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Abstract 

Targeting glioblastoma (GBM) based on molecular subtyping have not yet translated into 

successful therapies. Here, we used gene set enrichment analysis (GSEA) to conduct an 

unsupervised clustering analysis to condense the gene expression data from bulk patient 

samples and patient-derived gliomasphere lines into new gene lists. We then identified key 

molecular pathways differentially regulated between tumors. These gene lists associated not 

only with cell cycle and stemness signatures, but also with cell-type specific markers and 

different cellular states of GBM. We identified the transcription factor E2F1 as a key regulator of 

tumor cell proliferation and self-renewal in only the subset of proliferating gliomasphere cultures 

predicted to be E2F1-activated and validated its functional significance in tumor formation 

capacity. E2F1 inhibition also sensitized E2F1-activated gliomasphere cultures to radiation 

treatment. Our findings indicate that a pathway-based approach can be leveraged to 

deconstruct inter-tumoral heterogeneity and uncover key therapeutic vulnerabilities for targeting 

GBM.   
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Introduction 

Glioblastoma (GBM) is incurable, with an overall median survival of about 14 months[1] despite 

maximal surgical resection, radiation, and chemotherapy with temozolomide[2]. The past 

decade has seen a revolution in the understanding of GBM, and studies of patient samples 

based on gene expression and oncogenic mutations have revealed that GBM can be parsed 

into distinct molecular categories--namely classical, mesenchymal, and proneural--and 

subsequently IDH mutated tumors[3-8]. While these classification schemes have shown some 

relationship to prognosis, they have largely failed to provide new therapeutic approaches. 

 

The driver mutations of GBM result in the activation of many well-known oncogenic pathways, 

including the PI3K/AKT, MAPK/ERK, Rb, and mTOR pathways[9]. However, the use of 

pathway-specific inhibitors has not yet resulted in effective therapies. One potential explanation 

for this lack of efficacy is that tumors are comprised of multiple cell types with different pathway 

dependencies. Another is that inhibition of one pathway results in the activation of another[10]. 

Finally, it is possible that the identification of critical pathways driving GBM progression and 

recurrence is not yet complete. The prioritization of key pathways falls short of what would be 

required for tumor eradication because the combinatorial outcome of existing mutations, and 

resultant dominant pathways, cannot be conclusively inferred.  

 

The advent of relatively easy and cost-effective sequencing methods and advances in 

bioinformatics open the door for rapid evaluation of gene expression, identification of key 

molecular pathways, and characterization of different cell types within individual tumors. For 

instance, we now appreciate that molecular subtypes previously used in the classification of 

GBM[5] can be linked to cell type-specific markers with the description of cellular states[11]. 

Similarly, a subpopulation of tumor cells can express markers of outer radial glia and turn on 

developmental programs to promote invasion[12]. Yet, a comprehensive and unbiased 
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approach to group samples based on their pathway utilization has not yet been exploited to 

uncover therapeutic targets. We hypothesized that, rather than examining gene expression as a 

whole, analyzing targetable pathways could allow for the development of patient- or tumor 

class-specific therapeutics or combination therapies that go beyond the traditional inhibitors that 

have already been developed. 

 

In this study, we developed a bioinformatics strategy that leverages Gene Set Enrichment 

Analysis (GSEA) to disambiguate tumor heterogeneity in GBM (Figure 1). We identified 

pathways and processes utilized by different tumors and individual cells within the tumors, 

without consideration of their driver mutations. We then implemented a downstream pipeline to 

ascertain key genes within enriched gene sets that were further evaluated for drug and/or 

molecular target selection. Using bulk RNA samples and existing single cell RNA-sequencing 

databases, we found that tumors can be clustered according to their enrichment of canonical 

and oncogenic pathway gene sets and that the new gene lists we derived from enriched gene 

sets reveal functionally significant differences between tumors and between cells within a tumor. 

We then utilized gliomasphere cultures, enriched or depleted in these gene lists, to demonstrate 

the functional significance of our approach using the pro-proliferative transcription factor E2F1 

as an example. 
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Results 

 

GBM clustering based on molecular pathway heterogeneity is clinically significant and 

only modestly overlaps with prior molecular classification 

To characterize intertumoral heterogeneity, we first studied presumptive pathway utilization by 

analyzing GBM patient samples in the Cancer Genome Atlas (TCGA[5]) using gene sets in the 

canonical (C2CP) and oncogenic (C6) pathway collections from the GSEA software[13, 14]. The 

mRNA expression of each TCGA sample was compared to the average expression of all the 

samples (n = 538), and normalized enrichment scores were obtained for all the gene sets 

comprising the two pathway collections. A heatmap representing the normalized enrichment 

score profile for each sample (column) demonstrates the presence of heterogeneity when either 

canonical (Figure 2A) or oncogenic (Figure 2B) gene sets were analyzed. We determined that 

3 clusters correctly represented the data when using oncogenic and canonical pathways via 

non-matrix factorization and consensus clustering; the robustness of the clusters was also 

tested and validated using the Random Forest approach (Supplementary Figure 1). We then 

applied principal component analysis (PCA) for dimensionality reduction to better visualize the 

clustering of the samples using canonical and oncogenic pathways (Figures 2C and 2D, 

respectively). Notably, when the clustered samples were colored by their known TCGA 

molecular subtype, we found there was one cluster that contained most of the mesenchymal 

samples, while the classical and proneural subtypes were present in all clusters 

(Supplementary Figure 2). This indicates a lack of full correlation between molecular 

characterization and molecular pathway expression. These findings suggest that different 

tumors quantitatively utilize different molecular pathways, prompting further analysis.  

 

To determine whether our pathway-based classification provided functionally significant 

information, we examined patient survival using the pathway-based clustering information. Prior 
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studies using TCGA groupings have found only limited association with survival, with proneural 

tumors having longer survival--an observation largely driven by the subset of IDH mutant 

tumors. As shown in Figure 3A, our own analysis of the TCGA categories found significant 

differences only between the proneural and other two groups, as previously reported [5]. 

However, when we utilized our new pathway-based clustering approach, we found statistically 

significant differences in median survival between the patients from each pair of clusters 

(Figure 3B and 3C). For both collections of gene sets, canonical and oncogenic, the cluster 

with the lowest median survival was the one primarily composed of mesenchymal samples.  

However, approximately 30% of the samples within this cluster were characterized as classical 

and proneural. Similarly, using the canonical pathways collection, the cluster with the highest 

median survival included equal abundances of classical and proneural samples (47% each). 

These data challenge the idea that samples obtained from patients should be treated according 

to their TCGA-defined molecular phenotype and, in contrast, support the notion that tumors from 

different molecular backgrounds might have common signaling pathways that can be leveraged 

for therapeutic purposes.  

 

GSEA gene signatures from patient-derived glioma database delineate actionable targets 

Our findings thus far suggest that a pathway-based approach could be leveraged therapeutically 

in GBM. We recognized, however, that GSEA is an imperfect approach to assess functional 

pathway utilization and that individual genes or sets of genes would contribute to enrichment of 

multiple gene sets. Therefore, in order to more pragmatically develop potential interventions 

based on our analysis, we further distilled our pathway-based clustering of the whole TCGA 

dataset by extracting the top contributing gene sets to each principal component (PC) and 

direction and synthesizing their common elements into gene lists (Figure 1). We hypothesized 

that targeting the most highly determinative elements would allow us to target several key 

pathways simultaneously, even though we might be limiting our scope to shared targets and 
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ignoring underrepresented pathways. In order to validate this approach, we performed a similar 

analysis on a microarray-derived database of patient-derived gliomasphere (GS) lines so that 

we could functionally test downstream targets. The enrichment patterns again showed 

heterogeneity between samples, yet they grouped into two major clusters when either canonical 

and oncogenic gene set collections were used (Supplementary Figure 3A and 3B). This is 

reminiscent of a number of gene expression studies, including our own, that classify cultured 

glioma cells into two major groups. Gene lists were also generated for the GS dataset based on 

the common elements shared among the top contributing gene sets for each PC and direction, 

as described above for the TCGA dataset (genes in each of the gene lists generated can be 

found in Supplementary Table 1). The TCGA- and GS-based gene lists were then used to 

obtain enrichment scores in the gliomasphere lines (Figure 4A). This dataset again separated 

into two main clusters in accordance with the pattern of enrichment scores generated when the 

oncogenic and canonical pathways were used (Supplementary Figure 3C). Interestingly, there 

was an overlap in enrichment between some of the gene lists generated from the TCGA dataset 

(TCGA_C2_PC1NEG) and the gliomasphere dataset (GS_C2_PC1NEG). This was confirmed 

by calculating correlation values for each pair of gene lists (Supplementary Figure 4). In both 

datasets, the strongest positive correlation was between the C2_PC1NEG lists, with coefficients 

of 0.78 and 0.84 in the TCGA and GS datasets, respectively. Conversely, the strongest negative 

correlation was between the two C2_PC1NEG lists compared with GS_C2_PC1POS (-0.57, -

0.66) in the GS dataset and with TCGA_C2_PC1POS (-0.39, -0.22) in the TCGA samples 

(Supplementary Figure 4). These findings indicate that the identified gene lists represent 

independent groups of pathways for which tumor samples show differential enrichment that can 

potentially be exploited to uncover new therapeutic targets.  

 

All the gene lists were further analyzed using Ingenuity Pathways analysis (IPA) to identify 

critical pathways and targets that can be leveraged therapeutically. Cluster 1 (right side of 
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heatmap in Figure 4A) showed higher enrichment of the GS_C2_PC1NEG gene list and core 

analysis from IPA showed an increase in the expression of the E2F family of transcription 

factors and its downstream targets (Figure 4B). Similarly, the contribution of each gene list can 

be appreciated in reference to both clusters (Figure 4C). Activation of E2F1, together with 

inhibition of let7, reported to have a role in differentiation and tumor suppression [15, 16], had 

the most significant p-value for this particular gene list (data not shown). Since E2F1 has a 

known role in cell cycle progression, we examined the enrichment scores for cell cycle-related 

gene sets in the canonical pathways collection (C2CP). Indeed, samples that fell in the cluster 

with high enrichment of GS_C2_PC1NEG (and hence predicted to have activation of E2F1) had 

concomitant higher enrichment scores for cell cycle-related gene sets (Figure 4D). Likewise, we 

examined the enrichment of E2F1-target gene sets from the C2CP collection and found great 

concordance with the samples predicted to have E2F1 activation (Figure 4E). In addition, 

considering the correlation values between the signatures (Supplementary Figure 4), we found 

that E2F1 activation seemed to oppose IFNg and NFkB activation. Similarly, EGFR activation 

(TCGA_C2_PC2POS enrichment) appeared ubiquitously and showed correlation with most of 

the signatures in both datasets. These findings suggest that there are two clusters of 

gliomasphere samples based on their enrichment of gene lists that can be further analyzed to 

elucidate upstream regulators. Amongst the most meaningful differences between the samples 

was the fact that one cluster revealed an E2F1-activated signature exhibiting a high degree of 

enrichment for cell cycle and downstream target signatures. 

 

We next re-clustered TCGA samples based on their enrichment for the gene lists described 

above and found 3 clusters, comparable to the original pathway analyses described in Figure 2 

(Supplementary Figure 3D). The E2F1-activated signatures characterized one of the clusters, 

whereas the EGFR signature pointed in between two of the clusters. Additionally, we analyzed 

raw data from the available TCGA samples (n=160) from Broad Firehose. Differential 
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expression analysis was performed on samples using the cluster identity from the gene 

signatures. These data were then used to highlight the most enriched gene ontology terms for 

each cluster. We found each of the 3 clusters had a defined set of GO terms: cell cycle-related, 

extracellular membrane and inflammation, and synapse and neurotransmitter signaling 

(Supplementary Figure 3E). These results suggest the existence of distinct clusters that can 

be parsed through their potential pathway utilization, highlighted by upstream regulator 

enrichment. Similarly, we found a greater complexity in the TCGA dataset compared with the 

GS dataset, as would be expected when analyzing primary and patient-derived lines, 

respectively.  

 

Pathway analysis exposes limited intratumoral heterogeneity and underscores cell cycle 

signature 

A key consideration in the evolution of thinking about glioma heterogeneity lies in the analysis of 

intratumoral heterogeneity. Several single cell RNA-sequencing studies have emphasized the 

finding of TCGA subtype heterogeneity within tumors—that is, tumor cells from the same tumor 

are often classified in different TCGA groups. To assess whether potential signaling pathway 

utilization is similar or different within individual tumors, we interrogated a single cell RNA-seq 

database derived from 6 primary GBM samples[17]. Despite the reported molecular subtype 

diversity in each sample of this dataset, we found that, based on our GSEA approach, most 

cells from an individual sample clustered together based on their tumor of origin 

(Supplementary Figure 5) when either canonical or oncogenic gene sets were used. These 

findings suggest that, although clear intratumoral heterogeneity in gene expression exists, there 

may be some rationale in targeting dominant pathways as cells from each tumor have 

comparable enrichment profiles that contrast with cells from other tumors.  
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Although cells within any one tumor exhibited similarities in their enriched pathways, we 

recognized that our approach would not adequately identify those pathways that did indeed 

differ amongst cells within an individual tumor. Therefore, we analyzed each sample separately, 

in which each cell’s gene expression was compared to its tumor bulk control. This analysis 

resulted in two clusters for each tumor. Principal component loadings were obtained in order to 

establish which gene sets in the collection contributed the most to the apparent spatial 

distribution of the gene sets in the 2-dimensional PC graph. We consistently observed a cluster 

of cells with a high enrichment of gene sets associated with cell cycle promotion and regulation 

(Supplementary Table 2). In contrast, the second cluster was mainly described by gene sets 

associated with extracellular matrix processing and growth factor signaling pathways, 

suggesting that both cycling and non-cycling cells could be differentially targeted. In the cell 

cycle-enriched clusters, we identified genes such as cyclin dependent kinases and 

minichromosome maintenance complex subunits that have previously been associated with 

glioma progression and tumor growth [18, 19]. Similarly, all 46 subunits of the proteasome 

complex were highly enriched in this cluster for all samples. It remains to be seen whether 

targeting the latter pathways will be therapeutically relevant for GBM. 

 

In order to obtain some biological insight into the cluster not associated with cell cycle gene 

sets, we interrogated the gene sets associated with it using EnrichR and IPA. For each group, 

we selected the top common elements based on their frequency in order to generate new lists 

of genes that condense the information from all the gene sets. Lists were then uploaded to 

EnrichR (https://amp.pharm.mssm.edu/Enrichr/) and to the IPA software to obtain transcription 

factors, biological processes, and upstream regulators for each (Supplementary Table 3). 

Although there are some differences between samples, there is a common theme of 

proliferative signals that are achieved through different mechanisms. For instance, CLOCK 

(circadian clock) is involved in the maintenance of pathways critical for tumor metabolism and 
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that are upregulated during hypoxia in glioma [20].  Other pathways of interest include those 

involving DNA repair, epithelial-mesenchymal transition, axon guidance, and axogenesis. There 

are also several transcription factors that are present in most samples, such as NUCKS1 and 

EGR1, both of which have been previously associated with glioma (NUCKS1 in pediatric [21] 

and EGR1 in adult [22]) and require further mechanistic analysis. Similarly, there is a report on a 

feed-forward loop between EGR1 and PDGFRA that promotes proliferation and self-renewal in 

GSCs [23]. These findings in the scRNA-seq database indicate that there may be a potential 

combinatorial approach that can be tailored for each individual tumor to effectively target both 

cell cycle pathways and tumor-specific activated molecules. 

 

Gene lists differentially associate with cell cycle and stemness programs, GBM cellular 

states, and cell type-specific signatures  

One main focus of GBM research in the last decade has been the existence of a subset of 

cancer cells with activated stemness programs, namely glioma stem cells, that contribute to the 

malignancy of the tumor [24-27] and are refractory to therapy [28, 29]. Together with the TCGA 

molecular subtypes, this paradigm has resulted in the development of specific therapies aimed 

at targeting molecules believed to be key regulators of tumor growth and invasion. The minimal 

clinical success of these efforts can be attributed to the limitations of the current in vitro and in 

vivo models used to validate these approaches. Importantly, we routinely work with patient-

derived cell lines that behave differently than tumor cells in their intact tumor microenvironment 

in patients. It is important to establish whether critical pathways such as stem-like programs, 

differentiation pathways, or cell-cycle related signatures are predominantly active in these cells. 

To that end, we evaluated the association of our pathway-based gene signatures with cell-cycle 

and stemness scores in the single-cell RNA-seq dataset [17]. Consistent with our GS analyses, 

we found that both of our signatures predicted to have E2F1 activated (C2_PC1neg) strongly 

correlated with cell cycle scores (Supplementary Figure 6A), while other signatures showed 
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weak or no association. Interestingly, we found two signatures (TCGA_C2_PC1neg and 

TCGA_C2_PC2pos) that had strong negative correlations and one with a positive correlation 

(TCGA_C2_PC1pos) with stemness score (Supplementary Figure 6B).  

 

The negative correlation between activation of E2F1 and stemness score is not surprising given 

the fact that tumor cells are believed to be in either a proliferative or a stemness state. However, 

EGFR activation (TCGA_C2_PC2pos) has not been linked to a decrease in stemness and 

compels further investigation. The gene list with positive correlation to stemness 

(TCGA_C2_PC1pos) has three main targets per IPA analysis. First, phosphatidylinositol 3-

kinase (PIK3R1) has been associated with GBM, and there are several inhibitors developed for 

molecules in this signaling pathway. GNA12 encodes for the G12 alpha subunit of G proteins 

and is of critical importance in regulating actin cytoskeletal remodeling in cells during migration, 

which is critical for tumor invasion. Finally, Early B-cell Factor 1 (EBF1) has been identified as a 

TET2 interaction partner in IDH-mutant cancers [30]. These analyses establish a novel 

approach for uncovering new molecular targets based on a pathway-based approach that can 

be leveraged for the development of new therapies.  

 

We next used the same scRNAseq dataset [15] and compared our gene lists to previously 

reported transcriptional signatures of cell types in adult cortex [31] and developing human brain 

[32], as well as to recent descriptions of cellular states in glioblastoma [11]. As expected, our 

E2F1 activated gene lists both significantly correlated with G1/S and G2/M signatures in both 

datasets (Supplementary Figure 7). Additionally, TCGA_C2_PC1POS (PIK3R1 and EBF1 

activated) significantly associated with adult astrocytic markers and the AC-like molecular state, 

and TCGA_C2_PC2neg (ICMT activated) significantly associated with adult OPC markers and 

both OPC-like and NPC1-like molecular states. Notably, ICMT is a methyl transferase 

necessary for the targeting of CaaX proteins, which include the Ras family, to the cell 
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membrane [33, 34]. Ras/ERK signaling has been associated with the proneural subtype [35] 

and NRAS is expressed at higher levels in proneural subtype compared with mesenchymal and 

classical (https://gliovis.bioinfo.cnio.es/). TCGA samples classified as proneural also showed 

higher enrichment for genes in the NPC-like and OPC-like molecular states [11]. These data 

suggest a targetable mechanism (trafficking to the cell membrane via ICMT) required for a 

specific protein (Ras) upregulated in a TCGA subtype (proneural) that has correlates in GBM 

molecular states (OPC-like, NPC1-like). Finally, we also found a significant correlation between 

GS_C2_PC1pos (IFNg and NFkB activated) with both MES1-like and MES2-like states as well 

as adult endothelial and mural cell markers. The latter include blood vessel-associated cell 

types such as pericytes and vascular smooth muscle cells. This association relates to the 

extraordinary plasticity of glioma cells in response to their microenvironment. These data 

suggest IFNg and NFkB pathways are activated in cells in the mesenchymal states that undergo 

vascular mimicry and express markers related to endothelial cells and pericytes that have been 

associated with tumor progression and recurrence[36-38]. Of note, IL-10 is also predicted to be 

inhibited in this gene list; given IL-10 is an anti-inflammatory cytokine, this suggests an 

inflammatory microenvironment would promote this particular molecular state.  

 

Weighted gene co-expression network analysis reveals distinct regulatory modules in 

each cluster 

To further determine the biological relevance of the clusters identified in our GS dataset, we 

performed differential expression analysis and weighted gene co-expression network analysis 

(WGCNA). Gene ontology confirmed the enrichment of cell cycle signatures in the E2F1-

enriched cluster (Figure 5A). Likewise, WGCNA identified 26 modules (Figure 5B) that were 

distinctly associated with one of the two clusters (Figure 5C). We took the top 3 enriched 

modules for each cluster and performed gene ontology enrichment analysis. Blue, brown, and 
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light cyan modules (associated with E2F1 activation) showed enrichment of cell cycle, cell 

division, and DNA replication, in addition to processes associated with neurogenesis, neuron 

differentiation, and gliogenesis (Supplementary Table 4). Moreover, two of the three modules 

also showed enrichment in their promoter region for E2F1 and other members of the E2F family. 

Conversely, black, green, and magenta modules (associated with the non-E2F1 enriched 

cluster) showed enrichment for inflammatory response, cell migration, and chemotaxis, as well 

as immune response, angiogenesis, and regulation of apoptotic processes. In these modules, 

we found genes with enrichment for transcription factors involved in inflammatory responses, 

such as CEBPB and the interferon regulatory transcription factor (IRF) family, as well as C2H2 

zinc finger family members, including EGR1 and SP/KLF, which regulate proliferation, 

differentiation, and apoptosis cellular processes. We similarly identified the hub genes in each 

module, determined by how associated they are to the other members of their module[39], and 

colored them by module name in Figure 5B. Like the modules as a whole, the hub genes had 

different characteristics for modules associated with the E2F1 activated and non-activated 

clusters. Namely, the enriched E2F1-related modules show presence of known stem cell 

markers SOX2 and OLIG2, associated with self-renewal and persistent proliferation, as well as 

markers of cell division, like PLK4. Conversely, the hub genes of the other set of modules 

include IL-8, IL-6, and other inflammatory cytokines, together with CD44, which has been 

associated with a more invasive phenotype.  

 

From a clinical perspective, we wanted to know if the hub genes would be viable as therapeutic 

targets. To this end, we took advantage of a prior study comparing gene expression in  the 

cellular fraction containing tumor initiating cells, termed glioma-derived progenitors cells (GPCs) 

and normal, non-transformed glial progenitor cells (nGPCS) [40]. For the E2F1-related modules, 

the blue module had several hub genes (DTL, CASC5, CDCA5, ASPM, CENPF, BUB1B) whose 

expression was at least 4-fold change higher in glial GPCs. Similarly, MYC in the light cyan 
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module was 12-fold more highly expressed in glial GPCs relative to nGPCs. Evaluation of the 

non-E2F1 associated hub genes uncovered that CD44 and COL1A1, both associated with 

invasion, were highly expressed in glial GPCS (over 22-fold change higher related to nGPCs). 

Two other genes associated with migration and invasion, FN1 and SERPINE1, were also at 

least 4-fold higher in glial GPCs. These data confirm our pathway-based analyses that 

generated two clusters characterized by cell cycle enrichment contrasted with inflammatory and 

promotion of invasion pathways that are predicted to have lower chances of off-target effects 

based on their expression profiles on glioma-derived and normal progenitor cells. 

 

Differential effects of E2F1 silencing and candidate therapeutics support the functional 

significance of pathway-based heterogeneity 

Our findings of potentially differential dependence on E2F1 and its downstream targets in highly 

proliferative gliomasphere cultures was somewhat surprising, as this transcription factor is often 

thought to be primarily involved in proliferation and cell cycle regulation. To investigate this 

further and to validate our general approach, we used silencing technology to evaluate the 

cellular effects of E2F1 suppression in samples from E2F1-activated and non-activated clusters. 

HK217 and HK301, members of the E2F1-activated cluster, showed a marked decrease in stem 

(sphere-forming) cell frequency in a limiting dilution assay (LDA) in cells with E2F1 knockdown 

compared with control (Figure 6A). These effects were not observed in HK357 or HK408, lines 

that were not enriched for an E2F1-activated signature (Figure 6A). Likewise, knockdown of 

E2F1 resulted in compromised overall cell proliferation in E2F1-enriched samples when E2F1 

expression was suppressed (Figure 6B), compared with non-enriched cells where E2F1 

knockdown did not significantly alter proliferation. In order to determine whether there are 

potential pharmaceuticals that can target the gliomasphere clusters with and without an E2F1-

activated signature, we utilized the drug predictive upstream tool in IPA. We found that the gene 

lists that had E2F1 as a common element shared fulvestrant and calcitriol as very significant 
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hits. Samples from the E2F1-enriched cluster, HK217 and HK336, were treated with these 

drugs and assessed for sphere formation capacity. HK217 showed a significant decrease with 

both treatments, and HK336 showed a significant response with calcitriol treatment (Figure 6C). 

Conversely, HK408 (from the non E2F1-enriched cluster) did not show a significant change in 

sphere forming capacity after either treatment (data not shown). 

 

To determine the in vivo relevance of our findings, we assessed tumor formation capacity in 

HK301 (E2F1-activated) and HK408 (E2F1-non-activated) cell transduced with E2F1 KD 

(knockdown) and control (scrambled) lentivirus. In vivo bioluminescent images showed tumor 

growth in all mice intracranially transplanted with HK408 in both control and KD groups. 

Conversely, HK301 E2F1 KD cells showed limited tumor formation in vivo while animals injected 

with HK301 control cells showed tumors in four out of five mice (Figure 6D). These data 

demonstrate that the targets uncovered by this pipeline have functional implications in patient-

derived gliomaspheres.  

 

The transcription factor E2F1 is a critical component of the cell cycle signaling machinery. 

However, having a cluster of samples that do not rely on this molecule for proliferative 

purposes, as demonstrated in vivo and in vitro by loss-of-function experiments in the non-E2F1 

cluster, was surprising. We therefore decided to investigate whether E2F1 might be regulating 

other cellular processes in GBM. E2F1 has been demonstrated to have a role in the 

suppression of senescence in prostate cancer cells and proposed to be a key factor for the 

progression of tumors in the presence or absence of p53 or retinoblastoma[41]. Similarly, it has 

been described in breast cancer cells that senescence sensitivity is regulated by an interaction 

between E2F1 and cellular inhibitor of PP2A (CIP2A)[42]. Accordingly, we found increased 

expression of CIP2A in the E2F1-activated compared with the non-enriched cluster in the GS 

dataset (Figure 7A). Correlation analyses also found highly significant correlations in both the 
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TCGA and GS datasets between E2F1 and CIP2A expression (Figure 7B). Of note, E2F1 

knockdown affected CIP2A expression only in E2F1-enriched samples (Figure 7C), which 

suggests a unique regulatory network primarily utilized in cells belonging to this cluster. We 

decided to test this functionally by treating cells with irradiation and measuring their capacity to 

resolve DNA damage as measured by γH2AX staining. HK217 and HK408 control and E2F1 KD 

cells were irradiated with a single dose of 8Gy, and cells were stained 12 hours later. HK408 

showed comparable levels of H2AX-positive cells under both conditions (control = 80%, KD = 

78%, n.s.), whereas E2F1 KD significantly impacted the capacity of HK217 cells to resolve DNA 

damage (control = 45%, KD = 68%, p-value = 0.01) (Figure 7D). Additionally, we evaluated the 

enrichment of DNA repair- and senescence-related gene sets in samples from both clusters. As 

expected, samples in the E2F1-activated cluster showed higher enrichment for both groups of 

gene sets (Supplementary Figure 8). These data further confirm that the pathway-based 

approach we have implemented in these studies has identified a specific molecular target for a 

cluster of samples that has both biological significance and therapeutic potential to advance 

treatment for patients with GBM.  

 

Discussion 

In this study, rather than focusing on driver mutations themselves, our goal was to focus on their 

impact on gene expression and to use the latter in an unbiased manner to assay molecular 

pathways that will influence the biology of the tumor. Our assumption is that while individual 

mutations may influence one of a number of different processes, ranging from protein 

phosphorylation to chromatin modifications, mutations will ultimately result in altered gene 

expression, which then results in modified cellular function. Although our strategy does result in 

a reclassification of tumors and tumor cells, the analyses described in this work present a 

pathway-based approach to uncover biologically relevant, actionable targets derived from the 

heterogenous biology inherent to glioblastoma.  
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GSEA is a powerful tool used to group sets of genes in a functionally relevant manner. 

However, the gene sets in GSEA, especially in the oncogenic collection, are often based on the 

responses of cells and certain tissues to genetic perturbations, and enrichment for a particular 

gene set does not prove that a specific process or pathway is involved. Furthermore, an 

individual gene or group of genes can be represented in multiple gene sets. In order to obtain 

more precise information from our analysis, we added an extra layer to our approach where we 

extracted genes that were common to multiple gene sets and that were highly associated with 

the directionality of the principal components. We then analyzed these “eigen-gene sets” for 

their enrichments in pathways and processes. This additional step allowed us to identify 

functionally important genes and processes.  

 

Using our approach, gene lists were established form both bulk tumor samples and patient-

derived gliomasphere datasets and associated with specific cell signatures in a single cell 

dataset. One of the clearest relationships we observed was the strong association between 

signatures associated with E2F1 activation and proliferative signatures. One potential 

explanation of such a finding would be that different tumors have different numbers of 

proliferating cells and thus differential gene expression based on their abundance. However, our 

findings in gliomaspheres suggest that there are more complex processes at play, as both 

E2F1-dependent and non-dependent cultures were highly proliferative at the time of study, 

indicating that the expression differences observed represented true differences in the biology 

of the cells. It is possible that another closely related member of the E2F family would serve the 

same function as E2F1 in the non-enriched population. However, one may surmise that such 

factors would result in similar downstream effectors and therefore would not have appeared to 

be enriched in our studies.  
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In addition to its role in proliferation, recent studies tie E2F1 function to other processes, 

including DNA repair. E2F1 is known to promote the expression of the DNA repair protein 

CIP2A, which was confirmed to be enriched in our E2F1-activated samples. Our studies 

confirmed inhibition of E2F1 reduced CIP2A expression and reduced the capacity to resolve 

irradiation-induced DNA damage in E2F1-activated gliomasphere cultures. Our analysis also 

identified small molecules that could selectively target this pathway and be considered for 

development of therapeutics in subclasses of cells. This study leveraged the availability of a 

large library of well-characterized gliomasphere samples. While these are thought to embody 

much of the complexity of GBMs, they are undoubtedly a simpler system and are likely to be 

enriched in actively proliferating cells, as opposed to quiescent stem or stem-like cells. Here we 

report differential sensitivity of tumor cells to E2F1 inhibition between distinct clusters of 

proliferating gliomasphere lines; yet we recognize the limitations of the gliomasphere culture 

system. Most studies based on expression have parsed gliomasphere cultures into two general 

categories, similar to our findings, rather than the multiple subtypes exhibited by tumors 

themselves. It is possible that other culture systems, such as organoids, would be better able to 

replicate the inter- and intratumoral heterogeneity observed in gliomas.  

 

In addition to an E2F1-driven cluster of tumors and gliomaspheres, we observed clusters that 

were not E2F1-driven and that appeared to be more heavily reliant on other pathways. For 

example, the cluster on the left in Figure 4A showed diverse enrichment for gene lists whose 

main targets are more classical dysregulated pathways in glioblastoma, such as PIK3R1 and 

PDGF receptor [9]. This cluster also had a strong enrichment in the majority of its samples for 

an IFNg- and NFkB-activated signature. This inflammatory and/or damage response was also 

observed in the TCGA dataset as one of the main components for one the clusters described in 

our first analysis (Supplementary Figure 3E). Finally, samples predicted to have EGFR 
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activation were equally distributed in both clusters, suggesting EGFR expression levels are not 

particularly informative in terms of functional diversity in glioblastoma samples.  

 

In our single cell analysis, where we examined the pathway-based expression of all the cells 

within a tumor, we found that the most significantly enriched gene sets compared to the bulk 

tumor average were generally very similar. This suggests that the predominant pathways used 

by all or most of the cells within a single tumor might be targeted, but that these pathways would 

vary from tumor to tumor. It is important to note that individual sample analyses did separate 

cells from each tumor into a cell cycle-enriched cluster and non-cell cycle related cluster. In the 

latter, we identified EGR1 as a transcription factor upregulated in most samples 

(Supplementary Table 3). This same molecule was underscored in the modules associated 

with the non-E2F1 cluster when we performed WGCNA (Figure 5B and Supplementary Table 

4). EGR1 has been associated with O-6-Methylguanine-DNA Methyltransferase (MGMT) 

methylation[22]. Our findings link a potential prognostic marker to a subset of GBM samples that 

could have potential therapeutic implications.   

 

Moreover, using cell signature scores rather than setting arbitrary values for cell type identities, 

we were able to determine some of the characteristics of individual cells within tumors. This 

analysis confirmed that an E2F1-driven signature correlated with genes that were related to 

mitosis, but inversely correlated with putative markers of stemness. It is unclear whether this is 

because “true” cancer stem cells are slowly dividing, or whether other factors are involved. We 

were able to further our correlational analysis to include cellular states described in glioblastoma 

[11] and cell types from normal brain development. The rationale to do these analyses was 

based on a recent report using scRNA-seq that uncovered a subset of glioblastoma cells with 

outer radial-glia signatures that were able to activate an embryonic pathway to promote 

invasion[12]. Our studies link cellular states to cell type-specific signatures and potential targets 
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from our gene lists. For example, predicted ICMT activation was negatively associated with 

stemness and positively associated with NPC-like and OPC-like states, as well as adult OPC 

signatures. Similarly, IFNg and NFkB activation were positively correlated with MES-like1 and 

MES-like2, as well as endothelial and mural (vasculature, pericyte) signatures. This last 

interaction is particularly interesting since it suggests an inflammatory environment as a driver 

for the expression of tumor vasculature markers. This is consistent with the capacity of glioma 

cells to undergo transdifferentiation into endothelial cells and pericytes to promote invasion[36-

38]. These analyses provide new potential avenues for the development of innovative 

treatments.  

  

Recent reports have appreciated the complexity of tumor cell expression signatures, and now 

the emphasis has been on providing a more holistic view of the cells within each tumor, such as 

cellular states [11], a single axis of variation between proneural and mesenchymal subtypes 

[43], and a recent report using a similar approach to ours that introduces another layer of 

complexity to glioblastoma heterogeneity by uncovering a mitochondrial subtype with unique 

vulnerabilities [44]. Our study adds to this trend by providing a novel approach to condense 

tumoral heterogeneity to critical gene lists that can be used to identify upstream regulators. In 

conclusion, we propose a combinatorial approach where precision medicine will be composed 

of sample-specific drugs that also provide specific vulnerabilities to be exploited with metabolic 

and/or immune-activating approaches. The integration of different aspects of a cell or sample is 

paramount for the development of new therapeutics. 
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Materials and methods 

Patient and tumor datasets 

Glioblastoma samples analyzed were composed of TCGA dataset [5], gliomasphere microarray 

dataset [45], and single cell RNAseq dataset [17] (GSE57872).  

 

Gene set enrichment analysis, gene list generation, and target prediction 

For TCGA and gliomasphere datasets, each sample was compared to the average of the whole 

dataset using the canonical (C2CP) and oncogenic (C6) gene set collections from the GSEA 

website (http://www.gsea-msigdb.org). Enrichment profiles were then used to generate principal 

component analysis plots, and the contribution of each gene set to a particular direction was 

extracted using R-package ‘FactorMineR’. The top 20 contributing gene sets in a particular 

direction were compared to one another and common elements (present in at least 5) were 

considered for the gene lists. The names are derived from the dataset (TCGA or GS), the 

component (PC1 or PC2), and the direction (positive or negative). Datasets were reanalyzed 

with these gene lists to obtain similar clustering and for downstream analyses. Gene lists were 

further explored via Ingenuity Pathway Analysis using the upstream regulator tool. Targets 

(molecules or drugs) were predicted to be activated or inhibited for each of the gene lists used 

as input. 

 

Gene list correlation analysis 

For both the TCGA and GS bulk transcriptomic datasets, Pearson correlation coefficient was 

computed using R (“corr.test” function in “psych” package) for each pair of gene lists using the 

sample-level enrichment scores previously generated. Hypothesis testing was performed for 
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each pair to assess significance of correlation, resulting in a matrix of both raw and FDR 

adjusted p-values. Correlation plots were generated using the “corrplot” package in R. 

Displayed are the correlation coefficients for each pair and circles whose color and size reflect 

the coefficient value and magnitude, respectively. For pairs with non-significant correlation, the 

coefficients are displayed without circles. Significance was evaluated using α=0.05 for both raw 

(below diagonal) and FDR-adjusted (above diagonal) p-values. Correlation patterns were used 

to group the gene lists using hierarchical clustering, with black boxes marking the resulting 

clusters. 

 

Single cell signature score analysis 

Single cell expression data (n=430) from 5 primary human glioblastoma specimens were 

imported from GSE57872. For each gene set of interest, single cell enrichment scores were 

generated as described[17]. Briefly, the enrichment score of a gene set was computed in each 

cell by taking the average expression of genes within the gene set and subtracting the average 

expression of all detected genes. Single cell enrichment scores were generated for (1) the 6 

TCGA/GS gene lists discussed above, (2) the cell cycle meta-signature described in Fig 2B of 

[17], and (3) the stemness signature described in Table S1 of [46]. These scores were used to 

visualize pair-wise gene set correlations across cells, specifically between each of the 6 

TCGA/GS gene lists and cell cycle (Supp Fig 5A) or stemness (Supp Fig 5B). Single cell 

enrichment scores were then generated for two additional groups of gene sets: developing[32] 

and adult[31] brain cell type markers and glioblastoma cellular state markers[11]. These scores 

were used in combination with the 6 TCGA/GS gene list scores to generate a correlation plot 

(Supp Fig 6) as described above in the “Gene list correlation analysis” section. 
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Patient-derived gliomasphere cultures 

Established patient-derived gliomasphere lines were cultured and maintained as previously 

described[47]. Experiments were performed only with lines that were cultured for less than 20 

passages since their initial establishment and were tested for mycoplasma regularly.  

 

In vitro functional analysis: sphere formation and cell proliferation 

Cell proliferation experiments were conducted by plating cells at a density of 2,000 cells/well in 

a 96-well plate in quadruplicate. Cell number was measured after 3 and 7 days and normalized 

to the initial reading at day 0 using the CellTiter Glo Luminescent Cell Viability Assay 

(Promega). The experiments shown represent fold change at day 7 relative to day 0. For sphere 

formation assays, cells were plated at a low density (100, 50, 25, and 12 cells per well) in 96-

well plates (24 wells per density). Cells were maintained for 10 days before sphere formation 

was evaluated. Spheres larger than 10 cells in diameter were considered for analysis. The 

numbers shown represent the number of cells per well or the stem cell frequency as calculated 

using the Walter and Eliza Hall Institute Bioinformatics Division ELDA analyzer 

(http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth, 2009). All sphere formation and 

proliferation experiments were repeated at least three times. 

 

In vivo tumor xenografts and imaging 

For tumor formation assessment, 8- to 12-week-old NOD-SCID null (NSG) mice were used in 

equal numbers of female and male. 5x10^4 tumor cells containing a firefly-luciferase-GFP 

lentiviral construct and either a scrambled or E2F1 shRNA vector were transplanted per mouse 

(n = 5), in accordance with UCLA-approved Institutional Animal Care and Use Committee 
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protocols. Five mice were housed per cage, with a 12hr light/dark cycle, and were provided food 

and water ad libitum. Tumor growth was monitored every 2 weeks after transplantation by 

measuring luciferase activity using IVIS Lumina II bioluminescence imaging. ROIs were 

selected to include the tumor area, and radiance was used as a measure of tumor burden. Mice 

were monitored and sacrificed upon the development of neurological symptoms such as 

lethargy, ataxia, and seizures, along with weight loss and reduction in grip strength. Animals 

were sacrificed by CO2 asphyxiation and secondary cervical dislocation.  

 

Lentivirus transduction in gliomasphere lines 

Lentiviral vector particles containing E2F1 and scrambled shRNAs were purchased from 

Abmgood. Cells were transduced with the corresponding viruses for 48 hours and selected with 

puromycin (Sigma). Knockdown of E2F1 was confirmed using immunoblotting in treated 

samples. 

 

Immunofluorescence analysis 

Cells were plated on 24-well plates pretreated with laminin overnight. After two days of culture, 

cells were fixed in 4% paraformaldehyde for 15 min at room temperature, followed by blocking 

and overnight incubation at 4°C with γH2AX primary antibody (Cell Signaling Technology). Cells 

were then incubated with species-specific goat secondary antibody coupled to AlexaFluor dye 

(568, Invitrogen) and Hoechst dye for nuclear staining for two hours at room temperature. Plates 

were imaged using EVOS microscope, and quantification of positively stained cells was 

performed manually using ImageJ.  
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Immunoblotting analysis 

Cells of interest were lysed using RIPA lysis buffer (Thermo Scientific), and protein 

concentrations were calculated using a BCA protein assay (BioRad). After denaturation with 

Laemmli buffer (BioRad), 10 mg of total protein was loaded on 4-12% polyacrylamide SDS-

PAGE gels (NuPage, Themo Scientific), transferred to polyvinyl difluoride (PVDF) membranes 

(Millipore), and probed using the following antibodies: E2F1 (Santa Cruz Biotechnology, 1:500), 

CIP2A (Santa Cruz Biotechnology, 1:1000), and b-Actin (Cell Signaling Technology, 1:2000) for 

loading control. Species-specific horseradish peroxidase (HRP)-conjugated secondary 

antibodies were used for detection (Cell Signaling Technology, 1:5000). Membranes were 

developed using ECL-2 reagent (Pierce Biotechnology). All western blots were performed at 

least three times. 

 

Irradiation of gliomaspheres 

Cells were irradiated at room temperature using X-ray irradiator (Gulmay Medical Inc., Atlanta, 

GA) at a dose rate of 5.519 Gy/min for the time required to apply an 8Gy dose. The X-ray beam 

was operated at 300 kV and hardened using a 4mm Be, a 3mm Al, and a 1.5mm Cu filter, and 

calibrated using NIST-traceable dosimetry. 

 

Statistical analysis 

Reported data are mean values ± standard error of the mean for experiments conducted at least 

three times. Unless stated otherwise, one-way ANOVA was used to calculate statistical 

significance, with p-values detailed in the text and figure legends. P-values less than 0.05 were 

considered significant. Correlation analyses were performed using Pearson coefficient. Log-rank 
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analysis was used to determine the statistical significance of Kaplan-Meier survival curves. Data 

analysis was done using R v 3.6.3[48].  
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Figure Legends 

Figure 1. Bioinformatics pipeline for pathway-based analysis. Expression data is analyzed 

through gene sets to generate enrichment score profiles that are then used to cluster samples. 

Top contributors to particular directions are obtained and run through Ingenuity Pathway 

Analysis to determine targets, which can be validated in corresponding samples based on their 

clustering. 

 

Figure 2. Pathway-based analysis generates three distinct clusters based on enrichment 

profiles. Samples from the Cancer Genome Atlas were analyzed using either canonical 

pathways (A) or oncogenic pathways (B) from the Gene Set Enrichment Analysis to generate 

heatmaps based on the enrichment profile of each sample (column) with respect to each gene 

set (row) in both collections. (C and D) Profiles from (A) and (B), respectively, were used to 

generate principal component analysis plots labeled by color and shape for each cluster. Circle 

lines represent the normal distribution of the samples in each cluster. 

 

Figure 3. Pathway-based clusters have clinical significance and do not overlap with 

molecular subtypes. (A) TCGA samples were clustered based on the original molecular 

subtypes described, and Kaplan-Meier curves were obtained. (B and C) Samples clustered 

based on enrichment profiles for canonical and oncogenic gene sets, respectively, were 

analyzed for survival using Kaplan-Meier curves. Tables at the bottom describe the distribution 

of the molecular subtypes for each cluster. Dotted lines represent median survival for each 

curve (also described in top tables). Time shown is in months. P-values after post-hoc analyses 

using Bonferroni-Hochberg correction. 

 

Figure 4. Gene lists predict E2F1 as a main target in one of the clusters found in the 

gliomasphere dataset. (A) Enrichment profiles using gene lists were generated for 
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gliomasphere samples. (B) Each gene list was evaluated using IPA and top predicted activated 

and inhibited upstream regulators are shown. (C) PCA plot from enrichment scores generated in 

(A) showing how each gene list contributes to a particular direction. (D and E) Samples from 

both clusters were evaluated for their enrichment of cell cycle-related (D) or downstream E2F1 

target (E) gene sets from the canonical pathway collection.  

 

Figure 5. Differential expression analysis and weighted gene co-expression network 

analysis underscores cell cycle enrichment and reveals distinct modules in both 

clusters. (A) Gene expression from the gliomasphere dataset was assessed through differential 

expression analysis. Cluster 1 represents samples in the E2F1-enriched cluster. Two examples 

from Gene Ontology are shown, depicting high enrichment for cell cycle terms. (B) WGCNA 

generated 26 modules when samples were analyzed based on their enrichment profiles for the 

gene lists. (C) Modules are ranked based on their abundance in both clusters. Modules at the 

top are highly enriched in the E2F1-activated cluster (cluster 1).  

 

Figure 6. E2F1 silencing compromises self-renewal and proliferation in vitro and tumor 

formation in vivo. (A) Samples from both clusters were treated with control (scrambled) or 

E2F1 siRNA and plated under limiting dilution in a 96-well plate. Graphs depict the number of 

wells that did not form spheres after 10 days vs. the number of cells plated (a vertical line 

implies all wells formed spheres). (B) Cells treated with scrambled or E2F1 siRNA were plated 

at a density of 2,000 cells per well in a 96-well plate in quadruplicate, and their growth was 

evaluated using luminescence. Relative growth is the fold change compared to basal 

measurement. (C) Cells from the E2F1-activated cluster were treated with two drugs identified 

using IPA, and their sphere formation capacity was evaluated after 10 days. (D) Cells treated 

with scrambled or E2F1 shRNA were intracranially injected in NSG mice. Luminescence was 

assessed four weeks after transplantation. Quantification for each group is shown on the right. 
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Experiments in (A), (B), and (C) were performed at least three times. Data are represented as 

mean +/- SEM. **p<0.01 and ***p<0.001 as assessed by one-way ANOVA. 

 

Figure 7. E2F1 silencing compromises DNA damage response induced after irradiation. 

(A) Gene expression levels of E2F1 and CIP2A in the gliomasphere dataset. (B) TCGA (top) 

and gliomasphere (bottom) samples were plotted based on their expression levels of E2F1 and 

CIP2A (two different probes in the gliomasphere dataset). Trend lines show significant positive 

correlation > 0.5. (C) Cells were treated with either C (control) or E (E2F1) shRNA, and protein 

was assessed for E2F1 and CIP2A levels. Actin serves as the loading control. (D) Treated cells 

were subjected to irradiation (8 Gy) and fixed after 12 hours for γH2AX staining (red). Nuclei 

were counterstained using DAPI. Quantification for each group is shown on the right. 

Experiments in (C) and (D) were performed at least two times. Data are represented as mean 

+/- SEM. **p<0.01 and ***p<0.001 as assessed by one-way ANOVA. 
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Figure 1
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Figure 2
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Figure 3
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