
1 

 

Genomic prediction with allele dosage information in highly polyploid species 1 

Lorena G. Batista, Victor H. Mello, Anete P. Souza, Gabriel R. A. Margarido* 2 

 3 
 4 
L. Batista: “Luiz de Queiroz” College of Agriculture, University of São Paulo, 5 
Piracicaba, SP, 13418-900, Brazil. https://orcid.org/0000-0001-8472-8776 6 
  7 
V.H. Mello: “Luiz de Queiroz” College of Agriculture, University of São Paulo, 8 
Piracicaba, SP, 13418-900, Brazil. https://orcid.org/0000-0003-1014-7762 9 
 10 
A.P. Souza: Center of Molecular Biology and Genetic Engineering, University of 11 
Campinas, Campinas, SP, 13083-970, Brazil. https://orcid.org/0000-0003-3831-9829 12 
 13 
G.R.A. Margarido*: “Luiz de Queiroz” College of Agriculture, University of São Paulo, 14 
Piracicaba, SP, 13418-900, Brazil. https://orcid.org/0000-0002-2327-0201 15 
 16 
 17 
* Corresponding author: +55 19 3429 4125 #44 gramarga@usp.br  18 
  19 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449437
http://creativecommons.org/licenses/by/4.0/


2 

 

Abstract 20 
 21 
Several studies have shown how to leverage allele dosage information to improve the 22 

accuracy of genomic selection models in autotetraploids. In this study we expanded the 23 

methodology used for genomic selection in autotetraploids to higher (and mixed) ploidy 24 

levels. We adapted the models to build covariance matrices of both additive and digenic 25 

dominance effects that are subsequently used in genomic selection models. We applied 26 

these models using estimates of ploidy and allele dosage to sugarcane and sweet potato 27 

datasets and validated our results by also applying the models in simulated data. For the 28 

simulated datasets, including allele dosage information led up to 140% higher mean 29 

predictive abilities in comparison to using diploidized markers. Including dominance 30 

effects was highly advantageous when using diploidized markers, leading to mean 31 

predictive abilities which were up to 115% higher in comparison to only including 32 

additive effects. When the frequency of heterozygous genotypes in the population was 33 

low, such as in the sugarcane and sweet potato datasets, there was little advantage in 34 

including allele dosage information in the models. Overall, we show that including 35 

allele dosage can improve genomic selection in highly polyploid species under higher 36 

frequency of different heterozygous genotypic classes and high dominance degree 37 

levels.  38 

 39 

Keywords: Autopolyploids, genomic selection, allele dosage, dominance, Sweet 40 

Potato, Sugarcane 41 
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Introduction 65 

Polyploids are organisms with more than two sets of chromosomes. The number 66 

of sets of chromosomes in an organism is named its ploidy level. Polyploids are 67 

classified into two major categories of auto and allopolyploids. Allopolyploids result 68 

from the combination of distinct parental genomes and are characterized by preferential 69 

pairing of chromosomes, with bivalent chromosome formation in meiosis and disomic 70 

inheritance at each locus. In contrast, autopolyploids have more than two homologs per 71 

homology group, often leading to the formation of multivalent chromosomes and 72 

polysomic inheritance (Soltis and Soltis, 2000).  73 

Many economically important species are autopolyploids. Among these, a high 74 

ploidy level (>4) is observed in a number of species such as sweet potato, sugarcane, 75 

and some ornamental flowers and forage crops. Sweet potato, an autohexaploid, is the 76 

fourteenth most important food crop in the world regarding production volume 77 

(FAOSTAT, 2020), and sugarcane, with ploidy levels ranging up to 16 (Garcia et al. 78 

2013), accounts for 80% of the worldwide sugar production (CIRAD) and has 79 

potential to become the main crop for bioenergy production. The main bottleneck in 80 

breeding programs for these species is the long process for selection of cultivars. A 81 

traditional sugarcane breeding program is usually divided in several phases of 82 

selection, each consisting of large experiments that are usually conducted for more 83 

than one crop cycle (Cheavegatti-Gianotto et al. 2011; Zhou 2013), taking up to 12 84 

years from the initial crosses until commercial cultivar release (Park et al. 2007). 85 

Sweet potato breeding programs follow a similar breeding scheme, with selection of 86 

cultivars taking up to 10 years (Katayama et al. 2017). In this context, there is a 87 

pressing need for the deployment of strategies to reduce experimental costs and time 88 

for selection of cultivars. 89 

Genomic selection is a viable way of achieving improvement in breeding 90 

programs in terms of time and costs (Heffner et al. 2009). Genomic selection consists 91 

of using a representative population that is both genotyped and phenotyped (i.e., the 92 

training population) to predict the effect of genetic markers widely spread throughout 93 

the genome. The predicted effects are then used to predict the breeding or genotypic 94 

value of genotyped individuals (Meuwissen et al. 2001). This allows selection to be 95 

carried based on predicted breeding values, reducing the need for further costly 96 

phenotypic evaluations and shortening the time needed for selection of the best 97 

genotypes. Genomic selection has been successfully implemented in several crop 98 
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breeding programs (Bernardo and Yu 2007; Heffner et al. 2009; Crossa et al. 2010; 99 

Resende et al. 2012; Duhnen et al. 2017) and can potentially increase genetic gain in 100 

sugarcane breeding programs (Voss-Fels et al. 2021; Hayes et al. 2021). Although 101 

genomic selection can greatly improve breeding programs, its implementation 102 

demands a relatively large set of genetic markers to be consistently obtained at 103 

feasible costs, a process which is hindered in complex genomes such as those of 104 

highly autopolyploid species.  105 

Due to the complexity of their genomes, genetic studies in autopolyploid species 106 

were historically mostly carried using either dominant or diploidized markers (Dufresne 107 

et al. 2014), that is, polymorphisms that are either detected in a presence/absence 108 

fashion or polymorphisms where all heterozygous genotypes are collapsed into a single 109 

class. When using only dominant or diploidized markers, information on the different 110 

categories of heterozygous genotypes is effectively lost. However, several new tools are 111 

now available that allow estimating the allele dosage (i.e., the quantitative genotypes) of 112 

markers (Serang et al. 2012; Blischak et al. 2018; Gerard et al. 2018; Clark et al. 2019), 113 

and information of all possible genotypic classes can now potentially be used in 114 

genomic studies of polyploids.   115 

In autotetraploids, several studies have shown how to leverage allele dosage 116 

information to improve the accuracy of genomic selection models (Slater et al. 2016, 117 

2016; de Bem Oliveira et al. 2018; Hawkins and Yu 2018; Endelman et al. 2018; 118 

Amadeu et al. 2020). However, to our knowledge no studies so far have expanded these 119 

methodologies to specifically address organisms with higher ploidy levels. In this paper, 120 

we generalize genomic selection models used in autotetraploids and assess the accuracy 121 

of genome-wide prediction when incorporating allele dosage information in sugarcane 122 

and sweet potato datasets, two highly autopolyploid species. In order to validate our 123 

results, we also assess the accuracy of prediction in four simulated datasets.  124 

Material and Methods 125 

1. Genetic material and field experiments 126 

 The sugarcane dataset consisted of a segregating F1 progeny of 179 individuals 127 

derived from the crossing of two commercial cultivars, IACSP95-3018 (female) and 128 

IACSP93-3046 (male). The first field experiment was set in Sales de Oliveira, SP, 129 

Brazil, in 2007. A randomized complete block design with four replicates was used and 130 

evaluations were carried in the harvest years of 2008 (plant cane) and 2009 (ratoon 131 
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cane). The full-sib progeny was then clonally propagated for the second field 132 

experiment that was set in Ribeirão Preto, SP, Brazil, in 2011. A randomized complete 133 

block design with three replicates was used and evaluations were carried in 2012 (plant 134 

cane), 2013 and 2014 (ratoon cane). Both parents were included in each block of the 135 

two experiments. All replicates were used to collect phenotypes for stalk diameter (cm), 136 

stalk height (cm) and stalk weight (kg) in both experiments. Also, two blocks in each 137 

experiment were used to collect phenotypes for soluble solids content (Brix), sucrose 138 

content and fiber percentage. 139 

 The sweet potato dataset consisted of phenotypic records on 282 accessions of 140 

Ipomoea batatas made available by Jackson et al. (2018), which are part of a broader 141 

group of 731 accessions randomly selected from the USDA germplasm bank in Griffin, 142 

Georgia, United States. These materials have origin in more than 30 countries in eight 143 

geographic regions (Africa, Australia, Caribean, Central America, East Asia, North 144 

America, Pacific islands and South America). The accessions were planted in field trials 145 

and phenotyped in the years 2012, 2013 and 2014. In in this study, we only used 146 

phenotypic data from the stele colorimetry analysis. The stele colorimetry data included 147 

values of the green-red coordinate (a), the yellow-blue coordinate (b), colour saturation 148 

(C), lightness (L), and hue angle (h). 149 

2. Genotyping 150 

For the sugarcane population, parents and F1 progeny were genotyped using the 151 

genotyping-by-sequencing protocol of Elshire et al. (2011). Reduced representation 152 

libraries were prepared using the PstI restriction enzyme. PstI is a rare-cutting enzyme, 153 

because its restriction site has a length of 6 bp, allowing a higher genotyping depth 154 

(Poland and Rife 2012). Four lanes containing 96-plex libraries were sequenced using 155 

the Illumina GAIIx and, subsequently, another four lanes with the same 96-plex 156 

libraries were sequenced using the Illumina NextSeq500 platform.  157 

The genotyping-by-sequencing protocol used for the sweet potato accessions is 158 

described by Wadl et al. (2018), where a modified genotyping-by-sequencing protocol 159 

optimized for highly heterozygous and polyploid genomes was used (GBSpoly). They 160 

used a combination of CviAII and TseI restriction enzymes for preparing the libraries 161 

(restriction sites with 4 and 5bp, respectively). Libraries were multiplexed with 96 162 

pooled samples. In this study, we used the raw read data the authors in Wadl et al. 163 

(2018) made available in the NCBI database with accession code SRP152827.  164 
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For the sugarcane dataset, we called variants using a modified version of the 165 

TASSEL-GBS pipeline (Pereira et al. 2018). This version provides exact read counts of 166 

the alleles at each SNP locus. We used default values in all plugins of the pipeline, 167 

except for the MergeDuplicateSNPs plugin, in which we used the argument callHets 168 

and set the misMat argument value to 0.3. These values were chosen to allow a greater 169 

number of heterozygous SNP loci to be kept in subsequent steps. The sequenced reads 170 

were then aligned to the methyl-filtrated assembly of the sugarcane genome (Grativol et 171 

al. 2014), using the software Bowtie2 (Langmead and Salzberg 2012).  172 

The sweet potato raw reads were first aligned to the two ancestral reference 173 

genomes I. trifida and I. triloba (Shiotani 1988; Oracion et al. 1990; Freyre et al. 1991) 174 

using Bowtie2 (Langmead and Salzberg 2012). We then used the HaplotypeCaller tool 175 

in the GATK software (version 4.1.4) to call SNPs, indels and copy number variants.  176 

For both species we used the read count information of each SNP to estimate 177 

their ploidy level and call sample genotypes using the software SuperMASSA and 178 

VCF2SM (Serang et al. 2012; Pereira et al. 2018). For sugarcane, ploidy levels ranging 179 

from two to 20 were evaluated and only SNPs with ploidy estimates between six and 14 180 

were kept (Garcia et al. 2013). We also filtered for a minimum mean read depth per 181 

individual of 50 reads, maximum mean read depth per individual of 500 reads, 182 

minimum posterior probability of genotype configuration of 0.8, minimum posterior 183 

probability of each genotype assignment of 0.5, and minimum call rate of 50%. For 184 

sweet potato, ploidy levels ranging from four to eight were evaluated and only SNPs 185 

with a ploidy estimate of six were chosen. We used a minimum mean read depth per 186 

individual of 45 reads, maximum mean read depth per individual of 200 reads and the 187 

remaining arguments were the same as for sugarcane.  188 

 We used the R package updog (Gerard et al. 2018) to reestimate the genotypes 189 

of the SNPs that met the filtering criteria in both species. The updog package has the 190 

advantage of accounting for allelic bias, overdispersion and sequencing errors when 191 

estimating SNP genotypes, given a predetermined ploidy level. For sweet potato, SNP 192 

sets resulting from the alignment with each of the reference genomes were merged, and 193 

redundant SNPs (i.e., with identical genotype calls for all individuals) were removed.  194 

Finally, we performed a chi-squared segregation test on the population genotype 195 

class frequencies. For the sugarcane F1 progeny, based on the estimates of SNP 196 

genotypes in the parents, we tested the goodness-of-fit of marker genotypes to a 197 

hypergeometric distribution of gametes (Mollinari and Serang 2015). For the sweet-198 
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potato diversity panel we tested the goodness-of-fit of marker genotypes to the 199 

distribution expected under Hardy-Weinberg equilibrium. Using the Bonferroni 200 

correction, only SNPs with �-values greater than a 5% threshold were kept.  201 

3. Phenotypic mixed model analysis 202 

 Adjusted phenotypic means (i.e., BLUEs - best linear unbiased estimates) for 203 

each individual were obtained using a two-stage analysis (Damesa et al. 2017). All 204 

analyses were performed using ASReml-R (Butler et al. 2009). Stage one consisted of a 205 

within-site analysis, where the genotype effect was considered fixed and the remaining 206 

effects were considered as random (harvest effects, blocks-within-harvest effects, and 207 

genotype × harvest interaction effects). The covariance matrix (��) for the vector of 208 

genotype effects (���) in site j was obtained from the inverse of the coefficient matrix of 209 

the mixed model equations, returned as Cfixed in the asreml object (Endelman et al. 210 

2018). Stage two was a joint analysis considering the two sites, using the following 211 

linear model: 212 

���� �  	 
 �� 
 �� 
 
����� 
 ��� , 

where ���� is the genotype effect estimate obtained in the stage one analyses, the 213 

parameter 	 is the intercept, �� is a fixed effect of genotypes, ��  is a random effect of 214 

sites, 
����� is a random effect for the genotype × site interaction, and the variance of 215 

the residual ���  is 
������, where ��� is the ith diagonal element of ��
�� from the stage 216 

one analysis (Damesa et al. 2017). The BLUEs of the genotypes obtained after this 217 

stage were subsequently used to fit the genomic selection models. 218 

4. Genomic selection models 219 

 We incorporated allele dosage information in our genomic selection models by 220 

expanding and adapting the GBLUP methodology for autotetraploid species proposed 221 

by Endelman et al. (2018). In sugarcane, besides the higher ploidy, the model also has 222 

to account for different ploidy levels among SNP loci. In order to achieve that, we 223 

expanded the theory by adapting the estimation of the genomic covariance matrix of 224 

both the additive values (G) and the digenic dominance values (D). 225 

 Genomic predictions were obtained using the following linear model: 226 

��� �  	 
 �� 
 �� , 
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where ��� is the BLUE of the ith individual obtained with the two-stage phenotypic 227 

analysis, 	 is the intercept, ��  is the random effect of genotypes, and �� is the random 228 

residual effect. 229 

We used two covariance structures in the genomic selection model: i) V Vr a+I G230 

, and ii) V V Vr a d+ +I G D , where I is the identity matrix, Vr  is the residual variance, Va  231 

is the additive genetic variance, and Vd  is the dominance genetic variance. All analyses 232 

were performed using ASReml-R (Butler et al. 2009). 233 

4.1 Genomic covariance matrix of additive values (G) 234 

Consider a matrix X with n rows and m columns, the rows corresponding to the 235 

individuals in the population and the columns corresponding to SNP loci, where each 236 

element ijx  corresponds to the dosage of the alternative allele for the j-th SNP in the i-th 237 

individual. If jp  is the frequency of the alternative allele at the j-th locus, we can obtain 238 

an � � � matrix P where the values in the j-th column all correspond to jp . For 239 

hexaploid sweet potato, subtracting 6P from X results in the matrix W of centered 240 

genotypes. The G matrix is then obtained by the formula: 241 

G =
WWT

6 p j 1− pj( )
j
∑

 242 

For sugarcane, because the SNPs have different ploidy levels, the same value of 243 

allele dosage for one SNP does not represent the same genotype for other SNPs with 244 

different ploidies. For example, for a hexaploid SNP an allele dosage value of six 245 

represents a homozygous genotype, while for an octoploid SNP the same value 246 

represents one of the possible heterozygotes. 247 

To account for the different ploidy levels between SNPs, we used the following 248 

formula: 249 

12 −=Z XM , 250 

where M is an � � � diagonal matrix of ploidy values, such that each diagonal element 251 

jm  corresponds to the ploidy of the j-th SNP locus. The resulting matrix Z, with the 252 

same dimensions of X, has all its elements varying from 0 to 2, where 0 represents loci 253 

that are homozygous for the reference allele and 2 represents loci that are homozygous 254 

for the alternative allele, the values in between corresponding to heterozygous loci. 255 
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The subsequent steps to obtain G are the same as for diploids (VanRaden 2008). 256 

Subtracting 2P  from Z results in the matrix W of centered genotypes. The G matrix is 257 

then obtained by the formula: 258 

( )2 1j j
j

p p
=

−∑

TWW
G  259 

 260 

4.2 Genomic covariance matrix of digenic dominance values (D) 261 

 We first introduce the expansion of the digenic dominance values in the 262 

autotetraploid model to a hexaploid scenario. Higher ploidy levels can be parametrized 263 

in a similar fashion. Considering a hexaploid SNP locus with two alleles B and b, the 264 

digenic effect for each allele pair can be obtained as demonstrated by Endelman et al. 265 

(2018), with the following set of equations: 266 

2
BB qβ β=  267 

Bb pqβ β= −  268 

2
bb pβ β= ,                    (Eq. 1) 269 

where p is the allele frequency of B, q is the allele frequency of b, with 1q p= − , and 270 

β  is the digenic dominance effect. Also, we have that: 271 

2BB Bb bbβ β β β= − + . 272 

For a hexaploid locus, seven genotypic classes are possible in a population (i.e., 273 

allele dosages ranging from 0 to 6). For each genotypic class, different combinations of 274 

digenic effects are present. For example, for the genotypic class BBBBbb, there are 6 275 

possible combinations of two B alleles, 8 possible combinations of a B allele with a b 276 

allele, and 1 possible combination of two b alleles. By replacing each digenic effect 277 

with their corresponding values in (Eq. 1), we obtain the total digenic dominance 278 

coefficient for each genotype class. Table 1 shows the combinations of digenic effects 279 

and the total digenic dominance coefficient for each possible genotype class of a 280 

hexaploid locus. 281 

Table 1. Digenic effects and total digenic dominance for each allele dosage level of a 282 
hexaploid locus with alleles B and b. 283 

Dosage of allele B Digenic effects Digenic dominance 

6 15 BBβ  ( )215 30 15p p β− +  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449437
http://creativecommons.org/licenses/by/4.0/


11 

 

5 10 5BB Bbβ β+  ( )215 25 10p p β− +  

4 6 8BB Bb bbβ β β+ +  ( )215 20 6p p β− +  

3 3 9 3BB Bb bbβ β β+ +  ( )215 15 3p p β− +  

2 8 6BB Bb bbβ β β+ +  ( )215 10 1p p β− +  

1 5 10Bb bbβ β+  ( )215 5p p β−  

0 15 bbβ  ( )215 p β  

The formula to obtain the total digenic dominance for a given biallelic hexaploid 284 

locus can then be generalized as: 285 

2 1
15 5 ( 1)

2
p ap a aδ β⎛ ⎞= − + −⎜ ⎟

⎝ ⎠
 ,              (Eq. 2) 286 

where δ  is the total digenic dominance and a is the dosage of the B allele. 287 

We used the same process described for hexaploid loci to obtain equations for 288 

other levels of ploidy. Table 2 shows the generalized formulas to obtain the total digenic 289 

dominance for even ploidies from six through 14. 290 

Table 2. Formulas for the total digenic dominance for different levels of ploidy 291 

Ploidy Total digenic dominance 

6 2 1
15 5 ( 1)

2
p ap a a β⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 

8 2 1
28 7 ( 1)

2
p ap a a β⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 

10 2 1
45 9 ( 1)

2
p ap a a β⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 

12 2 1
66 11 ( 1)

2
p ap a a β⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 

14 2 1
91 13 ( 1)

2
p ap a a β⎛ ⎞− + −⎜ ⎟

⎝ ⎠
 

The formulas in Table 2 can then be generalized as: 292 
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( )1
( 1) 1

2
β β⎛ ⎞= − − + −⎜ ⎟

⎝ ⎠
Q P PC P M X X X� � � , 293 

where �  represents the Hadamard product, C is an � � � diagonal matrix where each 294 

diagonal element �� corresponds to ���

2 �, and P, M and X are as previously defined. 295 

 Finally, the genomic covariance matrix of digenic dominance values (D) was 296 

obtained with: 297 

2 2(1 )j j j
j

c p p
=

−∑

TQQ
D . 298 

4.3 Model and marker set comparisons 299 

 We compared two models for the genotype effects, one using only the additive 300 

G matrix (G model) and one using both the G and D matrices (G+D model). We also 301 

investigated the effect of using two different sets of genotypic information: i) a fully 302 

informative model considering SNP markers with ploidy and allele dosage estimates, 303 

and ii) diploidized SNP markers. The diploidized SNP set was obtained by setting the 304 

values of all heterozygous loci in matrix Z to 1. By doing so, all heterozygous 305 

genotypes were effectively merged in a single class, regardless of their dosage. For 306 

diploidized markers, the G and D matrices were obtained according to the established 307 

methodology commonly used for diploids (VanRaden 2008; Vitezica et al. 2013). 308 

 The models were compared in terms of predictive ability. For that, 1,000 cross-309 

validation runs were carried out, such that in each run 10% of the population was 310 

sampled and used as the validation set, while the remaining 90% were used as the 311 

training set. We measured predictive ability as the correlation between predicted 312 

genotypic values and BLUEs of the individuals in the validation set.  313 

5. Simulated datasets 314 

5.1 Population structure and founder genotypes 315 

 316 

  Stochastic simulations of two population structures were used to validate the 317 

accuracy of prediction of genomic selection models using allele dosage estimates for 318 

additive and dominance effects. One population was simulated with a nearly uniform 319 

distribution of all possible genotypic classes (Population 1). The second population was 320 

simulated with a higher frequency of simplex and homozygous genotypes which, in 321 
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consequence, results in a higher prevalence of rare alleles (Population 2). 322 

Genome simulation parameters were chosen to match the sweet potato genome. 323 

An autohexaploid genome consisting of 90 chromosomes (15 homology groups) was 324 

simulated and these chromosomes were assigned a genetic length of 1.43 Morgans and 325 

a physical length of 2x107 base pairs (Wu et al. 2018). Sequences for each chromosome 326 

were generated using the Markovian Coalescent Simulator (Chen et al. 2009) and 327 

AlphaSimR (Gaynor et al. 2021). Recombination rate was inferred from genome size 328 

(i.e. 1.43 Morgans / 2x107 base pairs = 7.15x10-8 per base pair), and the mutation rate 329 

was set to 2x10-9 and 2x10-7 per base pair for Populations 1 and 2 respectively. The 330 

probability of quadrivalent formation was set to 0.15 (Mollinari et al. 2020).  331 

Simulated genome sequences were used to produce 50 founder genotypes. This 332 

was accomplished by randomly sampling gametes from the simulated genome to assign 333 

as sequences for the founders. Sites that were segregating in the founders’ sequences 334 

were randomly selected to serve either as causal loci or markers. For Population 1 we 335 

simulated a total of 1,000 segregating sites per homology group, of which 250 were 336 

selected as causal loci and 750 were selected as markers (3,750 causal loci and 11,250 337 

markers in total). For Population 2 we simulated a total of 5,000 segregating sites per 338 

homology group, of which 250 were selected as causal loci and 750 sites with a high 339 

frequency of simplex and homozygous genotypes in the population were selected as 340 

markers. The allele frequencies and genotype distribution of markers in both 341 

populations are shown in Fig S1.1 and Fig S1.2 of Supplementary Material 1.  342 

5.2 Phenotype simulation 343 

AlphaSimR defines an individual’s raw genotype dosage (�	 as the number of 344 

copies of the “1” allele at a locus, which is then scaled in accordance with the ploidy 345 

level. The scaled dosages make inputs in the package invariant to ploidy level. The 346 

scaled additive genotype dosages (��) are given by the formula:   347 

�� 
 �� � 
�����
2 � � 2


������ 

And the scaled dominance genotype dosages ���) are given by the formula: 348 

�� 
 ��
����� � �	 � 2

������

�

 

For autopolyploid organisms, this scaled dominance genotype dosage is 349 

consistent with the digenic dominance parametrization of the dominance model. 350 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 22, 2021. ; https://doi.org/10.1101/2021.06.22.449437doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.22.449437
http://creativecommons.org/licenses/by/4.0/


14 

 

The true additive value of the simulated trait is then determined by the summing 351 

of its causal loci additive allele effects multiplied by the scaled additive genotype 352 

dosages. Additive allele effects were sampled from a standard normal distribution.  353 

In the same way, the true dominance value of the simulated trait is determined 354 

by the summing of its causal loci dominance allele effects multiplied by the scaled 355 

dominance genotype dosages. The dominance effect (�) at a locus is the dominance 356 

degree (�) at that locus times the absolute value of its additive allele effect (a): 357 

� 
  �|�| 
In this study, the dominance degrees were sampled from a normal distribution 358 

with variance 0.2 (Werner et al. 2020) and a mean of either 0.3 (low dominance) or 1 359 

(high dominance). The additive and dominance effects were then scaled to achieve a 360 

desired genotypic variance of 1. 361 

A phenotype was then simulated by summing the additive and dominance values 362 

and subsequently adding random error in order to achieve a heritability of 0.5. 363 

5.3 Population simulation 364 

For each population structure (Populations 1 and 2) and dominance level (low 365 

dominance and high dominance) we simulated F1 populations with 300 individuals 366 

formed by randomly crossing the founder genotypes. Each of the four simulation 367 

scenarios (two populations x two dominance degree levels) was replicated 20 times. For 368 

each replicate, we deployed genomic selection models using a k-fold cross-validation 369 

scheme with k = 10. We measured predictive ability as the correlation between true and 370 

estimated genotypic values in the validation set.  371 

Results 372 

 We were able to obtain a large number of SNPs with estimates of ploidy and 373 

allele dosage in both sugarcane and sweet potato. In both species most of the genotypes 374 

were either homozygous or had only one copy of the alternative allele. The genomic 375 

selection models showed low prediction ability in the sugarcane dataset and moderate to 376 

high predictive ability in the sweet potato dataset. Overall the prediction ability values 377 

in both datasets showed little sensitivity to including ploidy and allele dosage 378 

information or dominance effects in the model. These results were replicated in 379 

simulated datasets where the marker genotype distribution was similar to the real 380 

datasets. In other simulated populations, which had a higher frequency of heterozygous 381 

markers, the highest values of predictive ability were achieved when including ploidy 382 
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and allele dosage information in the models (full ploidy models). In these populations, 383 

including digenic dominance effects in full ploidy models was only advantageous when 384 

the dominance level was high. When using diploidized markers, including dominance 385 

effects increased predictive ability regardless of the dominance level. 386 

Genotyping 387 

 In sugarcane a total of 6,589 SNPs were kept after filtering for mean read depth, 388 

posterior probability of genotypes and ploidy estimates, call rate, and segregation 389 

distortion in the progeny. A total of 11 individuals did not have any sequenced reads 390 

and were considered not genotyped, thus being used in phenotypic analyses but not for 391 

genomic selection. A summary of ploidy and allele dosage estimates of the SNPs is 392 

shown in Fig. 1. The majority of the SNPs had ploidy estimates of ten (31.18%) and 393 

eight (28.93%), followed by 17.88% of SNPs with ploidy estimates of 12, 15.59% with 394 

an estimated ploidy of six, and 6.43% with ploidy 14. Within each ploidy level, most of 395 

the genotypes were either homozygous for the reference allele or had only one copy of 396 

the reference allele, with allele dosages of zero and one accounting for more than 50% 397 

of the total number of genotype calls for ploidy levels from six to 12. For ploidy 14, 398 

dosage estimates were more evenly distributed among different levels, but there was 399 

still an excess of dosages equal to zero and one.  400 

 In sweet potato we identified a total of 77,837 SNPs that were kept after filtering 401 

for mean read depth, posterior probability of genotypes and ploidy estimates, call rate, 402 

and segregation according to Hardy-Weinberg Equilibrium. A summary of allele dosage 403 

estimates of the SNPs is shown in Fig. 2. Most of the genotypes were either 404 

homozygous for the reference allele (53%) or had only one copy of the reference allele 405 

(13%), with allele dosages of zero and one (for both the reference and alternative 406 

alleles) accounting for more than 76% of the total number of genotype calls.  407 

Genomic selection 408 

Sugarcane 409 

 Overall, the predictive abilities of genomic selection in sugarcane were low, 410 

regardless of the model or marker set utilized. Fig. 3 shows the distribution of the 411 

predictive ability values in the sugarcane dataset over different cross-validation runs of 412 

the G and G+D models, when using all the makers with full ploidy and allele dosage 413 

information and using diploidized makers. 414 
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For Brix, the G model using ploidy and allele dosage estimates showed the 415 

highest mean predictive ability (0.24), which was higher than that of the corresponding 416 

G+D model (0.21), and higher than the mean predictive abilities when using diploidized 417 

markers (0.18 for the G model and 0.19 for the G+D model). A similar pattern was 418 

observed for stalk height, where the G model using ploidy and allele dosage estimates 419 

had a mean predictive ability of 0.22, the full ploidy G+D model had a mean predictive 420 

ability of 0.19, and when using diploidized markers, the mean predictive ability did not 421 

exceed 0.18 for any of the two models. 422 

For sucrose content, the G+D model had lower mean predictive abilities in 423 

comparison to the additive G model for all sets of markers, and the mean predictive 424 

abilities of the G model did not differ considerably between sets of markers. We 425 

observed a different pattern for stalk diameter, because the mean predictive ability of 426 

the G model when using ploidy and allele dosage estimates (0.18) was slightly lower 427 

than that achieved when using diploidized markers (0.20). With regard to the G+D 428 

model, the mean predictive abilities were equivalent for both sets of markers. A more 429 

marked difference between models was noticeable for fiber percentage, because for the 430 

full ploidy scenario the mean predictive ability of the G+D model (0.05) was much 431 

lower than for the G model (0.12). This, in turn, was lower than the mean predictive 432 

ability when using diploidized markers (0.15 for the G and G+D models). Lastly, for 433 

stalk weight, the mean predictive abilities were the highest among all traits, and the 434 

values did not differ significantly between models or sets of markers (ranging from 0.28 435 

to 0.29). 436 

In order to better understand the low values of predictive ability we observed in 437 

the sugarcane dataset, we performed a phenotypic variance partitioning analysis and 438 

obtained estimates of heritability for the evaluated traits (methodology details can be 439 

found in Supplementary Material 1). In general, the genotypic variance had a relatively 440 

small or intermediate magnitude for all the traits, with correspondingly low or 441 

intermediate heritability values. Fig. 4 shows the partitioning of the phenotypic variance 442 

into its main components. The residual variance had a large magnitude for all of the 443 

traits, corresponding to 36%, 35%, 49%, 58%, 48% and 34% of the phenotypic 444 

variation observed for Brix, sucrose content, fiber percentage, stalk diameter, stalk 445 

weight and stalk height, respectively. The effect of genotypes had an intermediate 446 

magnitude for stalk diameter and a small magnitude for the other traits, corresponding 447 

to 3%, 3%, 7%, 13%, 5% and 3% of the phenotypic variation observed for the same 448 
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traits. The genotype × site interaction effect had an intermediate magnitude for fiber 449 

percentage, stalk diameter and stalk weight, with the variance due to the interaction 450 

component corresponding to, respectively, 13%, 15% and 10% of the observed 451 

phenotypic variation. For traits Brix, sucrose content and stalk height the variance due 452 

to the interaction component corresponded to 4%, 2% and 6% of the observed 453 

phenotypic variation, respectively. The heritability coefficients for traits Brix, sucrose 454 

content, fiber percentage, stalk diameter, stalk weight, and stalk height were 0.31, 0.35, 455 

0.37, 0.55, 0.41 and 0.36, respectively. 456 

Sweet Potato 457 
The predictive abilities of the genomic selection models in sweet potato were 458 

moderate to high and the distribution of predictive ability values were nearly equivalent 459 

between models and marker sets. Fig. 5 shows the distribution of the predictive ability 460 

values in the sweet potato dataset over different cross-validation runs of the G and G+D 461 

models when using all the makers with full ploidy and allele dosage information and 462 

using diploidized makers. 463 

The values of mean predictive ability for the green-red coordinate (a), the 464 

yellow-blue coordinate (b), and color saturation (C) were similarly high and barely 465 

differed between marker sets and models. The G model using diploidized markers, the 466 

G and G+D models using full dosage information had nearly equal mean predictive 467 

ability for all three traits: 0.72, 0.72, and 0.75 for a, b, and C, respectively. The G+D 468 

model using diploidized markers had slightly lower predictive ability values of 469 

approximately 0.71, 0.70, and 0.73 for a, b, and C, respectively. 470 

For lightness (L) and hue angle (h) the mean predictive ability values were 471 

lower than for the other three traits. Predictive abilities were slightly higher when 472 

including the dosage information and did not differ whe dominance effects were icluded 473 

in the model. The G+D model using diploidized markers and markers with dosage 474 

information had nearly equal mean predictive abilites of aproximately 0.60 and 0.59 for 475 

L and h, respectively. The mean predictive abilites for the G model also did not differ 476 

between marker sets, with values of aproximately 0.58 and 0.57 for L and h, 477 

respectively.  478 

Simulations 479 
In the simulated datasets the highest predictive abilities were achieved when 480 

including full ploidy and dosage information. Fig. 6 shows the distribution of the 481 

predictive ability values in the simulated datasets over different cross-validation runs of 482 
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the G and G+D models when using all the makers with full ploidy and allele dosage 483 

information and using diploidized makers. 484 

When using dosage information, including digenic dominance effects was only 485 

advantageous under a high dominance degree and when the genotype frequencies in the 486 

population were more evenly distributed (Population 1). In this scenario, when using 487 

full ploidy markers, the G and G+D models had mean predictive abilities of 0.32 and 488 

0.48, respectively. The mean predictive ability of the G+D model when using 489 

diploidized markers (0.43) was lower than that of the G+D model using dosage 490 

information. The G model using diploidized markers had the lowest mean predictive 491 

ability value (0.22).  492 

 For Population 1 with a lower dominance degree, when using full ploidy 493 

markers the mean predictive ability of the G+D model (0.48) was nearly equal but 494 

slightly lower than that of the G model (0.49). When using diploidized markers there 495 

was a clear advantage of including dominance in the models, with mean predictive 496 

abilities of 0.20 and 0.43 for the G and the G+D models, respectively.  497 

 When the frequency of heterozygous genotypes in the population was low 498 

(Population 2) the values of mean predictive ability for the different models and 499 

markers were similar in all simulated scenarios. For the low dominance degree level, the 500 

mean predictive abilities were approximately 0.50 for both the G and G+D models 501 

using dosage information, and 0.49 and 0.48 when using diploidized markers. For the 502 

high dominance degree level, the mean predictive abilities were approximately 0.47 for 503 

both the G and G+D models using full dosage information, and approximately 0.46 with 504 

the less informative diploidized markers.  505 

 506 

Discussion 507 

  We present our discussion in two sections. First, we discuss the results we 508 

obtained implementing genomic prediction in the sugarcane and sweet potato datasets. 509 

Second, we discuss the results we obtained with the simulated datasets and compare 510 

those with what we obtained with the real data. In both sections, we also show how 511 

models could potentially be improved to address the limitations in our study.     512 

Genomic prediction in sugarcane and sweet potato 513 

 The values of prediction ability for sugarcane were low, while for sweet potato 514 

we were able to obtain moderate to high values of predictive ability. Regardless of the 515 
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prediction ability magnitude, for both species there was no significant improvement in 516 

predictions when including allele dosage information or dominance effects in the 517 

model. For sugarcane, we believe the low heritability and the size of the population 518 

were the main reasons why prediction models had a low performance. In both species, 519 

the high number of homozygous and single dosage markers are likely playing a role in 520 

the low sensitivity of the models to including dosage information and digenic 521 

dominance effects.  522 

We were able to obtain high-quality genotypic data in sugarcane. We identified 523 

6,550 SNPs with high mean read depths, high posterior probability of genotypes and 524 

ploidy estimates. Our SNP set exceeds in marker count many genetic studies in 525 

sugarcane (Bundock et al. 2009; Gouy et al. 2013; Costa et al. 2016; Yang et al. 2017; 526 

Gutierrez et al. 2018). However, the phenotypic variance partitioning analysis showed 527 

that, for all traits, most of the variation observed in the field experiments did not stem 528 

from differences between the individuals in the F1 progeny, as the variance components 529 

associated to the effect of genotypes and genotype × environment interactions had low 530 

magnitude in comparison to other experimental sources of variation. These low values 531 

of genotypic variability resulted in low to intermediate values of heritability, which in 532 

turn are usually associated with lower predictive ability (Combs and Bernardo 2013; 533 

Lian et al. 2014). For all of the traits we evaluated, several studies have reported higher 534 

heritability coefficients when analysing data from sugarcane cultivar trials (Milligan et 535 

al. 1990; Gravois and Milligan 1992; Tena et al. 2016). This indicates that 536 

implementing genomic selection in sugarcane is likely to be more advantageous than 537 

our results may suggest. Higher values of genomic predictive ability in sugarcane have 538 

been reported by Gouy et al. (2013), Deomano et al. (2020) and Hayes et al. (2021). 539 

The small training population size in the sugarcane dataset might also be playing 540 

a key role in explaining the low values of predictive ability we observed. This idea is 541 

supported by comparing predictive abilities of the models when including or not 542 

including digenic dominance effects. For most of the traits there was a small reduction 543 

in the predictive ability when digenic dominance effects were included. Including 544 

digenic dominance effects results in estimating three additional parameters (Eq. 1), thus 545 

requiring more observations for accurate estimates to be obtained (Button et al. 2013). 546 

With a small population size, the estimates of dominance effects were likely not 547 

accurate, and the predictive ability of the model decreased. 548 
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In both datasets a large proportion of the SNP calls corresponded to either 549 

homozygous or single-dosage genotypes. In breeding populations, this can either occur 550 

when the polymorphisms genotyped represent relatively recent mutations in the 551 

genomes or when selective pressure has led to the near fixation of genotyped loci. In 552 

highly polyploid species such as sugarcane and sweet potato, even with very intense 553 

selective pressure, the fixation of favorable alleles is extremely difficult as deleterious 554 

alleles may have a high number of copies. Hence, the presence of recent mutations is 555 

the likely explanation for the genotype frequencies we observed.  556 

This low frequency of higher-dosage genotypes is potentially masking the 557 

advantages of including allele dosage information in genomic selection models. As 558 

mostly only one class of heterozygous genotype is present, the marker sets with dosage 559 

information are not much more informative than their diploidized counterparts. We 560 

verified the effect of the low number of heterozygous classes in our prediction models 561 

by using simulated datasets, and we showed that it indeed affects the sensitivity of 562 

prediction models to the two different marker sets. In the following section we discuss 563 

these results more thoroughly. 564 

Genomic prediction in simulated datasets 565 

The simulation results demonstrated that genomic prediction including allele 566 

dosage information and digenic dominance effect leads to higher predictive abilities 567 

only when there is a substantial presence of different heterozygous genotypic classes in 568 

the population (Population 1). As mentioned in the previous section, this is likely the 569 

main reason why predictions did not improve when including allele dosage information 570 

for the real datasets we used in this study. When the simulated populations had a higher 571 

frequency of homozygous and simplex genotypes (Population 2), and therefore a similar 572 

genotype distribution to the sugarcane and sweet potato datasets, we observed the 573 

performance of genomic prediction models to also be invariant to the inclusion of allele 574 

dosage and dominance effects.  575 

With this, the results demonstrate that the simulated populations are a good 576 

proxy for better understanding the results we obtained in the real datasets. In addition to 577 

that, the highest value of mean predictive ability, obtained when including allele dosage 578 

information and digenic dominance effects, matched the value of the simulated broad-579 

sense heritability of 0.5. Hence, the variance explained by the predicted additive and 580 

dominance effects fully captured the variance explained by the true genetic effects. This 581 
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indicates that the model is capturing true genetic signals and is unlikely to overfit due to 582 

noise in the training data. This also highlights the low heritability values being the main 583 

culprit on the low predictive abilities observed in the sugarcane datasets.  584 

Our results also demonstrate that the use of diploidized markers is a good 585 

alternative when allele dosage estimates are not available. This is true even with a 586 

sizeable presence of different heterozygous genotypic classes (Population 1). In these 587 

simulated scenarios, we observed that the performance of the G+D model using 588 

diploidized markers nearly matched the performance of the G+D model when 589 

considering allele dosage information, regardless of the dominance level. This is 590 

important because when using genotyping-by-sequencing techniques in autopolyploids, 591 

accurate genotype calls with allele dosage demand a high sequencing depth 592 

(Uitdewilligen et al. 2015; Bastien et al. 2018). When only low-depth sequencing data 593 

is available, making diploidized genotype calls can be an efficient way of using the data 594 

without having to obtain allele dosage estimates (Matias et al. 2019). Our results show 595 

that, in these situations, if dominance effects are included in the prediction model, the 596 

performance loss for using diploidized markers is not drastic. 597 

Including dominance in the model is also important when using the allele dosage 598 

information. However, in this case, including digenic dominance effects is only 599 

advantageous when the dominance degree is high. When allele dosage information is 600 

included and the dominance degree is low, the G model performs just as well as the 601 

G+D model. In contrast, under high dominance degree levels, the performance loss 602 

when using the G model rather than the G+D model is significant. To date, little is 603 

known about the magnitude of the dominance gene action that is present in the traits of 604 

highly autopolyploid species. More research is still needed for breeders to have an 605 

estimate of the dominance level of traits in autopolyploid breeding populations. In the 606 

current context, our results show that the G+D model should be preferred, as it is the 607 

best performing model regardless of the dominance level.  608 

Generally, autopolyploid crop varieties are clonally propagated and the 609 

genotypes in vegetatively propagated crops are typically heterozygous (Grüneberg et al. 610 

2009). The genetic value of heterozygous genotypes is a function of additive and non-611 

additive gene action (Falconer and Mackay 1996). Non-additive gene action comprises 612 

both dominance and epistatic effects. For clonally propagated species, both additive and 613 

non-additive gene action are transmitted across generations in the selection process 614 

(Bernardo 2010). Therefore, genomic selection models for cultivar selection in these 615 
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species should aim to include both dominance and epistatic effects. The importance of 616 

including dominance effects in genomic models for clonally propagated crops has also 617 

been demonstrated for selection of parents in recurrent selection breeding programs 618 

(Werner et al. 2020). In this study, we investigated only two of many possible ways of 619 

including dominance effects in prediction models for highly polyploid species.  620 

Is important to notice that we validated out models using simulated phenotypes 621 

consisting of only additive and digenic dominance effects. We were able to demonstrate 622 

that our fully informative dosage-aware analysis performs better than other simpler 623 

genomic prediction models when it comes to these two simulated effects. However, 624 

higher order dominance effects (i.e., interactions between more than two alleles) could 625 

also be present in autopolyploid species; hence further improvements in predictions 626 

could be achieved by expanding genomic prediction models to include these effects. 627 

Moreover. it is still unclear how much of the genotypic variation in highly 628 

autopolyploid species is explained by digenic dominance effects. In autotetraploids, 629 

Endelman et al. (2018) and Amadeu et al. (2020) have observed digenic dominance 630 

effects to explain only a small portion of the genotypic variance. In their case, there was 631 

little advantage to including digenic dominance effects in genomic predictions.  632 

Conclusion 633 

We showed that estimates of ploidy and allele dosage can improve genomic 634 

selection in highly polyploid species. This is mostly true when there is a substantial 635 

number of heterozygous genotypes in the population. When the frequency of 636 

heterozygous genotypes in the population is low, such as in the sugarcane and sweet 637 

potato datasets, there is little advantage in including allele dosage information in the 638 

models. Our simulation results also show that using diploidized markers in the absence 639 

of allele dosage estimates can nearly match the performance of fully informative marker 640 

sets. However, this is true only when including dominance effects in the genomic 641 

prediction models. With the full dosage information available, digenic dominance 642 

effects can significantly improve genomic prediction, provided that the trait being 643 

predicted has a high mean dominance degree and that the population has a high 644 

frequency of heterozygous genotypes.  645 

  646 
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Fig 1. Summary of the estimates of ploidy and allele dosage for 170 sugarcane samples and 
6,550 SNPs. The bars show the total number of loci per ploidy level, and different values of 
allele dosage are shown by different colours. For each ploidy level, the corresponding 
percentage of the total number of loci is shown above the bars. 
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Fig 2. Genotype frequencies for 285 sweet potato samples and 77,837 SNPs. The bars show 
the total number of markers per genotypic class. Genotypic classes are shown with the 
alternative alleles represented as 1’s and the reference alleles represented as 0’s (e.g., 
“0/0/0/0/1/1” represents genotypes where the reference allele has a dosage of four and the 
alternative allele has a dosage of two).  
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Fig 3. Distribution of the predictive ability values over different cross-validation runs of 
genomic selection in sugarcane. Values are shown when considering additive effects only (G) 
and considering additive and digenic dominance effects (G+D). Both models were compared 
when using markers with ploidy and allele dosage estimates (Full ploidy) and diploidized 
markers. The values are shown for traits soluble solids content (Brix), sucrose content (Pol), 
fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight) and stalk height 
(Height). Mean and 95% confidence intervals are shown in black at the centre of each 
distribution. 
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Fig 4. Phenotypic variance partitioning for soluble solids content (Brix), sucrose content 
(Pol), fiber percentage (Fiber), stalk diameter (Diam), stalk weight (Weight), and stalk height 
(Height). Variance components that are not shown had variance estimates very close to zero. 
Contributions of variances due to the effect of sites, harvests, replicates, genotypes, genotype 
× sites interaction (GxS), and residual variance are shown.  
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Fig 5. Distribution of the predictive ability values over different cross-validation runs of 
genomic selection in sweet potato. Values are shown when considering additive effects only 
(G) and considering additive and digenic dominance effects (G+D). Both models were 
compared when using markers with ploidy and allele dosage estimates (Full ploidy) and 
diploidized markers. The values are shown for stele colorimetry traits: green-red coordinate 
(a), the yellow-blue coordinate (b), color saturation (C), lightness (L), and hue angle (h). 
Mean and 95% confidence intervals are shown in black at the centre of each distribution. 
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Fig 6. Distribution of the predictive ability values over different cross-validation runs of 
genomic selection in simulated datasets. Values are shown when considering additive effects 
only (G) and considering additive and digenic dominance effects (G+D). Both models are 
compared when using markers with ploidy and allele dosage estimates (Full ploidy) and 
diploidized markers. Simulated scenarios comprise populations with evenly distributed 
genotype frequencies (Population 1) and populations high number of homozygous and 
simplex markers (Population 2), either with low or high dominance. Mean and 95% 
confidence intervals are shown in black at the centre of each distribution. 
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