

1 **Genomic prediction with allele dosage information in highly polyploid species**

2 **Lorena G. Batista, Victor H. Mello, Anete P. Souza, Gabriel R. A. Margarido***

3

4

5 L. Batista: “Luiz de Queiroz” College of Agriculture, University of São Paulo,
6 Piracicaba, SP, 13418-900, Brazil. <https://orcid.org/0000-0001-8472-8776>

7

8 V.H. Mello: “Luiz de Queiroz” College of Agriculture, University of São Paulo,
9 Piracicaba, SP, 13418-900, Brazil. <https://orcid.org/0000-0003-1014-7762>

10

11 A.P. Souza: Center of Molecular Biology and Genetic Engineering, University of
12 Campinas, Campinas, SP, 13083-970, Brazil. <https://orcid.org/0000-0003-3831-9829>

13

14 G.R.A. Margarido*: “Luiz de Queiroz” College of Agriculture, University of São Paulo,
15 Piracicaba, SP, 13418-900, Brazil. <https://orcid.org/0000-0002-2327-0201>

16

17

18 * Corresponding author: +55 19 3429 4125 #44 gramarga@usp.br

19

20 **Abstract**

21
22 Several studies have shown how to leverage allele dosage information to improve the
23 accuracy of genomic selection models in autotetraploids. In this study we expanded the
24 methodology used for genomic selection in autotetraploids to higher (and mixed) ploidy
25 levels. We adapted the models to build covariance matrices of both additive and digenic
26 dominance effects that are subsequently used in genomic selection models. We applied
27 these models using estimates of ploidy and allele dosage to sugarcane and sweet potato
28 datasets and validated our results by also applying the models in simulated data. For the
29 simulated datasets, including allele dosage information led up to 140% higher mean
30 predictive abilities in comparison to using diploidized markers. Including dominance
31 effects was highly advantageous when using diploidized markers, leading to mean
32 predictive abilities which were up to 115% higher in comparison to only including
33 additive effects. When the frequency of heterozygous genotypes in the population was
34 low, such as in the sugarcane and sweet potato datasets, there was little advantage in
35 including allele dosage information in the models. Overall, we show that including
36 allele dosage can improve genomic selection in highly polyploid species under higher
37 frequency of different heterozygous genotypic classes and high dominance degree
38 levels.

39

40 **Keywords:** Autopolyploids, genomic selection, allele dosage, dominance, Sweet
41 Potato, Sugarcane

42

43 **Declarations**

44

45 **Funding**

46 This study was supported in part by the Brazilian National Council for Scientific
47 and Technological Development (CNPq) and in part by the Coordenação de
48 Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001

49 **Conflict of interest**

50 The authors certify that they have no affiliations with or involvement in any
51 organization or entity with any financial or non-financial interest in the subject matter or
52 materials discussed in this manuscript.

53 **Availability of data and code**

54 The sugarcane and sweet potato datasets as well as the code for obtaining
55 genomic covariance matrices of additive and digenic dominance effects can be found on
56 the github repository https://github.com/Lorenagb/GS_HighlyPolyploid. The code for
57 generating all four simulated datasets can also be found on the same github repository.

58 **Authors Contributions**

59 LGB, APS and GRM conceived the study. APS provided the genotyping by
60 sequencing raw read data for the sugarcane population. LGB and VHM performed the
61 SNP calling in the sugarcane and sweet potato datasets. LGB expanded and
62 implemented the genomic selection models and designed the plant breeding program
63 simulations. All authors read and approved the manuscript.

64

65 **Introduction**

66 Polyploids are organisms with more than two sets of chromosomes. The number
67 of sets of chromosomes in an organism is named its ploidy level. Polyploids are
68 classified into two major categories of auto and allopolyploids. Allopolyploids result
69 from the combination of distinct parental genomes and are characterized by preferential
70 pairing of chromosomes, with bivalent chromosome formation in meiosis and disomic
71 inheritance at each locus. In contrast, autopolyploids have more than two homologs per
72 homology group, often leading to the formation of multivalent chromosomes and
73 polysomic inheritance (Soltis and Soltis, 2000).

74 Many economically important species are autopolyploids. Among these, a high
75 ploidy level (>4) is observed in a number of species such as sweet potato, sugarcane,
76 and some ornamental flowers and forage crops. Sweet potato, an autohexaploid, is the
77 fourteenth most important food crop in the world regarding production volume
78 (FAOSTAT, 2020), and sugarcane, with ploidy levels ranging up to 16 (Garcia *et al.*
79 2013), accounts for 80% of the worldwide sugar production (CIRAD) and has
80 potential to become the main crop for bioenergy production. The main bottleneck in
81 breeding programs for these species is the long process for selection of cultivars. A
82 traditional sugarcane breeding program is usually divided in several phases of
83 selection, each consisting of large experiments that are usually conducted for more
84 than one crop cycle (Cheavegatti-Gianotto *et al.* 2011; Zhou 2013), taking up to 12
85 years from the initial crosses until commercial cultivar release (Park *et al.* 2007).
86 Sweet potato breeding programs follow a similar breeding scheme, with selection of
87 cultivars taking up to 10 years (Katayama *et al.* 2017). In this context, there is a
88 pressing need for the deployment of strategies to reduce experimental costs and time
89 for selection of cultivars.

90 Genomic selection is a viable way of achieving improvement in breeding
91 programs in terms of time and costs (Heffner *et al.* 2009). Genomic selection consists
92 of using a representative population that is both genotyped and phenotyped (i.e., the
93 training population) to predict the effect of genetic markers widely spread throughout
94 the genome. The predicted effects are then used to predict the breeding or genotypic
95 value of genotyped individuals (Meuwissen *et al.* 2001). This allows selection to be
96 carried based on predicted breeding values, reducing the need for further costly
97 phenotypic evaluations and shortening the time needed for selection of the best
98 genotypes. Genomic selection has been successfully implemented in several crop

99 breeding programs (Bernardo and Yu 2007; Heffner *et al.* 2009; Crossa *et al.* 2010;
100 Resende *et al.* 2012; Duhnen *et al.* 2017) and can potentially increase genetic gain in
101 sugarcane breeding programs (Voss-Fels *et al.* 2021; Hayes *et al.* 2021). Although
102 genomic selection can greatly improve breeding programs, its implementation
103 demands a relatively large set of genetic markers to be consistently obtained at
104 feasible costs, a process which is hindered in complex genomes such as those of
105 highly autopolyploid species.

106 Due to the complexity of their genomes, genetic studies in autopolyploid species
107 were historically mostly carried using either dominant or diploidized markers (Dufresne
108 *et al.* 2014), that is, polymorphisms that are either detected in a presence/absence
109 fashion or polymorphisms where all heterozygous genotypes are collapsed into a single
110 class. When using only dominant or diploidized markers, information on the different
111 categories of heterozygous genotypes is effectively lost. However, several new tools are
112 now available that allow estimating the allele dosage (i.e., the quantitative genotypes) of
113 markers (Serang *et al.* 2012; Blischak *et al.* 2018; Gerard *et al.* 2018; Clark *et al.* 2019),
114 and information of all possible genotypic classes can now potentially be used in
115 genomic studies of polyploids.

116 In autotetraploids, several studies have shown how to leverage allele dosage
117 information to improve the accuracy of genomic selection models (Slater *et al.* 2016,
118 2016; de Bem Oliveira *et al.* 2018; Hawkins and Yu 2018; Endelman *et al.* 2018;
119 Amadeu *et al.* 2020). However, to our knowledge no studies so far have expanded these
120 methodologies to specifically address organisms with higher ploidy levels. In this paper,
121 we generalize genomic selection models used in autotetraploids and assess the accuracy
122 of genome-wide prediction when incorporating allele dosage information in sugarcane
123 and sweet potato datasets, two highly autopolyploid species. In order to validate our
124 results, we also assess the accuracy of prediction in four simulated datasets.

125 **Material and Methods**

126 **1. Genetic material and field experiments**

127 The sugarcane dataset consisted of a segregating F₁ progeny of 179 individuals
128 derived from the crossing of two commercial cultivars, IACSP95-3018 (female) and
129 IACSP93-3046 (male). The first field experiment was set in Sales de Oliveira, SP,
130 Brazil, in 2007. A randomized complete block design with four replicates was used and
131 evaluations were carried in the harvest years of 2008 (plant cane) and 2009 (ratoon)

132 cane). The full-sib progeny was then clonally propagated for the second field
133 experiment that was set in Ribeirão Preto, SP, Brazil, in 2011. A randomized complete
134 block design with three replicates was used and evaluations were carried in 2012 (plant
135 cane), 2013 and 2014 (ratoon cane). Both parents were included in each block of the
136 two experiments. All replicates were used to collect phenotypes for stalk diameter (cm),
137 stalk height (cm) and stalk weight (kg) in both experiments. Also, two blocks in each
138 experiment were used to collect phenotypes for soluble solids content (Brix), sucrose
139 content and fiber percentage.

140 The sweet potato dataset consisted of phenotypic records on 282 accessions of
141 *Ipomoea batatas* made available by Jackson *et al.* (2018), which are part of a broader
142 group of 731 accessions randomly selected from the USDA germplasm bank in Griffin,
143 Georgia, United States. These materials have origin in more than 30 countries in eight
144 geographic regions (Africa, Australia, Caribbean, Central America, East Asia, North
145 America, Pacific islands and South America). The accessions were planted in field trials
146 and phenotyped in the years 2012, 2013 and 2014. In this study, we only used
147 phenotypic data from the stele colorimetry analysis. The stele colorimetry data included
148 values of the green-red coordinate (**a**), the yellow-blue coordinate (**b**), colour saturation
149 (**C**), lightness (**L**), and hue angle (**h**).

150 **2. Genotyping**

151 For the sugarcane population, parents and F₁ progeny were genotyped using the
152 genotyping-by-sequencing protocol of Elshire *et al.* (2011). Reduced representation
153 libraries were prepared using the PstI restriction enzyme. PstI is a rare-cutting enzyme,
154 because its restriction site has a length of 6 bp, allowing a higher genotyping depth
155 (Poland and Rife 2012). Four lanes containing 96-plex libraries were sequenced using
156 the Illumina GAIIx and, subsequently, another four lanes with the same 96-plex
157 libraries were sequenced using the Illumina NextSeq500 platform.

158 The genotyping-by-sequencing protocol used for the sweet potato accessions is
159 described by Wadl *et al.* (2018), where a modified genotyping-by-sequencing protocol
160 optimized for highly heterozygous and polyploid genomes was used (GBSpoly). They
161 used a combination of *Cvi*AII and *Tse*I restriction enzymes for preparing the libraries
162 (restriction sites with 4 and 5bp, respectively). Libraries were multiplexed with 96
163 pooled samples. In this study, we used the raw read data the authors in Wadl *et al.*
164 (2018) made available in the NCBI database with accession code SRP152827.

165 For the sugarcane dataset, we called variants using a modified version of the
166 TASSEL-GBS pipeline (Pereira *et al.* 2018). This version provides exact read counts of
167 the alleles at each SNP locus. We used default values in all plugins of the pipeline,
168 except for the MergeDuplicateSNPs plugin, in which we used the argument *callHets*
169 and set the *misMat* argument value to 0.3. These values were chosen to allow a greater
170 number of heterozygous SNP loci to be kept in subsequent steps. The sequenced reads
171 were then aligned to the methyl-filtrated assembly of the sugarcane genome (Grativil *et*
172 *al.* 2014), using the software Bowtie2 (Langmead and Salzberg 2012).

173 The sweet potato raw reads were first aligned to the two ancestral reference
174 genomes *I. trifida* and *I. triloba* (Shiotani 1988; Oracion *et al.* 1990; Freyre *et al.* 1991)
175 using Bowtie2 (Langmead and Salzberg 2012). We then used the HaplotypeCaller tool
176 in the GATK software (version 4.1.4) to call SNPs, indels and copy number variants.

177 For both species we used the read count information of each SNP to estimate
178 their ploidy level and call sample genotypes using the software SuperMASSA and
179 VCF2SM (Serang *et al.* 2012; Pereira *et al.* 2018). For sugarcane, ploidy levels ranging
180 from two to 20 were evaluated and only SNPs with ploidy estimates between six and 14
181 were kept (Garcia *et al.* 2013). We also filtered for a minimum mean read depth per
182 individual of 50 reads, maximum mean read depth per individual of 500 reads,
183 minimum posterior probability of genotype configuration of 0.8, minimum posterior
184 probability of each genotype assignment of 0.5, and minimum call rate of 50%. For
185 sweet potato, ploidy levels ranging from four to eight were evaluated and only SNPs
186 with a ploidy estimate of six were chosen. We used a minimum mean read depth per
187 individual of 45 reads, maximum mean read depth per individual of 200 reads and the
188 remaining arguments were the same as for sugarcane.

189 We used the R package *updog* (Gerard *et al.* 2018) to reestimate the genotypes
190 of the SNPs that met the filtering criteria in both species. The *updog* package has the
191 advantage of accounting for allelic bias, overdispersion and sequencing errors when
192 estimating SNP genotypes, given a predetermined ploidy level. For sweet potato, SNP
193 sets resulting from the alignment with each of the reference genomes were merged, and
194 redundant SNPs (i.e., with identical genotype calls for all individuals) were removed.

195 Finally, we performed a chi-squared segregation test on the population genotype
196 class frequencies. For the sugarcane F₁ progeny, based on the estimates of SNP
197 genotypes in the parents, we tested the goodness-of-fit of marker genotypes to a
198 hypergeometric distribution of gametes (Mollinari and Serang 2015). For the sweet-

199 potato diversity panel we tested the goodness-of-fit of marker genotypes to the
200 distribution expected under Hardy-Weinberg equilibrium. Using the Bonferroni
201 correction, only SNPs with p -values greater than a 5% threshold were kept.

202 **3. Phenotypic mixed model analysis**

203 Adjusted phenotypic means (i.e., BLUEs - best linear unbiased estimates) for
204 each individual were obtained using a two-stage analysis (Damesa *et al.* 2017). All
205 analyses were performed using ASReml-R (Butler *et al.* 2009). Stage one consisted of a
206 within-site analysis, where the genotype effect was considered fixed and the remaining
207 effects were considered as random (harvest effects, blocks-within-harvest effects, and
208 genotype \times harvest interaction effects). The covariance matrix (Ω_j) for the vector of
209 genotype effects (\hat{u}_j) in site j was obtained from the inverse of the coefficient matrix of
210 the mixed model equations, returned as C_{fixed} in the asreml object (Endelman *et al.*
211 2018). Stage two was a joint analysis considering the two sites, using the following
212 linear model:

$$\hat{u}_{ij} = \mu + g_i + s_j + (gs)_{ij} + e_{ij},$$

213 where \hat{u}_{ij} is the genotype effect estimate obtained in the stage one analyses, the
214 parameter μ is the intercept, g_i is a fixed effect of genotypes, s_j is a random effect of
215 sites, $(gs)_{ij}$ is a random effect for the genotype \times site interaction, and the variance of
216 the residual e_{ij} is $(\omega^{ij})^{-1}$, where ω^{ij} is the i th diagonal element of Ω_j^{-1} from the stage
217 one analysis (Damesa *et al.* 2017). The BLUEs of the genotypes obtained after this
218 stage were subsequently used to fit the genomic selection models.

219 **4. Genomic selection models**

220 We incorporated allele dosage information in our genomic selection models by
221 expanding and adapting the GBLUP methodology for autotetraploid species proposed
222 by Endelman *et al.* (2018). In sugarcane, besides the higher ploidy, the model also has
223 to account for different ploidy levels among SNP loci. In order to achieve that, we
224 expanded the theory by adapting the estimation of the genomic covariance matrix of
225 both the additive values (\mathbf{G}) and the digenic dominance values (\mathbf{D}).

226 Genomic predictions were obtained using the following linear model:

$$\hat{g}_i = \mu + a_i + e_i,$$

227 where \hat{g}_i is the BLUE of the i th individual obtained with the two-stage phenotypic
228 analysis, μ is the intercept, a_i is the random effect of genotypes, and e_i is the random
229 residual effect.

230 We used two covariance structures in the genomic selection model: i) $\mathbf{IV}_r + \mathbf{GV}_a$
231 , and ii) $\mathbf{IV}_r + \mathbf{GV}_a + \mathbf{DV}_d$, where \mathbf{I} is the identity matrix, \mathbf{V}_r is the residual variance, \mathbf{V}_a
232 is the additive genetic variance, and \mathbf{V}_d is the dominance genetic variance. All analyses
233 were performed using ASReml-R (Butler *et al.* 2009).

234 **4.1 Genomic covariance matrix of additive values (G)**

235 Consider a matrix \mathbf{X} with n rows and m columns, the rows corresponding to the
236 individuals in the population and the columns corresponding to SNP loci, where each
237 element x_{ij} corresponds to the dosage of the alternative allele for the j -th SNP in the i -th
238 individual. If p_j is the frequency of the alternative allele at the j -th locus, we can obtain
239 an $n \times m$ matrix \mathbf{P} where the values in the j -th column all correspond to p_j . For
240 hexaploid sweet potato, subtracting $6\mathbf{P}$ from \mathbf{X} results in the matrix \mathbf{W} of centered
241 genotypes. The \mathbf{G} matrix is then obtained by the formula:

242
$$\mathbf{G} = \frac{\mathbf{WW}^T}{\sum_j 6p_j(1-p_j)}$$

243 For sugarcane, because the SNPs have different ploidy levels, the same value of
244 allele dosage for one SNP does not represent the same genotype for other SNPs with
245 different ploidies. For example, for a hexaploid SNP an allele dosage value of six
246 represents a homozygous genotype, while for an octoploid SNP the same value
247 represents one of the possible heterozygotes.

248 To account for the different ploidy levels between SNPs, we used the following
249 formula:

250
$$\mathbf{Z} = 2\mathbf{XM}^{-1},$$

251 where \mathbf{M} is an $m \times m$ diagonal matrix of ploidy values, such that each diagonal element
252 m_j corresponds to the ploidy of the j -th SNP locus. The resulting matrix \mathbf{Z} , with the
253 same dimensions of \mathbf{X} , has all its elements varying from 0 to 2, where 0 represents loci
254 that are homozygous for the reference allele and 2 represents loci that are homozygous
255 for the alternative allele, the values in between corresponding to heterozygous loci.

256 The subsequent steps to obtain \mathbf{G} are the same as for diploids (VanRaden 2008).
257 Subtracting $2\mathbf{P}$ from \mathbf{Z} results in the matrix \mathbf{W} of centered genotypes. The \mathbf{G} matrix is
258 then obtained by the formula:

259

$$\mathbf{G} = \frac{\mathbf{W}\mathbf{W}^T}{\sum_j 2p_j(1-p_j)}$$

260

261 4.2 Genomic covariance matrix of digenic dominance values (\mathbf{D})

262 We first introduce the expansion of the digenic dominance values in the
263 autotetraploid model to a hexaploid scenario. Higher ploidy levels can be parametrized
264 in a similar fashion. Considering a hexaploid SNP locus with two alleles B and b, the
265 digenic effect for each allele pair can be obtained as demonstrated by Endelman *et al.*
266 (2018), with the following set of equations:

267 $\beta_{BB} = q^2\beta$

268 $\beta_{Bb} = -pq\beta$

269 $\beta_{bb} = p^2\beta$, (Eq. 1)

270 where p is the allele frequency of B, q is the allele frequency of b, with $q = 1 - p$, and
271 β is the digenic dominance effect. Also, we have that:

272
$$\beta = \beta_{BB} - 2\beta_{Bb} + \beta_{bb}.$$

273 For a hexaploid locus, seven genotypic classes are possible in a population (i.e.,
274 allele dosages ranging from 0 to 6). For each genotypic class, different combinations of
275 digenic effects are present. For example, for the genotypic class BBBBbb, there are 6
276 possible combinations of two B alleles, 8 possible combinations of a B allele with a b
277 allele, and 1 possible combination of two b alleles. By replacing each digenic effect
278 with their corresponding values in (Eq. 1), we obtain the total digenic dominance
279 coefficient for each genotype class. Table 1 shows the combinations of digenic effects
280 and the total digenic dominance coefficient for each possible genotype class of a
281 hexaploid locus.

282 Table 1. Digenic effects and total digenic dominance for each allele dosage level of a
283 hexaploid locus with alleles B and b.

Dosage of allele B	Digenic effects	Digenic dominance
6	$15\beta_{BB}$	$(15p^2 - 30p + 15)\beta$

5	$10\beta_{BB} + 5\beta_{Bb}$	$(15p^2 - 25p + 10)\beta$
4	$6\beta_{BB} + 8\beta_{Bb} + \beta_{bb}$	$(15p^2 - 20p + 6)\beta$
3	$3\beta_{BB} + 9\beta_{Bb} + 3\beta_{bb}$	$(15p^2 - 15p + 3)\beta$
2	$\beta_{BB} + 8\beta_{Bb} + 6\beta_{bb}$	$(15p^2 - 10p + 1)\beta$
1	$5\beta_{Bb} + 10\beta_{bb}$	$(15p^2 - 5p)\beta$
0	$15\beta_{bb}$	$(15p^2)\beta$

284 The formula to obtain the total digenic dominance for a given biallelic hexaploid
 285 locus can then be generalized as:

286
$$\delta = \left(15p^2 - 5ap + \frac{1}{2}a(a-1) \right) \beta , \quad (\text{Eq. 2})$$

287 where δ is the total digenic dominance and a is the dosage of the B allele.

288 We used the same process described for hexaploid loci to obtain equations for
 289 other levels of ploidy. Table 2 shows the generalized formulas to obtain the total digenic
 290 dominance for even ploidies from six through 14.

291 Table 2. Formulas for the total digenic dominance for different levels of ploidy

Ploidy	Total digenic dominance
6	$\left(15p^2 - 5ap + \frac{1}{2}a(a-1) \right) \beta$
8	$\left(28p^2 - 7ap + \frac{1}{2}a(a-1) \right) \beta$
10	$\left(45p^2 - 9ap + \frac{1}{2}a(a-1) \right) \beta$
12	$\left(66p^2 - 11ap + \frac{1}{2}a(a-1) \right) \beta$
14	$\left(91p^2 - 13ap + \frac{1}{2}a(a-1) \right) \beta$

292 The formulas in Table 2 can then be generalized as:

293
$$\mathbf{Q}\beta = \left(\mathbf{P} \square \mathbf{P}\mathbf{C} - \mathbf{P}(\mathbf{M}-1) \square \mathbf{X} + \frac{1}{2} \mathbf{X} \square (\mathbf{X}-1) \right) \beta,$$

294 where \square represents the Hadamard product, \mathbf{C} is an $m \times m$ diagonal matrix where each
295 diagonal element c_j corresponds to $\binom{m_j}{2}$, and \mathbf{P} , \mathbf{M} and \mathbf{X} are as previously defined.

296 Finally, the genomic covariance matrix of digenic dominance values (\mathbf{D}) was
297 obtained with:

298
$$\mathbf{D} = \frac{\mathbf{Q}\mathbf{Q}^T}{\sum_j c_j p_j^2 (1-p_j)^2}.$$

299 **4.3 Model and marker set comparisons**

300 We compared two models for the genotype effects, one using only the additive
301 \mathbf{G} matrix (\mathbf{G} model) and one using both the \mathbf{G} and \mathbf{D} matrices ($\mathbf{G}+\mathbf{D}$ model). We also
302 investigated the effect of using two different sets of genotypic information: i) a fully
303 informative model considering SNP markers with ploidy and allele dosage estimates,
304 and ii) diploidized SNP markers. The diploidized SNP set was obtained by setting the
305 values of all heterozygous loci in matrix \mathbf{Z} to 1. By doing so, all heterozygous
306 genotypes were effectively merged in a single class, regardless of their dosage. For
307 diploidized markers, the \mathbf{G} and \mathbf{D} matrices were obtained according to the established
308 methodology commonly used for diploids (VanRaden 2008; Vitezica *et al.* 2013).

309 The models were compared in terms of predictive ability. For that, 1,000 cross-
310 validation runs were carried out, such that in each run 10% of the population was
311 sampled and used as the validation set, while the remaining 90% were used as the
312 training set. We measured predictive ability as the correlation between predicted
313 genotypic values and BLUEs of the individuals in the validation set.

314 **5. Simulated datasets**

315 **5.1 Population structure and founder genotypes**

316

317 Stochastic simulations of two population structures were used to validate the
318 accuracy of prediction of genomic selection models using allele dosage estimates for
319 additive and dominance effects. One population was simulated with a nearly uniform
320 distribution of all possible genotypic classes (Population 1). The second population was
321 simulated with a higher frequency of simplex and homozygous genotypes which, in

322 consequence, results in a higher prevalence of rare alleles (Population 2).

323 Genome simulation parameters were chosen to match the sweet potato genome.
324 An autohexaploid genome consisting of 90 chromosomes (15 homology groups) was
325 simulated and these chromosomes were assigned a genetic length of 1.43 Morgans and
326 a physical length of 2×10^7 base pairs (Wu *et al.* 2018). Sequences for each chromosome
327 were generated using the Markovian Coalescent Simulator (Chen *et al.* 2009) and
328 AlphaSimR (Gaynor *et al.* 2021). Recombination rate was inferred from genome size
329 (i.e. 1.43 Morgans / 2×10^7 base pairs = 7.15×10^{-8} per base pair), and the mutation rate
330 was set to 2×10^{-9} and 2×10^{-7} per base pair for Populations 1 and 2 respectively. The
331 probability of quadrivalent formation was set to 0.15 (Molinari *et al.* 2020).

332 Simulated genome sequences were used to produce 50 founder genotypes. This
333 was accomplished by randomly sampling gametes from the simulated genome to assign
334 as sequences for the founders. Sites that were segregating in the founders' sequences
335 were randomly selected to serve either as causal loci or markers. For Population 1 we
336 simulated a total of 1,000 segregating sites per homology group, of which 250 were
337 selected as causal loci and 750 were selected as markers (3,750 causal loci and 11,250
338 markers in total). For Population 2 we simulated a total of 5,000 segregating sites per
339 homology group, of which 250 were selected as causal loci and 750 sites with a high
340 frequency of simplex and homozygous genotypes in the population were selected as
341 markers. The allele frequencies and genotype distribution of markers in both
342 populations are shown in Fig S1.1 and Fig S1.2 of Supplementary Material 1.

343 **5.2 Phenotype simulation**

344 AlphaSimR defines an individual's raw genotype dosage (x) as the number of
345 copies of the "1" allele at a locus, which is then scaled in accordance with the ploidy
346 level. The scaled dosages make inputs in the package invariant to ploidy level. The
347 scaled additive genotype dosages (x_A) are given by the formula:

$$348 \quad x_A = \left(x - \frac{ploidy}{2} \right) \left(\frac{2}{ploidy} \right)$$

349 And the scaled dominance genotype dosages (x_D) are given by the formula:

$$350 \quad x_D = x(ploidy - x) \left(\frac{2}{ploidy} \right)^2$$

349 For autopolyploid organisms, this scaled dominance genotype dosage is
350 consistent with the digenic dominance parametrization of the dominance model.

351 The true additive value of the simulated trait is then determined by the summing
352 of its causal loci additive allele effects multiplied by the scaled additive genotype
353 dosages. Additive allele effects were sampled from a standard normal distribution.

354 In the same way, the true dominance value of the simulated trait is determined
355 by the summing of its causal loci dominance allele effects multiplied by the scaled
356 dominance genotype dosages. The dominance effect (d) at a locus is the dominance
357 degree (δ) at that locus times the absolute value of its additive allele effect (a):

$$d = \delta |a|$$

358 In this study, the dominance degrees were sampled from a normal distribution
359 with variance 0.2 (Werner *et al.* 2020) and a mean of either 0.3 (low dominance) or 1
360 (high dominance). The additive and dominance effects were then scaled to achieve a
361 desired genotypic variance of 1.

362 A phenotype was then simulated by summing the additive and dominance values
363 and subsequently adding random error in order to achieve a heritability of 0.5.

364 **5.3 Population simulation**

365 For each population structure (Populations 1 and 2) and dominance level (low
366 dominance and high dominance) we simulated F_1 populations with 300 individuals
367 formed by randomly crossing the founder genotypes. Each of the four simulation
368 scenarios (two populations x two dominance degree levels) was replicated 20 times. For
369 each replicate, we deployed genomic selection models using a k-fold cross-validation
370 scheme with $k = 10$. We measured predictive ability as the correlation between true and
371 estimated genotypic values in the validation set.

372 **Results**

373 We were able to obtain a large number of SNPs with estimates of ploidy and
374 allele dosage in both sugarcane and sweet potato. In both species most of the genotypes
375 were either homozygous or had only one copy of the alternative allele. The genomic
376 selection models showed low prediction ability in the sugarcane dataset and moderate to
377 high predictive ability in the sweet potato dataset. Overall the prediction ability values
378 in both datasets showed little sensitivity to including ploidy and allele dosage
379 information or dominance effects in the model. These results were replicated in
380 simulated datasets where the marker genotype distribution was similar to the real
381 datasets. In other simulated populations, which had a higher frequency of heterozygous
382 markers, the highest values of predictive ability were achieved when including ploidy

383 and allele dosage information in the models (full ploidy models). In these populations,
384 including digenic dominance effects in full ploidy models was only advantageous when
385 the dominance level was high. When using diploidized markers, including dominance
386 effects increased predictive ability regardless of the dominance level.

387 **Genotyping**

388 In sugarcane a total of 6,589 SNPs were kept after filtering for mean read depth,
389 posterior probability of genotypes and ploidy estimates, call rate, and segregation
390 distortion in the progeny. A total of 11 individuals did not have any sequenced reads
391 and were considered not genotyped, thus being used in phenotypic analyses but not for
392 genomic selection. A summary of ploidy and allele dosage estimates of the SNPs is
393 shown in Fig. 1. The majority of the SNPs had ploidy estimates of ten (31.18%) and
394 eight (28.93%), followed by 17.88% of SNPs with ploidy estimates of 12, 15.59% with
395 an estimated ploidy of six, and 6.43% with ploidy 14. Within each ploidy level, most of
396 the genotypes were either homozygous for the reference allele or had only one copy of
397 the reference allele, with allele dosages of zero and one accounting for more than 50%
398 of the total number of genotype calls for ploidy levels from six to 12. For ploidy 14,
399 dosage estimates were more evenly distributed among different levels, but there was
400 still an excess of dosages equal to zero and one.

401 In sweet potato we identified a total of 77,837 SNPs that were kept after filtering
402 for mean read depth, posterior probability of genotypes and ploidy estimates, call rate,
403 and segregation according to Hardy-Weinberg Equilibrium. A summary of allele dosage
404 estimates of the SNPs is shown in Fig. 2. Most of the genotypes were either
405 homozygous for the reference allele (53%) or had only one copy of the reference allele
406 (13%), with allele dosages of zero and one (for both the reference and alternative
407 alleles) accounting for more than 76% of the total number of genotype calls.

408 **Genomic selection**

409 **Sugarcane**

410 Overall, the predictive abilities of genomic selection in sugarcane were low,
411 regardless of the model or marker set utilized. Fig. 3 shows the distribution of the
412 predictive ability values in the sugarcane dataset over different cross-validation runs of
413 the G and G+D models, when using all the makers with full ploidy and allele dosage
414 information and using diploidized makers.

415 For Brix, the G model using ploidy and allele dosage estimates showed the
416 highest mean predictive ability (0.24), which was higher than that of the corresponding
417 G+D model (0.21), and higher than the mean predictive abilities when using diploidized
418 markers (0.18 for the G model and 0.19 for the G+D model). A similar pattern was
419 observed for stalk height, where the G model using ploidy and allele dosage estimates
420 had a mean predictive ability of 0.22, the full ploidy G+D model had a mean predictive
421 ability of 0.19, and when using diploidized markers, the mean predictive ability did not
422 exceed 0.18 for any of the two models.

423 For sucrose content, the G+D model had lower mean predictive abilities in
424 comparison to the additive G model for all sets of markers, and the mean predictive
425 abilities of the G model did not differ considerably between sets of markers. We
426 observed a different pattern for stalk diameter, because the mean predictive ability of
427 the G model when using ploidy and allele dosage estimates (0.18) was slightly lower
428 than that achieved when using diploidized markers (0.20). With regard to the G+D
429 model, the mean predictive abilities were equivalent for both sets of markers. A more
430 marked difference between models was noticeable for fiber percentage, because for the
431 full ploidy scenario the mean predictive ability of the G+D model (0.05) was much
432 lower than for the G model (0.12). This, in turn, was lower than the mean predictive
433 ability when using diploidized markers (0.15 for the G and G+D models). Lastly, for
434 stalk weight, the mean predictive abilities were the highest among all traits, and the
435 values did not differ significantly between models or sets of markers (ranging from 0.28
436 to 0.29).

437 In order to better understand the low values of predictive ability we observed in
438 the sugarcane dataset, we performed a phenotypic variance partitioning analysis and
439 obtained estimates of heritability for the evaluated traits (methodology details can be
440 found in Supplementary Material 1). In general, the genotypic variance had a relatively
441 small or intermediate magnitude for all the traits, with correspondingly low or
442 intermediate heritability values. Fig. 4 shows the partitioning of the phenotypic variance
443 into its main components. The residual variance had a large magnitude for all of the
444 traits, corresponding to 36%, 35%, 49%, 58%, 48% and 34% of the phenotypic
445 variation observed for Brix, sucrose content, fiber percentage, stalk diameter, stalk
446 weight and stalk height, respectively. The effect of genotypes had an intermediate
447 magnitude for stalk diameter and a small magnitude for the other traits, corresponding
448 to 3%, 3%, 7%, 13%, 5% and 3% of the phenotypic variation observed for the same

449 traits. The genotype \times site interaction effect had an intermediate magnitude for fiber
450 percentage, stalk diameter and stalk weight, with the variance due to the interaction
451 component corresponding to, respectively, 13%, 15% and 10% of the observed
452 phenotypic variation. For traits Brix, sucrose content and stalk height the variance due
453 to the interaction component corresponded to 4%, 2% and 6% of the observed
454 phenotypic variation, respectively. The heritability coefficients for traits Brix, sucrose
455 content, fiber percentage, stalk diameter, stalk weight, and stalk height were 0.31, 0.35,
456 0.37, 0.55, 0.41 and 0.36, respectively.

457 **Sweet Potato**

458 The predictive abilities of the genomic selection models in sweet potato were
459 moderate to high and the distribution of predictive ability values were nearly equivalent
460 between models and marker sets. Fig. 5 shows the distribution of the predictive ability
461 values in the sweet potato dataset over different cross-validation runs of the G and G+D
462 models when using all the makers with full ploidy and allele dosage information and
463 using diploidized makers.

464 The values of mean predictive ability for the green-red coordinate (**a**), the
465 yellow-blue coordinate (**b**), and color saturation (**C**) were similarly high and barely
466 differed between marker sets and models. The G model using diploidized markers, the
467 G and G+D models using full dosage information had nearly equal mean predictive
468 ability for all three traits: 0.72, 0.72, and 0.75 for **a**, **b**, and **C**, respectively. The G+D
469 model using diploidized markers had slightly lower predictive ability values of
470 approximately 0.71, 0.70, and 0.73 for **a**, **b**, and **C**, respectively.

471 For lightness (**L**) and hue angle (**h**) the mean predictive ability values were
472 lower than for the other three traits. Predictive abilities were slightly higher when
473 including the dosage information and did not differ when dominance effects were included
474 in the model. The G+D model using diploidized markers and markers with dosage
475 information had nearly equal mean predictive abilities of approximately 0.60 and 0.59 for
476 **L** and **h**, respectively. The mean predictive abilities for the G model also did not differ
477 between marker sets, with values of approximately 0.58 and 0.57 for **L** and **h**,
478 respectively.

479 **Simulations**

480 In the simulated datasets the highest predictive abilities were achieved when
481 including full ploidy and dosage information. Fig. 6 shows the distribution of the
482 predictive ability values in the simulated datasets over different cross-validation runs of

483 the G and G+D models when using all the makers with full ploidy and allele dosage
484 information and using diploidized makers.

485 When using dosage information, including digenic dominance effects was only
486 advantageous under a high dominance degree and when the genotype frequencies in the
487 population were more evenly distributed (Population 1). In this scenario, when using
488 full ploidy markers, the G and G+D models had mean predictive abilities of 0.32 and
489 0.48, respectively. The mean predictive ability of the G+D model when using
490 diploidized markers (0.43) was lower than that of the G+D model using dosage
491 information. The G model using diploidized markers had the lowest mean predictive
492 ability value (0.22).

493 For Population 1 with a lower dominance degree, when using full ploidy
494 markers the mean predictive ability of the G+D model (0.48) was nearly equal but
495 slightly lower than that of the G model (0.49). When using diploidized markers there
496 was a clear advantage of including dominance in the models, with mean predictive
497 abilities of 0.20 and 0.43 for the G and the G+D models, respectively.

498 When the frequency of heterozygous genotypes in the population was low
499 (Population 2) the values of mean predictive ability for the different models and
500 markers were similar in all simulated scenarios. For the low dominance degree level, the
501 mean predictive abilities were approximately 0.50 for both the G and G+D models
502 using dosage information, and 0.49 and 0.48 when using diploidized markers. For the
503 high dominance degree level, the mean predictive abilities were approximately 0.47 for
504 both the G and G+D models using full dosage information, and approximately 0.46 with
505 the less informative diploidized markers.

506

507 **Discussion**

508 We present our discussion in two sections. First, we discuss the results we
509 obtained implementing genomic prediction in the sugarcane and sweet potato datasets.
510 Second, we discuss the results we obtained with the simulated datasets and compare
511 those with what we obtained with the real data. In both sections, we also show how
512 models could potentially be improved to address the limitations in our study.

513 **Genomic prediction in sugarcane and sweet potato**

514 The values of prediction ability for sugarcane were low, while for sweet potato
515 we were able to obtain moderate to high values of predictive ability. Regardless of the

516 prediction ability magnitude, for both species there was no significant improvement in
517 predictions when including allele dosage information or dominance effects in the
518 model. For sugarcane, we believe the low heritability and the size of the population
519 were the main reasons why prediction models had a low performance. In both species,
520 the high number of homozygous and single dosage markers are likely playing a role in
521 the low sensitivity of the models to including dosage information and digenic
522 dominance effects.

523 We were able to obtain high-quality genotypic data in sugarcane. We identified
524 6,550 SNPs with high mean read depths, high posterior probability of genotypes and
525 ploidy estimates. Our SNP set exceeds in marker count many genetic studies in
526 sugarcane (Bundock *et al.* 2009; Gouy *et al.* 2013; Costa *et al.* 2016; Yang *et al.* 2017;
527 Gutierrez *et al.* 2018). However, the phenotypic variance partitioning analysis showed
528 that, for all traits, most of the variation observed in the field experiments did not stem
529 from differences between the individuals in the F₁ progeny, as the variance components
530 associated to the effect of genotypes and genotype × environment interactions had low
531 magnitude in comparison to other experimental sources of variation. These low values
532 of genotypic variability resulted in low to intermediate values of heritability, which in
533 turn are usually associated with lower predictive ability (Combs and Bernardo 2013;
534 Lian *et al.* 2014). For all of the traits we evaluated, several studies have reported higher
535 heritability coefficients when analysing data from sugarcane cultivar trials (Milligan *et*
536 *al.* 1990; Gravois and Milligan 1992; Tena *et al.* 2016). This indicates that
537 implementing genomic selection in sugarcane is likely to be more advantageous than
538 our results may suggest. Higher values of genomic predictive ability in sugarcane have
539 been reported by Gouy *et al.* (2013), Deomano *et al.* (2020) and Hayes *et al.* (2021).

540 The small training population size in the sugarcane dataset might also be playing
541 a key role in explaining the low values of predictive ability we observed. This idea is
542 supported by comparing predictive abilities of the models when including or not
543 including digenic dominance effects. For most of the traits there was a small reduction
544 in the predictive ability when digenic dominance effects were included. Including
545 digenic dominance effects results in estimating three additional parameters (Eq. 1), thus
546 requiring more observations for accurate estimates to be obtained (Button *et al.* 2013).
547 With a small population size, the estimates of dominance effects were likely not
548 accurate, and the predictive ability of the model decreased.

549 In both datasets a large proportion of the SNP calls corresponded to either
550 homozygous or single-dosage genotypes. In breeding populations, this can either occur
551 when the polymorphisms genotyped represent relatively recent mutations in the
552 genomes or when selective pressure has led to the near fixation of genotyped loci. In
553 highly polyploid species such as sugarcane and sweet potato, even with very intense
554 selective pressure, the fixation of favorable alleles is extremely difficult as deleterious
555 alleles may have a high number of copies. Hence, the presence of recent mutations is
556 the likely explanation for the genotype frequencies we observed.

557 This low frequency of higher-dosage genotypes is potentially masking the
558 advantages of including allele dosage information in genomic selection models. As
559 mostly only one class of heterozygous genotype is present, the marker sets with dosage
560 information are not much more informative than their diploidized counterparts. We
561 verified the effect of the low number of heterozygous classes in our prediction models
562 by using simulated datasets, and we showed that it indeed affects the sensitivity of
563 prediction models to the two different marker sets. In the following section we discuss
564 these results more thoroughly.

565 **Genomic prediction in simulated datasets**

566 The simulation results demonstrated that genomic prediction including allele
567 dosage information and digenic dominance effect leads to higher predictive abilities
568 only when there is a substantial presence of different heterozygous genotypic classes in
569 the population (Population 1). As mentioned in the previous section, this is likely the
570 main reason why predictions did not improve when including allele dosage information
571 for the real datasets we used in this study. When the simulated populations had a higher
572 frequency of homozygous and simplex genotypes (Population 2), and therefore a similar
573 genotype distribution to the sugarcane and sweet potato datasets, we observed the
574 performance of genomic prediction models to also be invariant to the inclusion of allele
575 dosage and dominance effects.

576 With this, the results demonstrate that the simulated populations are a good
577 proxy for better understanding the results we obtained in the real datasets. In addition to
578 that, the highest value of mean predictive ability, obtained when including allele dosage
579 information and digenic dominance effects, matched the value of the simulated broad-
580 sense heritability of 0.5. Hence, the variance explained by the predicted additive and
581 dominance effects fully captured the variance explained by the true genetic effects. This

582 indicates that the model is capturing true genetic signals and is unlikely to overfit due to
583 noise in the training data. This also highlights the low heritability values being the main
584 culprit on the low predictive abilities observed in the sugarcane datasets.

585 Our results also demonstrate that the use of diploidized markers is a good
586 alternative when allele dosage estimates are not available. This is true even with a
587 sizeable presence of different heterozygous genotypic classes (Population 1). In these
588 simulated scenarios, we observed that the performance of the G+D model using
589 diploidized markers nearly matched the performance of the G+D model when
590 considering allele dosage information, regardless of the dominance level. This is
591 important because when using genotyping-by-sequencing techniques in autopolyploids,
592 accurate genotype calls with allele dosage demand a high sequencing depth
593 (Uitdewilligen *et al.* 2015; Bastien *et al.* 2018). When only low-depth sequencing data
594 is available, making diploidized genotype calls can be an efficient way of using the data
595 without having to obtain allele dosage estimates (Matias *et al.* 2019). Our results show
596 that, in these situations, if dominance effects are included in the prediction model, the
597 performance loss for using diploidized markers is not drastic.

598 Including dominance in the model is also important when using the allele dosage
599 information. However, in this case, including digenic dominance effects is only
600 advantageous when the dominance degree is high. When allele dosage information is
601 included and the dominance degree is low, the G model performs just as well as the
602 G+D model. In contrast, under high dominance degree levels, the performance loss
603 when using the G model rather than the G+D model is significant. To date, little is
604 known about the magnitude of the dominance gene action that is present in the traits of
605 highly autopolyploid species. More research is still needed for breeders to have an
606 estimate of the dominance level of traits in autopolyploid breeding populations. In the
607 current context, our results show that the G+D model should be preferred, as it is the
608 best performing model regardless of the dominance level.

609 Generally, autopolyploid crop varieties are clonally propagated and the
610 genotypes in vegetatively propagated crops are typically heterozygous (Grüneberg *et al.*
611 2009). The genetic value of heterozygous genotypes is a function of additive and non-
612 additive gene action (Falconer and Mackay 1996). Non-additive gene action comprises
613 both dominance and epistatic effects. For clonally propagated species, both additive and
614 non-additive gene action are transmitted across generations in the selection process
615 (Bernardo 2010). Therefore, genomic selection models for cultivar selection in these

616 species should aim to include both dominance and epistatic effects. The importance of
617 including dominance effects in genomic models for clonally propagated crops has also
618 been demonstrated for selection of parents in recurrent selection breeding programs
619 (Werner *et al.* 2020). In this study, we investigated only two of many possible ways of
620 including dominance effects in prediction models for highly polyploid species.

621 Is important to notice that we validated out models using simulated phenotypes
622 consisting of only additive and digenic dominance effects. We were able to demonstrate
623 that our fully informative dosage-aware analysis performs better than other simpler
624 genomic prediction models when it comes to these two simulated effects. However,
625 higher order dominance effects (i.e., interactions between more than two alleles) could
626 also be present in autopolyploid species; hence further improvements in predictions
627 could be achieved by expanding genomic prediction models to include these effects.
628 Moreover. it is still unclear how much of the genotypic variation in highly
629 autopolyploid species is explained by digenic dominance effects. In autotetraploids,
630 Endelman *et al.* (2018) and Amadeu *et al.* (2020) have observed digenic dominance
631 effects to explain only a small portion of the genotypic variance. In their case, there was
632 little advantage to including digenic dominance effects in genomic predictions.

633 Conclusion

634 We showed that estimates of ploidy and allele dosage can improve genomic
635 selection in highly polyploid species. This is mostly true when there is a substantial
636 number of heterozygous genotypes in the population. When the frequency of
637 heterozygous genotypes in the population is low, such as in the sugarcane and sweet
638 potato datasets, there is little advantage in including allele dosage information in the
639 models. Our simulation results also show that using diploidized markers in the absence
640 of allele dosage estimates can nearly match the performance of fully informative marker
641 sets. However, this is true only when including dominance effects in the genomic
642 prediction models. With the full dosage information available, digenic dominance
643 effects can significantly improve genomic prediction, provided that the trait being
644 predicted has a high mean dominance degree and that the population has a high
645 frequency of heterozygous genotypes.

646

647 **References**

648

649 Amadeu, R. R., L. F. V. Ferrão, I. de B. Oliveira, J. Benevenuto, J. B. Endelman *et al.*,
650 2020 Impact of dominance effects on autotetraploid genomic prediction. *Crop
651 Science* 60: 656–665.

652 Bastien, M., C. Boudhrioua, G. Fortin, and F. Belzile, 2018 Exploring the potential and
653 limitations of genotyping-by-sequencing for SNP discovery and genotyping in
654 tetraploid potato. *Genome* 61: 449–456.

655 de Bem Oliveira, I., M. F. Resende, F. Ferrao, R. Amadeu, J. Endelman *et al.*, 2018
656 Genomic prediction of autotetraploids; influence of relationship matrices, allele
657 dosage, and continuous genotyping calls in phenotype prediction. *bioRxiv*.

658 Bernardo, R., 2010 *Breeding for Quantitative Traits in Plants*. Stemma Press,
659 Woodsbury, MN.

660 Bernardo, R., and J. Yu, 2007 Prospects for Genomewide Selection for Quantitative
661 Traits in Maize. *Crop Science* 47: 1082–1090.

662 Blischak, P. D., L. S. Kubatko, and A. D. Wolfe, 2018 SNP genotyping and parameter
663 estimation in polyploids using low-coverage sequencing data. *Bioinformatics*
664 34: 407–415.

665 Budson, P. C., F. G. Elliott, G. Ablett, A. D. Benson, R. E. Casu *et al.*, 2009 Targeted
666 single nucleotide polymorphism (SNP) discovery in a highly polyploid plant
667 species using 454 sequencing. *Plant Biotechnology Journal* 7: 347–354.

668 Butler, D. G., B. R. Cullis, A. R. Gilmour, and B. J. Gogel, 2009 ASReml-R reference
669 manual. 160.

670 Button, K. S., J. P. A. Ioannidis, C. Mokrysz, B. A. Nosek, J. Flint *et al.*, 2013 Power
671 failure: why small sample size undermines the reliability of neuroscience.
672 *Nature Reviews Neuroscience* 14: 365.

673 Cheavegatti-Gianotto, A., H. M. C. de Abreu, P. Arruda, J. C. Bespalhok Filho, W. L.
674 Burnquist *et al.*, 2011 Sugarcane (*Saccharum* X *officinarum*): A Reference
675 Study for the Regulation of Genetically Modified Cultivars in Brazil. *Tropical
676 Plant Biology* 4: 62–89.

677 Chen, G. K., P. Marjoram, and J. D. Wall, 2009 Fast and flexible simulation of DNA
678 sequence data. *Genome research* 19: 136–142.

679 Centre de coopération internationale en recherche agronomique pour le développement
680 (CIRAD). [https://www.cirad.fr/en/our-research/tropical-supply-
681 chains/sugarcane/context-and-issues](https://www.cirad.fr/en/our-research/tropical-supply-chains/sugarcane/context-and-issues)

682 Clark, L. V., A. E. Lipka, and E. J. Sacks, 2019 polyRAD: Genotype calling with
683 uncertainty from sequencing data in polyploids and diploids. *G3: Genes,
684 Genomes, Genetics* 9: 663–673.

685 Combs, E., and R. Bernardo, 2013 Accuracy of Genomewide Selection for Different
686 Traits with Constant Population Size, Heritability, and Number of Markers. *The*
687 *Plant Genome* 6:.

688 Costa, E. A., C. O. Anoni, M. C. Mancini, F. R. C. Santos, T. G. Marconi *et al.*, 2016
689 QTL mapping including codominant SNP markers with ploidy level information
690 in a sugarcane progeny. *Euphytica* 211: 1–16.

691 Crossa, J., G. de los Campos, P. Pérez, D. Gianola, J. Burgueño *et al.*, 2010 Prediction
692 of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and
693 Molecular Markers. *Genetics* 186: 713.

694 Damesa, T. M., J. Möhring, M. Worku, and H.-P. Piepho, 2017 One Step at a Time:
695 Stage-Wise Analysis of a Series of Experiments. *Agronomy Journal* 109: 845–
696 857.

697 Deomano, E., P. Jackson, X. Wei, K. Aitken, R. Kota *et al.*, 2020 Genomic prediction
698 of sugar content and cane yield in sugar cane clones in different stages of
699 selection in a breeding program, with and without pedigree information.
700 *Molecular Breeding* 40: 1–12.

701 Dufresne, F., M. Stift, R. Vergilino, and B. K. Mable, 2014 Recent progress and
702 challenges in population genetics of polyploid organisms: an overview of
703 current state-of-the-art molecular and statistical tools. *Molecular Ecology* 23:
704 40–69.

705 Duhnen, A., A. Gras, S. Teyssèdre, M. Romestant, B. Claustres *et al.*, 2017 Genomic
706 Selection for Yield and Seed Protein Content in Soybean: A Study of Breeding
707 Program Data and Assessment of Prediction Accuracy. *Crop Science* 57: 1325.

708 Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto *et al.*, 2011 A Robust,
709 Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species.
710 *PLOS ONE* 6: e19379.

711 Endelman, J. B., C. A. S. Carley, P. C. Bethke, J. J. Coombs, M. E. Clough *et al.*, 2018
712 Genetic Variance Partitioning and Genome-Wide Prediction with Allele Dosage
713 Information in Autotetraploid Potato. *Genetics* 209: 77.

714 Falconer, D. S., and T. F. C. Mackay, 1996 *Introduction to Quantitative Genetics*.
715 Longman, Harlow, UK.

716 Food and Agriculture Organization of the United Nations *FAOSTAT statistical*
717 *database*. [Rome]: FAO, c1997-.

718 Freyre, R., M. Iwanaga, and G. Orjeda, 1991 Use of *Ipomoea trifida* (HBK.) G. Don
719 germ plasm for sweet-potato improvement. 2. Fertility of synthetic hexaploids
720 and triploids with 2 n gametes of *I. trifida*, and their interspecific crossability
721 with sweet potato. *Genome* 34: 209–214.

722 Garcia, A. A. F., M. Mollinari, T. G. Marconi, O. R. Serang, R. R. Silva *et al.*, 2013
723 SNP genotyping allows an in-depth characterisation of the genome of sugarcane
724 and other complex autopolyploids. *Scientific Reports* 3: 3399.

725 Gaynor, R. C., G. Gorjanc, and J. M. Hickey, 2021 AlphaSimR: an R package for
726 breeding program simulations. *G3 Genes|Genomes|Genetics* 11:.

727 Gerard, D., L. F. V. Ferrão, A. A. F. Garcia, and M. Stephens, 2018 Genotyping
728 Polyploids from Messy Sequencing Data. *Genetics* 210: 789.

729 Gouy, M., Y. Rousselle, D. Bastianelli, P. Lecomte, L. Bonnal *et al.*, 2013 Experimental
730 assessment of the accuracy of genomic selection in sugarcane. *Theoretical and
731 Applied Genetics* 126: 2575–2586.

732 Grativol, C., M. Regulski, M. Bertalan, W. R. McCombie, F. R. Da Silva *et al.*, 2014
733 Sugarcane genome sequencing by methylation filtration provides tools for
734 genomic research in the genus *Saccharum*. *Plant Journal* 79: 162–172.

735 Gravois, K. A., and S. B. Milligan, 1992 Genetic Relationships between Fiber and
736 Sugarcane Yield Components. 32: 62–67.

737 Grüneberg, W., R. Mwanga, M. Andrade, and J. Espinoza, 2009 Selection methods.
738 Part 5: Breeding clonally propagated crops. *Plant breeding and farmer
739 participation* 275–322.

740 Gutierrez, A. F., J. W. Hoy, C. A. Kimbeng, and N. Baisakh, 2018 Identification of
741 Genomic Regions Controlling Leaf Scald Resistance in Sugarcane Using a Bi-
742 parental Mapping Population and Selective Genotyping by Sequencing.
743 *Frontiers in Plant Science* 9: 877.

744 Hawkins, C., and L.-X. Yu, 2018 Recent progress in alfalfa (*Medicago sativa* L.)
745 genomics and genomic selection. *The Crop Journal*.

746 Hayes, B. J., X. Wei, P. Joyce, F. Atkin, E. Deomano *et al.*, 2021 Accuracy of genomic
747 prediction of complex traits in sugarcane. *Theoretical and Applied Genetics* 134:
748 1455–1462.

749 Heffner, E. L., M. E. Sorrells, and J.-L. Jannink, 2009 Genomic Selection for Crop
750 Improvement All rights reserved. No part of this periodical may be reproduced
751 or transmitted in any form or by any means, electronic or mechanical, including
752 photocopying, recording, or any information storage and retrieval syst. *Crop
753 Science* 49: 1–12.

754 Katayama, K., A. Kobayashi, T. Sakai, T. Kuranouchi, and Y. Kai, 2017 Recent
755 progress in sweetpotato breeding and cultivars for diverse applications in Japan.
756 *Breed Sci* 67: 3–14.

757 Langmead, B., and S. L. Salzberg, 2012 Fast gapped-read alignment with Bowtie 2. *Nat
758 Methods* 9: 357–359.

759 Lian, L., A. Jacobson, S. Zhong, and R. Bernardo, 2014 Genomewide Prediction
760 Accuracy within 969 Maize Biparental Populations. *Crop Science* 54: 1514.

761 Matias, F. I., K. G. Xavier Meireles, S. T. Nagamatsu, S. C. Lima Barrios, C. Borges do
762 Valle *et al.*, 2019 Expected Genotype Quality and Diploidized Marker Data
763 from Genotyping□by□Sequencing of *Urochloa* spp. Tetraploids. *The plant
764 genome* 12: 190002.

765 Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of total genetic
766 value using genome-wide dense marker maps. *Genetics* 157: 1819–1829.

767 Milligan, S. B., K. A. Gravois, K. P. Bischoff, and F. A. Martin, 1990 Crop Effects on
768 Broad-Sense Heritabilities and Genetic Variances of Sugarcane Yield
769 Components. *Crop Science* 30: 344.

770 Mollinari, M., B. A. Olukolu, G. da S. Pereira, A. Khan, D. Gemenet *et al.*, 2020
771 Unraveling the Hexaploid Sweetpotato Inheritance Using Ultra-Dense
772 Multilocus Mapping. *G3: Genes|Genomes|Genetics* 10: 281.

773 Mollinari, M., and O. Serang, 2015 Quantitative SNP Genotyping of Polyploids with
774 MassARRAY and Other Platforms. Batley J. (eds) *Plant Genotyping. Methods*
775 in Molecular Biology (Methods and Protocols) 1245:.

776 Oracion, M., K. Niwa, and I. Shiotani, 1990 Cytological analysis of tetraploid hybrids
777 between sweet potato and diploid Ipomoea trifida (HBK) Don. *Theoretical and*
778 *applied genetics* 80: 617–624.

779 Park, S., P. Jackson, N. Berding, and G. Inmam-Bamber, 2007 Conventional breeding
780 practices within the Australian sugarcane breeding program. 29: 10.

781 Pereira, G. S., A. A. F. Garcia, and G. R. A. Margarido, 2018 A fully automated
782 pipeline for quantitative genotype calling from next generation sequencing data
783 in autopolyploids. *BMC bioinformatics* 19: 398–398.

784 Poland, J. A., and T. W. Rife, 2012 Genotyping-by-Sequencing for Plant Breeding and
785 Genetics. *The Plant Genome Journal* 5: 92.

786 Resende, M. D. V., M. F. R. Resende, C. P. Sansaloni, C. D. Petroli, A. A. Missiaggia
787 *et al.*, 2012 Genomic selection for growth and wood quality in Eucalyptus:
788 capturing the missing heritability and accelerating breeding for complex traits in
789 forest trees. *New Phytologist* 194: 116–128.

790 Serang, O., M. Mollinari, and A. A. F. Garcia, 2012 Efficient Exact Maximum a
791 Posteriori Computation for Bayesian SNP Genotyping in Polyploids. *PLOS*
792 ONE 7: e30906.

793 Shiotani, I., 1988 Genomic structure and the gene flow in sweet potato and related
794 species, pp. 61–73 in.

795 Slater, A. T., N. O. I. Cogan, J. W. Forster, B. J. Hayes, and H. D. Daetwyler, 2016
796 Improving Genetic Gain with Genomic Selection in Autotetraploid Potato. *The*
797 *Plant Genome* 9:.

798 Tena, E., F. Mekbib, and A. Ayana, 2016 Heritability and Correlation among Sugarcane
799 (*<i>Saccharum</i>* spp.) Yield and Some Agronomic and Sugar
800 Quality Traits in Ethiopia. *American Journal of Plant Sciences* 07: 1453–1477.

801 Uitdewilligen, J. G., A.-M. A. Wolters, B. Bjorn, T. J. Borm, R. G. Visser *et al.*, 2015
802 Correction: A next-generation sequencing method for genotyping-by-sequencing
803 of highly heterozygous autotetraploid potato. *PloS one* 10: e0141940.

804 VanRaden, P. M., 2008 Efficient Methods to Compute Genomic Predictions. *Journal of*
805 *Dairy Science* 91: 4414–4423.

806 Vitezica, Z. G., L. Varona, and A. Legarra, 2013 On the Additive and Dominant
807 Variance and Covariance of Individuals Within the Genomic Selection Scope.
808 *Genetics* 195: 1223.

809 Voss-Fels, K. P., X. Wei, E. M. Ross, M. Frisch, K. S. Aitken *et al.*, 2021 Strategies and
810 considerations for implementing genomic selection to improve traits with
811 additive and non-additive genetic architectures in sugarcane breeding.
812 *Theoretical and Applied Genetics* 134: 1493–1511.

813 Werner, C. R., R. C. Gaynor, D. J. Sargent, A. Lillo, G. Gorjanc *et al.*, 2020 Genomic
814 selection strategies for clonally propagated crops. *bioRxiv* 2020.06.15.152017.

815 Wu, S., K. H. Lau, Q. Cao, J. P. Hamilton, H. Sun *et al.*, 2018 Genome sequences of
816 two diploid wild relatives of cultivated sweetpotato reveal targets for genetic
817 improvement. *Nature communications* 9: 1–12.

818 Yang, X., S. Sood, N. Glynn, Md. S. Islam, J. Comstock *et al.*, 2017 Constructing high-
819 density genetic maps for polyploid sugarcane (*Saccharum* spp.) and identifying
820 quantitative trait loci controlling brown rust resistance. *Molecular Breeding* 37:

821 Zhou, M., 2013 Conventional Sugarcane Breeding in South Africa: Progress and Future
822 Prospects. *American Journal of Plant Sciences* 04: 189–197.

823

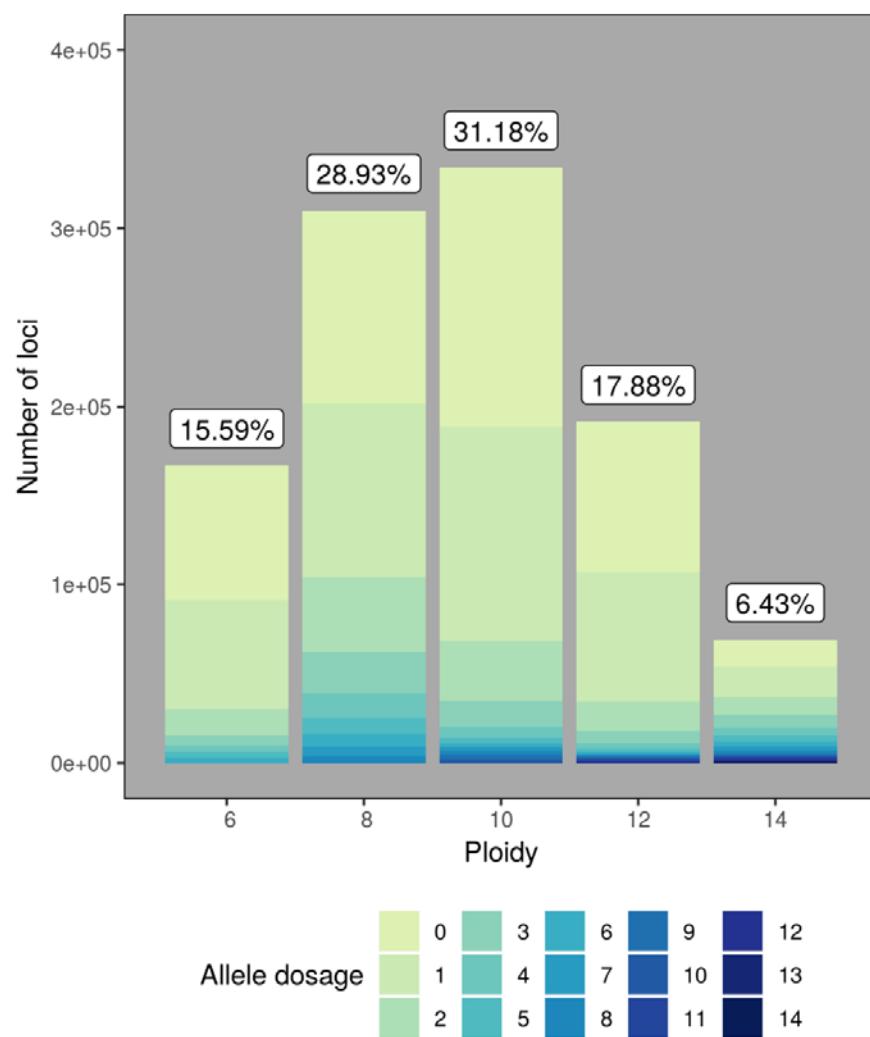


Fig 1. Summary of the estimates of ploidy and allele dosage for 170 sugarcane samples and 6,550 SNPs. The bars show the total number of loci per ploidy level, and different values of allele dosage are shown by different colours. For each ploidy level, the corresponding percentage of the total number of loci is shown above the bars.

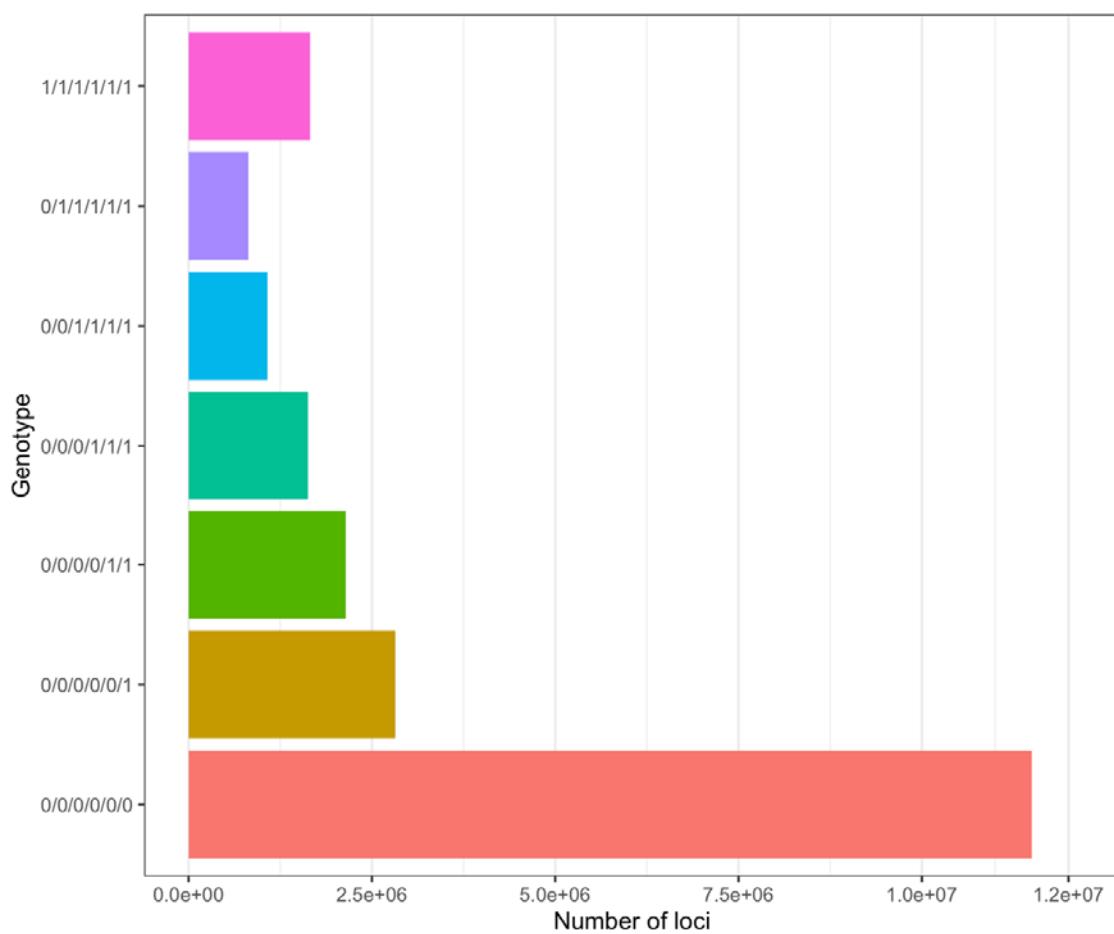


Fig 2. Genotype frequencies for 285 sweet potato samples and 77,837 SNPs. The bars show the total number of markers per genotypic class. Genotypic classes are shown with the alternative alleles represented as 1's and the reference alleles represented as 0's (e.g., "0/0/0/0/1" represents genotypes where the reference allele has a dosage of four and the alternative allele has a dosage of two).

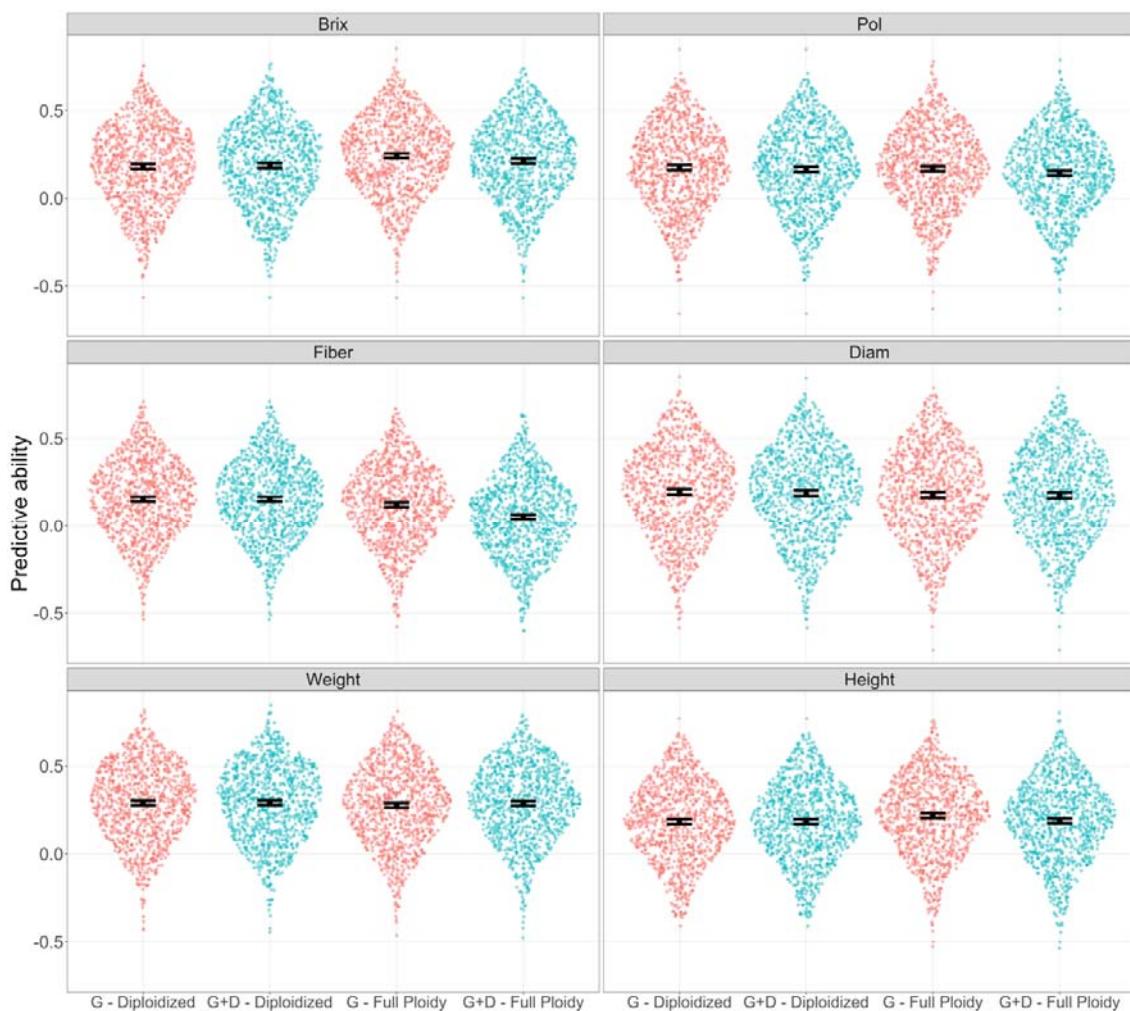


Fig 3. Distribution of the predictive ability values over different cross-validation runs of genomic selection in sugarcane. Values are shown when considering additive effects only (G) and considering additive and digenic dominance effects (G+D). Both models were compared when using markers with ploidy and allele dosage estimates (Full ploidy) and diploidized markers. The values are shown for traits soluble solids content (Brix), sucrose content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight) and stalk height (Height). Mean and 95% confidence intervals are shown in black at the centre of each distribution.

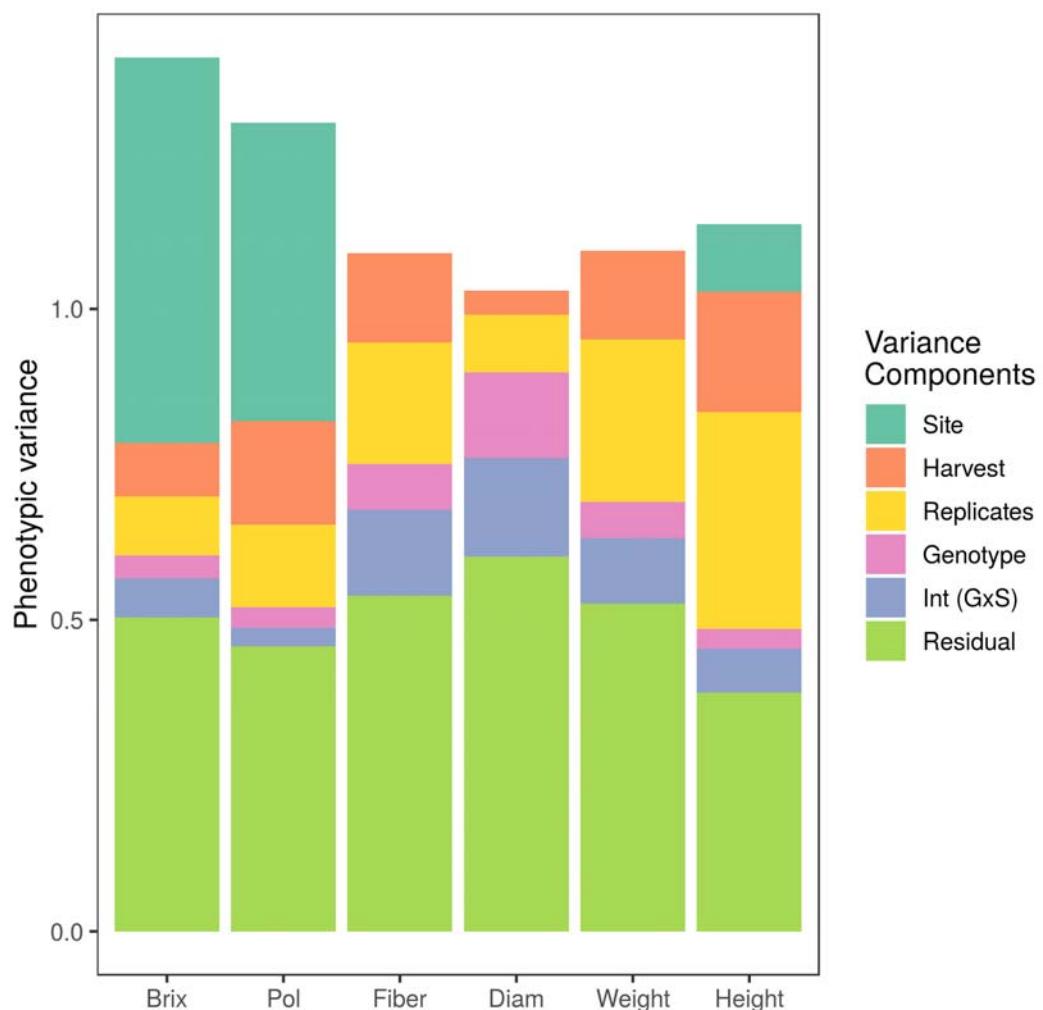


Fig 4. Phenotypic variance partitioning for soluble solids content (Brix), sucrose content (Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight), and stalk height (Height). Variance components that are not shown had variance estimates very close to zero. Contributions of variances due to the effect of sites, harvests, replicates, genotypes, genotype \times sites interaction (GxS), and residual variance are shown.

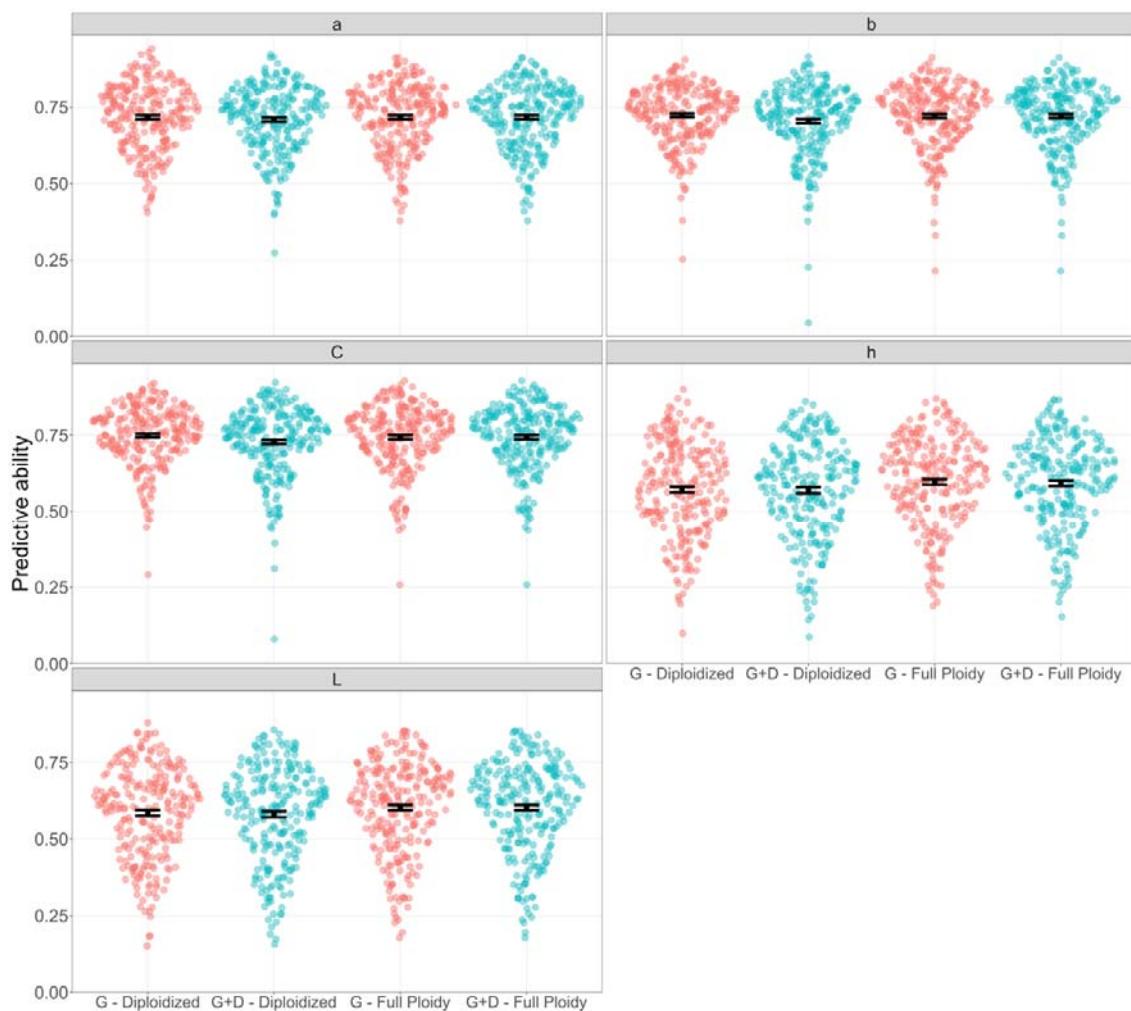


Fig 5. Distribution of the predictive ability values over different cross-validation runs of genomic selection in sweet potato. Values are shown when considering additive effects only (G) and considering additive and digenic dominance effects (G+D). Both models were compared when using markers with ploidy and allele dosage estimates (Full ploidy) and diploidized markers. The values are shown for stele colorimetry traits: green-red coordinate (**a**), the yellow-blue coordinate (**b**), color saturation (**C**), lightness (**L**), and hue angle (**h**). Mean and 95% confidence intervals are shown in black at the centre of each distribution.

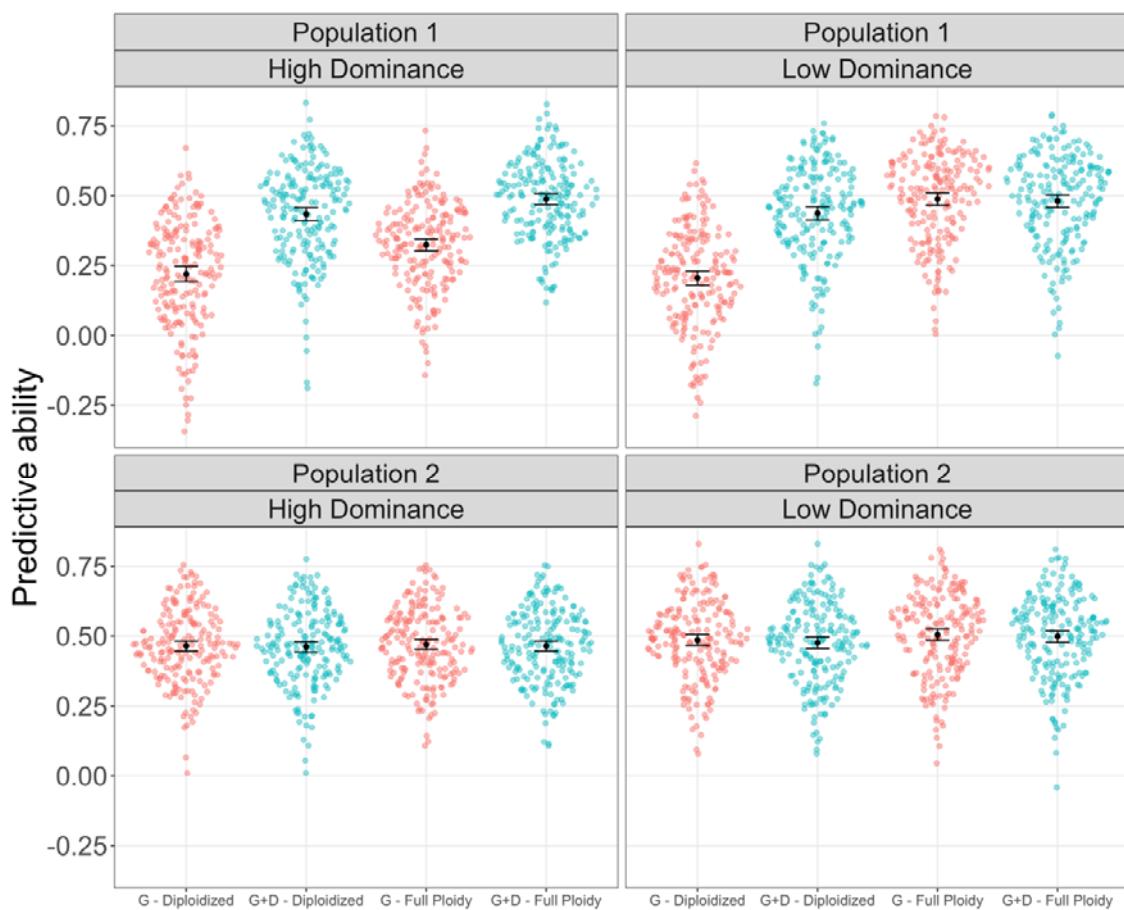


Fig 6. Distribution of the predictive ability values over different cross-validation runs of genomic selection in simulated datasets. Values are shown when considering additive effects only (G) and considering additive and digenic dominance effects (G+D). Both models are compared when using markers with ploidy and allele dosage estimates (Full ploidy) and diploidized markers. Simulated scenarios comprise populations with evenly distributed genotype frequencies (Population 1) and populations high number of homozygous and simplex markers (Population 2), either with low or high dominance. Mean and 95% confidence intervals are shown in black at the centre of each distribution.