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Abstract  40 

 41 

Despite their importance in tissue homeostasis and renewal, human pituitary stem cells 42 

(PSCs) are incompletely characterized. We describe a human single nucleus (sn) RNAseq and 43 

ATACseq resource from pediatric, adult, and aged pituitaries (snpituitaryatlas.princeton.edu) and 44 

characterize cell type-specific gene expression and chromatin accessibility programs for all 45 
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major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and 46 

sex differences. Pseudotime trajectory analysis indicates that early life PSCs are distinct from the 47 

other age groups. Linear modeling of same-cell multiome data identifies regulatory domain 48 

accessibility sites and transcription factors (TFs) that are significantly associated with gene 49 

expression in PSCs compared to other cell types and within PSCs. Modeling the heterogeneous 50 

expression of two markers for committing cell lineages among PSCs shows significant 51 

correlation with regulatory domain accessibility for GATA3, but with TF expression for POMC. 52 

These findings characterize human stem cell lineages and reveal diverse mechanisms regulating 53 

key PSC genes. 54 

 55 

Introduction 56 

 57 

Tissues are composed of several cell types that can assume different gene expression 58 

states in response to environmental cues1. Major objectives of current biological research include 59 

resolving cellular heterogeneity within tissues and elucidating the regulatory mechanisms 60 

determining cell types and states. With the recent development of single-cell (sc) omics 61 

technologies, researchers have refined the characterization of cell types in many tissues2, 3. 62 

 63 

The pituitary gland secretes hormones that control crucial physiological processes, 64 

including reproduction, metabolism, and the stress response. The adenohypophysis represents the 65 

main portion of the pituitary gland and contains five hormone-producing cell lineages. Despite 66 

the physiological relevance of the pituitary in health and disease, human sc RNAseq studies to 67 

date have omitted the post-natal pituitary4, 5. Furthermore, mapping the pituitary epigenome 68 
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landscape has not been included in the ENCODE project6, 7, and no chromatin accessibility 69 

profiling of the human pituitary at sc resolution has been reported. 70 

 71 

Of particular interest is the insight into pituitary stem cells (PSCs) to be obtained from sc 72 

analyses. Pituitary hormone deficiencies, which include congenital hypopituitarism (combined 73 

pituitary hormone deficiencies), acquired hypopituitarism (secondary to trauma or surgery), as 74 

well as pituitary tumors such as adenomas, result in a severe disruption of endocrine systems and 75 

cause significant morbidity8. Thus, there is a need to develop stem cell therapies that could 76 

restore lost or damaged endocrine cell populations in the pituitary. Previous mouse studies 77 

demonstrated the existence of PSCs and their ability to self-renew and differentiate into all five 78 

endocrine cell types9, 10, thus opening potential therapeutic avenues for human pituitary 79 

deficiencies and pituitary tumors11, 12. Little is known about the epigenetic landscape and 80 

dynamics of human PSCs during post-natal life, which is critical information for realizing their 81 

therapeutic potential. Sc studies of human pituitary are important for resolving cell identities and 82 

revealing the regulatory mechanisms of this key cell type.  83 

 84 

One impediment to characterizing human PSC heterogeneity and elucidating gene 85 

regulatory mechanisms through sc studies is the technical difficulty in generating high-quality 86 

datasets from the frozen post-mortem pituitary samples provided by tissue banks. We recently 87 

developed an integrated single nucleus (sn) multi-omics analysis using frozen adult murine 88 

pituitary13. Here, we successfully employed a similar procedure to characterize all major cell 89 

types in the human pituitary with a particular focus on PSCs. Archived frozen post-mortem 90 

pituitaries from pediatric, adult, and elderly subjects (one male and one female per age group) 91 
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were jointly analyzed by snRNAseq and snATACseq (sn multi-omics). Importantly, we also 92 

generated a same-cell female pediatric pituitary sn multiome dataset. These analyses enabled us 93 

to characterize the transcriptome and chromatin accessibility landscapes of pituitary cell types. 94 

We further refined the identification of human PSC subtypes and their changes during aging and 95 

provide insight into the diverse gene regulatory mechanisms underlying stem cell identity and 96 

commitment.   97 

 98 

Results 99 

 100 

Sn multi-omics profiling of human pituitaries  101 

To construct cell-type genome-wide maps of gene expression and open chromatin in the 102 

human pituitary, we conducted same-sample multi-omics assays of sn transcriptome (snRNAseq) 103 

and sn chromatin accessibility (snATACseq) in frozen post-mortem pituitaries from pediatric, 104 

adult, and aged individuals of both sexes that had been stored in tissue banks at -80 C for an 105 

average of ~10 years since donation (range 4 to 20; Supplementary Table 1). Because nuclei 106 

isolated from the same pituitary fragment were processed for both snRNAseq and snATACseq, 107 

the paired datasets, although not from the same nuclei, were sampled from the same population 108 

of nuclei in each pituitary studied. Additionally, to test for tissue heterogeneity and accuracy of 109 

cell type mapping across assays, and to improve inference of regulatory mechanisms, the 110 

remaining sample comprising nearly the entire pituitary from one female subject was pulverized 111 

and the isolated nuclei were then used to carry out: a) same-sample analysis of sn transcriptome 112 

and sn chromatin accessibility, b) same-cell sn multiome analysis providing simultaneous 113 
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measurement of RNA expression and chromatin accessibility within each individual nucleus 114 

(Fig. 1a).  115 

All snRNAseq and snATACseq libraries generated from the same samples were pooled 116 

for sequencing to reduce batch effects. Data meeting the quality control (QC) threshold were 117 

obtained from a total of 76,016 nuclei for snRNAseq and 44,141 nuclei for snATACseq in paired 118 

assays, and from 15,024 nuclei in the same-cell sn multiome assay (Supplementary Tables 2 119 

and 3). For data analysis of a given sample processed through the same-sample sn paired assays, 120 

we generated UMAPs for both snATACseq and snRNAseq datasets, each identifying cell 121 

clusters by type (Fig. 1b, Supplementary Fig. 1). Integration of both datasets resulted in an 122 

overlay UMAP showing good correspondence of the major pituitary cell types across assay 123 

modalities (Fig. 1b, Supplementary Fig. 2). The same-cell sn multiome assay, in which each 124 

cell yielded both RNAseq and ATACseq datasets (Fig. 1c), directly generated an integrated 125 

UMAP plot (Fig. 1d). 126 

 127 

Transcriptome analysis of human pituitary cell types 128 

The same-sample paired assay snRNAseq datasets had an average of 86% of reads 129 

mapped to the transcriptome and allowed for the detection of ~2,800 genes per nucleus, with 130 

comparable high-quality QC metrics obtained from all samples (Supplementary Table 2a). In 131 

the snRNAseq data analysis of individual male and female pituitary samples, cells were clustered 132 

using Seurat, visualized using t-SNE representation (Supplementary Fig. 3), as well as 133 

projected on UMAPs (Supplementary Fig. 1). Cell clusters were annotated manually using 134 

differential RNA expression of established pituitary marker genes. Key cell type markers 135 
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included FSHB, LHB, and GNRHR for gonadotropes; GH1 for somatotropes; POMC for 136 

corticotropes; DIO2 for thyrotropes5, 14; PRL for lactotropes; and SOX910, LGR415, and RBPMS 14 137 

for PSCs. A list of established markers used for the assignment of each cell type as well as new 138 

markers identified in our datasets are shown in Supplementary Table 4. The RNA counts 139 

(Supplementary Fig. 4), mitochondrial gene content (Supplementary Fig. 5), and ribosomal 140 

protein gene content (Supplementary Fig. 6) all indicated the high quality of the snRNAseq 141 

data obtained from each individual donor. Cell clustering analysis revealed well-defined cell 142 

clusters, including the five major hormone-producing cell types as well as several non-endocrine 143 

cell types (Supplementary Fig.3). 144 

 145 

Chromatin accessibility analysis of human pituitary cell types 146 

The same-sample paired assay snATACseq datasets generated approximately 11,000 147 

DNA fragments per nucleus with an average TSS enrichment score of 5.0 and a fraction of reads 148 

in called peak regions (FRiP) score of 47% (Supplementary Table 2b). Cells were clustered 149 

and visualized using UMAP representation (Supplementary Figs. 1,2). Cell clusters were 150 

manually annotated based on chromatin accessibility (i.e. peaks of accumulated reads) at 151 

informative promoters among the same marker genes used for the RNAseq annotation (see 152 

Supplementary Table 4, Supplementary Fig. 7). Thyrotrope cells were too poorly represented 153 

to generate reliable chromatin tracks, consistent with their being the lowest abundance endocrine 154 

cell type in the anterior pituitary16. Similar to the sn transcriptome analysis results, cell clustering 155 

of the snATACseq data from each donor resulted in distinct cell clusters with all the major cell 156 

types being identified, although a thyrotrope cluster could not be distinguished in all male 157 

samples (Supplementary Figs. 1,2). 158 
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 159 

Cell type identification in snRNAseq and snATACseq datasets 160 

Integration of the snRNAseq and snATACseq data from each sample was accomplished 161 

by label transfer from the snRNAseq to the snATACseq data using the Seurat pipeline 162 

(Supplementary Figs. 1,2). The major pituitary cell type clusters were detected in all individual 163 

samples. Some clusters showed a gradient of expression and chromatin accessibility, resulting in 164 

their distinction as separate clusters, although they were not physically distinct (lactotropes in 165 

Supplementary Fig. 3d, corticotropes in Supplementary Fig. 3b and Supplementary Fig. 1f; 166 

somatotropes in Supplementary Fig. 3a,c,d and Supplementary Fig. 1d; pituicytes in 167 

Supplementary Fig. 3e,f; gonadotropes in Supplementary Fig. 3a,d). 168 

To improve the resolution of human pituitary cell types and to assess inter-individual 169 

variation, we merged same-sex snRNAseq datasets and color-labeled them by donor (Fig. 2a,c). 170 

Similarly, we merged the snATACseq data from same-sex samples, and labeled them by donor 171 

(Fig. 2b,d). In addition to the five endocrine pituitary cell types, we identified stem cells, 172 

pituicytes, as well as pericytes, endothelial cells, and immune cells (macrophages, T-cells, B-173 

cells). We observed donor-to-donor heterogeneity in cell type clustering in both datasets. For 174 

example, in males, separate gonadotrope, somatotrope, and lactotrope clusters were noted in both 175 

RNAseq and ATACseq data, originating almost exclusively from the pediatric sample. In 176 

females, one gonadotrope, one somatotrope, and one stem cell cluster were also derived from the 177 

pediatric sample. The proportions of the major pituitary cell types identified by snRNAseq vs. 178 

snATACseq across all samples were highly correlated, indicating an agreement of major cell 179 

type assignment across the two assay modalities (R2 > 0.96; Fig. 2e). We also saw a similar 180 
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distribution of the expression markers in human pituitary cell types in comparison with the same 181 

markers in an adult mouse pituitary dataset (13, Supplementary Fig. 7). A sn multiome dataset 182 

and a same-sample sn paired dataset were generated from the pulverized pediatric female 183 

sample, which further supported the reliability of cell type assignment across the two assays 184 

(Supplementary Tables 3, 5). All datasets are publicly available and are accessible for 185 

exploration at snpituitaryatlas.princeton.edu. 186 

 187 

Characterization of the PSC population  188 

The stem cells from all samples identified by snRNAseq (Fig. 2) were re-clustered using 189 

the Seurat pipeline, leading to the detection of 9 clusters, 6 of which were not well separated and 190 

formed a large group (Fig. 3a). Three clusters that are highlighted in Fig. 3a corresponded to 191 

lineage-committed progenitor stem cells, with each distinguished by POMC, POU1F1, and 192 

GATA3 expression, respectively (see Discussion). The remaining large group of 6 clusters 193 

expressed SOX2, SOX9, and the Hippo pathway effectors WWTR1 (a.k.a. TAZ) and YAP1 (17 and 194 

reviewed in 18; Fig. 3d and Supplementary Fig. 8), which are indicative of uncommitted PSCs, 195 

with cluster 5 showing the highest expression for some of these markers.   196 

We next examined the relationship of the PSC clusters to the sex and age of the donors 197 

(Fig. 3b,c). The uncommitted stem cell clusters were largely separated in samples from each sex, 198 

as confirmed by expression of the female-specific XIST19. When the male and female datasets 199 

were grouped by age, all PSC subtypes were represented at all ages studied. The distribution of 200 

RNA markers for progenitor and committing stem cells is shown in Fig. 3d. The canonical stem 201 

cell markers SOX2 and SOX9, as well as genes previously implicated in pituitary stem cell 202 

regulation (i.e. WWTR1, PITX2, and LGR4; for review, see 18), were broadly expressed. 203 
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Interestingly, expression of JUN and JUND, which were implicated in the regulation of stemness 204 

in other tissues20, 21, was heterogeneous, with the highest expression associated with clusters that 205 

were predominant in male samples. 206 

We also compared the patterns of marker gene expression in human and mouse PSCs. As 207 

expected, we detected Sox2, Sox9, Wwtr1, and Yap1 across the stem cell population of both 208 

species (Fig. 3d; Supplementary Figs. 8,9). Expression of POU1F1 in human samples was 209 

detected in a proportion of the cells in the main PSC cluster, indicating committing progenitors 210 

amongst this population, as seen for Pou1f1 in mouse, and similarly for PAX7/Pax7 (a 211 

determinant of intermediate lobe and melanotrope identity; 22). Additional markers that were 212 

either previously reported in mouse pituitary stem cells or linked to stemness, were also found in 213 

human stem cells, including WIF123, 24, HES1, NOTCH218, SMAD425, and SMAD526, 27 214 

(Supplementary Fig. 8).  215 

JUN, which was expressed in uncommitted, predominantly human male PSCs, has not 216 

been proposed as a PSC marker but was previously reported to be enriched in SOX2 positive 217 

cells through bulk sequencing in mouse15. We therefore examined whether Jun showed co-218 

expression with the stem cell marker Sox2 by in situ hybridization in neonatal, juvenile male, and 219 

adult male mouse pituitaries. This analysis confirmed Jun as a stem cell marker by identifying 220 

Jun-Sox2 double labeling in samples from all ages (Fig. 3e and Supplementary Fig. 10). 221 

Overall, characterization of the heterogeneity of the PSC population from human and mouse 222 

supports the existence of different subtypes of uncommitted stem cells that are distinguishable 223 

from early committing lineages (see 28).  224 
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The acquisition of both snRNAseq and snATACseq data from the same samples provides 225 

high resolution analysis of the chromatin accessibility pattern of key genes within each pituitary 226 

cell type and reveals potential novel regulatory domains (see 13). Shown in Fig. 3f are cell type-227 

specific gene expression and chromatin accessibility by cell type for the stemness marker SOX2 228 

and the putative gonadotrope/thyrotrope committing cell lineage marker GATA3. SOX2 was 229 

expressed in stem cells and pituicytes, which both showed the highest promoter accessibility. 230 

GATA3 was expressed in gonadotropes and thyrotropes in addition to the committing stem cell 231 

lineage. All three cell types also all showed more chromatin accessibility in the region of the 232 

GATA3 promoter. Other SOX2 and GATA3 putative cis-regulatory domains showing increased 233 

accessibility in cell types showing expression are also evident. In a subsequent section, we 234 

elucidate further the regulatory control of these and additional key PSC markers by modeling 235 

same-cell sn multiome data.  236 

  237 

Diversity of PSC epigenetic programs 238 

We next studied coordinated gene expression and chromatin accessibility programs in 239 

PSCs. We utilized the Pathway Level Information ExtractoR framework (PLIER) that 240 

deconvolves datasets into co-varying latent variable (LV) gene sets using known pathways, 241 

while not enforcing the strict orthogonality required for principal component analysis29. These 242 

PLIER analyses identified both RNA and chromatin accessibility LVs that were preferentially 243 

expressed in each major pituitary cell type (Supplementary Figs. 11,12). One RNA LV was 244 

stem cell-specific and highly expressed in both sexes at all ages (Fig. 4a for the top 30 genes, 245 

and Fig. 4b for the top 200 genes). Projection of this PSC LV onto adult mouse pituitary 246 
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snRNAseq data13 showed conservation of this PSC transcriptome program in mouse (Fig. 4c). 247 

To determine whether this program was also associated with altered chromatin structure in PSCs, 248 

we projected this LV onto the human snATACseq data using the promoter accessibility signals 249 

as the gene features. This projection showed that the LV transcriptome program was associated 250 

with increased chromatin accessibility at the corresponding gene promoters (Fig. 4d). Analysis 251 

of the snATACseq data identified a number of largely distinct accessibility programs that were 252 

each most strongly activated in subjects of different ages or sex (Supplementary Fig. 12). The 253 

complexity of PSC chromatin programs identified in this analysis may be related to the diversity 254 

of the donors (see Discussion).  255 

In addition to cell type-specific LVs, we also identified one chromatin accessibility LV 256 

showing significantly greater activity with increasing donor age (LVageatac). Shown in Fig. 4e is 257 

a heat map of the 30 highest weighted promoters comprising this LV in each sample by cell type. 258 

When the level of activity in each cell type was plotted separately across the age range studied 259 

by sex, we found that all cell types showed an increase in accessibility of these promoters with 260 

age, especially between the pediatric and adult samples (Fig. 5a). Notably, the increases in 261 

accessibility in the PSCs were less pronounced in females, while almost no changes were 262 

observed in males (pink lines in Fig. 5a.) These results suggest that this accessibility program 263 

represents age-associated coordinated changes that are more prominent in differentiated cells 264 

than in PSCs.  265 

To further explore the relationship of PSC transcriptomes in samples from different ages, 266 

we constructed a pseudotime trajectory from same-sex snRNAseq datasets using the Monocle 267 

algorithm30 (Fig. 5b,c). In females as well as in males, the region of the graph most densely 268 

occupied by the pediatric PSCs was chosen as the root of the trajectory. In both sexes, pediatric 269 
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PSCs formed the largest group, which separated from the adult and aged PSCs. This separation 270 

shows the large differences between PSC transcriptomes from pediatric and adult samples and 271 

also suggests that we have not captured all transitional stages of stem cells in the samples 272 

analyzed. To specify sets of genes that are dynamically regulated as cells progress along the 273 

trajectory, we identified several correlated gene modules per age group in females and in males 274 

(Fig. 5d). The top genes in the most significant modules and the trajectories of selected genes are 275 

shown in Supplementary Table 6 and Supplementary Fig. 13, respectively. Notably, almost 276 

none of the module-defining transcripts were previously reported as PSC markers, and their roles 277 

in PSC physiology over the lifespan are not known. Overall, these analyses show the relative 278 

stability, an aging-related chromatin program in PSCs, and dynamic changes in the PSC 279 

transcriptome with aging. 280 

 281 

Transcription factor and epigenetic control mechanisms of PSC genes 282 

Using snRNAseq and snATACseq datasets obtained from the same mouse pituitaries, we 283 

recently reported that chromatin accessibility is a key determinant for cell type transcriptional 284 

programs13. In comparison to same-sample datasets, same-cell sn multiome data confer vastly 285 

greater statistical power for inferring the regulatory mechanisms underlying expression of 286 

specific genes31, 32. The matched transcriptome and chromatin accessibility data in same-cell sn 287 

multiome assays allow the co-variation of chromatin accessibility and gene expression to be 288 

modeled in thousands of individual cells. Additionally, not all cells within a cell type express the 289 

same transcripts. Same-cell sn multiome data have the potential, for the first time, to provide 290 
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insight into transcription factors (TFs) and epigenetic mechanisms that shape heterogenous gene 291 

expression within the same pituitary cell type. 292 

To explore the role of alterations in TF expression and chromatin state in modulating key 293 

PSC genes, we applied a linear modeling computational framework to the 15,024 nuclei in the 294 

same-cell sn multiome dataset obtained from a pediatric female pituitary. For each target gene, 295 

the linear model selects potential cis-regulatory regions comprising ATAC promoter peaks as 296 

well as co-accessible distal peaks. Then, testing the co-expression of putative trans-acting 297 

regulatory factors that have predicted TF binding sites in the co-accessible regions, linear 298 

regression identifies the TFs and chromatin regions most significantly predictive of expression of 299 

the target gene. The linear model, when used to analyze all pituitary cells (“pan pituitary cell” 300 

analysis), can infer the mechanisms and factors implicated in cell type-specific expression. When 301 

only cells comprising one pituitary cell type are analyzed, the linear model can generate 302 

hypotheses for the mechanisms responsible for differential expression among the different cells 303 

comprising this lineage.  304 

We first analyzed the committed progenitor markers POMC, POU1F1, TBX19, and 305 

NR5A1. The output of the linear model pipeline is the p-value that each selected cis-regulatory 306 

region and each individual TF with sites in that region contribute to the expression of the target 307 

gene (Supplementary Figs. 14-17). The TFs contributing to cell type-specific expression of 308 

these marker genes using pan pituitary cell analysis included many factors that were previously 309 

implicated in the differentiation of committing stem cells. For example, the POMC analysis 310 

identified TBX19, which is an inducer of the POMC-expressing corticotrope/melanotrope 311 

lineage and of POMC expression33. TCF7L2, which was highly significant in the analyses of 312 

POU1F1 and TBX19, is an effector of the WNT signaling pathway, which regulates pituitary 313 
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growth and development34. Similarly, LEF1, another mediator of WNT signaling (see 35), was 314 

also identified in the TBX19 analysis. ESR1 (estrogen receptor alpha) was the most significant 315 

TF implicated in NR5A1 expression. Consonant with this finding, a recent study in murine 316 

gonadotrope cell lines demonstrated that estrogen-dependent binding of this nuclear receptor to a 317 

newly identified enhancer region triggers Nr5a1 expression during gonadotrope lineage 318 

specification36. The high significance obtained in the linear model analysis for transcriptional 319 

regulators that were reported in previous research suggests that new candidates we identified 320 

warrant consideration for future study. For example, the TF showing the second highest 321 

significance in the pan pituitary cell analysis of POMC is MNX1, an important homeobox gene 322 

previously implicated in motor neuron, pancreas, and lymphoid cell development37, 38, 39. 323 

Therefore, MNX1 is an intriguing new candidate transcriptional regulator in the commitment 324 

towards the corticotrope/melanotrope lineages. In addition to the identification of novel putative 325 

TF regulators, when applied to all pituitary cells, the model also specifies the proximal and distal 326 

regulatory sites significantly associated with expression of the target gene in the cell types 327 

expressing that gene. These analyses identify previously unexplored regulatory domains in these 328 

key PSC genes that show accessibility associated with gene expression and are therefore cis-329 

regulatory domain candidates (Fig. 6 and Supplementary Figs. 14-18).   330 

We next studied the stemness marker SOX2 and the committing cell lineage marker 331 

GATA3. When all pituitary cells were examined, the expression of SOX2 within the overall stem 332 

cell subtype was associated with highly significant co-accessible proximal, upstream, and 333 

downstream regulatory domains (Fig. 6a, Left) as well as expression of TFs mapping to these 334 

domains (Fig. 6a, Right). These results indicate that PSC-specific expression of SOX2 depends 335 

on a pattern of chromatin accessibility of regulatory domains present within these cells as well as 336 
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expression of the requisite regulatory factors interacting with these domains. A contrasting result 337 

was obtained when applying the linear model to only PSCs to infer the regulatory circuits 338 

involved in heterogeneous expression of SOX2 within PSCs.  In this analysis, cis-regulatory 339 

domains correlated poorly with SOX2 expression (Supplementary Fig. 18, Left), and a restricted 340 

set of regulatory factors (Supplementary Fig. 18, Right) was implicated in the heterogeneous 341 

pattern of SOX2 expression in PSCs. These results suggest that the chromatin structure is 342 

sufficient for SOX2 expression in all PSCs and the expression within specific PSCs depends on 343 

the expression of key regulatory TFs. When performing a pan pituitary cell analysis for GATA3, 344 

we observed a pattern consonant with that of SOX2, with both chromatin structure and regulatory 345 

factor expression being responsible for expression in PSCs (Fig. 6b, Left, Fig. 6b, Right). 346 

However, contrary to SOX2, heterogenous GATA3 expression within PSCs was associated with 347 

cis-regulatory chromatin accessibility domains, but not with expression of specific regulatory 348 

factors (Fig. 6c). These results suggest that the regulatory proteins needed for GATA3 expression 349 

in PSCs were expressed in all of the cells, and the heterogeneous expression pattern within PSCs 350 

was determined by differences in chromatin accessibility of regulatory domains between 351 

GATA3-expressing and non-expressing PSCs. When POMC was analyzed only in PSCs, the 352 

most significant TFs identified were E2F440 and TBX19, while the co-accessible regulatory 353 

regions were of low significance (Fig. 6d). These results suggest that differential POMC 354 

expression in committing PSCs vs. uncommitted PSCs is due to expression of these key TFs 355 

more so than to alterations in chromatin accessibility at key regulatory regions. 356 

 357 

Discussion 358 
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We generated high quality snRNAseq and snATACseq datasets from individual human 359 

pituitaries, demonstrating the feasibility of sn profiling in frozen post-mortem samples that had 360 

been stored at -80 C for as long as two decades. Analysis of these data provides insight into the 361 

heterogeneity of PSCs and the regulatory mechanisms and circuits underlying the expression of 362 

key PSC genes. We distinguish and characterize uncommitting and committing stem cell 363 

lineages, differences related to the age and the sex of the donors, and propose diverse 364 

mechanisms responsible for expression of key PSC markers. 365 

Reclustering of the stem cells identified by snRNAseq data analysis distinguishes three 366 

clusters consistent with committing stem cells (see Fig. 3a). The POMC-expressing cluster is 367 

likely a precursor of the corticotrope/melanotrope lineages41. Another cluster expressing 368 

POU1F1 represents PSCs with the potential to commit to the somatotrope, lactotrope, and 369 

thyrotrope lineages42. The GATA3-expressing cluster presumably comprises cells that are 370 

committing to the gonadotrope lineage, although low expression of NR5A1 precludes definitive 371 

cell type lineage assignment as GATA3 is also reported in thyrotropes (Supplementary Fig. 8)43. 372 

All three committing lineages were identified in both sexes. The uncommitted stem cells, which 373 

formed six clusters that were not well separated, were for the most part non-overlapping in male 374 

vs. female samples.  375 

Our analysis identifies PSC transcriptome and epigenetic programs as well as age-related 376 

differences in PSCs. We identify one RNAseq PSC LV program that is well expressed in all 377 

samples assayed, conserved in mouse and associated with PSC-specific chromatin changes at the 378 

promoters for the genes comprising this LV. We also identify an ATACseq LV that exhibits 379 

increased accessibility with age in all pituitary cell types but shows smaller changes with age in 380 

PSCs. When the snRNAseq data were analyzed by trajectory, PSCs from the pediatric samples 381 
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were separated from the adult and aged samples in both sexes. We find that human and mouse 382 

PSCs shared similar patterns of gene expression and were characterized by the presence of 383 

several subtypes of uncommitted and committed cells, suggesting a high degree of conservation 384 

of this cell type in evolutionary time. However, the identification of species-specific genes might 385 

signify inter-species or age-related differences, with potential implications for using the mouse 386 

model for therapy development. 387 

The PSC LV programs, and the complete separation of PSCs across different ages in the 388 

trajectory analysis, indicate that fully characterizing the changes in PSC transcriptional and 389 

epigenetic programs with aging will require analysis of additional samples over the age span. 390 

Collectively, our data suggest that sex and age influence several biological processes in stem 391 

cells. Additional study is warranted to further elucidate the sex and age differences that are likely 392 

to have a significant impact on the development of new stem cell-based therapies. 393 

The datasets generated encompass all major cell types in the human pituitary. Reliability 394 

of the identification of all major cell types in the same-sample snRNAseq and snATACseq 395 

datasets from both sexes and from a range of subject ages is supported by the concordance of cell 396 

type proportions obtained by both assays and the confirmation of cell type identification in the 397 

same-cell sn multiome data. We report gene expression and chromatin accessibility LVs that are 398 

characteristic of each major pituitary cell type. Extensive data from the female pediatric pituitary 399 

are provided by multiple same-sample datasets and a large same-cell sn multiome dataset. These 400 

data represent a resource to address questions about the characterization and regulatory 401 

mechanisms of any cell type in the human pituitary.  402 
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Inferences from the same-cell sn multiome dataset using the linear model provides insight 403 

into the TFs and accessible chromatin sites contributing to the expression of key PSC genes. The 404 

model also provides insight into the general mechanisms (TF expression, chromatin accessibility 405 

differences or both) responsible for differential expression of the target PSC genes among 406 

different cells. Because the model is based on detection of regulatory feature correlation with 407 

target gene expression, the results obtained when PSC genes are analyzed among all pituitary 408 

cells represent mechanisms implicated in target gene expression in PSCs in comparison with 409 

other cell types. When the model is applied only to PSCs, the results represent hypotheses for 410 

differential expression of these target genes within a subset of PSCs. For the PSC and committed 411 

progenitor markers analyzed (POMC, POU1F1, TBX19, NR5A1, SOX2, and GATA3), multiple 412 

chromatin accessibility sites and TFs predicted to bind to accessible sites are identified with high 413 

probability as contributing to stem cell expression of these markers in comparison with other cell 414 

types. This supports the formulation that the expression of each of these markers in PSCs 415 

depends on epigenetic remodeling of chromatin as well as on expression of key TFs that are 416 

necessary for driving gene expression.  417 

Analysis of same-cell sn multiome data from the pediatric female pituitary suggests that a 418 

diversity of mechanisms contribute to differential expression of marker genes among PSCs. With 419 

respect to differential expression of PSC markers within PSCs, NR5A1 and POU1F1 show TFs 420 

and chromatin sites associated with heterogeneous expression. POMC, TBX19, and SOX2 are 421 

associated with the expression of specific TFs and GATA3 with accessibility of specific 422 

regulatory sites. The pan-pituitary analysis shows the importance of both TF expression and 423 

chromatin structure in the expression of key PSC genes. However, these analyses of 424 

heterogenous expression within PSCs suggest that the differential expression of some markers is 425 
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predominantly determined by expression of key TFs in those cells, whereas the differential 426 

expression of other markers depends on heterogeneity in chromatin structure.  427 

A strength of this study is the multi-omic profiling of the entire pituitary at postnatal 428 

stages, that we use to develop a map of the variation of PSCs between the sexes and with 429 

development and aging. Additionally, to our knowledge, this is the first study to profile human 430 

PSCs through ageing and to propose mechanisms for differential marker gene expression within 431 

the same cell type. We demonstrate the power of same-sample and same-cell multiomics 432 

analyses to further elucidate the mechanisms underlying PSC cell type and cell state in both 433 

sexes and throughout the age span.  434 

 435 

Methods 436 

 437 

Sample procurement 438 

Flash-frozen post-mortem human pituitaries were obtained from the National Institutes of 439 

Health (NIH) NeuroBioBank, and kept at -80C until processing. See Supplementary Table 1 440 

for information on subject sex, age, ethnicity, post-mortem interval (PMI), cause of death, and 441 

year of collection. The tissues received varied from whole to pieces of pituitaries. All specimens 442 

were obtained from deceased individuals. Donor anonymity was preserved, and guidelines were 443 

followed regarding consent, protection of human subjects, and donor confidentiality.  444 

 445 

Nuclei isolation from pituitaries  446 

Two methods were tested for nuclei isolation. Frozen post-mortem human pituitaries 447 

were either: 1) broken into small pieces in a frozen mortar on dry-ice, and one piece was thawed 448 
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on ice and prepared for nuclei extraction based on a modified protocol from44, or 2) pulverized 449 

and part of the powder used for nuclei isolation. The remainder of the pituitary was stored back 450 

at -80C. Briefly, and all on ice, RNAse inhibitor (NEB cat# MO314L) was added to the 451 

homogenization buffer (0.32 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.4, 5mM CaCl2, 452 

3mM Mg(Ac)2, 0.1% IGEPAL CA-630), 50% OptiPrep (Stock is 60% Media from Sigma; cat# 453 

D1556), 35% OptiPrep and 30% OptiPrep right before isolation. Each pituitary was 454 

homogenized in a Dounce glass homogenizer (1ml, VWR cat# 71000-514), and the homogenate 455 

filtered through a 40 mm cell strainer. An equal volume of 50% OptiPrep was added, and the 456 

gradient centrifuged (SW41 rotor at 17,792xg; 4C; 25min). Nuclei were collected from the 457 

interphase, washed, resuspended either in 1X nuclei dilution buffer for snATACseq (10X 458 

Genomics) or in 1X PBS/0.04% BSA for snRNAseq, and counted (Cellometer).  459 

  460 

SnRNAseq assay 461 

SnRNAseq was performed following the Single Cell 3’ Reagents Kits V3 User 462 

Guidelines (10x Genomics, Pleasanton, CA). Nuclei were filtered and counted on a Countess 463 

instrument. A minimum of 1,000 nuclei were targeted (Chromium Single Cell 3’ Chip kit A v2 464 

PN-12036 or v3 chip kit B PN-2000060). Reverse-transcription (RT) was performed in the 465 

emulsion, cDNA amplified, and libraries constructed with v3 chemistry. Libraries were indexed 466 

for multiplexing (Chromium i7 Multiplex kit PN-12062).  467 

  468 

SnRNAseq data analysis 469 

SnRNAseq data were processed using the Cell Ranger pipeline v5.0.0, and aligned to the 470 

Cell Ranger GRCh38 reference genome, introns included.  Clustering and differential gene 471 
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expression analysis were performed using Seurat v.3.9.9.9024 and standard procedures45, 46. Top 472 

markers for each cluster were compared to known markers of pituitary cell types to annotate the 473 

clusters; a list of the most common genes associated to each cell type is given in Supplementary 474 

Table 4. 475 

We used the t-SNE projection to identify the most common cross-type doublets, as well 476 

as apoptotic and low-count cells as t-SNE preserves the local structure of the data better than the 477 

UMAP projection. Doublet clusters appear as small, high UMI count satellites to the main 478 

clusters. We verified the nature of every such group of cell barcodes by plotting their gene 479 

expression of the top cell-type markers. By looking at which two gene expression programs are 480 

expressed in the barcodes composing each one of these satellite clusters, we were able to identify 481 

the two cell types that constitute the barcodes of these sub-clusters. 482 

Apoptotic cells form their own clusters separate from the parent cluster. Several cell 483 

types often merge into a single apoptotic cluster, so that not every cell type will have its 484 

corresponding apoptotic cluster.  These cells are characterized by low UMI counts and almost 485 

exclusively spliced mRNA reads, suggesting condensation of the nuclei and arrest of 486 

transcription of new mRNA. 487 

Some cell-type clusters have offshoots composed of barcodes with low UMI counts.  488 

Contrary to apoptotic clusters, these have a similar ratio of intronic to exonic reads as their 489 

parent cluster and do not form their own cluster, but usually connect to, or appear very close to, 490 

their parent cluster. These are probably experimental artifacts of slow mRNA capture. Their gene 491 

expression program is the same as that of their higher UMI counterparts, but they are more 492 

adversely affected by dropouts. As such, we decided to remove these low-UMI offshoots from 493 

downstream analysis, together with doublet barcodes and apoptotic cells. 494 
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  495 

SnATACseq assay 496 

SnATACseq was performed following the Chromium Single Cell ATAC Reagent Kits 497 

V1 User Guide (10x Genomics, Pleasanton, CA). Nuclei were counted (Countess counter), 498 

transposition was performed in 10 μl at 37C for 60min on at least 1,000 targeted nuclei, before 499 

loading of the Chromium Chip E (PN-2000121). Barcoding was performed in the emulsion (12 500 

cycles) following the Chromium protocol. Libraries were indexed for multiplexing (Chromium 501 

i7 Sample Index N, Set A kit PN-3000262).  502 

  503 

SnATACseq analysis 504 

SnATACseq data were processed using Cell Ranger-ATAC pipeline version 1.2.0, and 505 

aligned to the Cell Ranger-ATAC GRCh38 reference genome. Clustering was performed using 506 

Seurat/Signac versions 3.1.5/0.2.4 and standard procedures47. We produced chromatin 507 

accessibility tracks around known pituitary cell type marker genes and looked for promoter 508 

accessibility of these genes to annotate the clusters. 509 

  Doublets, low-count, and apoptotic cells were identified in the same manner as for 510 

snRNAseq data, except that for ATAC data, the UMAP projection works better and was used 511 

instead.  We used the number of fragments in peaks as an indicator as to whether a cell was 512 

healthy or a doublet or low-count / apoptotic. Doublets were checked to possess fragments in 513 

peaks associated to the main markers of both cell types. In general, we have many fewer cell 514 

barcodes in the ATAC data, so doublets are also less common. Consequentially, few doublet 515 

clusters were identified. 516 

 517 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 18, 2021. ; https://doi.org/10.1101/2021.06.18.449034doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.18.449034
http://creativecommons.org/licenses/by-nd/4.0/


 24

Sn multiome assay 518 

Sn multiome was performed following the Chromium Single Cell Multiome ATAC and 519 

Gene Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA) on part of the 520 

pulverized pediatric female sample. Nuclei were counted (Countess counter), transposition was 521 

performed in 10 μl at 37C for 60min targeting 10,000 nuclei, before loading of the Chromium 522 

Chip J (PN-2000264) for GEM generation and barcoding. Following post-GEM cleanup, 523 

libraries were pre-amplified by PCR, after which the sample was split into three parts: one part 524 

for generating the snRNAseq library, one part for the snATACseq library, and the rest was kept 525 

at -20C. SnATAC and snRNA libraries were indexed for multiplexing (Chromium i7 Sample 526 

Index N, Set A kit PN-3000262, and Chromium i7 Sample Index TT, Set A kit PN-3000431 527 

respectively).  528 

 529 

Sn multiome analysis 530 

We analyzed the pediatric female sample by sn multiome. We pooled together libraries 531 

from both GEM wells and ran the Cell Ranger ARC 1.0.0 pipeline on the pooled 532 

sample following 10x Genomics guidelines. Running the pipeline on each GEM well separately 533 

reveals that the samples have 97 barcodes in common that are called as cells. 534 

We used Seurat version 3.9.9.9024 with Signac version 1.1.0 to perform our clustering 535 

analysis using a weighted shared nearest neighbor graph approach. This method identifies, for 536 

each cell, its nearest neighbors based on a weighted combination of the two modalities (Gene 537 

Expression & Chromatin Accessibility). We similarly use the weighted nearest neighbor graph to 538 

obtain a UMAP projection of the data. The Gene Expression modality was used to identify 539 

cluster cell types after determination of top markers for each cluster.  540 
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Apoptotic, low-count cells and doublets were also identified in a manner analogous to 541 

that of snRNAseq data. Both apoptotic and low-count cells were identified as having much lower 542 

counts of both their number of transcripts as well as their number of fragments overlapping 543 

ATAC peaks. Apoptotic cells further have a large proportion of mitochondrial gene transcripts, 544 

whereas low-count cell transcripts are dominated by background genes.  Doublets, on the other 545 

hand, were identified as having higher counts in both RNA and ATAC, and expressing gene 546 

programs of two cell types simultaneously. Only one of the main clusters was identified as 547 

doublets, and no further sub-clustering was attempted. 548 

 549 

Merged datasets analysis 550 

All male and female samples were merged by sex in Seurat at the UMI count level, and 551 

all of the clustering analysis was repeated on the merged samples independently from the 552 

beginning. We followed the same analysis steps as for individual samples. Unlike our integrated 553 

samples (see later section), the merged samples do not have batch effects removed. Despite that, 554 

we do not observe any systematic batch effect between our samples. We do, however, see 555 

differences in gene expression from one subject to another among some specific cell types. The 556 

merged samples allow us to highlight these differences in the implicated cell types. 557 

 558 

Quality control (QC) and sequencing of libraries 559 

Libraries were quantified by Qubit 3 fluorometer (Invitrogen) and quality was assessed 560 

by Bioanalyzer (Agilent). Equivalent molar concentrations of libraries were pooled and the reads 561 

were adjusted after sequencing the pools in a Miseq (Illumina). The libraries were then 562 
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sequenced in a Novaseq 6000 (Illumina) at the New York Genome Center (NYGC) following 563 

10X Genomics recommendations.  564 

 565 

Mouse snRNAseq stem cell data analysis 566 

SnRNAseq data for each mouse were processed and analyzed as previously described13. 567 

Raw reads from each mouse sample were isolated from the clusters assigned in Seurat as ‘Stem 568 

cells’ using the ‘WhichCells’ function. These count tables were integrated using Seurat (v3.1.5) 569 

SCTransform workflow48, clustered at 0.5 resolution and principal component dimensions 1:15 570 

were taken forward for analysis. 571 

 572 

Human stem cell re-clustering method 573 

Following initial clustering of the complete datasets, the ‘stem cell’ clusters were isolated 574 

from each individual subject using the Seurat ‘subset’ function. To increase the number of cells 575 

available for downstream analysis, the isolated stem cell datasets were merged based on the 576 

approximate age of subjects. This was performed using the merge function within Seurat 577 

(v3.1.5). Sample integration by identification of anchors and subsequent clustering (20 PCAs, 578 

resolution 0.5) was performed using Seurat according to standard procedures45, 46. Re-clustering 579 

and analysis leading to identification of ‘committing’ stem cells was done as above following 580 

removal of the ‘Pars Tuberalis’ cell clusters. 581 

 582 

RNAscope mRNA in situ hybridization 583 

Wildtype CD-1 murine postnatal pituitaries were dissected at P3, P15 (male), and P56 584 

(male), and fixed in 10% neutral buffered formalin (Sigma) at room temperature for 16-24 hours. 585 
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Samples were washed in PBS and dehydrated through graded ethanol series before paraffin-586 

embedding as previously described15. Samples were sectioned at 5 µm. 587 

The RNAscope 2.5 HD Duplex assay (Advanced Cell Diagnostics) was used according to 588 

manufacturer’s recommendations, with the following specific probes: Mm-Jun (Cat# 453561) 589 

and Mm-Sox2-C2 (Cat# 401041-C2) (Advanced Cell Diagnostics). Sections were counterstained 590 

with Mayer’s hematoxylin (Vector H-3404) and mounted with Vectamount Permanent Mounting 591 

Medium (Vector H-5000). 592 

 593 

Pseudotime sn trajectory analysis 594 

Raw gene counts were extracted from each sample’s “Stem Cell” cluster as previously 595 

identified using Seurat (v4.0.1)49. Due to sex differences, male and female samples were handled 596 

separately. Samples of the same sex (e.g female pediatric, female adult, female aged), were 597 

integrated using the functions ‘SCTransform’ and ‘SelectIntegrationFeatures’ in Seurat to obtain 598 

the top 500 differentially expressed genes (DEGs). Monocle3 (v0.2.3.0)50 was used for 599 

pseudotime trajectory analysis and preliminary analysis revealed a bias in the Monocle trajectory 600 

due to specific hormonal genes namely; GH1, PRL, CHGB, POMC, LHB, FSHB and CGA. 601 

Therefore, these genes were regressed out of the top 500 DEGs. Monocle objects were generated 602 

by combining the 3 samples of each sex using the respective top 500 DEGs. The trajectory was 603 

calculated by merging partitions with the root chosen based on the earliest timepoint available 604 

for each sex. To find gene modules changing over pseudotime, the ‘graph_test’ function was 605 

carried out using the neighbor_graph = "principal_graph" parameter with a resolution of 0.8 for 606 

‘find_gene_modules’ function. The top 4 enriched modules for each age in each sex were 607 
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highlighted and examined further because they showed the highest variability between age 608 

groups.  609 

 610 

PLIER data analysis 611 

To examine more deeply the trends in gene expression of assigned cell types across 612 

samples and data types, we treated each sc dataset as a collection of bulk datasets for given 613 

labeled cell types. Each cell type was then treated as a separate bulk measurement within each 614 

sample. For snATACseq data, peak counts for a given gene were generated by selecting the peak 615 

closest to the transcription start site (TSS). These peak counts per gene were then collected into 616 

single bulk measurements for each cell type in each sample. We focused specifically on six 617 

relevant cell types in the pituitary: corticotropes, gonadotropes, lactotropes, somatotropes, 618 

stem/progenitor cells, and thyrotropes. For the snRNAseq dataset, this process generated 36 bulk 619 

measurements over six samples (three females and three males), and for the snATACseq dataset, 620 

we generated 35 bulk measurements as thyrotropes were not identified in the male adult 621 

snATACseq sample. We applied PLIER29, which finds patterns in count data that are associated 622 

with known prior information (such as Reactome and Kegg), focusing on the 2000 genes with 623 

the highest standard deviation in count values across the bulk measurements in each set of 624 

samples. PLIER was run on each set of samples separately with LVs generated on the bulk 625 

measurements in an unsupervised fashion. LVs were then curated to find patterns relevant to 626 

individual cell types as well as sample-wide trends such as sex-based differences. Statistical 627 

significance of LVs was computed through the Kruskal-Wallis non-parametric test for multiple 628 

groups as part of the stat_compare_means R method. Comparisons between LVs within and 629 
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across datatypes were achieved by comparing the overlap of the 200 genes most associated with 630 

a given LV. 631 

B is a PLIER-derived expression value for the genes associated with a given LV across 632 

the different samples. It can be treated similar to average expression, weighted by gene 633 

association with the LV. Technically, B is a matrix of size #LVs x #Samples. It is one of two 634 

matrices in PLIER, along with Z of size # of genes x #LVs. The goal of PLIER is to find values 635 

of B and Z that minimize the equation ||Y - Z*B|| where Y is our data matrix of size #genes x 636 

#samples. So PLIER finds a suitable number of LVs that can be used to connect the genes and 637 

samples and accurately estimate our data matrix. 638 

For the boxplot statistical analysis (Supplementary Fig.12), ggboxplot generates a 639 

boxplot with the center equal to the 50th percentile, the bounds of the box are the 25th and 75th 640 

percentile and the bounds of the whiskers are the smallest/largest values 1.5 times the 641 

interquartile range below the 25th percentile or above the 75th percentile, respectively.  642 

 643 

Sn data integration 644 

The snRNAseq and snATACseq data were integrated in a reference-query based manner, 645 

mainly using the “FindTransferAnchors” and “TransferData” functions from the Seurat v3 646 

package45, 46. The snRNAseq datasets were used as the reference and the other modalities were 647 

integrated to them. To integrate snATACseq to snRNAseq, the peak-by-cell accessibility matrix 648 

was converted to a gene-by-cell activity matrix based on the chromatin accessibility within each 649 

gene’s gene body and a 2kb upstream region, under the assumption that chromatin accessibility 650 

and gene expression were positively correlated. The variable features from the snRNAseq data 651 
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were used to find the anchors and the snATACseq data in the LSI low-dimensional embedding 652 

were used to transfer the data from snRNAseq to snATACseq.  653 

 654 

Linear modeling analysis 655 

The regulatory model of gene expression from the sn multiome dataset was constructed 656 

for each target gene with multiple steps: 1) A list of potential regulatory genomic regions were 657 

selected. They included: a) any ATAC peaks that overlaped with the TSS +/- 2kb region, b) 658 

distal peaks that were no more than 500kb away from the TSS and were co-accessible with any 659 

of the peaks in a). Co-accessibility scores were calculated using the Cicero package 51  with 660 

default parameters, and a cutoff of 0.25 for the co-accessibility scores were used to select co-661 

accessible peaks. 2) A list of potential regulatory TFs was selected by scanning for TF binding 662 

sites in the selected genomic regions using the “matchMotifs” function (with a p value cutoff of 663 

5e-5) from the r package “motifmatchr” and the position weight matrices (PWMs) from the 664 

JASPAR CORE database. 3) Linear regression was used to model the target gene’s expression 665 

across cells as a function of selected TFs’ expression and ATAC peaks’ openness, and the 666 

coefficients from the regression were used to measure the importance of each TF and genomic 667 

region. SCTranform48 normalized RNA counts and TFIDF normalized ATAC peak counts were 668 

used in the regression. 669 

 670 

Statistics 671 

In Fig. 5a, to calculate the statistical significance of expression or accessibility changes 672 

within a given latent variable, we applied two-way ANOVA for multiple group testing and 673 

Tukey test for pairwise comparisons. Each test was applied to female and male samples 674 
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separately. In both cases, we applied the R statistical functions aov and TukeyHSD with the 675 

additive model Expression ~ ‘Cell Type’ + ‘Age Group’ for the calculations. 676 

In Supplementary Figs. 11a and 12a, the hierarchical clustering of the LV B scores was 677 

accomplished through the default complete linkage method utilized by the R function pheatmap. 678 

For the boxplots analysis in Supplementary Fig. 12c, the analysis was done with n=3 679 

independent subjects per sex and statistical analysis using the Wilcoxon ranked-sum test. 680 

For Fig. 6 and Supplementary Figs. 15-19, the P-values of peaks and the P-values of 681 

the TFs were both obtained by running a linear regression (“lm” function in R) on 9,151 cells 682 

(for pan-pituitary results) and 1,623 cells (for stem cell specific results). In addition, for the TFs 683 

statistical analysis, the TFs are presented only if their Bonferroni-corrected P-values < 0.05. 684 

Detailed statistics (such as t values of linear regression) are provided in Supplementary Table 685 

8. 686 

 687 

Data availability 688 

The datasets (snRNAseq, snATACseq, sn multiome) generated in the present study are deposited 689 

in GEO (accession # GSE178454). The sn human pituitary multi-omics atlas can be browsed via 690 

a web-based portal accessible at snpituitaryatlas.princeton.edu. All datasets will also be 691 

deposited with the Human Cell Atlas.  692 

  693 

Code availability 694 

Any computational code used in the paper is available upon request. 695 

 696 
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Figure legends: 718 

 719 

Figure 1: Experimental design for human pituitary cell type identification 720 
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a. Schematic of the overall experimental workflow, from procurement of the frozen pituitaries to 721 

sn data analysis. b. Schematic summarizing sn data integration. For each sample, the 722 

snATACseq dataset (colored dots UMAP) was integrated with the snRNAseq dataset (black 723 

contours UMAP) to generate an integrated multi-omics overlay UMAP identifying cell types. On 724 

the UMAP, cell types are color-coded and designated with a 2- to 3-letter code, as indicated on 725 

the bottom key. The female pediatric pituitary sample is represented as an example. All 726 

integrated samples are presented in Supplementary Figs. 1 and 2. c. Schematic of the 727 

comparison between sn paired assays (same-sample sn multi-omics) (i) and sn mutiome assay 728 

(same-cell) (ii). d. Same-cell sn multiome UMAP from the female pediatric sample (see 729 

Supplementary Table 1).  730 

 731 

Figure 2: Merged analysis of same-sex human pituitary 732 

a-d. t-SNE representation of sn transcript expression (a, males; c, females) and of sn chromatin 733 

accessibility (b, males; d, females) in the merged same-sex samples, with labeling by age of the 734 

subject in each sex. Individual subjects are color-coded as indicated. Each cluster is identified by 735 

a letter code as defined in Fig.1. Donor-related information is provided in Supplementary Table 736 

1. e. Correlation between the cell type proportions identified by snRNAseq vs. snATACseq for 737 

all samples (males and females). The linear regression is plotted. Pituitary cell types are color-738 

coded and the key is provided on the right. 739 

 740 

Figure 3: Identification of human stem cell sub-clusters by snRNAseq  741 

a. UMAP showing the stem cell cluster identification based on the snRNAseq data from the six 742 

merged human pituitary samples. Each cell cluster is color-coded and numbered. Lineage-743 
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committed progenitor stem cells are circled. b. UMAPs identifying all color-coded stem cell sub-744 

clusters in females and males. The feature plot on the right shows XIST expression, highlighting 745 

the female samples. c. UMAPs identifying all color-coded stem cell sub-clusters in the pediatric, 746 

adult, and aged subjects. d. Feature plots depicting the expression distribution of key stem cell 747 

marker genes and of cell lineage commitment marker genes among the various clusters. A scale 748 

is included for each feature plot. All scales are similar except for POMC due to background gene 749 

expression. Additional gene feature plots are presented in Supplementary Fig. 8. e. 750 

Colocalization of Sox2 (red) and Jun (blue) transcripts in a wild-type P56 CD-1 male adult 751 

mouse pituitary. Scale bar is 200µm. AL: anterior lobe; IL: intermediate lobe; PP: posterior 752 

pituitary. Left, full image. Right, magnification of the boxed region in the left panel. Arrows 753 

highlight specific cells with colocalization of Sox2 and Jun. Refer to Supplementary Fig. 10 for 754 

Sox2 and Jun colocalization at P3 and P15. f. Gene expression analysis (violin plots at the right 755 

of each figure) and chromatin accessibility tracks analysis for SOX2 (Left) and GATA3 (Right) in 756 

all pituitary cell types from the sn multiome dataset generated from the pediatric female. The 757 

gene structure is presented below the tracks. 758 

 759 

Figure 4: Characterization of coordinated gene expression and chromatin accessibility 760 

programs in human pituitary cell types 761 

a, b. Heatmap of the levels of gene expression for the top human PSC LV (LVscrna) for each cell 762 

type and donor, top 30 genes are shown in (a) and top 200 genes in (b). Each pituitary sample is 763 

indicated at the top. In the scale bars, red signifies the highest level of RNA expression or 764 

chromatin accessibility. Pd, pediatric; Ad, adult; Ag, aged pituitary. c. Heatmap showing the top 765 

200 genes associated with the human LVscrna applied to the murine snRNAseq dataset13.  d. 766 
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Heatmap showing the top 200 genes associated with the human LVscrna applied to the human 767 

snATACseq datasets. (a, b, c, d) Cell type and subject color-coding are provided on the bottom 768 

key. Refer to Supplementary Table 1 for donor-related information. Additional LV analyses are 769 

presented in Supplementary Figs. 11 and 12. 770 

 771 

Figure 5: Age-associated chromatin accessibility and transcriptome pseudotime trajectory 772 

analysis 773 

a. Heatmap showing the chromatin accessibility levels of the top 30 genes in the human age-774 

dependent LV (LVageatac). Cell type and subject color-coding are provided on the bottom of Fig. 775 

4. Refer to Supplementary Table 1 for donor-related information. Additional LV analyses are 776 

presented in Supplementary Figs. 11 and 12. b. Plot showing the overall changes in chromatin 777 

accessibility for all pituitary cell types over age for the females (Left) and the males (Right). 778 

Pituitary cell types are color-coded. The same cell types are linked with lines over age of the 779 

subjects. c. UMAP showing the trajectory within the stem cell cluster with samples color-coded 780 

by age for female (Top) and male (Bottom) samples. d. Pseudotime trajectory analysis for the 781 

female (Top) and male (Bottom) samples. The trajectories from each starting point head to the 782 

older samples. The color scale is shown for the pseudotime trajectories. e. Gene modules 783 

identified with pseudotime and showing changes over age. Monocle 3 identified groups of genes 784 

that change over as a function of pseudotime per sex. Trajectory variable genes were grouped 785 

into modules which were then plotted on a heatmap to show the relative expression of each gene 786 

module, within a sex, in each age group. The top 4 enriched modules for each age group are 787 

labelled, with module 1 being the most highly enriched in each age. Pd1-4 indicates the Pediatric 788 

top 4 modules, Ad1-4 represents the Adult enriched modules, and Ag1-4 marks the Aged 789 
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samples top 4 modules. Blue-red on the color scale represents low-high relative expression levels 790 

(z-transformed mean expression) of gene modules.  See Supplementary Fig. 13 for selected 791 

gene trajectories within specific modules. See Supplementary Table 6 for the top genes per 792 

modules. 793 

 794 

Figure 6: Linear model predicting the chromatin accessibility mechanisms and TFs 795 

contributing to PSC gene expression 796 

a. Linear modeling analysis of all pituitary cells (“pan pituitary cell”) infers the chromatin 797 

accessibility and the TFs involved in stem cell-specific SOX2 expression (Left, top track is the 798 

contribution of each peak to gene expression measured by -log(P-value), and bottom tracks are 799 

the TFs binding sites). The individual contribution of each predicted TF to SOX2 expression is 800 

shown as -log(P-values, Right). See Supplementary Fig. 18 for SOX2 analysis in stem cells 801 

only. b. Pan pituitary cell analysis infers the chromatin accessibility and the TFs involved in 802 

stem cell-specific GATA3 expression (Top, top track is the contribution of each peak to gene 803 

expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The 804 

individual contribution of each predicted TF to GATA3 expression is shown as -log(P-values) 805 

(Right). c. Linear modeling analysis in stem cells only infers the chromatin accessibility and the 806 

TFs involved in the differential expression of GATA3 expression within the stem cell population. 807 

No TFs are predicted to contribute to GATA3 expression in stem cells. d. Linear modeling 808 

analysis in stem cells only infers the chromatin accessibility and the TFs involved in the 809 

differential expression of POMC expression (Left, top track is the contribution of each peak to 810 

gene expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The 811 
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individual contribution of each predicted TF to POMC expression is shown as log(P-values) 812 

(Right). See Supplementary Fig. 17 for pan pituitary cell analysis of POMC expression. 813 
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