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Abstract

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells
(PSCs) are incompletely characterized. We describe a human single nucleus (sn) RNAseq and
ATACseq resource from pediatric, adult, and aged pituitaries (snpituitaryatlas.princeton.edu) and

characterize cell type-specific gene expression and chromatin accessibility programs for all
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major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and
sex differences. Pseudotime trgectory analysis indicates that early life PSCs are distinct from the
other age groups. Linear modeling of same-cell multiome data identifies regulatory domain
accessibility sites and transcription factors (TFs) that are significantly associated with gene
expression in PSCs compared to other cell types and within PSCs. Modeling the heterogeneous
expression of two markers for committing cell lineages among PSCs shows significant
correlation with regulatory domain accessibility for GATA3, but with TF expression for POMC.
These findings characterize human stem cell lineages and reveal diverse mechanisms regulating

key PSC genes.

I ntroduction

Tissues are composed of several cell types that can assume different gene expression
states in response to environmental cues’. Mgjor objectives of current biological research include
resolving cellular heterogeneity within tissues and elucidating the regulatory mechanisms
determining cell types and states. With the recent development of single-cell (sc) omics

technologies, researchers have refined the characterization of cell typesin many tissues® .

The pituitary gland secretes hormones that control crucial physiological processes,
including reproduction, metabolism, and the stress response. The adenohypophysis represents the
main portion of the pituitary gland and contains five hormone-producing cell lineages. Despite
the physiological relevance of the pituitary in health and disease, human sc RNAseq studies to

date have omitted the post-natal pituitary” °. Furthermore, mapping the pituitary epigenome
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landscape has not been included in the ENCODE project® 7, and no chromatin accessibility

profiling of the human pituitary at sc resolution has been reported.

Of particular interest is the insight into pituitary stem cells (PSCs) to be obtained from sc
analyses. Pituitary hormone deficiencies, which include congenital hypopituitarism (combined
pituitary hormone deficiencies), acquired hypopituitarism (secondary to trauma or surgery), as
well as pituitary tumors such as adenomas, result in a severe disruption of endocrine systems and
cause significant morbidity®. Thus, there is a need to develop stem cell therapies that could
restore lost or damaged endocrine cell populations in the pituitary. Previous mouse studies
demonstrated the existence of PSCs and their ability to self-renew and differentiate into al five
endocrine cell types® '° thus opening potential therapeutic avenues for human pituitary
deficiencies and pituitary tumors™ 2. Little is known about the epigenetic landscape and
dynamics of human PSCs during post-natal life, which is critical information for realizing their
therapeutic potential. Sc studies of human pituitary are important for resolving cell identities and

revealing the regulatory mechanisms of this key cell type.

One impediment to characterizing human PSC heterogeneity and eucidating gene
regulatory mechanisms through sc studies is the technical difficulty in generating high-quality
datasets from the frozen post-mortem pituitary samples provided by tissue banks. We recently
developed an integrated single nucleus (sn) multi-omics analysis using frozen adult murine
pituitary®®. Here, we successfully employed a similar procedure to characterize all major cell
types in the human pituitary with a particular focus on PSCs. Archived frozen post-mortem

pituitaries from pediatric, adult, and elderly subjects (one male and one female per age group)
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92  were jointly analyzed by snRNAseq and snATACseq (sn multi-omics). Importantly, we also
93 generated a same-cell female pediatric pituitary sn multiome dataset. These analyses enabled us
94  to characterize the transcriptome and chromatin accessibility landscapes of pituitary cell types.
95  We further refined the identification of human PSC subtypes and their changes during aging and
96 provide insight into the diverse gene regulatory mechanisms underlying stem cell identity and
97  commitment.

98

99 Reaults
100

101  Sn multi-omics profiling of human pituitaries

102 To construct cell-type genome-wide maps of gene expression and open chromatin in the
103  human pituitary, we conducted same-sample multi-omics assays of sn transcriptome (SNRNAseq)
104 and sn chromatin accessibility (SNnATACseq) in frozen post-mortem pituitaries from pediatric,
105  adult, and aged individuals of both sexes that had been stored in tissue banks at -80 C for an
106  average of ~10 years since donation (range 4 to 20; Supplementary Table 1). Because nuclei
107 isolated from the same pituitary fragment were processed for both snRNAseq and snATACseq,
108 the paired datasets, although not from the same nuclei, were sampled from the same population
109 of nucle in each pituitary studied. Additionally, to test for tissue heterogeneity and accuracy of
110 cel type mapping across assays, and to improve inference of regulatory mechanisms, the
111  remaining sample comprising nearly the entire pituitary from one female subject was pulverized
112  and theisolated nuclel were then used to carry out: a8) same-sample analysis of sn transcriptome

113 and sn chromatin accessibility, b) same-cell sn multiome analysis providing simultaneous
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114  measurement of RNA expression and chromatin accessibility within each individual nucleus

115 (Fig. 1a).

116 All snRNAseq and snATACseq libraries generated from the same samples were pooled
117  for sequencing to reduce batch effects. Data meeting the quality control (QC) threshold were
118 obtained from atotal of 76,016 nuclei for snRNAseq and 44,141 nuclei for sSnATACseq in paired
119  assays, and from 15,024 nucle in the same-cell sn multiome assay (Supplementary Tables 2
120 and 3). For data analysis of a given sample processed through the same-sample sn paired assays,
121  we generated UMAPs for both snATACseq and snRNAseq datasets, each identifying cell
122 clusters by type (Fig. 1b, Supplementary Fig. 1). Integration of both datasets resulted in an
123 overlay UMAP showing good correspondence of the maor pituitary cell types across assay
124  modalities (Fig. 1b, Supplementary Fig. 2). The same-cell sn multiome assay, in which each
125 cdl yielded both RNAseq and ATACseq datasets (Fig. 1c), directly generated an integrated

126 UMAP plot (Fig. 1d).

127

128 Transcriptome analysis of human pituitary cell types

129 The same-sample paired assay snRNAseq datasets had an average of 86% of reads
130 mapped to the transcriptome and allowed for the detection of ~2,800 genes per nucleus, with
131  comparable high-quality QC metrics obtained from all samples (Supplementary Table 2a). In
132  the snRNAseq data analysis of individual male and female pituitary samples, cells were clustered
133 using Seurat, visualized using t-SNE representation (Supplementary Fig. 3), as well as
134  projected on UMAPs (Supplementary Fig. 1). Cell clusters were annotated manually using

135 differential RNA expression of established pituitary marker genes. Key cell type markers


https://doi.org/10.1101/2021.06.18.449034
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449034; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

136 included FSHB, LHB, and GNRHR for gonadotropes, GH1 for somatotropes, POMC for
137  corticotropes; DIO2 for thyrotropes™ **: PRL for lactotropes; and SOX9'°, LGR4™, and RBPMS ™
138 for PSCs. A list of established markers used for the assignment of each cell type as well as new
139  markers identified in our datasets are shown in Supplementary Table 4. The RNA counts
140 (Supplementary Fig. 4), mitochondrial gene content (Supplementary Fig. 5), and ribosomal
141  protein gene content (Supplementary Fig. 6) all indicated the high quality of the snRNAseq
142  data obtained from each individual donor. Cell clustering analysis revealed well-defined cell
143 clusters, including the five major hormone-producing cell types as well as several non-endocrine
144  cdl types (Supplementary Fig.3).

145
146  Chromatin accessibility analysis of human pituitary cell types

147 The same-sample paired assay snATACseq datasets generated approximately 11,000
148  DNA fragments per nucleus with an average TSS enrichment score of 5.0 and a fraction of reads
149 in called peak regions (FRIP) score of 47% (Supplementary Table 2b). Cells were clustered
150 and visualized using UMAP representation (Supplementary Figs. 1,2). Cell clusters were
151 manually annotated based on chromatin accessibility (i.e. pesks of accumulated reads) at
152  informative promoters among the same marker genes used for the RNAseq annotation (see
153  Supplementary Table 4, Supplementary Fig. 7). Thyrotrope cells were too poorly represented
154  to generate reliable chromatin tracks, consistent with their being the lowest abundance endocrine
155  cell typein the anterior pituitary™®. Similar to the sn transcriptome analysis results, cell clustering
156  of the snATACseq data from each donor resulted in distinct cell clusters with all the major cell
157 types being identified, although a thyrotrope cluster could not be distinguished in all male

158 samples (Supplementary Figs. 1,2).
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159
160 Cadll typeidentification in sSnRNAseq and snATACseq datasets

161 Integration of the snRNAseg and snATACseq data from each sample was accomplished
162 by labd transfer from the snRNAseq to the snATACseq data using the Seurat pipeline
163  (Supplementary Figs. 1,2). The mgjor pituitary cell type clusters were detected in all individual
164  samples. Some clusters showed a gradient of expression and chromatin accessibility, resulting in
165 their distinction as separate clusters, although they were not physically distinct (lactotropes in
166  Supplementary Fig. 3d, corticotropes in Supplementary Fig. 3b and Supplementary Fig. 1f;
167 somatotropes in Supplementary Fig. 3a,c,d and Supplementary Fig. 1d; pituicytes in

168  Supplementary Fig. 3e,f; gonadotropesin Supplementary Fig. 3a,d).

169 To improve the resolution of human pituitary cell types and to assess inter-individual
170  variation, we merged same-sex sSnRNAseq datasets and color-labeled them by donor (Fig. 2a,c).
171 Similarly, we merged the snATACseq data from same-sex samples, and labeled them by donor
172  (Fig. 2b,d). In addition to the five endocrine pituitary cell types, we identified stem cdlls,
173  pituicytes, as well as pericytes, endothelia cells, and immune cells (macrophages, T-cdlls, B-
174  cells). We observed donor-to-donor heterogeneity in cell type clustering in both datasets. For
175 example, in males, separate gonadotrope, somatotrope, and lactotrope clusters were noted in both
176  RNAseq and ATACseq data, originating almost exclusively from the pediatric sample. In
177  females, one gonadotrope, one somatotrope, and one stem cell cluster were also derived from the
178 pediatric sample. The proportions of the major pituitary cell types identified by snRNAseq vs.
179 snATACseq across al samples were highly correlated, indicating an agreement of major cell

180 type assignment across the two assay modalities (R > 0.96; Fig. 2€). We also saw a similar
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181  distribution of the expression markers in human pituitary cell types in comparison with the same
182  markers in an adult mouse pituitary dataset (**, Supplementary Fig. 7). A sn multiome dataset
183 and a same-sample sn paired dataset were generated from the pulverized pediatric female
184  sample, which further supported the reliability of cell type assignment across the two assays
185 (Supplementary Tables 3, 5). All datasets are publicly available and are accessible for

186  exploration at snpituitaryatlas.princeton.edu.

187

188 Characterization of the PSC population

189 The stem cells from all samples identified by snRNAseq (Fig. 2) were re-clustered using
190 the Seurat pipeline, leading to the detection of 9 clusters, 6 of which were not well separated and
191 formed a large group (Fig. 3a). Three clusters that are highlighted in Fig. 3a corresponded to
192  lineage-committed progenitor stem cells, with each distinguished by POMC, POU1F1, and
193 GATA3 expression, respectively (see Discussion). The remaining large group of 6 clusters
194  expressed SOX2, SOX9, and the Hippo pathway effectors WWTRL (ak.a. TAZ) and YAP1 (*' and
195 reviewed in ' Fig. 3d and Supplementary Fig. 8), which are indicative of uncommitted PSCs,

196  with cluster 5 showing the highest expression for some of these markers.

197 We next examined the relationship of the PSC clusters to the sex and age of the donors
198 (Fig. 3b,c). The uncommitted stem cell clusters were largely separated in samples from each sex,
199  as confirmed by expression of the female-specific XIST*. When the male and female datasets
200 were grouped by age, all PSC subtypes were represented at all ages studied. The distribution of
201  RNA markers for progenitor and committing stem cellsis shown in Fig. 3d. The canonical stem
202 cedl markers SOX2 and SOX9, as well as genes previously implicated in pituitary stem cell

203 regulation (i.e. WWTR1, PITX2, and LGR4; for review, see '), were broadly expressed.
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204  Interestingly, expression of JUN and JUND, which were implicated in the regulation of stemness
205  in other tissues™ %, was heterogeneous, with the highest expression associated with clusters that

206  were predominant in male samples.

207 We also compared the patterns of marker gene expression in human and mouse PSCs. As
208  expected, we detected Sox2, Sox9, Wwtrl, and Yapl across the stem cell population of both
209  species (Fig. 3d; Supplementary Figs. 8,9). Expression of POU1F1 in human samples was
210 detected in a proportion of the cells in the main PSC cluster, indicating committing progenitors
211  amongst this population, as seen for Poulfl in mouse, and smilarly for PAX7/Pax7 (a
212 determinant of intermediate lobe and melanotrope identity; %). Additional markers that were
213  ether previously reported in mouse pituitary stem cells or linked to stemness, were also found in
214  human stem cells, including WIF1? # HESI, NOTCH2'®, SMAD4®, and SMAD5* ?

215  (Supplementary Fig. 8).

216 JUN, which was expressed in uncommitted, predominantly human male PSCs, has not
217  been proposed as a PSC marker but was previously reported to be enriched in SOX2 positive
218  cells through bulk sequencing in mouse™. We therefore examined whether Jun showed co-
219  expression with the stem cell marker Sox2 by in situ hybridization in neonatal, juvenile male, and
220  adult male mouse pituitaries. This analysis confirmed Jun as a stem cell marker by identifying
221 Jun-Sox2 double labeling in samples from all ages (Fig. 3e and Supplementary Fig. 10).
222 Oveall, characterization of the heterogeneity of the PSC population from human and mouse
223 supports the existence of different subtypes of uncommitted stem cells that are distinguishable

224  from early committing lineages (see ).

10
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225 The acquisition of both snRNAseq and snATACseq data from the same samples provides
226  high resolution analysis of the chromatin accessibility pattern of key genes within each pituitary
227  cell type and reveals potential novel regulatory domains (see **). Shown in Fig. 3f are cell type-
228  specific gene expression and chromatin accessibility by cell type for the stemness marker SOX2
229 and the putative gonadotrope/thyrotrope committing cell lineage marker GATA3. SOX2 was
230 expressed in stem cells and pituicytes, which both showed the highest promoter accessibility.
231  GATA3 was expressed in gonadotropes and thyrotropes in addition to the committing stem cell
232 lineage. All three cell types also all showed more chromatin accessibility in the region of the
233  GATA3 promoter. Other SOX2 and GATA3 putative cis-regulatory domains showing increased
234  accessihility in cell types showing expression are also evident. In a subsequent section, we
235  ducidate further the regulatory control of these and additional key PSC markers by modeling

236  same-cell sn multiome data.
237
238 Diversity of PSC epigenetic programs

239 We next studied coordinated gene expression and chromatin accessibility programs in
240 PSCs. We utilized the Pathway Level Information ExtractoR framework (PLIER) that
241  deconvolves datasets into co-varying latent variable (LV) gene sets using known pathways,
242  while not enforcing the strict orthogonality required for principal component analysis®. These
243  PLIER analyses identified both RNA and chromatin accessibility LV's that were preferentially
244  expressed in each major pituitary cell type (Supplementary Figs. 11,12). One RNA LV was
245  stem cell-specific and highly expressed in both sexes at all ages (Fig. 4a for the top 30 genes,

246 and Fig. 4b for the top 200 genes). Projection of this PSC LV onto adult mouse pituitary

11
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247 snRNAseq data'® showed conservation of this PSC transcriptome program in mouse (Fig. 4c).
248  To determine whether this program was also associated with altered chromatin structure in PSCs,
249  we projected this LV onto the human snATACseq data using the promoter accessibility signals
250 asthe gene features. This projection showed that the LV transcriptome program was associated
251  with increased chromatin accessibility at the corresponding gene promoters (Fig. 4d). Anaysis
252 of the snATACseq data identified a number of largely distinct accessibility programs that were
253  each most strongly activated in subjects of different ages or sex (Supplementary Fig. 12). The
254  complexity of PSC chromatin programs identified in this analysis may be related to the diversity

255  of the donors (see Discussion).

256 In addition to cell type-specific LVs, we also identified one chromatin accessibility LV
257  showing significantly greater activity with increasing donor age (LVagexac). Shown in Fig. 4eis
258  aheat map of the 30 highest weighted promoters comprising this LV in each sample by cell type.
259  When the level of activity in each cel type was plotted separately across the age range studied
260 by sex, we found that al cell types showed an increase in accessibility of these promoters with
261  age, especially between the pediatric and adult samples (Fig. 5a). Notably, the increases in
262  accessibility in the PSCs were less pronounced in females, while almost no changes were
263  observed in males (pink lines in Fig. 5a.) These results suggest that this accessibility program
264  represents age-associated coordinated changes that are more prominent in differentiated cells

265 thanin PSCs.

266 To further explore the relationship of PSC transcriptomes in samples from different ages,
267  we constructed a pseudotime trgectory from same-sex snRNAseq datasets using the Monocle
268  agorithm® (Fig. 5b,c). In females as well as in males, the region of the graph most densely

269  occupied by the pediatric PSCs was chosen as the root of the trajectory. In both sexes, pediatric

12
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270  PSCs formed the largest group, which separated from the adult and aged PSCs. This separation
271 shows the large differences between PSC transcriptomes from pediatric and adult samples and
272 aso suggests that we have not captured all transitional stages of stem cells in the samples
273  analyzed. To specify sets of genes that are dynamically regulated as cells progress along the
274  trgjectory, we identified several correlated gene modules per age group in females and in males
275  (Fig. 5d). Thetop genesin the most significant modules and the trajectories of selected genes are
276  shown in Supplementary Table 6 and Supplementary Fig. 13, respectively. Notably, amost
277  none of the module-defining transcripts were previously reported as PSC markers, and their roles
278 in PSC physiology over the lifespan are not known. Overall, these analyses show the relative
279  sability, an aging-related chromatin program in PSCs, and dynamic changes in the PSC

280 transcriptome with aging.
281
282  Transcription factor and epigenetic contr ol mechanisms of PSC genes

283 Using snRNAseq and snATACseq datasets obtained from the same mouse pituitaries, we
284  recently reported that chromatin accessibility is a key determinant for cell type transcriptional
285  programs™. In comparison to same-sample datasets, same-cell sn multiome data confer vastly
286  greater datistical power for inferring the regulatory mechanisms underlying expression of
287  specific genes™ *. The matched transcriptome and chromatin accessibility data in same-cell sn
288 multiome assays allow the co-variation of chromatin accessibility and gene expression to be
289  modeed in thousands of individual cells. Additionally, not all cells within a cell type express the

290 same transcripts. Same-cell sn multiome data have the potential, for the first time, to provide

13


https://doi.org/10.1101/2021.06.18.449034
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449034; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

291 indight into transcription factors (TFs) and epigenetic mechanisms that shape heterogenous gene

292  expression within the same pituitary cell type.

293 To explore therole of alterationsin TF expression and chromatin state in modulating key
294  PSC genes, we applied a linear modeling computational framework to the 15,024 nuclei in the
295 same-cell sn multiome dataset obtained from a pediatric female pituitary. For each target gene,
296 the linear model selects potentia cis-regulatory regions comprisng ATAC promoter peaks as
297 wadl as co-accessible distal peaks. Then, testing the co-expression of putative trans-acting
298 regulatory factors that have predicted TF binding Sites in the co-accessible regions, linear
299  regression identifies the TFs and chromatin regions most significantly predictive of expression of
300 the target gene. The linear model, when used to analyze al pituitary cells (“pan pituitary cell”
301 analysis), can infer the mechanisms and factors implicated in cell type-specific expression. When
302 only cells comprising one pituitary cell type are analyzed, the linear model can generate
303  hypotheses for the mechanisms responsible for differential expression among the different cells

304 comprising thislineage.

305 We first analyzed the committed progenitor markers POMC, POU1F1, TBX19, and
306 NR5AL. The output of the linear model pipeline is the p-value that each selected cis-regulatory
307 region and each individual TF with sitesin that region contribute to the expression of the target
308 gene (Supplementary Figs. 14-17). The TFs contributing to cell type-specific expression of
309 these marker genes using pan pituitary cell analysis included many factors that were previously
310 implicated in the differentiation of committing stem cells. For example, the POMC analysis
311 identified TBX19, which is an inducer of the POMC-expressing corticotrope/melanctrope
312 lineage and of POMC expression®. TCF7L2, which was highly significant in the analyses of

313 POU1F1 and TBX19, is an effector of the WNT signaling pathway, which regulates pituitary

14


https://doi.org/10.1101/2021.06.18.449034
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.18.449034; this version posted June 18, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

314 growth and development®. Similarly, LEF1, another mediator of WNT signaling (see *), was
315 also identified in the TBX19 analysis. ESR1 (estrogen receptor alpha) was the most significant
316 TF implicated in NR5A1 expression. Consonant with this finding, a recent study in murine
317  gonadotrope cdl lines demonstrated that estrogen-dependent binding of this nuclear receptor to a
318 newly identified enhancer region triggers Nr5al expression during gonadotrope lineage
319  specification®. The high significance obtained in the linear model analysis for transcriptional
320 regulators that were reported in previous research suggests that new candidates we identified
321 warrant consideration for future study. For example, the TF showing the second highest
322  dgignificance in the pan pituitary cell analysis of POMC is MNX1, an important homeobox gene
323 previously implicated in motor neuron, pancreas, and lymphoid cell development®” ¥ .
324  Therefore, MNXL1 is an intriguing new candidate transcriptional regulator in the commitment
325 towards the corticotrope/melanotrope lineages. In addition to the identification of novel putative
326  TF regulators, when applied to all pituitary cells, the model also specifies the proximal and distal
327 regulatory sites significantly associated with expression of the target gene in the cel types
328  expressing that gene. These analyses identify previously unexplored regulatory domains in these
329 key PSC genes that show accessibility associated with gene expression and are therefore cis-

330 regulatory domain candidates (Fig. 6 and Supplementary Figs. 14-18).

331 We next studied the stemness marker SOX2 and the committing cell lineage marker
332 GATA3. When all pituitary cells were examined, the expression of SOX2 within the overall stem
333 cedl subtype was associated with highly significant co-accessible proximal, upstream, and
334 downstream regulatory domains (Fig. 6a, Left) as well as expression of TFs mapping to these
335 domains (Fig. 6a, Right). These results indicate that PSC-specific expression of SOX2 depends

336 on apattern of chromatin accessibility of regulatory domains present within these cells as well as
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337 expression of the requisite regulatory factors interacting with these domains. A contrasting result
338 was obtained when applying the linear model to only PSCs to infer the regulatory circuits
339 involved in heterogeneous expression of SOX2 within PSCs. In this analysis, cis-regulatory
340 domains correlated poorly with SOX2 expression (Supplementary Fig. 18, Left), and arestricted
341  set of regulatory factors (Supplementary Fig. 18, Right) was implicated in the heterogeneous
342  pattern of SOX2 expression in PSCs. These results suggest that the chromatin structure is
343  aufficient for SOX2 expression in all PSCs and the expression within specific PSCs depends on
344 the expression of key regulatory TFs. When performing a pan pituitary cell analysis for GATA3,
345  we observed a pattern consonant with that of SOX2, with both chromatin structure and regulatory
346 factor expression being responsible for expression in PSCs (Fig. 6b, Left, Fig. 6b, Right).
347 However, contrary to SOX2, heterogenous GATA3 expression within PSCs was associated with
348 cisregulatory chromatin accessibility domains, but not with expression of specific regulatory
349 factors (Fig. 6¢). These results suggest that the regulatory proteins needed for GATA3 expression
350 in PSCswere expressed in all of the cells, and the heterogeneous expression pattern within PSCs
351 was determined by differences in chromatin accessibility of regulatory domains between
352 GATAS3-expressing and non-expressing PSCs. When POMC was analyzed only in PSCs, the
353  most significant TFs identified were E2F4™ and TBX19, while the co-accessible regulatory
354 regions were of low significance (Fig. 6d). These results suggest that differential POMC
355  expression in committing PSCs vs. uncommitted PSCs is due to expression of these key TFs

356 more so than to alterationsin chromatin accessibility at key regulatory regions.

357

358 Discussion
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359 We generated high quality snRNAseq and snATACseq datasets from individual human
360 pituitaries, demonstrating the feasibility of sn profiling in frozen post-mortem samples that had
361 been stored at -80 C for as long as two decades. Analysis of these data provides insight into the
362 heterogeneity of PSCs and the regulatory mechanisms and circuits underlying the expression of
363 key PSC genes. We digtinguish and characterize uncommitting and committing stem cell
364 lineages, differences related to the age and the sex of the donors, and propose diverse

365  mechanisms responsible for expression of key PSC markers.

366 Reclustering of the stem cells identified by snRNAseq data analysis distinguishes three
367 clusters consistent with committing stem cells (see Fig. 3a). The POMC-expressing cluster is
368 likely a precursor of the corticotrope/melanotrope lineages™. Another cluster expressing
369 POU1F1 represents PSCs with the potential to commit to the somatotrope, lactotrope, and
370  thyrotrope lineages®. The GATA3-expressing cluster presumably comprises cells that are
371  committing to the gonadotrope lineage, although low expression of NR5AL precludes definitive
372 cell type lineage assignment as GATA3 is also reported in thyrotropes (Supplementary Fig. 8)*%.
373  All three committing lineages were identified in both sexes. The uncommitted stem cells, which
374  formed six clusters that were not well separated, were for the most part non-overlapping in male

375  vs. female samples.

376 Our analysis identifies PSC transcriptome and epigenetic programs as well as age-related
377  differences in PSCs. We identify one RNAseq PSC LV program that is well expressed in all
378 samples assayed, conserved in mouse and associated with PSC-specific chromatin changes at the
379 promoters for the genes comprising this LV. We also identify an ATACseq LV that exhibits
380 increased accessibility with age in all pituitary cell types but shows smaller changes with age in

381 PSCs. When the snRNAseq data were analyzed by trajectory, PSCs from the pediatric samples
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382  were separated from the adult and aged samples in both sexes. We find that human and mouse
383 PSCs shared similar patterns of gene expression and were characterized by the presence of
384  several subtypes of uncommitted and committed cells, suggesting a high degree of conservation
385 of thiscell typein evolutionary time. However, the identification of species-specific genes might
386  signify inter-species or age-related differences, with potential implications for using the mouse

387 mode for therapy development.

388 The PSC LV programs, and the complete separation of PSCs across different ages in the
389 trgectory analysis, indicate that fully characterizing the changes in PSC transcriptional and
390 epigenetic programs with aging will require analysis of additional samples over the age span.
391 Collectively, our data suggest that sex and age influence several biological processes in stem
392 cdls. Additional study iswarranted to further elucidate the sex and age differences that are likely

393  to have asignificant impact on the devel opment of new stem cell-based therapies.

394 The datasets generated encompass all major cell types in the human pituitary. Reliability
395 of the identification of all mgor cel types in the same-sample snRNAseq and snATACseq
396  datasets from both sexes and from arange of subject ages is supported by the concordance of cell
397  type proportions obtained by both assays and the confirmation of cell type identification in the
398 same-cell sn multiome data. We report gene expression and chromatin accessibility LVs that are
399 characteristic of each mgor pituitary cell type. Extensive data from the female pediatric pituitary
400 are provided by multiple same-sample datasets and a large same-cell sn multiome dataset. These
401 data represent a resource to address questions about the characterization and regulatory

402  mechanismsof any cell type in the human pituitary.
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403 Inferences from the same-cell sn multiome dataset using the linear model provides insight
404  into the TFs and accessible chromatin sites contributing to the expression of key PSC genes. The
405 mode also providesinsight into the general mechanisms (TF expression, chromatin accessibility
406  differences or both) responsible for differential expression of the target PSC genes among
407 different cells. Because the modd is based on detection of regulatory feature correlation with
408  target gene expression, the results obtained when PSC genes are analyzed among al pituitary
409  cdls represent mechanisms implicated in target gene expression in PSCs in comparison with
410 other cel types. When the modd is applied only to PSCs, the results represent hypotheses for
411  differential expression of these target genes within a subset of PSCs. For the PSC and committed
412  progenitor markers analyzed (POMC, POU1F1, TBX19, NR5A1, SOX2, and GATA3), multiple
413  chromatin accessibility sites and TFs predicted to bind to accessible sites are identified with high
414  probability as contributing to stem cell expression of these markers in comparison with other cell
415 types. This supports the formulation that the expression of each of these markers in PSCs
416  depends on epigenetic remodeling of chromatin as well as on expression of key TFs that are

417  necessary for driving gene expression.

418 Analysis of same-cell sn multiome data from the pediatric female pituitary suggests that a
419  diversity of mechanisms contribute to differential expression of marker genes among PSCs. With
420  respect to differential expression of PSC markers within PSCs, NR5A1 and POU1F1 show TFs
421 and chromatin sites associated with heterogeneous expression. POMC, TBX19, and SOX2 are
422  associated with the expression of specific TFs and GATA3 with accessibility of specific
423  regulatory sites. The pan-pituitary analysis shows the importance of both TF expression and
424  chromatin structure in the expression of key PSC genes. However, these analyses of

425  heterogenous expression within PSCs suggest that the differential expression of some markersis
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426  predominantly determined by expression of key TFs in those cells, whereas the differential

427  expression of other markers depends on heterogeneity in chromatin structure.

428 A strength of this study is the multi-omic profiling of the entire pituitary at postnatal
429  stages, that we use to develop a map of the variation of PSCs between the sexes and with
430 development and aging. Additionally, to our knowledge, this is the first study to profile human
431  PSCs through ageing and to propose mechanisms for differential marker gene expression within
432  the same cell type. We demonstrate the power of same-sample and same-cell multiomics
433  analysesto further elucidate the mechanisms underlying PSC cell type and cell state in both

434  sexes and throughout the age span.

435

436  Methods

437

438  Sample procurement

439 Flash-frozen post-mortem human pituitaries were obtained from the National Institutes of
440 Health (NIH) NeuroBioBank, and kept at -80C until processing. See Supplementary Table 1
441  for information on subject sex, age, ethnicity, post-mortem interval (PM1), cause of death, and
442  year of collection. The tissues received varied from whole to pieces of pituitaries. All specimens
443  were obtained from deceased individuals. Donor anonymity was preserved, and guidelines were
444  followed regarding consent, protection of human subjects, and donor confidentiality.

445

446  Nuclei isolation from pituitaries

447 Two methods were tested for nucle isolation. Frozen post-mortem human pituitaries

448  were either: 1) broken into small piecesin afrozen mortar on dry-ice, and one piece was thawed
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449  on ice and prepared for nuclei extraction based on a modified protocol from*, or 2) pulverized
450 and part of the powder used for nuclei isolation. The remainder of the pituitary was stored back
451 at -80C. Briefly, and al on ice, RNAse inhibitor (NEB cat# MO314L) was added to the
452  homogenization buffer (0.32 M sucrose, 1 mM EDTA, 10 mM Tris-HCI, pH 7.4, 5mM CaCl,,
453  3mM Mg(Ac),, 0.1% IGEPAL CA-630), 50% OptiPrep (Stock is 60% Media from Sigma; cat#
454 D1556), 35% OptiPrep and 30% OptiPrep right before isolation. Each pituitary was
455  homogenized in a Dounce glass homogenizer (Iml, VWR cat# 71000-514), and the homogenate
456  filtered through a 40 mm cell strainer. An equal volume of 50% OptiPrep was added, and the
457  gradient centrifuged (SWA41 rotor at 17,792xg; 4C; 25min). Nucle were collected from the
458 interphase, washed, resuspended either in 1X nuclel dilution buffer for snATACseq (10X
459  Genomics) or in 1X PBS/0.04% BSA for snRNAseq, and counted (Cellometer).

460

461 SnRNAseq assay

462 SnRNAseq was performed following the Single Cell 3' Reagents Kits V3 User
463  Guideines (10x Genomics, Pleasanton, CA). Nuclel were filtered and counted on a Countess
464  instrument. A minimum of 1,000 nuclei were targeted (Chromium Single Cell 3' Chip kit A v2
465 PN-12036 or v3 chip kit B PN-2000060). Reverse-transcription (RT) was performed in the
466  emulsion, cDNA amplified, and libraries constructed with v3 chemistry. Libraries were indexed
467  for multiplexing (Chromium i7 Multiplex kit PN-12062).

468

469 SnRNAseq data analysis

470 SnRNAseq data were processed using the Cell Ranger pipeline v5.0.0, and aligned to the

471 Cdl Ranger GRCh38 reference genome, introns included. Clustering and differential gene
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472  expression analysis were performed using Seurat v.3.9.9.9024 and standard procedures™ “. Top
473  markersfor each cluster were compared to known markers of pituitary cell types to annotate the
474  clusters; alist of the most common genes associated to each cell typeis given in Supplementary
475 Table4.

476 We used the t-SNE projection to identify the most common cross-type doublets, as well
477  asapoptotic and low-count cells as t-SNE preserves the local structure of the data better than the
478 UMAP projection. Doublet clusters appear as small, high UMI count satellites to the main
479  clusters. We verified the nature of every such group of cell barcodes by plotting their gene
480 expression of the top cell-type markers. By looking at which two gene expression programs are
481  expressed in the barcodes composing each one of these satellite clusters, we were able to identify
482  thetwo cell typesthat constitute the barcodes of these sub-clusters.

483 Apoptotic cells form their own clusters separate from the parent cluster. Several cell
484  types often merge into a single apoptotic cluster, so that not every cdl type will have its
485  corresponding apoptotic cluster. These cells are characterized by low UMI counts and almost
486  exclusively spliced mRNA reads, suggesting condensation of the nuclei and arrest of
487  transcription of new mRNA.

488 Some cell-type clusters have offshoots composed of barcodes with low UMI counts.

489  Contrary to apoptotic clusters, these have a similar ratio of intronic to exonic reads as their
490 parent cluster and do not form their own cluster, but usually connect to, or appear very close to,
491  their parent cluster. These are probably experimental artifacts of Ssow mRNA capture. Their gene
492  expression program is the same as that of their higher UMI counterparts, but they are more
493 adversely affected by dropouts. As such, we decided to remove these low-UMI offshoots from

494  downstream analysis, together with doublet barcodes and apoptotic cells.
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495

496 SnATACseq assay

497 SNATACseq was performed following the Chromium Single Cell ATAC Reagent Kits
498 V1 User Guide (10x Genomics, Pleasanton, CA). Nuclei were counted (Countess counter),
499  transposition was performed in 10 ul at 37C for 60min on at least 1,000 targeted nuclei, before
500 loading of the Chromium Chip E (PN-2000121). Barcoding was performed in the emulsion (12
501 cycles) following the Chromium protocol. Libraries were indexed for multiplexing (Chromium
502 17 Sample Index N, Set A kit PN-3000262).

503

504 SnATACseq analysis

505 SNATACseq data were processed using Cell Ranger-ATAC pipdine version 1.2.0, and
506 aligned to the Cell Ranger-ATAC GRCh38 reference genome. Clustering was performed using
507 Seurat/Signac versions 3.1.5/0.2.4 and standard procedures’’. We produced chromatin
508 accesshility tracks around known pituitary cell type marker genes and looked for promoter
509 accessibility of these genes to annotate the clusters.

510 Doublets, low-count, and apoptotic cells were identified in the same manner as for
511 snRNAseq data, except that for ATAC data, the UMAP projection works better and was used
512 instead. We used the number of fragments in peaks as an indicator as to whether a cell was
513  healthy or a doublet or low-count / apoptotic. Doublets were checked to possess fragments in
514  peaks associated to the main markers of both cell types. In general, we have many fewer cell
515 barcodes in the ATAC data, so doublets are also less common. Consequentially, few doublet
516  clusterswereidentified.

517
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518  Sn multiome assay

519 Sn multiome was performed following the Chromium Single Cell Multiome ATAC and
520 Gene Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA) on part of the
521 pulverized pediatric female sample. Nuclel were counted (Countess counter), transposition was
522  performed in 10 ul at 37C for 60min targeting 10,000 nuclei, before loading of the Chromium
523  Chip J (PN-2000264) for GEM generation and barcoding. Following post-GEM cleanup,
524  libraries were pre-amplified by PCR, after which the sample was split into three parts. one part
525 for generating the snRNAseq library, one part for the snATACseq library, and the rest was kept
526 at -20C. SnATAC and snRNA libraries were indexed for multiplexing (Chromium i7 Sample
527 Index N, Set A kit PN-3000262, and Chromium i7 Sample Index TT, Set A kit PN-3000431
528  respectively).

529

530 Sn multiome analysis

531 We analyzed the pediatric female sample by sn multiome. We pooled together libraries
532 from both GEM wells and ran the Cell Ranger ARC 1.0.0 pipeline on the pooled
533 samplefollowing 10x Genomics guidelines. Running the pipeline on each GEM well separately
534  revedsthat the samples have 97 barcodes in common that are called as cells.

535 We used Seurat version 3.9.9.9024 with Signac version 1.1.0 to perform our clustering
536 analysis using a weighted shared nearest neighbor graph approach. This method identifies, for
537 each cell, its nearest neighbors based on a weighted combination of the two modalities (Gene
538 Expression & Chromatin Accessibility). We similarly use the weighted nearest neighbor graph to
539 obtain a UMAP projection of the data. The Gene Expression modality was used to identify

540 cluster cell types after determination of top markers for each cluster.
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541 Apoptotic, low-count cells and doublets were also identified in a manner analogous to
542 that of sSnRNAseq data. Both apoptotic and low-count cells were identified as having much lower
543  counts of both their number of transcripts as well as their number of fragments overlapping
544  ATAC peaks. Apoptotic cells further have a large proportion of mitochondrial gene transcripts,
545  whereas low-count cell transcripts are dominated by background genes. Doublets, on the other
546 hand, were identified as having higher counts in both RNA and ATAC, and expressing gene
547  programs of two cell types simultaneoudly. Only one of the main clusters was identified as
548 doublets, and no further sub-clustering was attempted.

549

550 Merged datasetsanalysis

551 All male and female samples were merged by sex in Seurat at the UMI count level, and
552 al of the clustering analysis was repeated on the merged samples independently from the
553  beginning. We followed the same analysis steps as for individual samples. Unlike our integrated
554  samples (see later section), the merged samples do not have batch effects removed. Despite that,
555 we do not observe any systematic batch effect between our samples. We do, however, see
556  differences in gene expression from one subject to another among some specific cell types. The
557 merged samples allow usto highlight these differences in the implicated cell types.

558

559  Quality control (QC) and sequencing of libraries

560 Libraries were quantified by Qubit 3 fluorometer (Invitrogen) and quality was assessed
561 by Bioanalyzer (Agilent). Equivalent molar concentrations of libraries were pooled and the reads

562 were adjusted after sequencing the pools in a Miseq (lllumina). The libraries were then
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563  sequenced in a Novaseq 6000 (Illumina) at the New Y ork Genome Center (NY GC) following
564 10X Genomics recommendations.

565

566 Mouse snRNAseq stem cell data analysis

567 SnRNAseq data for each mouse were processed and analyzed as previously described™.
568 Raw reads from each mouse sample were isolated from the clusters assigned in Seurat as ‘ Stem
569 cels using the ‘WhichCells' function. These count tables were integrated using Seurat (v3.1.5)
570  SCTransform workflow®, clustered at 0.5 resolution and principal component dimensions 1:15
571  weretaken forward for analysis.

572

573  Human stem cell re-clustering method

574 Following initial clustering of the complete datasets, the ‘stem cell’ clusters were isolated
575  from each individual subject using the Seurat ‘subset’ function. To increase the number of cells
576 available for downstream analysis, the isolated stem cell datasets were merged based on the
577 approximate age of subjects. This was performed using the merge function within Seurat
578 (v3.1.5). Sample integration by identification of anchors and subsequent clustering (20 PCAs,
579  resolution 0.5) was performed using Seurat according to standard procedures™ *. Re-clustering
580 and analysis leading to identification of ‘committing’ stem cells was done as above following
581 removal of the‘Pars Tuberalis cell clusters.

582

583 RNAscope mRNA in situ hybridization

584 Wildtype CD-1 murine postnatal pituitaries were dissected at P3, P15 (male), and P56

585 (male), and fixed in 10% neutral buffered formalin (Sigma) at room temperature for 16-24 hours.
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586 Samples were washed in PBS and dehydrated through graded ethanol series before paraffin-
587  embedding as previously described™. Samples were sectioned at 5 pm.

588 The RNAscope 2.5 HD Duplex assay (Advanced Cell Diagnostics) was used according to
589 manufacturer’s recommendations, with the following specific probes: Mm-Jun (Cat# 453561)
590 and Mm-Sox2-C2 (Cat# 401041-C2) (Advanced Cell Diagnostics). Sections were counterstained
591  with Mayer’s hematoxylin (Vector H-3404) and mounted with Vectamount Permanent Mounting
592  Medium (Vector H-5000).

593

594  Pseudotime sn trajectory analysis

595 Raw gene counts were extracted from each sample's “Stem Cell” cluster as previousy
596 identified using Seurat (v4.0.1)*. Due to sex differences, male and female samples were handled
597 separately. Samples of the same sex (e.g female pediatric, female adult, female aged), were
598 integrated using the functions ‘ SCTransform’ and ‘ SelectintegrationFeatures’ in Seurat to obtain
599 the top 500 differentially expressed genes (DEGs). Monocle3 (v0.2.3.0)° was used for
600 pseudotimetrgjectory analysis and preliminary analysis revealed a bias in the Monocle trajectory
601 due to specific hormonal genes namely; GH1, PRL, CHGB, POMC, LHB, FSHB and CGA.
602 Therefore, these genes were regressed out of the top 500 DEGs. Monocle objects were generated
603 by combining the 3 samples of each sex using the respective top 500 DEGs. The trgjectory was
604 calculated by merging partitions with the root chosen based on the earliest timepoint available
605 for each sex. To find gene modules changing over pseudotime, the ‘graph_test’ function was
606 carried out using the neighbor_graph = "principal_graph" parameter with a resolution of 0.8 for

607 ‘find_gene_modules function. The top 4 enriched modules for each age in each sex were
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608 highlighted and examined further because they showed the highest variability between age
609  groups.

610

611 PLIER dataanalysis

612 To examine more deeply the trends in gene expression of assigned cell types across
613 samples and data types, we treated each sc dataset as a collection of bulk datasets for given
614 labeled cdl types. Each cell type was then treated as a separate bulk measurement within each
615 sample. For snATACseq data, peak counts for a given gene were generated by selecting the peak
616  closest to the transcription start site (TSS). These peak counts per gene were then collected into
617 single bulk measurements for each cell type in each sample. We focused specifically on six
618 relevant cell types in the pituitary: corticotropes, gonadotropes, lactotropes, somatotropes,
619  stem/progenitor cells, and thyrotropes. For the sSnRNAseq dataset, this process generated 36 bulk
620 measurements over six samples (three females and three males), and for the snATACseq dataset,
621 we generated 35 bulk measurements as thyrotropes were not identified in the male adult
622  snATACseq sample. We applied PLIER®, which finds patterns in count data that are associated
623  with known prior information (such as Reactome and Kegg), focusing on the 2000 genes with
624  the highest standard deviation in count values across the bulk measurements in each set of
625 samples. PLIER was run on each set of samples separately with LVs generated on the bulk
626 measurements in an unsupervised fashion. LVs were then curated to find patterns relevant to
627 individual cell types as well as sample-wide trends such as sex-based differences. Statistical
628  significance of LVs was computed through the Kruskal-Wallis non-parametric test for multiple

629 groups as part of the stat compare means R method. Comparisons between LVs within and
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630  across datatypes were achieved by comparing the overlap of the 200 genes most associated with
631 agivenlLV.

632 B is a PLIER-derived expression value for the genes associated with a given LV across
633 the different samples. It can be treated similar to average expression, weighted by gene
634  association with the LV. Technically, B is a matrix of size #LVs x #Samples. It is one of two
635 matricesin PLIER, along with Z of size # of genes x #LVs. The goal of PLIER isto find values
636 of B and Z that minimize the equation |Y - Z*B|| where Y is our data matrix of size #genes x
637 #samples. So PLIER finds a suitable number of LVs that can be used to connect the genes and
638 samples and accurately estimate our data matrix.

639 For the boxplot satistical analysis (Supplementary Fig.12), ggboxplot generates a
640  boxplot with the center equal to the 50th percentile, the bounds of the box are the 25th and 75th
641 percentile and the bounds of the whiskers are the smallest/largest values 1.5 times the
642  interquartile range below the 25th percentile or above the 75th percentile, respectively.

643

644  Sn dataintegration

645 The snRNAseq and snATACseq data were integrated in a reference-query based manner,
646 mainly using the “FindTransferAnchors’ and “TransferData” functions from the Seurat v3
647  package™ *. The snRNAseq datasets were used as the reference and the other modalities were
648 integrated to them. To integrate SNnATACseq to snRNAseq, the peak-by-cell accessibility matrix
649  was converted to a gene-by-cell activity matrix based on the chromatin accessibility within each
650 gene's gene body and a 2kb upstream region, under the assumption that chromatin accessibility

651 and gene expression were positively correlated. The variable features from the snRNAseq data
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652  were used to find the anchors and the snATACseq data in the LSI low-dimensional embedding
653  wereused to transfer the data from snRNAseq to sSnATACseq.

654

655 Linear modeling analysis

656 The regulatory model of gene expression from the sn multiome dataset was constructed
657  for each target gene with multiple steps: 1) A list of potential regulatory genomic regions were
658 selected. They included: @) any ATAC peaks that overlaped with the TSS +/- 2kb region, b)
659 distal peaks that were no more than 500kb away from the TSS and were co-accessible with any
660 of the peaks in a). Co-accessibility scores were calculated using the Cicero package > with
661 default parameters, and a cutoff of 0.25 for the co-accessibility scores were used to select co-
662  accessible peaks. 2) A list of potential regulatory TFs was selected by scanning for TF binding
663  Sitesin the selected genomic regions using the “matchMotifs’ function (with a p value cutoff of
664 5e-5) from the r package “motifmatchr” and the position weight matrices (PWMs) from the
665 JASPAR CORE database. 3) Linear regression was used to model the target gen€'s expression
666  across cdls as a function of selected TFS expression and ATAC peaks openness, and the
667  coefficients from the regression were used to measure the importance of each TF and genomic
668  region. SCTranform*® normalized RNA counts and TFIDF normalized ATAC peak counts were
669  usedintheregression.

670

671  Statistics

672 In Fig. 5a, to calculate the statistical significance of expression or accessibility changes
673 within a given latent variable, we applied two-way ANOVA for multiple group testing and

674 Tukey test for pairwise comparisons. Each test was applied to female and male samples
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675 separately. In both cases, we applied the R statistical functions aov and TukeyHSD with the
676  additive model Expression ~‘Cell Type' + ‘Age Group’ for the calculations.

677 In Supplementary Figs. 11a and 12a, the hierarchical clustering of the LV B scores was
678  accomplished through the default complete linkage method utilized by the R function pheatmap.
679 For the boxplots analysis in Supplementary Fig. 12c, the analysis was done with n=3
680  independent subjects per sex and statistical analysis using the Wilcoxon ranked-sum test.

681 For Fig. 6 and Supplementary Figs. 15-19, the P-values of peaks and the P-values of
682 the TFs were both obtained by running a linear regression (“Im” function in R) on 9,151 cells
683  (for pan-pituitary results) and 1,623 cells (for stem cell specific results). In addition, for the TFs
684 dSatistical analysis, the TFs are presented only if their Bonferroni-corrected P-values < 0.05.
685 Detailed statistics (such as t values of linear regression) are provided in Supplementary Table
686 8.

687

688 Dataavailability

689  The datasets (SnRNAseq, shnATACseq, sn multiome) generated in the present study are deposited
690 in GEO (accession # GSE178454). The sn human pituitary multi-omics atlas can be browsed via
691 a web-based portal accessible at snpituitaryatlas.princeton.edu. All datasets will also be
692  deposited with the Human Cell Atlas.

693

694 Codeavailability

695 Any computational code used in the paper is available upon request.
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721  a. Schematic of the overall experimental workflow, from procurement of the frozen pituitaries to
722 sn data analysis. b. Schematic summarizing sn data integration. For each sample, the
723  snATACseq dataset (colored dots UMAP) was integrated with the snRNAseq dataset (black
724  contours UMAP) to generate an integrated multi-omics overlay UMAP identifying cell types. On
725 the UMAP, cell types are color-coded and designated with a 2- to 3-letter code, as indicated on
726 the bottom key. The female pediatric pituitary sample is represented as an example. All
727 integrated samples are presented in Supplementary Figs. 1 and 2. c. Schematic of the
728  comparison between sn paired assays (same-sample sn multi-omics) (i) and sn mutiome assay
729  (same-cdl) (ii). d. Same-cdl sn multiome UMAP from the female pediatric sample (see
730 Supplementary Table1).

731

732  Figure2: Merged analysis of same-sex human pituitary

733  a-d. t-SNE representation of sn transcript expression (a, males; ¢, females) and of sn chromatin
734  accessibility (b, males; d, females) in the merged same-sex samples, with labeling by age of the
735  subject in each sex. Individual subjects are color-coded as indicated. Each cluster is identified by
736  aletter code as defined in Fig.1. Donor-related information is provided in Supplementary Table
737 1. e Correlation between the cell type proportions identified by snRNAseq vs. sSnATACseq for
738  al samples (males and females). The linear regression is plotted. Pituitary cell types are color-
739  coded and the key is provided on the right.

740

741  Figure3: Identification of human stem cell sub-clustersby snRNAseq

742  a. UMAP showing the stem cell cluster identification based on the snRNAseq data from the six

743  merged human pituitary samples. Each cell cluster is color-coded and numbered. Lineage-
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744  committed progenitor stem cells arecircled. b. UMAPs identifying all color-coded stem cell sub-
745 clustersin females and males. The feature plot on the right shows XIST expression, highlighting
746  thefemale samples. c. UMAPs identifying all color-coded stem cell sub-clustersin the pediatric,
747  adult, and aged subjects. d. Feature plots depicting the expression distribution of key stem cell
748 marker genes and of cell lineage commitment marker genes among the various clusters. A scale
749 isincluded for each feature plot. All scales are similar except for POMC due to background gene
750 expression. Additional gene feature plots are presented in Supplementary Fig. 8. e.
751  Colocalization of Sox2 (red) and Jun (blue) transcripts in a wild-type P56 CD-1 male adult
752  mouse pituitary. Scale bar is 200pum. AL: anterior lobe; IL: intermediate lobe; PP: posterior
753  pituitary. Left, full image. Right, magnification of the boxed region in the left panel. Arrows
754  highlight specific cells with colocalization of Sox2 and Jun. Refer to Supplementary Fig. 10 for
755  Sox2 and Jun colocalization at P3 and P15. f. Gene expression analysis (violin plots at the right
756  of each figure) and chromatin accessibility tracks analysis for SOX2 (Left) and GATA3 (Right) in
757 @l pituitary cell types from the sn multiome dataset generated from the pediatric female. The
758  gene structure is presented below the tracks.

759

760 Figure 4. Characterization of coordinated gene expresson and chromatin accessibility
761  programsin human pituitary cell types

762 a, b. Heatmap of the levels of gene expression for the top human PSC LV (LVscin) for each cell
763  type and donor, top 30 genes are shown in (a) and top 200 genes in (b). Each pituitary sampleis
764 indicated at the top. In the scale bars, red signifies the highest level of RNA expression or
765  chromatin accessibility. Pd, pediatric; Ad, adult; Ag, aged pituitary. c. Heatmap showing the top

766 200 genes associated with the human LVsca applied to the murine snRNAseq dataset™. d.
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767  Heatmap showing the top 200 genes associated with the human LV sc., applied to the human
768 sSnATACseq datasets. (a, b, ¢, d) Cell type and subject color-coding are provided on the bottom
769  key. Refer to Supplementary Table 1 for donor-related information. Additional LV analyses are
770  presented in Supplementary Figs. 11 and 12.

771

772  Figure 5: Age-associated chromatin accessibility and transcriptome pseudotime trajectory
773  analyss

774  a. Heatmap showing the chromatin accessibility levels of the top 30 genes in the human age-
775  dependent LV (LVageqs). Cell type and subject color-coding are provided on the bottom of Fig.
776 4. Refer to Supplementary Table 1 for donor-related information. Additional LV analyses are
777  presented in Supplementary Figs. 11 and 12. b. Plot showing the overall changes in chromatin
778  accessbility for al pituitary cell types over age for the females (Left) and the males (Right).
779  Pituitary cell types are color-coded. The same cell types are linked with lines over age of the
780  subjects. c. UMAP showing the trajectory within the stem cell cluster with samples color-coded
781 by age for female (Top) and male (Bottom) samples. d. Pseudotime trgectory analysis for the
782 female (Top) and male (Bottom) samples. The trajectories from each starting point head to the
783 older samples. The color scale is shown for the pseudotime trajectories. e. Gene modules
784  identified with pseudotime and showing changes over age. Monocle 3 identified groups of genes
785 that change over as a function of pseudotime per sex. Traectory variable genes were grouped
786  into modules which were then plotted on a heatmap to show the relative expression of each gene
787 module, within a sex, in each age group. The top 4 enriched modules for each age group are
788 labelled, with module 1 being the most highly enriched in each age. Pd1-4 indicates the Pediatric

789 top 4 modules, Adl-4 represents the Adult enriched modules, and Agl-4 marks the Aged
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790 samplestop 4 modules. Blue-red on the color scale represents low-high relative expression levels
791  (z-transformed mean expression) of gene modules. See Supplementary Fig. 13 for selected
792  gene trgectories within specific modules. See Supplementary Table 6 for the top genes per
793  modules.

794

795 Figure 6: Linear model predicting the chromatin accessbility mechanisms and TFs
796  contributing to PSC gene expression

797 a. Linear modeling analysis of all pituitary cells (“pan pituitary cell”) infers the chromatin
798  accessibility and the TFs involved in stem cell-specific SOX2 expression (Left, top track is the
799  contribution of each peak to gene expression measured by -log(P-value), and bottom tracks are
800 the TFs binding sites). The individua contribution of each predicted TF to SOX2 expression is
801 shown as -log(P-values, Right). See Supplementary Fig. 18 for SOX2 analysis in stem cells
802 only. b. Pan pituitary cell analysis infers the chromatin accessibility and the TFs involved in
803  stem cell-specific GATA3 expression (Top, top track is the contribution of each peak to gene
804  expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The
805 individual contribution of each predicted TF to GATA3 expression is shown as -log(P-values)
806 (Right). c. Linear modeling analysis in stem cells only infers the chromatin accessibility and the
807 TFsinvolved in the differential expression of GATA3 expression within the stem cell population.
808 No TFs are predicted to contribute to GATA3 expression in stem cells. d. Linear modeling
809 analysis in stem cells only infers the chromatin accessibility and the TFs involved in the
810 differential expression of POMC expression (Left, top track is the contribution of each peak to

811 gene expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The
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812 individual contribution of each predicted TF to POMC expression is shown as log(P-values)
813  (Right). See Supplementary Fig. 17 for pan pituitary cell analysis of POMC expression.

814
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