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Abstract 27 

Analyses of cerebro-peripheral connectivity aim to quantify ongoing coupling between brain activity 28 

(measured by MEG/EEG) and peripheral signals such as muscle activity, continuous speech, or 29 

physiological rhythms (such as pupil dilation or respiration). Due to the distinct rhythmicity of these signals, 30 

undirected connectivity is typically assessed in the frequency domain. This leaves the investigator with 31 

two critical choices, namely a) the appropriate measure for spectral estimation (i.e., the transformation 32 

into the frequency domain) and b) the actual connectivity measure. As there is no consensus regarding 33 

best practice, a wide variety of methods has been applied. Here we systematically compare combinations 34 

of six standard spectral estimation methods (comprising fast Fourier and continuous wavelet 35 

transformation, bandpass filtering, and short-time Fourier transformation) and six connectivity measures 36 

(phase-locking value, Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase 37 

consistency, magnitude squared coherence, and entropy). We provide performance measures of each 38 

combination for simulated data (with precise control over true connectivity), a single-subject set of real 39 

MEG data, and a full group analysis of real MEG data. Our results show that, overall, wppc and gcmi tend 40 

to outperform other connectivity measures, while entropy was the only measure sensitive to bimodal 41 

deviations from a uniform phase distribution. For group analysis, choosing the appropriate spectral 42 

estimation method appeared to be more critical than the connectivity measure. We discuss practical 43 

implications (sampling rate, SNR, computation time, and data length) and aim to provide 44 

recommendations tailored to particular research questions.  45 
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1. Introduction 46 

The analysis of cerebro-peripheral connectivity has recently gained significant interest. This analysis 47 

approach is typically based on two recordings with high temporal resolution, namely MEG/EEG recordings 48 

of brain activity (Baillet, 2017; Gross, 2019) and a peripheral signal sampled at the same rate. A prominent 49 

early application of cerebro-peripheral connectivity was the investigation of connectivity between brain 50 

and muscle activity (Salenius et al., 1997), which has led to important insights into the role of neural 51 

rhythms in physiological and pathological motor control (Bourguignon et al., 2019, 2017; Schnitzler & 52 

Gross, 2005; Schoffelen et al., 2005). More recently, this type of analysis has also proven useful for 53 

studying continuous speech processing due to the fact that brain signals are temporally synchronised to 54 

the speech envelope (Gross et al., 2013b; Lakatos et al., 2019; Meyer et al., 2019; Obleser & Kayser, 55 

2019; Zoefel, 2018). More generally, cerebro-peripheral connectivity can be studied to elucidate the 56 

ongoing coupling between any peripherally recorded signal and brain activity (Gross, 2019; Park et al., 57 

2014; Rebollo et al., 2018) and even modulations of such connectivity measures as a function of a 58 

secondary peripheral signal such as respiration (Kluger & Gross, 2020). Examples for relevant peripheral 59 

signals are eye movements, pupil size, heart beat, respiration, speech, movement or muscle activity, skin 60 

conductance or temperature, and blood pressure. Some of these signals (such as respiration, heart beat, 61 

speech, tremor) are distinctively rhythmic, thus favouring analysis in the spectral domain. However, there 62 

is no consensus in the literature on the best methodological approach to quantify cerebro-peripheral 63 

connectivity in the spectral domain. Instead, a large variety of methods has been used. In practice, spectral 64 

cerebro-peripheral connectivity analysis consists of two steps that can each be conducted in several ways: 65 

First, spectral estimation is performed where time series are transformed into the frequency domain (as 66 

complex-valued numbers). Spectral estimation is most often performed by using Fourier transformation, 67 

wavelet transformation, or bandpass-filtering (Bruns, 2004; Gross, 2014; Le Van Quyen and Bragin, 2007).  68 

In a second step, connectivity measures can be estimated. Again, a large number of methods have been 69 

suggested (Bastos and Schoffelen, 2015; Marzetti et al., 2019) and some of them have been compared 70 

in previous studies (David et al., 2004; Kreuz et al., 2007; Quian Quiroga et al., 2002). It is noteworthy that 71 

MEG/EEG connectivity is often discussed in the context of cerebro-cerebral connectivity, i.e. connectivity 72 

between different brain areas. This brings about complications that are absent in the case of cerebro-73 

peripheral connectivity. Most importantly, estimation of non-invasive MEG/EEG time series from two 74 

regions of interest in the brain is never perfect and leads to leakage effects that contaminate the 75 

connectivity estimate (Schoffelen & Gross, 2009). This is typically circumvented using connectivity 76 

measures that exclude common zero-lag components in both time series (such as imaginary coherence). 77 

In the case of cerebro-peripheral connectivity, the estimation of time series in the brain is still not optimal 78 

but the second signal is a peripheral recording that does not share any spurious signal components with 79 

the brain signal that result from imperfect source reconstruction. Therefore, analyses of cerebro-peripheral 80 

connectivity do not require connectivity measures to exclude shared zero-lag signals.  81 

Depending on the differences of multiple methods for spectral decomposition and estimation of effect size, 82 

the investigator's choice could affect the results of the analysis. Here, we aim to investigate the sensitivity 83 

of cerebro-peripheral connectivity analysis to the choice of spectral estimation and connectivity measures. 84 
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We realise that such an investigation depends on the signals that are used and on the implementation of 85 

the spectral estimation and connectivity methods. Therefore, we cannot expect to provide authoritative 86 

guidance on the ‘optimal’ analysis approach that generalises to all possible applications. Still, we can 87 

expect to learn lessons that could be valuable to the community in the planning of similar studies and the 88 

analysis of cerebro-peripheral data.  89 

A second contribution is to make our analysis scripts publicly available on GitHub 90 

(https://github.com/IBiomag/) so that a similar comparison can be performed for different simulated or real 91 

data and different methods can be added and evaluated. 92 

Since we anticipated non-trivial interactions between different spectral estimation methods and different 93 

connectivity measures, we analysed all combinations of a set of six standard spectral estimation methods 94 

(comprising fast Fourier and continuous wavelet transformation, bandpass filtering, and short-time Fourier 95 

transform using Matlab’s spectrogram function) and six connectivity measures (phase-locking value, 96 

Gaussian-Copula mutual information, Rayleigh test, weighted pairwise phase consistency, magnitude 97 

squared coherence, and entropy). We start our investigation by using simulated data where the 98 

connectivity between signals is precisely controlled. We then proceed to a single-subject real data set and 99 

finally to a full group analysis of an exemplary data set.  100 

2. Material and methods 101 

The evaluation of spectral estimation methods and connectivity measures is performed on two types of 102 

data. First, we use simulated data to control the type and extent of connectivity between the bivariate time 103 

series. Second, we use real MEG data from twenty participants listening to nine 1-min-long stories.  104 

 105 

2.1 Data simulation 106 

The simulated data is constructed by applying a fourth-order Butterworth bandpass filter (3-6 Hz) to a 1-107 

minute simulated white noise signal (sampling rate: 100 Hz) with a mean of 0 and a standard deviation of 108 

1. Two time series are then constructed by adding white noise (independently for each time series and 109 

with a mean of 0 and a standard deviation of 1) to the filtered noise. Therefore, the resulting time series 110 

show linear dependencies in the frequency range between 3-6 Hz that are evident as phase 111 

synchronisation and amplitude correlation. The degree of coupling can be adjusted through the amplitude 112 

of the added noise (see dedicated analyses below).  113 

In what follows, the dependency between the time series will be quantified by applying all combinations of 114 

the six spectral estimation methods and the six undirected connectivity measures, which will be described 115 

in detail next.  116 

2.2 Real data  117 

We used MEG data recorded with a 275 whole-head sensor system (OMEGA 275, VSM Medtech Ltd., 118 

Vancouver, Canada) at a sampling frequency of 1200 Hz. The study was approved by the ethics 119 

committee of the University of Münster and conducted in accordance with the Declaration of Helsinki. 120 
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Written informed consent was obtained before the measurement and participants received monetary 121 

compensation after the experiment.  122 

Twenty native German-speaking participants (11 males, mean age 24.9 ± 2.6 years, range 20–32 years) 123 

listened to nine 1-min long audio recordings of their own voice in which they answered general questions 124 

such as ‘What does a typical weekend look like for you?’. Speech data was captured at a sampling rate 125 

of 44.1 kHz using a microphone placed at a distance of 155 cm from the participant’s mouth. 126 

Prior to data analysis, MEG data were visually inspected. No jump artifacts or bad channels were detected. 127 

A discrete Fourier transform (DFT) filter was applied to eliminate 50 Hz line noise from the continuous 128 

MEG data.  129 

The wideband amplitude envelope of the speech signal was computed using the method presented in 130 

(Chandrasekaran et al., 2009). Nine logarithmically spaced frequency bands between 100-10000 Hz were 131 

constructed by bandpass filtering (third-order Butterworth filters). Then we computed the amplitude 132 

envelope for each frequency band as the absolute value of the Hilbert transform and downsampled them 133 

to 1200 Hz. We averaged them across bands and used the computed wideband amplitude envelope for 134 

all further analysis. Finally, MEG and speech envelope were downsampled to 256 Hz. In the preprocessing 135 

and data analysis steps, custom-made scripts in Matlab R2020 (The Mathworks, Natick, MA, USA) in 136 

combination with the Matlab-based FieldTrip toolbox (Oostenveld et al., 2011) were used following current 137 

MEG guidelines (Gross et al., 2013a).  138 

For source localisation we aligned individual T1-weighted anatomical MRI scans with the digitized head 139 

shapes using the iterative closest point algorithm. Then, we segmented the MRI scans and generated 140 

single-shell volume conductor models (Nolte, 2003), and used this to create forward models. Next, the 141 

linearly constrained minimum variance (LCMV) algorithm was used to compute time series of voxels taken 142 

from a parcel showing medium connectivity (L_PFop located within the left inferior parietal lobule) of the 143 

volumetric HCP brain atlas (Glasser et al., 2016). The parcel selection was not relevant for the purpose of 144 

this study (which was focused on methods differences given two time series) but we ensured that the 145 

parcel showed significant connectivity to the speech envelope. The final time series representing activity 146 

from L_PFop was the first component of a singular value decomposition (SVD) of time series from all 147 

dipoles in this parcel. 148 

2.3 Spectral estimation 149 

Six different methods are used to perform a complex-valued spectral transformation of the time series in 150 

the frequency band. All methods except the wavelet transform use a frequency resolution of 0.5 Hz. For 151 

the subsequent connectivity estimation and evaluation we focused on the frequency band between 1 and 152 

10 Hz.  153 

1-3) The first three methods use the Fast Fourier transform (FFT) based implementation in FieldTrip 154 

(Oostenveld et al., 2011). The first method uses Hanning tapers while the second and third 155 

methods use discrete prolate spheroidal sequences (DPSS) in a multi-taper approach with ±1 Hz 156 

and ±2 Hz smoothing, respectively. In all three cases a 2s window with 50% overlap is used.  157 
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4) This uses the continuous wavelet transform implemented in Matlab with Morlet wavelets 158 

(cwtfilterbank.m with wavelet parameters 3 and 20). It uses L1-normalization so that equal 159 

amplitude oscillatory components at different scales have equal magnitude in the spectral 160 

estimate. The matlab function wt.m performs the actual transformation into the frequency domain.  161 

5) A series of bandpass filters (windowed sinc FIR filter) is applied with edge frequencies that are 1 162 

Hz below and above the center frequency. The center frequency changes from 1-10 Hz in steps 163 

of 0.5 Hz. The Hilbert transform is then applied for each filtered signal to obtain the complex-164 

valued spectral estimate.  165 

6) This spectral estimate is computed from Matlab’s spectrogram function in analogy to method 1. It 166 

also uses a 2s window with 50% overlap. 167 

 168 

It should be noted that the number of complex valued data points returned from these methods is very 169 

different. Methods 1-3 and 6 are based on the FFT and return about one spectrum per second. Methods 170 

4 and 5 instead return one spectrum per data sample and therefore provide many more, albeit largely 171 

redundant, data points. This has implications for computation time (see Table 1).  172 

 173 

2.4 Connectivity measures 174 

We use six undirected spectral connectivity measures: 175 

1) Phase-locking value (plv; Lachaux et al., 1999): This is defined as the length of the vector average 176 

of the normalized (unit length) phase differences between time series x and y. 177 

2) Gaussian-copula mutual information (gcmi; Ince et al., 2017): We compute mutual information 178 

between two bivariate time-series (real and imaginary part of x and y) using the original 179 

implementation (https://github.com/robince/gcmi). 180 

3) Rayleigh test (R-test; Berens, 2009): The Rayleigh test is defined for circular (phase) data and 181 

tests for significant deviation from a uniform phase distribution. Here, it is applied to the phase 182 

difference.  183 

4) Weighted pairwise phase consistency (wppc; Vinck et al., 2010): This measure does not directly 184 

test for a deviation of a phase distribution from a uniform distribution. Instead, it computes the 185 

pairwise difference of phases from this distribution. The rationale for this approach is that a 186 

preferred phase in the phase distribution would also lead to a cluster in the pairwise difference. 187 

However, in contrast to plv, wppc is not biased by the sample size. We compute wppc with code 188 

based on the FieldTrip implementation.  189 

5) Magnitude squared coherence (coh): Coherence is a standard measure of association 190 

corresponding to a frequency domain correlation coefficient. It is computed by dividing the 191 

magnitude squared cross-spectral density between x and y by the product of the individual power 192 

spectra.  193 

6) Entropy (ent; Shannon, 1948): We used entropy to quantify the deviation of the distribution of 194 

phase differences from a uniform distribution. In contrast to the other measures, this is sensitive 195 
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to more than just unimodal phase difference distributions. Here, the computation uses a binning 196 

of phase differences into 20 bins.  197 

 198 

2.5 Surrogate data and normalisation 199 

For each connectivity measure, surrogate data are computed by randomly shifting the spectral estimates 200 

of one of the time series with respect to the other with a circular wrapping around the edges (using 201 

circshift.m in Matlab). This temporal shifting of data is an established technique for creating surrogate data 202 

because it destroys any true synchronisation in the data (Andrzejak et al., 2003) while preserving the 203 

signals’ autocorrelation structure. We perform this shifting procedure 200 times (unless otherwise stated) 204 

to create a distribution of 200 surrogate data points for each connectivity measure. Next, we normalise 205 

each connectivity measure by subtracting the mean and dividing by the standard deviation of the surrogate 206 

distribution for each frequency (Lancaster et al., 2018; Schreiber and Schmitz, 2000). This effectively 207 

normalises the connectivity measure and transforms it into units of standard deviations of the surrogate 208 

distribution. This useful normalisation makes measures more comparable to each other. 209 

For our simulation, each combination of spectral estimation and connectivity measure is computed 500 210 

times, with independently generated data in each iteration. Next, we define a performance measure D that 211 

quantifies the ‘average distance’ of the observed connectivity estimate from the 99th percentile of the 212 

surrogate distribution. This is computed as the mean of all connectivity values exceeding the 99th 213 

percentile of the surrogate distribution in the frequency band of simulated connectivity (3-6 Hz).  214 

 215 

2.6 Data and code availability 216 

We will make the Matlab code and underlying data publicly accessible in full through GitHub 217 

(https://github.com/IBiomag/). 218 

3. Results 219 

3.1 Comparison of combinations of spectral and connectivity estimates 220 

First, we provide in Figure 1 an illustration of all combinations of spectral and connectivity measures for 221 

the simulated data described above (here with added noise with standard deviation of 1). For all of these 222 

combinations we plot the normalized connectivity spectrum (with the 95 percent bootstrap confidence 223 

interval) in the frequency range 0-10 Hz and the 99th percentile of the surrogate distribution (dashed line).  224 

All combinations of methods show a clear peak within the frequency band where connectivity was 225 

simulated (3-6 Hz). At the same time, it is clearly evident that results differ substantially in the shape of 226 

the spectrum and how far peaks are separated from the 99th percentile of the surrogate distribution (i.e., 227 

sensitivity for the true effect). First, for the same spectral estimate, different connectivity measures show 228 

markedly different sensitivity in detecting synchronisation in the data (compare panels within a row). That 229 

is, given the same information, the use of this information is significantly different between connectivity 230 

measures. Second, for the same connectivity measure, different spectral estimates lead to very different 231 

results (compare panels for a given column). Recall that synchronisation between time series x and y was 232 
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simulated in the frequency band 3-6 Hz. Ideally, the spectrum in this band should exceed the 99th 233 

percentile line leading to a high D-value. 234 

From this simulation (based on 500 separate repetitions) we can already make several interesting 235 

observations. By comparing the different rows (spectral estimation methods), we note that the single taper 236 

FFT-based spectral estimates (FT0, SG) perform worse than the other methods (see Fig. 1, top and 237 

bottom row and note the individual scaling of each graph). An increased spectral smoothing with 238 

multitapers leads to an improved performance of all connectivity measures (higher D-values indicating 239 

larger separation from the surrogate distribution). However, this comes at the cost of a reduced spectral 240 

resolution which we will see in the analysis of real data (Fig. 6, third row from the top). Therefore, 241 

multitapers offer advantages for the detection of synchronisation (when the effect is not too narrow in the 242 

frequency domain) while they might be disadvantageous when trying to resolve different spectral peaks. 243 

Besides the FT2 method, the continuous wavelet transform, and bandpass filtering perform very well (Fig. 244 

1, second and third row from the bottom).  245 

 246 
Fig. 1. Connectivity spectra for all combinations of spectral estimates and connectivity measures. Connectivity was 247 

estimated for simulated data with a ground truth effect between 3-6 Hz (indicated by vertical lines) with an SNR of 1/20. The solid 248 

line shows the connectivity spectrum of a single trial z-scored with the mean and standard deviation of 200 time-shifted versions. 249 

The shaded area quantifies the uncertainty of the normalization and is based on the 95 percent bootstrap confidence interval of 250 

mean and standard deviation of the surrogate distribution. The dashed line represents the 99th percentile of the surrogate 251 

distribution. Each row is based on the same spectral estimate corresponding to the six methods in the same order as described 252 

in the methods section. Each column shows results from the same connectivity measure in the same order as described in the 253 

methods section. The title of each panel shows the spectral estimation method, the connectivity measure, the area under curve 254 

value (AUC), and the D-value defined in the methods section. FT0: FFT with Hanning taper; FT1: multitaper with ±1 Hz smoothing; 255 

FT2: multitaper with ±2 Hz smoothing; CWT: continuous wavelet transform; BF: bandpass filter; SG: spectrogram; plv: phase 256 

locking value; gcmi: gaussian copula mutual information; R-test: Rayleigh test; wppc: weighted pairwise phase consistency; coh: 257 

coherence; ent: entropy. The color code for connectivity measures is used throughout the manuscript. 258 

 259 
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A comparison of connectivity measures (different columns) reveals best performance for wppc (shown in 260 

red) followed by gcmi (orange). In contrast, ent (purple) and plv (grey) show relatively poor performance. 261 

Overall, simulation-based connectivity spectra suggest that the combination of FT2 and wppc shows the 262 

best performance. 263 

In order to look at performance differences in more detail, we conducted pairwise comparisons of all 36 264 

possible combinations (6 spectral estimates x 6 connectivity measures). Specifically, we computed 265 

Cohen’s d as a measure of effect size separating the D values from the 500 simulations of each 266 

combination (see Fig. 2a). Not counting the main diagonal of the symmetrical 36 x 36 matrix, we gained 267 

35 effect sizes for each combination of spectral estimate and connectivity measure. The respective 268 

distributions are shown in Fig. 2b. Overall, pairwise comparisons corroborate the previous impression that 269 

wppc with FT2 outperformed most of the other combinations: Judging by the box plot notches in Fig. 2b, 270 

only gcmi (with FT2, CWT, or BF) and the R-test (with FT2) reached a similar performance. Moreover, the 271 

performance for entropy combined with FT0 or SG was particularly subpar, paralleled only by plv combined 272 

with the same estimates. Finally, pairwise comparisons supported the initial impression of lowered 273 

performance of FT0 and SG in all combinations, irrespective of the connectivity measure (see Fig. 2b).  274 

 275 

 276 

 277 

Fig. 2. Pairwise comparisons of spectral estimates and connectivity measures. a, To assess performance differences within 278 

the simulated data, we compared each combination of spectral estimate and connectivity measure with any other combination, 279 

resulting in a 36 x 36 symmetrical matrix. We computed Cohen’s d as a measure of effect size separating the D-values from the 280 

respective 500 simulation iterations of any two combinations. Positive values indicate higher D values for the row (vs the column) 281 

combination. b, Violin plot shows the distribution of effect sizes for each of the 36 combinations (grouped according to connectivity 282 

measures). White dots mark the respective median of each combination, black triangles indicate box plot notches for comparison 283 

across combinations. As a reference, top dashed lines indicate box plot notches for wppc with FT2 estimation, which showed the 284 

best median performance overall. Similarly, bottom dashed lines indicate box plot notches for entropy with SG estimation whose 285 

performance was lowest overall.  286 

 287 

 288 
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3.2 Effect of SNR 289 

Next, we aimed to quantify the effect of different levels of signal-to-noise ratio (SNR) on performance. This 290 

was motivated by the hypothesis that different connectivity measures are differentially sensitive to varying 291 

SNR levels. Indeed, this can be seen in Figure 3 which follows the arrangements of rows and columns 292 

from Figure 1. Towards the right of the figure, the SNR is increasing. A differential SNR-effect on 293 

performance is quite prominent in the comparison of the third and fifth column. While wppc (shown in red) 294 

is the most sensitive measure in the middle column (SNR parameter = 1.5) it is outperformed by gcmi 295 

(yellow) for the highest SNR (SNR parameter = 2.5, rightmost column). This indicates that performance of 296 

gcmi increases more strongly with SNR than for other measures. This high performance for high-SNR 297 

data was also described in the original gcmi publication (Ince et al., 2017). While all measures benefit to 298 

some extent from SNR-increases (albeit none as much as gcmi), this benefit is considerably lower for plv 299 

(grey) and entropy (purple) compared to the other measures. Interestingly, the SNR-dependence of 300 

performance increase is rather similar across spectral estimation methods (e.g. the order of connectivity 301 

measures according to performance in the rightmost column is almost identical across spectral estimation 302 

methods (rows)). Still, the absolute D-values are very different across rows and show best performance 303 

for FT2 and BF and, as before, worst performance for FT0 and SG. 304 

 305 

 306 

 307 

Fig. 3. Effect of SNR. Each subplot shows a violin plot for each of the six connectivity measures (same order as in Fig. 1) of the 308 

D-value across 500 repetitions of the simulation. Columns correspond to different SNRs. The noise factor (N) specifies the 309 

standard deviation of the noise added to the signal. SNR increases from left to right.  310 

 311 
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3.3 Effect of downsampling spectral estimate 312 

Performing spectral estimation with either bandpass filtering and Hilbert transformation or the continuous 313 

wavelet transform leads to many more samples compared to FFT-based methods. This results in longer 314 

computation times for these continuous methods when computing connectivity measures (see Table 1). 315 

Especially at low frequencies, the continuous spectral estimates show substantial redundancies between 316 

neighbouring samples. Therefore, we investigated the effect of downsampling the continuous spectral 317 

estimate by a factor of 10 on the sensitivity of the connectivity measure. Figure 3 shows violin plots of the 318 

distribution of D-values across 500 iterations of our simulation. For each connectivity measure the darker 319 

color (left plot of each pair) shows the original result and the lighter color (right) shows the result from the 320 

downsampled spectral estimate. As can be seen, results are very similar for original and downsampled 321 

spectral estimates for all connectivity measures. A linear mixed effects model (LMEM) indicates a 322 

significant effect of downsampling (ꞵ = - 0.09, t(11992) = -2.25; p = .024, D = 𝛽0 + 𝛽1 * spec +  𝛽2 * conn 323 

+𝛽3 * ds + ej ; spec, conn, ds are categorical variables for spectral estimation method, connectivity method 324 

and downsampling, respectively). However, the rather small LMEM estimate of the change in D-value with 325 

downsampling makes it negligible for practical applications. This indicates that, for the frequencies 326 

considered here, results are not much affected by downsampling while computation time decreases (see 327 

Fig. 4). 328 

 329 

 330 

Fig. 4. Effect of downsampling on the two continuous spectral estimates, continuous wavelet transform (a) and bandpass filter 331 

(b). For each connectivity measure, two violin plots show the distribution of D-values for 500 repetitions of the simulation for the 332 

original (sampling frequency = 100 Hz, darker colours) and the downsampled spectral estimate (sampling frequency = 10Hz, 333 

lighter colours).  334 

3.4 Deviation from unimodal phase distribution 335 

Ideally, connectivity measures should be sensitive to any deviation of the phase distribution from a uniform 336 

distribution. Here, we test the specific case of a bimodal phase distribution. For the first half of the time 337 

series we simulate a zero-degree phase synchronization while the second half uses a simulation of a 180-338 

degree phase difference between both signals. This results in a bimodal phase distribution with deviation 339 

from a uniform distribution at opposite sides of the circular phase space. Clearly, all connectivity measures 340 

except entropy (shown in purple) fail to capture this more complex phase dependency (see Fig. 5). Given 341 

the definition of these measures, this result is not surprising: In all measures (except entropy) the opposite 342 

phase differences across the unit circle lead to cancellation and result in a non-detectable phase 343 
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synchronization. Entropy instead quantifies any deviation from a uniform distribution in phase bins across 344 

the unit circle and therefore captures this bimodal phase distribution. However, as we could see from the 345 

previous section, this sensitivity to more complex deviations from a uniform distribution leads to a reduced 346 

sensitivity for unimodal phase distributions (see Fig. 1 and 2). 347 

 348 

 349 

Fig. 5. Deviation from unimodal phase difference distribution. The layout is the same as in Figure 1. The underlying data lead to 350 

a bimodal phase distribution that is only detected by the entropy measure.  351 

 352 

3.5 Real data 353 

Next, we compared the same combinations of spectral estimation and connectivity methods in real data. 354 

Before proceeding to group analysis, we studied speech envelope to MEG connectivity spectra in a single 355 

9-min long data set. Figure 6 shows the results following the same computations and plotting format as in 356 

our simulated data. Results are generally consistent with our findings from simulated data (see Fig. 1). 357 

Overall, best performance can be seen for FT2 and wppc (third row from the top, red) followed by gcmi 358 

(yellow) and Rayleigh test (blue). Interestingly, this computation on real data shows that the spectral 359 

structure is mostly determined by the spectral estimate and not so much by the connectivity method (i.e., 360 

spectra in a row are more similar than spectra in a column). Obviously, there is more spectral structure in 361 

real data than in the simulated data where only a single spectral peak was evident. Not surprisingly, this 362 

spectral structure is mostly lost in FT2 due to the spectral smoothing of +/- 2Hz. Instead, the highest 363 

complexity of spectral structure can be seen using the continuous wavelet transform (CWT, third row from 364 

the bottom) and still leads to high sensitivity (large D-values) compared to FT2. CWT is therefore probably 365 

most appropriate when preservation of the spectral structure is important for the research question at 366 

hand. However, the ‘true’ spectral structure of the data is unknown so we cannot evaluate and compare 367 
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the performance of spectral estimation measures in this regard.   368 

 369 

370 

Fig. 6. Results for 9-min long MEG recording. Layout is identical to Figure 1.  371 

3.6 Data length and computation time 372 

The dependence of statistical effect sizes on data length for different combinations of spectral estimation 373 

and connectivity measure is of considerable practical importance. An optimal combination can lead to 374 

increased statistical sensitivity in shorter recordings. Figure 7 shows the dependence of D-values on data 375 

length. Each subpanel shows results for the six spectral estimation methods in the order used in all other 376 

plots (FT0, FT1, FT2, CWT, BF, SG). Each subpanel has six groups of bar plots corresponding to the six 377 

connectivity measures (plv, gcmi, R-test, wppc, coh, ent) and each group of bar plots shows the D-values 378 

for nine linearly spaced data lengths from 1-9 mins. As expected, D-values increase in general with 379 

increasing data length and in most cases even from 8 min to 9 min. Our results also illustrate that the 380 

combination of methods clearly matters. For example, using FT0 and PLV (top left, grey) for 9 min data 381 

leads to worse performance than FT2 and wppc (top right, red) for 2 min data (at least for our definition of 382 

performance and our implementation of methods).  383 
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 384 

Fig. 7. Effect of data length. Each subplot corresponds to one spectral estimation method. In each subplot colored bars show the 385 

nine D-values for data length from 1-9 minutes for each of the six connectivity measures.   386 

 387 

Another point of potential practical importance is computation time. Table 1 compares computation time 388 

(including 200 surrogate computations) for the six different connectivity measures and two different 389 

numbers of samples in the input for our implementation of the methods, based on our implementation. 390 

Computation times are all in a similar range while gcmi is the slowest method and plv and R-test the 391 

fastest. The exact times of course depend on the computer architecture and we show this table mainly to 392 

allow comparison across methods. If computation time is a major concern, then R-test should be preferred 393 

over plv given its superior performance in all our results (both simulated and real data).  394 

 395 

Table 1. Computation time (in seconds) for different connectivity measures and two different numbers of samples in the complex 396 

frequency-domain input (3,8 GHz Quad-core i5 with 32 GB RAM). The mean over 100 repetitions is shown. 397 

 398 

N. samples PLV GCMI R-test WPPC Coh Entropy 

1000 0.05 0.26 0.05 0.08 0.09 0.12 

5000 0.32 0.79 0.28 0.48 0.63 0.45 

 399 

 400 

 401 
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3.7 Effect of number of surrogate computations 402 

Our measure of performance, D-value, is derived from a distribution of surrogate data (see Methods 403 

section). Here we address the question to what extent D depends on the number of surrogate data 404 

realisations. Figure 8 follows the layout of Figure 7 and shows D for 9 min of data for three different 405 

numbers of surrogate data (100: left bar; 200: middle bar; 400 right bar). Interestingly, D-value changes 406 

very little for different numbers of surrogate data realisations. However, we would like to note that the 407 

bootstrap confidence interval (shown as shaded area for example in Fig. 1) decreases with increasing 408 

number of surrogate data realisations. For practical applications, 100 or 200 surrogates seem to be 409 

sufficient, as the incremental change in D for more surrogate iterations is negligible. 410 

 411 

 412 

413 

Fig. 8. Effect of number of surrogate data on D for 100 (left bar), 200 (middle bar) and 400 (right bar) surrogates.  414 

 415 

3.8 Group statistics 416 

In the previous sections we have exclusively used single simulated or real data sets to compare 417 

performance of different spectral estimation and connectivity techniques. In our final analysis we will now 418 

extend this approach to group analysis. For data from 20 participants we repeated the computations shown 419 

in Fig. 6, resulting in normalised connectivity spectra. We then performed standard group analysis using 420 

independent samples t-test against a fixed value of 1.64 corresponding to the 95th percentile of a normal 421 

distribution. Statistical significance was established with non-parametric cluster-based permutation tests 422 

as implemented in FieldTrip with 2000 randomizations.  423 

Figure 9 shows spectra of t-values for the different combinations of spectral estimates and connectivity 424 

measures. First, comparing spectral estimates we find that the multi-taper spectral estimate with 425 
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smoothing of +/-2Hz (third row from the top) performs best, followed by the bandpass filter (second row 426 

from the bottom). The comparison of connectivity measures (different columns) shows markedly smaller 427 

differences in group results than in the single data sets. Surprisingly, plv (grey) performs much better in 428 

group statistics compared to the single simulated and real data sets. Overall, in our group analysis, the 429 

choice of spectral estimation method appears to be more important than the connectivity measure.  430 

 431 

 432 

 433 

Fig. 9. Group statistics. Layout is identical to Figures 1 and 6. T-values are plotted between 1-10 Hz. Cluster-corrected significant 434 

frequency bands are marked by increased line width.  435 

4. Discussion 436 

In this study we aimed to demonstrate how the sensitivity to detect cerebro-peripheral connectivity is 437 

affected by different combinations of spectral estimates and connectivity measures. Results from 438 

simulated and real data reveal conclusively that the selection of methods can facilitate or preclude the 439 

detection of significant connectivity, both at the individual and the group level.   440 

Spectral estimates and connectivity measures interact with each other in non-trivial ways. For a given 441 

spectral estimate the available information about the underlying synchrony is utilized by different 442 

connectivity measures in markedly different ways. More precisely, if phase synchronization exists in the 443 

data (as in our simulated data) the distance of estimated connectivity from the surrogate distribution varies 444 

considerably across connectivity measures.  445 

Regarding spectral estimation methods, we compared different Fourier-based techniques that mostly differ 446 

in their spectral smoothing, with wavelet spectral estimates and those based on bandpass filtering followed 447 

by Hilbert transformation. Overall, highest performance was observed for FT2, the multi-taper approach 448 
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with +/- 2 Hz spectral smoothing. CWT and BF performed also well and in general better than FT0 and 449 

SG. Conceptually, Fourier-based methods, Hilbert transformation, and wavelet transformation are very 450 

different, but it has been shown that - given well-chosen parameter settings - these three approaches can 451 

lead to converging results (Bruns, 2004). In our analysis, we used implementations with standard 452 

parameter settings. This might in part explain the difference in performance between FT0 and SG on the 453 

one hand, and between CWT and BF on the other hand. Both FT0 and SG reflect overlapping 2-second 454 

window FFT-based estimates, with a single Hanning taper applied to each data window. In the simulations, 455 

this resulted in 59 degrees-of-freedom for the spectral amplitude and phase estimates, one for each 456 

window. In comparison, both CWT and BF resulted in a single amplitude and phase estimate per original 457 

time point, which, even considering the large amount of redundancy for consecutive time points, likely led 458 

to more stable estimates. Multi-taper based spectral estimation (Percival and Walden, 1993) trades 459 

spectral resolution for reduced variance in the spectral estimates, thus increasing sensitivity. This is also 460 

referred to as spectral smoothing, and is achieved by applying a set of tapers to the data, the number of 461 

which is determined by the time-bandwidth product NW, i.e. the length of the data segments (N) multiplied 462 

by the specified smoothing parameter (W). The number of tapers used is then typically 2NW-1. In our 463 

case, as both FT1 and FT2 were implemented using 2-second long overlapping data windows, the 464 

smoothing increased the degrees-of-freedom for the spectral estimates by a factor of 3 and 7, respectively.  465 

In general, we can expect that an analysis is optimal when the effective resolution of its spectral estimate 466 

is adjusted to the expected bandwidth of significant phase synchronization (which is unknown in real data). 467 

For example, if phase synchronization exists in a 4 Hz wide frequency band (e.g. 8-12 Hz) then multi-taper 468 

smoothing of +/- 2 Hz should be optimal. This is largely what we observe here. However, additional factors 469 

apparently contribute to performance. For example, our simulation contained significant synchronization 470 

over a 3 Hz bandwidth. Therefore, if spectral smoothing were the only factor determining analysis 471 

performance then we would expect the +/- 1 Hz and +/- 2 Hz smoothing to perform equally well. The fact 472 

that +/- 2 Hz multitaper analysis performs better than other spectral estimates with less or no spectral 473 

smoothing indicates that the smoothing itself improves analysis sensitivity, albeit at the cost of reduced 474 

spectral resolution. Spectral resolution should be highest for CWT where different wavelets capture 475 

spectral structure even at low frequencies. Indeed, this point is nicely illustrated in Fig. 6. Whereas CWT-476 

based connectivity spectra show separate peaks at low frequencies, these are largely merged into one for 477 

the +/- 2 Hz multitaper estimate. Since in real data the underlying spectral structure is unknown it might 478 

be advisable to use two approaches, the FT2 computation for optimal sensitivity and CWT for optimal 479 

spectral resolution. Alternatively, longer data segments can be defined for the spectral transformation, 480 

which would then still allow for leveraging increased sensitivity of the multi-taper framework. For instance, 481 

increasing the window length from 2 seconds to 4 seconds would allow for a reduction of the smoothing 482 

parameter from 2 to 1 without compromising the number of tapers applied.  483 

 484 

We non-exhaustively compared six different connectivity metrics aimed at capturing band-limited phase 485 

synchronization between signals. In most cases the weighted pairwise phase consistency (wppc) 486 

outperformed the other methods. The main exception was the improved performance of Gaussian copula 487 
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based mutual information (gcmi) for data with high SNR. In general, gcmi and R-test performed also very 488 

well. Performance for coherence (coh) was overall quite good (particularly in the simulations), and 489 

performance for phase locking value (plv) and entropy (ent) was lowest overall. The entropy measure, 490 

however, was the only metric that proved sensitive to more complex distributions of phase differences. 491 

Here, we tested the challenging case of a bimodal distribution of phase differences, with the modes of the 492 

distribution 180 degrees apart, that leads to cancellation in most methods and a failure to detect this more 493 

complex phase synchronization.  494 

(Weighted) ppc (Vinck et al., 2010) has been proposed as a metric that provides a bias-free estimate of 495 

phase synchronisation, as opposed to the more traditionally used phase locking value or coherence 496 

coefficient. Its improved performance could result from this reduced bias, possibly due to a reduction in 497 

variance of the surrogate distribution, as well as a shift towards zero. Our implementation of gcmi used 498 

both amplitude and phase information for the estimation of the connectivity, just like wppc and coh. R-test, 499 

plv, and entropy only use the phase information. Obviously, the sensitivity of a particular metric is in part 500 

determined by the actual functional statistical relationship between the measured signals. If the 501 

relationship is mainly expressed in terms of the phase difference, then ‘phase only’ metrics will be 502 

sufficient. If the relationship is in part also expressed in terms of the amplitude correlations, then ‘phase 503 

and amplitude’ metrics will be more sensitive. Non-linear relationships might be more easily captured with 504 

gcmi or entropy.   505 

 506 

Another point of practical importance for the design of cerebro-peripheral connectivity studies is the 507 

required data length. We compared performance of different combinations of spectral estimates and 508 

connectivity measures for data length between 1-9 min. In almost all cases, the mean distance of 509 

estimated connectivity relative to the surrogate distribution increased continuously with increasing data 510 

length. Therefore, statistical analysis will benefit from long recordings (see e.g. Daube et al., 2019), 511 

particularly if subtle experimental effects are to be detected.  512 

In summary, our analysis of cerebro-peripheral connectivity has revealed that results depend significantly 513 

on the combination of spectral estimation and connectivity measures. Our analysis of simulated and real 514 

data provides some observations that might assist scientists in this field in making a more informed choice 515 

of analysis methods given their respective priorities. We hope that this leads to further advances in the 516 

exciting field of cerebro-peripheral connectivity analysis.   517 
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Supplemental Figure 640 

641 

Fig. S1. Same as Figure 1, but simulated with 1/f noise. 642 
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