

1 *Single nucleus pituitary transcriptomic and epigenetic landscape reveals human stem cell*
2 *heterogeneity with diverse regulatory mechanisms*

3

4 Zidong Zhang^{1*}, Michel Zamojski^{2*}, Gregory R. Smith^{2*}, Thea L. Willis^{3*}, Val Yianni^{3*}, Natalia
5 Mendelev², Hanna Pincas², Nitish Seenarine², Mary Anne S. Amper², Mital Vasoya²,
6 Venugopalan D. Nair², Judith L. Turgeon⁴, Daniel J. Bernard⁵, Olga G. Troyanskaya^{6,7}, Cynthia
7 L. Andoniadou^{3,8}, Stuart C. Sealfon², and Frederique Ruf-Zamojski²

8

9 * contributed equally

10

11 ¹ Lewis-Sigler Institute for Integrative Genomics, and Graduate Program in Quantitative and
12 Computational Biology, Princeton University, Princeton, NJ, USA

13

¹⁴ ²Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School
¹⁵ of Medicine at Mount Sinai (ISMMS), New York, NY, USA

16

17 ³Center for Craniofacial and Regenerative Biology, King's College London, London, UK

18

19 ⁴Department of Internal Medicine, University of California, Davis, CA, USA

20

21 ⁵ Dept. of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, H3G 1Y6,
22 Canada

23

24 ⁶Department of Computer Science, Princeton University, Princeton, NJ, USA

25

26 ⁷Flatiron Institute, Simons Foundation, New York, NY, USA

27

28 ⁸ Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität
29 Dresden, Germany

30

31

32 **Corresponding authors:**

33 Frederique Ruf-Zamojski (frederique.ruf-zamojski@mssm.edu)

34 Stuart C. Sealfon (stuart.sealfon@mssm.edu)

35 Cynthia L. Andoniadou (cynthia.andoniadou@kcl.ac.uk)

36

37 **Keywords:**

38 Pituitary; stem cells; single-nucleus analysis; multiomics; transcriptome; chromatin accessibility.

39

40 **Abstract**

41

42 Despite their importance in tissue homeostasis and renewal, human pituitary stem cells
43 (PSCs) are incompletely characterized. We describe a human single nucleus (sn) RNAseq and
44 ATACseq resource from pediatric, adult, and aged pituitaries (snpituitaryatlas.princeton.edu) and
45 characterize cell type-specific gene expression and chromatin accessibility programs for all

46 major pituitary cell lineages. We identify uncommitted PSCs, committing progenitor cells, and
47 sex differences. Pseudotime trajectory analysis indicates that early life PSCs are distinct from the
48 other age groups. Linear modeling of same-cell multiome data identifies regulatory domain
49 accessibility sites and transcription factors (TFs) that are significantly associated with gene
50 expression in PSCs compared to other cell types and within PSCs. Modeling the heterogeneous
51 expression of two markers for committing cell lineages among PSCs shows significant
52 correlation with regulatory domain accessibility for *GATA3*, but with TF expression for *POMC*.
53 These findings characterize human stem cell lineages and reveal diverse mechanisms regulating
54 key PSC genes.

55

56 **Introduction**

57

58 Tissues are composed of several cell types that can assume different gene expression
59 states in response to environmental cues¹. Major objectives of current biological research include
60 resolving cellular heterogeneity within tissues and elucidating the regulatory mechanisms
61 determining cell types and states. With the recent development of single-cell (sc) omics
62 technologies, researchers have refined the characterization of cell types in many tissues^{2, 3}.

63

64 The pituitary gland secretes hormones that control crucial physiological processes,
65 including reproduction, metabolism, and the stress response. The adenohypophysis represents the
66 main portion of the pituitary gland and contains five hormone-producing cell lineages. Despite
67 the physiological relevance of the pituitary in health and disease, human sc RNAseq studies to
68 date have omitted the post-natal pituitary^{4, 5}. Furthermore, mapping the pituitary epigenome

69 landscape has not been included in the ENCODE project^{6, 7}, and no chromatin accessibility
70 profiling of the human pituitary at sc resolution has been reported.

71
72 Of particular interest is the insight into pituitary stem cells (PSCs) to be obtained from sc
73 analyses. Pituitary hormone deficiencies, which include congenital hypopituitarism (combined
74 pituitary hormone deficiencies), acquired hypopituitarism (secondary to trauma or surgery), as
75 well as pituitary tumors such as adenomas, result in a severe disruption of endocrine systems and
76 cause significant morbidity⁸. Thus, there is a need to develop stem cell therapies that could
77 restore lost or damaged endocrine cell populations in the pituitary. Previous mouse studies
78 demonstrated the existence of PSCs and their ability to self-renew and differentiate into all five
79 endocrine cell types^{9, 10}, thus opening potential therapeutic avenues for human pituitary
80 deficiencies and pituitary tumors^{11, 12}. Little is known about the epigenetic landscape and
81 dynamics of human PSCs during post-natal life, which is critical information for realizing their
82 therapeutic potential. Sc studies of human pituitary are important for resolving cell identities and
83 revealing the regulatory mechanisms of this key cell type.

84
85 One impediment to characterizing human PSC heterogeneity and elucidating gene
86 regulatory mechanisms through sc studies is the technical difficulty in generating high-quality
87 datasets from the frozen *post-mortem* pituitary samples provided by tissue banks. We recently
88 developed an integrated single nucleus (sn) multi-omics analysis using frozen adult murine
89 pituitary¹³. Here, we successfully employed a similar procedure to characterize all major cell
90 types in the human pituitary with a particular focus on PSCs. Archived frozen *post-mortem*
91 pituitaries from pediatric, adult, and elderly subjects (one male and one female per age group)

92 were jointly analyzed by snRNAseq and snATACseq (sn multi-omics). Importantly, we also
93 generated a same-cell female pediatric pituitary sn multiome dataset. These analyses enabled us
94 to characterize the transcriptome and chromatin accessibility landscapes of pituitary cell types.
95 We further refined the identification of human PSC subtypes and their changes during aging and
96 provide insight into the diverse gene regulatory mechanisms underlying stem cell identity and
97 commitment.

98

99 **Results**

100

101 **Sn multi-omics profiling of human pituitaries**

102 To construct cell-type genome-wide maps of gene expression and open chromatin in the
103 human pituitary, we conducted same-sample multi-omics assays of sn transcriptome (snRNAseq)
104 and sn chromatin accessibility (snATACseq) in frozen *post-mortem* pituitaries from pediatric,
105 adult, and aged individuals of both sexes that had been stored in tissue banks at -80 C for an
106 average of ~10 years since donation (range 4 to 20; **Supplementary Table 1**). Because nuclei
107 isolated from the same pituitary fragment were processed for both snRNAseq and snATACseq,
108 the paired datasets, although not from the same nuclei, were sampled from the same population
109 of nuclei in each pituitary studied. Additionally, to test for tissue heterogeneity and accuracy of
110 cell type mapping across assays, and to improve inference of regulatory mechanisms, the
111 remaining sample comprising nearly the entire pituitary from one female subject was pulverized
112 and the isolated nuclei were then used to carry out: a) same-sample analysis of sn transcriptome
113 and sn chromatin accessibility, b) same-cell sn multiome analysis providing simultaneous

114 measurement of RNA expression and chromatin accessibility within each individual nucleus
115 (**Fig. 1a**).

116 All snRNAseq and snATACseq libraries generated from the same samples were pooled
117 for sequencing to reduce batch effects. Data meeting the quality control (QC) threshold were
118 obtained from a total of 76,016 nuclei for snRNAseq and 44,141 nuclei for snATACseq in paired
119 assays, and from 15,024 nuclei in the same-cell sn multiome assay (**Supplementary Tables 2**
120 **and 3**). For data analysis of a given sample processed through the same-sample sn paired assays,
121 we generated UMAPs for both snATACseq and snRNAseq datasets, each identifying cell
122 clusters by type (**Fig. 1b, Supplementary Fig. 1**). Integration of both datasets resulted in an
123 overlay UMAP showing good correspondence of the major pituitary cell types across assay
124 modalities (**Fig. 1b, Supplementary Fig. 2**). The same-cell sn multiome assay, in which each
125 cell yielded both RNAseq and ATACseq datasets (**Fig. 1c**), directly generated an integrated
126 UMAP plot (**Fig. 1d**).

127

128 **Transcriptome analysis of human pituitary cell types**

129 The same-sample paired assay snRNAseq datasets had an average of 86% of reads
130 mapped to the transcriptome and allowed for the detection of ~2,800 genes per nucleus, with
131 comparable high-quality QC metrics obtained from all samples (**Supplementary Table 2a**). In
132 the snRNAseq data analysis of individual male and female pituitary samples, cells were clustered
133 using Seurat, visualized using t-SNE representation (**Supplementary Fig. 3**), as well as
134 projected on UMAPs (**Supplementary Fig. 1**). Cell clusters were annotated manually using
135 differential RNA expression of established pituitary marker genes. Key cell type markers

136 included *FSHB*, *LHB*, and *GNRHR* for gonadotropes; *GH1* for somatotropes; *POMC* for
137 corticotropes; *DIO2* for thyrotropes^{5, 14}; *PRL* for lactotropes; and *SOX9*¹⁰, *LGR4*¹⁵, and *RBPMS*¹⁴
138 for PSCs. A list of established markers used for the assignment of each cell type as well as new
139 markers identified in our datasets are shown in **Supplementary Table 4**. The RNA counts
140 (**Supplementary Fig. 4**), mitochondrial gene content (**Supplementary Fig. 5**), and ribosomal
141 protein gene content (**Supplementary Fig. 6**) all indicated the high quality of the snRNAseq
142 data obtained from each individual donor. Cell clustering analysis revealed well-defined cell
143 clusters, including the five major hormone-producing cell types as well as several non-endocrine
144 cell types (**Supplementary Fig. 3**).

145

146 **Chromatin accessibility analysis of human pituitary cell types**

147 The same-sample paired assay snATACseq datasets generated approximately 11,000
148 DNA fragments per nucleus with an average TSS enrichment score of 5.0 and a fraction of reads
149 in called peak regions (FRIP) score of 47% (**Supplementary Table 2b**). Cells were clustered
150 and visualized using UMAP representation (**Supplementary Figs. 1,2**). Cell clusters were
151 manually annotated based on chromatin accessibility (i.e. peaks of accumulated reads) at
152 informative promoters among the same marker genes used for the RNAseq annotation (see
153 **Supplementary Table 4, Supplementary Fig. 7**). Thyrotrope cells were too poorly represented
154 to generate reliable chromatin tracks, consistent with their being the lowest abundance endocrine
155 cell type in the anterior pituitary¹⁶. Similar to the sn transcriptome analysis results, cell clustering
156 of the snATACseq data from each donor resulted in distinct cell clusters with all the major cell
157 types being identified, although a thyrotrope cluster could not be distinguished in all male
158 samples (**Supplementary Figs. 1,2**).

159

160 **Cell type identification in snRNAseq and snATACseq datasets**

161 Integration of the snRNAseq and snATACseq data from each sample was accomplished
162 by label transfer from the snRNAseq to the snATACseq data using the Seurat pipeline
163 (**Supplementary Figs. 1,2**). The major pituitary cell type clusters were detected in all individual
164 samples. Some clusters showed a gradient of expression and chromatin accessibility, resulting in
165 their distinction as separate clusters, although they were not physically distinct (lactotropes in
166 **Supplementary Fig. 3d**, corticotropes in **Supplementary Fig. 3b** and **Supplementary Fig. 1f**;
167 somatotropes in **Supplementary Fig. 3a,c,d** and **Supplementary Fig. 1d**; pituicytes in
168 **Supplementary Fig. 3e,f**; gonadotropes in **Supplementary Fig. 3a,d**).

169 To improve the resolution of human pituitary cell types and to assess inter-individual
170 variation, we merged same-sex snRNAseq datasets and color-labeled them by donor (**Fig. 2a,c**).
171 Similarly, we merged the snATACseq data from same-sex samples, and labeled them by donor
172 (**Fig. 2b,d**). In addition to the five endocrine pituitary cell types, we identified stem cells,
173 pituicytes, as well as pericytes, endothelial cells, and immune cells (macrophages, T-cells, B-
174 cells). We observed donor-to-donor heterogeneity in cell type clustering in both datasets. For
175 example, in males, separate gonadotrope, somatotrope, and lactotrope clusters were noted in both
176 RNAseq and ATACseq data, originating almost exclusively from the pediatric sample. In
177 females, one gonadotrope, one somatotrope, and one stem cell cluster were also derived from the
178 pediatric sample. The proportions of the major pituitary cell types identified by snRNAseq vs.
179 snATACseq across all samples were highly correlated, indicating an agreement of major cell
180 type assignment across the two assay modalities ($R^2 > 0.96$; **Fig. 2e**). We also saw a similar

181 distribution of the expression markers in human pituitary cell types in comparison with the same
182 markers in an adult mouse pituitary dataset (¹³, **Supplementary Fig. 7**). A sn multiome dataset
183 and a same-sample sn paired dataset were generated from the pulverized pediatric female
184 sample, which further supported the reliability of cell type assignment across the two assays
185 (**Supplementary Tables 3, 5**). All datasets are publicly available and are accessible for
186 exploration at snpituitaryatlas.princeton.edu.

187

188 **Characterization of the PSC population**

189 The stem cells from all samples identified by snRNAseq (**Fig. 2**) were re-clustered using
190 the Seurat pipeline, leading to the detection of 9 clusters, 6 of which were not well separated and
191 formed a large group (**Fig. 3a**). Three clusters that are highlighted in **Fig. 3a** corresponded to
192 lineage-committed progenitor stem cells, with each distinguished by *POMC*, *POU1F1*, and
193 *GATA3* expression, respectively (see Discussion). The remaining large group of 6 clusters
194 expressed *SOX2*, *SOX9*, and the Hippo pathway effectors *WWTR1* (a.k.a. *TAZ*) and *YAP1* (¹⁷ and
195 reviewed in ¹⁸; **Fig. 3d** and **Supplementary Fig. 8**), which are indicative of uncommitted PSCs,
196 with cluster 5 showing the highest expression for some of these markers.

197 We next examined the relationship of the PSC clusters to the sex and age of the donors
198 (**Fig. 3b,c**). The uncommitted stem cell clusters were largely separated in samples from each sex,
199 as confirmed by expression of the female-specific *XIST*¹⁹. When the male and female datasets
200 were grouped by age, all PSC subtypes were represented at all ages studied. The distribution of
201 RNA markers for progenitor and committing stem cells is shown in **Fig. 3d**. The canonical stem
202 cell markers *SOX2* and *SOX9*, as well as genes previously implicated in pituitary stem cell
203 regulation (i.e. *WWTR1*, *PITX2*, and *LGR4*; for review, see ¹⁸), were broadly expressed.

204 Interestingly, expression of *JUN* and *JUND*, which were implicated in the regulation of stemness
205 in other tissues^{20, 21}, was heterogeneous, with the highest expression associated with clusters that
206 were predominant in male samples.

207 We also compared the patterns of marker gene expression in human and mouse PSCs. As
208 expected, we detected *Sox2*, *Sox9*, *Wwtr1*, and *Yap1* across the stem cell population of both
209 species (**Fig. 3d; Supplementary Figs. 8,9**). Expression of *POU1F1* in human samples was
210 detected in a proportion of the cells in the main PSC cluster, indicating committing progenitors
211 amongst this population, as seen for *Pou1f1* in mouse, and similarly for *PAX7/Pax7* (a
212 determinant of intermediate lobe and melanotrope identity; ²²). Additional markers that were
213 either previously reported in mouse pituitary stem cells or linked to stemness, were also found in
214 human stem cells, including *WIF1*^{23, 24}, *HES1*, *NOTCH2*¹⁸, *SMAD4*²⁵, and *SMAD5*^{26, 27}
215 (**Supplementary Fig. 8**).

216 *JUN*, which was expressed in uncommitted, predominantly human male PSCs, has not
217 been proposed as a PSC marker but was previously reported to be enriched in SOX2 positive
218 cells through bulk sequencing in mouse¹⁵. We therefore examined whether *Jun* showed co-
219 expression with the stem cell marker *Sox2* by *in situ* hybridization in neonatal, juvenile male, and
220 adult male mouse pituitaries. This analysis confirmed *Jun* as a stem cell marker by identifying
221 *Jun-Sox2* double labeling in samples from all ages (**Fig. 3e** and **Supplementary Fig. 10**).
222 Overall, characterization of the heterogeneity of the PSC population from human and mouse
223 supports the existence of different subtypes of uncommitted stem cells that are distinguishable
224 from early committing lineages (see ²⁸).

225 The acquisition of both snRNAseq and snATACseq data from the same samples provides
226 high resolution analysis of the chromatin accessibility pattern of key genes within each pituitary
227 cell type and reveals potential novel regulatory domains (see ¹³). Shown in **Fig. 3f** are cell type-
228 specific gene expression and chromatin accessibility by cell type for the stemness marker *SOX2*
229 and the putative gonadotrope/thyrotrope committing cell lineage marker *GATA3*. *SOX2* was
230 expressed in stem cells and pituicytes, which both showed the highest promoter accessibility.
231 *GATA3* was expressed in gonadotropes and thyrotropes in addition to the committing stem cell
232 lineage. All three cell types also all showed more chromatin accessibility in the region of the
233 *GATA3* promoter. Other *SOX2* and *GATA3* putative cis-regulatory domains showing increased
234 accessibility in cell types showing expression are also evident. In a subsequent section, we
235 elucidate further the regulatory control of these and additional key PSC markers by modeling
236 same-cell sn multiome data.

237

238 **Diversity of PSC epigenetic programs**

239 We next studied coordinated gene expression and chromatin accessibility programs in
240 PSCs. We utilized the Pathway Level Information ExtractoR framework (PLIER) that
241 deconvolves datasets into co-varying latent variable (LV) gene sets using known pathways,
242 while not enforcing the strict orthogonality required for principal component analysis²⁹. These
243 PLIER analyses identified both RNA and chromatin accessibility LVs that were preferentially
244 expressed in each major pituitary cell type (**Supplementary Figs. 11,12**). One RNA LV was
245 stem cell-specific and highly expressed in both sexes at all ages (**Fig. 4a** for the top 30 genes,
246 and **Fig. 4b** for the top 200 genes). Projection of this PSC LV onto adult mouse pituitary

247 snRNAseq data¹³ showed conservation of this PSC transcriptome program in mouse (**Fig. 4c**).
248 To determine whether this program was also associated with altered chromatin structure in PSCs,
249 we projected this LV onto the human snATACseq data using the promoter accessibility signals
250 as the gene features. This projection showed that the LV transcriptome program was associated
251 with increased chromatin accessibility at the corresponding gene promoters (**Fig. 4d**). Analysis
252 of the snATACseq data identified a number of largely distinct accessibility programs that were
253 each most strongly activated in subjects of different ages or sex (**Supplementary Fig. 12**). The
254 complexity of PSC chromatin programs identified in this analysis may be related to the diversity
255 of the donors (see Discussion).

256 In addition to cell type-specific LVs, we also identified one chromatin accessibility LV
257 showing significantly greater activity with increasing donor age (LVage_{atac}). Shown in **Fig. 4e** is
258 a heat map of the 30 highest weighted promoters comprising this LV in each sample by cell type.
259 When the level of activity in each cell type was plotted separately across the age range studied
260 by sex, we found that all cell types showed an increase in accessibility of these promoters with
261 age, especially between the pediatric and adult samples (**Fig. 5a**). Notably, the increases in
262 accessibility in the PSCs were less pronounced in females, while almost no changes were
263 observed in males (pink lines in **Fig. 5a**.) These results suggest that this accessibility program
264 represents age-associated coordinated changes that are more prominent in differentiated cells
265 than in PSCs.

266 To further explore the relationship of PSC transcriptomes in samples from different ages,
267 we constructed a pseudotime trajectory from same-sex snRNAseq datasets using the Monocle
268 algorithm³⁰ (**Fig. 5b,c**). In females as well as in males, the region of the graph most densely
269 occupied by the pediatric PSCs was chosen as the root of the trajectory. In both sexes, pediatric

270 PSCs formed the largest group, which separated from the adult and aged PSCs. This separation
271 shows the large differences between PSC transcriptomes from pediatric and adult samples and
272 also suggests that we have not captured all transitional stages of stem cells in the samples
273 analyzed. To specify sets of genes that are dynamically regulated as cells progress along the
274 trajectory, we identified several correlated gene modules per age group in females and in males
275 (**Fig. 5d**). The top genes in the most significant modules and the trajectories of selected genes are
276 shown in **Supplementary Table 6** and **Supplementary Fig. 13**, respectively. Notably, almost
277 none of the module-defining transcripts were previously reported as PSC markers, and their roles
278 in PSC physiology over the lifespan are not known. Overall, these analyses show the relative
279 stability, an aging-related chromatin program in PSCs, and dynamic changes in the PSC
280 transcriptome with aging.

281

282 **Transcription factor and epigenetic control mechanisms of PSC genes**

283 Using snRNAseq and snATACseq datasets obtained from the same mouse pituitaries, we
284 recently reported that chromatin accessibility is a key determinant for cell type transcriptional
285 programs¹³. In comparison to same-sample datasets, same-cell sn multiome data confer vastly
286 greater statistical power for inferring the regulatory mechanisms underlying expression of
287 specific genes^{31, 32}. The matched transcriptome and chromatin accessibility data in same-cell sn
288 multiome assays allow the co-variation of chromatin accessibility and gene expression to be
289 modeled in thousands of individual cells. Additionally, not all cells within a cell type express the
290 same transcripts. Same-cell sn multiome data have the potential, for the first time, to provide

291 insight into transcription factors (TFs) and epigenetic mechanisms that shape heterogenous gene
292 expression within the same pituitary cell type.

293 To explore the role of alterations in TF expression and chromatin state in modulating key
294 PSC genes, we applied a linear modeling computational framework to the 15,024 nuclei in the
295 same-cell sn multiome dataset obtained from a pediatric female pituitary. For each target gene,
296 the linear model selects potential cis-regulatory regions comprising ATAC promoter peaks as
297 well as co-accessible distal peaks. Then, testing the co-expression of putative trans-acting
298 regulatory factors that have predicted TF binding sites in the co-accessible regions, linear
299 regression identifies the TFs and chromatin regions most significantly predictive of expression of
300 the target gene. The linear model, when used to analyze all pituitary cells (“pan pituitary cell”
301 analysis), can infer the mechanisms and factors implicated in cell type-specific expression. When
302 only cells comprising one pituitary cell type are analyzed, the linear model can generate
303 hypotheses for the mechanisms responsible for differential expression among the different cells
304 comprising this lineage.

305 We first analyzed the committed progenitor markers *POMC*, *POU1F1*, *TBX19*, and
306 *NR5A1*. The output of the linear model pipeline is the p-value that each selected cis-regulatory
307 region and each individual TF with sites in that region contribute to the expression of the target
308 gene (**Supplementary Figs. 14-17**). The TFs contributing to cell type-specific expression of
309 these marker genes using pan pituitary cell analysis included many factors that were previously
310 implicated in the differentiation of committing stem cells. For example, the *POMC* analysis
311 identified *TBX19*, which is an inducer of the *POMC*-expressing corticotrope/melanotrope
312 lineage and of *POMC* expression³³. *TCF7L2*, which was highly significant in the analyses of
313 *POU1F1* and *TBX19*, is an effector of the WNT signaling pathway, which regulates pituitary

314 growth and development³⁴. Similarly, *LEF1*, another mediator of WNT signaling (see ³⁵), was
315 also identified in the *TBX19* analysis. *ESR1* (estrogen receptor alpha) was the most significant
316 TF implicated in *NR5A1* expression. Consonant with this finding, a recent study in murine
317 gonadotrope cell lines demonstrated that estrogen-dependent binding of this nuclear receptor to a
318 newly identified enhancer region triggers *Nr5a1* expression during gonadotrope lineage
319 specification³⁶. The high significance obtained in the linear model analysis for transcriptional
320 regulators that were reported in previous research suggests that new candidates we identified
321 warrant consideration for future study. For example, the TF showing the second highest
322 significance in the pan pituitary cell analysis of *POMC* is *MNX1*, an important homeobox gene
323 previously implicated in motor neuron, pancreas, and lymphoid cell development^{37, 38, 39}.
324 Therefore, *MNX1* is an intriguing new candidate transcriptional regulator in the commitment
325 towards the corticotrope/melanotrope lineages. In addition to the identification of novel putative
326 TF regulators, when applied to all pituitary cells, the model also specifies the proximal and distal
327 regulatory sites significantly associated with expression of the target gene in the cell types
328 expressing that gene. These analyses identify previously unexplored regulatory domains in these
329 key PSC genes that show accessibility associated with gene expression and are therefore cis-
330 regulatory domain candidates (**Fig. 6** and **Supplementary Figs. 14-18**).

331 We next studied the stemness marker *SOX2* and the committing cell lineage marker
332 *GATA3*. When all pituitary cells were examined, the expression of *SOX2* within the overall stem
333 cell subtype was associated with highly significant co-accessible proximal, upstream, and
334 downstream regulatory domains (**Fig. 6a, Left**) as well as expression of TFs mapping to these
335 domains (**Fig. 6a, Right**). These results indicate that PSC-specific expression of *SOX2* depends
336 on a pattern of chromatin accessibility of regulatory domains present within these cells as well as

337 expression of the requisite regulatory factors interacting with these domains. A contrasting result
338 was obtained when applying the linear model to only PSCs to infer the regulatory circuits
339 involved in heterogeneous expression of *SOX2* within PSCs. In this analysis, cis-regulatory
340 domains correlated poorly with *SOX2* expression (**Supplementary Fig. 18, Left**), and a restricted
341 set of regulatory factors (**Supplementary Fig. 18, Right**) was implicated in the heterogeneous
342 pattern of *SOX2* expression in PSCs. These results suggest that the chromatin structure is
343 sufficient for *SOX2* expression in all PSCs and the expression within specific PSCs depends on
344 the expression of key regulatory TFs. When performing a pan pituitary cell analysis for *GATA3*,
345 we observed a pattern consonant with that of *SOX2*, with both chromatin structure and regulatory
346 factor expression being responsible for expression in PSCs (**Fig. 6b, Left, Fig. 6b, Right**).
347 However, contrary to *SOX2*, heterogeneous *GATA3* expression within PSCs was associated with
348 cis-regulatory chromatin accessibility domains, but not with expression of specific regulatory
349 factors (**Fig. 6c**). These results suggest that the regulatory proteins needed for *GATA3* expression
350 in PSCs were expressed in all of the cells, and the heterogeneous expression pattern within PSCs
351 was determined by differences in chromatin accessibility of regulatory domains between
352 *GATA3*-expressing and non-expressing PSCs. When *POMC* was analyzed only in PSCs, the
353 most significant TFs identified were E2F4⁴⁰ and TBX19, while the co-accessible regulatory
354 regions were of low significance (**Fig. 6d**). These results suggest that differential *POMC*
355 expression in committing PSCs vs. uncommitted PSCs is due to expression of these key TFs
356 more so than to alterations in chromatin accessibility at key regulatory regions.

357

358 **Discussion**

359 We generated high quality snRNAseq and snATACseq datasets from individual human
360 pituitaries, demonstrating the feasibility of sn profiling in frozen *post-mortem* samples that had
361 been stored at -80 C for as long as two decades. Analysis of these data provides insight into the
362 heterogeneity of PSCs and the regulatory mechanisms and circuits underlying the expression of
363 key PSC genes. We distinguish and characterize uncommitting and committing stem cell
364 lineages, differences related to the age and the sex of the donors, and propose diverse
365 mechanisms responsible for expression of key PSC markers.

366 Reclustering of the stem cells identified by snRNAseq data analysis distinguishes three
367 clusters consistent with committing stem cells (see **Fig. 3a**). The *POMC*-expressing cluster is
368 likely a precursor of the corticotrope/melanotrope lineages⁴¹. Another cluster expressing
369 *POU1F1* represents PSCs with the potential to commit to the somatotrope, lactotrope, and
370 thyrotrope lineages⁴². The *GATA3*-expressing cluster presumably comprises cells that are
371 committing to the gonadotrope lineage, although low expression of *NR5A1* precludes definitive
372 cell type lineage assignment as *GATA3* is also reported in thyrotropes (**Supplementary Fig. 8**)⁴³.
373 All three committing lineages were identified in both sexes. The uncommitted stem cells, which
374 formed six clusters that were not well separated, were for the most part non-overlapping in male
375 vs. female samples.

376 Our analysis identifies PSC transcriptome and epigenetic programs as well as age-related
377 differences in PSCs. We identify one RNAseq PSC LV program that is well expressed in all
378 samples assayed, conserved in mouse and associated with PSC-specific chromatin changes at the
379 promoters for the genes comprising this LV. We also identify an ATACseq LV that exhibits
380 increased accessibility with age in all pituitary cell types but shows smaller changes with age in
381 PSCs. When the snRNAseq data were analyzed by trajectory, PSCs from the pediatric samples

382 were separated from the adult and aged samples in both sexes. We find that human and mouse
383 PSCs shared similar patterns of gene expression and were characterized by the presence of
384 several subtypes of uncommitted and committed cells, suggesting a high degree of conservation
385 of this cell type in evolutionary time. However, the identification of species-specific genes might
386 signify inter-species or age-related differences, with potential implications for using the mouse
387 model for therapy development.

388 The PSC LV programs, and the complete separation of PSCs across different ages in the
389 trajectory analysis, indicate that fully characterizing the changes in PSC transcriptional and
390 epigenetic programs with aging will require analysis of additional samples over the age span.
391 Collectively, our data suggest that sex and age influence several biological processes in stem
392 cells. Additional study is warranted to further elucidate the sex and age differences that are likely
393 to have a significant impact on the development of new stem cell-based therapies.

394 The datasets generated encompass all major cell types in the human pituitary. Reliability
395 of the identification of all major cell types in the same-sample snRNAseq and snATACseq
396 datasets from both sexes and from a range of subject ages is supported by the concordance of cell
397 type proportions obtained by both assays and the confirmation of cell type identification in the
398 same-cell sn multiome data. We report gene expression and chromatin accessibility LVs that are
399 characteristic of each major pituitary cell type. Extensive data from the female pediatric pituitary
400 are provided by multiple same-sample datasets and a large same-cell sn multiome dataset. These
401 data represent a resource to address questions about the characterization and regulatory
402 mechanisms of any cell type in the human pituitary.

403 Inferences from the same-cell sn multiome dataset using the linear model provides insight
404 into the TFs and accessible chromatin sites contributing to the expression of key PSC genes. The
405 model also provides insight into the general mechanisms (TF expression, chromatin accessibility
406 differences or both) responsible for differential expression of the target PSC genes among
407 different cells. Because the model is based on detection of regulatory feature correlation with
408 target gene expression, the results obtained when PSC genes are analyzed among all pituitary
409 cells represent mechanisms implicated in target gene expression in PSCs in comparison with
410 other cell types. When the model is applied only to PSCs, the results represent hypotheses for
411 differential expression of these target genes within a subset of PSCs. For the PSC and committed
412 progenitor markers analyzed (*POMC*, *POU1F1*, *TBX19*, *NR5A1*, *SOX2*, and *GATA3*), multiple
413 chromatin accessibility sites and TFs predicted to bind to accessible sites are identified with high
414 probability as contributing to stem cell expression of these markers in comparison with other cell
415 types. This supports the formulation that the expression of each of these markers in PSCs
416 depends on epigenetic remodeling of chromatin as well as on expression of key TFs that are
417 necessary for driving gene expression.

418 Analysis of same-cell sn multiome data from the pediatric female pituitary suggests that a
419 diversity of mechanisms contribute to differential expression of marker genes among PSCs. With
420 respect to differential expression of PSC markers within PSCs, *NR5A1* and *POU1F1* show TFs
421 and chromatin sites associated with heterogeneous expression. *POMC*, *TBX19*, and *SOX2* are
422 associated with the expression of specific TFs and *GATA3* with accessibility of specific
423 regulatory sites. The pan-pituitary analysis shows the importance of both TF expression and
424 chromatin structure in the expression of key PSC genes. However, these analyses of
425 heterogenous expression within PSCs suggest that the differential expression of some markers is

426 predominantly determined by expression of key TFs in those cells, whereas the differential
427 expression of other markers depends on heterogeneity in chromatin structure.

428 A strength of this study is the multi-omic profiling of the entire pituitary at postnatal
429 stages, that we use to develop a map of the variation of PSCs between the sexes and with
430 development and aging. Additionally, to our knowledge, this is the first study to profile human
431 PSCs through ageing and to propose mechanisms for differential marker gene expression within
432 the same cell type. We demonstrate the power of same-sample and same-cell multiomics
433 analyses to further elucidate the mechanisms underlying PSC cell type and cell state in both
434 sexes and throughout the age span.

435

436 **Methods**

437

438 **Sample procurement**

439 Flash-frozen *post-mortem* human pituitaries were obtained from the National Institutes of
440 Health (NIH) NeuroBioBank, and kept at -80C until processing. See **Supplementary Table 1**
441 for information on subject sex, age, ethnicity, *post-mortem* interval (PMI), cause of death, and
442 year of collection. The tissues received varied from whole to pieces of pituitaries. All specimens
443 were obtained from deceased individuals. Donor anonymity was preserved, and guidelines were
444 followed regarding consent, protection of human subjects, and donor confidentiality.

445

446 **Nuclei isolation from pituitaries**

447 Two methods were tested for nuclei isolation. Frozen *post-mortem* human pituitaries
448 were either: 1) broken into small pieces in a frozen mortar on dry-ice, and one piece was thawed

449 on ice and prepared for nuclei extraction based on a modified protocol from⁴⁴, or 2) pulverized
450 and part of the powder used for nuclei isolation. The remainder of the pituitary was stored back
451 at -80C. Briefly, and all on ice, RNase inhibitor (NEB cat# MO314L) was added to the
452 homogenization buffer (0.32 M sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.4, 5mM CaCl₂,
453 3mM Mg(Ac)₂, 0.1% IGEPAL CA-630), 50% OptiPrep (Stock is 60% Media from Sigma; cat#
454 D1556), 35% OptiPrep and 30% OptiPrep right before isolation. Each pituitary was
455 homogenized in a Dounce glass homogenizer (1ml, VWR cat# 71000-514), and the homogenate
456 filtered through a 40 mm cell strainer. An equal volume of 50% OptiPrep was added, and the
457 gradient centrifuged (SW41 rotor at 17,792xg; 4C; 25min). Nuclei were collected from the
458 interphase, washed, resuspended either in 1X nuclei dilution buffer for snATACseq (10X
459 Genomics) or in 1X PBS/0.04% BSA for snRNAseq, and counted (Cellometer).

460

461 **SnRNAseq assay**

462 SnRNAseq was performed following the Single Cell 3' Reagents Kits V3 User
463 Guidelines (10x Genomics, Pleasanton, CA). Nuclei were filtered and counted on a Countess
464 instrument. A minimum of 1,000 nuclei were targeted (Chromium Single Cell 3' Chip kit A v2
465 PN-12036 or v3 chip kit B PN-2000060). Reverse-transcription (RT) was performed in the
466 emulsion, cDNA amplified, and libraries constructed with v3 chemistry. Libraries were indexed
467 for multiplexing (Chromium i7 Multiplex kit PN-12062).

468

469 **SnRNAseq data analysis**

470 SnRNAseq data were processed using the Cell Ranger pipeline v5.0.0, and aligned to the
471 Cell Ranger GRCh38 reference genome, introns included. Clustering and differential gene

472 expression analysis were performed using Seurat v.3.9.9.9024 and standard procedures^{45, 46}. Top
473 markers for each cluster were compared to known markers of pituitary cell types to annotate the
474 clusters; a list of the most common genes associated to each cell type is given in **Supplementary**
475 **Table 4**.

476 We used the t-SNE projection to identify the most common cross-type doublets, as well
477 as apoptotic and low-count cells as t-SNE preserves the local structure of the data better than the
478 UMAP projection. Doublet clusters appear as small, high UMI count satellites to the main
479 clusters. We verified the nature of every such group of cell barcodes by plotting their gene
480 expression of the top cell-type markers. By looking at which two gene expression programs are
481 expressed in the barcodes composing each one of these satellite clusters, we were able to identify
482 the two cell types that constitute the barcodes of these sub-clusters.

483 Apoptotic cells form their own clusters separate from the parent cluster. Several cell
484 types often merge into a single apoptotic cluster, so that not every cell type will have its
485 corresponding apoptotic cluster. These cells are characterized by low UMI counts and almost
486 exclusively spliced mRNA reads, suggesting condensation of the nuclei and arrest of
487 transcription of new mRNA.

488 Some cell-type clusters have offshoots composed of barcodes with low UMI counts.
489 Contrary to apoptotic clusters, these have a similar ratio of intronic to exonic reads as their
490 parent cluster and do not form their own cluster, but usually connect to, or appear very close to,
491 their parent cluster. These are probably experimental artifacts of slow mRNA capture. Their gene
492 expression program is the same as that of their higher UMI counterparts, but they are more
493 adversely affected by dropouts. As such, we decided to remove these low-UMI offshoots from
494 downstream analysis, together with doublet barcodes and apoptotic cells.

495

496 **SnATACseq assay**

497 SnATACseq was performed following the Chromium Single Cell ATAC Reagent Kits
498 V1 User Guide (10x Genomics, Pleasanton, CA). Nuclei were counted (Countess counter),
499 transposition was performed in 10 μ l at 37C for 60min on at least 1,000 targeted nuclei, before
500 loading of the Chromium Chip E (PN-2000121). Barcoding was performed in the emulsion (12
501 cycles) following the Chromium protocol. Libraries were indexed for multiplexing (Chromium
502 i7 Sample Index N, Set A kit PN-3000262).

503

504 **SnATACseq analysis**

505 SnATACseq data were processed using Cell Ranger-ATAC pipeline version 1.2.0, and
506 aligned to the Cell Ranger-ATAC GRCh38 reference genome. Clustering was performed using
507 Seurat/Signac versions 3.1.5/0.2.4 and standard procedures⁴⁷. We produced chromatin
508 accessibility tracks around known pituitary cell type marker genes and looked for promoter
509 accessibility of these genes to annotate the clusters.

510 Doublets, low-count, and apoptotic cells were identified in the same manner as for
511 snRNAseq data, except that for ATAC data, the UMAP projection works better and was used
512 instead. We used the number of fragments in peaks as an indicator as to whether a cell was
513 healthy or a doublet or low-count / apoptotic. Doublets were checked to possess fragments in
514 peaks associated to the main markers of both cell types. In general, we have many fewer cell
515 barcodes in the ATAC data, so doublets are also less common. Consequentially, few doublet
516 clusters were identified.

517

518 **Sn multiome assay**

519 Sn multiome was performed following the Chromium Single Cell Multiome ATAC and
520 Gene Expression Reagent Kits V1 User Guide (10x Genomics, Pleasanton, CA) on part of the
521 pulverized pediatric female sample. Nuclei were counted (Countess counter), transposition was
522 performed in 10 μ l at 37C for 60min targeting 10,000 nuclei, before loading of the Chromium
523 Chip J (PN-2000264) for GEM generation and barcoding. Following post-GEM cleanup,
524 libraries were pre-amplified by PCR, after which the sample was split into three parts: one part
525 for generating the snRNAseq library, one part for the snATACseq library, and the rest was kept
526 at -20C. SnATAC and snRNA libraries were indexed for multiplexing (Chromium i7 Sample
527 Index N, Set A kit PN-3000262, and Chromium i7 Sample Index TT, Set A kit PN-3000431
528 respectively).

529

530 **Sn multiome analysis**

531 We analyzed the pediatric female sample by sn multiome. We pooled together libraries
532 from both GEM wells and ran the Cell Ranger ARC 1.0.0 pipeline on the pooled
533 sample following 10x Genomics guidelines. Running the pipeline on each GEM well separately
534 reveals that the samples have 97 barcodes in common that are called as cells.

535 We used Seurat version 3.9.9.9024 with Signac version 1.1.0 to perform our clustering
536 analysis using a weighted shared nearest neighbor graph approach. This method identifies, for
537 each cell, its nearest neighbors based on a weighted combination of the two modalities (Gene
538 Expression & Chromatin Accessibility). We similarly use the weighted nearest neighbor graph to
539 obtain a UMAP projection of the data. The Gene Expression modality was used to identify
540 cluster cell types after determination of top markers for each cluster.

541 Apoptotic, low-count cells and doublets were also identified in a manner analogous to
542 that of snRNAseq data. Both apoptotic and low-count cells were identified as having much lower
543 counts of both their number of transcripts as well as their number of fragments overlapping
544 ATAC peaks. Apoptotic cells further have a large proportion of mitochondrial gene transcripts,
545 whereas low-count cell transcripts are dominated by background genes. Doublets, on the other
546 hand, were identified as having higher counts in both RNA and ATAC, and expressing gene
547 programs of two cell types simultaneously. Only one of the main clusters was identified as
548 doublets, and no further sub-clustering was attempted.

549

550 **Merged datasets analysis**

551 All male and female samples were merged by sex in Seurat at the UMI count level, and
552 all of the clustering analysis was repeated on the merged samples independently from the
553 beginning. We followed the same analysis steps as for individual samples. Unlike our integrated
554 samples (see later section), the merged samples do not have batch effects removed. Despite that,
555 we do not observe any systematic batch effect between our samples. We do, however, see
556 differences in gene expression from one subject to another among some specific cell types. The
557 merged samples allow us to highlight these differences in the implicated cell types.

558

559 **Quality control (QC) and sequencing of libraries**

560 Libraries were quantified by Qubit 3 fluorometer (Invitrogen) and quality was assessed
561 by Bioanalyzer (Agilent). Equivalent molar concentrations of libraries were pooled and the reads
562 were adjusted after sequencing the pools in a Miseq (Illumina). The libraries were then

563 sequenced in a Novaseq 6000 (Illumina) at the New York Genome Center (NYGC) following
564 10X Genomics recommendations.

565

566 **Mouse snRNAseq stem cell data analysis**

567 SnRNAseq data for each mouse were processed and analyzed as previously described¹³.
568 Raw reads from each mouse sample were isolated from the clusters assigned in Seurat as ‘Stem
569 cells’ using the ‘WhichCells’ function. These count tables were integrated using Seurat (v3.1.5)
570 SCTransform workflow⁴⁸, clustered at 0.5 resolution and principal component dimensions 1:15
571 were taken forward for analysis.

572

573 **Human stem cell re-clustering method**

574 Following initial clustering of the complete datasets, the ‘stem cell’ clusters were isolated
575 from each individual subject using the Seurat ‘subset’ function. To increase the number of cells
576 available for downstream analysis, the isolated stem cell datasets were merged based on the
577 approximate age of subjects. This was performed using the merge function within Seurat
578 (v3.1.5). Sample integration by identification of anchors and subsequent clustering (20 PCAs,
579 resolution 0.5) was performed using Seurat according to standard procedures^{45, 46}. Re-clustering
580 and analysis leading to identification of ‘committing’ stem cells was done as above following
581 removal of the ‘Pars Tuberalis’ cell clusters.

582

583 **RNAscope mRNA *in situ* hybridization**

584 Wildtype CD-1 murine postnatal pituitaries were dissected at P3, P15 (male), and P56
585 (male), and fixed in 10% neutral buffered formalin (Sigma) at room temperature for 16-24 hours.

586 Samples were washed in PBS and dehydrated through graded ethanol series before paraffin-
587 embedding as previously described¹⁵. Samples were sectioned at 5 μ m.

588 The RNAscope 2.5 HD Duplex assay (Advanced Cell Diagnostics) was used according to
589 manufacturer's recommendations, with the following specific probes: Mm-Jun (Cat# 453561)
590 and Mm-Sox2-C2 (Cat# 401041-C2) (Advanced Cell Diagnostics). Sections were counterstained
591 with Mayer's hematoxylin (Vector H-3404) and mounted with Vectamount Permanent Mounting
592 Medium (Vector H-5000).

593

594 **Pseudotime sn trajectory analysis**

595 Raw gene counts were extracted from each sample's "Stem Cell" cluster as previously
596 identified using Seurat (v4.0.1)⁴⁹. Due to sex differences, male and female samples were handled
597 separately. Samples of the same sex (e.g female pediatric, female adult, female aged), were
598 integrated using the functions '*SCTransform*' and '*SelectIntegrationFeatures*' in Seurat to obtain
599 the top 500 differentially expressed genes (DEGs). Monocle3 (v0.2.3.0)⁵⁰ was used for
600 pseudotime trajectory analysis and preliminary analysis revealed a bias in the Monocle trajectory
601 due to specific hormonal genes namely; *GH1*, *PRL*, *CHGB*, *POMC*, *LHB*, *FSHB* and *CGA*.
602 Therefore, these genes were regressed out of the top 500 DEGs. Monocle objects were generated
603 by combining the 3 samples of each sex using the respective top 500 DEGs. The trajectory was
604 calculated by merging partitions with the root chosen based on the earliest timepoint available
605 for each sex. To find gene modules changing over pseudotime, the '*graph_test*' function was
606 carried out using the neighbor_graph = "principal_graph" parameter with a resolution of 0.8 for
607 '*find_gene_modules*' function. The top 4 enriched modules for each age in each sex were

608 highlighted and examined further because they showed the highest variability between age
609 groups.

610

611 **PLIER data analysis**

612 To examine more deeply the trends in gene expression of assigned cell types across
613 samples and data types, we treated each sc dataset as a collection of bulk datasets for given
614 labeled cell types. Each cell type was then treated as a separate bulk measurement within each
615 sample. For snATACseq data, peak counts for a given gene were generated by selecting the peak
616 closest to the transcription start site (TSS). These peak counts per gene were then collected into
617 single bulk measurements for each cell type in each sample. We focused specifically on six
618 relevant cell types in the pituitary: corticotropes, gonadotropes, lactotropes, somatotropes,
619 stem/progenitor cells, and thyrotropes. For the snRNAseq dataset, this process generated 36 bulk
620 measurements over six samples (three females and three males), and for the snATACseq dataset,
621 we generated 35 bulk measurements as thyrotropes were not identified in the male adult
622 snATACseq sample. We applied PLIER²⁹, which finds patterns in count data that are associated
623 with known prior information (such as Reactome and Kegg), focusing on the 2000 genes with
624 the highest standard deviation in count values across the bulk measurements in each set of
625 samples. PLIER was run on each set of samples separately with LVs generated on the bulk
626 measurements in an unsupervised fashion. LVs were then curated to find patterns relevant to
627 individual cell types as well as sample-wide trends such as sex-based differences. Statistical
628 significance of LVs was computed through the Kruskal-Wallis non-parametric test for multiple
629 groups as part of the stat_compare_means R method. Comparisons between LVs within and

630 across datatypes were achieved by comparing the overlap of the 200 genes most associated with
631 a given LV.

632 B is a PLIER-derived expression value for the genes associated with a given LV across
633 the different samples. It can be treated similar to average expression, weighted by gene
634 association with the LV. Technically, B is a matrix of size #LVs x #Samples. It is one of two
635 matrices in PLIER, along with Z of size # of genes x #LVs. The goal of PLIER is to find values
636 of B and Z that minimize the equation $\|Y - Z^*B\|$ where Y is our data matrix of size #genes x
637 #samples. So PLIER finds a suitable number of LVs that can be used to connect the genes and
638 samples and accurately estimate our data matrix.

639 For the boxplot statistical analysis (**Supplementary Fig.12**), ggboxplot generates a
640 boxplot with the center equal to the 50th percentile, the bounds of the box are the 25th and 75th
641 percentile and the bounds of the whiskers are the smallest/largest values 1.5 times the
642 interquartile range below the 25th percentile or above the 75th percentile, respectively.

643

644 **Sn data integration**

645 The snRNAseq and snATACseq data were integrated in a reference-query based manner,
646 mainly using the “FindTransferAnchors” and “TransferData” functions from the Seurat v3
647 package^{45, 46}. The snRNAseq datasets were used as the reference and the other modalities were
648 integrated to them. To integrate snATACseq to snRNAseq, the peak-by-cell accessibility matrix
649 was converted to a gene-by-cell activity matrix based on the chromatin accessibility within each
650 gene’s gene body and a 2kb upstream region, under the assumption that chromatin accessibility
651 and gene expression were positively correlated. The variable features from the snRNAseq data

652 were used to find the anchors and the snATACseq data in the LSI low-dimensional embedding
653 were used to transfer the data from snRNAseq to snATACseq.

654

655 **Linear modeling analysis**

656 The regulatory model of gene expression from the sn multiome dataset was constructed
657 for each target gene with multiple steps: 1) A list of potential regulatory genomic regions were
658 selected. They included: a) any ATAC peaks that overlaped with the TSS +/- 2kb region, b)
659 distal peaks that were no more than 500kb away from the TSS and were co-accessible with any
660 of the peaks in a). Co-accessibility scores were calculated using the Cicero package⁵¹ with
661 default parameters, and a cutoff of 0.25 for the co-accessibility scores were used to select co-
662 accessible peaks. 2) A list of potential regulatory TFs was selected by scanning for TF binding
663 sites in the selected genomic regions using the “matchMotifs” function (with a p value cutoff of
664 5e-5) from the r package “motifmatchr” and the position weight matrices (PWMs) from the
665 JASPAR CORE database. 3) Linear regression was used to model the target gene’s expression
666 across cells as a function of selected TFs’ expression and ATAC peaks’ openness, and the
667 coefficients from the regression were used to measure the importance of each TF and genomic
668 region. SCTranform⁴⁸ normalized RNA counts and TFIDF normalized ATAC peak counts were
669 used in the regression.

670

671 **Statistics**

672 In **Fig. 5a**, to calculate the statistical significance of expression or accessibility changes
673 within a given latent variable, we applied two-way ANOVA for multiple group testing and
674 Tukey test for pairwise comparisons. Each test was applied to female and male samples

675 separately. In both cases, we applied the R statistical functions *aov* and *TukeyHSD* with the
676 additive model *Expression* ~ 'Cell Type' + 'Age Group' for the calculations.

677 In **Supplementary Figs. 11a** and **12a**, the hierarchical clustering of the LV B scores was
678 accomplished through the default complete linkage method utilized by the R function *pheatmap*.

679 For the boxplots analysis in **Supplementary Fig. 12c**, the analysis was done with n=3
680 independent subjects per sex and statistical analysis using the Wilcoxon ranked-sum test.

681 For **Fig. 6** and **Supplementary Figs. 15-19**, the P-values of peaks and the P-values of
682 the TFs were both obtained by running a linear regression ("lm" function in R) on 9,151 cells
683 (for pan-pituitary results) and 1,623 cells (for stem cell specific results). In addition, for the TFs
684 statistical analysis, the TFs are presented only if their Bonferroni-corrected P-values < 0.05.
685 Detailed statistics (such as t values of linear regression) are provided in **Supplementary Table**
686 **8**.

687

688 **Data availability**

689 The datasets (snRNAseq, snATACseq, sn multiome) generated in the present study are deposited
690 in GEO (accession # GSE178454). The sn human pituitary multi-omics atlas can be browsed via
691 a web-based portal accessible at snpituitaryatlas.princeton.edu. All datasets will also be
692 deposited with the Human Cell Atlas.

693

694 **Code availability**

695 Any computational code used in the paper is available upon request.

696

697 **Acknowledgements**

698 This work was supported by funding from the National Institute of Health (NIH) Grant
699 DK46943 (SCS), Medical Research Council (MRC) Grant MR/T012153/1 (CLA), and Canadian
700 Institutes of Health Research Project Grants PJT-162343 and -169184 (DJB). TLW was funded
701 by King's College London as part of the "Cell Therapies and Regenerative Medicine" Four-Year
702 Welcome Trust PhD Training Programme. We acknowledge the New York Genome Center for
703 sequencing. Human tissue was obtained from the NIH NeuroBioBank. This work was supported
704 in part through the computational and data resources and staff expertise provided by Scientific
705 Computing at the Icahn School of Medicine at Mount Sinai.

706

707 **Author contributions**

708 ZZ, MZ, GRS, VY, and OGT contributed analytic tools and analyzed data; TLW
709 contributed analytic tools, analyzed data, and performed research; NM, VDN, NS, MAA, and
710 MV performed research; HP drafted the manuscript; SCS designed the study, analyzed,
711 interpreted data, and drafted the manuscript; CLA, JLT and DJB analyzed, interpreted data, and
712 drafted the manuscript; FRZ designed the study, performed research, analyzed and interpreted
713 data, drafted the manuscript. All authors edited the manuscript and approved its final version.

714

715 **Competing interests**

716 The authors declare no competing interests.

717

718 **Figure legends:**

719

720 **Figure 1: Experimental design for human pituitary cell type identification**

721 **a.** Schematic of the overall experimental workflow, from procurement of the frozen pituitaries to
722 sn data analysis. **b.** Schematic summarizing sn data integration. For each sample, the
723 snATACseq dataset (colored dots UMAP) was integrated with the snRNAseq dataset (black
724 contours UMAP) to generate an integrated multi-omics overlay UMAP identifying cell types. On
725 the UMAP, cell types are color-coded and designated with a 2- to 3-letter code, as indicated on
726 the bottom key. The female pediatric pituitary sample is represented as an example. All
727 integrated samples are presented in **Supplementary Figs. 1** and **2**. **c.** Schematic of the
728 comparison between sn paired assays (same-sample sn multi-omics) (*i*) and sn mutiome assay
729 (same-cell) (*ii*). **d.** Same-cell sn multiome UMAP from the female pediatric sample (see
730 **Supplementary Table 1**).

731

732 **Figure 2: Merged analysis of same-sex human pituitary**

733 **a-d.** t-SNE representation of sn transcript expression (**a**, males; **c**, females) and of sn chromatin
734 accessibility (**b**, males; **d**, females) in the merged same-sex samples, with labeling by age of the
735 subject in each sex. Individual subjects are color-coded as indicated. Each cluster is identified by
736 a letter code as defined in **Fig.1**. Donor-related information is provided in **Supplementary Table**
737 **1.** **e.** Correlation between the cell type proportions identified by snRNAseq vs. snATACseq for
738 all samples (males and females). The linear regression is plotted. Pituitary cell types are color-
739 coded and the key is provided on the right.

740

741 **Figure 3: Identification of human stem cell sub-clusters by snRNAseq**

742 **a.** UMAP showing the stem cell cluster identification based on the snRNAseq data from the six
743 merged human pituitary samples. Each cell cluster is color-coded and numbered. Lineage-

744 committed progenitor stem cells are circled. **b.** UMAPs identifying all color-coded stem cell sub-
745 clusters in females and males. The feature plot on the right shows *XIST* expression, highlighting
746 the female samples. **c.** UMAPs identifying all color-coded stem cell sub-clusters in the pediatric,
747 adult, and aged subjects. **d.** Feature plots depicting the expression distribution of key stem cell
748 marker genes and of cell lineage commitment marker genes among the various clusters. A scale
749 is included for each feature plot. All scales are similar except for *POMC* due to background gene
750 expression. Additional gene feature plots are presented in **Supplementary Fig. 8.** **e.**
751 Colocalization of *Sox2* (red) and *Jun* (blue) transcripts in a wild-type P56 CD-1 male adult
752 mouse pituitary. Scale bar is 200 μ m. AL: anterior lobe; IL: intermediate lobe; PP: posterior
753 pituitary. *Left*, full image. *Right*, magnification of the boxed region in the left panel. Arrows
754 highlight specific cells with colocalization of *Sox2* and *Jun*. Refer to **Supplementary Fig. 10** for
755 *Sox2* and *Jun* colocalization at P3 and P15. **f.** Gene expression analysis (violin plots at the right
756 of each figure) and chromatin accessibility tracks analysis for *SOX2* (*Left*) and *GATA3* (*Right*) in
757 all pituitary cell types from the sn multiome dataset generated from the pediatric female. The
758 gene structure is presented below the tracks.

759
760 **Figure 4: Characterization of coordinated gene expression and chromatin accessibility**
761 **programs in human pituitary cell types**

762 **a, b.** Heatmap of the levels of gene expression for the top human PSC LV (LV_{sc_{RNA}}) for each cell
763 type and donor, top 30 genes are shown in **(a)** and top 200 genes in **(b)**. Each pituitary sample is
764 indicated at the top. In the scale bars, red signifies the highest level of RNA expression or
765 chromatin accessibility. Pd, pediatric; Ad, adult; Ag, aged pituitary. **c.** Heatmap showing the top
766 200 genes associated with the human LV_{sc_{RNA}} applied to the murine snRNAseq dataset¹³. **d.**

767 Heatmap showing the top 200 genes associated with the human LVsc_{rna} applied to the human
768 snATACseq datasets. **(a, b, c, d)** Cell type and subject color-coding are provided on the bottom
769 key. Refer to **Supplementary Table 1** for donor-related information. Additional LV analyses are
770 presented in **Supplementary Figs. 11 and 12**.

771

772 **Figure 5: Age-associated chromatin accessibility and transcriptome pseudotime trajectory**
773 **analysis**

774 **a.** Heatmap showing the chromatin accessibility levels of the top 30 genes in the human age-
775 dependent LV (LVage_{atac}). Cell type and subject color-coding are provided on the bottom of **Fig.**
776 **4.** Refer to **Supplementary Table 1** for donor-related information. Additional LV analyses are
777 presented in **Supplementary Figs. 11 and 12**. **b.** Plot showing the overall changes in chromatin
778 accessibility for all pituitary cell types over age for the females (*Left*) and the males (*Right*).
779 Pituitary cell types are color-coded. The same cell types are linked with lines over age of the
780 subjects. **c.** UMAP showing the trajectory within the stem cell cluster with samples color-coded
781 by age for female (*Top*) and male (*Bottom*) samples. **d.** Pseudotime trajectory analysis for the
782 female (*Top*) and male (*Bottom*) samples. The trajectories from each starting point head to the
783 older samples. The color scale is shown for the pseudotime trajectories. **e.** Gene modules
784 identified with pseudotime and showing changes over age. Monocle 3 identified groups of genes
785 that change over as a function of pseudotime per sex. Trajectory variable genes were grouped
786 into modules which were then plotted on a heatmap to show the relative expression of each gene
787 module, within a sex, in each age group. The top 4 enriched modules for each age group are
788 labelled, with module 1 being the most highly enriched in each age. Pd1-4 indicates the Pediatric
789 top 4 modules, Ad1-4 represents the Adult enriched modules, and Ag1-4 marks the Aged

790 samples top 4 modules. Blue-red on the color scale represents low-high relative expression levels
791 (z-transformed mean expression) of gene modules. See **Supplementary Fig. 13** for selected
792 gene trajectories within specific modules. See **Supplementary Table 6** for the top genes per
793 modules.

794

795 **Figure 6: Linear model predicting the chromatin accessibility mechanisms and TFs**
796 **contributing to PSC gene expression**

797 **a.** Linear modeling analysis of all pituitary cells (“pan pituitary cell”) infers the chromatin
798 accessibility and the TFs involved in stem cell-specific *SOX2* expression (*Left*, top track is the
799 contribution of each peak to gene expression measured by -log(P-value), and bottom tracks are
800 the TFs binding sites). The individual contribution of each predicted TF to *SOX2* expression is
801 shown as -log(P-values, *Right*). See **Supplementary Fig. 18** for *SOX2* analysis in stem cells
802 only. **b.** Pan pituitary cell analysis infers the chromatin accessibility and the TFs involved in
803 stem cell-specific *GATA3* expression (*Top*, top track is the contribution of each peak to gene
804 expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The
805 individual contribution of each predicted TF to *GATA3* expression is shown as -log(P-values)
806 (*Right*). **c.** Linear modeling analysis in stem cells only infers the chromatin accessibility and the
807 TFs involved in the differential expression of *GATA3* expression within the stem cell population.
808 No TFs are predicted to contribute to *GATA3* expression in stem cells. **d.** Linear modeling
809 analysis in stem cells only infers the chromatin accessibility and the TFs involved in the
810 differential expression of *POMC* expression (*Left*, top track is the contribution of each peak to
811 gene expression measured by -log(P-value), and bottom tracks are the TFs binding sites). The

812 individual contribution of each predicted TF to *POMC* expression is shown as log(P-values)
813 (*Right*). See **Supplementary Fig. 17** for pan pituitary cell analysis of *POMC* expression.

814

815 **REFERENCES:**

816

- 817 1. Morris SA. The evolving concept of cell identity in the single cell era. *Development* **146**,
818 (2019).
- 819 2. Tanay A, Regev A. Scaling single-cell genomics from phenomenology to mechanism.
820 *Nature* **541**, 331-338 (2017).
- 821 3. Griffiths JA, Scialdone A, Marioni JC. Using single-cell genomics to understand
822 developmental processes and cell fate decisions. *Mol Syst Biol* **14**, e8046 (2018).
- 823 4. Han X, *et al.* Construction of a human cell landscape at single-cell level. *Nature* **581**,
824 303-309 (2020).
- 825 5. Zhang S, *et al.* Single-cell transcriptomics identifies divergent developmental lineage
826 trajectories during human pituitary development. *Nat Commun* **11**, 5275 (2020).
- 827 6. Project E. ENCODE: Encyclopedia of DNA Elements.) (2021).
- 828 7. Consortium EP, *et al.* Expanded encyclopaedias of DNA elements in the human and
829 mouse genomes. *Nature* **583**, 699-710 (2020).
- 830 8. Castinetti F, Davis SW, Brue T, Camper SA. Pituitary stem cell update and potential
831 implications for treating hypopituitarism. *Endocr Rev* **32**, 453-471 (2011).
- 832 9. Andoniadou CL, *et al.* Sox2(+) stem/progenitor cells in the adult mouse pituitary support
833 organ homeostasis and have tumor-inducing potential. *Cell Stem Cell* **13**, 433-445 (2013).
- 834 10. Rizzoti K, Akiyama H, Lovell-Badge R. Mobilized adult pituitary stem cells contribute to
835 endocrine regeneration in response to physiological demand. *Cell Stem Cell* **13**, 419-432
836 (2013).
- 837 11. Vankelecom H. Pituitary Stem Cells: Quest for Hidden Functions. In: *Stem Cells in*
838 *Neuroendocrinology* (eds Pfaff D, Christen Y) (2016).
- 839 12. Russell JP, Lodge EJ, Andoniadou CL. Basic Research Advances on Pituitary Stem Cell
840 Function and Regulation. *Neuroendocrinology* **107**, 196-203 (2018).

853 13. Ruf-Zamojski F, *et al.* Single nucleus multi-omics regulatory landscape of the murine
854 pituitary. *Nat Commun* **12**, 2677 (2021).

855

856 14. Cheung LYM, *et al.* Single-Cell RNA Sequencing Reveals Novel Markers of Male
857 Pituitary Stem Cells and Hormone-Producing Cell Types. *Endocrinology* **159**, 3910-3924
858 (2018).

859

860 15. Russell JP, *et al.* Pituitary stem cells produce paracrine WNT signals to control the
861 expansion of their descendant progenitor cells. *Elife* **10**, (2021).

862

863 16. Ben-Shlomo A, Liu NA, Melmed S. Somatostatin and dopamine receptor regulation of
864 pituitary somatotroph adenomas. *Pituitary* **20**, 93-99 (2017).

865

866 17. Lodge EJ, *et al.* Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is
867 controlled by the LATS/YAP/TAZ cascade. *Elife* **8**, (2019).

868

869 18. Cox B, Roose H, Vennekens A, Vankelecom H. Pituitary stem cell regulation: who is
870 pulling the strings? *J Endocrinol* **234**, R135-R158 (2017).

871

872 19. Loda A, Heard E. Xist RNA in action: Past, present, and future. *PLoS Genet* **15**,
873 e1008333 (2019).

874

875 20. Semba T, Sammons R, Wang X, Xie X, Dalby KN, Ueno NT. JNK Signaling in Stem
876 Cell Self-Renewal and Differentiation. *Int J Mol Sci* **21**, (2020).

877

878 21. Pagin M, *et al.* Sox2 controls neural stem cell self-renewal through a Fos-centered gene
879 regulatory network. *Stem Cells*, (2021).

880

881 22. Budry L, *et al.* The selector gene Pax7 dictates alternate pituitary cell fates through its
882 pioneer action on chromatin remodeling. *Genes Dev* **26**, 2299-2310 (2012).

883

884 23. Schluter H, Stark HJ, Sinha D, Boukamp P, Kaur P. WIF1 is expressed by stem cells of
885 the human interfollicular epidermis and acts to suppress keratinocyte proliferation. *J
886 Invest Dermatol* **133**, 1669-1673 (2013).

887

888 24. Poggi L, Casarosa S, Carl M. An Eye on the Wnt Inhibitory Factor Wif1. *Front Cell Dev
889 Biol* **6**, 167 (2018).

890

891 25. Karlsson G, *et al.* Smad4 is critical for self-renewal of hematopoietic stem cells. *J Exp
892 Med* **204**, 467-474 (2007).

893

894 26. Avery S, Zafarana G, Gokhale PJ, Andrews PW. The role of SMAD4 in human
895 embryonic stem cell self-renewal and stem cell fate. *Stem Cells* **28**, 863-873 (2010).

896

897 27. Kandyba E, Hazen VM, Kobiak A, Butler SJ, Kobiak K. Smad1 and 5 but not Smad8
898 establish stem cell quiescence which is critical to transform the premature hair follicle
899 during morphogenesis toward the postnatal state. *Stem Cells* **32**, 534-547 (2014).

900

901 28. Haston S, Manshaei S, Martinez-Barbera JP. Stem/progenitor cells in pituitary organ
902 homeostasis and tumourigenesis. *J Endocrinol* **236**, R1-R13 (2018).

903

904 29. Mao W, Zaslavsky E, Hartmann BM, Sealfon SC, Chikina M. Pathway-level information
905 extractor (PLIER) for gene expression data. *Nat Methods* **16**, 607-610 (2019).

906

907 30. Trapnell C, *et al.* The dynamics and regulators of cell fate decisions are revealed by
908 pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-386 (2014).

909

910 31. Cao J, *et al.* Joint profiling of chromatin accessibility and gene expression in thousands of
911 single cells. *Science* **361**, 1380-1385 (2018).

912

913 32. Ma S, *et al.* Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and
914 Chromatin. *Cell* **183**, 1103-1116 e1120 (2020).

915

916 33. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit
917 determines alternate fates during pituitary cell differentiation. *Genes Dev* **17**, 738-747
918 (2003).

919

920 34. Brinkmeier ML, *et al.* TCF and Groucho-related genes influence pituitary growth and
921 development. *Mol Endocrinol* **17**, 2152-2161 (2003).

922

923 35. Kioussi C, *et al.* Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating
924 cell-type-specific proliferation during development. *Cell* **111**, 673-685 (2002).

925

926 36. Pacini V, Petit F, Querat B, Laverriere JN, Cohen-Tannoudji J, L'Hote D. Identification
927 of a pituitary ERalpha-activated enhancer triggering the expression of Nr5a1, the earliest
928 gonadotrope lineage-specific transcription factor. *Epigenetics Chromatin* **12**, 48 (2019).

929

930 37. Vult von Steyern F, Martinov V, Rabben I, Nja A, de Lapeyriere O, Lomo T. The
931 homeodomain transcription factors Islet 1 and HB9 are expressed in adult alpha and
932 gamma motoneurons identified by selective retrograde tracing. *Eur J Neurosci* **11**, 2093-
933 2102 (1999).

934

935 38. Harrison KA, Druey KM, Deguchi Y, Tuscano JM, Kehrl JH. A novel human homeobox
936 gene distantly related to proboscipedia is expressed in lymphoid and pancreatic tissues. *J
937 Biol Chem* **269**, 19968-19975 (1994).

938

939 39. Li H, Arber S, Jessell TM, Edlund H. Selective agenesis of the dorsal pancreas in mice
940 lacking homeobox gene Hlx9. *Nat Genet* **23**, 67-70 (1999).

941

942 40. Hsu J, *et al.* E2F4 regulates transcriptional activation in mouse embryonic stem cells
943 independently of the RB family. *Nat Commun* **10**, 2939 (2019).

944

945 41. Budry L, *et al.* Related pituitary cell lineages develop into interdigitated 3D cell
946 networks. *Proc Natl Acad Sci U S A* **108**, 12515-12520 (2011).

947

948 42. Li S, Crenshaw EB, 3rd, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG.
949 Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-
950 domain gene pit-1. *Nature* **347**, 528-533 (1990).

951

952 43. Charles MA, *et al.* Pituitary-specific Gata2 knockout: effects on gonadotrope and
953 thyrotrope function. *Mol Endocrinol* **20**, 1366-1377 (2006).

954

955 44. Mathys H, *et al.* Single-cell transcriptomic analysis of Alzheimer's disease. *Nature* **570**,
956 332-337 (2019).

957

958 45. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
959 transcriptomic data across different conditions, technologies, and species. *Nat Biotechnol*
960 **36**, 411-420 (2018).

961

962 46. Stuart T, *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902
963 e1821 (2019).

964

965 47. Stuart T, Srivastava A, Lareau C, Satija R. Multimodal single-cell chromatin analysis
966 with Signac. *bioRxiv*, 2020.2011.2009.373613 (2020).

967

968 48. Hafemeister C, Satija R. Normalization and variance stabilization of single-cell RNA-seq
969 data using regularized negative binomial regression. *Genome Biol* **20**, 296 (2019).

970

971 49. Hao Y, *et al.* Integrated analysis of multimodal single-cell data. *bioRxiv*,
972 2020.2010.2012.335331 (2020).

973

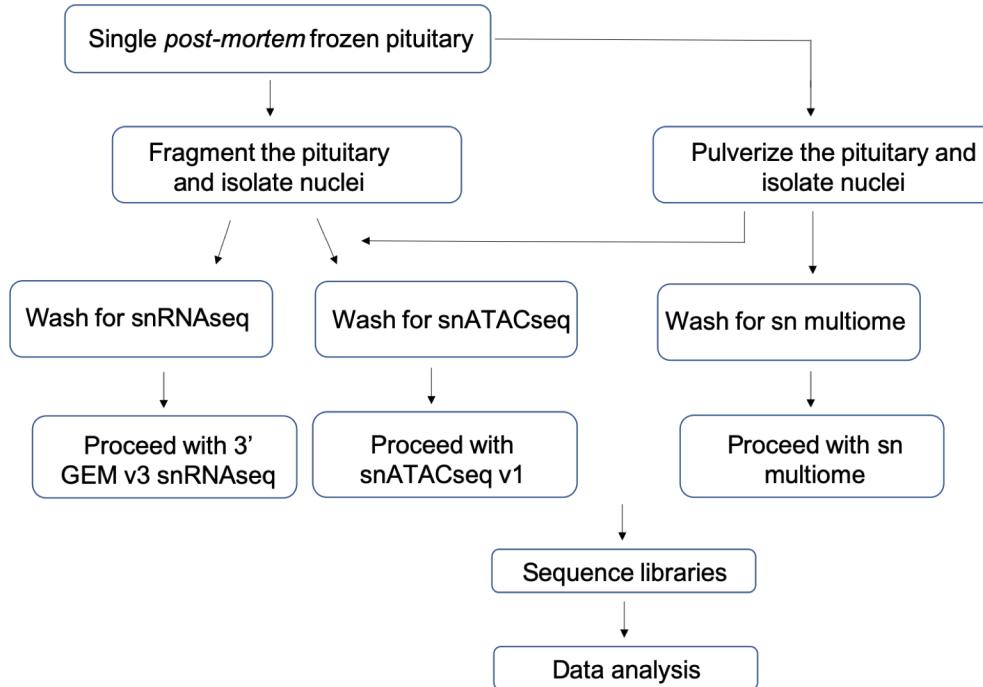
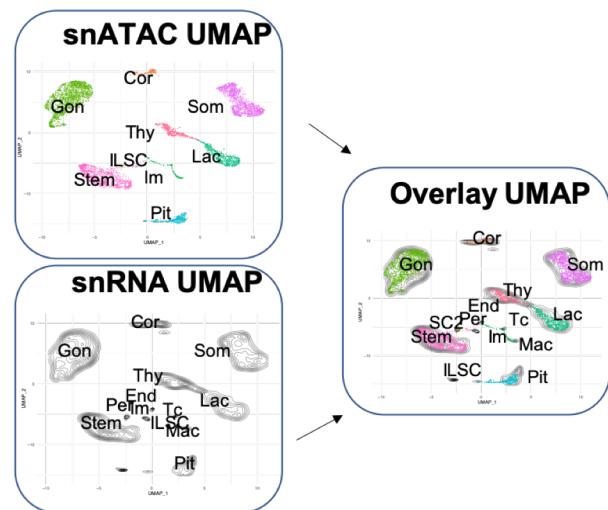
974 50. Cao J, *et al.* The single-cell transcriptional landscape of mammalian organogenesis.
975 *Nature* **566**, 496-502 (2019).

976

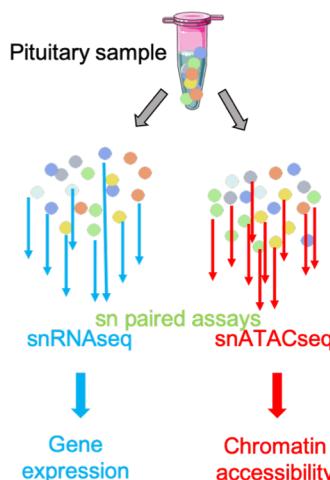
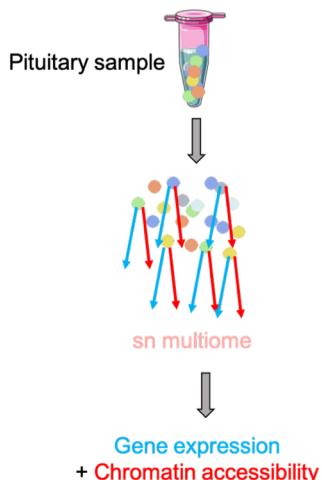
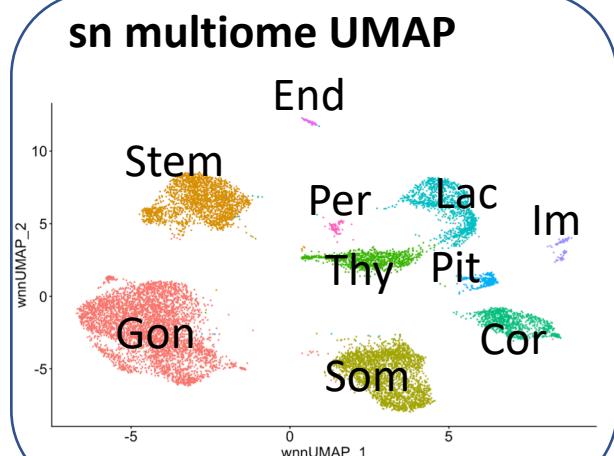
977 51. Pliner HA, *et al.* Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell
978 Chromatin Accessibility Data. *Mol Cell* **71**, 858-871 e858 (2018).

979

980

a**b.**

- Corticotropes (Cor)
- Endothelial cells (End)
- Intermediate lobe stem cells (ILSC)
- Gonadotropes (Gon)
- Immune cells (Im)
- Lactotropes (Lac)
- Macrophages (Mac)
- Pericytes (Per)
- Pituicytes (Pit)
- Stem cells 2 (SC2)
- Somatotropes (Som)
- Stem cells (Stem)
- T cells (TC)
- Thyrotropes (Thy)

C. i. sn paired assays**ii. sn multiome assay****d.****Figure 1**

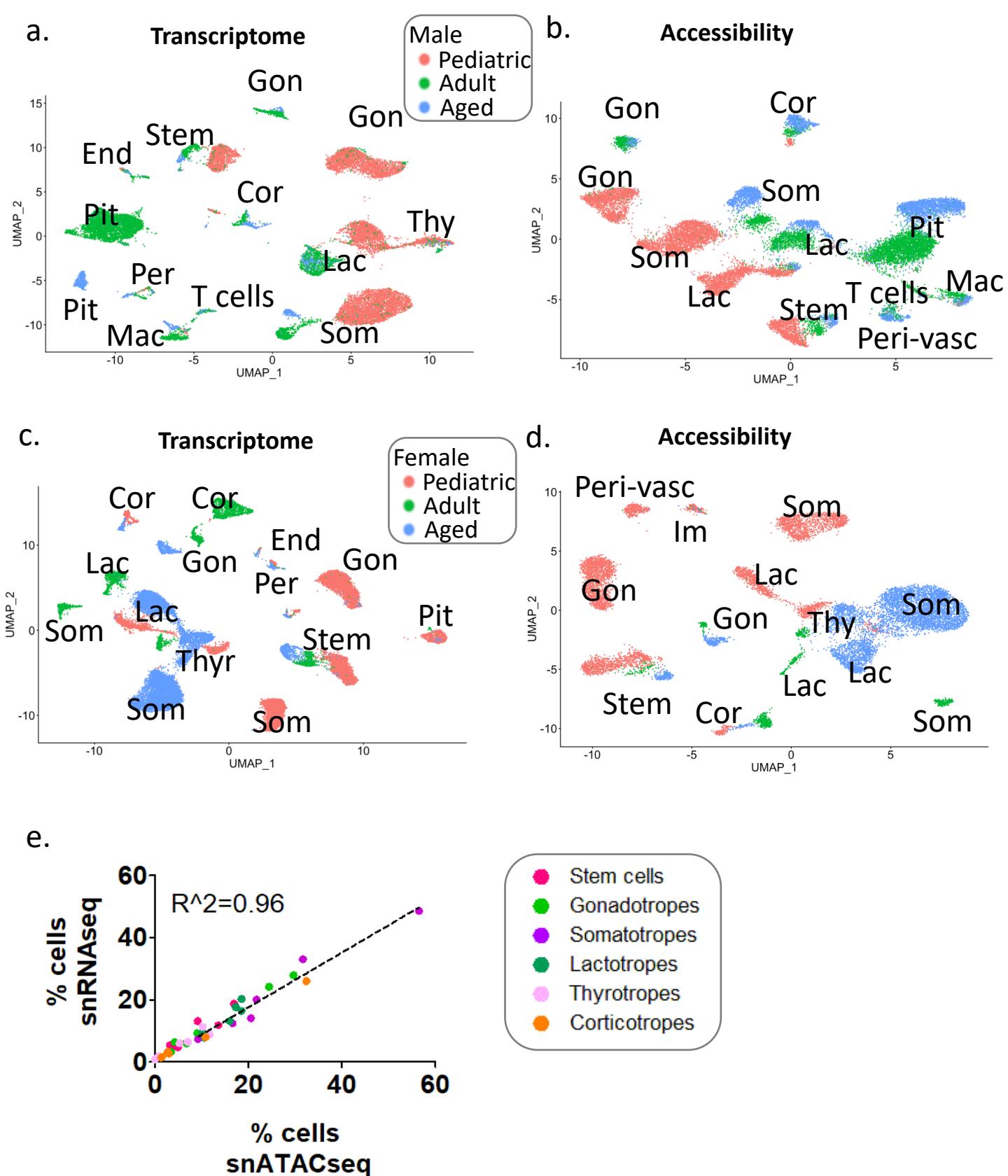


Figure 2

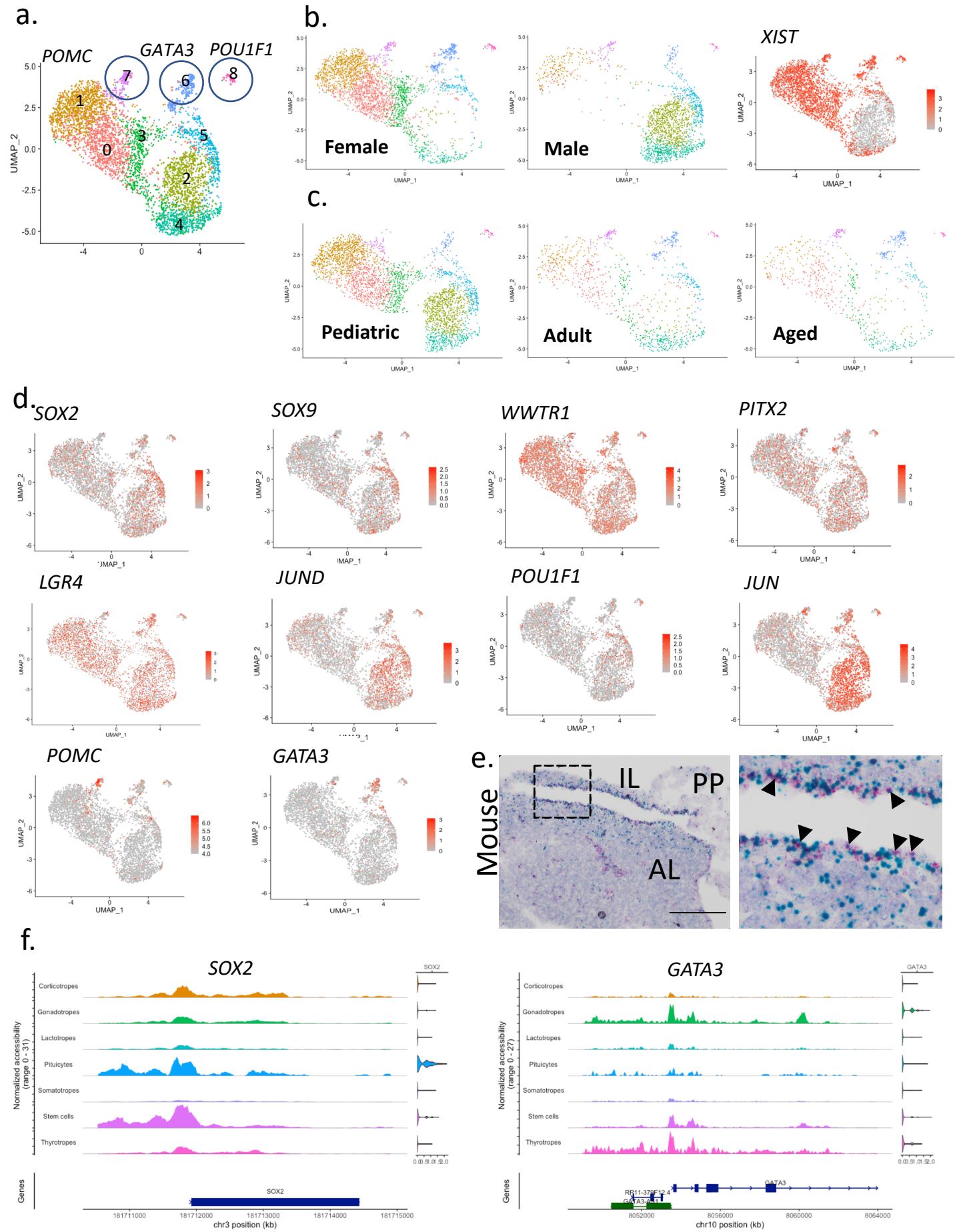


Figure 3

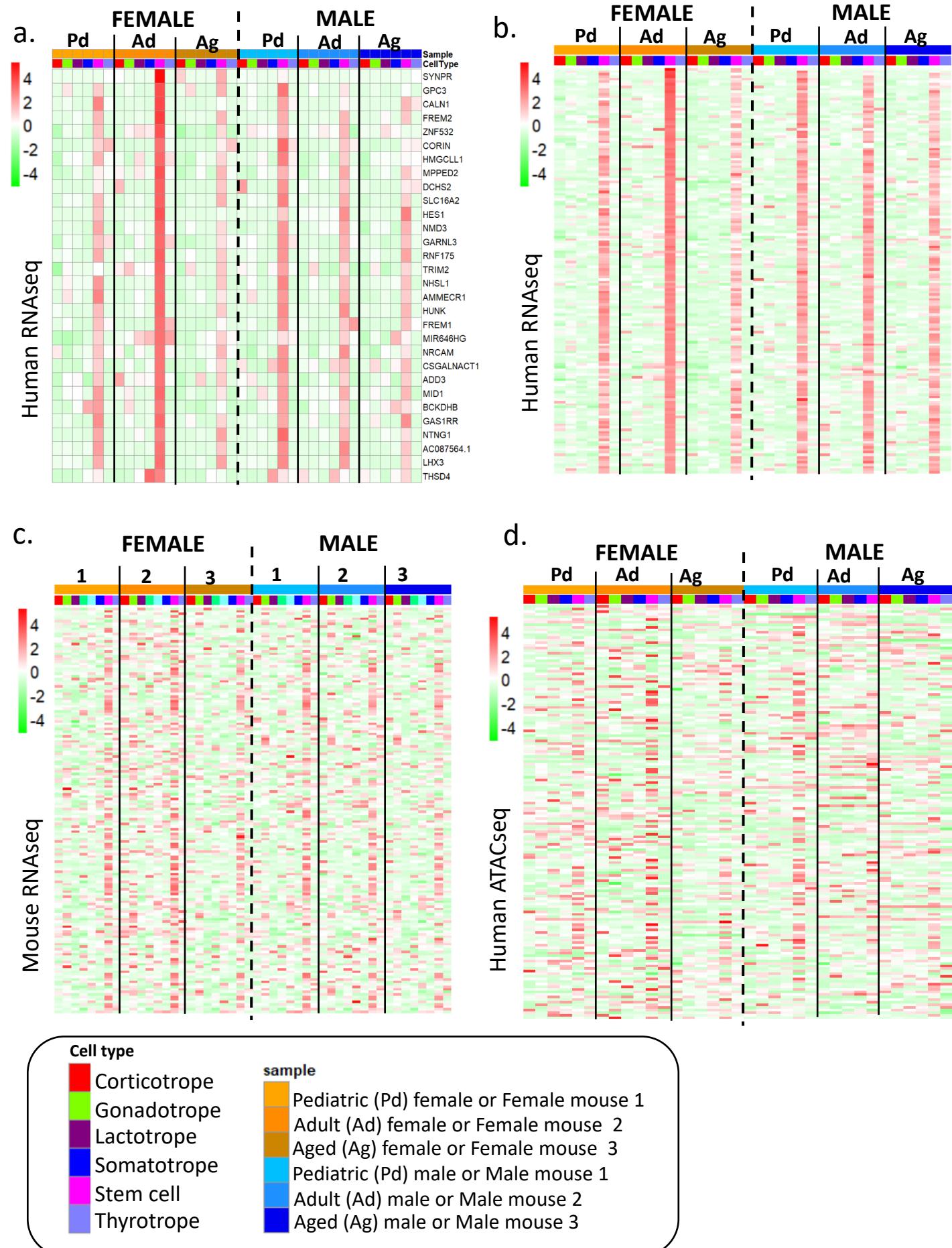


Figure 4

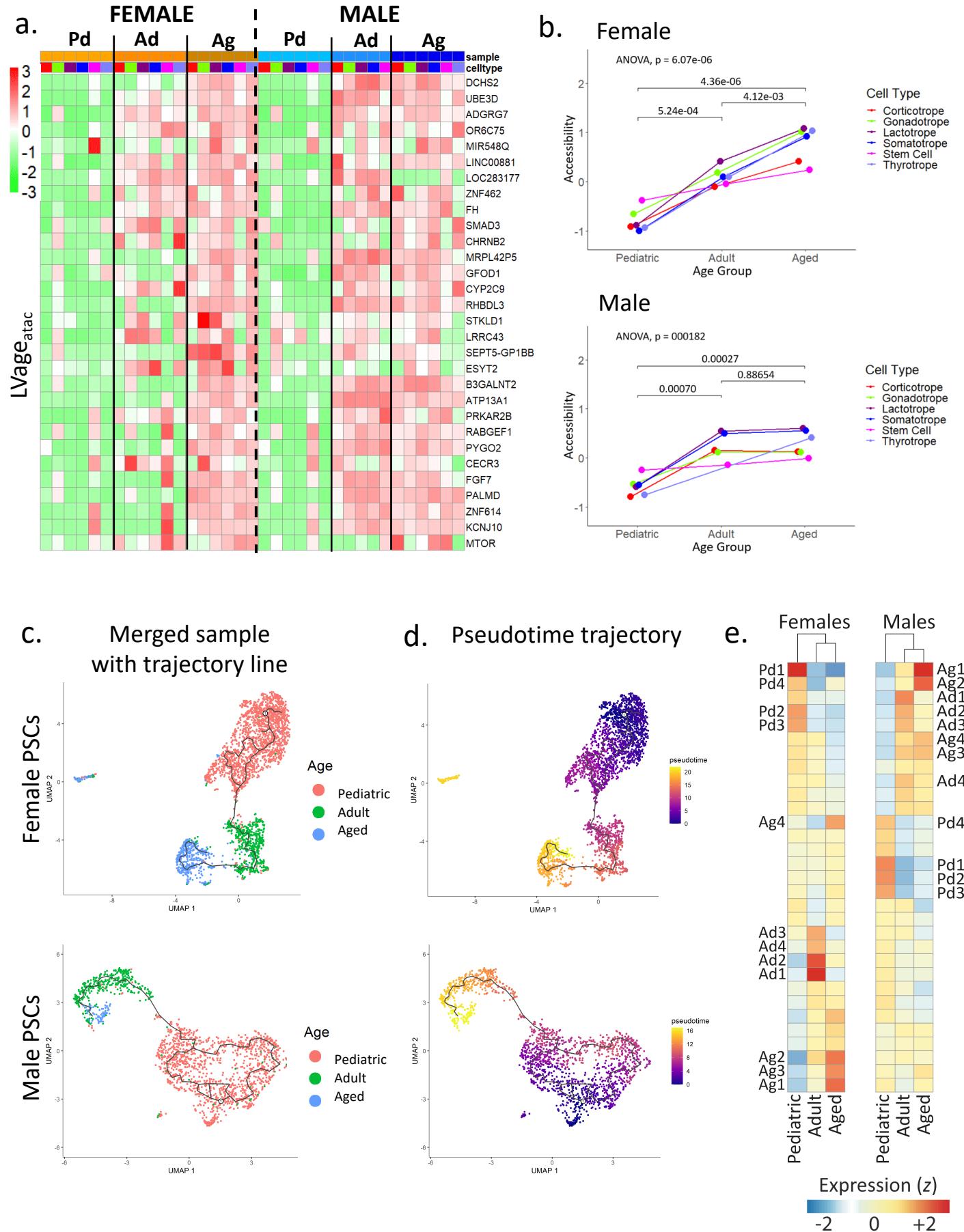
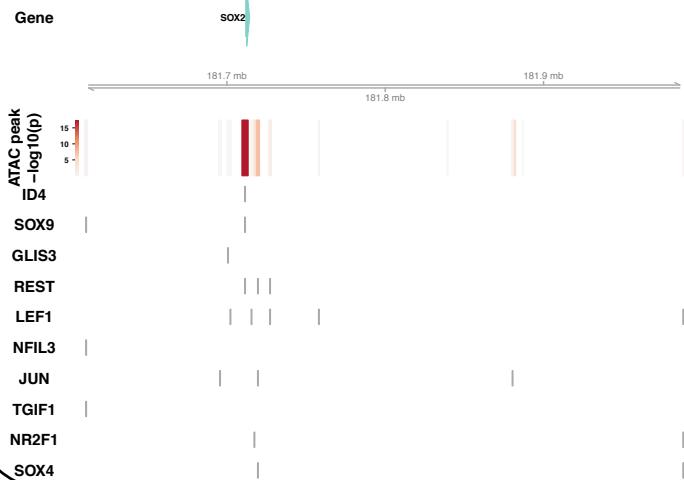
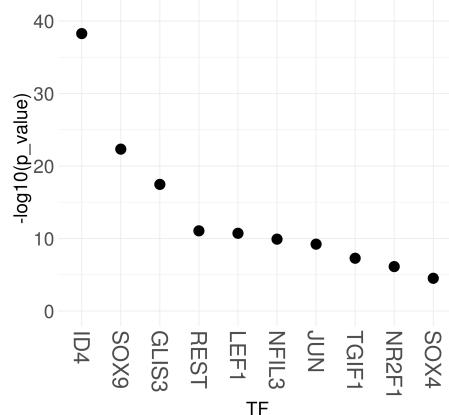
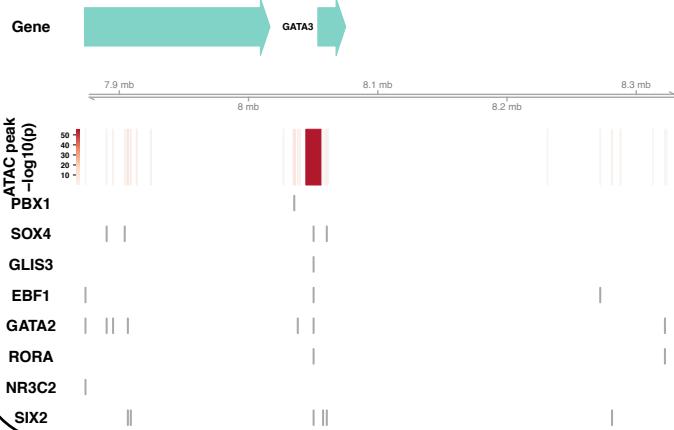
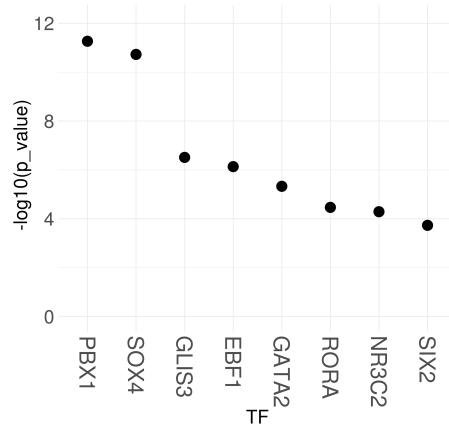
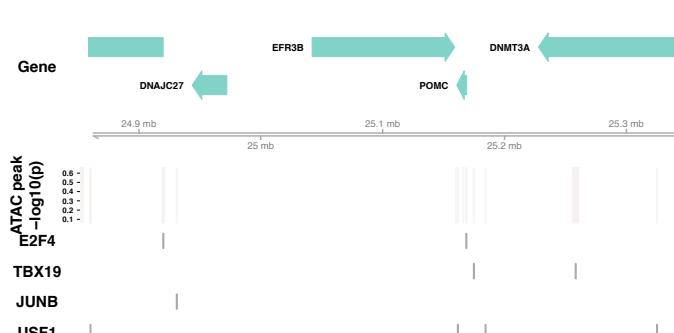
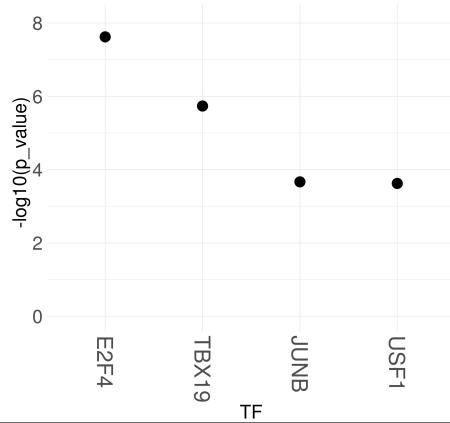


Figure 5

a.**SOX2, pan pituitary****SOX2 predictive TFs, pan pituitary****b.****GATA3, pan pituitary****GATA3 predictive TFs, pan pituitary****c.****GATA3, stem cells****d.****POMC, stem cells****POMC predictive TFs, stem cells****Figure 6**