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20 Abstract
21
22  Severa studies have shown how to leverage alele dosage information to improve the

23  accuracy of genomic selection models in autotetraploids. In this study we expanded the
24 methodology used for genomic selection in autotetraploids to higher (and mixed) ploidy
25 levels. We adapted the models to build covariance matrices of both additive and digenic
26  dominance effects that are subsequently used in genomic selection models. We applied
27  these models using estimates of ploidy and alele dosage to sugarcane and sweet potato
28 datasets and validated our results by also applying the models in simulated data. For the
29 smulated datasets, including allele dosage information led up to 140% higher mean
30 predictive abilities in comparison to using diploidized markers. Including dominance
31 effects was highly advantageous when using diploidized markers, leading to mean
32  predictive abilities which were up to 115% higher in comparison to only including
33  additive effects. When the frequency of heterozygous genotypes in the population was
34  low, such as in the sugarcane and sweet potato datasets, there was little advantage in
35 including alele dosage information in the models. Overall, we show that including
36 allele dosage can improve genomic selection in highly polyploid species under higher
37 frequency of different heterozygous genotypic classes and high dominance degree
38 levels.

39

40 Keywords: Autopolyploids, genomic selection, allele dosage, dominance, Sweet
41  Potato, Sugarcane
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65 Introduction

66 Polyploids are organisms with more than two sets of chromosomes. The number
67 of sets of chromosomes in an organism is named itsploidy level. Polyploids are
68 classified into two major categories of auto and allopolyploids. Allopolyploids result
69 from the combination of distinct parental genomes and are characterized by preferential
70 paring of chromosomes, with bivalent chromosome formation in meiosis and disomic
71 inheritance at each locus. In contrast, autopolyploids have more than two homologs per
72  homology group, often leading to the formation of multivalent chromosomes and
73 polysomic inheritance (Soltis and Soltis, 2000).

74 Many economically important species are autopolyploids. Among these, a high
75 ploidy level (>4) is observed in a number of species such as sweet potato, sugarcane,
76  and some ornamental flowers and forage crops. Sweet potato, an autohexaploid, is the
77  fourteenth most important food crop in the world regarding production volume
78 (FAOSTAT, 2020), and sugarcane, with ploidy levels ranging up to 16 (Garcia et al.
79 2013), accounts for 80% of the worldwide sugar production (CIRAD) and has
80 potential to become the main crop for bioenergy production. The main bottleneck in
81 breeding programs for these species is the long process for selection of cultivars. A
82 traditional sugarcane breeding program is usually divided in severa phases of
83  selection, each consisting of large experiments that are usually conducted for more
84 than one crop cycle (Cheavegatti-Gianotto et al. 2011; Zhou 2013), taking up to 12
85 years from the initial crosses until commercial cultivar release (Park et al. 2007).
86  Sweet potato breeding programs follow a similar breeding scheme, with selection of
87 cultivars taking up to 10 years (Katayama et al. 2017). In this context, there is a
88 pressing need for the deployment of strategies to reduce experimental costs and time
89 for selection of cultivars.

90 Genomic selection is a viable way of achieving improvement in breeding
91 programsin terms of time and costs (Heffner et al. 2009). Genomic selection consists
92  of using a representative population that is both genotyped and phenotyped (i.e., the
93 training population) to predict the effect of genetic markers widely spread throughout
94 the genome. The predicted effects are then used to predict the breeding or genotypic
95 value of genotyped individuals (Meuwissen et al. 2001). This allows selection to be
96 carried based on predicted breeding values, reducing the need for further costly
97 phenotypic evaluations and shortening the time needed for selection of the best

98 genotypes. Genomic selection has been successfully implemented in several crop
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99  breeding programs (Bernardo and Yu 2007; Heffner et al. 2009; Crossa et al. 2010;
100 Resende et al. 2012; Duhnen et al. 2017) and can potentially increase genetic gain in
101 sugarcane breeding programs (Voss-Fels et al. 2021; Hayes et al. 2021). Although
102 genomic selection can greatly improve breeding programs, its implementation
103 demands a relatively large set of genetic markers to be consistently obtained at
104 feasible costs, a process which is hindered in complex genomes such as those of
105 highly autopolyploid species.

106 Due to the complexity of their genomes, genetic studies in autopolyploid species
107  were historically mostly carried using either dominant or diploidized markers (Dufresne
108 et al. 2014), that is, polymorphisms that are either detected in a presence/absence
109 fashion or polymorphisms where all heterozygous genotypes are collapsed into a single
110 class. When using only dominant or diploidized markers, information on the different
111  categories of heterozygous genotypes is effectively lost. However, several new tools are
112  now available that allow estimating the allele dosage (i.e., the quantitative genotypes) of
113  markers (Serang et al. 2012; Blischak et al. 2018; Gerard et al. 2018; Clark et al. 2019),
114 and information of all possible genotypic classes can now potentially be used in
115 genomic studies of polyploids.

116 In autotetraploids, severa studies have shown how to leverage allele dosage
117  information to improve the accuracy of genomic selection models (Slater et al. 2016,
118 2016; de Bem Oliveira et al. 2018; Hawkins and Yu 2018; Endelman et al. 2018;
119 Amadeu et al. 2020). However, to our knowledge no studies so far have expanded these
120  methodologies to specifically address organisms with higher ploidy levels. In this paper,
121 we generalize genomic selection models used in autotetraploids and assess the accuracy
122 of genome-wide prediction when incorporating allele dosage information in sugarcane
123  and sweet potato datasets, two highly autopolyploid species. In order to validate our

124  results, we also assess the accuracy of prediction in four simulated datasets.

125 Material and M ethods

126 1. Genetic material and field experiments

127 The sugarcane dataset consisted of a segregating F; progeny of 179 individuals
128 derived from the crossing of two commercia cultivars, IACSP95-3018 (female) and
129 IACSP93-3046 (male). The first field experiment was set in Sales de Oliveira, SP,
130 Brazil, in 2007. A randomized complete block design with four replicates was used and
131 evaluations were carried in the harvest years of 2008 (plant cane) and 2009 (ratoon
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132 cane). The full-sib progeny was then clonally propagated for the second field
133  experiment that was set in Ribeirdo Preto, SP, Brazil, in 2011. A randomized complete
134  block design with three replicates was used and evaluations were carried in 2012 (plant
135 cane), 2013 and 2014 (ratoon cane). Both parents were included in each block of the
136  two experiments. All replicates were used to collect phenotypes for stalk diameter (cm),
137  salk height (cm) and stalk weight (kg) in both experiments. Also, two blocks in each
138  experiment were used to collect phenotypes for soluble solids content (Brix), sucrose
139  content and fiber percentage.

140 The sweet potato dataset consisted of phenotypic records on 282 accessions of
141 Ipomoea batatas made available by Jackson et al. (2018), which are part of a broader
142  group of 731 accessions randomly selected from the USDA germplasm bank in Griffin,
143  Georgia, United States. These materials have origin in more than 30 countries in eight
144  geographic regions (Africa, Australia, Caribean, Central America, East Asia, North
145 America, Pacific islands and South America). The accessions were planted in field trials
146  and phenotyped in the years 2012, 2013 and 2014. In in this study, we only used
147  phenotypic data from the stele colorimetry analysis. The stele colorimetry data included
148 values of the green-red coordinate (a), the yellow-blue coordinate (b), colour saturation
149 (C), lightness (L), and hue angle (h).

150 2. Genotyping

151 For the sugarcane population, parents and F, progeny were genotyped using the
152  genotyping-by-sequencing protocol of Elshire et al. (2011). Reduced representation
153 libraries were prepared using the Pstl restriction enzyme. Pstl is a rare-cutting enzyme,
154  because its restriction site has a length of 6 bp, allowing a higher genotyping depth
155 (Poland and Rife 2012). Four lanes containing 96-plex libraries were sequenced using
156 the Illlumina GAIllx and, subsequently, another four lanes with the same 96-plex
157  libraries were sequenced using the Illumina NextSeg500 platform.

158 The genotyping-by-sequencing protocol used for the sweet potato accessions is
159  described by Wadl et al. (2018), where a modified genotyping-by-sequencing protocol
160  optimized for highly heterozygous and polyploid genomes was used (GBSpoly). They
161 used a combination of CviAll and Tsel restriction enzymes for preparing the libraries
162  (restriction sites with 4 and 5bp, respectively). Libraries were multiplexed with 96
163 pooled samples. In this study, we used the raw read data the authors in Wadl et al.
164  (2018) made available in the NCBI database with accession code SRP152827.
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165 For the sugarcane dataset, we called variants using a modified version of the
166 TASSEL-GBS pipeline (Pereiraet al. 2018). This version provides exact read counts of
167 the aleles a each SNP locus. We used default values in all plugins of the pipeline,
168  except for the MergeDuplicateSNPs plugin, in which we used the argument callHets
169 and set the misMat argument value to 0.3. These values were chosen to allow a greater
170  number of heterozygous SNP loci to be kept in subsequent steps. The sequenced reads
171  were then aligned to the methyl-filtrated assembly of the sugarcane genome (Grativol et
172  al. 2014), using the software Bowtie2 (Langmead and Salzberg 2012).

173 The sweet potato raw reads were first aligned to the two ancestral reference
174  genomesl|. trifida and I. triloba (Shiotani 1988; Oracion et al. 1990; Freyre et al. 1991)
175 using Bowtie2 (Langmead and Salzberg 2012). We then used the HaplotypeCaller tool
176 inthe GATK software (version 4.1.4) to call SNPs, indels and copy number variants.
177 For both species we used the read count information of each SNP to estimate
178 their ploidy level and call sample genotypes using the software SuperMASSA and
179 VCF2SM (Serang et al. 2012; Pereira et al. 2018). For sugarcane, ploidy levels ranging
180 from two to 20 were evaluated and only SNPs with ploidy estimates between six and 14
181  were kept (Garcia et al. 2013). We also filtered for a minimum mean read depth per
182 individual of 50 reads, maximum mean read depth per individual of 500 reads,
183  minimum posterior probability of genotype configuration of 0.8, minimum posterior
184  probability of each genotype assignment of 0.5, and minimum call rate of 50%. For
185 sweet potato, ploidy levels ranging from four to eight were evaluated and only SNPs
186 with a ploidy estimate of six were chosen. We used a minimum mean read depth per
187 individual of 45 reads, maximum mean read depth per individual of 200 reads and the
188 remaining arguments were the same as for sugarcane.

189 We used the R package updog (Gerard et al. 2018) to reestimate the genotypes
190 of the SNPs that met the filtering criteria in both species. The updog package has the
191 advantage of accounting for allelic bias, overdispersion and sequencing errors when
192  estimating SNP genotypes, given a predetermined ploidy level. For sweet potato, SNP
193  setsresulting from the alignment with each of the reference genomes were merged, and
194  redundant SNPs (i.e., with identical genotype calls for all individuals) were removed.
195 Finally, we performed a chi-squared segregation test on the population genotype
196 class frequencies. For the sugarcane F; progeny, based on the estimates of SNP
197 genotypes in the parents, we tested the goodness-of-fit of marker genotypes to a

198 hypergeometric distribution of gametes (Mollinari and Serang 2015). For the sweet-
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199 potato diversity panel we tested the goodness-of-fit of marker genotypes to the
200 distribution expected under Hardy-Weinberg equilibrium. Using the Bonferroni
201  correction, only SNPs with p-values greater than a 5% threshold were kept.

202 3. Phenotypic mixed model analysis

203 Adjusted phenotypic means (i.e., BLUES - best linear unbiased estimates) for
204  each individua were obtained using a two-stage analysis (Damesa et al. 2017). All
205 analyses were performed using ASReml-R (Buitler et al. 2009). Stage one consisted of a
206  within-site analysis, where the genotype effect was considered fixed and the remaining
207  effects were considered as random (harvest effects, blocks-within-harvest effects, and
208  genotype x harvest interaction effects). The covariance matrix (£;) for the vector of
209  genotype effects (;) in site j was obtained from the inverse of the coefficient matrix of
210 the mixed model equations, returned as Cfixed in the asreml object (Endelman et al.
211 2018). Stage two was a joint analysis considering the two sites, using the following
212  linear model:

;= u+gi+s+ (99 + e,
213 where #;; is the genotype effect estimate obtained in the stage one analyses, the
214  parameter u is the intercept, g; is a fixed effect of genotypes, s; is a random effect of
215  dtes, (gs);; is arandom effect for the genotype x site interaction, and the variance of
216 theresidua e;; is (w¥)™!, where w¥ istheith diagonal element of ;" from the stage
217 one analysis (Damesa et al. 2017). The BLUESs of the genotypes obtained after this
218  stage were subsequently used to fit the genomic selection models.
219 4. Genomic selection models

220 We incorporated allele dosage information in our genomic selection models by
221 expanding and adapting the GBLUP methodology for autotetraploid species proposed
222 by Endelman et al. (2018). In sugarcane, besides the higher ploidy, the model also has
223  to account for different ploidy levels among SNP loci. In order to achieve that, we
224  expanded the theory by adapting the estimation of the genomic covariance matrix of
225  both the additive values (G) and the digenic dominance values (D).

226 Genomic predictions were obtained using the following linear model:

gi=untate,
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227 where g; is the BLUE of the ith individual obtained with the two-stage phenotypic
228 analysis, u is the intercept, a; is the random effect of genotypes, and e; is the random
229  residua effect.

230 We used two covariance structures in the genomic selection model: i) IV, +GV,
231 ,andii) IV, +GV,+DV,, wherel is the identity matrix, V, istheresidual variance, V,
232  isthe additive genetic variance, and V, is the dominance genetic variance. All analyses
233  were performed using ASReml-R (Butler et al. 2009).

234 4.1 Genomic covariance matrix of additive values (G)

235 Consider a matrix X with n rows and m columns, the rows corresponding to the

236 individuals in the population and the columns corresponding to SNP loci, where each

237  element x; corresponds to the dosage of the alternative alele for the j-th SNPin thei-th
238  individual. If p, isthe frequency of the alternative allele at the j-th locus, we can obtain
239 an nxm matrix P where the values in the j-th column all correspond to p,. For

240 hexaploid sweet potato, subtracting 6P from X results in the matrix W of centered
241  genotypes. The G matrix isthen obtained by the formula:

.
oo oo Ww'
Z 6p, (1_ P )
J
243 For sugarcane, because the SNPs have different ploidy levels, the same value of

244  allele dosage for one SNP does not represent the same genotype for other SNPs with
245  different ploidies. For example, for a hexaploid SNP an allele dosage value of six
246  represents a homozygous genotype, while for an octoploid SNP the same value
247  represents one of the possible heterozygotes.

248 To account for the different ploidy levels between SNPs, we used the following
249  formula

250 Z=2XM",

251 whereM isanm x m diagona matrix of ploidy values, such that each diagonal element
252 m, corresponds to the ploidy of the j-th SNP locus. The resulting matrix Z, with the
253 samedimensions of X, has all its elements varying from 0O to 2, where O represents loci
254  that are homozygous for the reference allele and 2 represents loci that are homozygous

255 for the alternative allele, the values in between corresponding to heterozygous loci.
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256 The subsequent steps to obtain G are the same as for diploids (VanRaden 2008).
257  Subtracting 2P from Z resultsin the matrix W of centered genotypes. The G matrix is
258  then obtained by the formula:

.
259 G= WW_
Z 2p;(1-p;)
J
260
261 4.2 Genomic covariance matrix of digenic dominance values (D)
262 We first introduce the expansion of the digenic dominance values in the

263  autotetraploid model to a hexaploid scenario. Higher ploidy levels can be parametrized
264  in asimilar fashion. Considering a hexaploid SNP locus with two alleles B and b, the
265 digenic effect for each allele pair can be obtained as demonstrated by Endelman et al.
266  (2018), with the following set of equations:

267 By =B
268 [y, =-pas
269 B, =p°s, (Eq.1)

270 where pistheallele frequency of B, qisthe alele frequency of b, with g=1- p, and

271 S isthe digenic dominance effect. Also, we have that:

272 B =P — 285+ B -

273 For a hexaploid locus, seven genotypic classes are possible in a population (i.e.,
274  dlele dosages ranging from O to 6). For each genotypic class, different combinations of
275 digenic effects are present. For example, for the genotypic class BBBBbb, there are 6
276  possible combinations of two B alleles, 8 possible combinations of a B allele with ab
277 dlele, and 1 possible combination of two b alleles. By replacing each digenic effect
278 with their corresponding values in (Eq. 1), we obtain the total digenic dominance
279  coefficient for each genotype class. Table 1 shows the combinations of digenic effects
280 and the total digenic dominance coefficient for each possible genotype class of a
281  hexaploid locus.

282  Table 1. Digenic effects and total digenic dominance for each allele dosage level of a
283  hexaploid locus with alleles B and b.

Dosage of allele B Digenic effects Digenic dominance

6 154, (15p* -30p+15) 8

10
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5 10/, +58,, (15p*-25p+10) 8

4 605 +80a + B (1 —-20p+ 6)13

3 3B +98,, +38,, (15p° -15p+3) 8

2 Bes +8B5, + 60, (1 —10p+l)ﬂ

1 54,, +104,, (15p*-5p) A

0 154, (15p%) 8
284 The formula to obtain the total digenic dominance for a given biallelic hexaploid
285  locus can then be generalized as:
286 5:(15p2—5ap+%a(a—1)),8 : (Eq. 2)

287 where J isthetotal digenic dominance and a is the dosage of the B alele.

288 We used the same process described for hexaploid loci to obtain equations for
289  other levels of ploidy. Table 2 shows the generalized formulas to obtain the total digenic

290 dominance for even ploidies from six through 14.

291 Table 2. Formulas for the total digenic dominance for different levels of ploidy

Ploidy Total digenic dominance

[15p2—5ap+%a(a-1)j y;
(28p2—7ap+%a(a—l)Jﬁ
10 (45p2—9ap+%a(a—1)jﬂ
12 (66p2—11ap+%a(a—1)jﬁ
J

14 (91p2 —13ap+%a(a—1) B

292 The formulasin Table 2 can then be generalized as:

11
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293 Q,B=(P PC-P(M -1)I x+%x (X—1)]ﬁ,

294  where l] represents the Hadamard product, C isanm X m diagonal matrix where each
m.
j

5 ) and P, M and X are as previously defined.

295 diagonal element ¢; corresponds to(

296 Finally, the genomic covariance matrix of digenic dominance values (D) was
297  obtained with:

.
298 D= C22Q 5
ZC,’ pj (1_ pj)
i
299 4.3 Mode and marker set comparisons
300 We compared two models for the genotype effects, one using only the additive

301 G matrix (G model) and one using both the G and D matrices (G+D model). We also
302 investigated the effect of using two different sets of genotypic information: i) a fully
303 informative model considering SNP markers with ploidy and allele dosage estimates,
304 and ii) diploidized SNP markers. The diploidized SNP set was obtained by setting the
305 values of al heterozygous loci in matrix Z to 1. By doing so, all heterozygous
306 genotypes were effectively merged in a single class, regardless of their dosage. For
307 diploidized markers, the G and D matrices were obtained according to the established
308 methodology commonly used for diploids (VanRaden 2008; Vitezica et al. 2013).

309 The models were compared in terms of predictive ability. For that, 1,000 cross-
310 validation runs were carried out, such that in each run 10% of the population was
311 sampled and used as the validation set, while the remaining 90% were used as the
312 training set. We measured predictive ability as the correlation between predicted
313  genotypic values and BLUEsS of the individuals in the validation set.

314 5. Simulated datasets

315 5.1 Population structure and founder genotypes

316

317 Stochastic simulations of two population structures were used to validate the

318 accuracy of prediction of genomic selection models using allele dosage estimates for
319 additive and dominance effects. One population was simulated with a nearly uniform
320 distribution of all possible genotypic classes (Population 1). The second population was

321 simulated with a higher frequency of simplex and homozygous genotypes which, in

12
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322  consequence, resultsin a higher prevaence of rare alleles (Population 2).

323 Genome simulation parameters were chosen to match the sweet potato genome.
324  An autohexaploid genome consisting of 90 chromosomes (15 homology groups) was
325 simulated and these chromosomes were assigned a genetic length of 1.43 Morgans and
326 aphysical length of 2x10’ base pairs (Wu et al. 2018). Sequences for each chromosome
327 were generated using the Markovian Coalescent Simulator (Chen et al. 2009) and
328 AlphaSmR (Gaynor et al. 2021). Recombination rate was inferred from genome size
329 (i.e. 1.43 Morgans / 2x10’ base pairs = 7.15x10°® per base pair), and the mutation rate
330 was set to 2x10° and 2x10” per base pair for Populations 1 and 2 respectively. The
331  probability of quadrivalent formation was set to 0.15 (Mollinari et al. 2020).

332 Simulated genome sequences were used to produce 50 founder genotypes. This
333  was accomplished by randomly sampling gametes from the simulated genome to assign
334  as sequences for the founders. Sites that were segregating in the founders’ segquences
335 were randomly selected to serve either as causal loci or markers. For Population 1 we
336 simulated a total of 1,000 segregating sites per homology group, of which 250 were
337 selected as causal loci and 750 were selected as markers (3,750 causal loci and 11,250
338 markersin total). For Population 2 we simulated a total of 5,000 segregating sites per
339 homology group, of which 250 were selected as causal loci and 750 sites with a high
340 frequency of simplex and homozygous genotypes in the population were selected as
341 makers. The allele frequencies and genotype distribution of markers in both
342  populations are shown in Fig S1.1 and Fig S1.2 of Supplementary Material 1.

343 5.2 Phenotype simulation

344 AlphaSimR defines an individual’s raw genotype dosage (x) as the number of
345 copies of the “1” alele at a locus, which is then scaled in accordance with the ploidy
346 level. The scaled dosages make inputs in the package invariant to ploidy level. The
347  scaled additive genotype dosages (x,) are given by the formula:

_( ploidy)< 2 )
¥a =X 2 ploidy

348 And the scaled dominance genotype dosages (xj,) are given by the formula:
2

) 2
xp = x(ploidy — x) (ploidy)

349 For autopolyploid organisms, this scaled dominance genotype dosage is

350 consistent with the digenic dominance parametrization of the dominance model.
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351 The true additive value of the smulated trait is then determined by the summing
352 of its causal loci additive alele effects multiplied by the scaled additive genotype
353 dosages. Additive alele effects were sampled from a standard normal distribution.
354 In the same way, the true dominance value of the simulated trait is determined
355 by the summing of its causal loci dominance alele effects multiplied by the scaled
356 dominance genotype dosages. The dominance effect (d) at a locus is the dominance
357 degree(6) at that locus times the absolute value of its additive allele effect (a):

d = 6la|
358 In this study, the dominance degrees were sampled from a normal distribution
359  with variance 0.2 (Werner et al. 2020) and a mean of either 0.3 (low dominance) or 1
360 (high dominance). The additive and dominance effects were then scaled to achieve a
361 desired genotypic variance of 1.
362 A phenotype was then simulated by summing the additive and dominance values
363  and subsequently adding random error in order to achieve a heritability of 0.5.
364 5.3 Population ssimulation
365 For each population structure (Populations 1 and 2) and dominance level (low
366 dominance and high dominance) we simulated F; populations with 300 individuals
367 formed by randomly crossing the founder genotypes. Each of the four simulation
368  scenarios (two populations x two dominance degree levels) was replicated 20 times. For
369 each replicate, we deployed genomic selection models using a k-fold cross-validation
370  scheme with k = 10. We measured predictive ability as the correlation between true and
371  estimated genotypic values in the validation set.

372 Results

373 We were able to obtain a large number of SNPs with estimates of ploidy and
374  alele dosage in both sugarcane and sweet potato. In both species most of the genotypes
375 were either homozygous or had only one copy of the aternative allele. The genomic
376  selection models showed low prediction ability in the sugarcane dataset and moderate to
377  high predictive ability in the sweet potato dataset. Overall the prediction ability values
378 in both datasets showed little sensitivity to including ploidy and allele dosage
379 information or dominance effects in the model. These results were replicated in
380 simulated datasets where the marker genotype distribution was similar to the real
381 datasets. In other simulated populations, which had a higher frequency of heterozygous
382 markers, the highest values of predictive ability were achieved when including ploidy
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383 and alele dosage information in the models (full ploidy models). In these populations,
384  including digenic dominance effects in full ploidy models was only advantageous when
385 the dominance level was high. When using diploidized markers, including dominance
386 effectsincreased predictive ability regardless of the dominance level.

387 Genotyping

388 In sugarcane atotal of 6,589 SNPs were kept after filtering for mean read depth,
389 posterior probability of genotypes and ploidy estimates, call rate, and segregation
390 distortion in the progeny. A total of 11 individuals did not have any sequenced reads
391 and were considered not genotyped, thus being used in phenotypic analyses but not for
392 genomic selection. A summary of ploidy and alele dosage estimates of the SNPs is
393 shown in Fig. 1. The maority of the SNPs had ploidy estimates of ten (31.18%) and
394  eight (28.93%), followed by 17.88% of SNPs with ploidy estimates of 12, 15.59% with
395 an estimated ploidy of six, and 6.43% with ploidy 14. Within each ploidy level, most of
396 the genotypes were either homozygous for the reference alele or had only one copy of
397 thereference allele, with alele dosages of zero and one accounting for more than 50%
398 of the total number of genotype calls for ploidy levels from six to 12. For ploidy 14,
399 dosage estimates were more evenly distributed among different levels, but there was
400  dtill an excess of dosages equal to zero and one.

401 In sweet potato we identified atotal of 77,837 SNPs that were kept after filtering
402  for mean read depth, posterior probability of genotypes and ploidy estimates, call rate,
403  and segregation according to Hardy-Weinberg Equilibrium. A summary of allele dosage
404  estimates of the SNPs is shown in Fig. 2. Most of the genotypes were either
405 homozygous for the reference alele (53%) or had only one copy of the reference allele
406 (13%), with alele dosages of zero and one (for both the reference and aternative

407  alleles) accounting for more than 76% of the total number of genotype calls.
408 Genomic sdlection

409 Sugarcane

410 Overadl, the predictive abilities of genomic selection in sugarcane were low,
411  regardless of the model or marker set utilized. Fig. 3 shows the distribution of the
412  predictive ability values in the sugarcane dataset over different cross-validation runs of
413 the G and G+D models, when using al the makers with full ploidy and alele dosage
414  information and using diploidized makers.
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415 For Brix, the G model using ploidy and allele dosage estimates showed the
416 highest mean predictive ability (0.24), which was higher than that of the corresponding
417  G+D model (0.21), and higher than the mean predictive abilities when using diploidized
418 markers (0.18 for the G model and 0.19 for the G+D model). A similar pattern was
419 observed for stalk height, where the G model using ploidy and allele dosage estimates
420 had amean predictive ability of 0.22, the full ploidy G+D model had a mean predictive
421  ability of 0.19, and when using diploidized markers, the mean predictive ability did not
422  exceed 0.18 for any of the two models.

423 For sucrose content, the G+D model had lower mean predictive abilities in
424 comparison to the additive G model for all sets of markers, and the mean predictive
425  abilities of the G model did not differ considerably between sets of markers. We
426  observed a different pattern for stalk diameter, because the mean predictive ability of
427  the G model when using ploidy and allele dosage estimates (0.18) was slightly lower
428 than that achieved when using diploidized markers (0.20). With regard to the G+D
429 model, the mean predictive abilities were equivalent for both sets of markers. A more
430 marked difference between models was noticeable for fiber percentage, because for the
431  full ploidy scenario the mean predictive ability of the G+D model (0.05) was much
432  lower than for the G model (0.12). This, in turn, was lower than the mean predictive
433  ability when using diploidized markers (0.15 for the G and G+D models). Lastly, for
434  stalk weight, the mean predictive abilities were the highest among all traits, and the
435 vauesdid not differ significantly between models or sets of markers (ranging from 0.28
436  100.29).

437 In order to better understand the low values of predictive ability we observed in
438 the sugarcane dataset, we performed a phenotypic variance partitioning analysis and
439 obtained estimates of heritability for the evaluated traits (methodology details can be
440 found in Supplementary Materia 1). In general, the genotypic variance had a relatively
441 smal or intermediate magnitude for all the traits, with correspondingly low or
442  intermediate heritability values. Fig. 4 shows the partitioning of the phenotypic variance
443  into its main components. The residual variance had a large magnitude for al of the
444  traits, corresponding to 36%, 35%, 49%, 58%, 48% and 34% of the phenotypic
445  variation observed for Brix, sucrose content, fiber percentage, stalk diameter, stalk
446  weight and stalk height, respectively. The effect of genotypes had an intermediate
447  magnitude for stalk diameter and a small magnitude for the other traits, corresponding
448  to 3%, 3%, 7%, 13%, 5% and 3% of the phenotypic variation observed for the same
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449  traits. The genotype x site interaction effect had an intermediate magnitude for fiber
450 percentage, stalk diameter and stalk weight, with the variance due to the interaction
451  component corresponding to, respectively, 13%, 15% and 10% of the observed
452  phenotypic variation. For traits Brix, sucrose content and stalk height the variance due
453 to the interaction component corresponded to 4%, 2% and 6% of the observed
454  phenotypic variation, respectively. The heritability coefficients for traits Brix, sucrose
455  content, fiber percentage, stalk diameter, stalk weight, and stalk height were 0.31, 0.35,
456  0.37,0.55, 0.41 and 0.36, respectively.

457  Sweet Potato
458 The predictive abilities of the genomic selection models in sweet potato were

459  moderate to high and the distribution of predictive ability values were nearly equivalent
460 between models and marker sets. Fig. 5 shows the distribution of the predictive ability
461 valuesin the sweet potato dataset over different cross-validation runs of the G and G+D
462 models when using al the makers with full ploidy and allele dosage information and
463  using diploidized makers.

464 The values of mean predictive ability for the green-red coordinate (a), the
465  yellow-blue coordinate (b), and color saturation (C) were similarly high and barely
466 differed between marker sets and models. The G model using diploidized markers, the
467 G and G+D models using full dosage information had nearly equal mean predictive
468  ability for al three traits: 0.72, 0.72, and 0.75 for a, b, and C, respectively. The G+D
469 model using diploidized markers had dSlightly lower predictive ability values of
470  approximately 0.71, 0.70, and 0.73 for a, b, and C, respectively.

471 For lightness (L) and hue angle (h) the mean predictive ability values were
472  lower than for the other three traits. Predictive abilities were dlightly higher when
473  including the dosage information and did not differ whe dominance effects were icluded
474  in the model. The G+D model using diploidized markers and markers with dosage
475  information had nearly equal mean predictive abilites of aproximately 0.60 and 0.59 for
476 L and h, respectively. The mean predictive abilites for the G model also did not differ
477  between marker sets, with values of aproximately 0.58 and 0.57 for L and h,
478  respectively.

479  Simulations
480 In the simulated datasets the highest predictive abilities were achieved when

481 including full ploidy and dosage information. Fig. 6 shows the distribution of the
482  predictive ability values in the simulated datasets over different cross-validation runs of
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483 the G and G+D models when using all the makers with full ploidy and alele dosage
484  information and using diploidized makers.

485 When using dosage information, including digenic dominance effects was only
486  advantageous under a high dominance degree and when the genotype frequencies in the
487  population were more evenly distributed (Population 1). In this scenario, when using
488  full ploidy markers, the G and G+D models had mean predictive abilities of 0.32 and
489  0.48, respectively. The mean predictive ability of the G+D model when using
490 diploidized markers (0.43) was lower than that of the G+D model using dosage
491 information. The G model using diploidized markers had the lowest mean predictive
492  ahility value (0.22).

493 For Population 1 with a lower dominance degree, when using full ploidy
494  markers the mean predictive ability of the G+D model (0.48) was nearly equal but
495  dlightly lower than that of the G model (0.49). When using diploidized markers there
496 was a clear advantage of including dominance in the models, with mean predictive
497  abilities of 0.20 and 0.43 for the G and the G+D models, respectively.

498 When the frequency of heterozygous genotypes in the population was low
499  (Population 2) the values of mean predictive ability for the different models and
500 markersweresimilar in all simulated scenarios. For the low dominance degree level, the
501 mean predictive abilities were approximately 0.50 for both the G and G+D models
502 using dosage information, and 0.49 and 0.48 when using diploidized markers. For the
503  high dominance degree level, the mean predictive abilities were approximately 0.47 for
504  both the G and G+D models using full dosage information, and approximately 0.46 with
505 thelessinformative diploidized markers.

506

507 Discussion

508 We present our discussion in two sections. First, we discuss the results we
509 obtained implementing genomic prediction in the sugarcane and sweet potato datasets.
510 Second, we discuss the results we obtained with the simulated datasets and compare
511 those with what we obtained with the real data. In both sections, we aso show how
512  models could potentially be improved to address the limitations in our study.

513 Genomic prediction in sugarcane and sweet potato

514 The values of prediction ability for sugarcane were low, while for sweet potato

515 we were able to obtain moderate to high values of predictive ability. Regardless of the
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516 prediction ability magnitude, for both species there was no significant improvement in
517 predictions when including allele dosage information or dominance effects in the
518 mode. For sugarcane, we believe the low heritability and the size of the population
519  were the main reasons why prediction models had a low performance. In both species,
520 the high number of homozygous and single dosage markers are likely playing arole in
521 the low sensitivity of the models to including dosage information and digenic
522  dominance effects.

523 We were able to obtain high-quality genotypic data in sugarcane. We identified
524 6,550 SNPs with high mean read depths, high posterior probability of genotypes and
525 ploidy estimates. Our SNP set exceeds in marker count many genetic studies in
526  sugarcane (Bundock et al. 2009; Gouy et al. 2013; Costa et al. 2016; Yang et al. 2017;
527  Gutierrez et al. 2018). However, the phenotypic variance partitioning analysis showed
528 that, for al traits, most of the variation observed in the field experiments did not stem
529  from differences between the individuals in the F; progeny, as the variance components
530 associated to the effect of genotypes and genotype x environment interactions had low
531 magnitude in comparison to other experimental sources of variation. These low values
532  of genotypic variability resulted in low to intermediate values of heritability, which in
533  turn are usualy associated with lower predictive ability (Combs and Bernardo 2013;
534  Lian et al. 2014). For all of the traits we evaluated, several studies have reported higher
535 heritability coefficients when analysing data from sugarcane cultivar trials (Milligan et
536 al. 1990; Gravois and Milligan 1992; Tena et al. 2016). This indicates that
537 implementing genomic selection in sugarcane is likely to be more advantageous than
538  our results may suggest. Higher values of genomic predictive ability in sugarcane have
539  been reported by Gouy et al. (2013), Deomano et al. (2020) and Hayes et al. (2021).
540 The small training population size in the sugarcane dataset might also be playing
541 akey role in explaining the low values of predictive ability we observed. This idea is
542  supported by comparing predictive abilities of the models when including or not
543 including digenic dominance effects. For most of the traits there was a small reduction
544  in the predictive ability when digenic dominance effects were included. Including
545  digenic dominance effects results in estimating three additional parameters (Eq. 1), thus
546  requiring more observations for accurate estimates to be obtained (Button et al. 2013).
547  With a small population size, the estimates of dominance effects were likely not
548  accurate, and the predictive ability of the model decreased.
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549 In both datasets a large proportion of the SNP calls corresponded to either
550 homozygous or single-dosage genotypes. In breeding populations, this can either occur
551 when the polymorphisms genotyped represent relatively recent mutations in the
552  genomes or when selective pressure has led to the near fixation of genotyped loci. In
553  highly polyploid species such as sugarcane and sweet potato, even with very intense
554  selective pressure, the fixation of favorable alleles is extremely difficult as deleterious
555 alleles may have a high number of copies. Hence, the presence of recent mutations is
556 thelikely explanation for the genotype frequencies we observed.

557 This low frequency of higher-dosage genotypes is potentially masking the
558 advantages of including alele dosage information in genomic selection models. As
559  mostly only one class of heterozygous genotype is present, the marker sets with dosage
560 information are not much more informative than their diploidized counterparts. We
561 verified the effect of the low number of heterozygous classes in our prediction models
562 by using simulated datasets, and we showed that it indeed affects the sensitivity of
563  prediction models to the two different marker sets. In the following section we discuss

564  these results more thoroughly.

565 Genomic prediction in simulated datasets

566 The simulation results demonstrated that genomic prediction including allele
567 dosage information and digenic dominance effect leads to higher predictive abilities
568 only when there is a substantial presence of different heterozygous genotypic classes in
569 the population (Population 1). As mentioned in the previous section, this is likely the
570  main reason why predictions did not improve when including allele dosage information
571 for the real datasets we used in this study. When the simulated populations had a higher
572  frequency of homozygous and simplex genotypes (Population 2), and therefore a similar
573  genotype distribution to the sugarcane and sweet potato datasets, we observed the
574  performance of genomic prediction models to also be invariant to the inclusion of alele
575  dosage and dominance effects.

576 With this, the results demonstrate that the simulated populations are a good
577  proxy for better understanding the results we obtained in the real datasets. In addition to
578 that, the highest value of mean predictive ability, obtained when including allele dosage
579 information and digenic dominance effects, matched the value of the simulated broad-
580 sense heritability of 0.5. Hence, the variance explained by the predicted additive and
581 dominance effects fully captured the variance explained by the true genetic effects. This
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582 indicates that the model is capturing true genetic signals and is unlikely to overfit due to
583 noisein the training data. This also highlights the low heritability values being the main
584  culprit on the low predictive abilities observed in the sugarcane datasets.

585 Our results also demonstrate that the use of diploidized markers is a good
586 alternative when allele dosage estimates are not available. This is true even with a
587 sizeable presence of different heterozygous genotypic classes (Population 1). In these
588 smulated scenarios, we observed that the performance of the G+D model using
589 diploidized markers nearly matched the performance of the G+D mode when
590 considering allele dosage information, regardless of the dominance level. This is
591 important because when using genotyping-by-sequencing techniques in autopolyploids,
592 accurate genotype calls with allele dosage demand a high sequencing depth
503  (Uitdewilligen et al. 2015; Bastien et al. 2018). When only low-depth sequencing data
594  isavailable, making diploidized genotype calls can be an efficient way of using the data
595  without having to obtain allele dosage estimates (Matias et al. 2019). Our results show
596 that, in these situations, if dominance effects are included in the prediction model, the
597  performanceloss for using diploidized markersis not drastic.

598 Including dominance in the model is aso important when using the alele dosage
599 information. However, in this case, including digenic dominance effects is only
600 advantageous when the dominance degree is high. When allele dosage information is
601 included and the dominance degree is low, the G model performs just as well as the
602 G+D model. In contrast, under high dominance degree levels, the performance loss
603  when using the G model rather than the G+D model is significant. To date, little is
604  known about the magnitude of the dominance gene action that is present in the traits of
605 highly autopolyploid species. More research is still needed for breeders to have an
606 estimate of the dominance level of traits in autopolyploid breeding populations. In the
607  current context, our results show that the G+D model should be preferred, as it is the
608  best performing model regardless of the dominance level.

609 Generally, autopolyploid crop varieties are clonally propagated and the
610 genotypes in vegetatively propagated crops are typically heterozygous (Grineberg et al.
611 2009). The genetic value of heterozygous genotypes is a function of additive and non-
612  additive gene action (Falconer and Mackay 1996). Non-additive gene action comprises
613  both dominance and epistatic effects. For clonally propagated species, both additive and
614 non-additive gene action are transmitted across generations in the selection process
615 (Bernardo 2010). Therefore, genomic selection models for cultivar selection in these
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616  species should aim to include both dominance and epistatic effects. The importance of
617 including dominance effects in genomic models for clonally propagated crops has also
618 been demonstrated for selection of parents in recurrent selection breeding programs
619 (Werner et al. 2020). In this study, we investigated only two of many possible ways of
620 including dominance effects in prediction models for highly polyploid species.

621 Is important to notice that we validated out models using ssmulated phenotypes
622  consisting of only additive and digenic dominance effects. We were able to demonstrate
623 that our fully informative dosage-aware analysis performs better than other simpler
624  genomic prediction models when it comes to these two simulated effects. However,
625 higher order dominance effects (i.e., interactions between more than two alleles) could
626 aso be present in autopolyploid species; hence further improvements in predictions
627 could be achieved by expanding genomic prediction models to include these effects.
628 Moreover. it is still unclear how much of the genotypic variation in highly
629 autopolyploid species is explained by digenic dominance effects. In autotetraploids,
630 Endelman et al. (2018) and Amadeu et al. (2020) have observed digenic dominance
631 effectsto explain only asmall portion of the genotypic variance. In their case, there was

632 little advantage to including digenic dominance effects in genomic predictions.
633 Conclusion

634 We showed that estimates of ploidy and allele dosage can improve genomic
635 selection in highly polyploid species. This is mostly true when there is a substantial
636 number of heterozygous genotypes in the population. When the frequency of
637  heterozygous genotypes in the population is low, such as in the sugarcane and sweet
638 potato datasets, there is little advantage in including alele dosage information in the
639 models. Our simulation results also show that using diploidized markers in the absence
640 of allele dosage estimates can nearly match the performance of fully informative marker
641  sets. However, this is true only when including dominance effects in the genomic
642 prediction models. With the full dosage information available, digenic dominance
643 effects can significantly improve genomic prediction, provided that the trait being
644 predicted has a high mean dominance degree and that the population has a high
645 frequency of heterozygous genotypes.

646
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Fig 1. Summary of the estimates of ploidy and allele dosage for 170 sugarcane samples and
6,550 SNPs. The bars show the total number of loci per ploidy level, and different values of
alele dosage are shown by different colours. For each ploidy level, the corresponding
percentage of the total number of loci is shown above the bars.
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Fig 2. Genotype frequencies for 285 sweet potato samples and 77,837 SNPs. The bars show
the total number of markers per genotypic class. Genotypic classes are shown with the
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“0/0/0/0/1/1” represents genotypes where the reference allele has a dosage of four and the
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Fig 3. Digtribution of the predictive ability values over different cross-validation runs of
genomic selection in sugarcane. Values are shown when considering additive effects only (G)
and considering additive and digenic dominance effects (G+D). Both models were compared
when using markers with ploidy and allele dosage estimates (Full ploidy) and diploidized
markers. The values are shown for traits soluble solids content (Brix), sucrose content (Pol),
fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight) and stalk height
(Height). Mean and 95% confidence intervals are shown in black a the centre of each
distribution.
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Fig 4. Phenotypic variance partitioning for soluble solids content (Brix), sucrose content
(Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight), and stalk height
(Height). Variance components that are not shown had variance estimates very close to zero.
Contributions of variances due to the effect of sites, harvests, replicates, genotypes, genotype
x sites interaction (GxS), and residual variance are shown.
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Fig 5. Digtribution of the predictive ability values over different cross-validation runs of
genomic selection in sweet potato. Values are shown when considering additive effects only
(G) and considering additive and digenic dominance effects (G+D). Both models were
compared when using markers with ploidy and allele dosage estimates (Full ploidy) and
diploidized markers. The values are shown for stele colorimetry traits. green-red coordinate
(a), the yellow-blue coordinate (b), color saturation (C), lightness (L), and hue angle (h).
Mean and 95% confidence intervals are shown in black at the centre of each distribution.
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Fig 6. Distribution of the predictive ability values over different cross-validation runs of
genomic selection in simulated datasets. Values are shown when considering additive effects
only (G) and considering additive and digenic dominance effects (G+D). Both models are
compared when using markers with ploidy and allele dosage estimates (Full ploidy) and
diploidized markers. Simulated scenarios comprise populations with evenly distributed
genotype frequencies (Population 1) and populations high number of homozygous and
simplex markers (Population 2), either with low or high dominance. Mean and 95%
confidence intervals are shown in black at the centre of each distribution.
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