bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448800; this version posted June 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Nanopore callers for epigenetics from limited supervised data

Brian Yao!, Chloe Hsu!, Gal Goldner?, Yael Michaeli?, Yuval Ebenstein®?, and Jennifer
Listgarten*!*

Dept. of Electrical Engineering & Computer Sciences, University of California Berkeley
2Dept. of Chemical Physics, Tel Aviv University
3Edmond J. Safra Center for Bioinformatics, Tel Aviv University
4Center for Computational Biology, University of California Berkeley
*Correspondence to: jennl@berkeley.edu

Abstract

Nanopore sequencing platforms combined with supervised machine learning (ML) have been
effective at detecting base modifications in DNA such as 5mC and 6mA. These ML-based
nanopore callers have typically been trained on data that span all modifications on all possible
DNA k-mer backgrounds—a complete training dataset. However, as nanopore technology is
pushed to more and more epigenetic modifications, such complete training data will not be
feasible to obtain. Nanopore calling has historically been performed with Hidden Markov Models
(HMMSs) that cannot make successful calls for k-mer contexts not seen during training because of
their independent emission distributions. However, deep neural networks (DNNs), which share
parameters across contexts, are increasingly being used as callers, often outperforming their HMM
cousins. It stands to reason that a DNN approach should be able to better generalize to unseen
k-mer contexts. Indeed, herein we demonstrate that a common DNN approach (DeepSignal)
outperforms a common HMM approach (Nanopolish) in the incomplete data setting. Furthermore,
we propose a novel hybrid HMM-DNN approach, Amortized-HMM, that outperforms both the
pure HMM and DNN approaches on 5mC calling when the training data are incomplete. Such an
approach is expected to be useful for calling 5hmC and combinations of cytosine modifications,
where complete training data are not likely to be available.

Nanopore sequencing is a third-generation technology for sequencing DNA and RNA that provides
advantages over other technologies, such as its small size, long read lengths, and real-time, mobile
sequencing capabilities [1, 2, 3]. Additionally nanopores are increasingly being used to detect
epigenetic modifications to DNA| particularly DNA methylation [4]. The nanopore device works
by running an ionic current through nanometer-wide pores. As a DNA molecule passes through
the pore, the current across the pore changes in a manner that is characteristic of the molecules
in the pore, namely the RNA/DNA sequence and its modifications. From measuring the current
from known sequences and modifications, one can build up a supervised training dataset suitable for
machine learning (ML) methods that are then able to transform future, unlabelled current signals to
their corresponding sequence of bases and modifications [5].

Early studies demonstrated that nanopore sequencing could be used for the detection of epigenetic
modifications in DNA by leveraging distinct current levels produced when a modified base is in the
pore [6, 7|. These successes sparked the development of supervised machine learning methods for
methylation calling on nanopore data [8, 9, 10, 11]. The first methylation modification tackled by
nanopore technology was 5-methylcytosine (5mC), a well-studied modification due to its abundance
in the human genome [12] and its links to a number of key biological processes such as aging and
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cancer [13, 14]. More recently there have been efforts to tackle a different cytosine modification,
5-hydroxymethylcytosine (5hmC), which is common in mammalian brain tissue, accounting for 40%
of modified cytosine in the central nervous system [15]. 5hmC content in brain cells increases with
age, suggesting that it is linked to neurodevelopment [16]. Early results suggest that nanopore
current may be sensitive to 5hmC [6]. However, calling 5hmC accurately in the presence of other
modifications has not yet been conclusively achieved, largely because of the difficulty in obtaining
sufficient labelled training data for the ML-based callers [17].

Generalization capabilities of nanopore callers. Although supervised ML methods are de-
veloped specifically for their ability to generalize to unseen examples, the notion of generalization for
nanopore sequencing is nuanced. For example, one form of generalization for base calling is from
one set of current observations for one k-mer, to slightly different current observations for that same
k-mer arising from stochastic noise in the system. We call this sensor generalization, because the
generalization required is owing only to sensor noise. Another form of generalization relevant to
nanopore sequencing is k-mer generalization, wherein an ML-based caller must make accurate calls
for k-mers that it has never seen current observations for. Analogous notions of generalization can
be made for epigenetic calling, where, in addition to k-mers comprised of the standard nucleotides,
we also consider modified k-mers that include methylated bases. In this case, k-mer generalization
refers to generalizing to the combination of both bases and modifications.

When constructing a training dataset for base callers, it is relatively easy to generate a k-mer com-
plete dataset—one in which current observations associated with all possible k-mers are present.
This can be achieved by taking, for example, a sample of human DNA of known sequence, amplifying
the DNA and running it through the nanopore. Labels for training can be obtained using alternative
sequencing platforms. Consequently, it typically suffices to require only sensor generalization for
base calling.

When it comes to constructing a training dataset for a particular methylation modification, it
can be more difficult to obtain a similarly comprehensive dataset. This difficulty arises from the
burden of obtaining high-confidence reference labels for these modifications. In previous studies of
5mC modifications, either enzymatically methylated DNA [10, 11], or the gold standard assay of
bisulfite sequencing, was used to obtain supervised labels [18, 19]. However, as we move to other
modifications, such as 5hmC, achieving similarly complete training data can be more difficult still.
TET-assisted bisulfite sequencing (TAB-seq) and oxidative bisulfite sequencing (0xBS) are currently
the standard methods for reading 5himC at single-base resolution [20]. However, both methods are
expensive and low-throughput |21, 22]; they also require high coverage to make high-confidence
5hmC calls (particularly oxBS) [20]. Additionally, beyond these sequencing challenges, rarity of
certain epigenetic modifications may also present a problem, as it may be the case that not all
k-mers containing a given modification are represented in a specific genome, and synthesizing each
one is often not feasible. As the field progresses to simultaneous calling of multiple types of epigenetic
modifications, achieving a complete dataset with respect to all of the modifications will become
harder still [17]. Consequently, as nanopore sequencing technology is pushed to call more and more
DNA modifications, we require ML-based callers that are accurate even with limited training data.
In particular, the callers will require both k-mer and sensor generalization.

To further illustrate these difficulties, consider that for base calling, the nucleotide alphabet is of
size four: {A, C, G, T}, whereas for a given methylation mark that can occur only on a cytosine,
we expand the alphabet to size five: {A, C, G, T, M}. For current pore models where k = 6, we
go from 4% = 4,096 unique k-mers to 5% = 15,625. Additionally, even if the pore contains only,
say, six bases at a time, ML callers may be able to make use of larger contexts, such as nine, to
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improve calling [23]; this exacerbates the combinatorial explosion of possible k-mers (5 = 1,953, 125).
Similarly, simultaneously calling even two distinct modification types, such as 5bmC and 5hmC, would
dictate an alphabet of size six, corresponding to 6% = 46, 656 unique 6-mers. Herein, we restrict
ourselves to k = 6 and to calling a single modification (5mC), although the conclusions that emerge
should be equally, if not more, applicable to larger values of k£ and to situations in which there are
multiple epigenetic modifications of interest.

Next we describe the two main modelling approaches currently used for nanopore-based methyla-
tion calling, and discuss how each is able or not able to perform sensor and k-mer generalization.
Then we propose a new approach, which is a hybrid between the two existing approaches, and
demonstrate its utility in the limited training data regime. Note that in both of these existing
modelling approaches, and in our own, the methylation calling assumes that base calling has already
been performed.

Hidden Markov Model nanopore callers. Simpson et al. [10] developed the widely-used
Nanopolish, a Hidden Markov Model (HMM)-based approach to detecting 5mC in CpG contexts.
The Nanopolish HMM assumes a different current distribution for each unique k-mer, including
distinct distributions for modified versions of a k-mer. For example, a k-mer, CGAACG, that has a
5mC in the fifth position, denoted CGAAMG, has its own mean and variance of current distribution
in Nanopolish, and MGAAMG in turn has its own, and so forth. That is, every possible modification
on top of any DNA background—a unique modified k-mer—has its current distribution modelled
independently. The Markov transitions in the HMM ensure a coherence of calls as the DNA sequence
moves through the pore. That is, if the HMM believes the last call in the sequence being pulled
through the pore was a CAMGAT, then the next call in the sequence should be off-set by a shift
of one, AMGATX, for wildcard X. Because of the independent current distributions—called emission
distributions in HMM parlance—for each modified k-mer, the HMM-based Nanopolish approach
cannot accurately make calls for modified k-mers not seen in the training data.

Deep Neural Network nanopore callers. Recently, there has been a shift to using deep neural
networks (DNN) for base [24, 25, 26] and methylation calling [18, 19]. In particular, Ni et al.
[18] created DeepSignal by employing a bidirectional recurrent neural network (RNN) with long
short-term memory (LSTM) units to construct sequence-based features, jointly with a convolutional
neural network (CNN) to process the current. Liu et al. [19] similarly used an LSTM-RNN in their
DeepMod, also adding a secondary neural network to account for correlation of modifications on
nearby sites. These DNN-based methods have shown improved performance over the HMM-based
Nanopolish for 5mC calling [27]. Importantly, because these DNN approaches do not have parameters
that are a priori independent for each modified k-mer, it stands to reason that they should perform
better than HMM-based approaches in generalizing to new modified k-mers—that is perform better
k-mer generalization. Although it has not previously been shown, we will demonstrate that this is
indeed the case.

A novel hybrid HMM-DNN approach to methylation calling. Although we will show that
the DNN approach has better k-mer-generalization than the HMM approach, we hypothesized that
combining the two modelling approaches may provide better k-mer generalization yet, and therefore
better robustness to incomplete training datasets. The HMM is inherently a low capacity model,
with relatively few parameters, while DNNs typically have order of magnitudes more parameters,
require vast amounts of data to train, and also potentially days to weeks of architecture search
to find a useful model. We hypothesized that it may be possible to get the best of both these


https://doi.org/10.1101/2021.06.17.448800
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.17.448800; this version posted June 17, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

worlds. Our approach, Amortized-HMM, first trains a Nanopolish HMM on the training data that is
available, yielding an emission distribution for each modified k-mer in the training data. Next, we use
these results to train a feedforward deep neural network (FDNN) to learn a mapping from modified
k-mer to HMM emission distribution parameters. Finally, we use the Nanopolish HMM, with any
missing modified k-mer emission distributions imputed by the FDNN. In this strategy, information
sharing between emission distributions is possible by way of the FDNN. Consequently, we say that
we are amortizing the emission distributions, hence the name, Amortized-HMM. Although one could
use only the FDNN emission distribution parameters for all modified k-mers, this did not perform as
well (see Methods and Supplementary Figure S1). In addition to developing this hybrid model, we
also developed a new algorithm for choosing which k-mers to use for training in the k-mer incomplete
setting.

Next we present a series of experiments comparing and contrasting our proposed hybrid approach to
pure DNN and HMM approaches, across a range k-mer incompleteness settings. We show that for
complete training data, the DNN is best, but that as training data becomes incomplete, that our
hybrid approach dominates in performance.

Results

We focused our empirical investigation on the problem of 5mC calling, for which several high
quality datasets exist, and for which existing callers have been developed with the intent of having
approximately k-mer complete training data. This investigation serves as a proof-of-principle for
harder tasks such as 5hmC calling, or joint calling of 5mC and 5hmC, and so forth, for which we
could not conduct such experiments owing to the lack of complete training data motivating this
very work. Our comparisons used existing datasets from naturally occurring 5mC modifications
in human genomes, as in Ni et al. [18] and Liu et al. [19]. In particular, we trained and evaluated
our models using two primary nanopore datasets obtained from sequencing two different human
genomes, HX1 [8] and NA12878 [28]. Additionally, we obtained gold standard bisulfite 5mC labels
for NA12878 from ENCODE (ENCFF835NTC) [29] and for HX1 by processing bisulfite sequencing
data from the NCBI Sequence Read Archive (PRJNA301527) [8] using Bismark [30].

Construction of incomplete training data sets. From these datasets, we constructed a range
of k-mer incomplete training datasets in order to assess how different callers performed in different
settings of incompleteness. These incomplete data sets were created within 6-fold cross-validation.
By default, each training fold contained k-mer complete data. Next, to create a, say, 10%-complete
training dataset, we compute the number of modified k-mers that this corresponded to, say 250
k-mers. In principle, we could then have simply chosen 250 of the training modified k-mers at random
for our 10%-complete dataset. However, this would not correspond to a real physical situation
owing to the fact that a single methylated site in a genome corresponds to six modified k-mers (for
k = 6), all shifted from each other by one position—a structure that random sampling would not
capture. To account for this physical reality, we used a slight modification of the random modified
k-mers selection scheme, whereby we enforce that all six modified k-mers for that one modified site
are simultaneously included in the training data. This was achieved algorithmically using an integer
linear program that also accounted for the frequency in the training data of the selected samples,
enabling more commonly occurring data to be better represented if desired. This makes sense when,
for example, training on human genomes for ultimate deployment on human genomes (i. e., when
the train and test distributions of modified k-mers are the same). However, in the case of synthesized
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sequences, this could be turned off. Note that each individual modified k-mer will generally appear
many times in the training data (with distinct sensor readings), but the total number of unique
k-mers is limited, dictated by the specified level of incompleteness. Note that test sets remained
the same for every level of incompleteness and were k-mer complete, although in our results we
decompose the accuracy among those seen in the training data and not.

We denote different levels of k-mer completeness by p. That is, p is the percentage of all
possible unique modified k-mers that are present in the training data. A k-mer complete dataset
has p = 100, while increasingly less complete data has increasingly smaller values of p. The smallest
p we considered is five, which corresponds to fewer than 150 unique modified k-mers in the training
data. The 20 values of p used can be seen on the horizontal axis in Figure 1.

We trained three different methylation callers, described in the previous section: Nanopolish
(HMM), DeepSignal (DNN), and Amortized-HMM, on each k-mer incomplete dataset. For the first
two we used code provided by the authors. No model selection or architecture search was performed
for these methods because Nanopolish does not require it, and architecture search for DeepSignal
had already been performed for the k-mer complete setting. For our approach, Amortized-HMM, we
similarly performed architecture search only in the k-mer complete setting.
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Figure 1: Performance of 5mC calling across different k-mer incompleteness regimes.
Results averaged over 6-fold cross-validation, with length of error bars equal to one standard
deviation across the folds. The k-mer complete case (p = 100), contains 2,669 unique modified
k-mers, whereas p = 5 contains 133. The units of test accuracy were percent modified, meaning
the best accuracy was 0, and the worst was 1.

Accuracy of 5mC calling across a range of k-mer-incompleteness. On both datasets, the
performances of Nanopolish and Amortized-HMM were very similar for high values of p (Figure 1).
This is to be expected, since when p is close to 100, Amortized-HMM does not need to impute many
emission distributions; rather it can use the Nanopolish emission distributions directly. Note that
even for the k-mer complete setting, Amortized-HMM and Nanopolish may diverge because the latter
requires a minimum number of data points for each emission distribution, and otherwise sets this
distribution to the default of being unmethylated. In contrast, Amortized-HMM would use the FDNN-
predicted emission distribution. Consistent with earlier results, we find that DeepSignal outperforms
Nanopolish in the k-mer complete setting [18, 27|, and similarly outperforms Amortized-HMM in
that same setting, for similar reasons.

As the training data become increasingly incomplete (Figure 1), Amortized-HMM starts to
systematically outperform Nanopolish because of its ability to impute missing emission probabilities
corresponding to modified k-mers not in the training data.
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Meanwhile, DeepSignal continued to hold an advantage over the other methods for p higher than
around 20 to 30, the cross-over point for where Amortized-HMM starts to outperform DeepSignal. We
hypothesize that the diminished performance of DeepSignal with increasingly k-mer incomplete data
arises from insufficiently diverse data to train on relative to the capacity of the model. Note that both
DeepSignal and Amortized-HMM had their architectures tuned only on the basis of k-mer complete
training data, so as to make the comparison fair. However, it is possible that performing architecture
search for each of the two approaches could have altered the relative performance. To investigate this
hypothesis, we performed an architecture search only for DeepSignal, at p = 10—a regime of large
incompleteness and one where Amortized-HMM substantially outperformed DeepSignal. Although
the architecture search improved the performance of DeepSignal, Amortized-HMM, critically with
no hyperparameter tuning, always outperformed DeepSignal (Supplemental Figure S1). These results
suggest that the Amortized-HMM approach is more robust to changes in training data completeness,
mitigating the need to redo computationally intensive architecture searches for different deployment
scenarios.

Although Amortized-HMM performed best for our main regime of interest—low values of p—we
considered whether combining Amortized-HMM with DeepSignal could yield an all-around best
performer. Therefore, we made another combined approach wherein we used DeepSignal to make
predictions on modified k-mers that occurred in the training data, and Amortized-HMM for the rest.
Indeed, this combined approach yielded an overall best method (Figure 1). In the next investigations,
we do not include this approach because the intent there is to understand the behaviour of the
models it is composed of.
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Figure 2: Sensor and k-mer generalization. Accuracy of the three approaches when the test
set is broken down into modified k-mers observed at training time (sensor), and not observed
(kmer+sensor). General figure information is the same as in Figure 1.
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Decomposition into sensor and k-mer generalization. In order to better understand the
source of each approach’s errors with respect to test modified k-mers that appeared in the training
data (sensor generalization), and not (k-mer generalization), we partitioned the test sets according
to whether the modified k-mer had been seen in the training data (Figure 2). Across both primary
datasets, DeepSignal was the clear winner for pure sensor generalization, while Nanpolish and
Amortized-HMM performed similarly to each other, and well below DeepSignal. On the other
hand, when k-mer generalization was required, Amortized-HMM was the consistent winner, with
DeepSignal coming in second, and Nanopolish, last. These results suggest that DeepSignal is most
likely overfitting to the data when it does not have access to a complete training data set, but
performs well on those modified k-mers that it has seen at train time.

Investigation of low- and high-novelty in k-mer generalization. In the previous section,
we treated any modified k-mer not appearing in the training data in the same way, regardless of
how similar it may have been to one of the training modified k-mers. However, it may be the case
that this similarity plays in a role in how well the various models do. Therefore, we refer to test
modified k-mers that were less similar to any training examples as high-novelty test cases, and those
that are more similar (but still different) as low-novelty. Similarity was defined by the Hamming
distance of the one-hot encoded modified k-mers, and similarity to the training data was obtained
by averaging this quantity over all unique modified k-mers in the training data. Using this definition
of similarity for novelty, we compared the different approaches over all values of p between 5-15
appearing in Figure 2, averaged over p (Figure 3). Although Amortized-HMM performed similarly
to DeepSignal for low-novelty k-mers, it was far more accurate than DeepSignal for high-novelty
k-mers. This difference in performance appears to underpin the success of Amortized-HMM over
DeepSignal in k-mer generalization.
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Figure 3: Breakdown into low- and high-novelty test set accuracy. Accuracy of DeepSig-
nal and Amortized-HMM on k-mers previously unobserved during training at varying levels of
k-mer novelty. Results are averaged over values of p between 5 and 15 from Figure 2). General
figure information is the same as in Figure 1. Hamming distance was computed on 11-mers

containing consecutive 6-mers as described in Construction of incomplete training data sets and
Methods.

Discussion

We investigated how several common modelling approaches, and our newly developed approach, for
nanopore calling, are robust to generalizing to k-mers not seen at training time—what we refer to as
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the task of k-mer generalization. Although the DNN-based DeepSignal performed best with complete
k-mer training data, as the training data became increasingly less and less complete, our newly
proposed hybrid approach that combines HMMs and neural networks, Amortized-HMM, dominated
in calling accuracy.

Although we focused our evaluation on 5mC detection, in practice, 5mC calling does not require
effective k-mer incomplete modelling, as there already exist high k-mer coverage nanopore sequencing
labelled datasets for 5mC. This setting was used as a proof-of-principle toward making progress on
modifications for which obtaining such a dataset is not so straightforward. In particular, we are
working to improve calling for 5hmC and naturally occurring combinations of cytosine modifications.

We note that both the existing callers investigated herein, and our own approach made calls
having assumed that base calling has already been performed. In practice, it could be useful to
combine the two tasks together for further improvements, as can be done in Guppy, the base caller
developed by Oxford Nanopore Technologies [17].
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Methods

Datasets. We trained and validated models for 5mC calling on two published Nanopore datasets.
Jain et al. [28] sequenced the human genome NA12878 at 30x coverage using the Oxford Nanopore
Technologies (ONT) R9.4 pore chemistry, and Liu et al. [19] sequenced the HX1 genome, also at 30x
coverage and using R9.4 chemistry. In both cases, sequencing was performed on native DNA molecules
containing native modifications; this is in contrast to other works where methylation was synthetically
introduced in PCR-~amplified samples using enzymes such as M.SssI methyltransferase [10, 11]. In
addition to raw current data, these datasets included base calling results obtained from running
ONT-trained base callers: Guppy v2.3.8 for the NA12878 dataset and Albacore v2.3.1 for the
HX1 dataset. To obtain supervisory 5mC labels for training our caller, we followed Liu et al. [19]
and Ni et al. [18]. That is, first we obtained gold standard bisulfite sequencing 5mC labels: for
NA12878, these were downloaded directly from ENCODE (ENCFF835NTC) [29]; for HX1, we
downloaded bisulfite sequencing results from the NCBI Sequence Read archive (PRJNA301527) [19],
and pre-processed them using Bismark [30]. Then we filtered to keep only CpG sites that were (1)
covered by at least 5 reads and (2) were consistently called as methylated or unmethylated across
every read. This process yielded a set of CpG sites for which we could confidently assign binary
(non-methylated or methylated) labels for training and evaluation purposes.

K-mer selection for simulating incomplete training data. The motivation of our manuscript
is that one is unlikely to have k-mer complete training data for many epigenetic nanopore calling
problems of interest. This problem arises from, for example, limitations in experimental time and
cost, or the modification of interest occurring infrequently in the genome in a given genomic context.
However, since the datasets considered in this work are, by intent, k-mer complete, we simulated
incomplete data sets by selecting only certain k-mers to retain. The goal of this selection procedure
was to (1) mimic physical constraints of pulling a sequence through a pore (described soon), and (2)
select a diverse, representative set for training so as to most clearly see the effects of incomplete
training data. Note that we focused only on limiting the number of unique modified k-mers present
in the training data, since one can assume that training data for k-mers with no modifications can
be procured easily. For simplicity of language, we refer to the modified k-mers as k-mers in this
section. Throughout all of our experiments, the number of sites in the pore at any one time, k, was
6, although our algorithms can be readily applied for other values of k. Also note that we consider
only 5mC in CpG contexts, which is representative of mammalian methylation [31].

Let S denote the set of unique k-mers that contain a methylated CpG site. As described in the
main text, p denotes the percentage of all possible modified k-mers that our incomplete dataset
should contain. For example, if p = 100, then we retain all k-mers in S. For p < 100, requiring {%J
unique k-mers, we might consider selecting them at random. However, such an approach would yield
a training set not obtainable from an actual nanopore experiment because it is not accounting for
the fact that as a sequence gets pulled through the pore, the corresponding k-mers that arise are
overlapping. Augmenting the nucleotide alphabet with M to represent a methylated cite, consider
the 11-mer, GATTTMGCAAC, centered on one methylated site. This 11-mer comprises six overlapping
6-mers: in order, GATTTM, ATTTMG, TTTMGC, TTMGCA, TMGCAA, and TTTMGC, that would arise from pulling
it through the pore. In our selection scheme, we therefore constrain ourselves to selecting at the
11-mer level, which directly implies a selection of six k-mers at once. We refer to this as a coherent
k-mer-selection scheme, because it adheres to the physical reality of pulling a DNA strand through
the pore. The random k-mer-selection scheme is not coherent.

To ensure a coherent k-mer-selection scheme, we formulate our k-mer selection problem as an
integer linear program (ILP)—an optimization of a linear function subject to a set of linear constraints
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over integer variables. In our setting, the linear function takes as input the presence/absence of
each 11-mer (y; € {0,1} for ¢ = 1,...,m, where m denotes the total number of possible unique
11-mers centered on a methylated site), and returns the frequency-weighted count of the 11-mers
to be retained in the data (Equation 1). The frequency weights, w; € [0,1] (with 1 =", w;), for
any given 11-mer, are specified by the user and described below. As detailed above, the i*" 11-mer
comprises a set of six k-mers, denoted V;. The presence or absence of an individual k-mer, s, is
denoted by =5 € {0,1}. The two constraints of our ILP are that the number of selected unique
k-mers is less than our budget, B = L%J (Equation 2), and the other ensures k-mer-coherence
(Equation 3). Altogether, our ILP is given by:

maX{yi} Z Wi Y4 (1)
i=1
s.t. (Z x) < B, (2)
ses
0<—kyit | D as| k-1 Vie{l,....m}. (3)
seV;

Equation 3 may be more easily understood by noting its equivalence to the k-way logical AND
constraint, y; = /\;?:1 r;;, where /\ denotes a logical AND operator. The frequency weights could
correspond to prevalence in a human genome, or could be set to uniform. In our experiments, we set
the weights to be the frequencies observed in each labelled training data set. In a more realistic
scenario, however, a reasonable proxy is to use the frequency of the unmodified k-mers; we found
this also worked well (data not shown).

After solving the ILP with a standard solver (Gurobi [32]), we obtain values of y;, and corre-
spondingly, z;, which dictates the k-mers we should keep in our training data. Had we instead
tried to use a random selection scheme, and post-hoc enforced coherence by removing k-mers that
violated coherence, we would have ended up with dramatically fewer methylated sites in the training
data (Supplementary Figure S2). Note that, for each value of p, k-mer-selection was performed only
once across all 6 training folds within the 6-fold cross-validation used. Test sets were left as-is (with
no k-mer-selection performed), other than as noted in the main paper.

Note that in a practical experiment intended to obtain limited training data for a caller, one
might consider using this selection scheme to decide which portions of the genome to obtain labels for.
However, our intent here was simply to simulate incomplete training data from our k-mer-complete
5mC data in order to investigate the effect of increasingly less complete data on different ML-based
calling approaches. Our original intent had been to use a random selection scheme, but we then
realized it was not coherent.

Training with Nanopolish and DeepSignal. We used publicly available software for Nanopol-
ish [10] with default settings. In this software, first the current time series in each Nanopore read is
segmented into events, which are then aligned to a reference genome. Then, each k-mer is associated
with a list of events. Second, these lists of events are then used to update the emission distribution
parameters for each k-mer in the HMM. This process is repeated from the alignment step for five
iterations.

We used software publicly provided by DeepSignal with default settings. For a given CpG site in
the reference genome and a read covering the site, DeepSignal extracts a feature vector containing
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nucleotide sequence information, current summary statistics, and raw current values corresponding
to a window centered on the CpG dinucleotide.

There are two notable side effects of our k-mer-selection downsampling. First, since we are
only concerned with removing methylated sites from the data, our procedure naturally introduces
significant class imbalance in the training data between methylated and unmethylated k-mers,
since all unmethylated sites remained. Since the HMM is class-imbalance agnostic, we did not
need to account for these issues for Nanopolish. However, for DeepSignal, we found it was needed.
Consequently, to mitigate this bias, we correspondingly downsampled the negative (unmethylated)
class at random, such that the proportion of each class was the same. Second, as we decreased p,
the number of unique k-mers decreased, and correspondingly, the amount of training data. In order
to keep the size of the training data (which can comprise multiple reads for the same k-mer), we
always used the number of reads corresponding to the smallest value of p in our experiments, p = 5.
Altogether, this left us for DeepSignal with around 1 million CpG sites for NA128, and 4 million for
HX1 (which originally contained many more methylated sites than NA12878), for any value of p.

Amortized-HMM. Our new approach, the Amortized-HMM, extends the HMM method for
methylation calling through use of a DNN. From Nanpolish HMM training, we obtain emission
distribution parameters (a scalar mean and a scalar variance) for k-mers observed at high enough
frequency in the training data. We take these as labels for a feedforward deep neural network
(FDNN) that learns a mapping from k-mers to emission distribution parameters. Next we impute
any missing (i. e., , those that Nanopolish left to the default) emission distributions with our FDNN;,
before using Nanpolish to make calls. In using only FDNN-based emission distributions by overriding
all Nanopolish ones, performance was diminished (Supplementary Figure S3).

Our FDNN requires us to featurize each k-mer given as input to the FDNN, which we do as
follows for each 6-mer. We use a one-hot encoding with the alphabet {A, C, G, T, M}, where M
denotes a methylated cite, with the other letters denoting nucleotides, yielding 30 binary features. We
also one-hot encode each dinucleotide formed from adjacent positions, yielding 105 binary features.
Finally, we use a binary encoding of whether the position contains a C/M, or does not, yielding
6 more binary features. The motivation for including this last feature is that M is closely tied to
C by way of being a modified cytosine, so we hypothesized that they may have similar effects on
the nanopore current. In total, the feature vector was of length 141. Note that we additionally
experimented with one-hot encoding trinucleotides from consecutive triplets in the k-mer, but this
did not improve performance.

Rather than the more common losses used for training neural networks, we used a symmetrized
Kullback-Leibler (KL) divergence loss to train our FDNN because the labels were themselves
parameters of a distribution. Had we used say mean squared error, the numerical difference between
the FDNN outputs and the labels would likely not meaningfully reflect the difference in distributions.
In particular, we let P ~ N(u,0?) be a Gaussian random variable with y and o2 estimated from
Nanopolish (i. e., our supervisory labels), and let P ~ N(ji, 52) be a Gaussian variable with i, and
&2 predicted by the Amortized-HMM. The symmetrized KL-divergence between these is defined
as f(P,P) = Dgr(P || P)+ Dgr(P || P), whose components can be computed in closed form by

Dir(P || P) =log 2 + T’ _ 1 and Dy (P || P) =log g + iz’ _ 1

Architecture search was performed for Amortized-HMM only for the k-mer complete setting, and
then these parameters were used for all experiments, irrespective of the value of p. We determined
the number of hidden layers, d, and the size of each hidden unit, h, with an 80%/20% random
split of the data. We performed grid search over the hyperparameter values d € {3,4,5,6} and

h € {16,32,64,128}.
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DeepSignal hyperparameter search for each p. For apples-to-apples comparison with Amortized-
HMM, and to reduce the substantial computational burden, all reported experiments used architecture
searches only from the k-mer-complete setting (i. e., that provided by DeepSignal), other than as
noted next. As noted in the main text, we here performed an architecture search for DeepSignal,
for a salient value of p = 10, to see if this would cause it to outperform Amortized-HMM (without
doing this added architecture search for each p). The value p = 10 corresponds to a regime of low
k-mer coverage and one where our approach substantially outperformed DeepSignal (Figure 1). We
used the NA12878 dataset for training and validation. Furthermore, we tuned the same network
hyperparameters that were originally tuned by Ni et al. [18]: the length of the k-mer context, the
number of BRNN layers, and the number of inception layers. Despite doing so, DeepSignal did not
outperform Amortized-HMM (Supplementary Figure S1).
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Figure S1: Architecture search for DeepSignal in k-mer-incomplete setting (p = 10).
Results averaged over 6-fold cross-validation on the NA12878 dataset, with length of error bars
and of the shaded regions equal to one standard deviation across the folds. The hyperparameter
settings used in DeepSignal are 17 for the k-mer context length (k), 3 for the number of BRNN
layers, and 11 for the number of inception layers. For improved readability, Gaussian noise was
added onto the z-values for each data point.
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Supplementary Tables

p | Dataset Accuracy Precision Recall ROC-AUC
5 | NA12878 | 0.721 (£0.054) | 0.865 (£0.012) | 0.617 (£0.106) | 0.826 (£0.039)
HX1 0.695 (+£0.049) | 0.979 (£0.002) | 0.680 (£0.052) | 0.865 (+0.026)
6 | NA12878 | 0.744 (£0.013) | 0.875 (£0.009) | 0.668 (£0.015) | 0.845 (£0.009)
HX1 0.731 (£0.021) | 0.980 (£0.001) | 0.719 (£0.023) | 0.881 (+0.010)
7 | NAI2878 | 0.755 (£0.009) | 0.875 (£0.009) | 0.679 (£0.021) | 0.854 (£0.007)
HX1 0.734 (£0.011) | 0.980 (£0.001) | 0.723 (£0.013) | 0.882 (£+0.006)
8 | NA12878 | 0.744 (£0.019) | 0.877 (£0.013) | 0.661 (£0.035) | 0.847 (£0.018)
HX1 0.739 (£0.009) | 0.981 (£0.000) | 0.727 (+0.009) | 0.886 (+0.004)
9 | NA12878 | 0.746 (£0.024) | 0.881 (£0.016) | 0.668 (£0.047) | 0.850 (£0.018)
HX1 0.740 (+0.010) | 0.980 (£0.001) | 0.729 (+0.011) | 0.885 (40.006)
10 [ NA12878 | 0.758 (£0.006) | 0.877 (£0.010) | 0.688 (£0.009) | 0.853 (£0.006)
HX1 0.745 (£0.006) | 0.980 (£0.001) | 0.735 (£0.007) | 0.886 (40.006)
1T | NA12878 | 0.748 (£0.015) | 0.887 (£0.021) | 0.672 (£0.027) | 0.854 (£0.008)
HX1 0.742 (£0.008) | 0.980 (£0.001) | 0.731 (£0.008) | 0.885 (+0.008)
12 [ NA12878 | 0.760 (£0.006) | 0.874 (£0.018) | 0.693 (£0.013) | 0.857 (£0.006)
HX1 0.740 (£0.013) | 0.980 (£0.001) | 0.730 (£0.015) | 0.884 (4+0.003)
13 [ NA12878 | 0.757 (£0.009) | 0.875 (£0.016) | 0.685 (£0.015) | 0.853 (£0.011)
HX1 0.739 (£0.009) | 0.981 (£0.001) | 0.728 (+0.011) | 0.886 (£0.005)
14 | NA12878 | 0.755 (£0.012) | 0.887 (£0.017) | 0.686 (£0.023) | 0.858 (£0.008)
HX1 0.740 (+0.010) | 0.980 (£0.001) | 0.730 (+0.011) | 0.883 (40.006)
15 | NA12878 | 0.767 (£0.004) | 0.878 (£0.011) | 0.701 (£0.009) | 0.862 (£0.004)
HX1 0.739 (£0.017) | 0.980 (£0.001) | 0.728 (+0.019) | 0.884 (40.008)
20 | NA12878 | 0.768 (£0.013) | 0.880 (£0.021) | 0.703 (£0.017) | 0.862 (+0.008)
HX1 0.754 (£0.010) | 0.981 (£0.000) | 0.745 (£0.012) | 0.890 (40.003)
30 | NAT2878 | 0.790 (£0.005) | 0.887 (£0.009) | 0.739 (£0.006) | 0.876 (£0.003)
HX1 0.783 (£0.005) | 0.982 (£0.001) | 0.777 (£0.006) | 0.902 (+0.001)
40 | NAT2878 | 0.791 (£0.008) | 0.890 (£0.008) | 0.741 (£0.014) | 0.879 (£0.005)
HX1 0.780 (£0.003) | 0.983 (£0.000) | 0.772 (£0.004) | 0.903 (£+0.001)
50 | NA12878 | 0.794 (£0.004) | 0.883 (£0.006) | 0.744 (£0.009) | 0.878 (£0.004)
HX1 0.791 (+0.005) | 0.983 (£0.000) | 0.785 (£+0.005) | 0.906 (+0.003)
60 | NA12878 | 0.795 (£0.002) | 0.888 (£0.004) | 0.745 (£0.004) | 0.880 (£0.002)
HX1 0.793 (£0.002) | 0.983 (£0.000) | 0.787 (+0.002) | 0.907 (+0.002)
70 | NA12878 | 0.798 (£0.004) | 0.888 (£0.012) | 0.751 (£0.009) | 0.881 (+0.005)
HX1 0.795 (£0.003) | 0.983 (£0.000) | 0.790 (£0.003) | 0.907 (+0.002)
80 | NAT2878 | 0.799 (£0.001) | 0.888 (£0.006) | 0.752 (+0.003) | 0.883 (£0.003)
HX1 0.797 (£0.002) | 0.983 (£0.000) | 0.792 (£0.002) | 0.908 (+0.002)
90 | NAT2878 | 0.804 (£0.002) | 0.895 (£0.009) | 0.761 (£0.005) | 0.888 (£0.003)
HX1 0.798 (£0.002) | 0.983 (£0.000) | 0.793 (£0.003) | 0.909 (+0.002)
100 | NAT2878 | 0.802 (£0.006) | 0.894 (£0.013) | 0.759 (£0.007) | 0.886 (£0.002)
HX1 0.799 (£0.002) | 0.983 (£0.000) | 0.793 (£0.002) | 0.909 (£+0.002)

Table S1: Performance metrics for Amortized-HMM for varying levels of k-mer incompleteness in
the training data (p). Evaluations were performed on unfiltered, k-mer complete data. Mean and
standard deviation values are reported from 6-fold cross-validation.
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p | Dataset Accuracy Precision Recall ROC-AUC
5 | NA12878 | 0.641 (£0.039) | 0.639 (£0.038) | 0.867 (£0.031) | 0.702 (£0.050)
HX1 0.587 (£0.129) | 0.930 (£0.005) | 0.599 (£+0.155) | 0.538 (+0.011)
6 | NA12878 | 0.629 (+0.024) | 0.625 (£0.018) | 0.872 (£0.033) | 0.691 (£0.041)
HX1 0.548 (£0.096) | 0.929 (£0.003) | 0.552 (£0.115) | 0.533 (+0.013)
7 | NA12878 | 0.633 (£0.026) | 0.636 (£0.034) | 0.850 (£0.050) | 0.697 (£0.027)
HX1 0.563 (£0.207) | 0.926 (+0.011) | 0.572 (£0.246) | 0.513 (£0.026)
8 | NA12878 | 0.685 (£0.035) | 0.686 (£0.033) | 0.832 (£0.024) | 0.754 (£0.043)
HX1 0.603 (+0.184) | 0.926 (+0.004) | 0.619 (£0.218) | 0.522 (£0.014)
9 [ NAI2878 | 0.667 (£0.051) | 0.663 (£0.041) | 0.850 (£0.052) | 0.739 (£0.066)
HX1 0.619 (+0.241) | 0.917 (£0.007) | 0.644 (+0.283) | 0.480 (+0.030)
10 | NA12878 | 0.721 (£0.044) | 0.707 (£0.041) | 0.882 (£0.017) | 0.806 (£0.049)
HX1 0.643 (+£0.162) | 0.926 (£0.004) | 0.667 (+0.195) | 0.522 (40.009)
11 [ NA12878 | 0.723 (£0.047) | 0.707 (£0.044) | 0.887 (£0.008) | 0.805 (£0.052)
HX1 0.581 (£0.206) | 0.930 (£0.006) | 0.592 (£0.247) | 0.529 (4+0.007)
12 [ NA12878 | 0.723 (£0.021) | 0.714 (£0.023) | 0.858 (£0.029) | 0.800 (£0.024)
HX1 0.624 (+0.147) | 0.922 (4£0.006) | 0.647 (£0.175) | 0.513 (£0.029)
13 [ NA12878 | 0.753 (£0.023) | 0.742 (£0.022) | 0.868 (£0.019) | 0.837 (£0.026)
HX1 0.606 (+£0.176) | 0.933 (£0.014) | 0.620 (£0.214) | 0.539 (+0.038)
14 [ NA12878 | 0.770 (£0.010) | 0.758 (£0.012) | 0.876 (£0.018) | 0.850 (£0.011)
HX1 0.617 (£0.144) | 0.927 (£0.005) | 0.636 (£0.173) | 0.522 (£0.016)
15 | NA12878 | 0.737 (£0.047) | 0.731 (£0.043) | 0.857 (£0.018) | 0.813 (£0.050)
HX1 0.635 (+£0.162) | 0.927 (£0.009) | 0.657 (+0.193) | 0.523 (+0.030)
20 | NAI2878 | 0.810 (£0.004) | 0.819 (£0.010) | 0.856 (£0.014) | 0.887 (£0.003)
HX1 0.686 (+£0.176) | 0.927 (£0.008) | 0.717 (+0.211) | 0.533 (4+0.029)
30 | NA12878 | 0.821 (£0.008) | 0.829 (£0.014) | 0.864 (+0.014) | 0.898 (£0.008)
HX1 0.765 (+0.121) | 0.924 (4+0.006) | 0.813 (£0.147) | 0.520 (£0.029)
40 | NAT2878 | 0.831 (£0.007) | 0.843 (£0.008) | 0.864 (+0.015) | 0.905 (£0.007)
HX1 0.848 (£0.080) | 0.925 (£0.006) | 0.910 (£0.099) | 0.545 (+0.025)
50 | NA12878 | 0.840 (£0.010) | 0.852 (£0.017) | 0.872 (£0.010) | 0.915 (£0.008)
HX1 0.853 (£0.086) | 0.930 (£0.013) | 0.912 (£0.113) | 0.585 (+0.076)
60 | NAT2878 | 0.847 (£0.008) | 0.868 (£0.017) | 0.863 (£0.017) | 0.920 (£0.006)
HX1 0.834 (+0.046) | 0.942 (£0.016) | 0.875 (+0.069) | 0.671 (+0.109)
70 | NAI2878 | 0.841 (£0.007) | 0.848 (£0.011) | 0.879 (£0.014) | 0.917 (£0.006)
HX1 0.866 (+0.008) | 0.984 (£0.005) | 0.868 (+0.009) | 0.922 (4+0.017)
80 | NA12878 | 0.854 (£0.004) | 0.867 (£0.008) | 0.879 (£0.011) | 0.926 (£0.003)
HX1 0.904 (+0.006) | 0.966 (£0.029) | 0.930 (+0.036) | 0.826 (+0.176)
90 | NAT2878 | 0.857 (£0.002) | 0.874 (£0.008) | 0.875 (+0.014) | 0.929 (£0.002)
HX1 0.900 (+0.003) | 0.985 (£0.005) | 0.906 (£0.006) | 0.941 (+0.018)
100 | NAT2878 | 0.857 (£0.002) | 0.872 (£0.017) | 0.879 (£0.022) | 0.930 (£0.002)
HX1 0.902 (£0.003) | 0.986 (£0.003) | 0.906 (£0.002) | 0.947 (+0.007)

Table S2: Performance metrics for DeepSignal for varying levels of k-mer incompleteness in the
training data (p). Evaluations were performed on unfiltered, k-mer complete data. Mean and
standard deviation values are reported from 6-fold cross-validation.
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p | Dataset Accuracy Precision Recall ROC-AUC
5 | NA12878 | 0.588 (£0.003) | 0.806 (£0.007) | 0.402 (£0.009) | 0.685 (£0.006)
HX1 0.373 (£0.005) | 0.964 (£0.001) | 0.333 (+0.006) | 0.679 (4+0.001)
6 | NA12878 | 0.599 (+0.004) | 0.819 (£0.014) | 0.437 (£0.016) | 0.698 (£0.010)
HX1 0.397 (£0.005) | 0.966 (£0.001) | 0.359 (£0.005) | 0.692 (+0.003)
7 | NA12878 | 0.626 (+£0.004) | 0.836 (£0.009) | 0.463 (£0.011) | 0.715 (£0.007)
HX1 0.415 (£0.006) | 0.968 (£0.001) | 0.378 (£0.007) | 0.717 (+0.003)
8 | NA12878 | 0.626 (£0.003) | 0.826 (£0.006) | 0.466 (£0.007) | 0.716 (£0.004)
HX1 0.442 (£0.003) | 0.970 (£0.000) | 0.408 (£0.003) | 0.725 (+0.003)
9 [ NAI2878 | 0.635 (£0.002) | 0.827 (£0.006) | 0.483 (£0.006) | 0.725 (£0.005)
HX1 0.439 (+0.003) | 0.970 (£0.000) | 0.404 (+0.004) | 0.725 (+0.002)
10 | NA12878 | 0.630 (£0.004) | 0.838 (£0.013) | 0.490 (£0.013) | 0.732 (£0.011)
HX1 0.453 (£0.003) | 0.970 (£0.000) | 0.421 (£+0.003) | 0.734 (+0.003)
11 | NA12878 | 0.630 (£0.003) | 0.822 (£0.007) | 0.474 (£0.008) | 0.720 (£0.006)
HX1 0.457 (£0.001) | 0.970 (£0.000) | 0.424 (£0.002) | 0.735 (+0.002)
12 [ NA12878 | 0.646 (£0.006) | 0.836 (£0.006) | 0.512 (£0.009) | 0.743 (£0.007)
HX1 0.466 (+£0.002) | 0.970 (£0.000) | 0.435 (£0.002) | 0.740 (+0.002)
13 [ NA12878 | 0.638 (£0.008) | 0.835 (£0.009) | 0.505 (£0.010) | 0.739 (£0.007)
HX1 0.469 (£0.003) | 0.971 (£0.000) | 0.438 (£0.004) | 0.744 (+0.002)
14 [ NA12878 | 0.650 (£0.003) | 0.834 (£0.005) | 0.512 (£0.007) | 0.742 (£0.005)
HX1 0.472 (£0.010) | 0.970 (£0.001) | 0.440 (£0.008) | 0.746 (+0.007)
15 | NA12878 | 0.659 (£0.004) | 0.830 (£0.007) | 0.534 (£0.012) | 0.749 (£0.008)
HX1 0.489 (+0.002) | 0.971 (£0.000) | 0.461 (+0.002) | 0.752 (+0.002)
20 | NAI2878 | 0.675 (£0.005) | 0.833 (£0.011) | 0.566 (£0.012) | 0.770 (£0.009)
HX1 0.541 (£0.005) | 0.971 (£0.002) | 0.517 (£0.004) | 0.776 (+0.003)
30 | NA12878 | 0.739 (£0.003) | 0.849 (£0.002) | 0.678 (+0.005) | 0.829 (£0.003)
HX1 0.693 (£0.002) | 0.977 (£0.000) | 0.684 (£0.002) | 0.848 (+0.002)
40 | NAT2878 | 0.754 (£0.003) | 0.861 (£0.013) | 0.704 (£0.005) | 0.848 (£0.003)
HX1 0.736 (£0.003) | 0.980 (£0.000) | 0.729 (£0.003) | 0.867 (+0.002)
50 | NA12878 | 0.773 (£0.004) | 0.881 (£0.012) | 0.729 (£0.007) | 0.864 (£0.005)
HX1 0.779 (£0.001) | 0.982 (£0.000) | 0.775 (£0.001) | 0.886 (+0.001)
60 | NAT2878 | 0.786 (£0.004) | 0.888 (£0.014) | 0.743 (£0.004) | 0.874 (£0.002)
HX1 0.787 (+0.002) | 0.983 (£0.000) | 0.783 (+0.002) | 0.891 (+0.001)
70 | NA12878 | 0.789 (£0.006) | 0.893 (£0.013) | 0.746 (£0.009) | 0.876 (£0.003)
HX1 0.788 (+0.002) | 0.983 (£0.000) | 0.784 (+0.002) | 0.892 (40.001)
80 | NA12878 [ 0.797 (£0.002) | 0.891 (£0.007) | 0.753 (£0.003) | 0.882 (£0.003)
HX1 0.790 (+0.001) | 0.983 (£0.000) | 0.786 (+0.002) | 0.894 (4+0.001)
90 | NAT2878 | 0.803 (£0.003) | 0.890 (£0.005) | 0.763 (+0.005) | 0.885 (£0.001)
HX1 0.790 (+0.003) | 0.983 (£0.001) | 0.786 (£0.004) | 0.896 (4+0.001)
100 | NAT2878 | 0.801 (£0.003) | 0.898 (£0.011) | 0.763 (£0.006) | 0.886 (£0.002)
HX1 0.791 (£0.002) | 0.983 (£0.001) | 0.787 (£0.003) | 0.897 (+0.001)

Table S3: Performance metrics for Nanopolish for varying levels of k-mer incompleteness in the
training data (p). Evaluations were performed on unfiltered, k-mer complete data. Mean and
standard deviation values are reported from 6-fold cross-validation.
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