bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449228; this version posted June 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Assessing the utility of CASP14 models for molecular

replacement

Running title: Molecular replacement in CASP14

Authors: Claudia Milldn'*, Ronan M. Keegan?*, Joana Pereira3%, Massimo D. Sammito?,
Adam J. Simpkin#, Airlie J. McCoy?, Andrei N. Lupas?, Marcus D. Hartmann3, Daniel J.
Rigden*, Randy J. Read!?

Affiliations:

! Department of Haematology, University of Cambridge, Cambridge Institute for Medical
Research, Cambridge CB2 0XY, United Kingdom

2 Scientific Computing Dept., Science and Technologies Facilities Council, UK Research and

Innovation, Didcot, Oxfordshire, United Kingdom

3 Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, Tibingen, Germany
4 Institute of Systems, Molecular and Integrative Biology, Biosciences Building, Crown Street,

Liverpool L69 7BE, United Kingdom
* These authors contributed equally to the work
$ current address: Biozentrum, University of Basel, 4056 Basel, Switzerland

Correspondence to: Randy J. Read, Department of Haematology, University of Cambridge,

Cambridge Institute for Medical Research, The Keith Peters Building, Hills Road, Cambridge
CB2 0XY, U.K. E-mail: rjr27@cam.ac.uk

Acknowledgements: We thank the experimentalists who provided diffraction data for a
number of targets, and Andriy Kryshtafovych for the invaluable resources at the Prediction
Center. This research was supported by a Principal Research Fellowship from the Wellcome
Trust, awarded to R.J.R. (grant number 209407/2/17/2), the Biotechnology and Biological
Sciences Research Council (grant BB/S007105/1), CCP4, and by institutional funds of the

Max Planck Society to A.N.L. The authors have no conflict of interest to declare.


https://doi.org/10.1101/2021.06.21.449228
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.21.449228; this version posted June 21, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

Abstract

The assessment of CASP models for utility in molecular replacement is a measure of their
use in a valuable real-world application. In CASP7, the metric for molecular replacement
assessment involved full likelihood-based molecular replacement searches; however, this
restricted the assessable targets to crystal structures with only one copy of the target in the
asymmetric unit, and to those where the search found the correct pose. In CASP10, full
molecular replacement searches were replaced by likelihood-based rigid-body refinement
of models superimposed on the target using the LGA algorithm, with the metric being the
refined likelihood (LLG) score. This enabled multi-copy targets and very poor models to be
evaluated, but a significant further issue remained: the requirement of diffraction data for
assessment. We introduce here the relative-expected-LLG (reLLG), which is independent of
diffraction data. This reLLG is also independent of any crystal form, and can be calculated
regardless of the source of the target, be it X-ray, NMR or cryo-EM. We calibrate the reLLG
against the LLG for targets in CASP14, showing that it is a robust measure of both model and
group ranking. Like the LLG, the reLLG shows that accurate coordinate error estimates add
substantial value to predicted models. We find that refinement by CASP groups can often
convert an inadequate initial model into a successful MR search model. Consistent with
findings from others, we show that the AlphaFold2 models are sufficiently good, and reliably
so, to surpass other current model generation strategies for attempting molecular

replacement phasing.
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Introduction

As protein structure prediction becomes more accurate and reliable, it is becoming an
increasingly useful tool in a variety of scenarios, such as prediction of the structural context
of mutations either associated with disease or with escape from an immune response. It is
also clear that protein structure prediction will accelerate the experimental determination

of 3D structures, by improving the models for molecular replacement (MR).

MR is the most commonly used method to determine the unmeasured phases needed to
compute an electron density map from a diffraction pattern. This is carried out, typically, by
determining the orientation angles and translation vector (together referred to as the
‘pose’) required to superimpose the model generated by prediction with the coordinates of
the atoms in the crystal. Models generated by structure prediction supplement the models
that can be derived from previously-determined structures of homologues in the worldwide

Protein Data Bank (wwPDB)?, often involving extensive editing.

As recently as 20 years ago, it would have been fair to say that even template-based protein
models were rarely more useful for MR than the templates on which they were based,
because it was too difficult to distinguish the few ways in which they could be improved
from the vast number of ways in which they could be degraded. Since then, modeling
methods have turned a corner and are becoming progressively more useful. A test for utility
in MR was introduced for CASP72, showing that about half of the best available templates in
the high accuracy category could be improved by at least one predictor group, although only
33 of 1588 models evaluated were better than the best template. It should be
acknowledged here that there is less room for improvement in the high accuracy category
than in cases where no closely related template is available. Indeed, in a striking case from
CASP7, an ab initio model of a small globular protein was predicted to sufficient accuracy
that it could have been used to solve that structure by MR3. Other work resulted in the
program AMPLE which seeks to isolate sufficiently accurate substructures from sets of ab

initio models by clustering and truncation®.

When model accuracy was low, a useful score could only be generated if the model was
sufficiently good to identify the correct pose in the full search. This problem was

circumvented later by the use of rigid-body refinement starting from a structural
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superposition instead of the full MR search, which also had the benefit of dramatically
reducing the CPU time required to explore many incorrect solutions with poor models that
lack useful signal, and ensuring that the LLG scores corresponded with models in the correct
pose. Although the success-or-failure aspect of the MR searches was lost, the LLG scores
could still be interpreted in the knowledge that MR searches yielding LLG values above 60

are usually correct®.

A second problem arose in MR scoring when there are multiple copies in the asymmetric
unit, or more than one type of component. With the full MR approach, the MR scoring was
restricted to those cases for which there was a single copy of a single protein component in
the asymmetric unit of the crystal. However, the rigid body refinement approach allowed
these more complicated targets to be scored by placing all copies of the tested model within
a background that includes the deposited structure for all other components of the crystal;
the increase in the LLG obtained when adding the tested model to the background structure

alone was the measure of model quality.

A Phaser script to carry out rigid-body refinement approach calculations, written by Gabor
Bunkdczi, was used by other assessors in the refinement category of CASP108, as well as by
us for both the refinement’ and template-based modeling?® categories of CASP13. This script

was again used here for assessment in CASP14.

Problems remain with the rigid-body refinement approach, not least the fact that it requires
diffraction data to be made available to assessors; not all crystallographers contributing
targets are able to share these data in advance of publication. A substantial number of
targets and domain evaluation units (EUs) derived from them now arise from cryo-EM
structure determinations (21 EUs from 7 structures in CASP13°, and 22 EUs from 7
structures in CASP14) and hence have no diffraction data. In addition, the LLG scores vary in
a crystal-form-dependent fashion, depending on the resolution and quality of the data, the
number of copies of the protein in the asymmetric unit of the crystal, and the fraction of the
asymmetric unit accounted for by the modeled component. Comparisons among targets

require some normalization, generally through the calculation of Z-scores.

In this work, a novel likelihood score is introduced, the ‘relative expected LLG’ (reLLG) that
requires only the coordinates of the target to rank the suitability of a model for MR. Most

significantly, it is a crystal-form independent measure. We test the reLLG against the LLG
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score as a ranking measure and demonstrate its utility as a more convenient and robust
measure, which should supersede the use of the LLG for this purpose. We find that the
ability of refinement groups to improve reLLG values correlates well with their ability to
improve the performance of refinement targets in actual MR experiments. Finally, our
results provide another metric by which the superiority of the AlphaFold2 (Jumper et al.,

this volume) models over the others in the assessment can be seen.

Materials and Methods

Target selection for log-likelihood-gain scoring

In CASP, structures contributed for the prediction season are examined and divided into
smaller pieces (often individual domains) that usually have a relatively compact structure.
These are referred to as “evaluation units” or EUs. For CASP14, a total of 96 EUs were
selected for evaluation of structure prediction. Prior to the CASP14 meeting, diffraction
data were made available by the experimentalists who contributed 32 crystal structures,
from which 54 EUs were drawn. These EUs were therefore able to be included in the MR
assessment, which used the previously described diffraction data-dependent LLG score.
Diffraction data were not available at the time of assessment for the remaining 17 EUs
drawn from other crystal structures, nor of course for the EUs drawn from cryo-EM or NMR

structures.

In the refinement round, a total of 49 prediction targets were selected. These included 7
“extended” targets and 7 “double-barrelled” targets used to conduct additional
experiments in CASP14. For the extended targets, refined models were collected after the
initial 3-week period and again after an additional 6 weeks, during which more extensive
computations may have been performed (denoted with an “x” in the target name). For the
double-barrelled targets, two starting models were chosen for refinement, one typically
chosen from the server models and the other from models submitted by the AlphaFold2
group (denoted with “v1” or “v2” in the target name, with the “1” or “2” chosen randomly).
Thirty-four of the 49 total targets were derived from structures determined by X-ray
crystallography, of which 20 had diffraction data available at the time of assessment and

could therefore be used for LLG calculations.
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Model selection

For the double-barrelled refinement targets, one group recognized correctly that one of the
two starting models (the AlphaFold2 model, though it was not identified as such) was
superior to the other, and they submitted the better model as a refinement model for the
poorer one. While the ability to recognize good models is laudable, it does not reveal
anything about the ability of the group to carry out refinement, so the Alphafold2 models
provided by this group were excluded from consideration. All other models for both

structure prediction and refinement were evaluated.

Evaluation measures

Log-likelihood-gain

As in the case of CASP13, the LLG for each model of each EU was computed by rigid-body
refinement in Phaser, using the rest of the final crystal structure as a fixed background for
the calculation. The initial superposition of the evaluation unit on the target

was carried out using the sequence-independent structure alignment program TM-align°.
To allow for an assessment of the impact of the predicted error estimates, the LLG
calculations were performed in two different modes for each prediction: once with the B-
factor field interpreted as error estimates (used to weight the MR calculations as discussed
below) and once with all B-factors set to a constant value. From each of these scores, we
subtracted the EU-specific null-model LLG (the LLG value of the models with the lowest
GDT_HA, corresponding to the noise), thus calculating the equivalent to the CASP13
increase in LLG from the background. The definition of the EU-specific null-model-LLG stems
from the observation that at low GDT_HA, LLG values in GDT_HA vs LLG plots can be
approximated by linear regression for a given EU.

To calculate the EU-specific null-model-LLG, for each EU, the models were binned into 100
equally spaced GDT_HA bins and the average LLG value for each bin taken. This average was
computed iteratively, removing at each iteration those data points with an LLG 10 below the
average until no more data points were excluded. Out of these bins, the first 35% (bottom
35% GDT_HA) were considered further, and the average of their average LLG taken. Those
bins with an average LLG within 3o the average over all bottom 35% were sorted by their
average LLG and the middle 80% taken. A linear model was fitted to the averages of these

bins and the intersection in the y axis taken as the null-model-LLG. All models with an LLG
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below the corresponding null-model-LLG were assigned a score of zero. This can happen if
the entries in the B-factor field for a model are all too large to correspond to sensible root-
mean-square displacement (RMSD) estimates and effectively downweight the contributions
of the atoms to zero. The likelihood calculations can also fail for computational reasons,
such as if the model represents an unfolded protein and extends over such a large volume
that memory limits are exceeded in the FFT calculations of structure factors. Models leading
to such failures are also assigned a score of zero.

We refer to the difference LLG score as the dLLG for short.

Relative expected log-likelihood-gain

As discussed above, there are substantial advantages to a likelihood score that measures

suitability for MR independent of crystal form or structure determination method.

By the correlation theorem of Fourier transforms, the correlation between electron
densities is proportional to the complex correlation between structure factors calculated
from those electron densities. In turn, the complex correlation in a resolution shell is
equivalent to the resolution-dependent g, value used in crystallographic likelihood targets,
such as the log-likelihood gain on intensities (LLGI) used for MR!. (Note that the complex
correlation in a resolution shell is also equivalent to the Fourier shell correlation, or FSC,
commonly used to assess cryo-EM reconstructions!2.) We have shown that there is a close
relationship between g4 and the score expected to be obtained in likelihood-based MR. The
expected log-likelihood-gain (eLLG) can be approximated® as the sum, over all Fourier terms,
of a4 /2, allowing valuable optimizations of the MR strategy depending on the qualities of
the model and the data'3. This relationship between electron density overlap and LLG is the

basis of the reLLG score discussed below.

Superposition of model and target with an algorithm such as that in the LGA program* will
not generally optimize the electron density overlap. Therefore, to enable the calculation of
the relLLG score, a new phased rigid-body refinement mode was implemented in phasertng,
which is under development to replace and enhance the functionality of Phaser'®. The rigid-
body refinement starts from a sequence-independent superposition using LGA!4. Instead of
optimizing the LLGI score, which lacks phase information, it uses a phased likelihood target.
This target starts from the assumption, based on the Central Limit Theorem, that structure

factors computed from two superimposed models are related by a bivariate complex
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normal distribution; the assumption of multivariate complex normal distributions also
underlies many likelihood-based crystallographic algorithms, including MR, refinement and
experimental phasing. The probability distribution relating two sets of structure factors is
characterized by a Hermitian covariance matrix. This takes a particularly simple form if the
structure factors are first normalized, giving E-values for which the mean-squared value is
one. In this case, the off-diagonal complex covariance term of the covariance matrix

becomes the complex correlation, oy:

¥ = (E.Ef) (EtE:n))] _ [alA UlA

~ KE{En) (EnEn

Note that a complex covariance will in general be a complex number, but g, is a real
number because, if a systematic phase shift were known between the two structures, that
would imply the existence of a known relative translation vector, which could be corrected

instead.

The likelihood target is the conditional probability of the target structure factors given the
known model structure factors. This is derived from the joint distribution by standard
manipulations to obtain the conditional variance of the target E-value given the model and

its expected value:
r=1-o0}
(Et)Em = O-AEm

These parameters are used to express the conditional probability as a complex normal
distribution:

1 |Et - JAEmlz
E;E,)=———exp|——~ "

A

The target that is optimized is a log-likelihood-gain, obtained by taking the logarithm of the
conditional probability and subtracting the logarithm of the probability of the null
hypothesis, which is the Wilson distribution of structure factors'® and is equivalent to the
conditional probability when g, is zero, i.e. when the model is uncorrelated to the target
and is thus uninformative. The contribution of a single Fourier term to the total LLG is given

in the following:
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2E.0,E,,cos(Ap) — c?(E? + EZ)

2

LLG(E,; E,,) = —In(1 - 62)
A

The phased log-likelihood-gain is a function of the orientation and position of the model
relative to the target, and of the current value for g, for each structure factor pair. The
orientation is defined in terms of three rotation angles specifying rotations of the pre-
oriented model around axes parallel to x, y and z running through the center of the model.
Because the perturbations of the initial orientation will be small, these rotations will be
nearly orthogonal and will therefore behave well in the optimization. The position is defined
in terms of translations along the x, y and z axes, which are orthogonal and are essentially
independent of the rotations applied around the center of the model. The g4 values are a
function of the resolution of the relevant structure factors and are defined in terms of the
radial RMSD for coordinate errors drawn from a single 3D Gaussian. The value of g, is given,

as a function of resolution, by the Fourier transform of that Gaussian:

2m?
aA(rmsd,s)z\/;pexp —T‘rmsdzs2

where f, is the fraction of the target explained by the model, assumed to be one for the
calculations reported here, rmsd is the refined parameter and s is the magnitude of the

diffraction vector (the inverse of the resolution).

The refinement against the phased log-likelihood-gain can be seen to optimize the electron
density overlap: E.E,,cos(4¢) is equivalent, by the correlation theorem, to the
contribution of a Fourier term to the density correlation. The variance term in the phased
log-likelihood-gain is controlled by the rmsd parameter, which will be optimal when the a4
values computed as a function of resolution from that rmsd match the mean values of

E.E,cos(4¢) in resolution shells.

Once an optimal superposition is obtained, structure factors from the target and the
superimposed model are compared in resolution shells to obtain an FSC curve. The eLLG is
then calculated by accumulating the sum of FSC*/2, weighted by the number of Fourier
terms in each shell. This eLLG varies with the number of Fourier terms, determined by
crystal lattice volume (size of the target), so normalization to a relative eLLG (reLLG) is

required to put the scores on a common scale for all target-model pairs. The normalization
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cannot be carried out simply by comparing the eLLG to what one would expect for a perfect
model, because the conditional probability for a perfect model with perfect data is a delta
function, which would yield an infinite LLG. We resolve this problem by introducing an

III

“ideally imperfect model”, that is, the best model one expects to get from a high-resolution
structure determination, given the limitations of a static model in portraying an ensemble of
conformations and the differing influence of crystal packing and other environmental
effects. By comparing structures of the same protein in different crystal forms!’ and by
extrapolating the dependence of structural variation with sequence identity to 100%
identity'8 it emerges that the best one might hope for is an effective rmsd of about 0.4 A.
The relLLG is therefore computed by dividing the eLLG for the model being tested by the

eLLG that would be obtained for g, values computed for a complete model with rmsd set to

0.4 A.

The reLLG calculation also requires making a choice for the high resolution limit. A
calculation carried out to a higher resolution limit would be more sensitive to model errors,
whereas the use of lower resolution would be more forgiving. In principle, one could define
scores based on different resolution limits, analogous to the way that the GDT_TS score is
more forgiving than the GDT_HA score!*. We have chosen a resolution limit of 2 A for
calculations here for two reasons. First, the median resolution of crystal structures in the
wwPDB is close to this value: 2.2 A overall, and 2.1 A for the year 2020. Second, 2 A is
approximately the resolution at which most structures can be completed starting from even

a partial correct MR solution?®.

We note that it would be possible to compute an eLLG from the g, curve defined by the
refined rmsd parameter, and this could even be done analytically. The advantage of using
the actual FSC curve from the comparison of structure factors is that no assumptions are
made about the distribution of coordinate errors in the model. The use of a single rmsd
requires that all the coordinate errors are drawn from the same 3D Gaussian distribution,
whereas models have locally varying errors. It is further assumed that the coordinate errors
and the atomic scattering factors are uncorrelated, whereas atoms on the surface of a

protein both tend to have higher B-factors and are modeled less accurately?®.
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Measuring the utility of coordinate error estimates

For a number of years, predictors submitting models for CASP have been asked to provide
estimated RMS positional errors in the B-factor field of the PDB files containing the models,
on the principle that knowing how confident you should be in a model is as useful, in
practice, as the model itself. By CASP13, most predictors in the template-based modeling
category included error estimates® but many participants in the refinement category did
not’. In this round of CASP, we were pleased to see that most predictors and participants in
the refinement category do seem to have provided coordinate error estimates within a

plausible range.

Such error estimates are extremely valuable for MR models. If the B-factors of the models
are increased by an amount that effectively smears each atom’s density over its probability
distribution of true positions using the following equation, the electron density overlap, and

therefore the LLG score, is optimized.

82 X
B ZTO'T

This approach was suggested in the high-accuracy assessment for CASP72 and supported by
tests using either the actual or estimated coordinate errors in models?!. The practical impact
was demonstrated further by showing that this treatment significantly improves the utility
for MR of models submitted to CASP10%?, as well as in the evaluation of template-based

modeling for CASP138,

To measure the utility of the error predictions numerically, each model was evaluated two
times. In the primary calculation, the number in the B-factor field of the model was
transformed using the equation above from a coordinate error estimate into a B-factor
providing an error weight; in the secondary calculation the B-factor was substituted with a
constant value set to 25 A2, (Because the calculation is carried out with normalized structure
factors, or E-values, the actual value of the constant B-factor is irrelevant. By extension, the
mean value of any B-factor distribution can be altered without affecting the result.) The

difference between the two results is a measure of the value added by the error estimates.
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Computing group rankings

For all the evaluation measures, Z-scores were computed using an algorithm that has
frequently been applied in other rounds of CASP. The primary ranking was based on model
#1 of up to 5 models submitted for each target; this choice implicitly rewards the ability of
groups to assess the relative quality of their models. Z-scores were computed in two steps: a
set of initial scores was calculated based on the mean and standard deviation (SD) of all
models under consideration. All models yielding a Z-score below -2 in the first pass were
considered as outliers and the Z-scores recomputed using the mean and SD obtained when
the outliers were excluded. At the end, the minimum Z-score was set to -2 to avoid
excessively penalizing outliers. For ranking, all Z-scores were summed and a penalty of -2
introduced per target for which a method did not produce a model, effectively treating
missing models as outliers.

For rankings based on either the conventional LLG or the new reLLG score, the primary
ranking was based on interpreting the B-factor field as an estimate of the RMS error in that
atomic position, as requested in the submission instructions provided by the CASP
organizers. The difference between this LLG or reLLG for error-weighted models and the
value computed setting all B-factors to a constant value was used to measure the value

added by the coordinate error estimate.

Software and data availability

The tables with the reLLG calculations as well as the Jupyter notebooks?? used to analyze
them can be found in the following repository:

https://github.com/clacri/CASP14 MR evaluation. The Jupyter notebooks have been

prepared to be run in the cloud environment of Google Collaboratory?*, so that the results
can be reproduced without having to set up a specific local environment. The analysis relies

on the following python scientific libraries: Matplotlib?°, Pandas?®, Numpy?’.

Computation of the reLLG was implemented in phaser_voyager (manuscript in preparation),
a structural biology computing framework that exploits phasertng® in its core. Its focus on
modularity and abstraction enables rapid implementation of specific strategies, tracking of
pathways, and result analysis. The phaser_voyager strategy ‘CASP_rel_elLLG’ will be released

as part of version 2 of Phenix?8, available from the command line as
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phenix.voyager.CASP_rel_elLG, requiring the pdb of the target structure and a path to the

folder containing approximately oriented models to evaluate.

Results

Structure prediction assessment

The statistical analysis and ranking calculations were carried out as described in Materials
and Methods. Briefly, the primary ranking was based on the sum of the Z-scores for the #1
predictions when the B-factor field was interpreted as an error estimate, and including the
penalty of assigning a Z-score of -2 for missing models.

Group rankings by difference log-likelihood-gain (dLLG) scores

Conventional dLLG scores were calculated for 54 evaluation units that correspond to the 32
targets for which the experimental diffraction data were available to us at the time of
assessment. We calculated the scores with and without using the error estimates that were
intended to be encoded in the B-factor field, thus assessing the impact of the error

estimates. The resulting rankings are shown in Fig. 1.
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Figure 1. The top 20 groups ranked by the sum of Z-scores of the dLLGs for their #1 predictions.
Methods were ranked based on the dLLGs computed when considering the values in the B-factor

field as error estimates (predicted RMSD to the target).
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Group rankings by relLLG scores

146 groups presented models for at least some of the 96 EUs. While calculation of the dLLG
score requires diffraction data (limited at the time of assessment to 54 EUs), the calculation
of the reLLG does not, and so allows all 96 EUs to be included in the statistics. This includes
71 EUs derived from structures determined by X-ray crystallography, 22 from cryo-EM

structures and 3 from NMR structures.

In order to compare and assess the novel reLLG score against the traditional CASP dLLG
score, we addressed three questions. First, do the dLLG and reLLG yield similar rankings of
models for a specific target? Second, do the dLLG and reLLG yield similar group rankings?
Third, do the reLLG calculations obtained from cryo-EM or NMR experiments also yield

correlated group rankings?

We compared relLLG scores with dLLG scores for the targets for which diffraction data were
available at the time of assessment. We do not expect these measures to be linearly related
to each other, because the dLLG score is affected non-linearly by factors such as model
quality (which has different effects for different resolution limits) or the fraction of the
asymmetric unit of the crystal accounted for by the model. Because the reLLG calculation
has been designed to cope better with numerical issues caused by the large estimated RMS
errors found in some CASP models, comparisons of the scores obtained interpreting the B-
factor field as an estimated error can be complicated by the relative instability of the Phaser
calculations with some models. To avoid these complications, we chose to compare the
reLLG and dLLG values obtained when setting the B-factors constant. Fig. 2 shows scatter
plots for four disparate cases, spanning different degrees of modeling difficulty, different
fractions of the asymmetric unit accounted for by the model, and different resolution limits.
The relationship between the two scores is roughly monotonic, indicating that they will

deliver similar ranking order for models.
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Figure 2. Scatter plots comparing dLLG and reLLG scores for models of 4 EUs illustrating
different circumstances. a) T1085-D3: TBM-hard case in which the model comprises 9.8% of
the structure, data to 2.26 A resolution. b) T1032-D1: TBM-hard case, 6 copies of the target in
the asymmetric unit, data to 3.3 A resolution. c) TBM-easy case, 2 copies, data to 1.9 A

resolution. d) FM case, 1 copy, data to 1.5 A resolution.
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Next, we examined whether the group ranking on the subset of targets for which diffraction
data were available was similar. Fig. 3 shows a very strong correlation between the ranking

orders, with the top 5 groups being identical for the two measures.
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Figure 3. Ranking scores based on dLLG (magenta bars) and reLLG (blue bars) using only
targets for which diffraction data were available at the time of assessment. Groups are

ordered by their reLLG ranking score.

To verify that there are no systematic differences in how reLLG would score models of
structures determined by other methods, we compared the group ranking scores that would
have been achieved using only cryo-EM targets or NMR targets with those achieved using X-
ray targets. The scatter plots in Fig. 4 demonstrate a strong correlation among the rankings

using all three types of target. Note that the NMR scores are based on only 3 EUs.
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Figure 4. Scatter plots comparing average relLLG scores per group by experimental technique. a) X-

ray vs CryoEM. b) X-ray vs NMR.

Given that rankings on common targets are very similar using either dLLG or relLLG, that

reLLG rankings on sets of targets derived by different methods (X-ray, cryo-EM, NMR) are

similar, and that the use of the reLLG allows the use of a much larger data set (96 EUs rather

than 54), we expect the ranking based on reLLG to be closer to what would be achieved for

dLLG if diffraction data were available for all 96 EUs than the dLLG ranking based on only 54

EUs. The ranking based on reLLG is more robust, and we take it as the authoritative ranking

for this study.

The ranking for all targets by reLLG Z-score (Fig. 5a) is again dominated by AlphaFold2, as

also seen with dLLG and more traditional CASP measures. The other top performing groups

are BAKER, BAKER-experimental, FEIG2 and BAKER-ROSETTAserver, followed by a few other

variants of FEIG group algorithms.
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Figure 5. Ranking of predictions by reLLG. a) Group ranking by the reLLG ranking score for model #1
submissions. b) Improvement in performance for the top groups when the coordinate error
estimates are used to weight the reLLG calculation. The 24 groups who were in the top 20 for either

the weighted or unweighted scores are included.
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We note that the top 3 groups are the same in this ranking as in the rankings using just
targets for which diffraction data are available, but there are substantial differences in other
methods near the top. Based on the comparisons discussed above, we believe that these
differences reflect sampling error rather than a systematic difference between targets with
and without diffraction data. Such sampling error should be reduced for the larger set of
targets, further supporting the decision to use the reLLG Z-score as the primary ranking

measure in this work.

Utility of coordinate error estimates in MR calculations

CASP participants are asked to contribute error estimates for their predicted models in the
B-factor field of submitted PDB files. While the group ranking analysis in this study has been
done using the information from those estimates, we also computed the reLLG scores
substituting those estimates by a constant value. We then computed the difference
between the sum of the reLLG scores for each group, either using or not using the error
estimates. As can be observed in Fig. 5b, the general trend for the top scoring groups is that

the inclusion of the error estimation in the reLLG calculation improves the score.

Accuracy self-assessment in the prediction category

The ability of the groups to identify their best models and rank them is an important aspect
for prospective users, as many users will focus on the top model. Arguably, this is somewhat
less important for MR models, as it is reasonably common (though not universal) to test a
number of alternative models. One metric that can be used to score the accuracy of self-
ranking is a rank correlation. We chose instead to use the fraction of the time that the #1
model is also the best of the 5 models submitted, because it is easy to understand and

corresponds to one of the possible MR scenarios where only the best model is tested.

A scatter plot comparing the percentage of #1 models ranked correctly with the relLLG
ranking score (Fig. 6a) shows that there is no overall correlation (correlation coefficient

of -0.02) between the ability of an algorithm to predict structure and the ability to rank a set
of predictions. This is unexpected, as one would expect ranking to be an essential
component of successful prediction. Nonetheless, Fig. 6b shows that the most successful

groups do better than random, with BAKER and FEIG-R1 doing best.
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Figure 6. Percentage of targets for each group for which model #1 was the highest scoring in reLLG.
Only the targets for which 5 models were submitted were considered. a) Scatter plot of percentage
correct vs average reLLG Z-score for the prediction category. All groups are included except
AlphaFold2, for which the average relLLG Z-score is 8.28 and the percentage correctly ranked is 26.1.
b) Bar plot of percentage correctly ranked with the top 20 best groups from the overall prediction
category ranking. c) Scatter plot for the refinement category, as in (a), including all groups. d) Bar

plot, as in (b), with all groups from the refinement category.

Refinement assessment
Refinement group ranking by reLLG scores
In this category, 36 groups contributed to 44 targets. Group rankings were computed in the

same way as for the prediction round. To assess whether starting models were generally

improved or degraded by refinement, we included in the ranking calculations a “naive
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predictor”, who returns the starting model unchanged. One complication in scoring the
naive predictor was that the B-factor field of the PDB files containing the starting models did
not typically contain estimated RMS coordinate errors; for consistency we evaluated the
starting models by computing the reLLG score with all B-factors set to a constant. For this
reason, even if a refinement group had left the coordinates unchanged but provided useful

error estimates, they would have surpassed the naive predictor.

Fig. 7a shows that the refinement of starting models is a difficult problem, as only 6 groups
managed to consistently improve the models. In keeping with findings from other CASP
metrics (Simpkin et al., this volume), the top 3 groups (FEIG, FEIG-S and DellaCorteLab)

employed restrained molecular dynamics methods.
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Figure 7. Ranking of refinement models by relLLG. a) Group ranking by the reLLG ranking score for

model #1 submissions. b) Improvement in performance when the coordinate error estimates are

used to weight the reLLG calculation.
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Utility of coordinate error estimates

The effect of including the coordinate error estimates in the reLLG scoring was evaluated as
for the prediction category. Fig. 7b shows that, again, considerable value was added to the
model by including good coordinate error estimates. How much this added can be seen
from an alternative ranking based on reLLG Z-scores computed with constant B-factors (Fig.
S1), which therefore judge purely coordinate accuracy and not the accuracy of the error
estimates. A comparison of Fig. S1 with Fig. 7a shows that only 3 groups outperform the
naive predictor, based only on coordinate accuracy: BAKER, FEIG and FEIG-S. The inclusion
of error weighting moves Kiharalab_Refine up from 14" position to 6, above the naive
predictor, showing the real-world value of their excellent performance in coordinate error
prediction, illustrated by Fig. 7b.

Accuracy self-assessment in the refinement category

There is a weak positive correlation (correlation coefficient of 0.31) between the ranking
scores for different groups and their ability to correctly rank their best model as #1 (Figs. 6¢
and 6d). One would expect this to be a strength in deciding whether a starting model had
been improved, but it is difficult to see why this ability should be more important for

refinement than for the initial prediction where no overall correlation was seen.

Success of the refined models in MR

We performed MR using search models generated in the refinement category for those
cases where diffraction data were made available. There were 13 targets that fulfilled this
requirement. Four of these included extended submissions benefitting from 6 weeks of
refinement in addition to the standard 3-week refinement submissions (T1034, T1056,
T1067 and T1074). Further to this, T1053, T1067 and T1074 were double-barrelled cases
with refinement performed on two initial starting models. In each of these cases one of the
starting models was an AlphaFold2 prediction. This gave a total of 20 sets of refined models
to be tested in MR. Refined models from 36 different groups were included with each group
producing up to five models per target. Starting models were also used in MR for

comparison. The full set of target details is provided in Table 1.
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resolution [targetseq |modelseq |% of no. models
target refinement |nmol asu [space group [(A) length length scattering ((refined)
T1030 R1030-D2 |1 P21224 3.03 274 120 43.8 131
R1034 4 P24 2.057 157 157 25.0 142
T1034 R1034x1 4 P24 2.057 157 157 25.0 131
T1038 R1038-D2 |3 P24 2.5 191 77 134 130
T1049 R1049 1 P212124 1.75 135 135 100 138
T1052 R1052-D2 |1 H3 1.976 833 214 25.7 117
R1053v1 4 C2224 3.294 521 172 8.2 130
T1053 R1053v2 4 C2224 3.294 521 172 8.2 123
R1056 1 P24 23 170 170 100 132
T1056 R1056x1 1 P24 23 170 170 100 125
R1067v1 1 P23 1.44 222 222 100 132
R1067v2 1 P23 1.44 222 222 100 130
T1067 R1067x1 1 P23 1.44 222 222 100 106
R1074v1 1 C2224 1.5 133 133 100 143
R1074v2 1 C2224 1.5 133 133 100 137
T1074 R1074x2 1 C2224 1.5 133 133 100 128
T1082 R1082 3 P24 1.147 76 76 33.3 149
T1085 R1085-D1 |1 P1 2.491 400 168 42.0 142
T1090 R1090 1 P212124 1.77 190 194 100 148
T1091 R1091-D2 |1 P21242 2.994 465 108 23.2 142

Table 1. The set of prediction targets used in the refinement category where experimental
diffraction data were available. The three double-barrelled cases had an additional refinement using
an Alphafold2 starting model (highlighted). Refinements denoted with an “x” are where the model
was refined for an additional 6 weeks. Cases with “D” denote starting models representing a single

domain from the target.

The MrBUMP automated pipeline?® from the CCP4 suite3° (version 7.1.013) was used to take
each set of refined search models and provide them to Phaser3! (version 2.8.3) to perform
the MR trials. Some of the target crystal structures contained more than one protein

molecule in the asymmetric unit, but we searched for only one copy to reduce the time
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taken for the MR run. For proteins with multiple components this is a more demanding test,
because the signal in the MR search has a quadratic dependence on the fraction of the
scattering accounted for by the model®>. We deemed this to be an acceptable compromise
as correct placement of the first copy is often indicative of a good chance of success in MR.
The likelihood target in Phaser requires an estimate of the effective RMS coordinate error
for the search model, which we set to 1.2 A for all search models. For all of the refined
models used, the B-factor field of the coordinate file was interpreted as an estimated RMS
error, as discussed in Materials and Methods. To test if the solution in each trial was correct,
we used phenix.famos from Phenix?® to calculate a mean log absolute deviation (MLAD)
between the solved structure and the placed search model, accounting for any origin shift. A

value of less than 1.5 for MLAD was used as the criterion for successful placement in MR.
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Figure 8. The plot shows the success of the group's refined models in MR for each of the 20
refinement cases where experimental diffraction data were available. Groups are ordered from left
to right by the number of cases where they produced at least one successful solution. Refinement
cases involving the extended extra 6 weeks of refinement are shown in italics. The three cases where
an AlphaFold2 prediction was used as the starting model are R1053v2, R1067v2 and R1074v1. Points

are encircled in red where the starting model was also successful in MR.

Fig. 8 shows the overall performance of all the groups for each of the refined model sets. Of

the 16 starting models for the 13 targets, only 5 of these proved to be successful search
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models in MR. Three of these were the AlphaFold2 predictions, with the remaining two
being the starting models for R1034/R1034x1 (provided by the Seok server) and
R1056/R1056x1 (from UOSHAN). Using these starting models, most groups that participated
produced refined models that could also be used successfully in MR. In 9 of the remaining
13 cases (including extended targets) refined models were produced that were sufficient for
correct placement in MR. The BAKER and FEIG groups proved to be the most successful,
yielding positive results in 13 and 12 cases respectively. Notably, the same 6 groups appear
at the top of the actual MR test as those above the naive predictor in the reLLG ranking (Fig.
7a); the groups that ranked below the naive predictor provided very few models that

succeeded in MR when the starting model failed.

An example of a successful refinement by the FEIG-S group of a starting model unsuitable as

a search model in MR, for the target T1090, is shown in Fig. 9.
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Figure 9. a) Starting model (gold) superimposed onto the target structure (blue). b) Refined model
#1 from FEIG-S group (gold) superimposed onto the target (blue). Unlike the original refinement
target (a), the FEIG-S refinement succeeded in MR and achieved an LLG of 145 and a local map
correlation of 0.44. Panels (c) and (d) compare the quality of the map in the region around residue
153 from the phases generated from the placed refinement target (by superposition onto the placed
FEIG-S model) and the MR-placed FEIG-S refinement. The phases generated by the model and the

resulting electron density map are much improved by the refinement.

For two of the four targets subjected to the extra three weeks of refinement time, groups
MUFOLD, Jones-UCL, GLoSA, FOLDYNE and UNRES-template were able to exploit the extra
time to improve some of their models sufficiently to be suitable as search models for MR.
Other groups including BAKER and FEIG were able to increase their success rate with the
extra time. However, the overall results were mixed. For three of the four targets, the total
number of models succeeding in MR declined following the extra refinement (Table 2). Only

in the case of T1067 did numbers improve from 21 to 24. For the double-barrelled cases, it
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is clear that the high accuracy of the AlphaFold2 starting models made them very difficult to
improve upon with refinement. Although the level of success for refined models produced
from these was very high, the overwhelming majority of the models scored lower LLG and

MLAD values in MR than the original AlphaFold2 predictions.

3 weeks 6 weeks
models successful in (unique to 3 models successful in [unique to 6
Target MR weeks MR weeks
T1034 110 23 100 13
T1056 54 17 51 14
T1067 21 10 24 13
T1074 12 6 8 2

Table 2. Results for the “extended” models allowed an additional 6 weeks for refinement. The table
shows the number of successes achieved in MR across all of the models for those groups that

participated. The number of unique solutions at each stage of the refinement is also shown.

Assessment of progress

As seen with many other CASP metrics, the quality of the AlphaFold2 models for MR
represents a step change in what can be achieved. It is difficult to attach a numerical value
to quantify progress in MR, but there is strong qualitative evidence. In previous rounds of
CASP, the quality of models for MR was never measured for the most difficult (FM and
FM/TBM) categories because almost none of the models were judged to bear sufficient
resemblance to the targets to make that a meaningful exercise. In addition, this is the first

occasion in which targets contributed to CASP were actually solved using submitted models.
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Figure 10. a) Model quality, measured by the reLLG score weighted by estimated RMS error, as a
function of target difficulty. The points in blue represent the best AlphaFold2 model for each target,
and the points in orange represent the best non-AlphaFold2 model for each target. b) Superposition
of chain A of PDB entry 3akk3? (brown) on the structure of T1053-D1 (grey). c) Superposition of
model #1 from AlphaFold (blue) on T1053-D1 (grey).

Target difficulty in CASP is traditionally measured using a linear combination of target

rankings by sequence coverage and sequence identity to the closest homologue of known
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structure3. Fig. 10a shows that model quality for MR, measured by the reLLG score, still
depends on target difficulty, but there are useful models across the spectrum. In almost all
cases, the best models are those produced by AlphaFold2. One striking example is their
model #2 of T1078-D1, which achieves an reLLG score of 0.648, the highest seen for any of
the targets; this is in spite of the difficulty level of this target, for which the best template in
the PDB has a sequence identity of only 9.8% and a coverage of 71% of the target length.
AlphaFold model #1 for T1053-D1 is a very good model for an even more difficult target,
where the closest homologue (chain A of PDB entry 3akk3?) has a sequence identity of only
7.2% and a coverage of 47.8%. Figs. 10b and 10c show the striking improvement over the
best template. Where the AlphaFold2 algorithm still has difficulties, indicating room for
improvement, can be seen from cases where low scores were obtained in spite of
apparently modest difficulty levels; these are outlined in a dashed blue box at the bottom of
Fig. 10a. The blue points in this box represent the best AlphaFold2 models for (from left to
right) T1093-D2, T1100-D1, T1092-D1, T1083-D1, T1095-D1 and T1099-D1. These all
represent cases of targets extracted from subunits of larger assemblies: T1083-D1is a
subunit of a homotetramer stabilized by coiled-coil interactions, T1092-D1, T1093-D2, and
T1095-D1 correspond to three subunits of H1097, the phage AR9 RNA polymerase, T1099-
D1 is a single subunit of the duck hepatitis B virus capsid and T1100-D1 is a subunit of a
homodimer stabilized by a long coiled-coil interaction. Clearly the prediction of structure in
the absence of the structural context is still a difficult problem. In spite of this, remarkably,
the models of subunits of the phage AR9 RNA polymerase were good enough to play a

pivotal role in solving the structure of this complex (Leiman et al., this volume).

Methods of similar power to AlphaFold2, when they become readily available to the
structural biology community, can be expected to play an increasing role in structure
determination. We note that the development of the RoseTTAFold algorithm, inspired in
part by features of AlphaFold2, has already enabled the determination of several structures

that evaded previous efforts34.

Discussion and Conclusions

Crystallographers have a great deal of experience carrying out MR with models derived from

homologues with different levels of sequence identity. Although success in MR involves a
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combination of factors (quality and completeness of model, quality and resolution of
diffraction data), a commonly-used rule of thumb is that MR is likely to succeed if there is a
homologue with at least 30% sequence identity (for 100% sequence coverage). It is useful to
also relate the reLLG directly to solvability.

Sequence identity correlates with solvability because there is a relationship between
sequence identity and the effective RMS error, termed the VRMS in Phaser, which is an
important parameter in LLG calculations in the MR search. The VRMS can be estimated from
sequence identity, taking into account perturbations introduced by molecule size*®. For a
complete model of a 175-residue protein (a typical globular protein/domain size) with 100%
identity to the target, the formula yields a VRMS of approximately 0.4 A, the value assumed
for the ideally imperfect model in the reLLG calculation (reLLG=1.0). As sequence identity
degrades, the VRMS increases as predicted by the Oeffner et al. formula®®, and this can be
translated into a reduced relLG, as shown in Fig. 11. A sequence identity of 30% thus
translates into an relLLG value of slightly less than 0.1. The majority of AlphaFold2 structures
across the difficulty scale reach this value, as well as a substantial fraction of the best

models from other groups (Fig. 10a).

1-
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0.6-
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Figure 11. Translation of fractional sequence identity of a 175-residue protein into an equivalent
reLLG value, assuming that the coordinate errors are all drawn from the same 3D Gaussian
distribution inferred from the sequence identity. The dashed red lines show that a sequence identity

of 0.3 would translate into an reLLG of about 0.091.
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In this work we have not validated whether or not a reLLG over 0.1 is sufficient to solve the
structures for which diffraction data are available. However, MR trials have been carried out
as part of the high-accuracy assessment (Pereira et al., this volume), addressing 32 targets
and solving 30. Twenty-six of those required no editing in the Ample truncation procedure®,
while a further three succeeded with truncated search models automatically generated by
consideration of predicted residue errors. One required manual splitting of model domains.
In a separate study®’, in depth MR trials using only the AlphaFold2 models were carried out
when data had become available for 34 crystal structures, from which 72 EUs had been
defined. Of the 34 structures, 31 could be solved with AlphaFold2 models, 2 could be solved
partially and one could not (though it could be solved with generic helix models), at least

confirming the result for AlphaFold2 models.

Relevance of refinement category in CASP

The CASP refinement category was instigated to encourage the development (and allow the
evaluation) of expensive computational methods, ones for which most groups do not have
the resources to apply to the large number of targets in the prediction round. In this
category, a number of server-generated models are traditionally provided for further
improvement. In CASP14, this pool of models was supplemented with 7 (non-server)
AlphaFold2 models. We have seen that the best groups were consistently able to improve
the server-generated refinement targets, but that most refinement methods degrade the
AlphaFold2 models, as seen here for MR as well as for other CASP assessment measures
(Simpkin et al.., this volume). The AlphaFold2 prediction algorithm (and the resources
behind it) is better than even the compute-intensive refinement algorithms of other groups.
This result is shown in Fig. 12 where, with one marginal exception (a slight improvement on
an AlphaFold2 starting model), the AlphaFold2 model would have scored equal or higher on
the relLLG score compared to the best refined model, even including the double-barrelled
targets starting from AlphaFold2 models. If the initial AlphaFold2 predicted models had
simply been resubmitted for each refinement target then AlphaFold2 would have topped
the refinement rankings as well. In light of the highest quality predictions, the refinement
category as it currently stands appears to have become redundant. Some consideration of

potential future changes can be found elsewhere in this issue (Simpkin et al.., this volume).
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Figure 12. Scatter plot comparing reLLG scores of best AlphaFold2 model from the prediction round

with the best model from the refinement round for each refinement target.

In conclusion, we have shown that the reLLG is a useful addition to the assessment metrics
for CASP and should replace the metrics based on dLLG used in previous rounds. Although
developed in the context of MR, it can be evaluated for models of structures determined by
NMR, cryo-EM or with other structural restraints. It has a broad advantage over other
metrics by combining assessment of coordinate accuracy with the assessment of the
accuracy of the estimates of RMSD in coordinates. To further improve the reLLG of
predicted models (and thus their utility in MR), groups should target estimates of individual
atomic accuracy rather than grouped residue accuracy. It should also be understood by
predictors that optimization of the reLLG ideally requires optimization as well of the
predicted atomic B-factors, where the B-factor includes spatial and temporal sampling of
coordinate locations in a dynamic molecular structure during the course of the structure
determination data collection. To optimize reLLG in the current format, where there is one
B-factor field in the submitted PDB file, would actually require submitting “error” values

that, when translated into B-factors, produce the sum of the actual B-factor of the atom and
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the B-factor corresponding to the coordinate error. Since this would conflate more than one
phenomenon in one number, CASP should facilitate the submission of different types of
estimates for different purposes, by replacing the current PDB submission format with the

flexible and extensible mmCIF format.
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Figure S1. Alternative ranking of refinement groups by reLLG Z-score computed with constant B-
factors. By this ranking, which focuses only on coordinate accuracy, only 3 groups outperform the

starting model, which was also scored using constant B-factors.
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Figure S2. A comparison of alternative ranking strategies for the refinement methods against the 20

targets assessed with MR. These are ranked on the sum of dLLG Z-scores (a), the sum of reLLG Z-
scores (b) and the sum of total solutions in MR (c). The scores were calculated using only model 1

and the naive predictor is shown in red.
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