosomal) for the N’Dama and Ankole, with a base accuracy over 99.9%. Finally,

147  RepeatMasker shows that these two genomes share similar contents of the different classes of
148  repetitive elements (Supplementary Figure 2). These two novel African cattle assemblies are
149  consequently of good quality (Figure 2) and represent novel spaces in global cattle diversity.
150  Full details on the assembly processes and their statistics are reported in Supplementary Note

151 l1land?2.

152  Characterising the across-breed pan-genome

153  Detection of non-Hereford sequence
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154 We first defined the novel, non-reference sequence present in the non-ARS-UCD1.2

155  (Hereford) genomes. We aligned the five genomes using the reference-free aligner

156 CACTUS?, which generates multiple whole genome alignments (MWGA\) in the form of a
157  cactus graph. We then converted the graph to PackedGraph format using hal2vg? (v2.1), and
158  used a series of custom scripts to extract all the nodes that were not present in the Hereford
159  genome. After excluding nodes encompassing an N-mer, an extra 257.2Mb of non-Hereford
160  reference sequence across over 29 million nodes was identified (76.7Mb was from over 23
161  million nodes in primary autosomal scaffolds; the remaining sequence was on sex

162  chromosome scaffolds or unplaced contigs; Table 1). This value is inclusive of a large

163 number of small nodes, including SNPs, small indels and repetitive elements. Therefore, we
164  excluded all nodes in potentially misassembled regions as identified by FRC_Align®°,

165 combined neighbouring regions (<=5bp) and filtered out sequences of short length (<60bp)
166  and those close to a telomere or gap, leaving a total of 116,098,017 bp in 62,337 sequences.
167  We further filtered down to sequences that were not significantly more repetitive compared to
168  the average level observed across the autosomes of the different genomes (Bonferroni-

169  corrected P-value > 0.05 using a genome-wide mean repetitiveness of 53.99%, see methods
170  for calculation). We finally removed any redundant sequences. This left a total of 16,665

171  sequences, for a total of 20.5Mb of high-quality, non-repetitive sequence not present in the
172 Hereford assembly (NOVEL set). The sequences presented a motif content analogous to the
173 genomes of origin, as highlighted by HOMER when using the 5 reference pooled genomes as

174 abackground (Supplementary table 3).

175  The amount of unique and shared sequences within and across breeds is shown in Figure 3A.
176  The majority of additional sequence was representative of the indicine ancestry, shared
177  Dbetween the Brahman and Ankole, closely followed by the non-Hereford sequence shared

178  across all other genomes, and then from the non-European shared sequence (common across
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179  N’Dama, Ankole and Brahman). Of the five breeds, the Ankole genome contained the most
180  non-Hereford sequence (12.4Mb of novel sequence, 7.1Mb of which resided on primary

181  autosomal scaffolds; Table 1), followed closely by the Brahman genome (12.0Mb, 7.4Mb on
182  primary autosomal scaffolds; Table 1). A key advantage of multiple genomes is improved
183  representation of divergent loci and Figure 3B illustrates the divergence between the

184  sequences at the important major histocompatibility complex (MHC). Alignments generated
185  through minimap2 over the whole chromosome 23 show an identity ranging between 98.77%
186  t099.31% (for Brahman and Angus, respectively), whereas the 4Mb interval ranging from
187  25-29Mb shows an average identity ranging from 96.17% to 98.21%, with local values as

188  low as 43% for some multi-KB fragments (Supplementary Figure 3).

189  Gene content in the novel sequences

190 We assessed the NOVEL set of sequences for the presence of genes and gene structures using
191  three complementary approaches (see methods). Blastx alignment identified a total of 191
192  genes in 272 regions passing the filtering (see materials and methods). Augustus predicted
193 923 and 1,008 genes using the novel sequences and the novel sequences expanded with

194  100bp flanking regions where possible. After filtering out regions that matched, we predicted
195 182 and 169 using Augustus with and without the 100bp flanks. Complete genes were then
196  extracted, aligned using BLASTP and genes passing mapping filters were identified for both
197  sets. This identified a total of 132 genes in 158 sequences and 140 genes in 164 sequences in
198 the novel contigs and the novel contigs with flanking regions, respectively (Supplementary

199 Table 4).

200  We then combined the resulting 132, 140 and 191 genes from the three methods, and
201 identified a total of 76 genes that were found to be consistent across them. Consistent with

202  their recent origin, most of these genes represented multi-gene families including several
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203  predicted immune genes (e.g. Ig lambda chain V-1l region MGC, interferons alpha and T-cell
204  receptor beta chain V region LB2), melanoma-associated antigens (MAGEB1, MAGEB3 and

205 MAGEB4) as well as a number of olfactory receptors (Supplementary Table 4).

206  Constructing the graph

207  We next assessed the potential of using these new assemblies as part of a graph genome. To
208  enable the comparison of graph-based variant calling performance, four versions of vg-

209  compatible genomes were generated (a schematic representation of these can be seen in

210  Figure 4A). The first contained the Hereford genome only (which we refer to as VG1). The
211  second was VG1 augmented with 11,215,339 million short variants called across 294, largely
212  unrelated, animals from a globally distributed selection of cattle breeds?® (VG1p). The third
213  contained all five cattle assemblies (VG5), and the fourth contained all five assemblies again

214 augmented with the over 11 million variants (VG5p).

215  The graph genome based on the CACTUS alignment only (VG5) had an order of >147

216  million nodes (i.e. the number of fragments of sequences) and a size of >173 million edges
217  (i.e. the number of connections between nodes), doubling the order of the linear graph

218  produced using just the autosomal sequence of the Hereford genome (VG1), that had >77M
219  nodes and edges (Supplementary Table 5). Including the genetic variants from the 294 cattle
220  led to >105M nodes for VG1p and 163M nodes and 194M edges for VG5p (10% more nodes

221  and 12% more edges than VGb).

222  Read mapping to linear and graph genomes

223  To assess the performance of these genome versions we aligned short read sequencing data
224 from nine animals spanning three diverse breeds (three European taurine Angus animals,

225  three African taurine N’Dama and three indicine Sahiwal) to each version. Importantly,
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226  genotypes from these animals had not been included when constructing the graphs. An

227  advantage with graph genomes is in theory they should increase the number of reads directly
228  matching a route through the graph and, consistent with this, we observed between 9 and

229  54% more reads perfectly mapped with vg to the CACTUS graph representation of the cattle
230 genome (VG5) than to the Hereford only version (VG1) (Figure 4B). The greatest increase in
231  perfect read mapping was for the indicine Sahiwal breed, followed by the N’Dama and

232  finally the Angus animals, mirroring the relative divergence of each from the Hereford breed.
233 A modest further improvement was observed when aligning to the full graph incorporating
234 the short variant data (VG5p) (an extra 0.52% of perfectly mapped reads among the Angus to
235  3.25% among the Sahiwal). Although direct comparisons across different software tools is
236  difficult and needs to be treated with caution, we found that vg aligned 7-10% more reads to
237  the graph than BWA to the primary chromosomal scaffolds of the ARS-UCD1.2

238  (Supplementary Table 6).

239  Variant calling from linear and graph genomes

240  We calculated several key metrics to describe the variants called using VG, GATK and

241  FreeBayes, and collected them in Supplementary Note 3, both considering the fixed set of
242  11M variants as “known” variants (case A) and considering the variants used to construct
243  each graph as “known” (case B). These plots show how the variants called using the three
244 algorithms (VG, FreeBayes and HaplotypeCaller) presented similar quality, depth, number of
245  variants, mapping quality and, generally, comparable metrics when looking at depth of

246  sequencing, quality of the variants and number of variants called (Supplementary Note 3).

247 A key metric when assessing the quality of read alignments to a genome is allelic balance
248  (AB). Ideally, reads carrying each allele at a polymorphic site should be equally well mapped

249  to the reference genome (i.e. have an AB = 0.5). In practice though, there is usually a bias
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250 towards reads matching the sequence present in the reference genome at the location. Skewed
251 allelic balance can adversely affect variant calling and therefore reducing it can improve

252  downstream genetic analyses. The allelic balance observed across genomes, variant sizes and
253  types is shown in Figure 4C, with alternative representations which considers all the types of
254  graph considered shown in Supplementary Note 3. Consistent with previous studies in

255  humans, this figure illustrates that the allelic balance at short variants is generally comparable
256  for single nucleotide polymorphisms, and the allelic balance at small InDels (<15bp) doesn’t
257  show a particular improvement compared to variants called using standard variant callers.
258  However, calls from the graph show an overall better allele balance for larger variants (>15
259  bp long) than both GATK and FreeBayes, staying closer to the desirable value of 0.5

260  (Supplementary Note 3). Defining the variants as known if used when constructing a

261  particular graph allows for a less uniform comparison, but still confirms the ability of the

262  graph to call larger variants with an overall better allelic balance than the standard variant
263  callers (Supplementary Note 3). Interestingly, while marginally more reads were successfully
264  mapped to the VG1p graph than to VG1, it displayed a less consistent allelic balance at

265 insertions between 10bp and 40bp long. The best results were achieved using the VG5p

266  graph, though with the largest gains observed in VG5 vs VG1 and VG1p, highlighting the

267  benefits of the additional assemblies in the graph (Supplementary Note 3).

268  We also evaluated other metrics for the different approaches, including depth of sequencing
269  (DP), average quality of the call (QUAL), number of variants called, transition/transversion
270  rate (Ti/Tv), that are presented in Supplementary Note 3. Overall, the metrics for the VG
271  graphs look similar to the classical callers, with just the Angus sample from public databases

272  presenting a lower Ti/Tv ratio.

273 Assessment of graph genome structural variant calls
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274  One of the most important benefits of graph genomes is the ability to directly detect large
275  variants using short read sequencing data. Using the VG5p graph genome we were able to
276  genotype thousands of structural variants of 500bp or longer, i.e. longer than the length of the
277  reads being mapped (Supplementary Note 3). These SV regions are inaccessible and uncalled
278  using linear callers such as GATK or FreeBayes, making vg a suitable tool for explicit

279  genotyping of large variants. To assess the quality of these SV calls, and to test its utility

280  when applied to the study of African breeds, we compared the variants called on the VG5p
281  graph to independent Bionano optical mapping (OM) data for two additional N’Dama

282  samples. As OM is a distinct technique for identifying the location of SVs, based on staining
283  and imaging large DNA fragments, it provides an independent indication of SV location. It
284  should be noted that the N’Dama used for whole genome resequencing and the OM were

285  from completely different countries (Nigeria and Kenya, respectively) though the OM data

286  and N’Dama assembly was from animals from the same research institute.

287  Intotal, vg detected 12,306 structural variants of >500 bp across the nine samples, each of
288  which might have one or more alleles per region. Of these, 6,598 overlapped with regions
289  detected by the Bionano OM data. Despite the comparison with OM data of one breed only,
290  this number is approximately 3.4 times higher than expected from randomly selecting

291  sections of the genome of the same size (mean =+ standard deviation of 1,571.2 + 36.9 across
292 10,000 permutations; Z-score = 136.1, P<2.2x10-%6; Supplementary Table 7). Further

293  supporting the validity of the indel calls, in-frame indels called from the graph were observed
294  to be more common than other coding indels, consistent with selection disproportionately

295  removing frameshift changes (Supplementary Figure 4).

296  Consistent with the OM data being deriving from the same breed, the number of graph SVs

297  >500bp overlapping the OM SV calls was greatest in the taurine N’Dama (2,932/7,280,
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298  40.3%; average size 2,055.4 bp), followed closely by the taurine Angus (2,797/7,318, 38.2%;
299  average size 2,050.7 bp) with the lowest overlap with the indicine Sahiwal (3,368/10,046,
300 33.5%; average size 1,880.9 bp; Supplementary Table 8). Again, the number of variants

301 detected in each different breed is reflective of the distance from the reference genome

302 considered.

303  We detected 19, 49 and 299 high-quality, large structural variants found across all Angus,
304 N’Dama and Sahiwal samples, respectively, but not in the other breeds (i.e. that were specific
305 for a breed and with QUAL > 30, 20 < DP < 90, alternate allele count >=5, >500bp). These
306 SV are therefore common to a given group but not found across breeds, and the numbers

307 likely reflect the relative genetic divergence of each breed from the Hereford genome used as

308 the backbone for the graph.

309  To confirm the quality of these variants, we overlapped them with the N’Dama OM data.

310  Results for each breed are shown in Supplementary Table 7. Despite the OM data being

311  derived from different individuals, there was a substantial overlap between the N’Dama SV
312  calls, with 42 out of 49 overlapping across both approaches (85.7%), much more than the
313  number of overlaps expected by chance (mean + standard deviation of 6.2 + 2.3 on 10,000
314  repetition; Z-score = 15.3, P-value = 1.40x10-%%; Supplementary Table 7). Although the

315  overlap between the N’Dama OM and Angus and Sahiwal graph SV calls was lower, both
316  showed a significant overlap (10/19; 52.6% and 111/299; 37.1%, respectively;

317  Supplementary Table 7) The partial overlap with these breeds may reflect that not all of these
318 SV are actually breed specific but rather are just more common in the breeds, or potentially
319  the comparatively low resolution of the OM data results in false positive overlaps. Either way

320  a much higher overlap is observed with the N’Dama SV calls, consistent with these group-
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321  restricted calls being much more enriched in this population, and consequently the genome

322  graphs appear effective at identifying these larger SV.

323 Comparison with Delly

324 Next, we compared the results from VG5p with structural variants called through a classical
325 SV caller, Delly (V2), using the linear Hereford genome as the reference. After excluding
326  SVs with low depth, imprecise positioning and translocations, we found on average 7,218
327  variants for the Angus (6,878 to 7,533), 15,978 for the N’Dama (15,061 to 17,399) and

328 30,856 for the Sahiwal samples (30,466 to 31,162) as shown in Supplementary Table 9.

329  These SVs were combined using SURVIVOR (v1.0.7) merging SV regions if less than 100bp
330 apart when accounting for the SV type. SVs were further filtered to those with at least 1

331  sample supporting it and with a size >500 bp to make them broadly comparable to the OM
332  data given the latter’s resolution (Supplementary Table 9). This filtering excluded all the

333 insertions, since Delly is incapable of calling insertions with precise break points, limiting the
334  types of SV analysed to deletions, duplications and inversions. The filtering left 3,175 unique
335  SVs for the Angus (ranging from 1,940 to 2,167 genotyped in each samples), 5,206 unique
336  SVs for the N’Dama (ranging from 2,945 to 3,418 genotyped in each samples) and 8,421

337  unique SVs for the Sahiwal samples (ranging from 5,356 to 5,396 genotyped in each

338  samples).

339 Intotal, 11,562 precise non-translocation Delly SVs with suitable depth and size were

340  retained across all individuals. Of these less (5,371, 46.4%) overlapped with an SV called
341  from the OM data than for vg (6,598, 53.6%) (Supplementary Table 9). Therefore, from the
342  same sequencing data, more SVs were called using vg that were also more likely to overlap

343  an SV called from the independent OM data.
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344 Figure 4D shows how the structural variants called by vg are confirmed by at least one of the
345  other methods, with only 274 out of 12,306 remaining unsupported (2.2%). In contrast Delly
346  called 4,936 SV unsupported by either other method. It should be noted though that Delly
347  called 2,219 SVs overlapping an SV in the OM data not identified by vg. These are

348  potentially sample-specific SVs, that being absent from the graph will be largely uncalled by
349  vg. Further improvements to the graph, for example by including further assemblies, would

350  be expected to reduce this number.

351  Finally, when looking specifically at deletions, the only class in common among the three
352  methods, we find that Delly calls a higher raw number of SVs compared to vg, detecting
353 3,186 deletions with a match in the OM data, whereas vg calls 1,887 SVs with overlaps.
354  However, in proportion to the number of deletions called by each, Delly has a lower

355  proportion of confirmed SVs (3,186/9,030 = 35.3%) than VG (1,887/3,972 = 47.5%),

356  highlighting the higher specificity of the graph approach.

357  Anexample of a high-quality 1,530bp sequence absent in the Hereford genome, but present
358 inthe graph, is in an intronic region of HS6ST3 (Heparan-sulfate 6-O-sulfotransferase;

359  hereford.12: 73,579,158, Figure 5). This SV was identified by both OM samples (Figure 5A),

360 the three re-sequenced N’Dama genomes (Figure 5B) and was present as an alternate

361  sequence in the graph but not identified by Delly (Figure 5C).

362 In conclusion, assembly-based graphs are a viable solution for reliably calling SVs with

363  explicit alleles, including insertions that are generally of lower quality in classical SV callers.
364  Future additions of new breed-specific reference assemblies would be expected to further
365  improve the number of variants represented in these graphs, ultimately improving the

366  structural variant calling and analysis.
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367 ATAC-seq peak calling

368  After analysing variant calling on the graph genome, we tried to investigate whether other
369  omics analyses may also benefit from these novel resources. To do so, we obtained ATAC-
370  seq data for three animals belonging to the three main clusters of cattle diversity: European
371  taurine (1 Holstein-Friesian), African taurine (1 N’Dama) and indicine (1 Nelore), plus a

372  nucleosome-free DNA as an input sample to remove likely false positive peaks.

373  Peak calling directly from graph genomes is currently an under-developed field, with ongoing
374 issues in supporting graphs inclusive of large variants; therefore, in the short-term, studies of
375  chromatin and the epigenome are likely to continue to use linear genomes. We consequently
376  took advantage of the NOVEL set of high-quality non-reference sequences described above
377  to create an expanded version of the current linear genome we term here ARS-UCD1.2+.

378  This expanded genome contained in total an additional 16,665 contigs across the over 20Mb
379  of sequence, with a mean length of 1.23kb (S.D. 3.87kb and a range of 61 to 103,683 bp long

380  Table 1). This increased the reference size by 0.7% to 2,780Mb.

381  To explore the potential benefits of these new data to such analyses we aligned the reads and
382  called the peaks for each sample separately to the five different linear genomes, as well as the
383  expanded ARS-UCD1.2+. We aimed to minimise the impact of multi-mapping reads (see
384  Methods) and after calling peaks, we excluded all peaks shared with the input sample for

385  more than 50% of their length.

386  Figure 6 shows using the ARS-UCD1.2+ genome leads to a modest increase in the number of
387  peaks called relative to the standard Hereford ARS-UCD1.2 sequence (Supplementary Table
388  10). This increase is confirmed also when using only uniquely mapped reads, with the ARS-
389  UCDL1.2+ calling consistently more peaks than the standard ARS-UCD1.2 (Supplementary

390  Table 11).
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391  Peak calling on the ARS-UCD1.2+ genome returned up to 3.7% more peaks when compared
392 tothe ARS-UCDL1.2 genome at the same significance thresholds despite ARS-UCD1.2 being
393  only 0.7% longer. This expanded genome worked particularly well for the Holstein, which
394  generally showed a higher number of peaks called compared to the ARS-UCD1.2 assembly
395  (+3.7% peaks called), followed by the N’Dama sample, with an extra 1.6% of additional

396  peaks called and finally the Nelore (+1.3% peaks called; Figure 6A and Supplementary Table
397  11). Intersecting these novel ATAC-seq peaks with the predicted genes in the 20.5Mb of non-
398  Hereford (Supplementary Table 12), non-highly repetitive sequences identified a general

399  enrichment around their predicted TSSs, consistent with these novel peaks marking

400 regulatory elements uncaptured by the Hereford genome (Figure 6B). Over 93-96% of these
401  peaks matched a peak in the genome of origin (i.e. a peak called on a novel sequence from
402  the Angus genome has a matching peak on the Angus genome in the same region), further
403  supporting the potential content of functional elements (Supplementary Table 11).

404  Consequently, the use of more representative pan-genome resources likely has utility to

405  downstream analyses beyond just variant calling, including identifying the location of novel

406  regulatory elements missed when using current reference resources.

407 Discussion

408 In this study we generated the first two cattle reference genomes of African taurine and Sanga
409  (an ancient stabilized cross between indicine and taurine breeds®') lineages. These assemblies
410  present quality metrics comparable to those of other currently available reference genomes,
411  and will likely be important resources for future bovine genomic studies, in particular those

412  studying non-European breeds.
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413 By aligning the five cattle assemblies, we illustrate that a substantial portion of the cattle pan-
414 genome is likely missing from the Hereford reference. This has important implications for
415  cattle research as it suggests significant amounts of the bovine genome is inaccessible in most
416  current analyses. Although a proportion of this extra sequence is repetitive, unsurprisingly
417  given its recent origins and the simple fact that large parts of mammalian genomes are made
418  up of repeats, this does not preclude it from being functional. For example, the importance of
419  repetitive elements in gene regulation is becoming increasingly clear®2. Consequently, the
420  study of these DNA segments that are not common to all animals may provide further

421  insights into the drivers of phenotypic diversity between breeds.

422  One noteworthy observation was that the amount of extra sequence in each genome matched
423  the prior assumptions of the relationships between the breeds: the two indicine genomes (the
424 Ankole and Brahman) had the highest amounts of unique, non-repetitive sequence.

425  Considering that the sequences identified might contain functional elements as predicted by
426  our analyses, there is the case for sequencing more genomes from the most distantly related
427  lineages from the reference Hereford assembly, such as the Bos indicus lineage, since they

428  might contribute further additional functional regions.

429 In this study we illustrate that the use of the graph cattle genome does not lead to substantial
430 improvements in the calling of SNPs and small indels, even when large numbers of them are
431  integrated into the graph. This likely reflects the relative maturity of short variant callers such
432 as GATK which are already highly accurate. Arguably, neither GATK HaplotypeCaller nor
433  FreeBayes is a structural variants caller, and this function typically requires specialised tools
434  such as Delly®. However, our analyses show how the structural variants called using a multi-
435  genome graph are more consistent with SVs called using independent OM data than those

436  from Delly, with over 53% of SV called from a graph genome overlapping an SV region
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437  called from OM data whereas the SV called through Delly overlap 46% of the time. When
438  looking specifically at overlapping deletion calls these numbers were 48% and 35%

439  respectively. Importantly, whereas tools such as Delly struggle to accurately call SVs such as
440 insertions from linear references, graph genomes enable these to be accurately genotyped

441  where present in the graph. The greater the diversity present in the graph, the better SV

442  calling will become. Unlike linear genomes whose content is largely fixed. Reassuringly, SVs
443  called among N’Dama samples using the genome graph were more consistent with N’Dama
444 OM data than the SV called in other breeds. Although a perfect overlap would not be

445  expected given different animals were being studied, the overlap among the N’Dama was

446  86% compared to 37% among the more distantly related Sahiwal.

447  In comparison to linear reference genomes there are currently few viable software tools for
448  epigenetic and chromatin analyses using graph genomes. However, using ATAC-seq data
449  across breeds we demonstrated it is possible to call substantially more peaks using an

450 expanded version of the linear reference genome incorporating the extra sequence found in
451  the other genomes. When applying the same thresholds and accounting for multi-mapping
452  reads, 3.7% more peaks were called across Holstein-Friesian ATAC-seq datasets compared to
453  using the standard linear reference. This is despite the expanded reference only being 0.7%
454 longer, and no less than 1.3% extra peaks being called on each individual considered.

455  Although the use of pan-genomes to study chromatin is a particularly immature field, pan-
456  genomes have the potential to reduce noise due to the more accurate representation of

457  structural variants and large rearrangements.

458  When looking across the results of both structural variants calling and ATAC-seq peak
459  analyses, we can see that our genomes work well, and in particular for breeds present or

460 closely related to ones used to generate the graph and expanded genome, highlighting the
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461 need to increase the genetic diversity that underpins the graph, particularly for lineages that

462  are poorly represented.

463  Despite these improvements, graph genomes still have drawbacks. These methods are still
464  under active development, and still have a greater requirement of computer memory, disk
465  space and analytical time. Generating a whole genome assembly is time consuming,

466  generating the vg graph itself still requires large amount of memory (up to several terabytes),
467  and still can only be done on primary chromosomal scaffolds due to high storage demands.
468  Alignments are also more computationally intensive than with their linear counterparts, with
469  the requirements affected by the number of variants represented. Moreover, variant calling
470  currently relies on a pile-up approach, which is arguably less sophisticated than methods
471  implemented by GATK or FreeBayes, that likely helps explain the good performance of
472  traditional tools at calling SNPs and small indels®*. Methods for peak calling on graph

473  genomes are not always compatible with graphs generated through CACTUS or similar

474 software, which limits their application and was one of the stimuli for generating the ARS-
475 UCD1.2+ genome. Last but not least, although efforts are being made to resolve the

476  coordinate system for graph genomes, downstream analyses are more complicated due to

477  most current resources being referenced to the positions on one linear genome.

478  Nevertheless, it is clear graph genomes already have advantages in certain areas such as SV
479  calling. As the field of graph genomes is less mature, arguably there is greater scope for

480  further improvement. New genomes are being released at a much higher frequency than in
481  previous years, and initiatives such as the recently announced bovine pangenome project3®
482  will open new possibilities and allow a better understanding of cattle genetics and phenotypic

483  diversity.
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484  We consequently present the first African cattle genome assemblies integrated into a cattle
485  graph genome representing global breed diversity. This graph, incorporating both large SVs
486  and millions of SNPs from across global breeds, is demonstrated to improve downstream
487  analyses such as SV calling and the detection of novel functional regions and therefore has

488  the promise to improve our insights into the genomics of this important livestock species.
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489  Online Methods

490 African breed assemblies

491  Whole blood of the N’Dama bull N195 was collected in PAXgene DNA tubes. The bull was
492 located at ILRI’s Kapiti research station in Machakos county, Kenya. The PAXgene DNA
493  tube was stored at room temperature overnight and then the fridge at 4°C for 1 day prior to
494  DNA extraction. The standard procedure was used as outlined in the PAXgene blood DNA
495 kit handbook. Resulting DNA was sequenced using the Pacific Biosciences (PacBio) Sequel
496  platform at Edinburgh Genomics, yielding a total of 13M reads and 109 Gbp, corresponding
497  to a genomic coverage of ~40X. In addition to long reads, the same animal was re-sequenced
498  using lllumina HiSeq X Ten paired-end short-read (PE-SR) sequencing, yielding 260Gbp

499  with an average insert size of 250bp, corresponding to a genomic coverage of ~80X.

500 A whole blood sample of the Ankole bull UG833 was collected in PAXgene DNA tubes from
501 afarm in Uganda, and DNA was extracted using the same protocol described for the N’Dama
502  sample. It was then sequenced by Dovetail genomics using the Pacific Biosciences Sequel
503  sequencing platform which yielded a total of 10M reads and 107Gbp, corresponding to a

504  genomic coverage of ~38X. the same animal was re-sequenced using Illumina HiSeq X Ten
505  paired-end short-reads, yielding 260Gbp with an average insert size of 250bp, corresponding
506 to agenomic coverage of 60X. Finally, OM samples were prepared starting from monocytes
507  using blood collected by jugular venupuncture into EDTA vacutainers. Following erthyrocyte
508 lysis monocytes were purified from the leukocytes using a positive selection MACS protocol
509  with an anti-bovine SIRPa. mono-clonal antibody (ILA-24 — Ellis et al. 1988). Agarose plugs
510 containing 5 x105 — 1x106 isolated monocytes were prepared using the Bionano Blood and

511  cell culture DNA isolation kit (Bionano Genomics, San Diego, US) according to the
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512  manufacturer’s instructions and the extracted DNA used for analysis on the Bionano Saphyr
513  platform. The procedure yielded 3.5M molecules with an N50 of 245.25 Kbp and spanning a

514  total length of 611Gb, corresponding to 120X haploid genomic coverage.

515  All protocols involving animals were approved prior to sampling by the relevant institutional
516  animal care and use committee (ILRI IACUC or Roslin Institute Animal Welfare Ethical
517  Review Body). All blood sampling was carried out by trained veterinarians, according to the

518  approved institutional protocols.

519 N’Dama assembly

520 Briefly, N’Dama long reads were assembled testing both the CANU (v1.8.0)%¢ and

521  FALCON-Unzip pipeline (v1.2.5)%, keeping the assembly with the highest contiguity. The
522  assembly generated with FALCON was retained due to presenting the highest contiguity and
523  polished twice using minimap2-mapped (v2.16-r922) 8 long reads and the racon (v1.4.3)
524  software3, and then further polished once using Pilon v1.23%° and the 80X of short reads.
525  After that step, contigs were aligned to the three high quality cattle reference genomes (ARS-
526 UCD1.2, UOA_Brahman_1, UOA_Angus_1 representative of Hereford*, Angus®* and

527  Brahman?, respectively) using SibeliaZ (v1.1.0)* and then scaffolded into chromosomes
528  with Ragout2 (v2.1.1)* allowing for the break of chimeras, and processing separately the
529  autosomes, mitogenome, X, Y and the remaining contigs (Supplementary Note 1). Briefly,
530 autosomes have been assembled using the complete set of polished contigs and considering
531  the autosomes from the Angus, Hereford and Brahman genomes as references. Then, we

532 identified the mitochondrial genome by aligning the unscaffolded contigs with the Hereford
533  mitogenome, and fixed misassemblies manually. The remaining unplaced fragments have
534  then been used to scaffold the sex chromosomes. By using the same set of contigs we tried to

535  a) overcome the limited number of reference sexual chromosomes available (X from
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536  Hereford and Brahman, and Y from Hereford and Angus) and b) address the pseudo-

537  autosomal regions. Then, fragments unplaced in both X and Y were collected and used to

538 identify the N’Dama specific sequences by comparing them to the remaining contigs from the
539 three reference genomes (for details on the reference-assisted scaffolding, see Supplementary

540 Note 1).

541  Following the generation of chromosomes, we proceeded with the gap filling through

542  LR_GapCloser (v1.1)*, using the PacBio long reads and performing three mapping and

543 filling iterations with chunks of 300 bp. Finally, the assembly has been polished five times
544  using Illumina PE-SR and the Pilon v1.23 software. By keeping tracks of the changes

545  introduced by each polishing it was possible to define at which step to freeze the genome
546  version. Resulting assembly statistics are show in Error! Reference source not found.

547  Table 1: after the scaffolding, there was a minor reduction of the contig N50 due to some
548  contigs being found to be chimeric and, therefore, fragmented at the breakpoints. However,
549  gap filling and subsequent polishing increased the N50 of the contigs to >10Mb, confirming
550  the high contiguity of the assembly. Scaffold N50 and L5 are 104,847,410bp and 11,

551  respectively. Several quality metrics have been collected, such as BUSCO (v3.0.2)%

552  completeness scores, QUAST (v5.0.2)%8 evaluations, Merqury (v1.1)%" quality values (QV)
553 and FRC_Align (v1.3.0)* to identify the candidate misassembled regions. Key metrics (N50,
554  L50, longest contigs, number of contigs, GC content, BUSCO scores) have been represented
555 as SnailPlots using BlobToolKit (v2.3.3)*. Details of the assembly, with all the steps

556  performed, is reported in Supplementary Note 1.

557  Ankole assembly

558  The Ankole long reads were assembled using both the WTDBG2 (v2.3) ultra-fast assembler*®

559  and CANU?Z®, Both sets of contigs were polished twice using minimap2-mapped long reads
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560 and the wtpoa-cns software®. Then, to overcome the differences that can be produced by the
561  two assemblers, contigs from both software were joined using quickmerge*® (v0.3;

562  parameters -hco 15.0 -¢ 5.0 -1 2,500,000 -ml 50,000). This generates a set of contigs with a
563  four-fold improvement in contiguity. The scaffolding step was performed on this set of

564  molecules using the OM data and the Bionano Solve assembly and hybrid scaffolding

565  pipelines, which has the additional advantage of detecting and fixing eventual chimeras

566 introduced by the assemblers and quickmerge pipelines.

567  Following the generation of chromosomes we proceeded with the gap filling through

568 LR_GapCloser®, using the PacBio long reads and performing three mapping and filling
569 iterations with chunks of 300 bp. The gap filled assembly was polished 5 times using

570  Illumina PE-SR and the Pilon software (v1.23). The same metrics collected for the N’Dama
571  assembly have been used to freeze the genome version. Several quality metrics have been
572  collected, such as BUSCO? completeness scores, QUAST?® evaluations, Merqury?’ quality
573  values (QV) and FRC_Align® to identify the candidate misassembled regions. Key metrics
574  (N50, L50, longest contigs, number of contigs, GC content, BUSCO scores) have been

575  represented as SnailPlot using BlobToolKit*. Details of the assembly, with all the steps

576  performed, is reported in Supplementary Note 2.

577 Genome alignment and comparison

578  We compared the five genomes by first generating multiple whole genome alignments

579 (MWGA) using CACTUS? (v2019.03.01, installed through bioconda). CACTUS is a

580 mWGA tool allowing reference-free comparison of multiple mammalian-sized genomes. The
581  software requires only the soft-masked genomes (soft-masking largely decreases the

582  computational time) and a phylogenetic tree defining the relationships among the genomes

583  analysed used to guide the alignments.
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584  We masked repetitive elements inside the assemblies using sequentially DustMasker (v1.0.0
585  from blast 2.9.0)*’, WindowMasker (v1.0.0 from blast 2.9.0)* and finally RepeatMasker
586  (v4.0.9, with trf v 4.09)*°. The reports generated by RepeatMasker on repetitive element
587  composition for the different sequences have been collected using an in-house script and
588  summarized in Supplementary Figure 2. Then, we generated a tree inclusive of the different
589 cattle breeds using mash (v2.2)% on a broader set of genomes, inclusive of water buffalo
590 (UMD_CASPUR_WB_2.0)%, goat (ARS1)%?, sheep (Rambouillet_1.0), horse (EquCab3.0)
591 and pig (SScrofa_11)% in order to achieve a more stable tree and extracting from that the
592  specific branch of interest.

593  Following the generation of alignments with CACTUS, we used a custom pipeline to detect
594  nodes that were not present in the Hereford genome, ARS-UCD1.2, considered as the

595 reference genome. We first used a custom python script and the libbdsg®* library to extract
596 the nodes not present in any Hereford paths. These nodes have then been screened for N-
597  mers, and then misassembled regions detected by FRC_Align® on the two de novo

598  assemblies here presented were discarded. Each node passing the filtering has been labelled
599  depending on which path it was found. We then combined regions that were less than 5bp
600  apart using bedtools (v2.30.0)%, and classified depending on their length (short if < 10bp,
601 intermediate if < 60bp and large if > 60bp), position (telomeric if within 20Kb from the end
602  of the chromosome and flanking a gap if with 1Kb of a N-mer), type of sequence (novel if >
603  95% of the bases in the region are not present in any Hereford node, haplotype otherwise).
604  We then added the proportion of masked bases in the regions generated. We the applied
605  multiple filtering to retain only the high quality novel contigs, keeping a region if 1)

606 classified as large, 2) consisting of more than 50% novel bases, 3) not telomeric, 4) not

607  flanking a gap and 5) not significantly enriched for repetitive elements (retained a region if

608  Bonferroni-corrected P-value > 8e-7) when compared to the average number of soft-masked
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609  bases in the autosomal sequences by calculating a z-score (54 % of masked bases). Finally,
610  we reduced the complexity of the contigs by overlapped the sequences with minimap2,

611  converting the alignments into blast tabular format and detected the most likely unique

612  sequences by a custom script. Briefly, we considered all alignments with >99% identity as
613  referring to the same sequence, and only if each alignment spanned 95% of the total length of
614  the shortest contigs involved. For example, an alignment of 296bp with identity of 99.5%
615 between contigl (1,000bp) and contig2 (300bp) would be considered, and only contigl

616  would be kept for downstream analyses.

617 Intersections between the different genomes have been visualised using the SuperExactTest
618  package®®. Motif enrichment was computed using HOMER (4.10.4)°” on the novel sequences
619 using all the genomes pooled together as background. Finally, sequences were characterized
620  for gene content.

621  The proteins prediction was performed three ways: 1) using Augustus®® (v.3.3.3) on the novel
622  sequences with default parameters; 2) using Augustus (v3.3.3) on the sequences with 100bp
623  flanking regions included; and 3) aligning the sequences using DIAMOND (v2.0.6)%°

624 BLASTX to a database consisting of proteins from UniProtDB, SwissDB and 9 ruminants
625 (taxaid 9845) RefSeq genomes downloaded from NCBI (GCF_000247795.1,

626 GCF_000298355.1, GCF_000754665.1, GCF_001704415.1, GCF_002102435.1,

627 GCF_002263795.1, GCF_002742125.1, GCF_003121395.1, GCF_003369695.1). Predicted
628  proteins have been extracted through a custom python script and were aligned using

629 DIAMOND®® BLASTP to the same protein database previously described. We considered a
630  high-confidence protein structure if the three methods consistently predicted the same

631  complete protein structure, inclusive of start and stop sites.

632  The full pipeline, including the custom scripts used to generate all outputs, is accessible on

633  GitHub (https://github.com/evotools/CattleGraphGenomePaper/tree/master/detectSequences).
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634 Linear expanded genome

635 Due to memory and computational constrains, we could not use the full mMWGA to generate
636 the set of vg indexes required to align and process short-read sequencing to a graph. Instead,
637  we used autosomal chromosome-by-chromosome alignments of the five assemblies to

638  generate a graph genome that can be successfully indexed with the vg*? software allowing us

639 to align reads and perform variant calling.

640  We generated a linear expanded genome with the purpose of providing an easy to use,

641  expanded version of the cattle reference genome that is also easy to implement in current best
642  practice pipelines. We extracted all nodes not present in the linear Hereford genome, but that
643  were found in the other 4 assemblies considered using libbdsg (v0.3)%*. Nodes were then

644  labelled based on the genome in which they were found (i.e. a node can be from 1 to 4

645  different assemblies). The nodes were then trimmed for N-mers, and regions overlapping a
646  candidate misassembled region in the N’Dama or Ankole genome were excluded. We then
647  combined the regions if they were less than 5bp apart using bedtools, and then labelled the
648  regions depending on their proximity to a gap (less than 1000bp from a gap) or to a telomere
649  (10Kb from the end of a chromosome or scaffold >5Mb long), classified them based on their
650 length (short if <10bp, intermediate if between 10 and 60bp and long if >60bp) and whether
651 they were haplotypes (<95% of the bases coming from a non-reference node) or novel

652 (>=95% of the bases coming from a non-reference node). We retained all long regions

653  (<60bp), those not at telomeres and not flanking a gap. Finally, we excluded all regions that
654  were too repetitive in comparison to the autosomes in the different genomes and sequences
655 that were too similar, retaining only the largest of the two. For details of the selection of the

656 NOVEL set of contigs, see section “Genome alignment and comparison” in Materials and
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657  Methods. This generated a final set of contigs that, once combined with ARS-UCD1.2,

658  formed the final extended linear pangenome (ARS-UCD1.2+).

659 Graph Genome

660  Comparatively few pieces of software capable of handling large genomes and graphs are

661  currently available. Two in particular prove to be particularly promising: the vg tools'? and
662  Seven Bridges graph genome pipelinest!. In the current study we chose to apply the vg

663  pipeline, which is able to call structural variants detected through multiple assembly

664  comparisons. This is also supported by recent studies that have proven graph alignments to be
665  superior in performance when alignments were generated through a reference-free

666  comparison®,

667  The cactus alignments were converted to a vg graph using hal2vg (v2.1)

668  (https://github.com/ComparativeGenomicsToolkit/hal2vg), dropping the ancestral genomes,

669 referencing to the Hereford assembly and processed as recommended on the vg wiki page
670 (VGb). We also generated second and third graphs with more and no diversity, respectively.
671  To create the second graph, hereon called VG5p, we added >11M short variants from 294
672  worldwide cattle? to the VG5 graph through the ‘vg add’ command. To create the third
673  graph, we simply provided the linear ARS-UCD1.2 genome to ‘vg construct’ specifying the
674  VCF with the 11M variants described in Dutta et al. (2020) 23(VG1p). To create the fourth
675 and last graph, we simply provided the linear ARS-UCDI1.2 genome to ‘vg construct’,

676  without specifying any source of variation, and ultimately generating a graph representation
677  of this single linear genome (VG1). The script used to generate the graphs are available on

678  GitHub (https://github.com/evotools/CattleGraphGenomePaper).

679  We evaluated the performances of the graph genomes in two ways. We aligned to a variant-

680  free linear graph based on the Hereford genome using vg (VG1). We also aligned and called
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681  variants using the standard BWA-HaplotypeCaller (bwa v 0.7.17; GATK v4.0.11.0)%162 and
682 BWA-FreeBayes (FreeBayes v 1.3.1-16-g85d7bfc-dirty)?° pipelines on the ARS-UCD1.2
683  genome.

684  All the graphs were generated using vg version 1.20.0. Short reads processing was performed
685  using vg v1.22.0. Despite the change of version, the graphs generated in the version 1.20 can
686  be used also in the next releases. All the script used for the analyses were generated through

687  bagpipe (https://bitbucket.org/renzo_tale/bagpipe/src/master/).

688  Reads for the nine samples of three different breeds (Angus, Nigerian N’Dama and Pakistani
689  Sahiwal) with a similar coverage (~30-50X) were considered for the analyses. Six of the nine
690  samples were novel to this study with the three Angus taken from databases®364

691  (Supplementary Table 13). Whole blood for the three novel N’Dama samples was collected
692 into PAXgene tubes, and DNA was extracted through the standard procedure as outlined in
693  the PAXgene blood DNA kit handbook. Whole blood for the three novel Sahiwal samples
694  was collected into EDTA tubes, and DNA was extracted through the standard procedure as
695  outlined in the TIANamp Blood DNA Kithandbook (TIANGEN Biotech Co. Ltd, Beijing).
696  Samples were then sequenced on a Illumina HiSeq X Ten at the Edinburgh Genomics

697  sequencing facility. Samples were aligned using the guidelines reported in the vg GitHub
698  wiki page, and implemented in the bagpipe pipeline

699  (https://bitbucket.org/renzo tale/bagpipe/src/master).

700  Bionano optical mapping

701  We generated ~100X OM data for two Kenyan N’Dama samples, one of which was an
702  offspring of the assembled individual. Blood was collected by jugular venupuncture into
703  EDTA vacutainers. Following erthyrocyte lysis, monocytes were purified from the

704 leukocytes using a positive selection MACS protocol with an anti-bovine SIRPa mono-clonal
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705  antibody (ILA-24 — Ellis et al. 1988). Agarose plugs containing 5x105 — 1x106 isolated
706  monocytes were prepared using the Bionano Blood and cell culture DNA isolation kit

707  (Bionano Genomics, San Diego, US) according to the manufacturer’s instructions and the
708  extracted DNA used for analysis on the Bionano Saphyr platform. Resulting reads were
709  processed through the Bionano Solve pipeline (v3.3_10252018, refAligner v7915.7989rel).
710  We then converted the resulting outputs to vcf through smap_to_vcf v2.py. Then, we

711  converted all non-translocation SVs into bed format expanding the initial and end positions
712  defined by the Bionano Solve pipeline with the largest values defined by the confidence
713  interval, and then added an additional kilobase to account for the resolution of OM data and

714 uncertainty in the positions inherent in OM.

715  After generating bed intervals for each of the two individuals, we concatenated the bed files,
716  sorted them, combined them through bedtools merge and, finally, retained the regions

717  mapped on an autosomal region.

718  Benchmarking the graph

719  To evaluate the performances of the graph genomes we collected different metrics, which can

720  be split into two categories: a) read-based metrics and b) variant-based metrics.

721  The first category includes the number of reads mapped to the genomes by the different

722  algorithms, and how many of the reads called by vg are perfectly mapped.

723  The second category includes metrics based on the variants called, including number of

724 variants identified, depth of sequencing, transitions/transversions rate and allelic balance (i.e.
725  the ratio of reads supporting the reference and the alternate allele used for the variant calling).
726  These metrics have been computed for different variant lengths to see how the callers

727  perform with different types of variants, using the script available on GitHub
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728  (https://github.com/evotools/CattleGraphGenomePaper). The analyses have been carried out

729  considering a) the variants present in the given graph as known and all other as novel, and b)

730 the 11M variants as the set of known variants and all the other as novel.

731  After gathering overall metrics, we focused our attention on large structural variants called by
732 vgon the VG5p graph, since these are the hardest to genotype with current broadly adopted
733  methods. First, we combined variants across the nine samples using bcftools (v1.10) merge,
734 and checked how many overlapped with OM signals detected on two N’Dama samples.

735  Although being called for two different samples than the N’Dama sequenced, it can still

736  provide insights into N’Dama-shared variants not present in the current linear genome. We
737  assessed the significance of the overlap by randomly selecting 10,000 times regions of the
738  same sizes as the detected ones and overlapped them with the OM data to estimate a Z-score.
739  We defined the size of a structural variant as equal to the size of the reference allele. Also, we
740  checked whether the size distribution of indels in genes shows a higher number of in-frame
741  than out-of-frame variants (i.e. insertions and deletions of size multiple of 3 versus rest).

742  Second, we checked if the structural variants called for the different breeds overlapped

743  differently with the OM data to assess whether individuals genetically closer to the two

744  N’Dama genotyped with OM have a proportionally higher number of overlaps between

745  graph-based and OM structural variants.

746  Third, we investigated high-quality, group-specific large structural variants identified by vg.
747  We iteratively intersected individuals of a target breed with samples of the other two breeds
748  using bcftools isec, retaining a variant if found only in the target individual (e.g. we intersect
749  Angusl with Sahiwall; then, we keep the specific variants for Angusl, and intersect it with
750  Sahiwal2, and so on). Then, samples of the same breed are combined with bcftools merge,
751  that kept all variants found in at least one animal of the same breed. Then, we retained a

752  variant if they had high quality (QUAL > 30), depth of sequencing close to the expected
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753  value (20 < DP < 90) and allowing no missingness and with sufficient evidence for the

754  alternate allele (non-reference allele count >= 5). Finally, we focused on variants with length
755  >500bp in order to keep the results comparable with the OM and allowing direct comparison
756  with the N’Dama samples.

757  We compared the structural variants from the graph with the ones called from Delly2

758  (v0.8.5)*. Variants called by Delly2 for each individual with no soft-filter and high quality
759  (QUAL > 30) were retained. Individuals’ SVs of the same type were combined using

760 SURVIVORS®® (v1.0.7), allowing 100bp of distance between break points, not accounting for
761  the strand, retaining only SV longer than 500bp and excluding translocations. These were
762  then intersected with the OM regions. We also combined the samples of the same breed as
763  done for the graph genome, retaining variants with no missingness and sufficient support for
764  the alternative allele (non-reference allele count > 5), dropped translocations and finally,
765 intersected with the regions from the OM analysis.

766  Finally, we compared SVs called from Delly and VG5p based on their type (insertions,

767  deletions, inversions and duplications). This approach, though more consistent, comes with
768 limitations since the different callers call different types of SV: VG5p can only call

769  insertions, deletions and complex SV, with the latter inclusive of inversions and more

770  complicated rearrangements (e.g. a substitution and a deletion at the same site); Delly can
771  call only precise deletions, duplications and inversions; finally, the OM can call insertions,
772  deletions, inversions and duplications. SVs called from VG5p were first broken into single-
773 allele variants using vcfbreakmulti from vcflib (v1.0.1)% annotated using vcf-annotate --fill-
774  type from the vcftools library®’; the variants were then split by annotated type, multiallelic
775 SV recombined with vcfcreatemulti and converted to BED format using SnpSift® and a

776  series of custom scripts. Delly variants were separated based on the alternate allele field into

777  separate SVs, and similarly SVs from OM were split by the SVTYPE annotated field.
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778  Insertions and deletions from VG5p were then intersected using bedtools (v2.30.0) with
779  insertions and deletions from OM, respectively. Analogously, deletions, duplications and
780 inversions from Delly were intersected with the same categories from OM data using
781  bedtools (v2.30.0). Resulting unique SVs were combined and counted as number of

782  consistent, overlapping SV.

783  ATAC-seq data processing

784  Illumina paired end reads for B-cells of three samples (1 Holstein-Friesian, 1 N’Dama and 1
785  Nelore) were generated using Illumina HiSeq X Ten at the Edinburgh Genomics facility.

786  Details on the preparation of the DNA libraries can be found in Supplementary Methods 1. In
787  addition to the three samples, one nucleosome-free DNA sample was processed to identify
788 and exclude false positives. All read accession numbers are listed in Supplementary Table 13.
789  We processed paired-end reads as follow: we first trimmed the reads, extracting only the

790 paired ones with length >=36bp using trim_galore (v0.6.3)%°. As a spike-in of mouse cells
791  had been used in these samples trimmed reads were aligned to the target genome

792  concatenated with the mouse genome GRCm38 using bowtie2 (v2.3.1) and only one mapping
793  per read was saved in order to account for repetitive elements (parameters -X 1000 --very-
794  sensitive). Reads aligned to the mouse genome and mitogenome were excluded with samtools
795  and peaks were called using Genrich (v 0.5_dev, parameters: -j -r -e MT -v). The full pipeline
796  to process the samples was generated using bagpipe

797  (https://bitbucket.org/renzo_tale/bagpipe/src/master). We also compared the effect of using

798  only uniquely mapped reads when peak calling. We aligned the reads as previously described
799 to ARS-UCD1.2 and ARS-UCDL1.2+, and then retained only reads uniquely mapped using
800  Sambamba (v0.5.9; command view -h -f sam -F "[XS] == null and not unmapped and not

801  duplicate").
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802  We called peaks on all five linear assemblies and ARS-UCD1.2+ separately. For each

803  sample, we excluded peaks overlapping a peak in the nucleosome-free DNA sample for more
804  than 50% of their length (bedtools subtract -A -f 0.5), which were considered as false positive
805  peaks. We then calculated the Q-scores for each peak using the Benjamini-Hochberg

806  correction, setting the number of independent tests to the theoretical size of the cattle genome
807  (2.7Gb). For each region, we also checked which one did not overlap a masked region in the
808  respective assembly for at least 40% of its length.

809  Heatmaps have been created using Deeptools (v3.5.1)7° with the aligned reads as inputs, first
810 filtering out reads mapping to the mouse spike-in genome and then converting them to

811  bigWig using bamCoverage (options --minFragmentLength 35 --maxFragmentLength 150 --
812  normalizeUsing RPGC -bs 10 -e --effectiveGenomeSize 2779691414). The generated bigWig
813 files are then used as inputs to computeMatrix (reference-point mode with parameters -a 3000
814  -b 3000 --missingDataAsZero --skipZeros) using the ARS-UCD1.2 annotation (Ensembl

815  version 103) and the genes predicted by Augustus as annotations.

816 Data availability

817 DNA from Uganda was received under a license from the Uganda National Council for

818  Science and Technology (permit number A579). Long reads and short read data for the

819  Ankole assembly are available on ENA with project accession PRJEB39282. Long read and
820  short reads data for the N’Dama sample are available on ENA with project accessions

821 PRJEB39330 and PRJEB39334. Short read sequencing for the three Sahiwal and the three
822  N’Dama samples are publicly available on ENA with project accessions PRIEB39352 and
823 PRJEB39353, respectively. The N’Dama and Ankole assemblies have been deposited on
824  ENA with accession numbers GCA_ 905123515 and GCA_905123885, respectively. Output

825  for the analyses can be visualised in (BOmA)[www.bomabrowser.com/cattle].
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1013 Figures

1014  Figure 1. Principal component analysis of the 294 cattle, showing the positions of the

1015 populations of origin of the five assemblies considered in this study.
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Figure 2 — Snail plots of the N’Dama (NDA1) and Ankole (ANK1) genomes, showing key

metrics such as the longest scaffold (red vertical line), N50 (orange track), N90 (light orange

track), GC content (external blue track) and BUSCO scores (outer circular pie chart in green).

The region of elevated N content in the N’Dama assembly corresponds to a 5Mb gap in one

of the contigs matching a region of generalised low identity in all of the five assemblies

(Supplementary Figure 1). Even though this region contained an unfilled gap we observe that

the regions flanking the gap align to directly contiguous portions of the genome in other

assemblies, and therefore that the gap in this region is potentially smaller than represented
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Figure 3 — A) High-quality (NOVEL) sequence specific to, or shared among, each non-
reference genome. Numbers represents the kilobases of non-Hereford sequence associated
with the set of genomes defined by the group(s) highlighted in green. Each genome is
indicated by a number (1 = Ankole, 2 = Angus, 3 = Brahman and 4 = N’Dama); B) Multiple
genome alignments of the MHC region on chromosome 23 generated with AliTV (v1.0.6)"*.
The plot represents the shared sequences among the different genomes; green to red segments
are representative of higher to lower similarity (100 to 70% respectively); the enlarged region

is the MHC region, which shows a large amount of variation between the assemblies.

1: Ankole  3: Brahman
2:Angus  4:NDama
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1038  Figure 4 — Graph genome descriptions and their performances. A) a cartoon representation of
1039 the four types of graph genomes considered (the linear VG1, VG1 expanded with 11M short
1040  variants (VG1p), the CACTUS VG5 graph and the CACTUS graph expanded with the 11M
1041  short variants (VG5p)). Regions indicated in blue are regions coming from the backbone
1042  sequence, those in grey are the short variants from Dutta et al (2020), and in yellow the variants
1043  derived from the CACTUS graph; B) the percent enrichment of reads mapped by vg (primary
1044  axis) using the different graphs over the bwa mem linear mapper; and C) the allelic balance for
1045 the linear callers FreeBayes and GATK HaplotypeCaller compared with vg call, showing how
1046 the latter reduces the allelic bias for large variants. For other versions of this plot looking at
1047  different sets of known and novel variants see Supplementary Note 3; and D) the intersection
1048  of structural variants longer than 500bp called using the VG5p graph (blue), Delly V2 (green)
1049 and the Bionano optical mapping (orange), showing how most variants called with vg are also

1050  confirmed using one of the other methods.
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Figure 5 — Example of an insertion relative to the Hereford reference detected A) in both
Kenyan N’Dama OM samples as represented by an increase in the distance between labels
(vertical lines) on each bionano haplotype (blue rectangles) over that expected given the labels’
in silico locations in the Hereford reference (green rectangle). B) This SV was identified as
homozygous in all three Nigerian N’Dama resequenced genomes when called against the graph
genome. C) A Bandage’? representation of the graph genome in this region showing the large

structural variant (blue loop) in the Hereford genome (grey line).
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1061  Figure 6 — ATAC-seq analyses results A) Enrichment or depletion of the number of ATAC-
1062  seq peaks called in the different assemblies with respect to the number called in ARS-UCD1.2,
1063  showing more peaks were called using the expanded ARS-UCD1.2+ genome in all samples;
1064  and B) showing the enrichment around the TSS of both the ARS-UCD1.2 annotated genes (left

1065 three heatmaps) and of the 923 features predicted by Augustus in the novel contigs (right).
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1068 Tables

1069  Table 1 — Sequence contribution from the two African genomes. The table shows the amount
1070  of sequences from non-ARS-UCD1.2 genomes, and how much the two novel assemblies from

1071  African breeds contribute to the numbers.

lJAngus lAnkole Brahman N'Dama Total

#nodes 6,188,973 14,994,500 14,627,206 10,338,166 29,315,173

Non-reference nodes
(total) bp 46,066,551 118,203,105 60,100,791 87,792,217 257,235,506
#nodes 5,823,611 11,262,561 13,362,852 8,832,454 23,599,013

Non-reference nodes
(autosomes) bp 17,903,582 41,317,786 39,647,314 25,806,882 76,660,696
#nodes 285,307 780,815 705,024 494,781 1,008,401

Filtered non-reference
nodes (total) bp 4,612,021 12,486,639 12,023,827 6,760,434 15,491,621
#nodes 198,393 429,652 443,737 313,670 571,123

Filtered non-reference
nodes (autosomes)  bp 3,290,022 7,093,645 7,435,063 4,595,327 9,046,464
Number of contigs 2,250 5,058 6,387 2,970 16,665
Length (total) 3,274,775 4,508,339 10,507,420 2,246,905 20,537,439
Length (min) 61 61 61 61 61
Length (max) 92,590 34,789 103,683 29,488 103,683
Length (mean) 1,455.00 891.00 1,645.00 757.00 1,232.37
Final set of contigs Length (std) 5,177.00 1,990.00 4,957.00 1,885.00 3,875.06
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1074  Supplementary Material captions
1075  Supplementary Table 1 — Quality metrics for the N’Dama genome at the different stages of the

1076  assembly.

1077  Supplementary Table 2 — Quality metrics for the Ankole genome at the different stages of the

1078  assembly.

1079  Supplementary Table 3 — Motif enrichment analysis of the 20M high-quality novel sequences

1080 discovered from the 4 non-Hereford assemblies, using the five genomes as background.

1081  Supplementary Table 4 — Putative novel genes discovered in the NOVEL sequence using the
1082  three approached described in the Materials and Methods (Augustus, Augustus on the

1083  sequences with 100bp flanking added and using BLASTX)

1084  Supplementary Table 5 — Nodes (i.e. fragments of sequence), edges (connections between

1085 nodes) and lengths for the four graph genomes generated using VG.

1086  Supplementary Table 6 — Alignment metrics using bwa, a linear VG graph (VG1), a linear VG
1087  graph expanded with 11M variants from Dutta et al (2020; VG1p), a CACTUS-derived graph
1088  with 5 assemblies (VG5) and using a CACTUS-derived graph with 5 assemblies expanded

1089  with the 11M variants from Dutta et al. (2020; VG5p).

1090  Supplementary Table 7 — Number of structural variants detected using the VG5p graph on all
1091 samples and those specific to the different breeds, with the number of overlaps with variants
1092  from optical mapping in comparison of 10,000 random regions of equal size and respective P

1093  values.

1094  Supplementary table 8 — Number of structural variants from the VG5p graph longer than 500

1095 bp and those overlapping an optical mapping SV.

1096  Supplementary Table 9 — Number of structural variants discovered using DellyV2 at the

1097  different filtering stages.
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1098  Supplementary Table 10 — Number of ATAC-seq reads mapped to the different linear, breed-
1099  specific genomes and to the expanded linear Hereford genome (ARS-UCD1.2+), with the

1100 relative improvement in the latter in comparison with the standard Hereford genome.

1101  Supplementary Table 11 — Peaks called using the different linear, breed-specific assemblies
1102  and the expanded linear Hereford genome (ARS-UCD1.2+), with the number of peaks after
1103  excluding the signals in common with the nuclease-free peaks and the number overlapping a

1104  predicted gene from Augustus.

1105  Supplementary Table 12 — List of genes predicted by Augustus and histogram of their sizes.
1106  Supplementary Table 13 — List of samples used in the study, with their associated accessions.
1107

1108  Supplementary Figure 1 — Alignment of chromosome 12 of the five assemblies, showing the

1109  gap in the N’Dama genome is a high-complexity region across the assemblies.

1110  Supplementary Figure 2 — Repetitive elements composition in the five assemblies calculated

1111  using RepeatMasker, showing the similar compositions of the five genomes.

1112 Supplementary Figure 3 — Alignments generated by minimap2 over the whole chromosome

1113 23, showing the MHC region as a drop in alignment identity in all the assemblies.

1114  Supplementary Figure 4 — Allele size distribution in intergenic and intragenic portions of the
1115  genome, showing how in-frame indels from the graph were more common than other coding

1116  indels, consistent with selection disproportionately removing frameshift changes.
1117

1118  Supplementary Note 1 — In-depth description of the N’Dama assembly process, with detailed

1119  metrics and processes

1120  Supplementary Note 2 — In-depth description of the Ankole assembly process, with detailed


https://doi.org/10.1101/2021.06.23.449389
http://creativecommons.org/licenses/by/4.0/

1121

1122

1123

1124

1125

1126

1127

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.23.449389; this version posted June 23, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

metrics and processes

Supplementary Note 3 — Collection of figures describing the quality metrics of variants called
using FreeBayes, GATK4, VG on a linear graph (VG1), VG on a graph with 11M variants
from Dutta et al 2020 (VG1p), VG on a CACTUS-derived graph incorporating 5 different

assemblies, VG on the VG5 graph expanded with the 11M variants included in VG1p (VG5p).

Supplementary Methods 1 — Detailed description of the preparation of the ATAC-seq samples.
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