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Abstract

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity
(measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or
physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals,
undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with
two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation
into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding
best practice, a wide variety of methods has been applied. Here we systematically compare combinations
of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet
transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures
(phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase
consistency, magnitude squared coherence, and entropy). We provide performance measures of each
combination for simulated data (with precise control over true connectivity), a single-subject set of real
MEG data, and a full group analysis of real MEG data. Our results show that, overall, wppc and gcmi tend
to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal
deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral
estimation method appeared to be more critical than the connectivity measure. We discuss practical
implications (sampling rate, SNR, computation time, and data length) and aim to provide

recommendations tailored to particular research questions.
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1. Introduction

The analysis of cerebro-peripheral connectivity has recently gained significant interest. This analysis
approach is typically based on two recordings with high temporal resolution, namely MEG/EEG recordings
of brain activity (Baillet, 2017; Gross, 2019) and a peripheral signal sampled at the same rate. A prominent
early application of cerebro-peripheral connectivity was the investigation of connectivity between brain
and muscle activity (Salenius et al., 1997), which has led to important insights into the role of neural
rhythms in physiological and pathological motor control (Bourguignon et al., 2019, 2017; Schnitzler &
Gross, 2005; Schoffelen et al., 2005). More recently, this type of analysis has also proven useful for
studying continuous speech processing due to the fact that brain signals are temporally synchronised to
the speech envelope (Gross et al., 2013b; Lakatos et al., 2019; Meyer et al., 2019; Obleser & Kayser,
2019; Zoefel, 2018). More generally, cerebro-peripheral connectivity can be studied to elucidate the
ongoing coupling between any peripherally recorded signal and brain activity (Gross, 2019; Park et al.,
2014; Rebollo et al., 2018) and even modulations of such connectivity measures as a function of a
secondary peripheral signal such as respiration (Kluger & Gross, 2020). Examples for relevant peripheral
signals are eye movements, pupil size, heart beat, respiration, speech, movement or muscle activity, skin
conductance or temperature, and blood pressure. Some of these signals (such as respiration, heart beat,
speech, tremor) are distinctively rhythmic, thus favouring analysis in the spectral domain. However, there
is no consensus in the literature on the best methodological approach to quantify cerebro-peripheral
connectivity in the spectral domain. Instead, a large variety of methods has been used. In practice, spectral
cerebro-peripheral connectivity analysis consists of two steps that can each be conducted in several ways:
First, spectral estimation is performed where time series are transformed into the frequency domain (as
complex-valued numbers). Spectral estimation is most often performed by using Fourier transformation,
wavelet transformation, or bandpass-filtering (Bruns, 2004; Gross, 2014; Le Van Quyen and Bragin, 2007).
In a second step, connectivity measures can be estimated. Again, a large number of methods have been
suggested (Bastos and Schoffelen, 2015; Marzetti et al., 2019) and some of them have been compared
in previous studies (David et al., 2004; Kreuz et al., 2007; Quian Quiroga et al., 2002). It is noteworthy that
MEG/EEG connectivity is often discussed in the context of cerebro-cerebral connectivity, i.e. connectivity
between different brain areas. This brings about complications that are absent in the case of cerebro-
peripheral connectivity. Most importantly, estimation of non-invasive MEG/EEG time series from two
regions of interest in the brain is never perfect and leads to leakage effects that contaminate the
connectivity estimate (Schoffelen & Gross, 2009). This is typically circumvented using connectivity
measures that exclude common zero-lag components in both time series (such as imaginary coherence).
In the case of cerebro-peripheral connectivity, the estimation of time series in the brain is still not optimal
but the second signal is a peripheral recording that does not share any spurious signal components with
the brain signal that result from imperfect source reconstruction. Therefore, analyses of cerebro-peripheral
connectivity do not require connectivity measures to exclude shared zero-lag signals.
Depending on the differences of multiple methods for spectral decomposition and estimation of effect size,
the investigator's choice could affect the results of the analysis. Here, we aim to investigate the sensitivity
of cerebro-peripheral connectivity analysis to the choice of spectral estimation and connectivity measures.
2
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We realise that such an investigation depends on the signals that are used and on the implementation of
the spectral estimation and connectivity methods. Therefore, we cannot expect to provide authoritative
guidance on the ‘optimal’ analysis approach that generalises to all possible applications. Still, we can
expect to learn lessons that could be valuable to the community in the planning of similar studies and the
analysis of cerebro-peripheral data.

A second contribution is to make our analysis scripts publicly available on GitHub
(https://github.com/IBiomag/) so that a similar comparison can be performed for different simulated or real
data and different methods can be added and evaluated.

Since we anticipated non-trivial interactions between different spectral estimation methods and different
connectivity measures, we analysed all combinations of a set of six standard spectral estimation methods
(comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier
transform using Matlab’s spectrogram function) and six connectivity measures (phase-locking value,
Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude
squared coherence, and entropy). We start our investigation by using simulated data where the
connectivity between signals is precisely controlled. We then proceed to a single-subject real data set and
finally to a full group analysis of an exemplary data set.

2. Material and methods

The evaluation of spectral estimation methods and connectivity measures is performed on two types of
data. First, we use simulated data to control the type and extent of connectivity between the bivariate time

series. Second, we use real MEG data from twenty participants listening to nine 1-min-long stories.

2.1 Data simulation

The simulated data is constructed by applying a fourth-order Butterworth bandpass filter (3-6 Hz) to a 1-
minute simulated white noise signal (sampling rate: 100 Hz) with a mean of 0 and a standard deviation of
1. Two time series are then constructed by adding white noise (independently for each time series and
with a mean of 0 and a standard deviation of 1) to the filtered noise. Therefore, the resulting time series
show linear dependencies in the frequency range between 3-6 Hz that are evident as phase
synchronisation and amplitude correlation. The degree of coupling can be adjusted through the amplitude
of the added noise (see dedicated analyses below).

In what follows, the dependency between the time series will be quantified by applying all combinations of
the six spectral estimation methods and the six undirected connectivity measures, which will be described

in detail next.

2.2 Real data
We used MEG data recorded with a 275 whole-head sensor system (OMEGA 275, VSM Medtech Ltd.,
Vancouver, Canada) at a sampling frequency of 1200 Hz. The study was approved by the ethics

committee of the University of Minster and conducted in accordance with the Declaration of Helsinki.
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Written informed consent was obtained before the measurement and participants received monetary
compensation after the experiment.

Twenty native German-speaking participants (11 males, mean age 24.9 + 2.6 years, range 20-32 years)
listened to nine 1-min long audio recordings of their own voice in which they answered general questions
such as ‘What does a typical weekend look like for you?’. Speech data was captured at a sampling rate
of 44.1 kHz using a microphone placed at a distance of 155 cm from the participant’s mouth.

Prior to data analysis, MEG data were visually inspected. No jump artifacts or bad channels were detected.
A discrete Fourier transform (DFT) filter was applied to eliminate 50 Hz line noise from the continuous
MEG data.

The wideband amplitude envelope of the speech signal was computed using the method presented in
(Chandrasekaran et al., 2009). Nine logarithmically spaced frequency bands between 100-10000 Hz were
constructed by bandpass filtering (third-order Butterworth filters). Then we computed the amplitude
envelope for each frequency band as the absolute value of the Hilbert transform and downsampled them
to 1200 Hz. We averaged them across bands and used the computed wideband amplitude envelope for
all further analysis. Finally, MEG and speech envelope were downsampled to 256 Hz. In the preprocessing
and data analysis steps, custom-made scripts in Matlab R2020 (The Mathworks, Natick, MA, USA) in
combination with the Matlab-based FieldTrip toolbox (Oostenveld et al., 2011) were used following current
MEG guidelines (Gross et al., 2013a).

For source localisation we aligned individual T1-weighted anatomical MRI scans with the digitized head
shapes using the iterative closest point algorithm. Then, we segmented the MRI scans and generated
single-shell volume conductor models (Nolte, 2003), and used this to create forward models. Next, the
linearly constrained minimum variance (LCMV) algorithm was used to compute time series of voxels taken
from a parcel showing medium connectivity (L_PFop located within the left inferior parietal lobule) of the
volumetric HCP brain atlas (Glasser et al., 2016). The parcel selection was not relevant for the purpose of
this study (which was focused on methods differences given two time series) but we ensured that the
parcel showed significant connectivity to the speech envelope. The final time series representing activity
from L_PFop was the first component of a singular value decomposition (SVD) of time series from all

dipoles in this parcel.

2.3 Spectral estimation

Six different methods are used to perform a complex-valued spectral transformation of the time series in
the frequency band. All methods except the wavelet transform use a frequency resolution of 0.5 Hz. For
the subsequent connectivity estimation and evaluation we focused on the frequency band between 1 and
10 Hz.
1-3) The first three methods use the Fast Fourier transform (FFT) based implementation in FieldTrip
(Oostenveld et al., 2011). The first method uses Hanning tapers while the second and third
methods use discrete prolate spheroidal sequences (DPSS) in a multi-taper approach with +1 Hz

and +2 Hz smoothing, respectively. In all three cases a 2s window with 50% overlap is used.
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4) This uses the continuous wavelet transform implemented in Matlab with Morlet wavelets
(cwitfilterbank.m with wavelet parameters 3 and 20). It uses L1-normalization so that equal
amplitude oscillatory components at different scales have equal magnitude in the spectral
estimate. The matlab function wt.m performs the actual transformation into the frequency domain.

5) A series of bandpass filters (windowed sinc FIR filter) is applied with edge frequencies that are 1
Hz below and above the center frequency. The center frequency changes from 1-10 Hz in steps
of 0.5 Hz. The Hilbert transform is then applied for each filtered signal to obtain the complex-
valued spectral estimate.

6) This spectral estimate is computed from Matlab’s spectrogram function in analogy to method 1. It

also uses a 2s window with 50% overlap.

It should be noted that the number of complex valued data points returned from these methods is very
different. Methods 1-3 and 6 are based on the FFT and return about one spectrum per second. Methods
4 and 5 instead return one spectrum per data sample and therefore provide many more, albeit largely
redundant, data points. This has implications for computation time (see Table 1).

2.4 Connectivity measures
We use six undirected spectral connectivity measures:

1) Phase-locking value (plv; Lachaux et al., 1999): This is defined as the length of the vector average
of the normalized (unit length) phase differences between time series x and y.

2) Gaussian-copula mutual information (gcmi; Ince et al., 2017): We compute mutual information
between two bivariate time-series (real and imaginary part of x and y) using the original
implementation (https://github.com/robince/gcmi).

3) Rayleigh test (R-test; Berens, 2009): The Rayleigh test is defined for circular (phase) data and
tests for significant deviation from a uniform phase distribution. Here, it is applied to the phase
difference.

4) Weighted pairwise phase consistency (wppc; Vinck et al., 2010): This measure does not directly
test for a deviation of a phase distribution from a uniform distribution. Instead, it computes the
pairwise difference of phases from this distribution. The rationale for this approach is that a
preferred phase in the phase distribution would also lead to a cluster in the pairwise difference.
However, in contrast to plv, wppc is not biased by the sample size. We compute wppc with code
based on the FieldTrip implementation.

5) Magnitude squared coherence (coh): Coherence is a standard measure of association
corresponding to a frequency domain correlation coefficient. It is computed by dividing the
magnitude squared cross-spectral density between x and y by the product of the individual power
spectra.

6) Entropy (ent; Shannon, 1948): We used entropy to quantify the deviation of the distribution of

phase differences from a uniform distribution. In contrast to the other measures, this is sensitive


https://sciwheel.com/work/citation?ids=283770&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=4723792&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=3055346&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=83076&pre=&suf=&sa=0
https://sciwheel.com/work/citation?ids=852065&pre=&suf=&sa=0
https://doi.org/10.1101/2021.06.22.449393
http://creativecommons.org/licenses/by-nc-nd/4.0/

196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219

220
221
222
223
224
225
226
227
228
229
230
231
232

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449393; this version posted June 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

to more than just unimodal phase difference distributions. Here, the computation uses a binning

of phase differences into 20 bins.

2.5 Surrogate data and normalisation

For each connectivity measure, surrogate data are computed by randomly shifting the spectral estimates
of one of the time series with respect to the other with a circular wrapping around the edges (using
circshift.m in Matlab). This temporal shifting of data is an established technique for creating surrogate data
because it destroys any true synchronisation in the data (Andrzejak et al., 2003) while preserving the
signals’ autocorrelation structure. We perform this shifting procedure 200 times (unless otherwise stated)
to create a distribution of 200 surrogate data points for each connectivity measure. Next, we normalise
each connectivity measure by subtracting the mean and dividing by the standard deviation of the surrogate
distribution for each frequency (Lancaster et al., 2018; Schreiber and Schmitz, 2000). This effectively
normalises the connectivity measure and transforms it into units of standard deviations of the surrogate
distribution. This useful normalisation makes measures more comparable to each other.

For our simulation, each combination of spectral estimation and connectivity measure is computed 500
times, with independently generated data in each iteration. Next, we define a performance measure D that
quantifies the ‘average distance’ of the observed connectivity estimate from the 99th percentile of the
surrogate distribution. This is computed as the mean of all connectivity values exceeding the 99th

percentile of the surrogate distribution in the frequency band of simulated connectivity (3-6 Hz).

2.6 Data and code availability
We will make the Matlab code and underlying data publicly accessible in full through GitHub
(https://github.com/IBiomag/).

3. Results

3.1 Comparison of combinations of spectral and connectivity estimates

First, we provide in Figure 1 an illustration of all combinations of spectral and connectivity measures for
the simulated data described above (here with added noise with standard deviation of 1). For all of these
combinations we plot the normalized connectivity spectrum (with the 95 percent bootstrap confidence
interval) in the frequency range 0-10 Hz and the 99th percentile of the surrogate distribution (dashed line).
All combinations of methods show a clear peak within the frequency band where connectivity was
simulated (3-6 Hz). At the same time, it is clearly evident that results differ substantially in the shape of
the spectrum and how far peaks are separated from the 99th percentile of the surrogate distribution (i.e.,
sensitivity for the true effect). First, for the same spectral estimate, different connectivity measures show
markedly different sensitivity in detecting synchronisation in the data (compare panels within a row). That
is, given the same information, the use of this information is significantly different between connectivity
measures. Second, for the same connectivity measure, different spectral estimates lead to very different

results (compare panels for a given column). Recall that synchronisation between time series x and y was
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simulated in the frequency band 3-6 Hz. Ideally, the spectrum in this band should exceed the 99th
percentile line leading to a high D-value.

From this simulation (based on 500 separate repetitions) we can already make several interesting
observations. By comparing the different rows (spectral estimation methods), we note that the single taper
FFT-based spectral estimates (FTO, SG) perform worse than the other methods (see Fig. 1, top and
bottom row and note the individual scaling of each graph). An increased spectral smoothing with
multitapers leads to an improved performance of all connectivity measures (higher D-values indicating
larger separation from the surrogate distribution). However, this comes at the cost of a reduced spectral
resolution which we will see in the analysis of real data (Fig. 6, third row from the top). Therefore,
multitapers offer advantages for the detection of synchronisation (when the effect is not too narrow in the
frequency domain) while they might be disadvantageous when trying to resolve different spectral peaks.
Besides the FT2 method, the continuous wavelet transform, and bandpass filtering perform very well (Fig.
1, second and third row from the bottom).
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Fig. 1. Connectivity spectra for all combinations of spectral estimates and connectivity measures. Connectivity was
estimated for simulated data with a ground truth effect between 3-6 Hz (indicated by vertical lines) with an SNR of 1/20. The solid
line shows the connectivity spectrum of a single trial z-scored with the mean and standard deviation of 200 time-shifted versions.
The shaded area quantifies the uncertainty of the normalization and is based on the 95 percent bootstrap confidence interval of
mean and standard deviation of the surrogate distribution. The dashed line represents the 99th percentile of the surrogate
distribution. Each row is based on the same spectral estimate corresponding to the six methods in the same order as described
in the methods section. Each column shows results from the same connectivity measure in the same order as described in the
methods section. The title of each panel shows the spectral estimation method, the connectivity measure, the area under curve
value (AUC), and the D-value defined in the methods section. FTO: FFT with Hanning taper; FT1: multitaper with +1 Hz smoothing;
FT2: multitaper with +2 Hz smoothing; CWT: continuous wavelet transform; BF: bandpass filter; SG: spectrogram; plv: phase
locking value; gcmi: gaussian copula mutual information; R-test: Rayleigh test; wppc: weighted pairwise phase consistency; coh:

coherence; ent: entropy. The color code for connectivity measures is used throughout the manuscript.
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A comparison of connectivity measures (different columns) reveals best performance for wppc (shown in
red) followed by gcmi (orange). In contrast, ent (purple) and plv (grey) show relatively poor performance.
Overall, simulation-based connectivity spectra suggest that the combination of FT2 and wppc shows the
best performance.

In order to look at performance differences in more detail, we conducted pairwise comparisons of all 36
possible combinations (6 spectral estimates x 6 connectivity measures). Specifically, we computed
Cohen’s d as a measure of effect size separating the D values from the 500 simulations of each
combination (see Fig. 2a). Not counting the main diagonal of the symmetrical 36 x 36 matrix, we gained
35 effect sizes for each combination of spectral estimate and connectivity measure. The respective
distributions are shown in Fig. 2b. Overall, pairwise comparisons corroborate the previous impression that
wppc with FT2 outperformed most of the other combinations: Judging by the box plot notches in Fig. 2b,
only gcmi (with FT2, CWT, or BF) and the R-test (with FT2) reached a similar performance. Moreover, the
performance for entropy combined with FTO or SG was particularly subpar, paralleled only by plv combined
with the same estimates. Finally, pairwise comparisons supported the initial impression of lowered
performance of FTO and SG in all combinations, irrespective of the connectivity measure (see Fig. 2b).

CITTTT | TN

Cohen's d
Cohen's d
o

IR N EEEEE N EEEEE N EEEENE N EEEEE N EEEEEE)

B | wemi | memet | webs | sen | e v gemi RTst  wwe  con e
Fig. 2. Pairwise comparisons of spectral estimates and connectivity measures. a, To assess performance differences within
the simulated data, we compared each combination of spectral estimate and connectivity measure with any other combination,
resulting in a 36 x 36 symmetrical matrix. We computed Cohen’s d as a measure of effect size separating the D-values from the
respective 500 simulation iterations of any two combinations. Positive values indicate higher D values for the row (vs the column)
combination. b, Violin plot shows the distribution of effect sizes for each of the 36 combinations (grouped according to connectivity
measures). White dots mark the respective median of each combination, black triangles indicate box plot notches for comparison
across combinations. As a reference, top dashed lines indicate box plot notches for wppc with FT2 estimation, which showed the
best median performance overall. Similarly, bottom dashed lines indicate box plot notches for entropy with SG estimation whose

performance was lowest overall.
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3.2 Effect of SNR

Next, we aimed to quantify the effect of different levels of signal-to-noise ratio (SNR) on performance. This
was motivated by the hypothesis that different connectivity measures are differentially sensitive to varying
SNR levels. Indeed, this can be seen in Figure 3 which follows the arrangements of rows and columns
from Figure 1. Towards the right of the figure, the SNR is increasing. A differential SNR-effect on
performance is quite prominent in the comparison of the third and fifth column. While wppc (shown in red)
is the most sensitive measure in the middle column (SNR parameter = 1.5) it is outperformed by gcmi
(yellow) for the highest SNR (SNR parameter = 2.5, rightmost column). This indicates that performance of
gcmi increases more strongly with SNR than for other measures. This high performance for high-SNR
data was also described in the original gcmi publication (Ince et al., 2017). While all measures benefit to
some extent from SNR-increases (albeit none as much as gcmi), this benefit is considerably lower for plv
(grey) and entropy (purple) compared to the other measures. Interestingly, the SNR-dependence of
performance increase is rather similar across spectral estimation methods (e.g. the order of connectivity
measures according to performance in the rightmost column is almost identical across spectral estimation
methods (rows)). Still, the absolute D-values are very different across rows and show best performance
for FT2 and BF and, as before, worst performance for FTO and SG.
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Fig. 3. Effect of SNR. Each subplot shows a violin plot for each of the six connectivity measures (same order as in Fig. 1) of the
D-value across 500 repetitions of the simulation. Columns correspond to different SNRs. The noise factor (N) specifies the

standard deviation of the noise added to the signal. SNR increases from left to right.


https://sciwheel.com/work/citation?ids=4723792&pre=&suf=&sa=0
https://doi.org/10.1101/2021.06.22.449393
http://creativecommons.org/licenses/by-nc-nd/4.0/

312

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

330
331
332
333
334

335

336
337
338
339
340
341
342
343

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449393; this version posted June 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

3.3 Effect of downsampling spectral estimate

Performing spectral estimation with either bandpass filtering and Hilbert transformation or the continuous
wavelet transform leads to many more samples compared to FFT-based methods. This results in longer
computation times for these continuous methods when computing connectivity measures (see Table 1).
Especially at low frequencies, the continuous spectral estimates show substantial redundancies between
neighbouring samples. Therefore, we investigated the effect of downsampling the continuous spectral
estimate by a factor of 10 on the sensitivity of the connectivity measure. Figure 3 shows violin plots of the
distribution of D-values across 500 iterations of our simulation. For each connectivity measure the darker
color (left plot of each pair) shows the original result and the lighter color (right) shows the result from the
downsampled spectral estimate. As can be seen, results are very similar for original and downsampled
spectral estimates for all connectivity measures. A linear mixed effects model (LMEM) indicates a
significant effect of downsampling (8 = - 0.09, t(11992) = -2.25; p =.024, D = o + B1 * spec + B2 * conn
+B3* ds + € ; spec, conn, ds are categorical variables for spectral estimation method, connectivity method
and downsampling, respectively). However, the rather small LMEM estimate of the change in D-value with
downsampling makes it negligible for practical applications. This indicates that, for the frequencies
considered here, results are not much affected by downsampling while computation time decreases (see
Fig. 4).

a % continuous wavelet transform b 545 bandpass filters
15 15
|
— ‘ | s
3 | 3
o 10 o 10
o [m] ‘
| I | |
‘ [ | | | || ||
5r ‘ o) ‘ l 51
| I | I f
X TL ‘L 8.4 H sL
O A / 1 - M 0 1 £
plv gcmi R-test wppc coh ent plv gcmi R-test wppc coh ent

Fig. 4. Effect of downsampling on the two continuous spectral estimates, continuous wavelet transform (a) and bandpass filter
(b). For each connectivity measure, two violin plots show the distribution of D-values for 500 repetitions of the simulation for the
original (sampling frequency = 100 Hz, darker colours) and the downsampled spectral estimate (sampling frequency = 10Hz,
lighter colours).

3.4 Deviation from unimodal phase distribution

Ideally, connectivity measures should be sensitive to any deviation of the phase distribution from a uniform
distribution. Here, we test the specific case of a bimodal phase distribution. For the first half of the time
series we simulate a zero-degree phase synchronization while the second half uses a simulation of a 180-
degree phase difference between both signals. This results in a bimodal phase distribution with deviation
from a uniform distribution at opposite sides of the circular phase space. Clearly, all connectivity measures
except entropy (shown in purple) fail to capture this more complex phase dependency (see Fig. 5). Given
the definition of these measures, this result is not surprising: In all measures (except entropy) the opposite
phase differences across the unit circle lead to cancellation and result in a non-detectable phase
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synchronization. Entropy instead quantifies any deviation from a uniform distribution in phase bins across
the unit circle and therefore captures this bimodal phase distribution. However, as we could see from the
previous section, this sensitivity to more complex deviations from a uniform distribution leads to a reduced

sensitivity for unimodal phase distributions (see Fig. 1 and 2).
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Fig. 5. Deviation from unimodal phase difference distribution. The layout is the same as in Figure 1. The underlying data lead to

a bimodal phase distribution that is only detected by the entropy measure.

3.5 Real data

Next, we compared the same combinations of spectral estimation and connectivity methods in real data.
Before proceeding to group analysis, we studied speech envelope to MEG connectivity spectra in a single
9-min long data set. Figure 6 shows the results following the same computations and plotting format as in
our simulated data. Results are generally consistent with our findings from simulated data (see Fig. 1).
Overall, best performance can be seen for FT2 and wppc (third row from the top, red) followed by gcmi
(yellow) and Rayleigh test (blue). Interestingly, this computation on real data shows that the spectral
structure is mostly determined by the spectral estimate and not so much by the connectivity method (i.e.,
spectra in a row are more similar than spectra in a column). Obviously, there is more spectral structure in
real data than in the simulated data where only a single spectral peak was evident. Not surprisingly, this
spectral structure is mostly lost in FT2 due to the spectral smoothing of +/- 2Hz. Instead, the highest
complexity of spectral structure can be seen using the continuous wavelet transform (CWT, third row from
the bottom) and still leads to high sensitivity (large D-values) compared to FT2. CWT is therefore probably
most appropriate when preservation of the spectral structure is important for the research question at

hand. However, the ‘true’ spectral structure of the data is unknown so we cannot evaluate and compare
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the performance of spectral estimation measures in this regard.

D (a.u.)

50

Frequency (Hz)

Fig. 6. Results for 9-min long MEG recording. Layout is identical to Figure 1.

3.6 Data length and computation time
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The dependence of statistical effect sizes on data length for different combinations of spectral estimation

and connectivity measure is of considerable practical importance. An optimal combination can lead to

increased statistical sensitivity in shorter recordings. Figure 7 shows the dependence of D-values on data

length. Each subpanel shows results for the six spectral estimation methods in the order used in all other

plots (FTO, FT1, FT2, CWT, BF, SG). Each subpanel has six groups of bar plots corresponding to the six

connectivity measures (plv, gcmi, R-test, wppc, coh, ent) and each group of bar plots shows the D-values

for nine linearly spaced data lengths from 1-9 mins. As expected, D-values increase in general with

increasing data length and in most cases even from 8 min to 9 min. Our results also illustrate that the

combination of methods clearly matters. For example, using FTO and PLV (top left, grey) for 9 min data

leads to worse performance than FT2 and wppc (top right, red) for 2 min data (at least for our definition of

performance and our implementation of methods).
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Fig. 7. Effect of data length. Each subplot corresponds to one spectral estimation method. In each subplot colored bars show the

nine D-values for data length from 1-9 minutes for each of the six connectivity measures.

Another point of potential practical importance is computation time. Table 1 compares computation time
(including 200 surrogate computations) for the six different connectivity measures and two different
numbers of samples in the input for our implementation of the methods, based on our implementation.
Computation times are all in a similar range while gcmi is the slowest method and plv and R-test the
fastest. The exact times of course depend on the computer architecture and we show this table mainly to
allow comparison across methods. If computation time is a major concern, then R-test should be preferred

over plv given its superior performance in all our results (both simulated and real data).

Table 1. Computation time (in seconds) for different connectivity measures and two different numbers of samples in the complex
frequency-domain input (3,8 GHz Quad-core i5 with 32 GB RAM). The mean over 100 repetitions is shown.

1000 0.05 0.26 0.05 0.08 0.09 0.12

5000 0.32 0.79 0.28 0.48 0.63 0.45

13


https://doi.org/10.1101/2021.06.22.449393
http://creativecommons.org/licenses/by-nc-nd/4.0/

402

403
404
405
406
407
408
409
410
411
412

413
414

415

416

417
418
419
420
421
422
423
424
425

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449393; this version posted June 22, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

3.7 Effect of number of surrogate computations

Our measure of performance, D-value, is derived from a distribution of surrogate data (see Methods
section). Here we address the question to what extent D depends on the number of surrogate data
realisations. Figure 8 follows the layout of Figure 7 and shows D for 9 min of data for three different
numbers of surrogate data (100: left bar; 200: middle bar; 400 right bar). Interestingly, D-value changes
very little for different numbers of surrogate data realisations. However, we would like to note that the
bootstrap confidence interval (shown as shaded area for example in Fig. 1) decreases with increasing
number of surrogate data realisations. For practical applications, 100 or 200 surrogates seem to be

sufficient, as the incremental change in D for more surrogate iterations is negligible.
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Fig. 8. Effect of number of surrogate data on D for 100 (left bar), 200 (middle bar) and 400 (right bar) surrogates.

3.8 Group statistics

In the previous sections we have exclusively used single simulated or real data sets to compare
performance of different spectral estimation and connectivity techniques. In our final analysis we will now
extend this approach to group analysis. For data from 20 participants we repeated the computations shown
in Fig. 6, resulting in normalised connectivity spectra. We then performed standard group analysis using
independent samples t-test against a fixed value of 1.64 corresponding to the 95th percentile of a normal
distribution. Statistical significance was established with non-parametric cluster-based permutation tests
as implemented in FieldTrip with 2000 randomizations.
Figure 9 shows spectra of t-values for the different combinations of spectral estimates and connectivity
measures. First, comparing spectral estimates we find that the multi-taper spectral estimate with
14
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smoothing of +/-2Hz (third row from the top) performs best, followed by the bandpass filter (second row
from the bottom). The comparison of connectivity measures (different columns) shows markedly smaller
differences in group results than in the single data sets. Surprisingly, plv (grey) performs much better in
group statistics compared to the single simulated and real data sets. Overall, in our group analysis, the

choice of spectral estimation method appears to be more important than the connectivity measure.
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Fig. 9. Group statistics. Layout is identical to Figures 1 and 6. T-values are plotted between 1-10 Hz. Cluster-corrected significant

frequency bands are marked by increased line width.

4. Discussion

In this study we aimed to demonstrate how the sensitivity to detect cerebro-peripheral connectivity is
affected by different combinations of spectral estimates and connectivity measures. Results from
simulated and real data reveal conclusively that the selection of methods can facilitate or preclude the
detection of significant connectivity, both at the individual and the group level.

Spectral estimates and connectivity measures interact with each other in non-trivial ways. For a given
spectral estimate the available information about the underlying synchrony is utilized by different
connectivity measures in markedly different ways. More precisely, if phase synchronization exists in the
data (as in our simulated data) the distance of estimated connectivity from the surrogate distribution varies
considerably across connectivity measures.

Regarding spectral estimation methods, we compared different Fourier-based techniques that mostly differ
in their spectral smoothing, with wavelet spectral estimates and those based on bandpass filtering followed

by Hilbert transformation. Overall, highest performance was observed for FT2, the multi-taper approach
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with +/- 2 Hz spectral smoothing. CWT and BF performed also well and in general better than FTO and
SG. Conceptually, Fourier-based methods, Hilbert transformation, and wavelet transformation are very
different, but it has been shown that - given well-chosen parameter settings - these three approaches can
lead to converging results (Bruns, 2004). In our analysis, we used implementations with standard
parameter settings. This might in part explain the difference in performance between FTO and SG on the
one hand, and between CWT and BF on the other hand. Both FTO and SG reflect overlapping 2-second
window FFT-based estimates, with a single Hanning taper applied to each data window. In the simulations,
this resulted in 59 degrees-of-freedom for the spectral amplitude and phase estimates, one for each
window. In comparison, both CWT and BF resulted in a single amplitude and phase estimate per original
time point, which, even considering the large amount of redundancy for consecutive time points, likely led
to more stable estimates. Multi-taper based spectral estimation (Percival and Walden, 1993) trades
spectral resolution for reduced variance in the spectral estimates, thus increasing sensitivity. This is also
referred to as spectral smoothing, and is achieved by applying a set of tapers to the data, the number of
which is determined by the time-bandwidth product NW, i.e. the length of the data segments (N) multiplied
by the specified smoothing parameter (W). The number of tapers used is then typically 2NW-1. In our
case, as both FT1 and FT2 were implemented using 2-second long overlapping data windows, the
smoothing increased the degrees-of-freedom for the spectral estimates by a factor of 3 and 7, respectively.
In general, we can expect that an analysis is optimal when the effective resolution of its spectral estimate
is adjusted to the expected bandwidth of significant phase synchronization (which is unknown in real data).
For example, if phase synchronization exists in a 4 Hz wide frequency band (e.g. 8-12 Hz) then multi-taper
smoothing of +/- 2 Hz should be optimal. This is largely what we observe here. However, additional factors
apparently contribute to performance. For example, our simulation contained significant synchronization
over a 3 Hz bandwidth. Therefore, if spectral smoothing were the only factor determining analysis
performance then we would expect the +/- 1 Hz and +/- 2 Hz smoothing to perform equally well. The fact
that +/- 2 Hz multitaper analysis performs better than other spectral estimates with less or no spectral
smoothing indicates that the smoothing itself improves analysis sensitivity, albeit at the cost of reduced
spectral resolution. Spectral resolution should be highest for CWT where different wavelets capture
spectral structure even at low frequencies. Indeed, this point is nicely illustrated in Fig. 6. Whereas CWT-
based connectivity spectra show separate peaks at low frequencies, these are largely merged into one for
the +/- 2 Hz multitaper estimate. Since in real data the underlying spectral structure is unknown it might
be advisable to use two approaches, the FT2 computation for optimal sensitivity and CWT for optimal
spectral resolution. Alternatively, longer data segments can be defined for the spectral transformation,
which would then still allow for leveraging increased sensitivity of the multi-taper framework. For instance,
increasing the window length from 2 seconds to 4 seconds would allow for a reduction of the smoothing

parameter from 2 to 1 without compromising the number of tapers applied.

We non-exhaustively compared six different connectivity metrics aimed at capturing band-limited phase
synchronization between signals. In most cases the weighted pairwise phase consistency (wppc)

outperformed the other methods. The main exception was the improved performance of Gaussian copula
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based mutual information (gcmi) for data with high SNR. In general, gcmi and R-test performed also very
well. Performance for coherence (coh) was overall quite good (particularly in the simulations), and
performance for phase locking value (plv) and entropy (ent) was lowest overall. The entropy measure,
however, was the only metric that proved sensitive to more complex distributions of phase differences.
Here, we tested the challenging case of a bimodal distribution of phase differences, with the modes of the
distribution 180 degrees apart, that leads to cancellation in most methods and a failure to detect this more
complex phase synchronization.

(Weighted) ppc (Vinck et al., 2010) has been proposed as a metric that provides a bias-free estimate of
phase synchronisation, as opposed to the more traditionally used phase locking value or coherence
coefficient. Its improved performance could result from this reduced bias, possibly due to a reduction in
variance of the surrogate distribution, as well as a shift towards zero. Our implementation of gcmi used
both amplitude and phase information for the estimation of the connectivity, just like wppc and coh. R-test,
plv, and entropy only use the phase information. Obviously, the sensitivity of a particular metric is in part
determined by the actual functional statistical relationship between the measured signals. If the
relationship is mainly expressed in terms of the phase difference, then ‘phase only’ metrics will be
sufficient. If the relationship is in part also expressed in terms of the amplitude correlations, then ‘phase
and amplitude’ metrics will be more sensitive. Non-linear relationships might be more easily captured with

gcmi or entropy.

Another point of practical importance for the design of cerebro-peripheral connectivity studies is the
required data length. We compared performance of different combinations of spectral estimates and
connectivity measures for data length between 1-9 min. In almost all cases, the mean distance of
estimated connectivity relative to the surrogate distribution increased continuously with increasing data
length. Therefore, statistical analysis will benefit from long recordings (see e.g. Daube et al., 2019),
particularly if subtle experimental effects are to be detected.

In summary, our analysis of cerebro-peripheral connectivity has revealed that results depend significantly
on the combination of spectral estimation and connectivity measures. Our analysis of simulated and real
data provides some observations that might assist scientists in this field in making a more informed choice
of analysis methods given their respective priorities. We hope that this leads to further advances in the

exciting field of cerebro-peripheral connectivity analysis.
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642  Fig. S1. Same as Figure 1, but simulated with 1/f noise.
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