

1 Identification of essential genes in *Caenorhabditis elegans* through whole genome sequencing of
2 legacy mutant collections

3

4 Erica Li-Leger^{*}, Richard Feichtinger^{†‡}, Stephane Flibotte[§], Heinke Holzkamp^{†***}, Ralf Schnabel[‡],
5 Donald G. Moerman^{*}

6

7 ^{*}Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
8 V6T 1Z3

9 [†]Present Address: Secufy GmbH, CoWorking M1, Anni-Eisler-Lehmannstr. 3, 55122 Mainz,
10 Germany

11 [‡]Department of Developmental Genetics, Institute of Genetics, Technische Universität
12 Braunschweig, 38106, Germany

13 [§]UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia,
14 Canada.

15 ^{**}Present Address: Department of Biochemistry, Ludwig-Maximilians-University Munich, 81377
16 Munich, Germany

17 Short running title

18 Essential genes in *C. elegans*

19

20 Key words or phrases

21 • *C. elegans*

22 • Essential genes

23 • Maternal-effect

24 • Embryogenesis

25 • Fertilization

26 • Legacy mutants

27 • Whole genome sequencing

28

29 Corresponding author:

30 Name: Donald Moerman

31 Office mailing address including street name and number:

32 Department of Zoology

33 Life Sciences Centre

34 2350 Health Sciences Mall

35 Vancouver , B.C. Canada V6T 1Z3

36 Phone number: 604-822-3365

37 Email address: moerman@zoology.ubc.ca

38

39

40

41

42 It has been estimated that 15-30% of the ~20,000 genes in *C. elegans* are essential, yet many of

43 these genes remain to be identified or characterized. With the goal of identifying unknown

44 essential genes, we performed whole genome sequencing on complementation pairs from

45 legacy collections of maternal-effect lethal and sterile mutants. This approach uncovered

46 maternal genes required for embryonic development and genes with putative sperm-specific

47 functions. In total, 58 essential genes were identified on chromosomes III, IV, and V, of which 49

48 genes are represented by novel alleles in this collection. Of these 49 genes, 19 (40 alleles) were

49 selected for further functional characterization. The terminal phenotypes of embryos were

50 examined, revealing defects in cell division, morphogenesis, and osmotic integrity of the

51 eggshell. Mating assays with wild-type males revealed previously unknown male-expressed

52 genes required for fertilization and embryonic development. The result of this study is a

53 catalogue of mutant alleles in essential genes that will serve as a resource to guide further study

54 toward a more complete understanding of this important model organism. As many genes and

55 developmental pathways in *C. elegans* are conserved and essential genes are often linked to

56 human disease, uncovering the function of these genes may also provide insight to further our

57 understanding of human biology.

58

59

60

ABSTRACT

61

INTRODUCTION

62

63 Essential genes are those required for the survival or reproduction of an organism, and therefore
64 encode elements that are foundational to life. This class of genes has been widely studied for a
65 number of reasons. Essential genes are often well conserved and can offer insight into the
66 principles that govern common biological processes (Hughes 2002; Jordan *et al.* 2002; Georgi *et*
67 *al.* 2013). Researching these genes and their functions has important implications in
68 understanding the cellular and developmental processes that form complex organisms, including
69 humans. Additionally, identifying genes that are lethal when mutated opens up new avenues
70 through which drug development approaches can target parasites, pathogens, and cancer cells
71 (for example, Doyle *et al.* 2010; Shi *et al.* 2015; Vyas *et al.* 2015; Zhang *et al.* 2018). Finally, the
72 concept of a minimal gene set that is comprised of all genes necessary for life has been the
73 subject of much investigation and has recently been of particular interest in the field of synthetic
74 biology (reviewed in Ausländer *et al.* 2017).

75

76

76 Studying essential genes in humans is complicated by practical and ethical considerations.
77 Accordingly, model organisms have played a key role in identifying and understanding essential
78 genes, and efforts have been made to identify all essential genes in a few model organisms.
79 Systematic genome-wide studies of gene function in *Saccharomyces cerevisiae* have uncovered
80 more than 1,100 essential genes, many of which have phylogenetically conserved roles in
81 fundamental biological processes such as cell division, protein synthesis and metabolism
82 (Winzeler *et al.* 1999; Giaever *et al.* 2002; Yu *et al.* 2006; Li *et al.* 2011). While an important
83 contribution, this is only a fraction of the all the essential genes in multicellular organisms. In

84 more complex model organisms, identifying all essential genes in the genome has not been so
85 straightforward. The discovery of RNA interference (RNAi; Fire *et al.* 1998) enabled researchers
86 to employ genome-wide reverse genetic screens to examine the phenotypic effects of gene
87 knockdown (Fraser *et al.* 2000; Kamath *et al.* 2003). In general, this has been an effective, high-
88 throughput method for identifying many genes with essential functions (Gönczy *et al.* 2000;
89 Sönnichsen *et al.* 2005). However, there are limitations to using RNAi to screen for all essential
90 genes, including incomplete gene knock down, off-target effects, and RNAi resistance in certain
91 tissue or cell types; thus, many genes of biological importance escape identification in high-
92 throughput RNAi screens. This highlights the motivation to obtain null alleles for every gene in
93 the genome, which has been the goal of several model organism consortia (C. elegans Deletion
94 Mutant Consortium 2012; Bradley *et al.* 2012; Varshney *et al.* 2013), though it has not yet been
95 achieved for any metazoan.

96

97 *Caenorhabditis elegans* has been an important model in developmental biology for decades, and
98 the ability to freeze and store populations of *C. elegans* indefinitely allows investigators to share
99 their original mutant strains with others around the world. In the first few decades of *C. elegans*
100 research, dozens of forward genetics screens were used to uncover mutants in hundreds of
101 essential genes (for example, Herman 1978; Meneely and Herman 1979; Rogalski *et al.* 1982;
102 Howell *et al.* 1987; Clark *et al.* 1988; Johnsen and Baillie 1988; Kemphues *et al.* 1988; McKim *et
103 al.* 1988; Howell and Rose 1990; Johnsen and Baillie 1991; McKim *et al.* 1992; Stewart *et al.*
104 1998; Gönczy *et al.* 1999). These early studies generated what we refer to here as legacy
105 collections. The alleles were often mapped to a region of the genome through deficiency or

106 linkage mapping. However, the process of identifying the molecular nature of the genetic
107 mutations one-by-one using traditional methods was slow and laborious before the genome
108 sequence was complete (The *C. elegans* Sequencing Consortium 1998) and next-generation
109 sequencing technologies were developed (reviewed in Metzker 2010; Goodwin *et al.* 2016).
110
111 As whole genome sequencing (WGS) has become widely adopted, methods for identifying
112 mutant alleles have evolved to take advantage of these technological advances (Sarin *et al.* 2008;
113 Smith *et al.* 2008; Srivatsan *et al.* 2008; Blumenstiel *et al.* 2009; Schneeberger *et al.* 2009;
114 Doitsidou *et al.* 2010; Flibotte *et al.* 2010; Zuryn *et al.* 2010; Smith *et al.* 2016). With WGS
115 becoming increasingly affordable over time, mutant collections can now be mined for data in
116 efficient ways that were not possible two decades ago. Performing WGS on a single mutant
117 genome is often insufficient to identify a causal variant due to the abundance of background
118 mutations in any given strain, particularly one that has been subjected to random mutagenesis
119 (Denver *et al.* 2004; Hillier *et al.* 2008; Sarin *et al.* 2008; Flibotte *et al.* 2010). However, when
120 paired with additional strategies such as deletion or SNP-based mapping or bulk segregant
121 analysis, WGS becomes a valuable tool to expedite gene identification. Furthermore, if multiple
122 independently derived allelic mutants exist, an even simpler approach can be taken. By
123 sequencing two or more mutants within a complementation group and looking for mutations in
124 the same gene, the need for additional mapping or crossing schemes is greatly reduced
125 (Schneeberger *et al.* 2011; Nordström *et al.* 2013).
126

127 In the legacy mutant collections described above, where large numbers of mutants are isolated,
128 it is feasible to obtain complementation groups with multiple alleles for many loci. In addition,
129 the abundance of mutants obtained in these large-scale genetic screens suggests that some
130 legacy mutant collections may harbor strains for which the mutations remain unidentified. If
131 such collections are coupled with thorough annotations, they are valuable resources that can be
132 mined with WGS. Indeed, some investigators have recently used such WGS-based approaches to
133 uncover novel essential genes from legacy collections (Jaramillo-Lambert *et al.* 2015; Qin *et al.*
134 2018). These projects bring us closer to identifying all essential genes in *C. elegans* and also
135 contribute to the ongoing efforts to obtain null mutations in every gene in the genome.

136

137 There are currently 3,755 *C. elegans* genes that have been annotated with lethal or sterile
138 phenotypes from RNAi knockdown studies (data from WormBase version WS275). In
139 comparison, the number of genes currently represented by lethal or sterile mutant alleles is
140 1,885 (data from WormBase version WS275). These numbers should be considered minimums,
141 as the database annotations are not necessarily up to date. The discrepancy in these numbers
142 could be illustrative of the comparatively time-consuming and laborious nature of isolating and
143 identifying mutants. Additionally, some of the genes identified as essential in RNAi screens may
144 belong to paralogous gene families whose redundant functions are masked in single gene
145 knockouts. Although the total number of essential genes in *C. elegans* is unknown, extrapolation
146 from saturation mutagenesis screens has led to estimates that approximately 15-30% of the
147 ~20,000 genes in this organism are essential (Clark *et al.* 1988; Howell and Rose 1990; Johnsen
148 and Baillie 1997; The *C. elegans* Deletion Mutant Consortium 2012). This suggests the possibility

149 that there are many essential genes in *C. elegans* that remain unidentified and/or lack
150 representation by a null allele.

151

152 In this study, we use WGS to revisit two *C. elegans* legacy mutant collections isolated more than
153 25 years ago. These collections are a rich resource for essential gene discovery; they comprise 75
154 complementation groups in which at least two alleles with sterile or maternal-effect lethal
155 phenotypes have been found. With these collections, we sought to identify novel essential genes
156 and to conduct a preliminary characterization of their roles in fertilization and development.

157 Wild-type male rescue assays are used to attribute some mutant phenotypes to sperm-specific
158 genetic defects. In addition, we examine arrested embryos using differential interference
159 contrast (DIC) microscopy and document their terminal phenotypes. This work comprises a
160 catalogue of 123 alleles with mutations in 58 essential genes on chromosomes III, IV, and V. Of
161 these 58 genes, 49 are represented by novel alleles in this collection. We present several genes
162 which are reported here for the first time as essential genes and mutant alleles for genes that
163 have only previously been studied with RNAi knockdown. The aim of this work is to help
164 accelerate research efforts by identifying essential genes and providing an entry point into
165 further investigations of gene function. Advancing our understanding of essential genes is
166 imperative to reaching a more comprehensive knowledge of gene function in *C. elegans* and may
167 provide insight into conserved processes in developmental biology, parasitic nematology, and
168 human disease.

169

MATERIALS AND METHODS

170

171 Generation of legacy mutant collections

172 Mutant strains were isolated in screens for maternal-effect lethal and sterile alleles in the early

173 1990s by Heinke Holzkamp and Ralf Schnabel (unpublished data), and Richard Feichtinger

174 (Feichtinger 1995). Two balancer strains were used for mutagenesis; GE1532: *unc-32(e189)/qC1*

175 [*dpy-19(1259) glp-1(q339)*] III; *him-3(e1147)* IV and GE1550: *him-9(e1487)* II; *unc-*

176 *24(e138)/nT1[let(m435)]* IV; *dpy-11(e224)/nT1[let(m435)]* V. These parental strains were

177 subjected to ethyl methanesulfonate (EMS) mutagenesis at 20° as described by Brenner (1974),

178 with a mutagen dose of 50-75 mM and duration between 4 and 6 hours. Following mutagenesis,

179 L4 F1 animals were singled on plates at either 15° or 17°. Animals with homozygous markers in

180 the F2 or F3 generation were transferred to 25° and subsequently screened for the production of

181 dead eggs, unfertilized oocytes, or no eggs laid. The two mutant collections analyzed in this

182 study are summarized in Table 1.

183

184

185 List of strains

186 The wild-type Bristol N2 derivative PD1074 and strains with the following mutations were used:

187 *him-3(e1147)*, *unc-32(e189)*, *qC1[dpy-19(e1259) glp-1(q339)]*, *him-9(e1487)*, *unc-24(e138)*, *dpy-*

188 *11(e224, e1180)*, *nT1[let(m435)]* (IV;V), *nT1[unc(n754)let]* (IV;V). Strains carrying the following

189 deletions were used for deficiency mapping: *nDf16, nDf40, sDf110, sDf125, tDf5, tDf6, tDf7* (III);

190 *eDf19, nDf41, sDf2, sDf21, stDf7* (IV); *ctDf1, itDf2, nDf32, sDf28, sDf35* (V). All *sDfs* were kindly

191 provided by D. Baillie's Lab (Simon Fraser University), and some strains were kindly provided by

192 the *Caenorhabditis* Genetics Center (University of Minnesota). Nematode strains were cultured
193 as previously described by Brenner (1974).

194

195

196 **Outcrossing, mapping and complementation analysis**

197

198

199 All mutant strains were outcrossed at least once to minimize background mutations on other
200 chromosomes. Hermaphrodites of the mutant strains were outcrossed with males of GE1532 for
201 Collection A and males of GE1964: *him-9(e1487) II; +/nT1[let(m435)] IV; dpy-*
202 *11(e1180)/nT1[let(m435)] V* for Collection B. Deficiency mapping was used to localize mutations
203 to a chromosomal region using the deletion strains listed above. A detailed description of the
204 outcrossing and mapping schemes for Collection B can be found in Feichtinger (1995).

205

206 Complementation analysis of legacy mutants was performed by crossing 10 males of one mutant
207 strain to 4 hermaphrodites of another strain. The presence of males with homozygous markers
208 indicated successful crossing, and homozygous hermaphrodite progeny were transferred to new
209 plates to determine whether viable offspring were produced and thus complementation
210 occurred. Failure to complement was verified with additional homozygous animals or by
211 repeating the cross. Complementation tests between CRISPR-Cas9 deletion strains and legacy
212 mutants were performed by crossing heterozygous CRISPR-Cas9 deletion (GFP $+$) males to
213 heterozygous legacy mutant hermaphrodites. Twenty GFP hermaphrodite F1s were singled on
214 new plates and those segregating viable Dpy and/or Unc progeny indicated complementation
215 between the two alleles.

216

217

218 **DNA extraction**

219

220 Balanced heterozygous strains were grown on 100 mm nematode growth medium (NGM) agar

221 plates (standard recipe with 3 times concentration of peptone) seeded with OP50 and harvested

222 at starvation. Genomic DNA was extracted using a standard isopropanol precipitation technique

223 previously described (Au *et al.* 2019). DNA quality was assessed with a NanoDrop 2000c

224 Spectrophotometer (Thermo Scientific) and DNA concentration was measured using a Qubit 2.0

225 Fluorometer and dsDNA Broad Range Assay kit (Life Technologies).

226

227 **Whole genome sequencing and analysis pipeline**

228 DNA library preparation and whole genome sequencing were carried out by The Centre for

229 Applied Genomics (The Hospital for Sick Children, Toronto, Canada). Between 20 and 33 *C.*

230 *elegans* mutant strains were run together on one lane of an Illumina HiSeq X to generate 150-bp

231 paired-end reads.

232

233 Sequencing analysis was done using a modified version of a previously designed custom pipeline

234 (Flibotte *et al.* 2010; Thompson *et al.* 2013). Reads were aligned to the *C. elegans* reference

235 genome (WS263; wormbase.org) using the short-read aligner BWA version 0.7.16 (Li and Durbin

236 2009). Single nucleotide variants (SNVs) and small insertions or deletions (indels) were called

237 using SAMtools toolbox version 1.6 (Li *et al.* 2009). To eliminate unreliable calls, variants at

238 genomic locations for which the canonical N2 strain has historically had low read depth or poor

239 quality (Thompson *et al.* 2013) were removed as potential candidates. The variant calls were

240 annotated with a custom Perl script and labeled heterozygous if represented by 20-80% of the

241 reads at that location. The remaining candidates were then subjected to a series of custom
242 filters. Any variants that appeared in more than three strains from the same collection were
243 removed. The remaining list was filtered to only include heterozygous mutations affecting coding
244 exons (indels, missense and nonsense mutations) and splice sites (defined as the first two and
245 last two base pairs in an intron). Finally, the list of candidate mutations was trimmed to include
246 only mutations on the chromosome to which the mutation had originally been mapped.

247

248 For each pair of strains belonging to a complementation group, the final list of candidate
249 mutations was compared and the gene or genes in common were identified. In cases where
250 there was only one gene in common on both lists, this gene was designated the candidate
251 essential gene. For complementation groups with multiple candidate genes in common,
252 additional information such as the nature of the mutations and existing knowledge about the
253 genes was used to select a single candidate gene, when possible. When there was no gene
254 candidate in common within a pair of strains, the list of variants was reanalyzed to look for larger
255 deletions and rearrangements. If available, two additional alleles were sequenced to help
256 identify the gene.

257

258 **Validation of gene identities**

259 To validate the candidate gene identities derived from whole genome sequencing analysis, the
260 genomic position of each candidate gene was corroborated with the legacy data from deficiency
261 mapping experiments. Approximate boundaries for the deletions were estimated from the map

262 coordinates of genes known to lie internal or external to the deletions according to data from
263 WormBase (WS275).

264

265 For further validation of select gene candidates, deletion mutants were generated in an N2 wild-
266 type background using a CRISPR-Cas9 genome editing strategy previously described (Norris *et al.*
267 2015; Au *et al.* 2019). Two guide RNAs were used to excise the gene of interest and replace it
268 with a selection cassette expressing G418 drug resistance and pharyngeal GFP (*loxP* + *Pmyo-*
269 *2::GFP::unc-54* 3'UTR + *Prps-27::neoR::unc-54* 3'UTR + *loxP* vector, provided by Dr. John Calarco,
270 University of Toronto, Canada). Guide RNAs were designed using the *C. elegans* Guide Selection
271 Tool (genome.sfu.ca/crispr) and synthesized by Integrated DNA Technologies (IDT). Repair
272 templates were generated by assembling homology arms (450-bp gBlocks synthesized by IDT)
273 and the selection cassette using the NEBuilder Hifi DNA Assembly Kit (New England Biolabs).

274

275 Cas9 protein (generously gifted from Dr. Geraldine Seydoux) was assembled into a
276 ribonucleoprotein (RNP) complex with the guide RNAs and tracrRNA (IDT) following the
277 manufacturer's recommendations. PD1074 animals were injected using standard microinjection
278 techniques (Mello *et al.* 1991; Kadandale *et al.* 2009) with an injection mix consisting of: 50 ng/μl
279 repair template, 0.5 μM RNP complex, 5 ng/μl pCFJ104 (*Pmyo-3::mCherry*), and 2.5 ng/μl pCFJ90
280 (*Pmyo-2::mCherry*). Injected animals were screened according to the protocol described in
281 Norris *et al.* (2015) and genomic edits were validated using the PCR protocol described in Au *et*
282 *al.* (2019). Complementation tests between CRISPR-Cas9 alleles and legacy mutant alleles were
283 performed to verify gene identities, as described above.

284

285 Analysis of orthologs, gene ontology, and expression patterns

286 Previously reported phenotypes from RNAi experiments or mutant alleles were retrieved from

287 WormBase (WS275) and GExplore (genome.sfu.ca/gexplore; Hutter *et al.* 2009; Hutter and Suh

288 2016). Life stage-specific gene expression data from the modENCODE project (Hillier *et al.* 2009;

289 Gerstein *et al.* 2010, 2014; Boeck *et al.* 2016) were also accessed through GExplore. Visual

290 inspection of these data revealed genes with maternal expression patterns (high levels of

291 expression in the early embryo and hermaphrodite gonad) as well as those predominantly

292 expressed in males.

293

294 Human orthologs of *C. elegans* genes were determined using Ortholist 2 (ortholist.shaye-lab.org;

295 Kim *et al.* 2018). For maximum sensitivity, the minimum number of programs predicting a given

296 ortholog was set to one. NCBI BLASTp (blast.ncbi.nlm.nih.gov; Altschul *et al.* 1990) was used to

297 examine distributions of homologs across species and potential nematode-specificity in genes

298 with no human orthologs. Protein sequences from the longest transcript of each gene were used

299 to query the non-redundant protein sequences (nr) database, with default parameters and a

300 maximum of 1,000 target sequences. The results were filtered with an E-value threshold of 10^{-5} .

301

302 Gene Ontology (GO) term analysis was performed using PANTHER version 16.0 (Thomas *et al.*

303 2003). The list of 58 candidate genes was used for an overrepresentation test, with the set of all

304 *C. elegans* genes as a background list. Overrepresentation was analyzed with a Fisher's Exact test

305 and p-values were adjusted with the Bonferroni multiple testing correction.

306

307 **Temperature sensitivity and mating assays**

308 To assay temperature sensitivity, heterozygous strains were propagated at 15° and homozygous

309 L4 animals were isolated on 60 mm NGM plates (2 x 6/plate or 3 x 3/plate). After one week at

310 15°, plates were screened for the presence of viable homozygous progeny. If present, L4

311 homozygotes were transferred to new plates at 25° and screened after three days to confirm

312 lethality or sterility.

313

314 Mating assays were carried out using PD1074 males and mutant hermaphrodites. Three L4-stage

315 homozygous mutant hermaphrodites were isolated and crossed with ten PD1074 males on each

316 of three 60 mm NGM plates. Control plates consisted of three L4 hermaphrodite mutants

317 without males. Mating assays were carried out at 25°C and observations were taken after three

318 days, noting the absence or presence of viable cross progeny.

319

320 **Microscopy**

321 The terminal phenotypes of dead eggs from maternal-effect lethal mutants were observed using

322 DIC microscopy. Young adult homozygous mutants were dissected to release their eggs in either

323 M9 buffer with Triton X-100 (0.5%; M9+TX) or distilled water and embryos were left to develop

324 at 25°C overnight (~16 hours). Embryos were mounted on 2% agarose pads and visualized using

325 a Zeiss Axioplan 2 equipped with DIC optics. Images of representative embryos were captured

326 using a Zeiss Axiocam 105 Color camera and ZEN 2.6 imaging software (Carl Zeiss Microscopy).

327 For embryos incubated in distilled water, an osmotic integrity defective (OID) phenotype was

328 noted for embryos that burst or swelled and filled the eggshell, as described by Sönnichsen *et al.*
329 (2005).

330

331 **Data availability**

332 The raw sequence data from this study have been deposited in the NCBI Sequence Read Archive
333 (SRA; ncbi.nlm.nih.gov/sra) under accession number PRJNA628853. Supplemental material is
334 available at Figshare. File S1 contains sequences and associated information for CRISPR-Cas9
335 deletion alleles. File S2 contains life stage-specific expression patterns for the Genes of Interest.
336 File S3 contains documentation of the terminal phenotypes for maternal-effect lethal embryos.

337

RESULTS

338 **Identification of 58 essential genes**

339 Whole genome sequencing was performed on a total of 157 strains, with depth of coverage
340 ranging between 21x and 65x (average = 38x). A minimum of two alleles for each of 75
341 complementation groups were sequenced and a total of 58 essential genes were identified
342 (Table 2). Literature searches revealed that 43 of these genes have been annotated with lethal or
343 sterile phenotypes from either mutant alleles or RNAi studies. Furthermore, 17 of the 157 alleles
344 had been previously sequenced (Vatcher *et al.* 1998; Gönczy *et al.* 2001; Kaitna *et al.* 2002;
345 Brauchle *et al.* 2003; Cockell *et al.* 2004; Delattre *et al.* 2004; Sonneville *et al.* 2004; Bischoff and
346 Schnabel 2006; Nieto *et al.* 2010), and therefore served as a blind test set to validate our analysis
347 approach. Eight of the nine genes represented in this blind test set were correctly identified by
348 our pipeline, whereas one gene escaped identification. This was due to an intronic mutation that
349 did not pass our filtering criteria but was found upon manual inspection of the sequencing data.
350 While the list of 58 genes includes many known essential genes, among the known genes are
351 alleles that are novel genetic variants. Nineteen genes from this collection which were not
352 previously studied or were not represented by lethal or sterile mutants were designated Genes
353 of Interest (GOI; Table 3). These 19 GOI, represented by 40 alleles, were further characterized as
354 part of this study. They include 14 genes (28 alleles) with a maternal-effect lethal phenotype and
355 5 genes (12 alleles) with a sterile phenotype.

356

357 **Validation of candidate gene assignments**

358 After isolation, the mutant alleles were each localized to a chromosomal region through
359 deficiency mapping. This data was used to corroborate the candidate gene identities derived
360 from WGS analysis and to resolve complementation groups with more than one gene candidate.
361 For the majority of complementation groups, the genomic position of the assigned gene was in
362 agreement with the deficiency genetic mapping data (Figure 1).

363
364 There were some conflicts between the deficiency mapping data and the gene candidates
365 proposed through WGS analysis. Three complementation groups that were found to not map
366 under any of the tested deficiencies were assigned gene candidates whose genomic coordinates
367 fall into regions covered by the tested deficiencies (alleles of *bckd-1A*, *top-3*, and *unc-112*; Figure
368 1). In addition, two of these groups were assigned the same gene identity as another,
369 purportedly distinct, complementation group (Table 4). From WGS analysis, *bckd-1A* was the
370 initial gene candidate for two different complementation groups, yet only one of these groups
371 had been mapped to a deletion (*tDf5*) that covers the *bckd-1A* locus. Similarly, *top-3* was the
372 assigned gene candidate for three different complementation groups, only one of which was
373 mapped under a deficiency (*tDf5*) encompassing that gene. By performing complementation
374 tests with select alleles (Table 4), we concluded that the two *bckd-1A* groups are not distinct, and
375 indeed they contain mutations in the same gene. One of the groups (gene-35) originally
376 identified as *top-3* is a double mutant which fails to complement gene-15 (*top-3*) and gene-34
377 (unknown gene).

378

379 Three candidate genes (*nstp-2*, *C34D4.4* and *F56D5.2*) were selected for additional validation by
380 generating a deletion of the gene in a wild-type background using CRISPR-Cas9 genome editing
381 (Norris *et al.* 2015; Au *et al.* 2019). These genes were chosen because they were expected to be
382 of interest to the broader research community. The deletion alleles have been verified with the
383 PCR protocol described by Au *et al.* (2019). Guide RNA sequences and deletion-flanking
384 sequences are listed in Supplementary Table S1. Complementation testing between the newly
385 generated CRISPR-Cas9 deletion mutants and the legacy mutant strains confirmed that the
386 mutations are allelic, and the genes assigned to the legacy strains are correct (Supplementary
387 Table S1)

388

389 Human orthologs, gene ontology, and expression patterns

390 Of the 58 essential genes identified, 47 genes have predicted human orthologs (Table 2). Many
391 of these genes in humans have been implicated in disease and are associated with OMIM disease
392 phenotypes (Online Mendelian Inheritance in Man; omim.org). BLASTp searches revealed that
393 the set of 19 GOI contains three nematode-specific genes (*F56D5.2*, *perm-5*, and *T22B11.1*) that
394 have homologs in parasitic species, and two uncharacterized genes (*D2096.12* and *Y54G2A.73*)
395 that do not have significant homology outside the *Caenorhabditis* genus.

396

397 To gain insight into the functions of the identified essential genes, an overrepresentation test
398 was used to elucidate the most prominent gene ontology (GO) terms associated with them. The
399 Biological Process terms overrepresented in the set of 58 essential genes include such terms as
400 organelle organization (GO:0006996), nuclear division (GO:0000280), cellular metabolic process

401 (GO:0044237), and DNA repair (GO:0006281), as shown in Figure 2. In the Molecular Function
402 category, binding (GO:0005488) and catalytic activity (GO:0003824) are overrepresented by 41
403 genes (adjusted p=1.2E-07) and 28 genes (adjusted p=1.8E-03), respectively.

404
405 To examine the timing of gene expression throughout the life cycle, gene expression data from
406 the modENCODE project (Hillier *et al.* 2009; Gerstein *et al.* 2010, 2014; Boeck *et al.* 2016) was
407 retrieved from GExplore (genome.sfu.ca/gexplore; Hutter *et al.* 2009; Hutter and Suh 2016) for
408 the 19 GOI (Supplementary Appendix S2). These data show a U-shaped expression pattern for
409 ten of the GOI, with high expression occurring in the early embryonic stages as well as in
410 adulthood, and particularly in the hermaphrodite gonad. This U-shaped pattern is characteristic
411 of a maternal-effect gene, for which gene products are passed on to the embryo from the
412 parent. Five genes have a maternal gene expression pattern as well as expression throughout
413 other stages of the life cycle, indicating an additional, zygotic role for the gene. Seven genes have
414 elevated expression levels in males and L4-stage hermaphrodites. These genes are suspected to
415 be involved in sperm production or fertilization, and the associated strains were subjected to
416 mating assays (see below).

417
418 **Temperature sensitivity and mating assays for genes of interest**
419 The 40 alleles associated with the 19 GOI were further examined to gain insight into the
420 phenotypic consequences of their mutations. Each allele was assayed for temperature
421 sensitivity, as some of the original mutant screening was carried out at 25°C. Five alleles (marked
422 with a [ts] phenotype in Table 3) were deemed temperature sensitive and could proliferate as

423 homozygotes at a permissive temperature of 15°C, while being maternal-effect lethal or sterile
424 at a restrictive temperature of 25°C. Curiously, four of these temperature sensitive alleles were
425 the results of stop codons, not missense mutations.

426
427 Seven candidate genes (16 alleles) were hypothesized to be involved in male fertility, based on
428 the production of unfertilized oocytes by hermaphrodites and/or predominantly male gene
429 expression patterns. These 16 strains were assayed for their ability to be rescued through mating
430 with wild-type males. 14 of the strains were rescued by the mating assay, while two strains failed
431 to rescue (Table 5). Phenotypic rescue through mating was consistent among alleles of the same
432 gene in five of the seven genes, while two genes had conflicting results among the pair of alleles
433 in their complementation groups (*F56D5.2* and *nstp-2*).

434
435 **Terminal phenotypes of maternal-effect lethal embryos**

436 Using DIC microscopy, the terminal phenotypes of 28 maternal-effect lethal strains (a subset of
437 the 40 GOI strains) were observed. Representative images were selected and compiled into a
438 catalogue of terminal phenotypes (Supplementary Appendix S3). Ten strains showed an osmotic
439 integrity defective (OID) phenotype (as described in Sönnichsen *et al.* 2005) in nearly all embryos
440 after incubation in distilled water, while three additional strains had only some embryos that
441 exhibited this phenotype (Table 3). The OID phenotype was evident in embryos that filled the
442 eggshell completely (for example, *dgtr-1(t2043)*, Figure 3A) and eggs that burst in their
443 hypotonic surroundings. Early embryonic arrest was observed in embryos from the two *dlat-1*
444 mutant strains (*t2035* and *t2056*), which arrested most often with only one to four cells (for

445 example, Figure 3B). Eleven strains had embryos that terminated with approximately 100-200
446 cells (for example, ZK688.9(*t1433*), Figure 3C); while four strains developed into two- or three-
447 fold stage embryos that did not hatch and exhibited clear morphological defects, such as *nstp-*
448 2(*t1835*) with a lumpy body wall and constricted nose tip (Figure 3D).

449

450

451

452

453

DISCUSSION

454

455

456 Revisiting legacy mutant collections with whole genome sequencing

457 In this study, we focused on reexamining legacy collections of *C. elegans* mutants isolated before

458 the complete genome sequence was published (The *C. elegans* Sequencing Consortium 1998)

459 and long before massively parallel sequencing was widely available. With major advances in

460 sequencing technology in the past 30 years (reviewed in Goodwin *et al.* 2016), WGS has become

461 affordable and accessible, making it possible to revisit past projects with new approaches and

462 advanced capabilities. We have sequenced paired alleles from 75 complementation groups on

463 chromosomes III, IV, and V, from which we identified 58 essential genes (Table 2).

464

465 While WGS is a powerful tool, it does not stand alone as a solution to identifying mutant alleles.

466 This study has shown the power of having multiple alleles in a complementation group when

467 faced with the abundance of genomic variants found in WGS analysis. Indeed, when we

468 sequenced four single alleles, which had no complementation pairs, we were unable to

469 designate a single mutation as the variant responsible for maternal-effect lethality (data not

470 shown). Our approach to gene identification proved to be effective and was validated by a

471 combination of different methods. The blind test set of 17 previously sequenced alleles from

472 which eight of nine genes were readily identified serves as an important validation of our

473 analysis pipeline and gives confidence in the results we obtained. In addition, the deficiency

474 mapping data, gene expression patterns from the modENCODE project, GO term analysis, and

475 phenotypes documented from previous experiments provide evidence to support the gene

476 identities we assigned in these mutant collections.

477

478 The CRISPR-Cas9 deletion alleles we generated for selected gene candidates provide additional
479 validation and will be made available to the research community to serve as useful tools for
480 future studies. While the mutant alleles from the original study have been outcrossed, the
481 genetic balancer background and additional mutations that persist can complicate phenotypic
482 analysis. In contrast, these new CRISPR-Cas9 deletion strains were made in a wild-type
483 background, which makes it much easier to handle them and interpret their mutant phenotypes.
484 Furthermore, the pharyngeal GFP expression introduced by the gene editing approach acts as a
485 dominant and straightforward marker for tracking the alleles in a heterozygous population. This
486 is useful as the homozygous animals do not produce viable progeny.

487

488 The complementation groups that could not be assigned gene identities in our analysis may have
489 been complicated by variants in noncoding regions, poor sequencing coverage, or inaccurate
490 complementation pairing, among other possibilities. In future work, tracking down the genes we
491 were unable to identify will require repeating complementation tests and re-tooling the analysis
492 approach.

493

494 **Gene ontology analysis reveals common themes and gaps in our knowledge**
495 The underlying biological themes of the 58 essential genes were revealed by examining their GO
496 terms. The biological processes represented in Figure 2 help to confirm the nature of this set, as
497 a collection of genes that are required for essential functions such as cell division, metabolism,
498 and development. Performing GO-term analysis also revealed that a number of the genes in this

499 collection lacked sufficient annotation to be interpreted this way. We found four genes about
500 which there is little to nothing known (*D2096.12*, *F56D5.2*, *T22B11.1*, and *Y54G2A.73*). For
501 example, *F56D5.2* is a gene with no associated GO terms, no known protein domains, and no
502 orthologs in other model organisms. These wholly uncharacterized genes are intriguing
503 candidates which may help uncover new biological processes and biochemical pathways that are
504 evidently fundamental to life for this organism.

505

506 **Examining expression patterns leads to discovery of genes involved in male fertility**

507 The life stage-specific expression patterns (Supplementary Appendix S2) provide some insight
508 into the roles the genes in this collection play in development. 15 of the 19 GOI are highly
509 expressed in the early embryo and hermaphrodite gonad, which suggests that the gene product
510 is passed on to the embryo from the parent. Five of these maternal genes also have elevated
511 expression during late embryonic and larval stages, which suggests they are pleiotropic. The
512 zygotic functions of these genes must be non-essential or else a zygotic lethal, rather than
513 maternal-effect lethal, phenotype would be observed.

514

515 We also identified four genes that are most highly expressed in males and L4 hermaphrodites, as
516 well as three genes that have prominent male expression in addition to characteristic maternal
517 expression patterns. Mating assays confirmed that these male-expressed genes have an essential
518 role in male fertility. Studies have shown that genes expressed in sperm are largely insensitive to
519 RNAi (Fraser *et al.* 2000; Gönczy *et al.* 2000; Reinke *et al.* 2004; del Castillo-Olivares *et al.* 2009;
520 Zhu *et al.* 2009; Ma *et al.* 2014), making these types of genes particularly difficult to identify in

521 high-throughput RNAi screens. With the availability of RNA-seq data across different life stages
522 for nearly every gene in the *C. elegans* genome (Hillier *et al.* 2009; Gerstein *et al.* 2010, 2014;
523 Boeck *et al.* 2016; Tintori *et al.* 2016; Packer *et al.* 2019), screening for characteristic gene
524 expression patterns may be a useful approach for identifying sterile and maternal-effect lethal
525 genes that remain to be discovered.

526
527 We propose that the seven male-expressed genes are involved in sperm production and/or
528 function (see Table 5). These genes are mostly uncharacterized, and this is the first reporting of
529 their involvement in male fertility. While the mutant hermaphrodites lay unfertilized oocytes (5
530 genes) or dead eggs (2 genes), this phenotype could be rescued in 14 of the 16 alleles by the
531 introduction of wild-type sperm through mating. The two alleles that could not be rescued had
532 allele pairs in the same complementation groups that were rescued in the mating assay. One of
533 these discrepancies, between *F56D5.2(t1744)* and *F56D5.2(t1791)*, was resolved when we found
534 a second mutation in a nearby essential gene that was likely responsible for the inability of one
535 strain to be rescued (data not shown). The presence of additional lethal mutations in the
536 genome is unsurprising given the nature of chemical mutagenesis, and it reinforces the
537 advantage of having multiple alleles for a gene when interpreting mutant phenotypes.

538
539 **Interpreting terminal phenotypes of maternal-effect lethal mutants**
540 The catalogue of terminal phenotypes (Supplementary Appendix S3) created in this study
541 provides a window into the roles the maternal-effect genes play in development. Some of these
542 phenotypes corroborate previously observed phenotypes from RNAi studies. For example, RNAi

543 knockdown experiments have shown that DLAT-1 is an enzyme involved in metabolic processes
544 required for cell division in one-cell *C. elegans* embryos (Rahman *et al.* 2014). We uncovered two
545 alleles of *dlat-1* in this study (*t2035* and *t2056*) in which most embryos arrest at the one- to four-
546 cell stage (Figure 3B). The mutant alleles presented here can confirm previously reported
547 phenotypes and serve as new genetic tools for continuing the study of essential gene function.

548

549 We also identified alleles for six genes that exhibit an osmotic integrity defective (OID)
550 phenotype, resulting in embryos that filled the eggshell completely or burst in distilled water.
551 More than 100 genes have been identified in RNAi screens as important for the osmotic integrity
552 of developing embryos (reviewed in Stein and Golden 2018). Some of these genes have roles in
553 lipid metabolism (Rappleye *et al.* 2003; Benenati *et al.* 2009), cellular trafficking (Rappleye *et al.*
554 1999), and chitin synthesis (Johnston *et al.* 2006). Four of the six genes identified with OID
555 mutants in this study have been previously implicated in osmotic sensitivity: *dgtr-1* is involved in
556 lipid biosynthesis (Carvalho *et al.* 2011; Olson *et al.* 2012), *trcs-1* is involved in lipid metabolism
557 and membrane trafficking (Green *et al.* 2011); *perm-5* is predicted to have lipid binding activity;
558 and *F21D5.1* is an ortholog of human PGM3, an enzyme involved in the hexosamine pathway
559 which generates substrates for chitin synthase. We found OID mutants for two additional genes
560 that were not previously characterized with this phenotype, *bckd-1A* and *D2096.12*. *bckd-1A* is a
561 component of the branched-chain alpha-keto dehydrogenase complex, which is involved in fatty
562 acid biosynthesis (Kniazeva *et al.* 2004); this may be indicative of a role in generating or
563 maintaining the lipid-rich permeability barrier. *D2096.12* is a *Caenorhabditis*-specific gene with
564 no known protein domains. Elucidating the function of this uncharacterized gene may lead to

565 new insights about the biochemistry of eggshell formation and permeability in *C. elegans*
566 embryos.

567

568 Most of the mutant strains we examined with DIC microscopy arrested around the 100- to 200-
569 cell stage as a seemingly disorganized group of cells (for example, Figure 3C). Others developed
570 into two-fold or later stage embryos that moved inside the eggshell but did not hatch (for
571 example, Figure 3D). The terminal phenotypes documented here reveal how long the embryo
572 can persist without the maternal contribution of gene products, and the developmental defects
573 that ensue. Future studies might make use of fluorescent markers and automated cell lineage
574 tracking (for example, Thomas *et al.* 1996; Schnabel *et al.* 1997; Bao *et al.* 2006; Wang *et al.*
575 2019) as well as single-cell transcriptome data (Tintori *et al.* 2016; Packer *et al.* 2019) to further
576 investigate these essential genes.

577

578 **Relevance beyond *C. elegans***

579 In this collection of 58 essential genes, there are 47 genes (81%) with human orthologs; a two-
580 fold enrichment when compared to all *C. elegans* genes, 41% of which have human orthologs
581 (Kim *et al.* 2018). This is in line with previous findings that essential genes are more often
582 phylogenetically conserved than non-essential genes (Hughes 2002; Jordan *et al.* 2002; Georgi *et*
583 *al.* 2013). Essential genes in model organisms are often associated with human diseases (Culetto
584 and Sattelle 2000; Silverman *et al.* 2009; Dickerson *et al.* 2011; Qin *et al.* 2018), making the
585 alleles identified in this study potentially relevant to understanding human health. Indeed, there
586 are OMIM disease phenotypes associated with a number of the human orthologs identified in

587 Table 2. Novel mutant alleles in *C. elegans* may help us better understand genetic disorders by
588 providing new opportunities to interrogate gene function, explore genetic interactions, and
589 screen prospective therapeutics.

590

591 Nematode-specific genes that are essential are important to nematode biology in general and
592 are particularly relevant in parasitic nematology. We found three genes in our GOI list (*F56D5.2*,
593 *perm-5*, and *T22B11.1*) that have orthologs in parasitic nematode species and not in other phyla.
594 With growing anthelmintic drug resistance around the world (Jabbar *et al.* 2006), novel
595 management strategies are needed to combat parasitic nematodes, which infect crops,
596 livestock, and people worldwide (Nicol *et al.* 2011; Wolstenholme *et al.* 2004; Hotez *et al.* 2008).
597 Essential genes are desirable targets for drug development, yet identifying such genes in
598 parasites experimentally is difficult (Kumar *et al.* 2007; Doyle *et al.* 2010). Thus, as a free-living
599 nematode, *C. elegans* is a widely used model for genetically intractable parasitic species (Bürglin
600 *et al.* 1998; Hashmi *et al.* 2001). Our identification of novel essential genes with orthologs in
601 parasitic nematodes may provide new opportunities to explore management strategies.

602

603 It is our hope that the alleles and phenotypes presented here will serve as a starting point and
604 guide future research to elucidate the specific roles these genes play in embryogenesis. All of the
605 alleles presented in this study are available to the research community through the
606 Caenorhabditis Genetics Center (cgc.umn.edu) and we anticipate they will serve as a valuable
607 resource in the years to come. The wealth of material uncovered in this specific legacy collection
608 will hopefully inspire similar explorations of other frozen mutant collections.

609
610
611

ACKNOWLEDGEMENTS

612 The authors thank Mark L. Edgley for advice and help with strain maintenance, as well as Negin
613 Khosravi, who replicated some of the nematode assays and conducted PCR assays with
614 *F56D5.2(t1744)* to reveal an additional mutation in a nearby an essential gene. This work was
615 supported by a CIHR Canada Graduate Scholarship-Master's (awarded to EL) and CIHR grant PJT-
616 148549 (awarded to DGM). This work was also supported by a grant from NSERC to DGM and an
617 R24 NIH grant 5R24OD023041 (awarded to Ann Rougvie, Paul Sternberg, Geraldine Seydoux and
618 DGM).

619

TABLES

620

621 **Table 1.** Summary of mutant collections

Collection	Number of Complementation Groups with ≥ 2 alleles	Chromosome	Mutant Genotypes
A	32	III	<i>unc-32(e189) let(t...)/qC1</i> III; <i>him-3(e1147) IV</i>
B	25	IV	<i>him-9(e1487) II; unc-24(e138) let(t...)/nT1 [let(m435)] IV; dpy-11(e224)/nT1 [let(m435)] V</i>
	18	V	<i>him-9(e1487) II; unc-24(e138)/nT1 [let(m435)] IV; dpy-11(e224) let(t...)/nT1 [let(m435)] V</i>

622

623

Table 2. List of 58 essential genes with associated maternal-effect lethal or sterile alleles

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
Y	GE2430	t2135	air-1	V	8221773	C	T	SNV	missense	R62C	326	AURKA, AURKB, AURKC, STK36	Colorectal cancer, susceptibility to [114500]; Spermatogenic failure 5 [243060]
	GE2337	t2095	air-1	V	8223169	CAT	C	deletion	frameshift	-			
X	GE2314	t1724	aptf-2	IV	13414105	A	G	SNV	missense	L244P	367	TFAP2A, TFAP2B, TFAP2C, TFAP2D, TFAP2E	Char syndrome [169100]; Patent ductus arteriosus 2 [617035]; Branchiooculofacial syndrome [113620]
	GE2289	t1836	aptf-2	IV	13414263	G	T	SNV	nonsense	C191*			
H	GE1958	t1726	atg-7	IV	11079764	G	A	SNV	nonsense	Q367*	647	ATG7	(none)
	GE1936	t1738	atg-7	IV	11079973	C	T	SNV	nonsense	W311*			
T	GE2449	t2143	atl-1	V	9635587	C	T	SNV	nonsense	W2346*	2531	ATR, PRKDC	Cutaneous telangiectasia and cancer syndrome, familial [614564]; Seckel syndrome 1 [210600]; Immunodeficiency 26 with or without neurologic abnormalities [615966]
	GE2467	t2155	atl-1	V	9637978	C	T	SNV	missense	E1710K			
gene-28	GE2200	t1480	bckd-1A	III	12969933	G	A	SNV	nonsense	Q174*	432	BCKDHA, TMEM91, AC011462.1	Maple syrup urine disease [248600]
	GE1742	t1461	bckd-1A	III	12971429	G	A	SNV	nonsense	Q109*			
gene-17	GE2206	t1514	bckd-1A	III	12971273	G	A	SNV	nonsense	Q161*			
	GE2627	t1603	bckd-1A	III	12971305	C	T	SNV	nonsense	W150*			
VZ	GE2890	t1821	C34D4.4	IV	7150054	G	A	SNV	nonsense	W101*	205	TVP23A, TVP23B, TVP23C, TVP23C-CDRT4	(none)
	GE2840	t1860	C34D4.4	IV	7150143	G	A	SNV	nonsense	W131*			
a	GE2734	t2029	C56A3.8	V	13560728	G	A	SNV	missense	G62E	402	PI4K2A, PI4K2B	(none)
	GE2886	t2055	C56A3.8	V	13560787	G	A	SNV	missense	E243K			
	GE2487	t2149	C56A3.8	V	13561369	C	T	SNV	missense	P82L			
V	GE2142	t2074	ccz-1	V	13679756	T	A	SNV	nonsense	Y248*	528	CCZ1, CCZ1B	(none)
	GE2304	t2129	ccz-1	V	13680792	C	T	SNV	nonsense	Q361*			

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
b	GE2047	t2021	cept-2	V	14349388	G	A	SNV	nonsense	W128*	424	CEPT1, CHPT1, SELENO1	Spastic paraplegia 81, autosomal recessive [618768]
	GE2122	t2007	cept-2	V	14349747	G	A	SNV	splice site	-			
gene-4	GE2275	t1517	cls-2	III	9055405	G	A	SNV	missense	R102Q	1023	CLASP1, CLASP2	(none)
	GE2357	t1527	cls-2	III	9055440	G	A	SNV	missense	G114R			
R	GE2082	t2053	cpl-1	V	16593886	G	A	SNV	missense	S148F	337	CTSF, CTSK, CTSL, CTSS, CTSV	Pycnodysostosis [265800]; Ceroid lipofuscinosis, neuronal, 13 [615362]
	GE2451	t2144	cpl-1	V	16595201	G	A	SNV	nonsense	Q49*			
A	GE2447	t1879	cpt-2	IV	11180120	C	T	SNV	nonsense	Q141*	646	CPT2	Carnitine palmitoyltransferase II deficiency [600649, 608836, 255110]; Encephalopathy, acute, infection-induced, susceptibility to, 4 [614212]
	GE1938	t1742	cpt-2	IV	11180603	G	A	SNV	nonsense	W194*			
gene-24	GE2657	t1704	cra-1	III	6867181	G	A	SNV	nonsense	Q525*	958	NAA25	(none)
	GE2242	t1618	cra-1	III	6868737	C	T	SNV	nonsense	W149*			
D	GE1929	t1729	csr-1	IV	7960467	T	A	SNV	missense	N708K	1030	(none)	(none)
	GE1929	t1729	csr-1	IV	7961246	G	A	SNV	missense	G922E			
	GE2452	t1897	csr-1	IV	7959252	G	A	SNV	splice site	-			
gene-25	GE2595	t1662 t1718	cup-5	III	7585568	C	T	SNV	nonsense	R263*	668	MCOLN1, MCOLN2, MCOLN3	Mucolipidosis IV [252650]
	GE2355	t1528	cup-5	III	7590536	G	A	SNV	splice site	-			
gene-30	GE2345	t1525	cyk-3	III	6020590	C	T	SNV	nonsense	Q98*	1178	USP15, USP32, USP6	(none)
	GE2352	t1535	cyk-3	III	6022863	G	A	SNV	nonsense	W723*			
J	GE2499	t1877	D2096.12	IV	8363937	C	T	SNV	nonsense	Q126*	763	(none)	(none)
	GE2407	t1906	D2096.12	IV	8365654	T	A	SNV	nonsense	L638*			
O	GE2135	t2043	dgtr-1	V	6497335	G	A	SNV	splice site	-	359	AWAT1, AWAT2, DGAT2, DGATL6, MOGAT1, MOGAT2, MOGAT3	(none)
	GE2063	t2042	dgtr-1	V	6498186	G	A	SNV	missense	G310R			

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
C	GE2028	t1801	dif-1	IV	7552230	A	C	SNV	nonsense	Y187*	312	SLC25A20	Carnitine-acylcarnitine translocase deficiency [212138]
	GE1932	t1732	dif-1	IV	7552641	C	T	SNV	missense	G75D			
gene-13	GE2612	t1676	div-1	III	10245480	G	A	SNV	nonsense	Q489*	581	POLA2	(none)
	GE2577	t1642	div-1	III	10248544	C	T	SNV	start ATG	M1I			
d	GE2335	t2056	dlat-1	V	14445907	G	A	SNV	nonsense	Q419*	507	DLAT	Pyruvate dehydrogenase E2 deficiency [245348]
	GE2541	t2035	dlat-1	V	14446981	G	A	SNV	missense	P83L			
u	GE2402	t1940	F21D5.1	IV	8727315	C	T	SNV	missense	A436V	550	PGM3	Immunodeficiency 23 [615816]
	GE2445	t1935	F21D5.1	IV	8727668	C	T	SNV	missense	L539F			
t	GE2837	t1791	F56D5.2	IV	9397791	G	A	SNV	nonsense	Q214*	385	(none)	(none)
	GE2881	t1744	F56D5.2	IV	9398158	G	A	SNV	missense	S107F			
gene-26	GE1715	t1436	gsp-2	III	7337087	C	T	SNV	nonsense	R95*	333	PPP1CA, PPP1CB, PPP1CC	Noonan syndrome-like disorder with loose anagen hair 2 [617506]
	GE2360	t1481	gsp-2	III	7337383	G	A	SNV	missense	G174E			
gene-32	GE2545	t1577	gsr-1	III	3652401	G	A	SNV	missense	G335R	473	GSR, TXNRD1, TXNRD2, TXNRD3	Hemolytic anemia due to glutathione reductase deficiency [618660]; Glucocorticoid deficiency 5 [617825]
	GE2644	t1594	gsr-1	III	3652407	C	T	SNV	nonsense	R337*			
gene-31	GE2583	t1654	hcp-3	III	9615498	G	A	SNV	missense	R269C	288	CENPA	(none)
	GE2692	t1717	hcp-3	III	9615555	C	T	SNV	missense	E250K			
G	GE2455	t1914	klp-18	IV	7040335	T	C	SNV	missense	Y42H	932	KIF15	(none)
	GE2000	t1795	klp-18	IV	7041203	G	A	SNV	missense	E316K			
gene-6	GE2367	t1563	klp-19	III	13306451	A	T	SNV	missense	L230H	1083	KIF4A, KIF4B	Mental retardation, X-linked 100 [300923]
	GE2367	t1563	klp-19	III	13306457	G	A	SNV	missense	A228V			
	GE2264	t1628	klp-19	III	13306872	C	T	SNV	missense	G90R			
I	GE2003	t1817	let-99	IV	12569291	C	T	SNV	nonsense	Q447*	698	(none)	(none)
	GE2514	t1912	let-99	IV	12570199	C	T	SNV	missense	L617F			

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
gene-22	GE2730	t1550	lis-1	III	13375376	C	T	SNV	nonsense	W92*	404	PAFAH1B1	Lissencephaly 1; Subcortical laminar heterotopia [607432]
	GE2653	t1698	lis-1	III	13375401	C	T	SNV	splice site	-			
z	GE2130	t1765	mbk-2	IV	13033086	C	T	SNV	missense	R533C	817	DYRK2, DYRK3, DYRK4	(none)
	GE2503	t1888	mbk-2	IV	13033644	C	T	SNV	missense	P701L			
gene-10	GE2740	t1576	mel-32	III	6440655	C	T	SNV	missense	G395R	507	SHMT1, SHMT2	(none)
	GE1731	t1456	mel-32	III	6440831	C	T	SNV	missense	G336E			
M	GE1999	t1793	mex-5	IV	13354014	T	G	SNV	nonsense	Y79*	468	(none)	(none)
	GE2093	t1800	mex-5	IV	13354478	T	A	SNV	nonsense	L219*			
S	GE2511	t2162	mom-2	V	8356808	T	G	SNV	missense	C80G	362	WNT11, WNT9A, WNT9B	(none)
	GE2523	t2180	mom-2	V	8357121	T	C	SNV	missense	C139R			
W	GE2497	t2137	mre-11	V	10735712	G	A	SNV	missense	H269Y	728	MRE11	Ataxia-telangiectasia-like disorder 1 [604391]
	GE2103	t2092	mre-11	V	10736080	A	G	SNV	missense	F146S			
v	GE2091	t1772	nstp-2	IV	6604731	A	T	SNV	missense	L277H	324	SLC35B4	(none)
	GE2288	t1835	nstp-2	IV	6605266	C	T	SNV	missense	G131R			
F	GE2391	t1932	perm-5	IV	5696931	A	T	SNV	missense	C454S	518	(none)	(none)
	GE2453	t1900	perm-5	IV	5698096	A	G	SNV	missense	S323P			
gene-21	GE2237	t1614	pod-1	III	13518266	G	A	SNV	missense	A912V	1136	CORO7, CORO7- PAM16	(none)
	GE2605	t1674	pod-1	III	13518357	G	A	SNV	nonsense	R882*			
U	GE3128	t2177	pos-1	V	8414544	G	A	SNV	splice site	-	264	(none)	(none)
	GE2101	t2080	pos-1	V	8414579	T	A	SNV	missense	V145D			
Z	GE2517	t2175	rad-50	V	12247914	T	A	SNV	nonsense	L350*	1312	RAD5, AC116366.3	Nijmegen breakage syndrome-like disorder [613078]
	GE2476	t2147	rad-50	V	12250324	T	A	SNV	missense	I1101N			

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
E	GE2189	t1750	rad-51	IV	10282013	A	T	SNV	missense	I384N	395	DMC1, RAD51, RAD51B, RAD51C, RAD51D	Fanconi anemia, complementation group R, group O [617244, 613390]; Mirror movements 2 [614508]; Breast-ovarian cancer, familial, susceptibility to, 3 [613399]
	GE2433	t1885	rad-51	IV	10282328	C	T	SNV	missense	V323I			
gene-11	GE2347	t1519	rmd-1	III	9759805	G	A	SNV	missense	G89R	226	RMDN2, RMDN3	(none)
	GE2219	t1501	rmd-1	III	9759929	G	A	SNV	missense	R130H			
gene-18	GE2211	t1476	sas-1	III	12710102	C	T	SNV	missense	P419S	570	(none)	(none)
	GE2343	t1521	sas-1	III	12710202	G	A	SNV	missense	G452E			
f	GE2078	t2033	sas-5	V	11612449	C	T	SNV	missense	R397C	404	(none)	(none)
	GE2134	t2079	sas-5	V	11612449	C	T	SNV	missense	R397C			
P	GE2469	t2173	spn-4	V	6783986	A	T	SNV	nonsense	L259*	351	RBFOX1, RBFOX2, RBFOX3	(none)
	GE2317	t2098	spn-4	V	6784646	A	T	SNV	missense	V55D			
g	GE2386	t2165	sqv-4	V	10660827	G	A	SNV	missense	P182L	481	UGDH	Epileptic encephalopathy, early infantile, 84 [618792]
	GE2059	t2025	sqv-4	V	10661143	G	A	SNV	missense	S93L			
gene-5	GE2277	t1496	such-1	III	11515520	G	A	SNV	missense	L686F	798	ANAPC5	(none)
	GE2277	t1496	such-1	III	11515883	G	A	SNV	missense	H565Y			
	GE2666	t1693	such-1	III	11515540	C	T	SNV	missense	R679K			
q	GE2827	t1786	T22B11.1	IV	4692945	G	A	SNV	nonsense	W35*	468	(none)	(none)
	GE2895	t1866	T22B11.1	IV	4696017	G	A	SNV	nonsense	W356*			
gene-12	GE1734	t1438 t1477	tlk-1	III	9707175	C	T	SNV	nonsense	Q412*	965	TLK1, TLK2, TLK2PS1	Mental retardation, autosomal dominant 57 [618050]
	GE2613	t1677	tlk-1	III	9708080	G	A	SNV	missense	A694T			

Group	Strain	Allele(s)	Gene	Chr.	Position	Base Change		Mutation	Mutation Type	Amino Acid Change [†]	Protein Size (Amino Acids) [†]	Human Ortholog(s)	Associated OMIM phenotype(s) [‡]
gene-15	GE2399	t1559	top-3	III	11951381	G	A	SNV	nonsense	Q602*	759	TOP3A	Progressive external ophthalmoplegia with mitochondrial DNA deletions, autosomal recessive 5 [618098]; Microcephaly, growth restriction, and increased sister chromatid exchange 2 [618097]
	GE2220	t1516	top-3	III	11958680	C	T	SNV	missense	G59R			
gene-35	GE1735	t1470	top-3	III	11957525	C	T	SNV	nonsense	W114*	428	(none)	AAADC, AAADCL2, AAADCL3, AAADCL4, NCEH1
	GE2958	t1464 t1484	top-3	III	11951669	C	T	SNV	missense	G506R			
L	GE2512	t1909	trcs-1	IV	9587541	C	T	SNV	missense	E373K	720	FERMT1, FERMT2, FERMT3	Kindler syndrome [173650]; Leukocyte adhesion deficiency, type III [612840]
	GE1939	t1745	trcs-1	IV	9587985	G	A	SNV	nonsense	Q242*			
c	GE2112	t2037	unc-112	V	14692219	C	T	SNV	missense	R669Q	603	VPS33A, VPS33B, AC048338.1	Mucopolysaccharidosis-plus syndrome [617303]; Arthrogryposis, renal dysfunction [208085]
	GE2326	t2106	unc-112	V	14696546	C	T	SNV	splice site	-			
gene-27	GE1722	t1435	vps-33.1	III	8701605	C	T	SNV	nonsense	R159*	926	VPS39	(none)
	GE2366	t1561	vps-33.1	III	8702923	G	A	SNV	nonsense	W536*			
Q	GE2292	t2114	vps-39	V	14035713	G	A	SNV	nonsense	Q754*	748	WAPL	(none)
	GE1937	t2189	vps-39	V	14036143	C	T	SNV	nonsense	W626*			
	GE2056	t2016	vps-39	V	14037839	G	C	SNV	nonsense	Y122*			
N	GE2153	t1773	wapl-1	IV	4444464	C	T	SNV	nonsense	W348*	380	(none)	(none)
	GE2305	t1867	wapl-1	IV	4442749-4442872	-	-	122-bp deletion	deletion	-			
p	GE2738	t1833	Y54G2A.73	IV	3000662	A	T	SNV	nonsense	L341*	281	TIPRL	(none)
	GE2387	t1913	Y54G2A.73	IV	3001767	G	A	SNV	nonsense	R252*			
	GE2884	t1755	Y54G2A.73	IV	3008481	C	T	SNV	splice site	-			
gene-23	GE1713	t1433	ZK688.9	III	7882477	C	T	SNV	nonsense	W135*	802	DCLK1, DCLK2, DCLK3, DCX	Lissencephaly, X-linked, 1; Subcortical laminar heterotopia, X-linked [300067]
	GE2621	t1587	ZK688.9	III	7882717	C	T	SNV	splice site	-			
gene-14	GE2348	t1518	zyg-8	III	12063671	C	T	SNV	nonsense	R312*	802	DCLK1, DCLK2, DCLK3, DCX	Lissencephaly, X-linked, 1; Subcortical laminar heterotopia, X-linked [300067]
	GE2362	t1547	zyg-8	III	12063832	G	A	SNV	splice site	-			

[†]Amino acid position and size derived from the longest transcript (wormbase.org, version WS275)

[‡]Phenotypes retrieved from omim.org

Table 3. Genes of interest and associated phenotypes

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE1936	t1738	<i>atg-7</i>	E1 ubiquitin-activating-like enzyme orthologous to the autophagic budding yeast protein Apg7p	W311*	growth variant; dauer body morphology variant; pathogen induced death increased; P granule localization defective; dauer development variant; protein aggregation variant; shortened life span; transgene subcellular localization variant; transgene expression variant; necrotic cell death variant; autophagy variant; antibody staining reduced	dead embryos	no
GE1958	t1726			Q367*		dead embryos	no
GE2627	t1603	<i>bckd-1A</i>	Predicted mitochondrial protein with alpha-ketoacid dehydrogenase activity	W150*	shortened life span; small	dead embryos	yes
GE2206	t1514			Q161*		dead embryos	yes
GE2840	t1860	<i>C34D4.4</i>	Predicted to have the following domain: Golgi apparatus membrane protein TVP23-like	W131*	--	unfertilized oocytes	N/A
GE2890	t1821			W101*		unfertilized oocytes	N/A
GE2734	t2029	<i>C56A3.8</i>	Predicted to have 1-phosphatidylinositol 4-kinase activity	G62E	larval lethal; accumulated germline cell corpses; germ cell compartment morphology variant; germline nuclear positioning variant; larval arrest; cell membrane organization biogenesis variant; embryonic lethal; rachis narrow; apoptosis variant; maternal sterile; reduced brood size	unfertilized oocytes	N/A
GE2487	t2149			P82L		unfertilized oocytes	N/A
GE2886	t2055			E243K		unfertilized oocytes	N/A
GE2122	t2007	<i>cept-2</i>	Predicted to have diacylglycerol cholinephosphotransferase activity and ethanolaminephosphotransferase activity	splice site	fat content reduced; embryonic lethal; long	dead embryos	no
GE2047	t2021			W128*		no eggs laid (dead embryos) [ts]	some
GE2275	t1517	<i>cls-2</i>	Member of the CLASP family of microtubule-binding proteins	R102Q	locomotion variant; mitosis variant; univalent meiotic chromosomes; no polar body formation; chromosome segregation variant karyomeres early emb; mitotic chromosome segregation variant; mitotic spindle defective early emb; chromosome segregation variant; embryonic lethal; meiotic spindle defective; meiotic progression during oogenesis variant; exploded through vulva; reduced brood size; antibody subcellular localization variant; meiotic chromosome segregation variant	dead embryos	N/T
GE2357	t1527			G114R		dead embryos	no
GE1938	t1742	<i>cpt-2</i>	Carnitine palmitoyl transferase	W194*	embryonic lethal	dead embryos	no
GE2447	t1879			Q141*		dead embryos	no

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE2407	t1906	D2096.12	--	L638*	locomotion variant	dead embryos	some
GE2499	t1877			Q126*		dead embryos	yes
GE2063	t2042	dgtr-1	Acyl chain transfer enzyme	G310R	sterile; sick; oocyte number decreased; germline nuclear positioning variant; oocyte septum formation variant; embryonic lethal; embryo osmotic integrity defective early emb; oocyte morphology variant; pachytene region organization variant; reduced brood size; germ cell compartment expansion variant; oogenesis variant	dead embryos	some
GE2135	t2043			splice site		dead embryos	yes
GE2541	t2035	dlat-1	Predicted to have dihydrolipoyllysine-residue acetyltransferase activity	P83L	embryonic lethal; slow growth; receptor mediated endocytosis defective; pattern of transgene expression variant; sterile progeny; transgene expression increased; general pace of development defective early emb	dead embryos	no
GE2335	t2056			Q419*		dead embryos	no
GE2402	t1940	F21D5.1	Predicted to have phosphoacetyl-glucosamine mutase activity	A436V	sterile; germ cell compartment size variant; rachis wide; rachis morphology variant; accumulated germline cell corpses; germ cell compartment morphology variant; germline nuclear positioning variant; embryonic lethal; embryo osmotic integrity defective early emb; apoptosis variant; reduced brood size; oogenesis variant	dead embryos	yes
GE2445	t1935			L539F		dead embryos	yes
GE2881	t1744	F56D5.2	--	S107F	--	unfertilized oocytes	N/A
GE2837	t1791			Q214*		unfertilized oocytes	N/A
GE2091	t1772	nstp-2	Predicted to have UDP-N-acetylglucosamine and UDP-xylose transmembrane transporter activity	L277H	lysosome-related organelle morphology variant; transgene subcellular localization variant; RAB-11 recycling endosome localization variant; RAB-11 recycling endosome morphology variant	dead embryos	no
GE2288	t1835			G131R		dead embryos	no
GE2391	t1932	perm-5	Predicted to have lipid binding activity	C454S	sterile; apoptosis reduced; oocytes lack nucleus; oocyte number decreased; germ cell compartment morphology variant; germline nuclear positioning variant; germ cell compartment anucleate; oocyte septum formation variant; cell membrane organization biogenesis variant; embryonic lethal; embryo osmotic integrity defective early emb; oogenesis variant; diplotene region organization variant	dead embryos	yes
GE2453	t1900			S323P		dead embryos	yes
GE2827	t1786	T22B11.1	--	W35*	--	unfertilized oocytes [ts]	N/A
GE2895	t1866			W356*		unfertilized oocytes [ts]	N/A

Strain	Allele	Gene Name	Protein Function [†]	Amino Acid Change [†]	RNAi Phenotype [‡]	Mutant Phenotype	Embryonic Osmotic Integrity Defect
GE2399	t1559	top-3	Exhibits DNA topoisomerase type I (single strand cut, ATP-independent) activity	G59R	chromosome morphology variant; hermaphrodite germline proliferation variant; antibody staining increased; somatic gonad development variant; gonad degenerate; chromosome instability; germ cell mitosis variant; gonad arm morphology variant; meiosis variant; oocyte morphology variant; nuclear appearance variant; fewer germ cells; oogenesis variant	dead embryos	no
GE2220	t1516			Q602*		dead embryos	no
GE2512	t1909	trcs-1	Putative arylacetamide deacetylase and microsomal lipase	E373K	apoptosis reduced; diplotene absent during oogenesis; oocyte number decreased; embryo osmotic integrity defective early emb; rachis narrow; chromosome condensation variant; pachytene region organization variant; membrane trafficking variant; pachytene progression during oogenesis variant; apoptosis fails to occur; egg laying variant; germ cell compartment expansion absent; embryonic lethal; cell membrane organization biogenesis variant; no oocytes; germ cell compartment expansion variant	dead embryos [leaky ts]	yes
GE1939	t1745			Q242*		no eggs laid (dead embryos) [ts]	yes
GE2884	t1755	Y54G2A.73	--	splice site	--	unfertilized oocytes	N/A
GE2387	t1913			R252*		unfertilized oocytes	N/A
GE2738	t1833			L341*		unfertilized oocytes	N/A
GE1713	t1433	ZK688.9	Predicted to have the following domain: TIP41-like protein (TOR signaling pathway regulator)	W135*	egg laying variant; locomotion variant	dead embryos	no
GE2621	t1587			splice site		dead embryos	no

[ts] = temperature sensitive

N/A = not applicable

N/T = not tested

-- = no information available

[†] From WormBase (WS275; wormbase.org); amino acid position derived from the longest transcript

[‡] Phenotypes retrieved from GExplore (genome.sfu.ca/gexplore)

629
630
631**Table 4.** Complementation tests for conflicting groups

Original Complementation Group	Strain	Allele	Preliminary Gene Candidate	Mapped Under	Complement Test Results	Final Gene Assignment
gene-28	GE1742	t1461	<i>bckd-1A</i>	None of tested deficiencies	Fails to complement: GE2206, GE2627	<i>bckd-1A</i>
gene-17	GE2627	t1603	<i>bckd-1A</i>	<i>tDf5</i>	Fails to complement: GE2206, GE1742	<i>bckd-1A</i>
	GE2206	t1514		<i>tDf5</i>	Fails to complement: GE2627, GE1742	
gene-15	GE2220	t1516	<i>top-3</i>	<i>tDf5</i>	Fails to complement: GE2399, GE1735 Complements: GE2278	<i>top-3</i>
	GE2399	t1559		<i>tDf5</i>	Fails to complement: GE2220	
gene-34	GE2278	t1502	<i>top-3</i>	None of tested deficiencies	Fails to complement: GE1735 Complements: GE2220	unknown gene
gene-35	GE1735	t1470	<i>top-3</i>	None of tested deficiencies	Fails to complement: GE2278, GE2220	double mutant: <i>top-3</i> + unknown gene

632

N/T = not tested

633 **Table 5.** Putative male fertility genes

Strain	Allele	Gene	Observed Mutant Phenotype	Successful WT Male Rescue
GE2627	t1603	bckd-1A	dead embryos	yes
GE2206	t1514		dead embryos	yes
GE2840	t1860	C34D4.4	unfertilized oocytes	yes
GE2890	t1821		unfertilized oocytes	yes
GE2734	t2029	C56A3.8	unfertilized oocytes	yes
GE2487	t2149		unfertilized oocytes	yes
GE2886	t2055		unfertilized oocytes	yes
GE2881	t1744	F56D5.2	unfertilized oocytes	no
GE2837	t1791		unfertilized oocytes	yes
GE2091	t1772	nstp-2	dead embryos	no
GE2288	t1835		dead embryos	yes
GE2827	t1786	T22B11.1	unfertilized oocytes [ts]	yes
GE2895	t1866		unfertilized oocytes [ts]	yes
GE2884	t1755	Y54G2A.73	unfertilized oocytes	yes
GE2387	t1913		unfertilized oocytes	yes
GE2738	t1833		unfertilized oocytes	yes

634 [ts] = temperature sensitive

635

FIGURE LEGENDS

636

637 **Figure 1** Schematic of gene assignments and deficiency mapping. Genes and deficiencies are
638 shown with their relative positions on chromosomes III, IV, and V. Approximate boundaries of
639 each deficiency were determined by the coordinates of the closest gene known to lie outside of
640 the deletion, when possible (indicated by a faded edge). If no such genes with physical
641 coordinates are known, the outermost gene known to lie inside the deletion was used as the
642 boundary (indicated by a sharp edge). Gene names are coloured according to the deficiency
643 under which the alleles were mapped. Gene names assigned to alleles that did not map under
644 any of the tested deficiencies are highlighted in grey. *top-3* and *bckd-1A* on chromosome III are
645 represented by multiple complementation groups with conflicting results from deficiency
646 mapping.

647

648 **Figure 2** Biological Process GO terms overrepresented in the set of 58 identified essential genes.
649 Bar length represents the number of genes in the set associated with each GO term.
650 Overrepresentation was analyzed using PANTHER version 16.0 (Thomas *et al.* 2003) and p-values
651 were adjusted with the Bonferroni multiple testing correction. Results were filtered to include
652 terms with adjusted p<0.05 and edited to exclude redundant terms.

653

654 **Figure 3** Embryonic arrest visualized with DIC microscopy for select maternal-effect lethal
655 mutants. Eggs were dissected from homozygous mutants and imaged immediately (A) or
656 incubated in distilled water overnight before imaging (B, C, and D). (A) Eggs dissected from *dgtr-*

657 *1(t2043)* homozygotes exhibit signs of an osmotic integrity defect, by filling the eggshell
658 completely. (B) *dlat-1(t2035)* embryos exhibit early embryonic arrest, with most embryos
659 consisting of four cells or less. (C) *ZK688.9(t1433)* embryos arrest with approximately 100 cells.
660 (D) Terminal embryos of *nstp-2(t1835)* have a lumpy body wall morphology and constricted
661 nose; most animals were moving inside the eggshell but did not hatch. All scale bars represent
662 10 μ m.

663

664 LITERATURE CITED

665

666 Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman, 1990 Basic local alignment

667 search tool. *J. Mol. Biol.* 215: 403-410.

668 Au, V., E. Li-Leger, G. Raymant, S. Flibotte, G. Chen *et al.*, 2019 CRISPR/Cas9 methodology for the

669 generation of knockout deletions in *Caenorhabditis elegans*. *G3: Genes, Genomes, Genet.* 9: 135-

670 144.

671 Ausländer, S., D. Ausländer and M. Fussenegger, 2017 Synthetic biology—the synthesis of

672 biology. *Angew. Chem. Int. Ed.* 56: 6396-6419.

673 Bao, Z., J. I. Murray, T. Boyle, S. L. Ooi, M. J. Sandel *et al.*, 2006 Automated cell lineage tracing in

674 *Caenorhabditis elegans*. *Proc. Natl. Acad. Sci. U.S.A.* 103: 2707-2712.

675 Benenati, G., S. Penkov, T. Müller-Reichert, E. V. Entchev and T. V. Kurzchalia, 2009 Two

676 cytochrome P450s in *Caenorhabditis elegans* are essential for the organization of eggshell,

677 correct execution of meiosis and the polarization of embryo. *Mech. Dev.* 126: 382-393.

678 Bischoff, M., and R. Schnabel, 2006 A posterior centre establishes and maintains polarity of the

679 *Caenorhabditis elegans* embryo by a Wnt-dependent relay mechanism. *PLoS Biol.* 4: e396.

680 Blumenstiel, J. P., A. C. Noll, J. A. Griffiths, A. G. Perera, K. N. Walton *et al.*, 2009 Identification of

681 EMS-induced mutations in *Drosophila melanogaster* by whole-genome sequencing.

682 *Genetics* 182: 25-32.

683 Boeck, M. E., C. Huynh, L. Gevirtzman, O. A. Thompson, G. Wang *et al.*, 2016 The time-resolved

684 transcriptome of *C. elegans*. *Genome Res.* 26: 1441-1450.

685 Bradley, A., K. Anastassiadis, A. Ayadi, J. F. Battey, C. Bell *et al.*, 2012 The mammalian gene
686 function resource: The international knockout mouse consortium. *Mammalian genome* 23: 580-
687 586.

688 Brauchle, M., K. Baumer and P. Gönczy, 2003 Differential activation of the DNA replication
689 checkpoint contributes to asynchrony of cell division in *C. elegans* embryos. *Curr. Biol.* 13: 819-
690 827.

691 Brenner, S., 1974 The genetics of *Caenorhabditis elegans*. *Genetics* 77: 71-94.

692 Bürglin, T. R., E. Lobos and M. L. Blaxter, 1998 *Caenorhabditis elegans* as a model for parasitic
693 nematodes. *Int. J. Parasitol.* 28: 395-411.

694 *C. elegans* Deletion Mutant Consortium, 2012 Large-scale screening for targeted knockouts in
695 the *Caenorhabditis elegans* genome. *G3: Genes, Genomes, Genet.* 2: 1415-1425.

696 Carvalho, A., S. K. Olson, E. Gutierrez, K. Zhang, L. B. Noble *et al.*, 2011 Acute drug treatment in
697 the early *C. elegans* embryo. *PloS one* 6: e24656.

698 Clark, D. V., T. M. Rogalski, L. M. Donati and D. L. Baillie, 1988 The unc-22 (IV) region of
699 *Caenorhabditis elegans*: Genetic analysis of lethal mutations. *Genetics* 119: 345-353.

700 Cockell, M. M., K. Baumer and P. Gönczy, 2004 Lis-1 is required for dynein-dependent cell
701 division processes in *C. elegans* embryos. *J. Cell. Sci.* 117: 4571-4582.

702 Culetto, E., and D. B. Sattelle, 2000 A role for *Caenorhabditis elegans* in understanding the
703 function and interactions of human disease genes. *Hum. Mol. Genet.* 9: 869-877.

704 del Castillo-Olivares, A., M. Kulkarni and H. E. Smith, 2009 Regulation of sperm gene expression

705 by the GATA factor ELT-1. *Dev. Biol.* 333: 397-408.

706 Delattre, M., S. Leidel, K. Wani, K. Baumer, J. Bamat *et al.*, 2004 Centriolar SAS-5 is required for

707 centrosome duplication in *C. elegans*. *Nat. Cell Biol.* 6: 656-664.

708 Denver, D. R., K. Morris, M. Lynch and W. K. Thomas, 2004 High mutation rate and

709 predominance of insertions in the *Caenorhabditis elegans* nuclear genome. *Nature* 430: 679-682.

710 Dickerson, J. E., A. Zhu, D. L. Robertson and K. E. Hentges, 2011 Defining the role of essential

711 genes in human disease. *PLoS one* 6: e27368.

712 Doitsidou, M., R. J. Poole, S. Sarin, H. Bigelow and O. Hobert, 2010 *C. elegans* mutant

713 identification with a one-step whole-genome-sequencing and SNP mapping strategy. *PLoS*

714 *one* 5: e15435.

715 Doyle, M. A., R. B. Gasser, B. J. Woodcroft, R. S. Hall and S. A. Ralph, 2010 Drug target prediction

716 and prioritization: Using orthology to predict essentiality in parasite genomes. *BMC*

717 *Genomics* 11: 222.

718 Feichtinger, R. E., 1995 *Quantitative Analysis of Maternal Gene Functions of Caenorhabditis*

719 *Elegans*. Ph.D. Thesis, University of Vienna, Austria.

720 Fire, A., S. Xu, M. K. Montgomery, S. A. Kostas, S. E. Driver *et al.*, 1998 Potent and specific genetic

721 interference by double-stranded RNA in *Caenorhabditis elegans*. *Nature* 391: 806-811.

722 Flibotte, S., M. L. Edgley, I. Chaudhry, J. Taylor, S. E. Neil *et al.*, 2010 Whole-genome profiling of

723 mutagenesis in *Caenorhabditis elegans*. *Genetics* 185: 431-441.

724 Fraser, A. G., R. S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann *et al.*, 2000

725 Functional genomic analysis of *C. elegans* chromosome I by systematic RNA interference.

726 *Nature* 408: 325-330.

727 Georgi, B., B. F. Voight and M. Bućan, 2013 From mouse to human: Evolutionary genomics

728 analysis of human orthologs of essential genes. *PLoS genet.* 9: e1003484.

729 Gerstein, M. B., J. Rozowsky, K. Yan, D. Wang, C. Cheng *et al.*, 2014 Comparative analysis of the

730 transcriptome across distant species.

731 *512*: 445-448.

732 Gerstein, M. B., Z. J. Lu, E. L. Van Nostrand, C. Cheng, B. I. Arshinoff *et al.*, 2010 Integrative

733 analysis of the *Caenorhabditis elegans* genome by the modENCODE project. *Science* 330: 1775-

734 1787.

735 Giaever, G., A. M. Chu, L. Ni, C. Connelly, L. Riles *et al.*, 2002 Functional profiling of the

736 *Saccharomyces cerevisiae* genome. *Nature* 418: 387-391.

737 Gönczy, P., H. Schnabel, T. Kaletta, A. D. Amores, T. Hyman *et al.*, 1999 Dissection of cell division

738 processes in the one cell stage *Caenorhabditis elegans* embryo by mutational analysis. *J. Cell*

739 *Biol.* 144: 927-946.

740 Gönczy, P., J. Bellanger, M. Kirkham, A. Pozniakowski, K. Baumer *et al.*, 2001 Zyg-8, a gene

741 required for spindle positioning in *C. elegans*, encodes a doublecortin-related kinase that

742 promotes microtubule assembly. *Dev. Cell.* 1: 363-375.

743 Gönczy, P., C. Echeverri, K. Oegema, A. Coulson, S. J. Jones *et al.*, 2000 Functional genomic
744 analysis of cell division in *C. elegans* using RNAi of genes on chromosome III. *Nature* 408: 331-
745 336.

746 Goodwin, S., J. D. McPherson and W. R. McCombie, 2016 Coming of age: Ten years of next-
747 generation sequencing technologies. *Nat. Rev. Genet.* 17: 333.

748 Green, R. A., H. Kao, A. Audhya, S. Arur, J. R. Mayers *et al.*, 2011 A high-resolution *C. elegans*
749 essential gene network based on phenotypic profiling of a complex tissue. *Cell* 145: 470-482.

750 Hashmi, S., W. Tawe and S. Lustigman, 2001 *Caenorhabditis elegans* and the study of gene
751 function in parasites. *Trends Parasitol.* 17: 387-393.

752 Herman, R. K., 1978 Crossover suppressors and balanced recessive lethals in *Caenorhabditis*
753 *elegans*. *Genetics* 88: 49-65.

754 Hillier, L. W., V. Reinke, P. Green, M. Hirst, M. A. Marra *et al.*, 2009 Massively parallel sequencing
755 of the polyadenylated transcriptome of *C. elegans*. *Genome Res.* 19: 657-666.

756 Hillier, L. W., G. T. Marth, A. R. Quinlan, D. Dooling, G. Fewell *et al.*, 2008 Whole-genome
757 sequencing and variant discovery in *C. elegans*. *Nat. Methods* 5: 183.

758 Hotez, P. J., P. J. Brindley, J. M. Bethony, C. H. King, E. J. Pearce *et al.*, 2008 Helminth infections:
759 The great neglected tropical diseases. *J. Clin. Invest.* 118: 1311-1321.

760 Howell, A. M., S. G. Gilmour, R. A. Mancebo and A. M. Rose, 1987 Genetic analysis of a large
761 autosomal region in *Caenorhabditis elegans* by the use of a free duplication. *Genetics*
762 *Research* 49: 207-213.

763 Howell, A. M., and A. M. Rose, 1990 Essential genes in the hDf6 region of chromosome I in

764 *Caenorhabditis elegans*. *Genetics* 126: 583-592.

765 Hughes, T. R., 2002 Yeast and drug discovery. *Funct. Integr. Genomics* 2: 199-211.

766 Hutter, H., and J. Suh, 2016 GExplore 1.4: An expanded web interface for queries on

767 *Caenorhabditis elegans* protein and gene function. *Worm* 5: e1234659.

768 Hutter, H., M. Ng and N. Chen, 2009 GExplore: A web server for integrated queries of protein

769 domains, gene expression and mutant phenotypes. *BMC Genomics* 10: 529.

770 Jabbar, A., Z. Iqbal, D. Kerboeuf, G. Muhammad, M. N. Khan *et al.*, 2006 Anthelmintic resistance:

771 The state of play revisited. *Life Sci.* 79: 2413-2431.

772 Jaramillo-Lambert, A., A. S. Fuchsman, A. S. Fabritius, H. E. Smith and A. Golden, 2015 Rapid and

773 efficient identification of *Caenorhabditis elegans* legacy mutations using Hawaiian SNP-based

774 mapping and whole-genome sequencing. *G3: Genes, Genomes, Genet.* 5: 1007-1019.

775 Johnsen, R. C., and D. L. Baillie, 1997 Mutation, pp. 79-95 in *C. Elegans II*, edited by Riddle, D.L.,

776 Blumenthal, T., Meyer, B.J., Priess, J.R. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

777 (NY).

778 Johnsen, R. C., and D. L. Baillie, 1991 Genetic analysis of a major segment [LGV (left)] of the

779 genome of *Caenorhabditis elegans*. *Genetics* 129: 735-752.

780 Johnsen, R. C., and D. L. Baillie, 1988 Formaldehyde mutagenesis of the eT1 balanced region in

781 *Caenorhabditis elegans*: Dose—response curve and the analysis of mutational events. *Mutat.*

782 *Res.* 201: 137-147.

783 Johnston, W. L., A. Krizus and J. W. Dennis, 2006 The eggshell is required for meiotic fidelity,

784 polar-body extrusion and polarization of the *C. elegans* embryo. *BMC biology* 4: 35.

785 Jordan, I. K., I. B. Rogozin, Y. I. Wolf and E. V. Koonin, 2002 Essential genes are more

786 evolutionarily conserved than are nonessential genes in bacteria. *Genome Res.* 12: 962-968.

787 Kadandale, P., I. Chatterjee and A. Singson, 2009 Germline transformation of *Caenorhabditis*

788 *elegans* by injection, pp. 123-133 in *Microinjection*. Springer.

789 Kaitna, S., H. Schnabel, R. Schnabel, A. A. Hyman and M. Glotzer, 2002 A ubiquitin C-terminal

790 hydrolase is required to maintain osmotic balance and execute actin-dependent processes in the

791 early *C. elegans* embryo. *J. Cell. Sci.* 115: 2293-2302.

792 Kamath, R. S., A. G. Fraser, Y. Dong, G. Poulin, R. Durbin *et al.*, 2003 Systematic functional

793 analysis of the *Caenorhabditis elegans* genome using RNAi. *Nature* 421: 231-237.

794 Kemphues, K. J., M. Kusch and N. Wolf, 1988 Maternal-effect lethal mutations on linkage group II

795 of *Caenorhabditis elegans*. *Genetics* 120: 977-986.

796 Kim, W., R. S. Underwood, I. Greenwald and D. D. Shaye, 2018 OrthoList 2: A new comparative

797 genomic analysis of human and *Caenorhabditis elegans* genes. *Genetics* 210: 445-461.

798 Kniazeva, M., Q. T. Crawford, M. Seiber, C. Wang and M. Han, 2004 Monomethyl branched-chain

799 fatty acids play an essential role in *Caenorhabditis elegans* development. *PLoS biology* 2: e257.

800 Kumar, S., K. Chaudhary, J. M. Foster, J. F. Novelli, Y. Zhang *et al.*, 2007 Mining predicted

801 essential genes of *Brugia malayi* for nematode drug targets. *PloS one* 2: e1189.

802 Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows–Wheeler
803 transform. *Bioinformatics* 25: 1754-1760.

804 Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan *et al.*, 2009 The sequence alignment/map
805 format and SAMtools. *Bioinformatics* 25: 2078-2079.

806 Li, Z., F. J. Vizeacoumar, S. Bahr, J. Li, J. Warringer *et al.*, 2011 Systematic exploration of essential
807 yeast gene function with temperature-sensitive mutants. *Nat. Biotechnol.* 29: 361.

808 Ma, X., Y. Zhu, C. Li, P. Xue, Y. Zhao *et al.*, 2014 Characterisation of *Caenorhabditis elegans* sperm
809 transcriptome and proteome. *BMC Genomics* 15: 168.

810 McKim, K. S., M. F. Heschl, R. E. Rosenbluth and D. L. Baillie, 1988 Genetic organization of the
811 unc-60 region in *Caenorhabditis elegans*. *Genetics* 118: 49-59.

812 McKim, K. S., T. Starr and A. M. Rose, 1992 Genetic and molecular analysis of the dpy-14 region
813 in *Caenorhabditis elegans*. *Mol. Gen. Genet.* 233: 241-251.

814 Mello, C. C., J. M. Kramer, D. Stinchcomb and V. Ambros, 1991 Efficient gene transfer in *C.*
815 *elegans*: Extrachromosomal maintenance and integration of transforming sequences. *EMBO*
816 *J.* 10: 3959-3970.

817 Meneely, P. M., and R. K. Herman, 1979 Lethals, steriles and deficiencies in a region of the X
818 chromosome of *Caenorhabditis elegans*. *Genetics* 92: 99-115.

819 Metzker, M. L., 2010 Sequencing technologies—the next generation. *Nat. Rev. Genet.* 11: 31-46.

820 Nicol, J. M., S. J. Turner, D. L. Coyne, L. Den Nijs, S. Hockland *et al.*, 2011 Current nematode
821 threats to world agriculture, pp. 21-43 in *Genomics and Molecular Genetics of Plant-Nematode*
822 *Interactions*. Springer.

823 Nieto, C., J. Almendinger, S. Gysi, E. Gómez-Orte, A. Kaech *et al.*, 2010 Ccz-1 mediates the
824 digestion of apoptotic corpses in *C. elegans*. *J. Cell. Sci.* 123: 2001-2007.

825 Nordström, K. J., M. C. Albani, G. V. James, C. Gutjahr, B. Hartwig *et al.*, 2013 Mutation
826 identification by direct comparison of whole-genome sequencing data from mutant and wild-
827 type individuals using k-mers. *Nat. Biotechnol.* 31: 325.

828 Norris, A. D., H. Kim, M. P. Colaiacovo and J. A. Calarco, 2015 Efficient genome editing in
829 *Caenorhabditis elegans* with a toolkit of dual-marker selection cassettes. *Genetics* 201: 449-58.

830 Olson, S. K., G. Greenan, A. Desai, T. Müller-Reichert and K. Oegema, 2012 Hierarchical assembly
831 of the eggshell and permeability barrier in *C. elegans*. *J. Cell Biol.* 198: 731-748.

832 Packer, J. S., Q. Zhu, C. Huynh, P. Sivaramakrishnan, E. Preston *et al.*, 2019 A lineage-resolved
833 molecular atlas of *C. elegans* embryogenesis at single-cell resolution. *Science* 365: eaax1971.

834 Qin, Z., R. Johnsen, S. Yu, J. S. Chu, D. L. Baillie *et al.*, 2018 Genomic identification and functional
835 characterization of essential genes in *Caenorhabditis elegans*. *G3: Genes, Genomes,*
836 *Genet.* 8: 981-997.

837 Rahman, M. M., S. Rosu, D. Joseph-Strauss and O. Cohen-Fix, 2014 Down-regulation of
838 tricarboxylic acid (TCA) cycle genes blocks progression through the first mitotic division in
839 *Caenorhabditis elegans* embryos. *Proc. Natl. Acad. Sci. U.S.A.* 111: 2602-2607.

840 Rappleye, C. A., A. Tagawa, N. Le Bot, J. Ahringer and R. V. Aroian, 2003 Involvement of fatty acid
841 pathways and cortical interaction of the pronuclear complex in *Caenorhabditis elegans*
842 embryonic polarity. *BMC developmental biology* 3: 8.

843 Rappleye, C. A., A. R. Paredez, C. W. Smith, K. L. McDonald and R. V. Aroian, 1999 The coronin-
844 like protein POD-1 is required for anterior–posterior axis formation and cellular architecture in
845 the nematode *Caenorhabditis elegans*. *Genes Dev.* 13: 2838-2851.

846 Reinke, V., I. San Gil, S. Ward and K. Kazmer, 2004 Genome-wide germline-enriched and sex-
847 biased expression profiles in *Caenorhabditis elegans*. *Development* 131: 311-323.

848 Rogalski, T. M., D. G. Moerman and D. L. Baillie, 1982 Essential genes and deficiencies in the unc-
849 22 IV region of *Caenorhabditis elegans*. *Genetics* 102: 725-736.

850 Sarin, S., S. Prabhu, M. M. O'meara, I. Pe'er and O. Hobert, 2008 *Caenorhabditis elegans* mutant
851 allele identification by whole-genome sequencing. *Nat. Methods* 5: 865-867.

852 Schnabel, R., H. Hutter, D. Moerman and H. Schnabel, 1997 Assessing normal embryogenesis in
853 *Caenorhabditis elegans* using a 4D microscope: Variability of development and regional
854 specification. *Dev. Biol.* 184: 234-265.

855 Schneeberger, K., and D. Weigel, 2011 Fast-forward genetics enabled by new sequencing
856 technologies. *Trends Plant Sci.* 16: 282-288.

857 Schneeberger, K., S. Ossowski, C. Lanz, T. Juul, A. H. Petersen *et al.*, 2009 SHOREmap:
858 Simultaneous mapping and mutation identification by deep sequencing. *Nat. Methods* 6: 550-
859 551.

860 Shi, J., E. Wang, J. P. Milazzo, Z. Wang, J. B. Kinney *et al.*, 2015 Discovery of cancer drug targets
861 by CRISPR-Cas9 screening of protein domains. *Nat. Biotechnol.* 33: 661-667.

862 Silverman, G. A., C. J. Luke, S. R. Bhatia, O. S. Long, A. C. Vetica *et al.*, 2009 Modeling molecular
863 and cellular aspects of human disease using the nematode *Caenorhabditis elegans*. *Pediatr.*
864 *Res.* 65: 10-18.

865 Smith, D. R., A. R. Quinlan, H. E. Peckham, K. Makowsky, W. Tao *et al.*, 2008 Rapid whole-genome
866 mutational profiling using next-generation sequencing technologies. *Genome Res.* 18: 1638-
867 1642.

868 Smith, H. E., A. S. Fabritius, A. Jaramillo-Lambert and A. Golden, 2016 Mapping challenging
869 mutations by whole-genome sequencing. *G3: Genes, Genomes, Genet.* 6: 1297-1304.

870 Sonneville, R., and P. Gönczy, 2004 Zyg-11 and cul-2 regulate progression through meiosis II and
871 polarity establishment in *C. elegans*. *Development* 131: 3527-3543.

872 Sönnichsen, B., L. B. Koski, A. Walsh, P. Marschall, B. Neumann *et al.*, 2005 Full-genome RNAi
873 profiling of early embryogenesis in *Caenorhabditis elegans*. *Nature* 434: 462-469.

874 Srivatsan, A., Y. Han, J. Peng, A. K. Tehranchi, R. Gibbs *et al.*, 2008 High-precision, whole-genome
875 sequencing of laboratory strains facilitates genetic studies. *PLoS Genet.* 4: e1000139.

876 Stein, K. K., and A. Golden, 2018 The *C. elegans* eggshell in *WormBook: The Online Review of C.*
877 *Elegans Biology*. The *C. elegans* Research Community.

878 Stewart, H. I., N. J. O'Neil, D. L. Janke, N. W. Franz, H. M. Chamberlin *et al.*, 1998 Lethal mutations
879 defining 112 complementation groups in a 4.5 mb sequenced region of *Caenorhabditis elegans*
880 chromosome III. MGG 260: 280-288.

881 The *C. elegans* Sequencing Consortium, 1998 Genome sequence of the nematode *C. elegans*: A
882 platform for investigating biology. Science 2012-2018.

883 Thomas, C., P. DeVries, J. Hardin and J. White, 1996 Four-dimensional imaging: Computer
884 visualization of 3D movements in living specimens. Science 273: 603-607.

885 Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak *et al.*, 2003 PANTHER: A library of
886 protein families and subfamilies indexed by function. Genome Res. 13: 2129-2141.

887 Thompson, O., M. Edgley, P. Strasbourger, S. Flibotte, B. Ewing *et al.*, 2013 The million mutation
888 project: A new approach to genetics in *Caenorhabditis elegans*. Genome Res. 23: 1749-1762.

889 Tintori, S. C., E. O. Nishimura, P. Golden, J. D. Lieb and B. Goldstein, 2016 A transcriptional
890 lineage of the early *C. elegans* embryo. Dev. Cell 38: 430-444.

891 Varshney, G. K., J. Lu, D. E. Gildea, H. Huang, W. Pei *et al.*, 2013 A large-scale zebrafish gene
892 knockout resource for the genome-wide study of gene function. Genome Res. 23: 727-735.

893 Vatcher, G. P., C. M. Thacker, T. Kaletta, H. Schnabel, R. Schnabel *et al.*, 1998 Serine
894 hydroxymethyltransferase is maternally essential in *Caenorhabditis elegans*. J. Biol.
895 Chem. 273: 6066-6073.

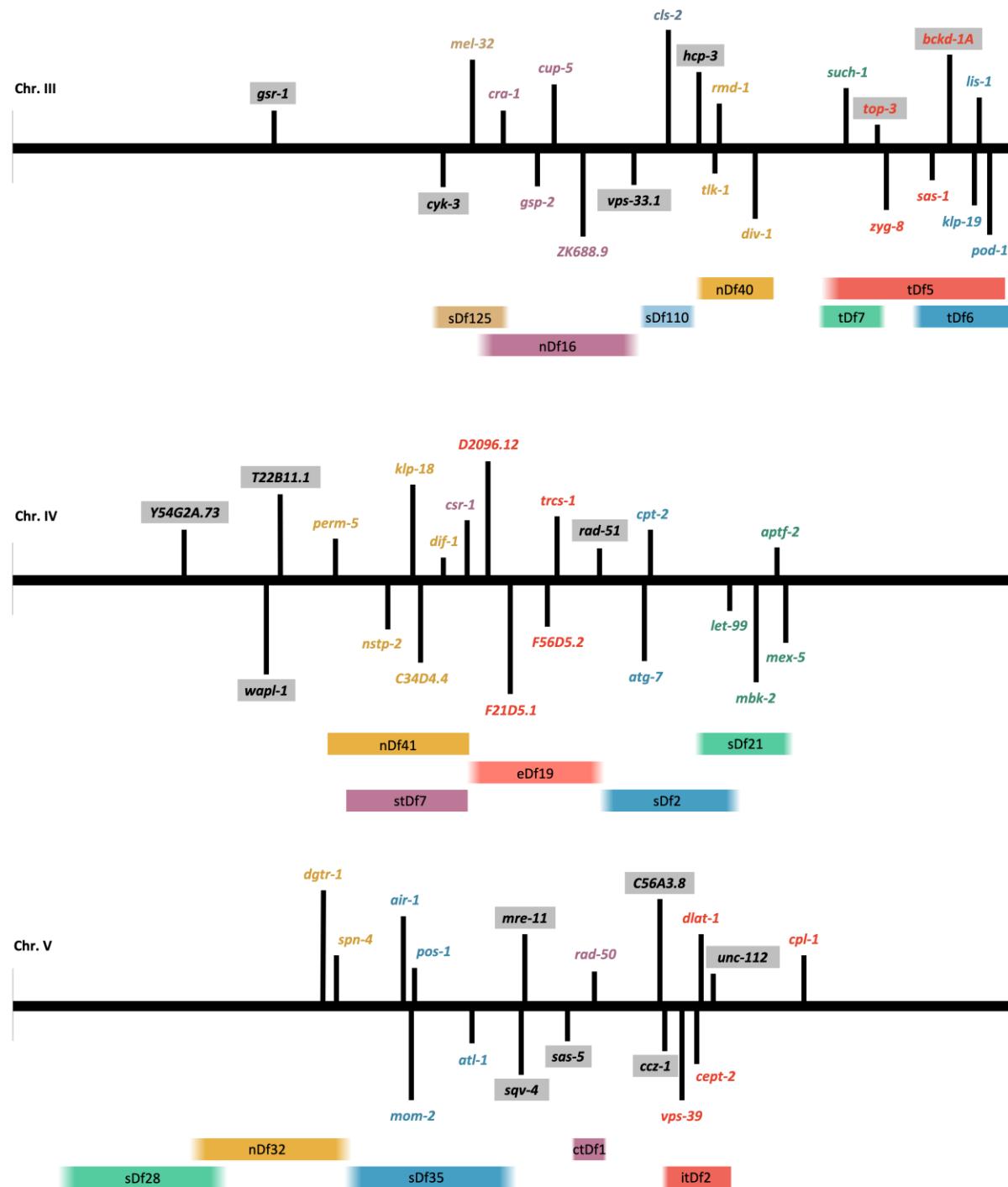
896 Vyas, V. K., M. I. Barrasa and G. R. Fink, 2015 A *Candida albicans* CRISPR system permits genetic
897 engineering of essential genes and gene families. Sci. Adv. 1: e1500248.

898 Wang, S., S. D. Ochoa, R. N. Khaliullin, A. Gerson-Gurwitz, J. M. Hendel *et al.*, 2019 A high-content
899 imaging approach to profile *C. elegans* embryonic development. *Development* 146: dev174029.

900 Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson *et al.*, 1999 Functional
901 characterization of the *S. cerevisiae* genome by gene deletion and parallel analysis.
902 *Science* 285: 901-906.

903 Wolstenholme, A. J., I. Fairweather, R. Prichard, G. von Samson-Himmelstjerna and N. C.
904 Sangster, 2004 Drug resistance in veterinary helminths. *Trends Parasitol.* 20: 469-476.

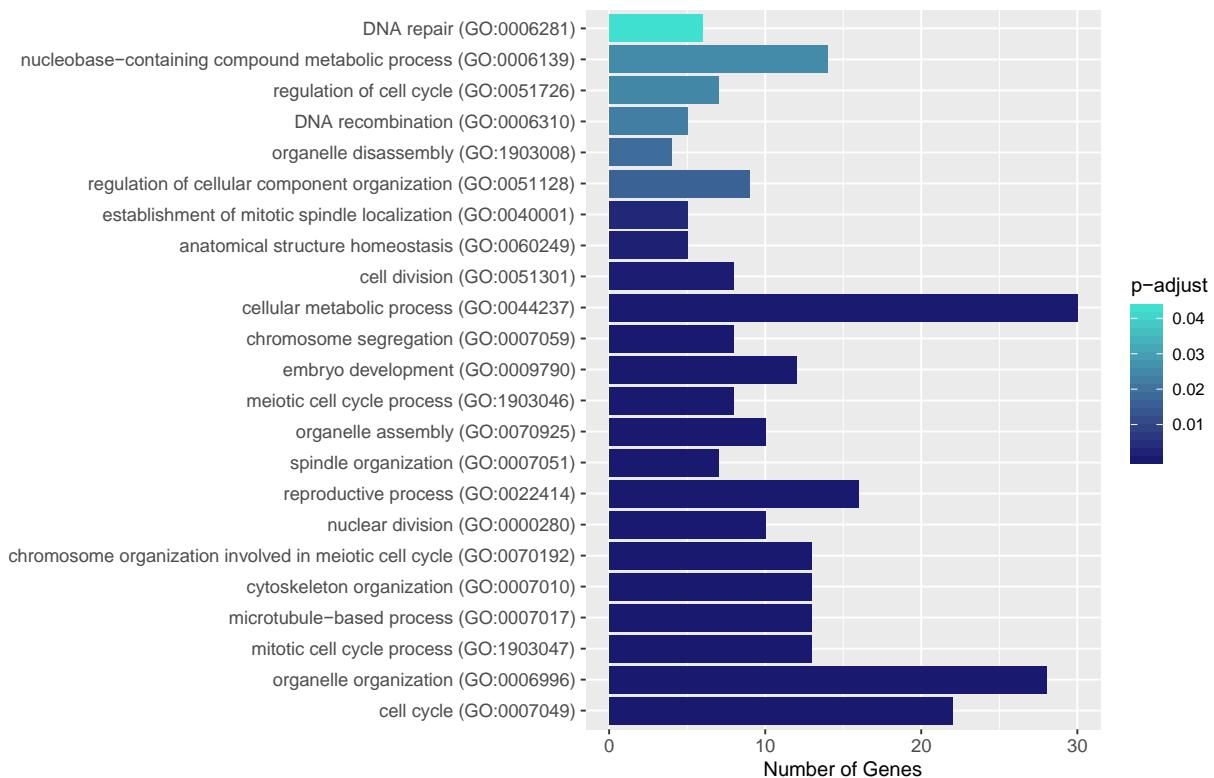
905 Yu, L., L. P. Castillo, S. Mnaimneh, T. R. Hughes and G. W. Brown, 2006 A survey of essential gene
906 function in the yeast cell division cycle. *Mol. Biol. Cell* 17: 4736-4747.


907 Zhang, M., C. Wang, T. D. Otto, J. Oberstaller, X. Liao *et al.*, 2018 Uncovering the essential genes
908 of the human malaria parasite *Plasmodium falciparum* by saturation mutagenesis.
909 *Science* 360: eaap7847.

910 Zhu, G., G. Salazar, S. A. Zlatic, B. Fiza, M. M. Doucette *et al.*, 2009 SPE-39 family proteins interact
911 with the HOPS complex and function in lysosomal delivery. *Mol. Biol. Cell* 20: 1223-1240.

912 Zuryn, S., S. Le Gras, K. Jamet and S. Jarriault, 2010 A strategy for direct mapping and
913 identification of mutations by whole-genome sequencing. *Genetics* 186: 427-430.

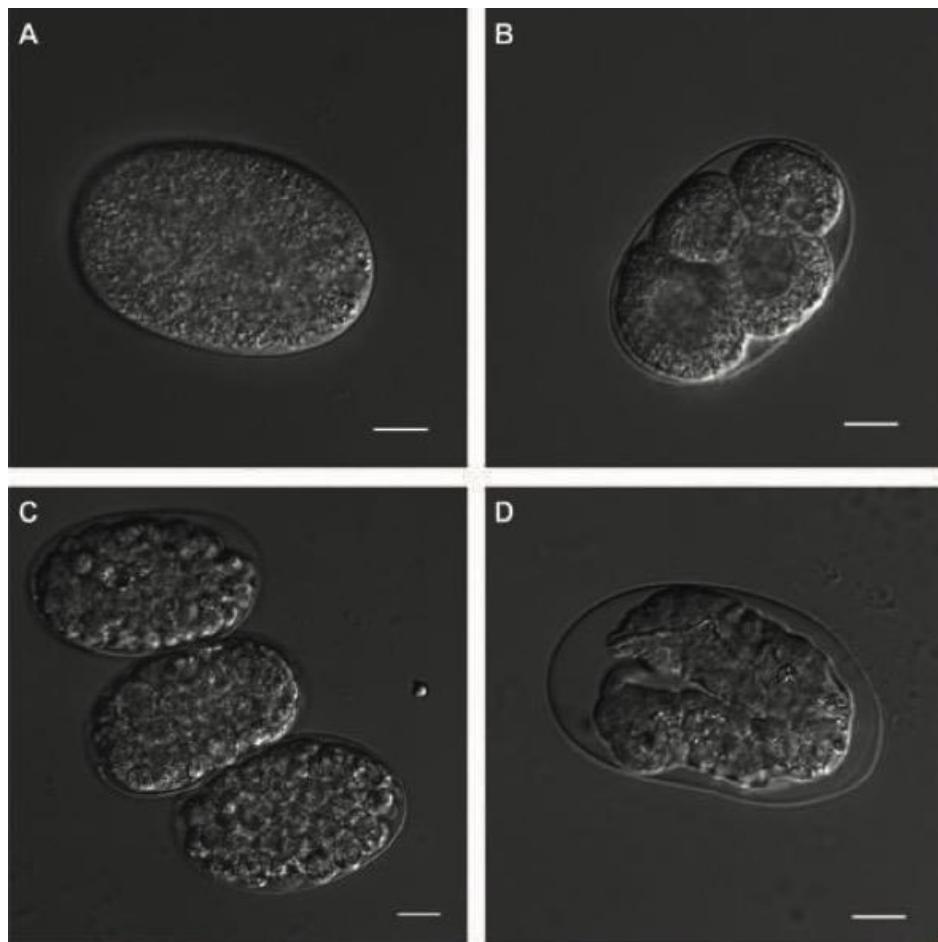
914


915 Figure 1.

916

917 Figure 2

918


919

920

921

922 Figure 3.

923

924