

Hidden paths to endless forms most wonderful: Ecology latently shapes evolution of multicellular development in predatory bacteria

1

2 **Authors**

3 Marco La Fortezza¹, Olaya Rendueles^{1,2}, Heike Keller¹ and Gregory J. Velicer¹

4

5 **Affiliations**

6 ¹Institute for Integrative Biology, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland.

7 ²Microbial Evolutionary Genomics, Institut Pasteur, CNRS, UMR3525, 75015 Paris, France.

8

9 **Corresponding author**

10 Marco La Fortezza; e-mail: marco.laforteza@env.ethz.ch

11

12 **SUMMARY**

13 **Ecological causes of developmental-system evolution, for example from predation,**
14 **remain under intense investigation. An important open question is the role of latent**
15 **phenotypes in eco-evo-devo. The predatory bacterium *Myxococcus xanthus***
16 **undergoes aggregative multicellular development upon starvation. Here we use *M.***
17 ***xanthus* to test whether evolution in several distinct growth environments that do not**
18 **induce development latently alters developmental phenotypes, including morphology**
19 **and plasticity, in environments that do induce development. In the MyxoEE-3 evolution**
20 **experiment, growing *M. xanthus* populations swarmed across agar surfaces while**
21 **adapting to distinct conditions varying at factors such as surface stiffness or prey**
22 **identity. All examined developmental phenotypes underwent extensive and**
23 **ecologically specific latent evolution, with surface stiffness, prey presence and prey**
24 **identity all strongly impacting the latent evolution of development. Evolution on hard**
25 **agar allowed retention of developmental proficiency and extensive stochastic**
26 **phenotypic radiation, including of reaction norms, with instances of both increased**
27 **plasticity and canalization. In contrast, evolution on soft agar latently led to systematic**
28 **loss of development, revealing an ecologically-contingent fitness trade-off between the**
29 **growth and developmental phases of a multicellular life cycle that is likely determined**
30 **by details of motility behavior. Similar contingency was observed after evolution during**
31 **predatory growth in distinct prey environments, with *Bacillus subtilis* causing greater**
32 **loss of development and lower stochastic diversification than *Escherichia coli*. Our**
33 **results have implications for understanding evolutionary interactions among**
34 **predation, development and motility in myxobacterial life cycles, and, more broadly,**
35 **the importance of latent phenotypes for the diversification of developmental systems.**

36

37 **Keywords:** aggregative development, eco-evo-devo, trade-offs, life-history theory,
38 multicellularity, pleiotropy, predator-prey interactions

39

40

41

42 INTRODUCTION

43 Ecological context fundamentally shapes the remarkable diversification¹ of developmental
44 programs, a notion that precedes the modern field of evolutionary developmental biology, or
45 evo-devo². A recently-emerged focus on eco-evo-devo seeks to quantitatively understand
46 such ecological causation of developmental evolution^{3,4}. Many biotic ecological factors, such as
47 as predator-prey⁵⁻⁷ and social interactions⁸⁻¹⁰, as well as abiotic factors such as
48 temperature¹¹⁻¹³ and oxygen level¹⁴⁻¹⁶ are hypothesized or known to play important roles in
49 shaping the evolution of developmental features^{4,17}, including developmental plasticity¹⁸⁻²⁴.
50 Direct tests for such ecological causality can be performed with experimental evo-devo, i.e.
51 evolution experiments that examine hypotheses about multicellular development²⁵.

52 Many eco-evo-devo studies focus on direct selective relationships, i.e., on how a
53 developmental process responds evolutionarily to selection by an ecological factor on that
54 process. However, genetic causation of a phenotype that becomes important to fitness at
55 some stage of a lineage's history might have first evolved in a hidden, non-adaptive manner.
56 Many phenotypes are manifested in only a limited set of ecological contexts²⁶, which have
57 been referred to as "inductive environments"^{27,28}. The genetic basis of a focal phenotype might
58 first evolve in a non-inductive environment (by any evolutionary mechanism, e.g. adaptation
59 or genetic drift) while the actual phenotype is only first manifested, and thus revealed to
60 potential selection, after later exposure to an inductive environment. Such evolution of initially
61 latent phenotypes - latent-phenotype evolution (LPE^{29,30}, see *Semantics* in Methods) - is
62 common²⁹⁻³³ contributes to evolutionary diversification^{29,30} and can fuel some forms of
63 exaptation^{26,34-36}.

64 Studying the evolutionary history of developmental-phenotype causation is notoriously
65 challenging in most natural systems, for which the relevant details of genetic, phenotypic and
66 ecological history are often unknown. This is perhaps particularly true for organisms for which
67 multicellular development is obligate, and for deciphering whether genetic causation of a
68 phenotype initially evolved latently and thus non-adaptively. Ideal organisms for such studies
69 would be both amenable to experimental evolution and characterized by a developmental
70 process that is facultative and environment specific and which generates readily-quantifiable
71 morphological phenotypes.

72 Microbes that undergo genetically-programmed multicellular development in response to
73 specific environmental conditions are powerful model systems for experimental studies in eco-
74 evo-devo³⁷. Among prokaryotes, predatory myxobacteria are probably the most recognized in
75 this regard, especially the model species *Myxococcus xanthus*³⁷, which is found in many soil
76 habitats worldwide³⁸. In the vegetative-growth phase of their multicellular life cycles, many

77 myxobacteria kill and consume diverse microbes as prey (both prokaryotic and eukaryotic) by
78 molecular mechanisms that remain to be well-characterized^{39,40}. *M. xanthus* employs two
79 mechanistically distinct (but pleiotropically connected) modes of motility to migrate in search
80 of prey and other resources and to carry out aggregative multicellular development. One
81 system, traditionally known as ‘S-motility,’ is mediated by Type IV pili⁴¹ and the other,
82 traditionally known as ‘A-motility,’ is hypothesized to function by active transport of focal-
83 adhesion protein complexes attached to the substratum⁴². The developmental phase of
84 myxobacterial life cycles exhibited by many species is triggered by nutritional depletion, upon
85 which cells aggregate to cooperatively construct elevated multicellular fruiting bodies. Some
86 cells within fruiting bodies differentiate into spores capable of surviving harsh environmental
87 conditions such as extended nutrient deprivation, high temperatures and likely predation^{43–45}.

88 Pleiotropic effects of adaptation - whether exerted across ecologically distinct growth
89 environments^{46–48} or across distinct life-history stages^{37,49–54} - are, collectively, a central
90 feature of evolution. Focusing on distinct life-history stages, degrees of pleiotropic
91 connectedness among the genetic systems that underlie stage-specific traits are critical
92 determinants of how life cycles can evolve^{54,55}. Genetic and evolutionary connections between
93 growth vs developmental phases of myxobacterial life cycles have received some attention^{56–}
94 ⁶⁰, but require much further investigation. Adaptation to some prey environments fueling
95 population growth may pleiotropically impact fruiting body formation during subsequent bouts
96 of starvation. Indeed, adaptation of *M. xanthus* to predatory growth while foraging for
97 *Escherichia coli* in a previous study resulted in a general decrease in fruiting-body numbers
98 during starvation suggestive of a tradeoff between predatory fitness and development⁵⁷.
99 Trade-offs from systematically antagonistic pleiotropic effects of mutations adaptive in one
100 life-history phase on performance at another phase^{50,61,62} have major implications for life-cycle
101 evolution as a whole and might promote some forms of diversity^{62,63}. However, the occurrence
102 and character of such life-cycle pleiotropy may often be specific to the ecological context in
103 which the causal mutations evolve⁶², a hypothesis we test here.

104 Fruiting body morphology has diversified strikingly among myxobacterial species (order
105 Myxococcales)³⁸, as have many developmental traits already at the intra-specific level among
106 *M. xanthus* lineages, including fruiting body traits^{9,64,65}, nutrient⁶⁶ and cell-density⁶⁷ thresholds
107 triggering development, developmental timing⁶⁶ and even the genetic elements required for
108 development⁶⁸. However, the relative contributions of various forms of selection and stochastic
109 forces to developmental diversification among myxobacteria remain unclear³⁷.

110 Forms of selection that may play major roles in diversifying fruiting body morphologies
111 include i) direct selection by abiotic or biotic ecological factors on morphology *per se*, ii)
112 selection on non-morphological aspects of development (e.g. the timing of cell-cell signaling)

113 that may nonetheless impact final fruiting body morphology and iii) selection on non-
114 developmental life-cycle behaviors such as predation and growth-phase motility that
115 pleiotropically impact development. Different biotic and abiotic factors such as nutrient level⁶⁹,
116 substrate stiffness⁷⁰ and social environment^{56,65,71} are known to affect *M. xanthus*
117 developmental phenotypes, with likely implications for the evolution of fruiting body
118 morphology⁹. The experimental inducibility and facultative character of *M. xanthus*
119 multicellular development, and its versatility for experimental evolution, make this bacterium
120 a powerful system for investigating the evolution of latent developmental phenotypes. Such
121 phenotypes include the character and degree of phenotypic plasticity, which can be important
122 for fitness and future evolution across variable environments^{22,27,70,72}.

123 We test the hypothesis that the ecological context of evolution by *M. xanthus* during growth
124 can determine how such evolution latently alters developmental phenotypes. To do so, we
125 use evolved populations from MyxoEE-3⁷³, an evolution experiment in which *M. xanthus*
126 populations were selected for increased fitness at the leading edge of growing colonies that
127 swarmed across agar-surface environments that differed at one or more ecological variables.
128 Importantly, MyxoEE-3 populations were not experimentally subjected to starvation-induced
129 development, such that evolutionary change in development-specific traits does not reflect
130 adaptation for improved developmental fitness, but rather either pleiotropic effects of selection
131 on other traits or stochastic evolution.

132 Here we analyzed two distinct sets of MyxoEE-3 treatments (Table S1)⁷⁴. One set -
133 Treatment Set A (TS-A) - included replicate populations that had evolved on either of two high-
134 nutrient agar surfaces, one stiff surface with a high agar concentration (1.5%, CTT hard agar,
135 or 'CTT-HA') and one soft surface with a low agar concentration (0.5%, CTT soft agar, or 'CTT-
136 SA'). The TS-A treatments were analyzed after 40 cycles of MyxoEE-3 selection. On 0.5%
137 agar, swarming of *M. xanthus* reference strains is driven almost exclusively by Type-IV-pili-
138 mediated S-motility, whereas swarming on 1.5% agar is driven by a combination of A-motility
139 and S-motility^{57,73,75}.

140 A second set of treatments - Treatment Set B (TS-B) - was composed of populations from
141 five MyxoEE-3 treatments (Tables S1 and S2), including one shared with TS-A (CTT-HA) and
142 four treatments in which *M. xanthus* was offered either *Bacillus subtilis* or *E. coli* bacterial
143 species (Gram+ and Gram-, respectively) as prey. Among the four TS-B treatments with prey,
144 two were identical to the CTT-HA treatment except that a lawn of either *B. subtilis* (*B. subtilis*-
145 CTT) or *E. coli* (*E. coli*-CTT) was allowed to grow on the CTT hard-agar culture plates prior to
146 their inoculation with *M. xanthus*. In this case, both the prey and any nutrients unused by the
147 prey that remained in the agar substrate were available to *M. xanthus*. In the two other TS-B
148 treatments (*B. subtilis*-TPM and *E. coli*-TPM), prey were first grown to stationary phase in

149 high-nutrient CTT liquid and then spread as high-density lawns onto buffered TPM agar
150 lacking casitone, the carbon growth substrate present in CTT, before plates were inoculated
151 with *M. xanthus*. In this case, nutrients were only available to *M. xanthus* from the prey. All
152 TS-B treatments had plates with high (1.5%) agar concentration and were analyzed after 18
153 cycles of MyxoEE-3.

154 Among the evolved TS-A and TS-B populations of MyxoEE-3 examined here and their
155 ancestors (Table S1, see Methods), we analyzed variation at four morphological traits
156 associated with fruiting body formation as well as variation at spore production. We quantified
157 the degree of phenotypic divergence from the ancestor and tested for effects of MyxoEE-3
158 selective environments on developmental LPE, including for treatment-level means for each
159 trait, phenotypic plasticity for the TS-A treatments and degrees of stochastic diversification.
160

161 **RESULTS**

162 **Substrate stiffness determines the character of developmental LPE**

163 We quantitatively compared LPE of fruiting body (FB) morphology across MyxoEE-3
164 populations from both the TS-A and TS-B treatment sets and the ancestor (Anc). To do so,
165 we used previously published methods of quantifying four morphological FB traits⁹: three trait
166 medians measured at the resolution of individual FBs (density, density heterogeneity and
167 area) and total FB number per assay plate (see Methods and La Fortezza and Velicer⁹).
168 Considering TS-A first, microscopic observation (Fig. 1A), PCA of the entire morphological-
169 trait data set (Fig. 1B) and individual-trait analysis (Fig. 1C, D) collectively reveal that both TS-
170 A treatments diverged morphologically from the ancestor but clearly did so in a treatment-
171 specific manner.

172 The PCA indicated treatment-level differentiation collectively across all traits
173 (perMANOVA: $F = 42.9$, $R^2 = 0.94$, $Pr(>F) = 0.005$). In this analysis, PC1 explained the
174 majority of the variance, with all eigenvectors making similar contributions to shaping the FB
175 morphospace (Fig. S1A,B). More specifically, evolution on nutrient-rich soft agar (CTT-SA)
176 indirectly led to greater FB morphological divergence from Anc than did evolution on hard agar
177 (CTT-HA) (Fig. 1A). In further support of this observation, k-means and hierarchical-clustering
178 analyses based on the degree of morphological similarity in the morphospace, also found the
179 CTT-SA populations to be collectively distinct from both the CTT-HA populations and Anc,
180 which together formed one statistical cluster (Fig. S1C-E).

181 Considering traits individually, average FB density and heterogeneity decreased on
182 average from Anc among both CTT-HA and CTT-SA populations, whereas only CTT-SA
183 populations evolved greatly from Anc in FB area and total counts, doing so by largely losing

184 the ability to form FBs at all (Fig. 1C, Fig. S1F). CTT-HA populations remained very similar to
185 Anc in the latter two traits, thereby explaining their lower overall divergence from Anc across
186 all traits. We then also examined LPE of sporulation efficiency and found trends comparable
187 to those observed for the overall morphological analysis, in that CTT-HA populations retained
188 levels of sporulation similar to Anc, whereas spore counts drastically decreased in CTT-SA
189 populations (Fig. 1D, Fig. S1F). Under high-nutrient conditions, adaptation to swarming on a
190 soft surface traded off against general developmental proficiency, whereas adaptation to
191 swarming across a harder surface did not.

192 In light of the systematic latent loss of development in the CTT-SA lines, we examined
193 previously reported mutation profiles of clones isolated from each of the CTT-HA and CTT-SA
194 cycle-40 populations for possible candidate mutations⁷⁴ (one clone per population). In neither
195 treatment were mutations preferentially localized among genes reported to be transcribed in
196 a development-specific manner^{74,76} (Fig. S2, Table S3, see Methods), as might be expected
197 given the lack of selection on development during MyxoEE-3. However, an instance of gene-
198 level parallel mutation specific to the CTT-SA treatment may represent the most common
199 genetic route of developmental degradation among the CTT-SA populations. Among all loci
200 mutated in more than one population (whether in CTT-HA or CTT-SA), the gene *lonD* was a
201 hotspot of selection uniquely in the CTT-SA treatment, in which it was mutated in four
202 populations (P29, P31, P33 and P35)⁷⁴, whereas it was not mutated in any CTT-HA
203 population. *lonD* (aka *bsgA*) encodes an ATP-dependent protease that is required for
204 developmental proficiency^{77,78}. The histidine-kinase gene *MXAN_5852* (*MXAN_RS28370*)
205 was also mutated in parallel in the CTT-SA treatment (four populations). However, previous
206 experimental mutation of this gene did not cause major decreases in spore production⁷⁹,
207 suggesting that the MyxoEE-3 mutations found in this gene may not be responsible for the
208 losses of developmental proficiency observed in the respective populations. We thus
209 speculate that mutation of *lonD* is likely to have been a shared route of developmental loss
210 among four CTT-SA populations, while at least one other route was taken by the other two
211 populations examined here.

212 While all six TS-A CTT-HA populations retained relatively high sporulation levels
213 compared to the CTT-SA populations, three nonetheless evolved partial reductions of spore
214 production (Table S3). The sequenced clones from those three populations each had a
215 mutation in the histidine-kinase gene *hsfB*, which was not mutated in the other three
216 populations that retained full ancestral proficiency at development. HsfB has been shown to
217 phosphorylate the response regulator HsfA, which in turn activates transcription of *lonD*⁸⁰.
218 Thus, gene members of the same *hsfB/hsfA/lonD* developmental regulatory pathway were

219 clearly targeted by selection in both the CTT-HA and CTT-SA treatments, but the specific gene
220 targeted differed between treatments.

221

222 **Latent evolution of developmental plasticity**

223 Beyond phenotypes manifested in a single environment, the degree and character of
224 developmental plasticity across environmental gradients might also evolve latently and thus
225 at least initially remain hidden to selection^{81,82}. *M. xanthus* developmental phenotypes often
226 vary as a function of agar concentration⁷⁰. *M. xanthus* developmental phenotypes often vary
227 as a function of agar concentration⁵⁰. This ancestral phenotypic plasticity allowed us to ask
228 whether developmental-phenotype reaction norms of TS-A-treatment populations across an
229 agar-concentration gradient (0.5%, 1.0% and 1.5%) evolved latently and, if so, whether the
230 MyxoEE-3 selective environment impacted the character of such latent reaction-norm
231 evolution (Fig. S3A,B).

232 The reaction norms of both CTT-HA and CTT-SA populations evolved latently at the
233 treatment level (Fig. 2A and Fig. S3C-E), but in very different manners. In the CTT-HA
234 treatment, average reaction norms were altered significantly relative to the Anc clones in
235 overall mean, linear slope and/or shape for three of the four examined traits (Fig. 2A).
236 Intriguingly, however, considering average reaction norms at the treatment level masks
237 extensive stochastic diversification of reaction norms across individual populations at all four
238 morphological traits (Fig. 2B). Indeed, for all four traits, some populations varied not only in
239 slope, but in the very sign of the trait-value vs. agar-concentration relationship, whether across
240 all three agar concentrations or only two (Fig. 2B). Thus, for this treatment, although reaction
241 norms did evolve mildly at the treatment level (Fig. 2A), stochastic variation in mutational input
242 between replicate populations (the only plausible explanation for phenotypic variation between
243 population replicates) mattered much more for reaction-norm evolution than did the selective
244 conditions of the CTT-HA environment of MyxoEE-3. Intriguingly, this stochastic radiation led
245 to repeated examples of increased plasticity (e.g. P3 and P11 for FB counts), phenotypic
246 canalization (reaction-norm slope reduction, e.g. P9 and all CTT-SA populations for FB
247 counts), qualitatively novel reaction-norm patterns (e.g. P9 for FB counts) and evolutionary
248 reversals of reaction-norm slopes (e.g. P5 and P9 for FB area) (Fig. 2B).

249 In contrast to the CTT-HA treatment, all six of the CTT-SA populations evolved in parallel
250 to become completely or largely non-plastic. This is because the previously noted inability of
251 these populations to form fruiting bodies on 1.5% agar (Fig. 1C) was also observed at the
252 other two agar concentrations (Fig. 2A and Fig. S3B). Also, unlike CTT-HA, which allowed
253 much stochastic latent diversification of reaction norms, CTT-SA greatly constrained reaction-

254 norm LPE to yield nearly identically flat evolved reaction norms all across populations (Fig.
255 2B).

256

257 **Prey presence and identity also strongly shape developmental LPE**

258 Myxobacterial adaptation to distinct prey environments might drive diversification at many
259 traits, including predatory performance and mechanisms across diverse prey types⁸³, social
260 competitiveness^{60,84}, forms and degrees of cooperation during predation⁸⁵, motility
261 performance^{29,57}, secondary-metabolite production*, production of or sensitivity to antibiotics
262 and, a hypothesis we test here, development-related phenotypes. Overall, PCA of the entire
263 morphological datasets run on all five treatments in TS-B, four of which included prey, showed
264 some form of clear divergence of fruiting body morphology relative to Anc (Fig. 3A-B,
265 (perMANOVA: $F = 50.5$, $R^2 = 0.95$, $Pr(>F) = 0.001$), Fig. S4A-B). Moreover, most pairwise
266 treatment comparisons reveal treatment-level diversification at one or more developmental
267 traits (Fig. 3C, Fig. S4F). Most broadly, the presence of prey, irrespective of abiotic context,
268 tended to promote greater evolutionary change, as the four treatments that included prey
269 bacteria all clearly or apparently diverged more from Anc than did the cycle-18 CTT-HA
270 populations (Fig. 3B, 3C), which, like the cycle-40 CTT-HA populations examined in TS-A (Fig.
271 1B, 1C), remained relatively similar to Anc.

272 Three TS-B treatments shared the same abiotic environment of high-nutrient CTT hard
273 agar, differing only in the presence or absence of any prey or in prey identity - *B. subtilis* or *E.*
274 *coli* (CTT-HA, *B. subtilis*-CTT, *E. coli*-CTT). Among these three abiotically identical treatments,
275 the presence of either prey species resulted in greater morphological evolution than did the
276 absence of prey (Fig. 1C). However, the two prey species had different effects on LPE, with
277 greater indirect morphological evolution occurring in the *B. subtilis*-CTT treatment than in the
278 *E. coli*-CTT treatment (Fig. 3B, 3C).

279 Consistent with this result, *B. subtilis* also caused greater LPE than *E. coli* between the *B.*
280 *subtilis*-TPM vs *E. coli*-TPM treatments (Fig. 3B, 3C). Indeed, prey identity mattered even
281 more for LPE than the differences between the CTT vs TPM treatments with prey (Table S2),
282 in that both *B. subtilis* treatments showed greater divergence from Anc and from the CTT-HA
283 treatment than either *E. coli* treatment (Fig. 3B, 3C). Highlighting this primary effect of prey
284 identity, k-means cluster analysis of all five TS-B treatments identified two primary statistical
285 clusters distinguished solely by the presence or absence of *B. subtilis* (Fig. S4D). Consistent
286 with the above collective analyses (PCA and k-means), both *B. subtilis* treatments exhibited
287 significantly reduced trait values for all four individually examined morphological traits,
288 whereas the *E. coli* treatments each diverged from Anc only at a subset of traits (Fig. 3C).

289 As for TS-A, we examined levels of sporulation from all TS-B evolved populations. Also in
290 this case, MyxoEE-3 selective environments strongly determined LPE of sporulation. In detail,
291 sporulation level decreased greatly relative to Anc for those populations evolved in the
292 presence of *B. subtilis* in either abiotic context and in the *E. coli*-CTT populations, whereas it
293 remained near the ancestral level for both CTT-HA and *E. coli*-TPM evolved populations (Fig.
294 3D).

295 In *Myxococcus* literature, sporulation is frequently, if not always, associated positively with
296 FB formation. While the two developmental processes are indeed often linked, we^{37,86} have
297 recently shown that sporulation can evolutionarily become decoupled from fruiting-body
298 development, as occurred during MyxoEE-7⁹. We observed that MyxoEE-3 treatments that
299 evolved large reductions in morphological-trait values also showed large decreases in
300 sporulation (Fig. 3C, 3D) and therefore formally tested whether sporulation and FB counts
301 correlate positively after MyxoEE-3 evolution (for all TS-A and TS-B treatments pooled
302 together). Indeed, reductions in FB counts were quantitatively associated with reduced spore
303 counts ($r = 0.88$, $p = 4.4 \times 10^{-15}$) (Fig. S5).

304 Taken together, our results indicate that both abiotic and biotic details of selective
305 environments during myxobacterial growth can greatly impact the evolution of latent
306 developmental phenotypes that are revealed only upon exposure to starvation. Specifically,
307 agar concentration in the physical substrate on which *M. xanthus* evolved and the identity of
308 prey consumed by *M. xanthus* both had large indirect effects on the evolutionary fate of fruiting
309 body morphology and sporulation efficiency.

310

311 **Distinct selective environments differentially limit stochastic diversification of fruiting 312 body morphology**

313 Replicate experimental populations evolving under the same selective pressures often
314 diversify stochastically^{87,88}. However, the character of the selective environment can limit the
315 degree of such stochastic diversification, whether for immediately manifested or latent
316 phenotypes^{9,29,30,89}. For example, we have recently shown that social selection acting during
317 *M. xanthus* development can limit the degree of stochastic morphological diversification
318 among evolving populations⁹. Here we asked whether such limitation of stochastic
319 developmental diversification can also occur when selection operates solely during *M. xanthus*
320 population growth rather than on starvation-induced development. To do so, we quantified
321 morphological dispersion across all replicate populations within each individual treatment of
322 both TS-A and TS-B from the previously obtained morphospaces (Fig. 1B and 3B) (see
323 Methods).

324 We find that both agar concentration in TS-A and the presence of prey (of either identity)
325 in TS-B determined the degree of stochastic evolutionary diversification at developmental
326 phenotypes during MyxoEE-3. In TS-A, replicate populations evolved on CTT-HA diversified
327 much more than the CTT-SA populations (Fig. 4A, Fig. S6A,B), a pattern corroborated by the
328 average variances of individual-trait values across populations (Fig. 4B). FB counts and FB
329 area explained most of the inter-population diversification observed for CTT-HA in TS-A (Fig.
330 4B, Fig. S1F). Evolution on CTT-SA resulted in extremely low levels of inter-population
331 diversity at the end of MyxoEE-3, which was not significantly greater than diversity among the
332 Anc founding clones (Fig. 4A, Fig. S6A,B), despite the extensive collective morphological
333 divergence of the CTT-SA treatment away from its ancestral state (Fig. 1B, 1C and Fig. S1D,
334 E). This lack of diversification is due to the systematic parallel loss of developmental
335 proficiency by all six populations examined in this treatment (Fig. 1A, B, D and Fig. S1F).

336 Stochastic morphological diversification was also indirectly limited by specific TS-B
337 selective environments. Evolution in the presence of either prey species on CTT hard agar
338 allowed greater latent diversification of developmental phenotypes than evolution in the
339 absence of prey, both across the collective morphospace (Fig. 4C, Fig. S6C,D) and often at
340 single traits considered individually (Fig. 4D, Fig. S4F), as did adaptation to *E. coli* as prey on
341 TPM agar. Stochastic diversification was lowest on *B. subtilis*-TPM, largely due to systematic
342 parallel reductions of trait values across the four populations (Fig. 3A, C, D and Fig. S4F) (as
343 occurred also in the CTT-SA populations of TS-A (Fig. 1A, B, D and Fig. S1F).

344 Comparing treatments sharing the same prey species (*B. subtilis*-CTT vs *B. subtilis*-TPM;
345 *E. coli*-CTT vs *E. coli*-TPM), *M. xanthus* diversification was lower in the TPM treatments than
346 the CTT treatments (Fig. 4C). Collectively, these results demonstrate that stochastic
347 developmental diversification mediated by LPE can be strongly influenced by both abiotic and
348 biotic components of the selective environment, here surface stiffness and prey environment,
349 respectively.

350

351 **DISCUSSION**

352 Phenotype expression and form often depend greatly on ecological context. Genetic
353 causation of phenotypic novelty can thus evolve latently (hidden from selection) in one
354 environment, until the causal genotype is exposed to a different, inductive environment that
355 triggers phenotypic manifestation. Here we have shown how both abiotic and biotic ecological
356 factors - swarming-surface stiffness and predator-prey interactions, respectively - shape and
357 limit the evolution of latent developmental phenotypes in the multicellular bacterium *M.*
358 *xanthus*.

359

360 **Morphological diversification**

361 The sophisticated genetic and behavioral complexity of fruiting body development among
362 myxobacteria clearly points to these forms of aggregative multicellularity conferring significant
363 evolutionary benefits. But what those benefits are remains unclear and may include protection
364 from abiotic stresses and biotic dangers (e.g. potential predation by nematodes⁹⁰), enhanced
365 dispersal, and positive effects of high density during spore germination and post-germination
366 growth and predation³⁷. Even less clear is any adaptive significance to the striking
367 diversification of fruiting body morphology observed across myxobacterial species (or similarly
368 across aggregative developmental species of dictyostelids)^{37,38}. One evolution experiment -
369 MyxoEE-7 - has identified selective forces acting on fitness during *M. xanthus* development
370 that can drive morphological diversification, namely selection mediated by distinct social
371 environments⁹.

372 Our results with MyxoEE-3 suggest that evolutionary processes other than selection on
373 fitness during development are also likely to play major roles in the morphological
374 diversification of aggregative developmental systems. Ecological differences during growth
375 without development - including a simple physical difference in growth surface and a simple
376 difference in the identity of one-species prey environments - are found to evolutionarily shape
377 not only details of fruiting body morphology in environments that do induce development, but
378 the very evolutionary persistence of development itself (Figs. 1A-C and Fig. 3A-C). Further
379 investigations of how evolutionary forces other than selection on development per se interact
380 with such selection to impact fruiting body evolution, including increases in morphological
381 complexity, will be of interest.

382

383 **Pleiotropy and life-cycle evolution**

384 The relative origins and long-term evolutionary integration of the genetic systems enabling
385 the motility, predation, aggregative development and germination components of
386 myxobacterial multicellular life cycles remain to be thoroughly characterized^{91,92}. However, the
387 pervasiveness of LPE emergent from MyxoEE evolution experiments^{29,30,56,57,59,60,74,84,86,93} and
388 of pleiotropy across *M. xanthus* behaviors from mutations engineered or induced in
389 mechanistic molecular studies^{58,94} together indicate that many loci contribute to more than one
390 of these behaviors. Increasingly systematic and extensive investigations of pleiotropy across
391 *M. xanthus* behaviors under standardized conditions will provide greater insight into the
392 shared vs. modular components of the genetic systems underlying these behaviors and their
393 evolution⁵⁵.

394 When selection operates across whole myxobacterial life cycles, trade-offs mediated by
395 antagonistic pleiotropy that may exist between adaptive improvement at any one life-history

396 stage (e.g. population growth fueled by predation) and another (e.g. development) must be
397 balanced⁵⁴. Whether such trade-offs even exist and the detailed manner in which selection
398 balances those that do may often depend on details of the ecological context within which
399 those life cycles are played out. Suggesting that this will often be the case in natural contexts,
400 MyxoEE-3 reveals profound differences in the character of developmental LPE as a function
401 of the ecological details of vegetative growth, for example the presence vs absence of prey
402 and the identity of prey.

403 That adaptation to distinct prey environments when selection on development is relaxed
404 often has large divergent effects on development suggests that prey environments will also
405 impact developmental-system divergence when selection across whole life cycles favors high
406 proficiency at both predation and development. To address this question, evolution
407 experiments might be performed that include both predatory growth and starvation-induced
408 development within each selection cycle and multiple treatments that differ only in prey
409 environment (perhaps with respect to both prey identity and prey-community complexity).
410 Distinct prey environments may drive divergence at nutritional triggers of development,
411 developmental timing, overall patterns of developmental gene expression, sporulation level,
412 mechanisms of cheater-cooperator coevolution (for developmental cheating as well as
413 cheating on cooperative predation traits), the relationship between fruiting-body formation and
414 sporulation, fruiting-body morphology, and the molecular triggers and social character of
415 spore germination to reinitiate predatory growth, and might even ultimately drive
416 diversification of the very gene sets necessary for development^{76,92}. Other experiments might
417 be performed to test how, reciprocally, selection on different developmental traits (e.g.
418 developmental timing or spore quality) might differentially impact predatory performance
419 across various prey environments.

420 In the first evolution experiment with *M. xanthus* (MyxoEE-1), most replicate populations
421 adapting to growth in nutrient-rich CTT liquid latently evolved large decreases in
422 developmental proficiency, including at both fruiting-body formation and sporulation⁸⁶.
423 However, the relative contributions of nutrient abundance vs absence of a solid growth
424 substratum, if any, to promoting the evolutionary degradation of development in MyxoEE-1
425 have been unclear. Our analyses of MyxoEE-3 suggest that mere relaxation of selection for
426 developmental proficiency by provision of abundant growth resources is often less important
427 to the evolutionary fate of development than other details of the ecological context in which
428 population growth occurs. Development was largely retained when growth under nutrient
429 abundance was accompanied by swarming that employs both *M. xanthus* motility systems
430 (on hard agar), whereas it tended to be lost when S-motility alone (on soft agar) (Fig. 3) or no
431 motility at all (Velicer et al. 1998) was employed during growth (Table S2). Developmental

432 phenotypes were retained at much higher levels when *E. coli* was consumed as prey than
433 when *B. subtilis* was consumed, regardless of abiotic context (Fig. 3).

434 Comparing only the TS-A treatments, it appears that a mere difference in the relative
435 employment of the two *M. xanthus* motility systems during growth determines the evolutionary
436 fate of development. Evolution while swarming almost exclusively by S-motility on soft agar
437 (at least in the ancestral state) led to systematic severe losses of developmental proficiency.
438 In contrast, swarming on a hard-agar surface while more equally employing both A-motility
439 and S-motility⁷⁵ led to only sporadic and relatively mild decreases in developmental
440 phenotypes (Fig. 1D, Fig. S4F) Intriguingly, the simple difference in surface stiffness between
441 the CTT-HA vs CTT-SA regimes also led to selection on different genes within the same
442 regulatory pathway controlling multicellular development (*lonD*/*bsgA*). Future analysis of the
443 precise effects of mutations in these genes (and other genes mutated in parallel during
444 MyxoEE-3I) on fitness during swarming and on developmental phenotypes would likely
445 provide novel insights into pleiotropic connections between development and the distinct
446 mechanisms of A- and S- motility employed during vegetative growth.

447 In light of the TS-A results, the different LPE effects of distinct prey environments among
448 the TS-B treatments might be due to differential effects of those prey environments on the
449 relative employment of the two *M. xanthus* motility systems. Alternatively, differences in
450 predator-prey interactions unrelated to motility may be at play.

451

452 **Deterministic vs stochastic diversification of latent phenotypes**

453 Our experiments reveal both deterministic and stochastic forms of latent-phenotype
454 diversification (LPD). In deterministic LPD, populations diversified systematically at the
455 treatment level due to differences in the average pleiotropic effects on development of
456 adaptive mutations that arose in different growth environments. In stochastic LPD, replicate
457 populations within the same treatment diverged from one another over time, an outcome
458 explained by stochastic variation across replicate evolving populations in the identity and/or
459 temporal order of mutations that occurred within each. While such stochastic LPD is evident
460 already from examining individual traits in single environments (Fig. S8), its perhaps most
461 striking manifestation in our data set is the remarkable diversification of developmental
462 reaction norms among the CTT-HA populations (Fig. 2B, Fig. S2). Among these populations,
463 the very sign of reaction-norm slopes diversified stochastically for all four examined
464 morphological traits across part or all of the examined environmental gradient (Fig. 2B).
465 Phenotypic plasticity is well recognized as often being important for fitness, evolutionary
466 trajectories and evolvability across variable environmental conditions⁹⁵. Latently-evolved

467 reaction-norm diversity might fuel novel routes of adaptive innovation during future evolution
468 through changing environments^{81,82}.

469 The likely contributions of LPE to long-term evolutionary processes have been receiving
470 increasing attention^{29–33,36}. The outcomes of MyxoEE-3 reported here suggest that not only
471 LPE per se, but the ecological context in which LPE originates, may often be important for the
472 evolution of many developmental systems.

473

474 **Acknowledgments.** We thank Kaitlin Schaal for comments on the manuscript.

475

476 **Author contributions.** M.L.F., O.R. and G.J.V. designed the research, M.L.F. and G.J.V.
477 drafted the manuscript; M.L.F., O.R. and G.J.V. revised the manuscript; M.L.F., O.R. and H.K.
478 conducted the experiments; M.L.F. analyzed the data and created the figures.

479

480 **Funding.** This work was funded in part by two EMBO Long-Term Fellowships, ALTF 1208-
481 2017 to M.L.F. and ALTF 1411-2012 to O.R. and Swiss National Science Foundation (SNF)
482 grant 31003B_6005 to G.J.V.

483

484 **Data availability.** All **datasets** are available at figShare (see figure legends). Raw images
485 and programming codes used for the analyses are available upon request to the
486 corresponding author.

487

488 **Competing interest statement.** The authors do not declare any conflict of interest

489

490

491 **REFERENCES**

492 1. Carroll, S.B. (2005). *Endless Forms Most Beautiful: The New Science of Evo Devo and the*
493 *Making of the Animal Kingdom.* (New York, U.S.A.: W. W. Norton eds.)

494 2. Dobzhansky, T., and Spassky, B. (1944). Genetics of natural populations. XI. manifestation
495 of genetic variants in *Drosophila pseudoobscura* in different environments. *Genetics* **29**,
496 270–90.

497 3. Abouheif, E., Fave, M.-J., Ibarraran-Viniegra, A.S., Lesoway, M.P., Rafiqi, A.M., and
498 Rajakumar, R. (2014). Eco-Evo-Devo: The Time Has Come. In *Ecological Genomics.*
499 *Advances in Experimental Medicine and Biology*, vol 781. (Springer, Dordrecht).
500 10.1007/978-94-007-7347-9_6

501 4. Sultan, S.E. (2021). *Eco-Evo-Devo.* In *Evolutionary Developmental Biology.* (Springer,
502 Cham.) 10.1007/978-3-319-32979-6_42

503 5. Gomez-Mestre, I., and Warkentin, K.M. (2007). To hatch and hatch not: similar selective
504 trade-offs but different responses to egg predators in two closely related, syntopic
505 treefrogs. *Oecologia* **153**, 197–206. 10.1007/s00442-007-0708-0

506 6. Herron, M.D., Borin, J.M., Boswell, J.C., Walker, J., Chen, I.-C.K., Knox, C.A., Boyd, M.,
507 Rosenzweig, F., and Ratcliff, W.C. (2019). De novo origins of multicellularity in response
508 to predation. *Sci Rep* **9**, 2328. 10.1038/s41598-019-39558-8

509 7. Fisher, R.M., Bell, T., and West, S.A. (2016). Multicellular group formation in response to
510 predators in the alga *Chlorella vulgaris*. *J Evol Biol* **29**, 551–559. 10.1111/jeb.12804

511 8. Noh, S., Christopher, L., Strassmann, J.E., and Queller, D.C. (2020). Wild *Dictyostelium*
512 *discoideum* social amoebae show plastic responses to the presence of nonrelatives during
513 multicellular development. *Ecol Evol* **10**, 1119–1134. 10.1002/ece3.5924

514 9. La Fortezza, M., and Velicer, G.J. (2021). Social selection within aggregative multicellular
515 development drives morphological evolution. *bioRxiv*. 10.1101/2021.05.12.443771

516 10. West-Eberhard, M.J. (1983). Sexual selection, social competition, and speciation. *Q Rev*
517 *Biology* **58**, 155–183. 10.1086/413215

518 11. Saxon, A.D., O'Brien, E.K., and Bridle, J.R. (2018). Temperature fluctuations during
519 development reduce male fitness and may limit adaptive potential in tropical rainforest
520 *Drosophila*. *J Evol Biol* **31**, 405–415. 10.1111/jeb.13231

521 12. García-Roa, R., Garcia-Gonzalez, F., Noble, D.W.A., and Carazo, P. (2020). Temperature
522 as a modulator of sexual selection. *Biol Rev* **95**, 1607–1629. 10.1111/brv.12632

523 13. McGlashan, J.K., Spencer, R.-J., and Old, J.M. (2011). Embryonic communication in the
524 nest: metabolic responses of reptilian embryos to developmental rates of siblings. *Proc.
525 R. Soc. B.* **279**, 1709–15. 10.1098/rspb.2011.2074

526 14. Bozdag, G.O., Libby, E., Pineau, R., Reinhard, C.T., and Ratcliff, W.C. (2021). Oxygen
527 suppression of macroscopic multicellularity. *Nat Commun* **12**, 2838. 10.1038/s41467-021-
528 23104-0

529 15. Reinhard, C.T., Planavsky, N.J., Olson, S.L., Lyons, T.W., and Erwin, D.H. (2016). Earth's
530 oxygen cycle and the evolution of animal life. *Proceedings of the National Academy of
531 Sciences of the U.S.A.* **113**, 8933–8938. 10.1073/pnas.1521544113

532 16. Callier, V., and Nijhout, H.F. (2011). Control of body size by oxygen supply reveals size-
533 dependent and size-independent mechanisms of molting and metamorphosis.
534 *Proceedings of the National Academy of Sciences of the U.S.A.* **108**, 14664–14669.
535 10.1073/pnas.1106556108

536 17. Taubenheim, J., Willoweit-Ohl, D., Knop, M., Franzenburg, S., He, J., Bosch, T.C.G., and
537 Fraune, S. (2020). Bacteria- and temperature-regulated peptides modulate β -catenin
538 signaling in Hydra. *Proceedings of the National Academy of Sciences of the U.S.A.*,
539 202010945. 10.1073/pnas.2010945117

540 18. Sikkink, K.L., Reynolds, R.M., Ituarte, C.M., Cresko, W.A., and Phillips, P.C. (2014). Rapid
541 evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the
542 nematode *Caenorhabditis remanei*. *G3* **4**, 1103–12. 10.1534/g3.114.010553

543 19. Scoville, A.G., and Pfrenger, M.E. (2010). Phenotypic plasticity facilitates recurrent rapid
544 adaptation to introduced predators. *Proceedings of the National Academy of Sciences of
545 the U.S.A.* **107**, 4260–4263. 10.1073/pnas.0912748107

546 20. Nijhout, H.F., Kudla, A.M., and Hazelwood, C.C. (2020). Genetic assimilation and
547 accommodation: Models and mechanisms. In *Current Topics in Developmental Biology*,
548 pp. 337–369. (Academic Press). 10.1016/bs.ctdb.2020.11.006

549 21. Hintze, M., Koneru, S.L., Gilbert, S.P.R., Katsanos, D., Lambert, J., and Barkoulas, M.
550 (2020). A cell fate switch in the *Caenorhabditis elegans* seam cell lineage occurs through
551 modulation of the Wnt asymmetry pathway in response to temperature increase. *Genetics*
552 **214**, 927–939. 10.1534/genetics.119.302896

553 22. Paaby, A.B., and Testa, N.D. (2021). Developmental Plasticity and Evolution. In
554 Evolutionary Developmental Biology. (Springer, Cham.) 10.1007/978-3-319-32979-6_110

555 23. Sultan, S.E. (n.d.). Phenotypic Plasticity as an Intrinsic Property of Organisms. In
556 Phenotypic Plasticity & Evolution. (CRC Press)

557 24. Gonzalez, P.N., and Barbeito-Andrés, J. (2018). Canalization: A Central but Controversial
558 Concept in Evo-Devo. In Evolutionary Developmental Biology. (Springer, Cham.)
559 10.1007/978-3-319-33038-9_55-1

560 25. Kawecki, T.J., Lenski, R.E., Ebert, D., Hollis, B., Olivieri, I., and Whitlock, M.C. (2012).
561 Experimental evolution. *Trends Ecol Evol* **27**, 547–560. 10.1016/j.tree.2012.06.001

562 26. Wagner, A. (2017). The white-knight hypothesis, or does the environment limit
563 innovations? *Trends Ecol Evol* **32**, 131–140. 10.1016/j.tree.2016.10.017

564 27. Lafuente, E., and Beldade, P. (2019). Genomics of developmental plasticity in animals.
565 *Front Genet* **10**, 720. 10.3389/fgene.2019.00720

566 28. Nijhout, H.F. (1990). Problems and paradigms: metaphors and the role of genes in
567 development. *Bioessays* **12**, 441–446. 10.1002/bies.950120908

568 29. Rendueles, O., and Velicer, G.J. (2020). Hidden paths to endless forms most wonderful:
569 Complexity of bacterial motility shapes diversification of latent phenotypes. *BMC Evol Biol*
570 **20**, 145. 10.1002/bies.950120908

571 30. Freund, L., Vasse, M., and Velicer, G.J. (2021). Hidden paths to endless forms most
572 wonderful: parasite-blind diversification of host quality. *Proc R Soc B* **288**, 20210456.
573 10.1098/rspb.2021.0456

574 31. Kinsler, G., Geiler-Samerotte, K., and Petrov, D.A. (2020). Fitness variation across subtle
575 environmental perturbations reveals local modularity and global pleiotropy of adaptation.
576 *eLife* **9**, e61271. 10.7554/elife.61271

577 32. Paaby, A.B., and Rockman, M.V. (2013). The many faces of pleiotropy. *Trends Genet* **29**,
578 66–73. 10.1016/j.tig.2012.10.010

579 33. Paaby, A.B., and Rockman, M.V. (2014). Cryptic genetic variation: evolution's hidden
580 substrate. *Nat Rev Genet* **15**, 247–258. 10.1038/nrg3688

581 34. Payne, J.L., and Wagner, A. (2014). Latent phenotypes pervade gene regulatory circuits.
582 *BMC Syst Biol* **8**, 64. 10.1186/1752-0509-8-64

583 35. Payne, J.L., and Wagner, A. (2019). The causes of evolvability and their evolution. *Nat*
584 *Rev Genet* **20**, 24–38. 10.1038/s41576-018-0069-z

585 36. Zheng, J., Payne, J.L., and Wagner, A. (2019). Cryptic genetic variation accelerates
586 evolution by opening access to diverse adaptive peaks. *Science* **365**, 347–353.
587 10.1126/science.aax1837

588 37. La Fortezza, M., Schaal, K., and Velicer, G.J. (2021). Why Aggregate? On the Evolution
589 of Aggregative Multicellularity. *Preprints*. 10.20944/preprints202105.0451.v1

590 38. Dawid, W. (2000). Biology and global distribution of myxobacteria in soils. *FEMS Microbiol*
591 *Rev* **24**, 403–427. 10.1111/j.1574-6976.2000.tb00548.x

592 39. Thiery, S., and Kaimer, C. (2020). The Predation Strategy of *Myxococcus xanthus*. *Front*
593 *Microbiol* **11**, 2. 10.3389/fmicb.2020.00002

594 40. Arend, K.I., Schmidt, J.J., Bentler, T., Lüchtfeld, C., Eggerichs, D., Hexamer, H.M., and
595 Kaimer, C. (2020). *Myxococcus xanthus* predation of Gram-positive or Gram-negative
596 bacteria is mediated by different bacteriolytic mechanisms. *Appl Environ Microb* **87**.
597 10.1128/aem.02382-20

598 41. Wu, S.S., and Kaiser, D. (1995). Genetic and functional evidence that Type IV pili are
599 required for social gliding motility in *Myxococcus xanthus*. *Mol Microbiol* **18**, 547–558.
600 10.1111/j.1365-2958.1995.mmi_18030547.x

601 42. Faure, L.M., Fiche, J.-B., Espinosa, L., Ducret, A., Anantharaman, V., Luciano, J.,
602 Lhospice, S., Islam, S.T., Tréguier, J., Sotes, M., et al. (2016). The mechanism of force
603 transmission at bacterial focal adhesion complexes. *Nature* **539**, 530–535.
604 10.1038/nature20121

605 43. Shimkets, L.J., Dworkin, M., and Reichenbach, H. (2006). The Myxobacteria. In *The*
606 *Prokaryotes*, Volume 7: *Proteobacteria: Delta, Epsilon Subclass*. pp 31–115. (Springer,
607 New York, NY). 10.1007/0-387-30747-8_3

608 44. Mercier, R., and Mignot, T. (2016). Regulations governing the multicellular lifestyle of
609 *Myxococcus xanthus*. *Curr Opin Microbiol* **34**, 104–110. 10.1016/j.mib.2016.08.009

610 45. Muñoz-Dorado, J., Marcos-Torres, F.J., García-Bravo, E., Moraleda-Muñoz, A., and
611 Pérez, J. (2016). Myxobacteria: Moving, killing, feeding, and surviving together. *Front*
612 *Microbiol* **7**, 2475–18. 10.3389/fmicb.2016.00781

613 46. Kawecki, T.J., and Ebert, D. (2004). Conceptual issues in local adaptation. *Ecol Lett* **7**,
614 1225–1241. 10.1111/j.1461-0248.2004.00684.x

615 47. Levins, R. (1968). *Evolution in Changing Environments, Some Theoretical Explorations*.
616 (Princeton University Press).

617 48. Satterwhite, R.S., and Cooper, T.F. (2015). Constraints on adaptation of *Escherichia coli*
618 to mixed-resource environments increase over time. *Evolution* **69**, 2067–2078.
619 10.1111/evo.12710

620 49. Williams, G.C. (1957). Pleiotropy, natural selection, and the evolution of senescence.
621 *Evolution* **11**, 398. 10.2307/2406060

622 50. Ackermann, M., Schauerte, A., Stearns, S.C., and Jenal, U. (2007). Experimental evolution
623 of aging in a bacterium. *BMC Evol Biol* **7**, 126. 10.1186/1471-2148-7-126

624 51. Moreno-Gámez, S., Kiviet, D.J., Vulin, C., Schlegel, S., Schlegel, K., Doorn, G.S. van, and
625 Ackermann, M. (2020). Wide lag time distributions break a trade-off between reproduction
626 and survival in bacteria. *Proceedings of the National Academy of Sciences of the U.S.A.*
627 **117**, 18729–18736. 10.1073/pnas.2003331117

628 52. Paepe, M.D., and Taddei, F. (2006). Viruses' life history: Towards a mechanistic basis of
629 a trade-off between survival and reproduction among phages. *PLoS Biol* **4**, e193.
630 10.1371/journal.pbio.0040193

631 53. Zakrzewska, A., Eikenhorst, G. van, Burggraaff, J.E.C., Vis, D.J., Hoefsloot, H., Delneri,
632 D., Oliver, S.G., Brul, S., and Smits, G.J. (2011). Genome-wide analysis of yeast stress
633 survival and tolerance acquisition to analyze the central trade-off between growth rate and
634 cellular robustness. *Mol Biol Cell* **22**, 4435–4446. 10.1091/mbc.e10-08-0721

635 54. Stearns, S.C. (1992). *The evolution of life histories* (Oxford University Press).

636 55. Wagner, G.P., and Zhang, J. (2011). The pleiotropic structure of the genotype–phenotype
637 map: the evolvability of complex organisms. *Nat Rev Gen* **12**, 204–213. 10.1038/nrg2949

638 56. Velicer, G.J., Kroos, L., and Lenski, R.E. (2000). Developmental cheating in the social
639 bacterium *Myxococcus xanthus*. *Nature* **404**, 598–601. 10.1038/35007066

640 57. Hillesland, K.L., Velicer, G.J., and Lenski, R.E. (2009). Experimental evolution of a
641 microbial predator's ability to find prey. *Proc R Soc B* **276**, 459–467.
642 10.1098/rspb.2008.1098

643 58. Pham, V.D., Shebelut, C.W., Diodati, M.E., Bull, C.T., and Singer, M. (2005). Mutations
644 affecting predation ability of the soil bacterium *Myxococcus xanthus*. *Microbiology* **151**,
645 1865–1874. 10.1099/mic.0.27824-0

646 59. Zee, P.C., Liu, J., and Velicer, G.J. (2016). Pervasive, yet idiosyncratic, epistatic pleiotropy
647 during adaptation in a behaviourally complex microbe. *J Evol Biol* **30**, 257–269.
648 10.1111/jeb.12999

649 60. Nair, R.R., Fiegna, F., and Velicer, G.J. (2018). Indirect evolution of social fitness
650 inequalities and facultative social exploitation. *Proc R Soc B* **285**, 20180054.
651 10.1098/rspb.2018.0054

652 61. Chen, P., and Zhang, J. (2020). Antagonistic pleiotropy conceals molecular adaptations in
653 changing environments. *Nat Ecol Evol* **4**, 461–469. 10.1038/s41559-020-1107-8

654 62. Bono, L.M., Smith, L.B., Pfennig, D.W., and Burch, C.L. (2017). The emergence of
655 performance trade-offs during local adaptation: insights from experimental evolution. *Mol
656 Ecol* **26**, 1720–1733. 10.1111/mec.13979

657 63. Ferenci, T. (2016). Trade-off mechanisms shaping the diversity of bacteria. *Trends
658 Microbiol* **24**, 209–223. 10.1016/j.tim.2015.11.009

659 64. Amherd, M., Velicer, G.J., and Rendueles, O. (2018). Spontaneous nongenetic variation
660 of group size creates cheater-free groups of social microbes. *Behav Ecol* **29**, 393–403.
661 10.1093/beheco/arx184

662 65. Fiegna, F., and Velicer, G.J. (2005). Exploitative and hierarchical antagonism in a
663 cooperative bacterium. *PLoS Biology* **3**, e370. 10.1371/journal.pbio.0030370

664 66. Kraemer, S.A., Toups, M.A., and Velicer, G.J. (2010). Natural variation in developmental
665 life-history traits of the bacterium *Myxococcus xanthus*. *FEMS Microbiol Ecol* **73**, 226–233.
666 10.1111/j.1574-6941.2010.00888.x

667 67. Kadam, S.V., and Velicer, G.J. (2006). Variable patterns of density-dependent survival in
668 social bacteria. *Behav Ecol* **17**, 833–838. 10.1093/beheco/arl018

669 68. Rajagopalan, R., Wielgoss, S., Lippert, G., Velicer, G.J., and Kroos, L. (2015). *devl* is an
670 evolutionarily young negative regulator of *Myxococcus xanthus* development. *Journal of
671 Bacteriology* **197**, 1249–1262. 10.1128/jb.02542-14

672 69. Harris, B.Z., Kaiser, D., and Singer, M. (1998). The guanosine nucleotide (p)ppGpp
673 initiates development and A-factor production in *Myxococcus xanthus*. *Gene Dev* **12**,
674 1022–1035. 10.1101/gad.12.7.1022

675 70. Rivera-Yoshida, N., Arzola, A.V., Angel, J.A.A.D., Franci, A., Travisano, M., Escalante,
676 A.E., and Benítez, M. (2019). Plastic multicellular development of *Myxococcus xanthus*:
677 genotype–environment interactions in a physical gradient. *R Soc open science* **6**, 181730–
678 9. 10.1098/rsos.181730

679 71. Fiegna, F., Yu, Y.-T.N., Kadam, S.V., and Velicer, G.J. (2006). Evolution of an obligate
680 social cheater to a superior cooperator. *Nature* **441**, 310–314. 10.1038/nature04677

681 72. Levis, N.A., and Pfennig, D.W. (2019). Phenotypic plasticity, canalization, and the origins
682 of novelty: Evidence and mechanisms from amphibians. *Seminars in Cell and*
683 *Developmental Biology* **88**, 80–90. 10.1016/j.semcd.2018.01.012

684 73. Velicer, G.J., and Yu, Y.N. (2003). Evolution of novel cooperative swarming in the
685 bacterium *Myxococcus xanthus*. *Nature* **425**, 75–78. 10.1038/nature01908

686 74. Rendueles, O., and Velicer, G.J. (2016). Evolution by flight and fight: diverse mechanisms
687 of adaptation by actively motile microbes. *ISME J* **11**, 555–568. 10.1038/ismej.2016.115

688 75. Shi, W., and Zusman, D.R. (1993). The two motility systems of *Myxococcus xanthus* show
689 different selective advantages on various surfaces. *Proceedings of the National Academy*
690 *of Sciences of the U.S.A.* **90**, 3378–3382. 10.1073/pnas.90.8.3378

691 76. Muñoz-Dorado, J., Moraleda-Muñoz, A., Marcos-Torres, F.J., Contreras-Moreno, F.J.,
692 Martin-Cuadrado, A.B., Schrader, J.M., Higgs, P.I., and Pérez, J. (2019). Transcriptome
693 dynamics of the *Myxococcus xanthus* multicellular developmental program. *eLife* **8**,
694 e50374. 10.7554/elife.50374

695 77. Gill, R.E., Karlok, M., and Benton, D. (1993). *Myxococcus xanthus* encodes an ATP-
696 dependent protease which is required for developmental gene transcription and
697 intercellular signaling. *J Bacteriol* **175**, 4538–4544. 10.1128/jb.175.14.4538-4544.1993.

698 78. Tojo, N., Inouye, S., and Komano, T. (1993). The *lonD* gene is homologous to the *lon* gene
699 encoding an ATP-dependent protease and is essential for the development of *Myxococcus*
700 *xanthus*. *J Bacteriol* **175**, 4545–4549. 10.1128/jb.175.14.4545-4549.1993

701 79. Caberoy, N.B., Welch, R.D., Jakobsen, J.S., Slater, S.C., and Garza, A.G. (2003). Global
702 mutational analysis of ntrc-like activators in *Myxococcus xanthus*: Identifying activator
703 mutants defective for motility and fruiting body development. *J Bacteriol* **185**, 6083–6094.

704 80. Ueki, T., and Inouye, S. (2002). Transcriptional activation of a heat-shock gene, *lond*, of
705 *Myxococcus xanthus* by a two component histidine-aspartate phosphorelay system. *J Biol
706 Chem* **277**, 6170–6177. 10.1128/jb.185.20.6083-6094.2003

707 81. Schlichting, C.D. (2021). Plasticity and Evolutionary Theory: Where We Are and Where
708 We Should Be Going. In *Phenotypic Plasticity & Evolution*, pp.367–394. (CRC Press).

709 82. Schlichting, C.D. (2008). Hidden reaction norms, cryptic genetic variation, and evolvability.
710 *Ann Ny Acad Sci* **1133**, 187–203. 10.1196/annals.1438.010

711 83. Morgan, A.D., MacLean, R.C., Hillesland, K.L., and Velicer, G.J. (2010). Comparative
712 analysis of *myxococcus* predation on soil bacteria. *Applied and Enviro Microbiol* **76**, 6920–
713 6927. 10.1128/aem.00414-10

714 84. Rendueles, O., Amherd, M., and Velicer, G.J. (2015). Positively frequency-dependent
715 interference competition maintains diversity and pervades a natural population of
716 cooperative microbes. *Current Biology* **25**, 1673–1681. 10.1016/j.cub.2015.04.057

717 85. Rosenberg, E., Keller, K.H., and Dworkin, M. (1977). Cell density-dependent growth of
718 *Myxococcus xanthus* on casein. *J Bacteriol* **129**, 770–777. 10.1128/jb.129.2.770-777.1977

719 86. Velicer, G.J., Kroos, L., and Lenski, R.E. (1998). Loss of social behaviors by *Myxococcus
720 xanthus* during evolution in an unstructured habitat. *Proceedings of the National Academy
721 of Sciences of the U.S.A* **95**, 12376–12380. 10.1073/pnas.95.21.12376

722 87. Cooper, T.F., and Lenski, R.E. (2010). Experimental evolution with *E. coli* in diverse
723 resource environments. I. Fluctuating environments promote divergence of replicate
724 populations. *BMC Evol Biol* **10**, 11. 10.1186/1471-2148-10-11

725 88. Lobkovsky, A.E., and Koonin, E.V. (2012). Replaying the tape of life: Quantification of the
726 predictability of evolution. *Frontiers Genetics* **3**, 246. 10.3389/fgene.2012.00246

727 89. Kinnersley, M., Schwartz, K., Yang, D.-D., Sherlock, G., and Rosenzweig, F. (2021).
728 Evolutionary dynamics and structural consequences of *de novo* beneficial mutations and
729 mutant lineages arising in a constant environment. *BMC Biol* **19**, 20. 10.1186/s12915-021-
730 00954-0

731 90. Dahl, J.L., Ulrich, C.H., and Kroft, T.L. (2011). Role of phase variation in the resistance of
732 *Myxococcus xanthus* fruiting bodies to *Caenorhabditis elegans* predation. *J Bacteriol* **193**,
733 5081–5089. 10.1128/jb.05383-11

734 91. Luciano, J., Agrebi, R., Gall, A.V.L., Wartel, M., Fiegna, F., Ducret, A., Brochier-Armanet,
735 C., and Mignot, T. (2011). Emergence and modular evolution of a novel motility machinery
736 in bacteria. *PLoS Genet* **7**, e1002268. 10.1371/journal.pgen.1002268

737 92. Goldman, B., Bhat, S., and Shimkets, L.J. (2007). Genome evolution and the emergence
738 of fruiting body development in *Myxococcus xanthus*. *PLoS One* **2**, e1329.
739 10.1371/journal.pone.0001329

740 93. Schaal, K.A., Yu, Y.-T.N., Vasse, M., and Velicer, G.J. (2021). Allopatric divergence limits
741 cheating range and alters genetic requirements for a cooperative trait. *bioRxiv*,
742 2021.01.07.425765.

743 94. Yang, Z., and Higgs, P. I. eds. (2014). *Myxobacteria: Genomics, Cellular and Molecular*
744 *Biology*. (Caister Academic Press).

745 95. Pfennig (2021). Key Questions about Phenotypic Plasticity. In *Phenotypic Plasticity &*
746 *Evolution - Causes, Consequences, Controversies*. (CRC Press).

747 96. Bretscher, A.P., and Kaiser, D. (1978). Nutrition of *Myxococcus xanthus*, a fruiting
748 myxobacterium. *J Bacteriol* **133**, 763–768. 10.1128/jb.133.2.763-768.1978

749 97. Team, R.C. (2018). R: A language and environment for statistical computing.

750 **METHODS**

751 **Semantics.** Here we specify our intended meanings of several terms in the context of this
752 study:

- 753 ○ *development* (with respect to myxobacteria) - the collective set of behavioral processes
754 leading to both fruiting body morphogenesis and sporulation.
- 755 ○ *divergence* - any degree of evolved genetic or phenotypic difference, whether between
756 ancestral and derived genotypes or between distinct derived genotypes.
- 757 ○ *diversification* - the process by which distinct contemporary individuals or populations
758 diverged from one another evolutionarily, genotypically and/or phenotypically.
- 759 ○ *latent phenotype*^{29,30} - a phenotype that is potentiated by a genotype but remains
760 unmanifested until the causal genotype is exposed to an inductive environment. See
761 Freund et al.³⁰ for elaboration on use of the term 'latent-phenotype evolution' (LPE).
762 Similar terminology has also been used recently by Kinsler et al.³¹.
- 763 ○ *inductive environment* - an environment that induces manifestation of a phenotype that is
764 unmanifested in other (non-inductive) environments.

765

766 **MyxoEE-3.** The evolved populations used in this study are a subset of populations from a
767 broader evolution experiment named MyxoEE-3, where 'MyxoEE' stands for 'Myxobacteria
768 Evolution Experiment' and '3' refers to the temporal rank position of the first publication from
769 MyxoEE-3⁷³ relative to those from other MyxoEEs²⁸. Details of MyxoEE-3 have been
770 described previously^{29,30,60,73,74} and aspects of this experiment most relevant to this study have
771 been summarized in the Introduction. We also provide an additional summary of the
772 manipulated differences between the selective environments of TS-B (Table S2). Replicate
773 MyxoEE-3 populations examined here were founded by distinct sub-clones of *M. xanthus*
774 strain GJV1⁶⁵ (here referred to as 'Anc' for ancestor), including six replicate populations each
775 for the CTT-HA and CTT-SA treatments at cycle 40 and four each for the four treatments with
776 prey and the CTT-HA treatment at cycle 18 (Table S1).

777 **Induction of development.** Populations of exponentially growing cultures were pelleted, the
778 supernatant discarded, and resuspended in TPM liquid buffer⁹⁶ to a final density of $\sim 5 \times 10^9$
779 cells/mL. Starvation plates were prepared one day prior to the experiment by pouring 10 ml
780 of TPM agar into small Petri dishes and allowing solidification while uncovered under laminar
781 flow. In most developmental assays, the agar concentration of TPM agar was 1.5%, but we
782 also manipulated agar concentration to include 0.5% and 1.0% when characterizing
783 developmental plasticity in TS-A evolved populations (Fig. 2 and Fig. S2). Consistently in all
784 assays, 50 μ l of resuspended culture ($\sim 2.5 \times 10^8$ cells) were spotted at the center of TPM

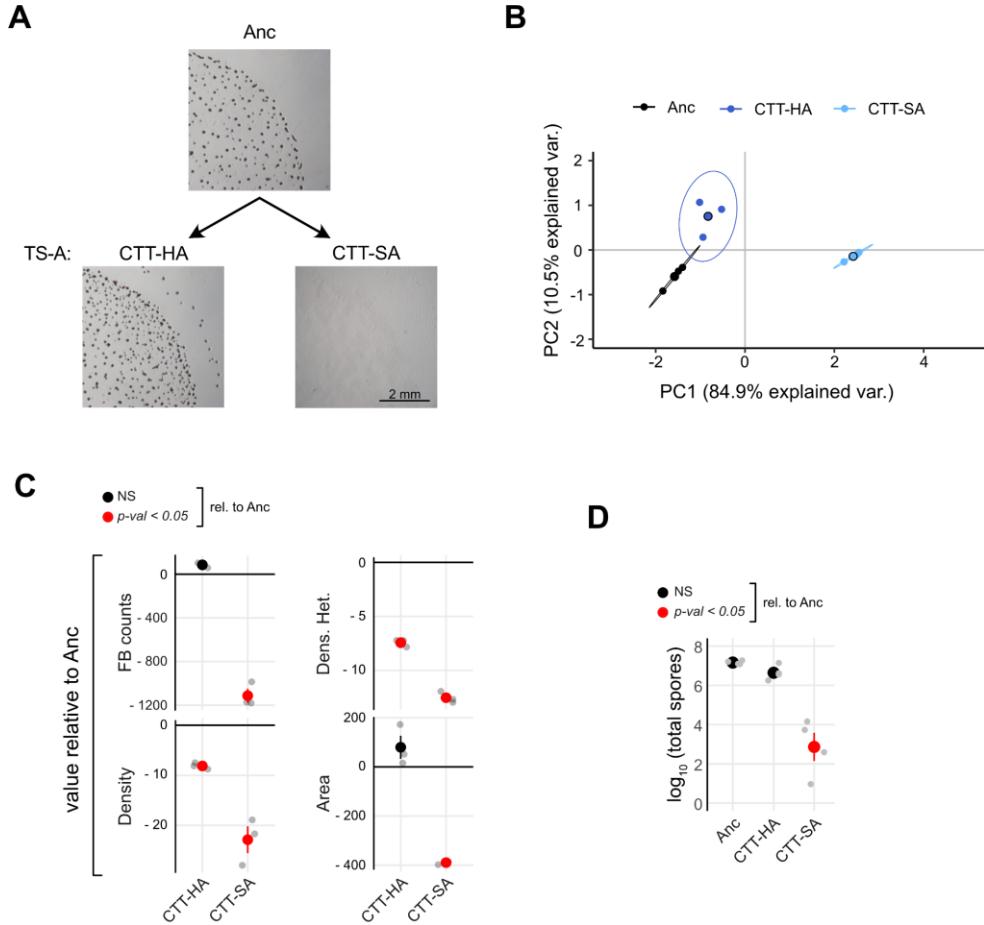
785 agar plates and incubated at 32 °C for 5 days before the plates were imaged and
786 morphological traits subsequently quantified.

787 **Image acquisition and trait quantification.** Starvation plates of the evolved populations
788 were imaged after 5 days of starvation for representative pictures (Figs. 1A, 3A and S3B) with
789 a Zeiss STEMI 2000 microscope and captured with a Nikon Coolpix S10 camera. Images for
790 quantitative morphological analysis were acquired using an Olympus SXZ16 microscope
791 mounting an Olympus DP80 camera system. The image-acquisition parameters were kept
792 identical in all cases (exposure time = 9.9 ms, lens = Olympus 0.5xPF, zoom = 1.25x, ISO =
793 200, illumination = BF built-in system). Images were processed and analyzed following the
794 protocol described by La Fortezza and Velicer⁹. Fruiting body (FB) morphology was
795 characterized by measuring the following traits. *FB number*: total number of fruiting bodies on
796 a single developmental plate; *Density*: grey-value intensity of pixels per FB; *Density*
797 *heterogeneity*: standard deviation of within-FB pixel-grey values (FB density); *FB area*: plate-
798 surface area occupied per FB, expressed in total pixel number. For more details about each
799 trait see La Fortezza and Velicer⁹. Median values of *Density*, *Density heterogeneity* and *Area*
800 per plate were used for further analysis. Image acquisition and trait quantification of the
801 evolved populations were always run in parallel with Anc during each biological replicate.

802 **Spore counts.** A total of ~2.5 x 10⁸ cells in a 50 ul suspension (TPM liquid) were spotted on
803 each starvation plate (TPM 1.5% agar) and harvested after 5 days using a sterile spatula and
804 washed into one milliliter of ddH₂O. Samples were then heated at 50 °C for 2 hours to kill
805 vegetative cells, sonicated, diluted into CTT soft agar and incubated for 7 days before colonies
806 were counted. Also in these assays, Anc and evolved populations were assayed in parallel
807 within each biological replicate.

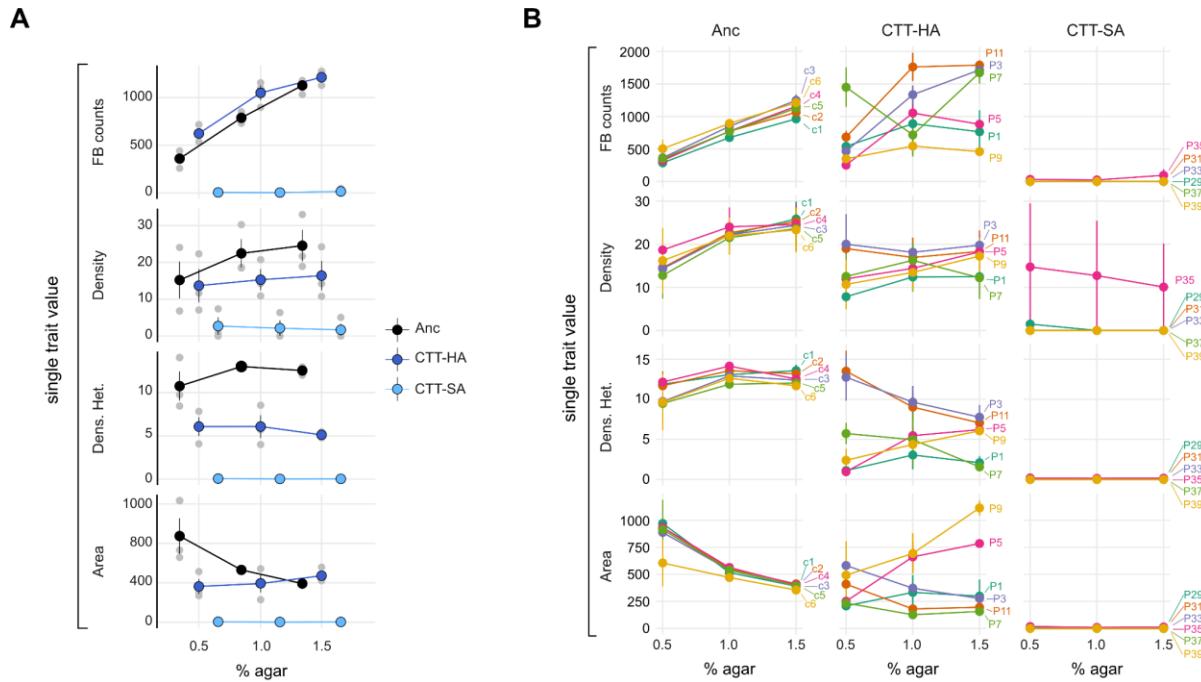
808 **Statistical analysis.** All experiments were performed in three temporally independent
809 replicate blocks. Each replicate consisted of the analyzed evolved populations and their
810 respective ancestral Anc sub-clones. R v4.0.0 software was used for all statistical analyses⁹⁷.
811 Spore counts were log₁₀-transformed prior to statistical analysis. For those cases in which the
812 number of spores detected at the lowest dilution factor was zero (0), these counts were
813 converted to one (1) prior to the log₁₀-transformation.

814 **Multivariate analysis.** Using a previously developed approach⁹, FB morphology was
815 analyzed with a multivariate analysis. In brief, the obtained morphological trait values were
816 first averaged across all evolved population replicates from each selective environment and
817 across the Anc-subclones for each biological assay replicate. Then, *stat::prcomp()* function in
818 R was used to run PCA on the morphological scaled values. Plots reporting the PCA results
819 (referred as morphospace in the main text) were obtained using the *ggbiplot::ggbiplot()* (Fig.
820 1B and Fig. 3B) or *ggplot2::ggplot()* (Fig. S3C) functions. In the only case of CTT-SA PCA


821 results, replicate three (3) was adjusted by a small false value of 0.05 exclusively for graphical
822 purposes in Fig 1B. This adjustment was not performed for any of the other analyses that
823 focused on CTT-SA. After assessing homoscedasticity of the data's dispersion in the
824 multivariate space with the *vegan::betasiper()* function followed by a post-hoc Tukey
825 (*stats::TukeyHSD()* function), perMANOVA (*vegan::adonis()* function) was used to test
826 whether selective environments and ancestral identity (Anc) significantly structured data's
827 dispersion. Inter-population diversification was calculated as in La Fortezza and Velicer⁹.

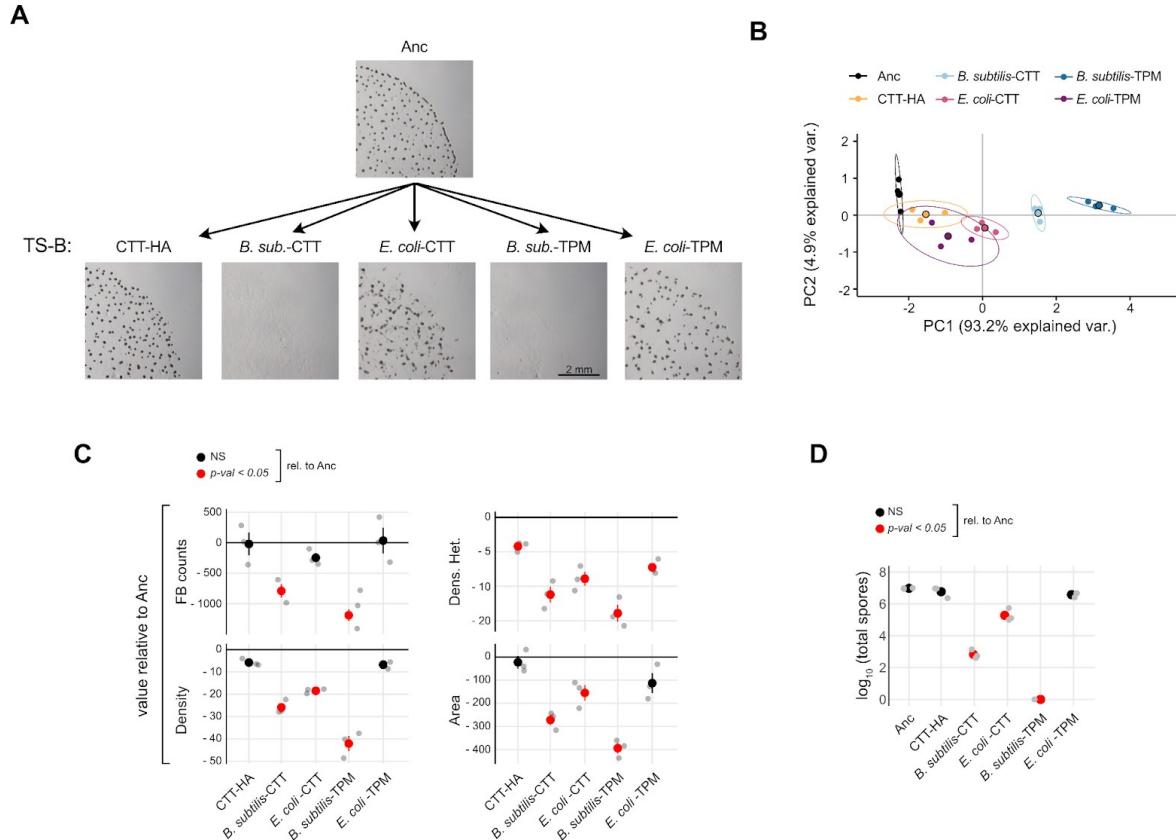
828 **Cluster analysis.** Cluster numbers in k-means analyses were determined by estimating the
829 average silhouette width from the PCA results (*factoextra::fviz_nbclust()*). Once the number
830 of optimal clusters in each case was defined (k = 2 in both TS-A and TS-B), the actual k-
831 means analysis was performed (*stats::kmeans()*) and results plotted (*factoextra::fviz_clust()*)
832 (Fig. S1C-E and Fig. S4C-E). In addition, hierarchical clustering analysis based on the *ward*
833 method was also calculated from the relative Euclidean distances between all treatments'
834 centroids mapped on the morphospace (*stats::hclust()*) (Fig. S1E, Fig. S4E).

835
836


FIGURES

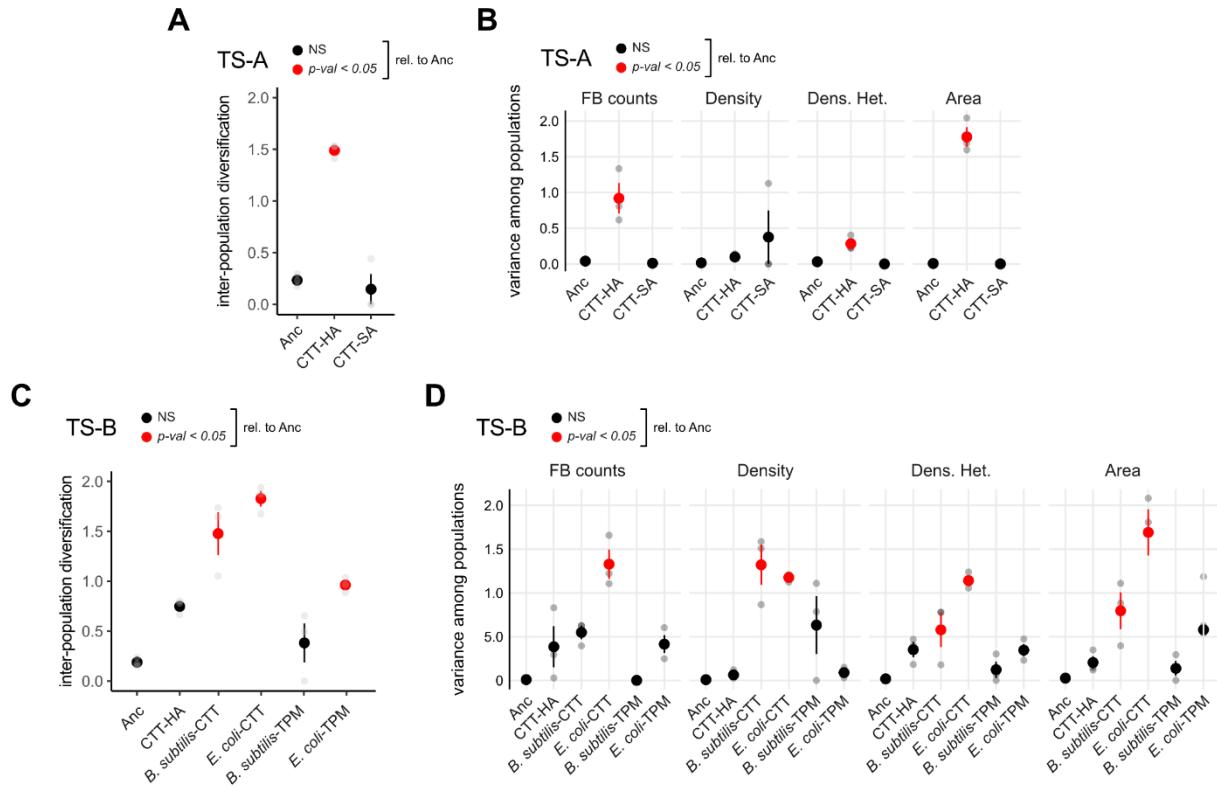
837

838 **Fig. 1. Surface stiffness shapes developmental LPE.**


839 **A**, Representative developmental phenotypes of the ancestor (Anc) and TS-A evolved populations from CTT-HA
840 (P3), CTT-SA (P39) (scale bar = 2 mm). **B**, PCA based on four morphological traits showing the overall treatment-
841 level phenotypic differentiation among the CTT-HA (dark blue) and CTT-SA (light blue) TS-A treatments (MyxoEE-
842 3 cycle 40) and their ancestor (black). Large circles represent average morphospace localization (centroids)
843 obtained from three independent biological replicates (small circles, $n = 3$). Ellipses represent 95% confidence
844 regions, while percentage values on the x and y axis report the variation explained by the principal components
845 PC1 and PC2, respectively (Fig. S1A). **C**, Mean values \pm SEM of each analyzed morphological trait relative to the
846 ancestral levels (Anc, black-horizontal line in the graphs) ($n = 3$). **D**, Mean values \pm SEM of \log_{10} -transformed spore
847 counts ($n = 4$). In both **C** and **D**, red and black circles indicate significant ($p < 0.05$) and non-significant (NS)
848 differences from Anc levels, respectively. (Significance was estimated for both **C** and **D** with one-way ANOVA
849 followed by two-tailed Tukey tests. p -values of all comparisons of evolved treatments with Anc, as well as all
850 pairwise comparisons between evolved treatments are reported in [Data Fig. 1](#)).

851
852
853
854 **Fig. 2. Deterministic and stochastic evolution of latent reaction norms.**
855
856
857
858
859
860
861
862
863

Reaction norms of four morphological traits across three agar concentrations (0.5%, 1.0% and 1.5%, x-axis in both panels). **A**, Reaction norms across ancestral clones (black circles and lines) and treatment-level average trait values (CTT-HA and CTT-SA evolved populations, dark and light blue circles and lines, respectively). $n = 3$ independent replicates (grey circles). **B**, Reaction norms for each individual Anc sub-clone (c1-c6) and each TS-A evolved population across the three biological replicates ($n = 3$). Labels at the end of each reaction norm indicate the identity of the ancestral clone or evolved population. In both **A** and **B**, large circles and error bars indicate the mean \pm SEM, respectively. (Significance of variables' contribution and their interaction was calculated for both A and B with two-way ANOVA. Employed models and results of all comparisons are reported in [Data Fig. 2](#)).


864

865
866

867 **Fig. 3. Prey presence and identity shape developmental LPE.**

868 **A**, Developmental phenotypes of representative TS-B evolved populations from each selective environment and
869 Anc (CTT-HA = P1; *B. subtilis*-CTT = P99; *E. coli*-CTT = P93; *B. subtilis*-TPM = P133; *E. coli*-TPM = P127). **B**,
870 PCA of overall morphological divergence across all five TS-B evolutionary treatments (MyxoEE-3 cycle 18) and
871 the Anc sub-clones. Large circles represent average morphospace localization (centroids) obtained from three
872 independent biological replicates (small circles, $n = 3$), while ellipses represent 95% confidence region. Percentage
873 values on the x and y axis report the variation explained by the two principal components PC1 and PC2,
874 respectively (Fig. S5B). **C**, Mean values \pm SEM of individual developmental traits relative to the ancestral (Anc)
875 levels (black-horizonal line in each graph) ($n = 3$). **D**, Mean values \pm SEM of \log_{10} -transformed spore counts
876 obtained after five days of starvation ($n = 3$). In both **C** and **D**, red and black circles indicate significant ($p < 0.05$)
877 and non-significant (NS) differences from Anc levels, respectively. (Significance was calculated for both **C** and **D**
878 with one-way ANOVA followed by two-tailed Tukey tests. p -values of all comparisons of evolved treatments with
879 Anc, as well as all pairwise comparisons between evolved treatments are reported in [Data Fig. 3](#)).

880

881 **Fig. 4. Deterministic limitation of stochastic latent-phenotype diversification by MyxoEE-3**
882 **selective environments.**

883 **A** and **C**, Morphological diversity among replicate TS-A (**A**) and TS-B (**C**) populations evolved in the same selective
884 environment compared to diversity among Anc sub-clones. **B** and **D**, Variance of single morphological traits
885 distributions calculated across TS-A (**B**) and TS-B (**D**) evolved populations and across the Anc sub-clones. In all
886 cases, large circles represent mean values \pm SEM of three independent biological replicates (grey circles, $n = 3$),
887 while red and black circles indicate significant ($p < 0.05$) and non-significant (NS) differences from Anc levels,
888 respectively. (Significance was calculated in all cases with one-way ANOVA followed by two-tailed Tukey tests. p -
889 values of all comparisons of evolved treatments with Anc, as well as all pairwise comparisons between evolved
890 treatments are reported in [Data Fig. 4](#)).

891