

1 **Mendelian randomization suggests a bidirectional, causal relationship**
2 **between physical inactivity and obesity**

3

4 Germán D. Carrasquilla¹, PhD; Mario García-Ureña¹, MSc; Prof Tove Fall², PhD; Prof Thorkild
5 I.A. Sørensen^{1,3}, Dr Med Sci; and Tuomas O. Kilpeläinen¹, PhD.

6 1. Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and
7 Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
8 2. Molecular Epidemiology, Department of Medical Sciences, and Science for Life
9 Laboratory, Uppsala University, Uppsala, Sweden.
10 3. Department of Public Health, Section of Epidemiology, Faculty of Health and Medical
11 Sciences, University of Copenhagen, Copenhagen, Denmark.

12

13 Corresponding author contact information: Name (Germán Darío Carrasquilla), email
14 (german.carrasquilla@sund.ku.dk), work-phone (+45 35 33 45 95), mobile phone (+46 76 340 96
15 62), and postal mail address (Blegdamsvej 3B, Mærsk Tårnet, 8. sal, 2200 København N, Maersk
16 Tower).

17

18 **Abstract**

19 Physical inactivity is associated with excess weight gain in observational studies. However, some
20 longitudinal studies indicate reverse causality where weight gain leads to physical inactivity. As
21 observational studies suffer from reverse causality, it is challenging to assess the true causal
22 directions. Here, we assess the bidirectional causality between physical inactivity and obesity by
23 bidirectional Mendelian randomization analysis. We used results from genome-wide association
24 studies for accelerometer-based physical activity and sedentary time in 91,105 individuals and for
25 body mass index (BMI) in 806,834 individuals. We implemented Mendelian randomization using
26 CAUSE method that accounts for pleiotropy and sample overlap using full genome-wide data. We
27 also applied inverse variance-weighted, MR-Egger, weighted median, and weighted mode
28 methods using genome-wide significant variants only. We found evidence of bidirectional
29 causality between sedentary time and BMI: longer sedentary time was causally associated with
30 higher BMI [beta (95%CI) from CAUSE method: 0.11 (0.02, 0.2), P=0.02], and higher BMI was
31 causally associated with longer sedentary time (0.13 (0.08, 0.17), P=6.3.x10⁻⁴). Our analyses
32 suggest that higher moderate and vigorous physical activity are causally associated with lower
33 BMI (moderate: -0.18 (-0.3,-0.05), P=0.006; vigorous: -0.16 (-0.24,-0.08), P=3.8x10⁻⁴), but
34 indicate that the association between higher BMI and lower levels of physical activity is due to
35 horizontal pleiotropy. The bidirectional, causal relationship between sedentary time and BMI
36 suggests that decreasing sedentary time is beneficial for weight management, but also that
37 targeting obesity may lead to additional health benefits by reducing sedentary time.

38

39 **Background**

40 Obesity and physical inactivity are major risk factors for a number of chronic diseases, such as
41 type 2 diabetes, cardiovascular diseases and several types of cancer. Today's epidemic of obesity
42 and sedentary lifestyle are thus a major burden on public health systems worldwide
43 (Collaborators, 2020).

44 Many observational studies suggest that physical inactivity is associated with a higher risk of
45 obesity (Lee et al., 2010, Du et al., 2013, Silva et al., 2019, Myers et al., 2017). However, other
46 studies have indicated a reverse effect, where obesity leads to physical inactivity (Petersen et al.,
47 2004, Mortensen et al., 2006, Bak et al., 2004, Barone Gibbs et al., 2020, Ekelund et al., 2008,
48 Myers et al., 2017). Furthermore, randomized clinical trials of physical activity interventions have
49 indicated that the causal effects of physical activity on body weight are modest (Church et al.,
50 2009, Rosenkilde et al., 2012, Golubic et al., 2015) compared to the strong inverse relationship
51 between physical activity and body weight observed in cross-sectional epidemiological studies.
52 This suggests that the observational results may be affected by bias, such as reverse causality
53 or confounding by other lifestyle or environmental factors (Schnurr et al., 2021). To date, the
54 causal relationships between physical inactivity and obesity remain unclear and warrant further
55 investigation.

56 Mendelian randomization is a powerful method to minimize the influence of reverse causality and
57 confounding on causal estimates derived from observational data. Since genotypes are randomly
58 allocated at conception, genetic alleles associated with physical activity, sedentary behavior, and
59 body mass index (BMI) can be used to assign individuals according to higher or lower mean levels
60 of these exposures in a randomized manner.

61 Here, we aimed to assess the causality between physical inactivity and BMI by applying
62 bidirectional Mendelian randomization analyses on summary results of accelerometer-based
63 physical activity and sedentary time for 91,105 adults and of BMI for 806,834 adults.

64

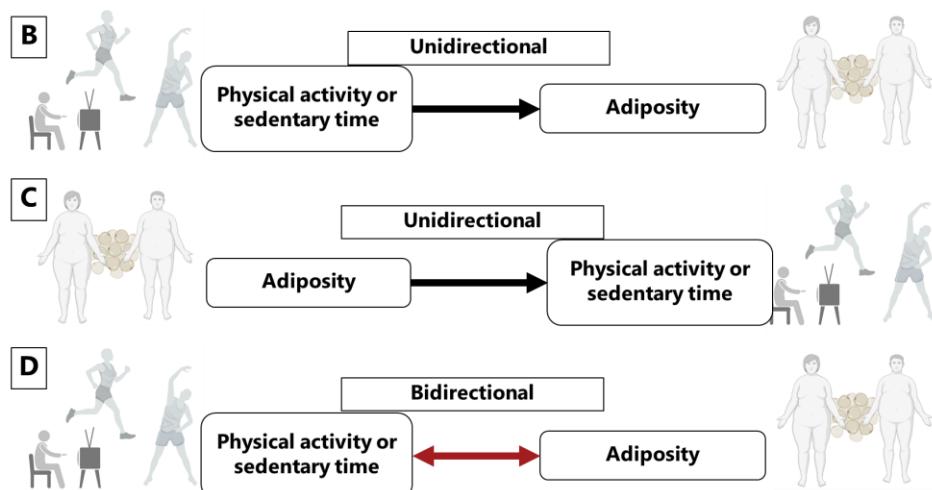
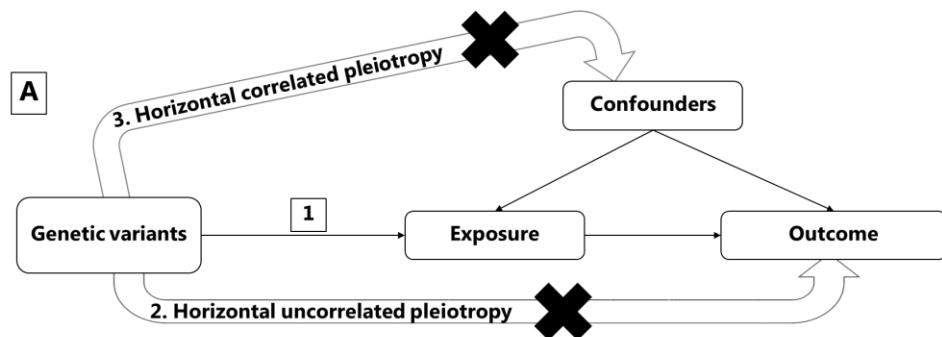
65 **Methods**

66 **Data sources and populations**

67 We used summary results from the largest published genome-wide association studies (GWAS)
68 of objectively assessed physical activity, sedentary behavior, and BMI in individuals of European
69 ancestry. The physical activity GWAS included up to 91,105 individuals for accelerometer-based
70 vigorous physical activity, moderate physical activity, or sedentary time from the UK Biobank
71 (Klimentidis et al., 2018, Doherty et al., 2018). In these studies, accelerometer was worn
72 continuously for at least 72 hours and up to 7 days. Vigorous physical activity was defined as the
73 fraction of accelerations >425 milli-gravities [15], and moderate physical activity was predicted
74 using a machine-learning method for moderate intensity activity time (Doherty et al., 2018).
75 Sedentary time was defined as the time spent in activities with metabolic equivalent of task (MET)
76 ≤ 1.5 during sitting, lying, or in reclining posture, except for driving and certain non-desk work
77 instances where MET ≤ 2.5 was applied (Doherty et al., 2018). For BMI, we utilized GWAS results
78 from a meta-analysis of the Genetic Investigation of Anthropometric Traits (GIANT Consortium)
79 and the UK Biobank data, including altogether 806,834 individuals of European ancestry (Pulit et
80 al., 2019). For Mendelian randomization analyses using the inverse variance-weighted (IVW),
81 weighted median, weighted mode, and MR-Egger regression methods, we used only the GIANT
82 Consortium BMI meta-analysis data of 339,224 individuals without the UK Biobank data to avoid
83 sample overlap between the exposure and outcome traits as these methods are sensitive to bias
84 from overlapping samples (Locke et al., 2015).

85 **Mendelian randomization using full genome-wide summary results for the exposure trait**

86 Only few genetic loci have been found to be associated with accelerometer-based moderate
87 physical activity (n=2), vigorous physical activity (n=1) or sedentary time (n=4) at genome-wide
88 significance ($P < 5 \times 10^{-8}$) (Klimentidis et al., 2018, Doherty et al., 2018), and the loci thus provide a
89 limited power to study causal associations with BMI using Mendelian randomization. The recently
90 published Causal Analysis Using Summary Effect Estimates (CAUSE) Mendelian randomization
91 method (Morrison et al., 2020) improves statistical power in such cases, by utilizing full genome-
92 wide summary results instead of genome-wide significant loci only. Furthermore, the CAUSE
93 method is able to correct for sample overlap between the exposure and the outcome trait, which
94 allows using the largest sample sizes available for both traits. CAUSE has also been found to be
95 less prone to identify false positive associations compared to other commonly used Mendelian
96 randomization methods (Burgess et al., 2019, Morrison et al., 2020).



97 The CAUSE method calculates the posterior probabilities of the causal effect and the shared
98 (non-causal) effect, where the causal effect reflects the effect of the variants on the outcome trait
99 through the exposure and the shared effect reflects correlated horizontal pleiotropy (Figure 1), i.e.
100 the effect of the variants on the outcome through confounders. The distinction between a causal
101 effect and correlated horizontal pleiotropy follows the assumption that a causal effect leads to
102 non-zero genetic correlation between the exposure and the outcome where the correlation is
103 driven by all variants associated with the exposure. If only a subset of variants contributes to the
104 genetic correlation between the exposure and the outcome, it is considered the result of correlated
105 horizontal pleiotropy. The CAUSE method also provides an estimate of the proportion of variants
106 that are likely to show correlated horizontal pleiotropy, the q value.

107 We used the CAUSE settings and procedures originally recommended by the authors (Morrison
108 et al., 2020), with the exception of q priors that were set to fit the strictest model possible
109 ($q_{\alpha}=1$ and $q_{\beta}=2$) in order to avoid false positive findings. A thorough explanation of the

110 steps used to perform CAUSE analysis is included in the in the Supplementary text (Additional
111 file 1).

112

113 **Figure 1. Mendelian randomization assumptions and directional associations between**
114 **physical activity, sedentary time and adiposity**

115

116 **Figure 1 legend.** Panel A shows Mendelian randomization assumptions when estimating the causal
117 association between a given exposure and outcome: 1) instrumental variants are associated with the
118 exposure, 2) the instruments do not cause the outcome independently from the exposure (horizontal
119 uncorrelated pleiotropy), and 3) the effects of the exposure on the outcome are not influenced by any
120 confounders (horizontal correlated pleiotropy). Panel B indicates the one-way directional association
121 between activities and adiposity, whereas panel C indicate unidirectional directions between adiposity and
122 activities, here referred as reverse causation. Panel D indicates two-way directional associations where
123 activities have an impact on adiposity, but at the same time adiposity impact levels of activity in a
124 bidirectional manner. Figure icons were created with BioRender.com.

125 **Mendelian randomization using genome-wide significant loci for the exposure trait**

126 In addition to the CAUSE method that implements Mendelian randomization analyses using full
127 genome-wide summary results for the exposure trait, we implemented four commonly used
128 Mendelian randomization methods that utilize genome-wide significant loci only: the IVW, MR-
129 Egger, weighted median and weighted mode methods (Additional file 1). We performed sensitivity
130 analyses using Steiger filtering to remove variants that showed stronger association with the
131 outcome than the exposure trait and that were thus not considered suitable as instruments for the
132 exposure trait. To create the genetic instrument for the exposure trait, we only included the lead
133 variants that showed genome-wide significant associations with the trait ($P < 5 \times 10^{-8}$) and with a
134 pairwise linkage disequilibrium (LD) $r^2 < 0.001$ with their neighboring variants, in a window of
135 10000kb. Variants that were not available in the outcome trait GWAS were substituted by their
136 LD proxies ($r^2 > 0.8$). Palindromic variants (A/T, G/C) were excluded. If less than three genetic
137 variants were identified with these parameters, we used a less stringent p-value threshold of $P <$
138 5×10^{-7} to identify enough genetic instruments. In order to assess the strength of the genetic
139 instrument, we obtained *F*-statistics for each trait. The analyses were performed using the
140 TwoSampleMR package in R and are described in detail in the Additional file 1 (Hemani et al.,
141 2018).

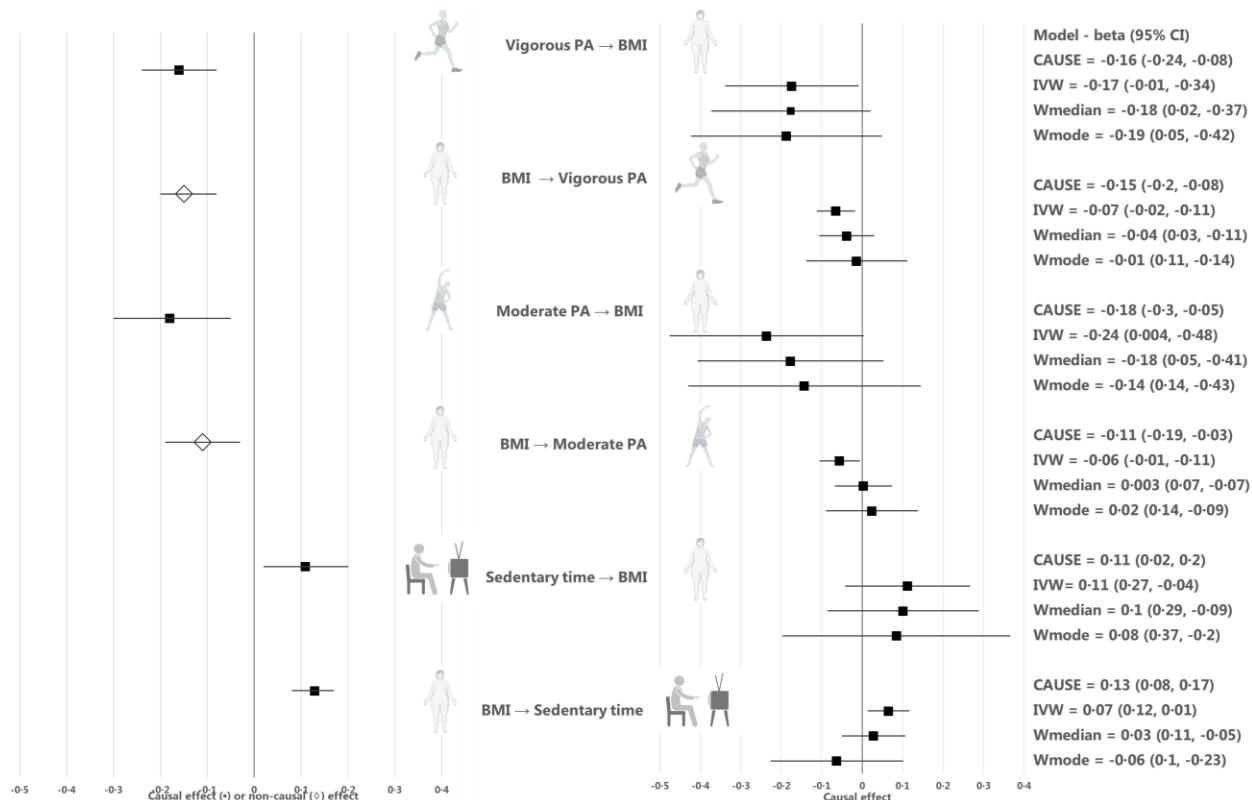
142 We estimated heterogeneity across the causal estimates of the SNPs using the Meta R package
143 (Schwarzer et al., 2015). The causal estimates were considered heterogeneous if the P value for
144 Cochran's Q test was significantly different from zero ($P < 0.05$) and I^2 was above 0.25. We
145 assessed bias introduced by horizontal pleiotropy by implementing the Egger's intercept test
146 using the TwoSampleMR package in R (Hemani et al., 2018). An Egger's intercept that deviated
147 significantly from zero ($P < 0.05$) was considered as evidence of horizontal pleiotropy. We used
148 the Rucker framework (Bowden et al., 2018) to assess whether Egger regression that accounts
149 for horizontal pleiotropy but limits statistical power should be applied instead of the standard IVW

150 model. To visually assess heterogeneity and horizontal pleiotropy, we observed forest plots and
151 funnel plots (Supplementary Figure S1). To detect individual pleiotropic variants that might bias
152 the results, we applied the RadialMR package in R using an iterative Cochran's Q method and
153 setting a strict outlier P value threshold of <0.05 (Bowden et al., 2018). The iterative Cochran's
154 Q, either IVW's Q or Egger's Q' was chosen depending on Rucker framework results. After
155 removing outlier variants detected with RadialMR, we re-run the Mendelian randomization and
156 sensitivity test and plots, to make sure that the variants introducing horizontal pleiotropy (Figure
157 1) had been removed. The analysis plan for this study is described in the in the Supplementary
158 text (Additional file 2).

159 The CAUSE method's median posterior probability of the causal effect cannot be easily
160 transformed to absolute units. To convert the causal estimates to absolute units, we calculated a
161 causal effect with weighted median method using independent variants identified in CAUSE that
162 were not removed by the outlier extraction protocol described above, in order to mimic CAUSE
163 control for correlated and uncorrelated pleiotropy (Additional file 1).

164

165 **Results**


166 We use the Mendelian randomization CAUSE method to take advantage of the full genome-wide
167 summary results.(Morrison et al., 2020) We found evidence of causal association between higher
168 vigorous and moderate physical activity and lower BMI ($P=3.8\times10^{-4}$ and $P=0.006$, respectively),
169 and between more sedentary time and higher BMI ($P=0.02$) (Table 1, Figure 2, and
170 Supplementary Table S1 and S2). The median shared effect ranged from -0.01 to 0, which reflects
171 the effect induced by correlated horizontal pleiotropy, was zero for all trait pairs, indicating that
172 there was no bias induced by horizontal pleiotropy. The low q values ($q=0.19-0.20$), which reflect
173 the proportion of variants that show correlated horizontal pleiotropy, also suggested that

174 horizontal pleiotropy was limited. In absolute units, we approximate that each one hour daily
175 increase in moderate physical activity or decrease in sedentary time was causally associated with
176 0.27 kg/m² (~0.8 kg) or 0.14 kg/m² (~0.4 kg) lower BMI, respectively (Supplementary Table S5).

177 In the reverse direction, we found no evidence of a causal effect of BMI on vigorous physical
178 activity (P=0.35) or moderate physical activity (P=0.31) using CAUSE (Table 1, Figure 2, and and
179 Supplementary Table S1 and S2). However, we found evidence of causal effects of BMI on more
180 sedentary time (P=6.3x10⁻⁴), indicating bidirectional causality between the traits. The median
181 shared effect in the causal association between BMI and sedentary time was zero and the q value
182 was 0.18, suggesting that the causal association between sedentary time and BMI was unlikely
183 to be biased by horizontal pleiotropy. In absolute units, we approximate that each kg/m² (~3 kg)
184 increase in BMI was causally associated with a 3.5 minute increase in sedentary time per day
185 (Supplementary Table S5).

186 We also estimated the causal effects of moderate physical activity, vigorous physical activity and
187 sedentary time on BMI with four commonly used Mendelian randomization methods, including
188 IVW, Egger, weighted median and weighted mode methods. Due to the low number of
189 independent, genome-wide significant loci for vigorous physical activity, moderate physical
190 activity and sedentary time that were present in the GWAS results for BMI, we used a less
191 stringent threshold of P<5x10⁻⁷ to identify genetic instruments for these traits, resulting in 5, 3 and
192 5 independent loci, respectively. The directions of causal estimates were consistent with the
193 findings from CAUSE, but the evidence for causality was weaker (Table 2, Figure 2, Additional
194 file 1, and Supplementary Table S3). To estimate the causal effect of BMI on moderate physical
195 activity, vigorous physical activity and sedentary time, we used genome-wide significant BMI loci
196 (P<5x10⁻⁸) as instruments (n=57, n=55 and n=57, respectively). Again, the directions of causal
197 estimates were consistent with the CAUSE results, but the associations were weaker (Table 2,
198 Figure 2, Additional file 1, and Supplementary Table S3).

199 **Figure 2. Causal estimates for Mendelian randomization analyses using the CAUSE,**
200 **inverse-variance-weighted (IVW), MR Egger regression, weighted median, weighted mode**
201 **methods**

203 **Figure 2 legend.** Median causal estimates for Mendelian randomization analyses using the CAUSE
204 method (left panel) and mean causal estimates from the inverse variance weighted (IVW), weighted median
205 (Wmedian) and weighted mode (Wmode) methods, after outlier removal and accounting for horizontal
206 pleiotropy. A diamond (\diamond) in the estimate for CAUSE indicates that the sharing model fit the data better
207 than the causal model, i.e. that the association between the traits was more likely to be explained by
208 horizontal correlated pleiotropy than causality. PA, physical activity; BMI, body mass index. Figure icons
209 were created with BioRender.com

210

211

212

213

214 **Table 1. Results for Mendelian randomization analyses using the CAUSE method**

Table 1. Results for Mendelian randomization analyses using the CAUSE method			
Causal model better fit for the data			
Direction	Median causal effect (95% CI)	Median q (CI)	P causal vs sharing
Vigorous PA → BMI	-0.16 (-0.24, -0.08)	0.19 (0, 0.86)	3.8x10 ⁻⁴
Moderate PA → BMI	-0.18 (-0.3, -0.05)	0.20 (0.01, 0.86)	0.006
Sedentary time → BMI	0.11 (0.02, 0.20)	0.19 (0, 0.86)	0.02
BMI → Sedentary time	0.13 (0.08, 0.17)	0.18 (0, 0.85)	6.3x10 ⁻⁴
Sharing model better fit for the data			
Direction	Median shared effect (CI)	Median q (CI)	P causal vs sharing
BMI → Vigorous PA	-0.18 (-0.3, -0.05)	0.94 (0.77, 0.98)	0.35
BMI → Moderate PA	-0.11 (-0.19, -0.03)	0.77 (0.55, 0.95)	0.31
The results display the data according to the goodness-of-fit for the causal or the sharing model. The median q value indicates the proportion of variants with correlated pleiotropy. CI, confidence interval; PA, physical activity; BMI, body mass index; P, P-value.			

215

216

217

218 **Table 2. Mendelian randomization results for inverse variance weighted, weighted median, weighted mode, and MR-Egger**
 219 **methods**

Table 2. Mendelian randomization results for inverse variance weighted, weighted median, weighted mode, and MR-Egger, methods

Direction	Vigorous physical activity → BMI			Moderate physical activity → BMI			Sedentary time → BMI		
MR method	beta	SE	p-value	beta	SE	p-value	beta	SE	p-value
IVW	-0.17	0.08	0.04	-0.24	0.12	0.05	0.11	0.08	0.16
Weighted median	-0.18	0.10	0.08	-0.18	0.12	0.13	0.10	0.10	0.29
Weighted mode	-0.19	0.12	0.19	-0.14	0.15	0.43	0.08	0.14	0.59
MR-Egger	1.33	2.21	0.59	0.12	0.45	0.84	0.49	0.36	0.26
Direction	BMI → Vigorous physical activity			BMI → Moderate physical activity			BMI → Sedentary time		
IVW	-0.07	0.02	0.01	-0.06	0.03	0.03	0.07	0.03	0.01
Weighted mode	-0.01	0.06	0.83	0.02	0.06	0.68	-0.06	0.08	0.46
Weighted median	-0.04	0.03	0.27	0.003	0.04	0.93	0.03	0.04	0.48
MR-Egger	0.13	0.07	0.06	0.16	0.07	0.04	-0.02	0.08	0.76

BMI, Body mass index (BMI); SE, standard error; IVW, inverse variance weighted; CI, 95% confidence interval.

221 **Discussion**

222 The present Mendelian randomization analyses suggest a bidirectional causal relationship
223 between higher sedentary time and higher BMI, implying that decreasing sedentary time is
224 beneficial for weight management, but also that reducing obesity may lead to additional health
225 benefits by reducing sedentary time. The analyses also suggest there is a causal association
226 between higher levels of physical activity and lower BMI, supporting the view that preventive
227 programs for increasing physical activity and decreasing sedentary time are beneficial for weight
228 management.

229 Our results are in accordance with a previous observational study that aimed to assess the
230 bidirectional relationship between physical activity and weight change during a 10-year
231 period.(Barone Gibbs et al., 2020) Examining associations between accelerometer-based activity
232 measures and weight change in 866 men and women, the study suggested a bidirectional
233 relationship where higher sedentary behavior at baseline increased 10-year weight gain and
234 higher baseline weight was associated with an unfavorable 10-year change in sedentary time.
235 Our results are also in accordance with randomized clinical trials of physical activity interventions
236 which generally suggest that increasing physical activity leads to a moderate loss of body weight
237 in overweight or obese participants (Church et al., 2009, Rosenkilde et al., 2012, Golubic et al.,
238 2015, Kim et al., 2019, Biddle et al., 2015). Based on the causal effect size, we estimated that
239 one hour daily increase in moderate physical activity leads to ~0.8 kg decrease in body weight
240 (Additional file 1 and Supplementary Table S5). However, it is important to note that the causal
241 estimates from Mendelian randomization are not fully comparable to those from randomized
242 clinical trials, because they represent lifelong effects rather than effects lasting a defined length
243 of an intervention, and furthermore, physical activity interventions may operate on body weight
244 through other pathways than those affected by the genotypes. The causal association between

245 higher adiposity and physical inactivity has not been to date assessed in randomized clinical trials,
246 likely due to the ethical and practical limitations of performing such a study.

247 In a previous Mendelian randomization analysis of adult populations, evidence for a causal,
248 bidirectional relationship between overall activity levels and higher BMI was observed using the
249 maximum likelihood method, but the results showed evidence of horizontal pleiotropy that could
250 not be fully accounted for and the role of activity intensity level remained unclear (Doherty et al.,
251 2018). Here, using a method that takes advantage of full genome-wide summary results and
252 corrects for sample overlap between the exposure and the outcome traits to maximize statistical
253 power and correct for pleiotropy, we showed that the causal bidirectional relationship is
254 particularly evident for the relationship between sedentary time and obesity. Our results may also
255 be compared with two independent one-sample Mendelian randomization studies performed in
256 children (Richmond et al., 2014, Schnurr et al., 2018). The first study, including 4,296 children at
257 11 years of age from the United Kingdom, indicated a causal association between higher BMI and
258 lower accelerometer-based moderate and moderate-to-vigorous physical activity and more
259 sedentary time (Richmond et al., 2014). The second study, including 679 children at age 3-8 years
260 from Denmark, also indicated that higher BMI is causally associated with higher accelerometer-
261 based sedentary time, but did not find a causal association with moderate or moderate-to-
262 vigorous physical activity (Schnurr et al., 2018). Consistent with the latter study of children, our
263 results indicate a causal effect of BMI on sedentary behavior, but not on physical activity, in adults.
264 The differences between studies could be due to different applied methods, or methodological
265 limitations, such as weak instrument bias when smaller sample sizes are used, which may lead
266 to estimated causal effects towards the observational association. One could also expect
267 differences between children and adults given the distinct patterns by which they engage in
268 physical activity. For example, while physical activity in adults consists of commuting,
269 occupational and structured leisure-time activities, children primarily engage in spontaneous,

270 play-oriented activities. Higher BMI leads to higher perceived exertion during physical activity
271 (Groslambert and Mahon, 2006), which could reduce the natural inclination of children to engage
272 in play-oriented activities, whereas adults exert more conscious control over their daily activities.
273 The strengths of the present studies include the use of genome-wide summary results for
274 objectively measured physical activity and sedentary time, which avoided misreporting bias
275 evident for self-reported measures, as well as the use of newly developed Mendelian
276 randomization method that utilizes full genome-wide summary results to improve statistical power,
277 correct for sample overlap, and assess horizontal pleiotropy, successfully applied in recent
278 Mendelian randomization studies (Jager et al., 2020, Mitchell et al., 2020). The limitations are that
279 we cannot exclude other sources of bias in the measurement of physical activity and sedentary
280 time that could influence the observed causal estimates, including the observer effect and the
281 limited 7-day period of the measurement, which may not be representative of long-term activity
282 habits. Furthermore, even if we used the largest available data on objectively measured physical
283 activity, the statistical power was limited, as very few genome-wide significant loci have thus far
284 been identified.

285

286 **Conclusion**

287 The present Mendelian randomization analyses indicate a bidirectional causal relationship
288 between higher sedentary time and higher BMI. Thus, increasing sedentary time is likely to be
289 beneficial for weight management, but reducing obesity may also lead to additional health benefits
290 by reducing sedentary time. Our analyses also suggest that there is a causal association between
291 higher levels of physical activity and lower BMI, supporting the view that lifelong preventive
292 programs for increasing physical activity and decreasing sedentary time are beneficial for weight
293 management.

294

295 **Acknowledgments:** This project has received funding from the European Union's Horizon 2020
296 research and innovation programme under the Marie Skłodowska-Curie grant agreement No
297 846502. Novo Nordisk Foundation Center for Basic Metabolic Research is an independent
298 research center at the University of Copenhagen partially funded by an unrestricted donation from
299 the Novo Nordisk Foundation (NNF18CC0034900). Germán D. Carrasquilla was supported by a
300 grant from the Danish Diabetes Academy that is funded by the Novo Nordisk Foundation
301 (NNF17SA0031406). Tuomas O. Kilpeläinen was supported by a grant from the Novo Nordisk
302 Foundation (NNF17OC0026848). The funding source had no role in study design, data collection,
303 data analysis, data interpretation, or writing of the report. All authors had full access to all of the
304 data in the study and had final responsibility for the decision to submit for publication.

305

306 **Competing interests:** The authors declare that they have no competing interests.

307

308 **References**

309 BAK, H., PETERSEN, L. & SORENSEN, T. I. 2004. Physical activity in relation to development and
310 maintenance of obesity in men with and without juvenile onset obesity. *Int J Obes Relat Metab
311 Disord*, 28, 99-104.

312 BARONE GIBBS, B., AABY, D., SIDDIQUE, J., REIS, J. P., STERNFELD, B., WHITAKER, K. & PETTEE GABRIEL,
313 K. 2020. Bidirectional 10-year associations of accelerometer-measured sedentary behavior and
314 activity categories with weight among middle-aged adults. *Int J Obes (Lond)*, 44, 559-567.

315 BIDDLE, S. J., EDWARDSON, C. L., WILMOT, E. G., YATES, T., GORELY, T., BODICOAT, D. H., ASHRA, N.,
316 KHUNTI, K., NIMMO, M. A. & DAVIES, M. J. 2015. A Randomised Controlled Trial to Reduce
317 Sedentary Time in Young Adults at Risk of Type 2 Diabetes Mellitus: Project STAND (Sedentary
318 Time AND Diabetes). *PLoS One*, 10, e0143398.

319 BOWDEN, J., DEL GRECO, M. F., MINELLI, C., ZHAO, Q., LAWLOR, D. A., SHEEHAN, N. A., THOMPSON, J. &
320 DAVEY SMITH, G. 2019. Improving the accuracy of two-sample summary-data Mendelian
321 randomization: moving beyond the NOME assumption. *Int J Epidemiol*, 48, 728-742.

322 BOWDEN, J., SPILLER, W., DEL GRECO, M. F., SHEEHAN, N., THOMPSON, J., MINELLI, C. & DAVEY SMITH,
323 G. 2018. Improving the visualization, interpretation and analysis of two-sample summary data

324 Mendelian randomization via the Radial plot and Radial regression. *Int J Epidemiol*, 47, 1264-1278.

325

326 BURGESS, S., SMITH, G. D., DAVIES, N. M., DUDBRIDGE, F., GILL, D., GLYMOUR, M. M., HARTWIG, F. P.,
327 HOLMES, M. V., MINELLI, C. & RELTON, C. L. 2019. Guidelines for performing Mendelian
328 randomization investigations. *Wellcome Open Research*, 4.

329 CHURCH, T. S., MARTIN, C. K., THOMPSON, A. M., EARNEST, C. P., MIKUS, C. R. & BLAIR, S. N. 2009.
330 Changes in weight, waist circumference and compensatory responses with different doses of
331 exercise among sedentary, overweight postmenopausal women. *PLoS One*, 4, e4515.

332 COLLABORATORS, G. B. D. R. F. 2020. Global burden of 87 risk factors in 204 countries and territories,
333 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. *Lancet*, 396,
334 1223-1249.

335 DOHERTY, A., SMITH-BYRNE, K., FERREIRA, T., HOLMES, M. V., HOLMES, C., PULIT, S. L. & LINDGREN, C.
336 M. 2018. GWAS identifies 14 loci for device-measured physical activity and sleep duration. *Nat
337 Commun*, 9, 5257.

338 DU, H., BENNETT, D., LI, L., WHITLOCK, G., GUO, Y., COLLINS, R., CHEN, J., BIAN, Z., HONG, L. S., FENG, S.,
339 CHEN, X., CHEN, L., ZHOU, R., MAO, E., PETO, R., CHEN, Z. & CHINA KADOORIE BIOBANK
340 COLLABORATIVE, G. 2013. Physical activity and sedentary leisure time and their associations
341 with BMI, waist circumference, and percentage body fat in 0.5 million adults: the China Kadoorie
342 Biobank study. *Am J Clin Nutr*, 97, 487-96.

343 EKELUND, U., BRAGE, S., BESSON, H., SHARP, S. & WAREHAM, N. J. 2008. Time spent being sedentary
344 and weight gain in healthy adults: reverse or bidirectional causality? *Am J Clin Nutr*, 88, 612-7.

345 GOLUBIC, R., WIJNDAELE, K., SHARP, S. J., SIMMONS, R. K., GRIFFIN, S. J., WAREHAM, N. J., EKELUND, U.,
346 BRAGE, S. & PROACTIVE STUDY, G. 2015. Physical activity, sedentary time and gain in overall and
347 central body fat: 7-year follow-up of the ProActive trial cohort. *Int J Obes (Lond)*, 39, 142-8.

348 GROSLAMBERT, A. & MAHON, A. D. 2006. Perceived exertion : influence of age and cognitive
349 development. *Sports Med*, 36, 911-28.

350 HEMANI, G., ZHENG, J., ELSWORTH, B., WADE, K. H., HABERLAND, V., BAIRD, D., LAURIN, C., BURGESS,
351 S., BOWDEN, J., LANGDON, R., TAN, V. Y., YARMOLINSKY, J., SHIHAB, H. A., TIMPSON, N. J.,
352 EVANS, D. M., RELTON, C., MARTIN, R. M., DAVEY SMITH, G., GAUNT, T. R. & HAYCOCK, P. C.
353 2018. The MR-Base platform supports systematic causal inference across the human genome.
354 *Elife*, 7.

355 JAGER, S., CUADRAT, R., HOFFMANN, P., WITTENBECHER, C. & SCHULZE, M. B. 2020. Desaturase Activity
356 and the Risk of Type 2 Diabetes and Coronary Artery Disease: A Mendelian Randomization
357 Study. *Nutrients*, 12.

358 KIM, K. B., KIM, K., KIM, C., KANG, S. J., KIM, H. J., YOON, S. & SHIN, Y. A. 2019. Effects of Exercise on the
359 Body Composition and Lipid Profile of Individuals with Obesity: A Systematic Review and Meta-
360 Analysis. *J Obes Metab Syndr*, 28, 278-294.

361 KLIMENTIDIS, Y. C., RAICHLEN, D. A., BEA, J., GARCIA, D. O., WINEINGER, N. E., MANDARINO, L. J.,
362 ALEXANDER, G. E., CHEN, Z. & GOING, S. B. 2018. Genome-wide association study of habitual
363 physical activity in over 377,000 UK Biobank participants identifies multiple variants including
364 CADM2 and APOE. *Int J Obes (Lond)*, 42, 1161-1176.

365 LEE, I. M., DJOUSSE, L., SESSO, H. D., WANG, L. & BURING, J. E. 2010. Physical activity and weight gain
366 prevention. *JAMA*, 303, 1173-9.

367 LOCKE, A. E., KAHALI, B., BERNDT, S. I., JUSTICE, A. E., PERS, T. H., DAY, F. R., POWELL, C., VEDANTAM, S.,
368 BUCHKOVICH, M. L., YANG, J., CROTEAU-CHONKA, D. C., ESKO, T., FALL, T., FERREIRA, T.,
369 GUSTAFSSON, S., KUTALIK, Z., LUAN, J., MAGI, R., RANDALL, J. C., WINKLER, T. W., WOOD, A. R.,
370 WORKALEMAHU, T., FAUL, J. D., SMITH, J. A., ZHAO, J. H., ZHAO, W., CHEN, J., FEHRMANN, R.,
371 HEDMAN, A. K., KARJALAINEN, J., SCHMIDT, E. M., ABSHER, D., AMIN, N., ANDERSON, D.,

372 BEEKMAN, M., BOLTON, J. L., BRAGG-GRESHAM, J. L., BUYSKE, S., DEMIRKAN, A., DENG, G.,
373 EHRET, G. B., FEENSTRA, B., FEITOSA, M. F., FISCHER, K., GOEL, A., GONG, J., JACKSON, A. U.,
374 KANONI, S., KLEBER, M. E., KRISTIANSSON, K., LIM, U., LOTAY, V., MANGINO, M., LEACH, I. M.,
375 MEDINA-GOMEZ, C., MEDLAND, S. E., NALLS, M. A., PALMER, C. D., PASKO, D., PECHLIVANIS, S.,
376 PETERS, M. J., PROKOPENKO, I., SHUNGIN, D., STANCAKOVA, A., STRAWBRIDGE, R. J., SUNG, Y.
377 J., TANAKA, T., TEUMER, A., TROMPET, S., VAN DER LAAN, S. W., VAN SETTEN, J., VAN VLIET-
378 OSTAPTCOUK, J. V., WANG, Z., YENGO, L., ZHANG, W., ISAACS, A., ALBRECHT, E., ARNLOV, J.,
379 ARSCOTT, G. M., ATTWOOD, A. P., BANDINELLI, S., BARRETT, A., BAS, I. N., BELLIS, C., BENNETT,
380 A. J., BERNE, C., BLAGIEVA, R., BLUHER, M., BOHRINGER, S., BONNYCASTLE, L. L., BOTTCHER, Y.,
381 BOYD, H. A., BRUINENBERG, M., CASPERSEN, I. H., CHEN, Y. I., CLARKE, R., DAW, E. W., DE
382 CRAEN, A. J. M., DELGADO, G., DIMITROU, M., et al. 2015. Genetic studies of body mass index
383 yield new insights for obesity biology. *Nature*, 518, 197-206.
384 MITCHELL, B. L., THORP, J. G., EVANS, D. M., NYHOLT, D. R., MARTIN, N. G. & LUPTON, M. K. 2020.
385 Exploring the genetic relationship between hearing impairment and Alzheimer's disease.
386 *Alzheimers Dement (Amst)*, 12, e12108.
387 MORRISON, J., KNOBLAUCH, N., MARCUS, J. H., STEPHENS, M. & HE, X. 2020. Mendelian randomization
388 accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary
389 statistics. *Nat Genet*, 52, 740-747.
390 MORTENSEN, L. H., SIEGLER, I. C., BAREFOOT, J. C., GRONBAEK, M. & SORENSEN, T. I. 2006. Prospective
391 associations between sedentary lifestyle and BMI in midlife. *Obesity (Silver Spring)*, 14, 1462-71.
392 MYERS, A., GIBBONS, C., FINLAYSON, G. & BLUNDELL, J. 2017. Associations among sedentary and active
393 behaviours, body fat and appetite dysregulation: investigating the myth of physical inactivity
394 and obesity. *Br J Sports Med*, 51, 1540-1544.
395 PETERSEN, L., SCHNOHR, P. & SORENSEN, T. I. 2004. Longitudinal study of the long-term relation
396 between physical activity and obesity in adults. *Int J Obes Relat Metab Disord*, 28, 105-12.
397 PULIT, S. L., STONEMAN, C., MORRIS, A. P., WOOD, A. R., GLASTONBURY, C. A., TYRRELL, J., YENGO, L.,
398 FERREIRA, T., MAROULI, E., JI, Y., YANG, J., JONES, S., BEAUMONT, R., CROTEAU-CHONKA, D. C.,
399 WINKLER, T. W., CONSORTIUM, G., HATTERSLEY, A. T., LOOS, R. J. F., HIRSCHHORN, J. N.,
400 VISSCHER, P. M., FRAYLING, T. M., YAGHOOKAR, H. & LINDGREN, C. M. 2019. Meta-analysis of
401 genome-wide association studies for body fat distribution in 694 649 individuals of European
402 ancestry. *Hum Mol Genet*, 28, 166-174.
403 RICHMOND, R. C., DAVEY SMITH, G., NESS, A. R., DEN HOED, M., MCMAHON, G. & TIMPSON, N. J. 2014.
404 Assessing causality in the association between child adiposity and physical activity levels: a
405 Mendelian randomization analysis. *PLoS Med*, 11, e1001618.
406 ROSENKILDE, M., AUERBACH, P., REICHKENDLER, M. H., PLOUG, T., STALLKNECHT, B. M. & SJODIN, A.
407 2012. Body fat loss and compensatory mechanisms in response to different doses of aerobic
408 exercise--a randomized controlled trial in overweight sedentary males. *Am J Physiol Regul Integr
409 Comp Physiol*, 303, R571-9.
410 SCHNURR, T. M., STALLKNECHT, B. M., SORENSEN, T. I. A., KILPELAINEN, T. O. & HANSEN, T. 2021.
411 Evidence for shared genetics between physical activity, sedentary behaviour and adiposity-
412 related traits. *Obes Rev*, 22, e13182.
413 SCHNURR, T. M., VIITASALO, A., ELORANTA, A. M., DAMSGAARD, C. T., MAHENDRAN, Y., HAVE, C. T.,
414 VAISTO, J., HJORTH, M. F., CHRISTENSEN, L. B., BRAGE, S., ATALAY, M., LYYTIKAINEN, L. P., LINDI,
415 V., LAKKA, T., MICHAELSEN, K. F., KILPELAINEN, T. O. & HANSEN, T. 2018. Genetic predisposition
416 to adiposity is associated with increased objectively assessed sedentary time in young children.
417 *Int J Obes (Lond)*, 42, 111-114.
418 SCHWARZER, G., CARPENTER, J. R. & RÜCKER, G. 2015. *Meta-analysis with R*, Springer.

419 SILVA, B., SILVA, I., EKELUND, U., BRAGE, S., ONG, K. K., DE LUCIA ROLFE, E., LIMA, N. P., SILVA, S. G. D.,
420 FRANCA, G. V. A. & HORTA, B. L. 2019. Associations of physical activity and sedentary time with
421 body composition in Brazilian young adults. *Sci Rep*, 9, 5444.

422

423 **Supplementary material**

424 Additional file 1. Mendelian randomization using the CAUSE, IVW, Egger, weighted median, and weighted
425 mode methods

426 Figure S1. Leave-one-out forest and funnel sensitivity plots after outlier extraction

427 Table S1. CAUSE expected log pointwise posterior density (ELPD) results for each combination of traits

428 Table S2. CAUSE posterior probabilities and q values for the causal effect and the shared effect

429 Table S3. Mendelian randomization results using the IVW, Egger, weighted median and weighted mode
430 methods of vigorous, moderate physical activity and sedentary time on BMI

431 Table S4. Mendelian randomization results using the IVW, Egger, weighted median and weighted mode
432 methods of BMI on moderate PA, vigorous PA, or sedentary time

433 Table S5. Approximation of the causal estimates in absolute units

434 Additional file 2. Analysis plan

435 **Additional file 1. Mendelian randomization using the CAUSE, IVW, Egger, weighted median, and weighted
436 mode methods**

437

438 **Mendelian randomization using the CAUSE method**

439 The CAUSE method performs Mendelian randomization analyses following six different steps, as described in
440 the CAUSE online tutorial [1] and the original publication [2]. The steps are the following:

- 441 1. Installing the following versions of these three packages were used: CAUSE v1.0.0, mixsqp v.0.1-97 and
442 ashR v.2.2-32.
- 443 2. Filtering data by including variants with imputation quality score INFO > 0.7 and minimum allele frequency
444 (MAF) > 0.01.
- 445 3. Excluding variants from the Major Histocompatibility Complex (MHC) present in chromosome 6 between the
446 base pairs 26M and 34M in build 37.
- 447 4. Merging the exposure and outcome GWAS summary statistic level data. Gwas_merge function from CAUSE
448 package was used to identify the variants present in exposure and outcome summary statistics data and to align
449 exposure and the outcome effect sizes to the same allele
- 450 5. Calculating nuisance parameters to correct for sample overlap between exposure and outcome GWAS.
- 451 6. Using HapMap3 reference panel to select SNPs with LD $r^2 < 0.1$.
- 452 7. Setting the priors for the three model parameters – causal effect, shared effect and q – and calculating their
453 posterior probabilities. For the causal effect and the shared effect, their priors are set automatically to 0, while
454 for q the software allows the user to set the thresholds for the priors. In this case, q priors are set to $q\alpha = 1$
455 and $q\beta = 2$.
- 456 8. Calculating two models to fit the posterior probabilities: the sharing model, where the causal effect is set to 0,
457 and the causal model, where the posterior probability for the causal effect is calculated.
- 458 9. Comparing the two models, sharing and causal, against the null and against each other with expected log
459 pointwise posterior density (ELPD) method to identify which model is the most fitting for the data.

460 **Mendelian randomization using the IVW, Egger, weighted median, and weighted mode methods**

461 We used the following parameters to interpret the findings:

- 462 1. Since the version of TwoSampleMR used in the analysis v0.5.4 removes duplicates by excluding the second
463 instance when introducing data locally, only the variant that presented the same alleles as in the outcome data
464 and with the lowest p-value were kept. In none of the combinations of traits, variants in the MHC were found.
- 465 2. To clump variants, the function ld_clump_local from the package ieugwasr v0.1.5
466 (<https://github.com/MRCIEU/ieugwasr>) was used using the updated European 1000 Genomes reference panel
467 available in <https://github.com/mrcieu/gwasglue>.
- 468 3. Only variants with MAF > 0.01 and INFO > 0.7 were included in the analysis.
- 469 4. Only variants that passed the Steiger filtering using the function steiger_filtering from the package
470 TwoSampleMR were used.
- 471 5. The NOME and InSIDE assumptions were checked calculating the mean F-statistic and the variation of the I^2
472 statistic, respectively. The later can be calculated with the Isq function from TwoSampleMR package.
- 473 6. The causal estimates were considered heterogeneous if the P value for Cochran's Q test was <0.05 and I^2 was
474 >0.25. Both estimates were calculated using the meta package.
- 475 7. An Egger's intercept P value <0.05 was considered as evidence of horizontal pleiotropy.
- 476 8. To assess whether MR-Egger regression should be applied instead of the standard IVW model, we used the
477 Rucker framework test.
- 478 9. To detect individual pleiotropic variants, we used RadialMR's iterative Cochran's Q method following a P
479 value threshold <0.05. RadialMR presents two functions: ivw_radial or egger_radial, depending on the
480 Cochran's Q, either IVW's Q or Egger's Q', used. The function used was chosen depending on Rucker
481 framework test's result. If Rucker framework presented contradictory results, an iterative version of the Rucker
482 framework (i.e. rucker_jackknife from TwoSampleMR package) was used to assess whether IVW was still
483 chosen as the main model.

484 To visualize the effects of heterogeneity and horizontal pleiotropy on the results, we generated leave-one-out
485 forest plots and funnel plots. After removing outlier variants detected with RadialMR, we re-run the Mendelian
486 randomization methods and sensitivity tests (eTable 3 and 4) and re-generated the plots (eFigure 1), to make
487 sure that the variants introducing horizontal pleiotropy had been removed. Since the meanThe chances of weak
488 instrument was low given an F-statistics ranged between 28,6 to 61,79 (F statistic > 10) indicate that results are

bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.16.448665>; this version posted June 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a [aCC-BY 4.0 International license](#).

489 based on valid instrumental variables, meaning that weak instrument bias may not be an issue. Furthermore, we
490 tested whether the amount of pleiotropy was independent of instrument strength by calculating a variation of the
491 I^2 (Bowden et al., 2019) that was above 0.90 in all cases. Below we describe and interpret the findings for each
492 combination of traits.

493 **Vigorous physical activity → BMI**

494 All MR methods except Egger showed negative causal effects, from which only IVW is significant ($P<0.05$)
495 (eTable 3). No outlier extraction was performed since Q's test was not significant ($P=0.80$) and low I^2 (0.0%)
496 showed no evidence of heterogeneity. Egger's intercept was not significant ($P=0.30$) and Rucker test indicated
497 that IVW model is more fitting for the data (eTable 3). Consistent with the sensitivity tests, leave-one-out forest
498 plot (eFigure 1, panel a) showed that the IVW causal effect did not strongly change after the removal of any of
499 the five independent variants used to calculate the causal effects. Funnel plot (eFigure 1, panel a) showed no signs
500 of asymmetry, which is consistent with Egger's intercept result. Thus, these findings indicate that the causal effects
501 are not biased and they reflect weak evidence of causality between an increase of vigorous physical activity and
502 a decrease of BMI. While IVW negative causal effect is significantly different from 0, the evidence for causality
503 is considered weak due to 1) IVW's p-value is still close to nominal threshold ($P=0.04$), 2) the other methods with
504 negative causal effects are not significantly different from 0 ($P>0.05$) and 3) Egger's regression presents a positive
505 causal effect. These weak results are most probably due to the low number of variants used (eTable 3).

506 **Moderate physical activity → BMI**

507 All MR methods except Egger showed negative effects directions, with only IVW's being significant (eTable 3).
508 No outlier extraction was performed since Q's test was not significant ($P=0.30$) and I^2 was below 25% (18.9%).
509 Egger's intercept was not significantly different from 0 ($P=0.16$) indicating that no pleiotropic variants were found
510 among the four independent variants used to calculate the causal effects. Rucker tests indicated that IVW was a
511 better fit for the model than Egger, in line with Egger's intercept results (eTable 3). The leave-one-out forest
512 sensitivity plot (eFigure 1, panel c) showed that no variant presented heterogenic causal effect since the IVW
513 causal effect did not strongly diverge after removing any of the variants. The funnel sensitivity plot (eFigure 1,
514 panel c) showed no asymmetry. All in all, the findings indicate that the causal effects are not biased, but that they
515 suggest causality between increased moderate physical activity and decreased BMI. The reason behind this is that
516 1) IVW's negative causal effect present a p-value close to the nominal threshold ($P=0.02$), 2) the other methods
517 present negative causal effect that are not significantly different form 0 ($P>0.05$) and 3) Egger's regression
518 presents a positive causal effect, though it is not significantly different from 0 (eTable 3).

519 **Sedentary time → BMI**

520 Nine independent variants were used as instruments, and two were removed after outlier extraction as indicated
521 by RadialMR. All methods were not significant, and all reported a positive causal effect ($P>0.05$), except weighted
522 mode (eTable 3). After outlier extraction, Cochran's Q test was non-significant ($P=0.15$), but the I^2 was 36.4%,
523 indicating slight heterogeneity. Egger's intercept was not significant ($P=0.43$) and Rucker test indicated that IVW
524 method is a better fit for the data than Egger, implying that pleiotropic variants were not present (eTable 3). In
525 accordance, the forest plot and funnel plot (eFigure 1, panel e) showed that the results are not strongly affected
526 by horizontal pleiotropy. The forest plot indicated that the heterogeneity comes from variants with both, positive
527 and negative causal effects, since the IVW causal effect becomes either more strongly negative or positive when
528 the variants are removed one at a time. The funnel plot (eFigure 1, panel e) showed that the causal estimates are
529 evenly distributed, implying no asymmetry and, hence no pleiotropy. The lack of strong variants with low standard
530 errors is probably the reason behind heterogeneity of the data. To conclude, the findings indicate a non-significant
531 positive causal effect between sedentary time and BMI.

532 **BMI → Vigorous physical activity**

533 All MR methods except Egger presented negative causal estimates. The causal estimate from the IVW method
534 reached statistical significance ($P<0.01$) (eTable 4). Non-significant P value from Cochran's Q's test ($p = 0.27$)
535 and low I^2 of 9.6% indicated no heterogeneity. Egger intercept's was significant ($P=0.0017$) and IVW's Q and
536 Egger's Q were significantly different ($Q-Q' = 9.83$, $p= 0.0017$), indicating that horizontal pleiotropy may still
537 affect the causal estimates. Rucker framework selected IVW more fitting for the data than Egger (eTable 4). Forest
538 and funnel plots (eFigure 1, panel b) indicated that some variants, both with positive and negative effects, may be
539 introducing heterogeneity. The forest plot showed slight deviations from the mean causal effect when extreme

540 variants were extracted one at a time. In the funnel plot, symmetry was disrupted by variants with positive causal
541 effects and small standard errors. Considering both plots, we infer that heterogeneity and horizontal pleiotropy
542 were introduced by specific variants with small standard errors. Leave-one-out plots indicated that two variants
543 (rs13021737 and rs6567160) introduced horizontal pleiotropy, showing positive causal effects and having the
544 smallest standard errors of all variants. To conclude, we found residual pleiotropy that RadialMR could not
545 properly address and deem that the association between BMI and vigorous physical activity is unlikely to be
546 causal.

547 **BMI → Moderate physical activity**

548 The IVW method showed a negative causal effect, whereas Egger, weighted median and weighted mode showed
549 a positive causal effect (eTable 4). Only the causal effect from Egger was significant ($P=0.04$). Non-significant P
550 from Cochran's Q test ($P=0.91$) and I^2 of 0% indicated no presence of heterogeneity. Egger intercept's was
551 significant ($P=0.002$) and IVW's Q and Egger's Q were significantly different ($Q-Q' = 9.60$, $p= 1.95 \times 10^{-5}$),
552 indicating that horizontal pleiotropy may still affect the causal estimates. Rucker framework chose IVW as the
553 most fitting method for the data. Forest and funnel plots (eFigure 1, panel d) indicated heterogeneity. The leave-
554 one-out forest plots indicated deviation from the mean causal effect when variants with positive causal effects
555 were excluded, and the funnel plots showed that asymmetry was introduced by variants with positive causal effects
556 and small standard errors. These findings were in agreement with the findings from Rucker framework and
557 Egger's intercept test results. To conclude, we found evidence of horizontal pleiotropy that RadialMR could not
558 properly remove, and where pleiotropy was introduced by variants with positive causal estimates. The presence
559 of horizontal pleiotropy may explain the negative direction of the causal estimate in the IVW method, whereas
560 other methods showed positive causal estimates (eTable 4). We deem that the association between BMI and
561 moderate physical activity is unlikely to be causal.

562 **BMI → sedentary time**

563 The IVW and weighted median methods showed positive causal effects, while Egger and weighted mode
564 presented negative causal effects (eTable 4), with only IVW being significant ($P= 0.02$). The Cochran's Q' s test
565 ($P=0.4$) and I^2 of 2.2% indicated no presence of heterogeneity. Egger intercept test ($P=0.20$) and the non-
566 significant difference between IVW's Q and Egger's Q ($Q-Q' = 1.62$, $p= 0.20$) indicated no presence of horizontal
567 pleiotropy and that the IVW method was a better fit for the data than Egger (eTable 4). Forest and funnel sensitivity
568 plots (eFigure 1, panel f) indicated that there was no heterogeneity, except for one variant (rs6567160) with a
569 negative effect. In the forest plot, upper and lower extreme variants induced deviations from the mean causal
570 effect when extracted one at a time. To conclude, sensitivity tests indicate no horizontal pleiotropy and forest and
571 funnel plots indicate the presence of heterogeneity for one variant, while RadialMR could not detect any outliers.
572 Taken together, even though Rucker framework selected IVW as better fit for the data than Egger, the forest and
573 funnel plots indicated heterogeneity, implying that there was residual horizontal pleiotropy. Therefore, we deem
574 that there is no causal relationship between BMI and sedentary time, despite the significant P value in the IVW
575 method.

576

577 **Conversion of the causal estimates to absolute units**

578 To interpret the causal estimates from CAUSE, we applied the weighted median method on the independent
579 instrumental variants selected by the CAUSE method and performed outlier extraction and sensitivity tests,
580 following the steps described below. The results are reported in eTable 5.

581 1. We selected independent variants associated with each exposure identified with the CAUSE method.
582 2. We performed outlier extraction using RadialMR to control for uncorrelated pleiotropy.
583 3. We obtained weighted median's causal estimates, to correct for correlated pleiotropy.
584 4. We approximated the causal estimates between outcome and exposure in absolute units. As the genome-
585 wide summary results were reported in standard deviation units, we multiplied the causal estimates by the
586 standard deviation of the corresponding non-transformed trait to derive the estimates in original trait units.
587 The equations used in these calculations are described for each combination of traits in eTable 5.

588

589 **Additional file 1 references:**

590 1. Jean Morrison (2020). CAUSE software tutorial. Retrieved from https://jean997.github.io/cause/ldl_cad.html

591 2. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X. Mendelian randomization accounting for correlated
592 and uncorrelated pleiotropic effects using genome-wide summary statistics. *Nat Genet.* 2020;52(7):740-7.
593 Epub 2020/05/27. doi: 10.1038/s41588-020-0631-4. PubMed PMID: 32451458; PubMed Central PMCID:
594 PMCPMC7343608.

595

596

597

598

599

600

601

602

603

604

605

606

607

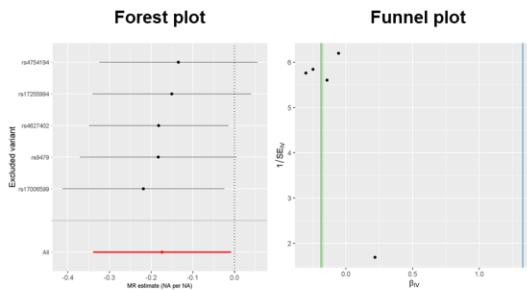
608

609

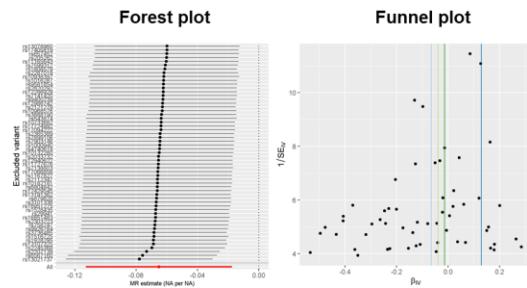
610

611

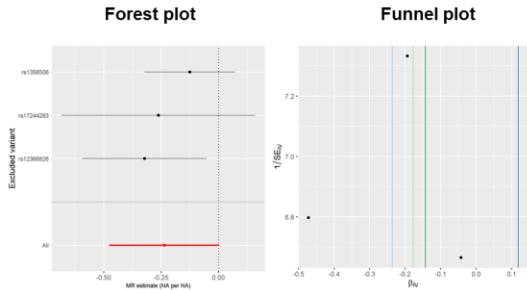
612

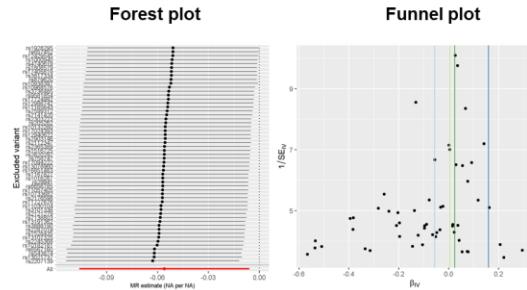

613

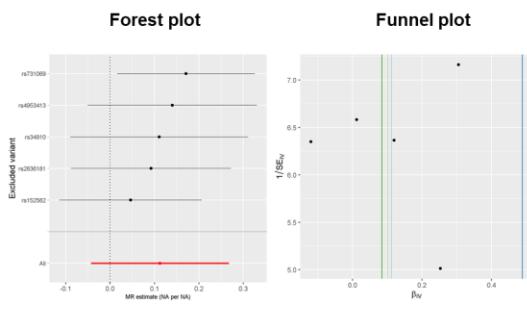
614

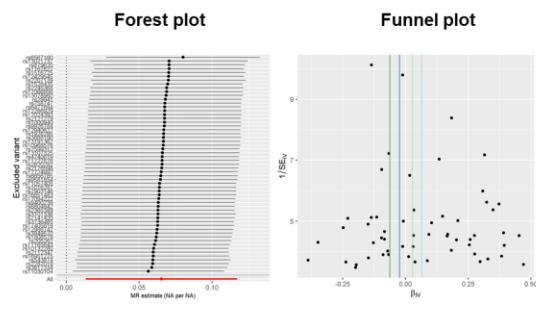

615 **Figure S1. Leave-one-out forest and funnel sensitivity plots after outlier extraction**

616


a) Vigorous physical activity → BMI


b) BMI → Vigorous physical activity


c) Moderate physical activity → BMI


d) BMI → Moderate physical activity

e) Sedentary time → BMI

f) BMI → Sedentary time

617
618

619

620

621

622

623

624

625

626 **Table S1. expected log pointwise posterior density (ELPD) results for each combination of traits using the CAUSE method**

627

628

Table S1: CAUSE expected log pointwise posterior density (ELPD) results for each combination of traits

Model 1	Model 2	Vigorous physical activity → BMI			BMI → Vigorous physical activity		
		Delta_ELPD	SE_delta_ELPD	z	Delta_ELPD	SE_delta_ELPD	z
Null	Sharing	-17.47	4.24	-4.12	-251.88	21.54	-11.69
	Causal	-18.98	4.68	-4.05	-252.22	21.65	-11.65
	Causal	-1.51	0.45	-3.36	-0.35	0.90	-0.38
Moderate physical activity → BMI				BMI → Moderate physical activity			
Null	Sharing	-8.50	2.86	-2.97	-119.39	15.15	-7.88
	Causal	-9.83	3.39	-2.90	-119.77	15.34	-7.81
	Causal	-1.34	0.53	-2.52	-0.38	0.77	-0.49
Sedentary time → BMI				BMI → Sedentary time			
Null	Sharing	-6.51	2.57	-2.53	-137.84	157.46	-8.75
	Causal	-7.67	3.14	-2.44	-138.89	15.88	-8.75
	Causal	-1.16	0.57	-2.05	-1.06	0.33	-3.22

629 BMI, Body mass index; SE, standard error; NA, not applicable; CI, 95% confidence interval.

630

631 **Table S2. CAUSE posterior probabilities and q values for the causal effect and the shared effect**

632

Table S2: CAUSE posterior probabilities and q values for the causal effect and the shared effect				
Model	Causal Effect (CI)	Shared Effect (CI)	q (CI)	Sharing vs causal model p-value
	Vigorous physical activity → BMI			
Sharing	NA	-0.18 (-0.25, -0.12)	0.85 (0.57, 0.98)	3.80E-04
Causal	-0.16 (-0.24, -0.08)	0 (-0.31, 0.31)	0.19 (0.00, 0.86)	
Moderate physical activity → BMI				
Sharing	NA	-0.2 (-0.33, -0.11)	0.75 (0.35, 0.96)	5.80E-03
Causal	-0.18 (-0.3, -0.05)	-0.01 (-0.44, 0.39)	0.2 (0.01, 0.86)	
Sedentary time → BMI				
Sharing	NA	0.13 (0.06, 0.23)	0.69 (0.25, 0.95)	2.00E-02
Causal	0.11 (0.02, 0.20)	0 (-0.32, 0.32)	0.19 (0, 0.86)	
BMI → Vigorous physical activity				
Sharing	NA	-0.16 (-0.19, -0.14)	0.9 (0.77, 0.98)	0.35
Causal	-0.15 (-0.2, -0.08)	0.01 (-0.18, 0.21)	0.21 (0.01, 0.83)	
BMI → Moderate physical activity				
Sharing	NA	-0.14 (-0.19, -0.11)	0.77 (0.55, 0.95)	0.31
Causal	-0.11 (-0.19, -0.03)	0 (-0.28, 0.2)	0.23 (0.01, 0.84)	
BMI → Sedentary time				
Sharing	NA	0.14 (0.12, 0.17)	0.9 (0.73, 0.98)	6.30E-04
Causal	0.13 (0.08, 0.17)	0 (-0.23, 0.26)	0.18 (0.00, 0.85)	

633 BMI, Body mass index; NA, not applicable; CI, 95% confidence interval.

634

635

636

37
38 **Table S3.** Mendelian randomization results using the IVW, Egger, weighted median and weighted mode methods of vigorous, moderate physical activity and sedentary
39 time on BMI

Table S3. Mendelian randomization results using the IVW, Egger, weighted median and weighted mode methods of moderate, vigorous physical activity and sedentary time on BMI																
Before outlier extraction																
MR method	Vigorous physical activity → BMI				Moderate physical activity → BMI				Sedentary time → BMI							
	SNP	beta	SE	p-value	SNP	beta	SE	p-value	SNP	beta	SE	p-value				
Egger	5	1.33	2.21	0.59	3	0.12	0.45	0.84	8	0.46	0.64	0.50				
Weighted median	5	-0.18	0.10	0.08	3	-0.18	0.12	0.13	8	0.02	0.09	0.82				
IVW	5	-0.17	0.08	0.04	3	-0.24	0.12	0.05	8	0.04	0.11	0.72				
Weighted mode	5	-0.19	0.12	0.19	3	-0.14	0.15	0.43	8	-0.05	0.18	0.78				
Sensitivity test	Estimate		p-value/CI		Estimate		p-value/CI		Estimate		p-value/CI					
Q (p-value)	1.65		0.8		3.6		0.17		23.08		1.70E-03					
I2 (CI)	0.00%		(0,0%; 49,5%)		44.30%		(0,0%; 83,4%)		69.70%		(36,8%; 85,4%)					
Q-Q' (p-value)	0.46		0.5		1.75		0.19		1.96		0.16					
Egger intercept (p-value)	-0.04		0.29		-0.01		0.19		-0.01		0.75					
Rucker Test	IVW				IVW				IVW							
After outlier extraction																
MR method	Vigorous physical activity → BMI				Moderate physical activity → BMI				Sedentary time → BMI							
	SNP	beta	SE	p-value	SNP	beta	SE	p-value	SNP	beta	SE	p-value				
Egger	NA	NA	NA	NA	NA	NA	NA	NA	5	0.49	0.36	0.26				
Weighted median	NA	NA	NA	NA	NA	NA	NA	NA	5	0.10	0.10	0.29				
IVW	NA	NA	NA	NA	NA	NA	NA	NA	5	0.11	0.08	0.16				
Weighted mode	NA	NA	NA	NA	NA	NA	NA	NA	5	0.08	0.14	0.59				
Sensitivity test	Estimate		p-value/CI		Estimate		p-value/CI		Estimate		p-value/CI					
Q (p-value)	NA		NA		NA		NA		4.7		0.32					
I2 (CI)	NA		NA		NA		NA		15		(0-0%; 82-3%)					
Q-Q' (p-value)	NA		NA		NA		NA		1.41		0.24					
Egger intercept (p-value)	NA		NA		NA		NA		-1.00E-02		0.24					
Rucker Test	NA				NA				IVW							
BMI, Body mass index (BMI); MR, Mendelian randomization; SNP, single nucleotide polymorphism; SE, standard error; NA, not applicable; IVW, inverse variance weighted; CI, 95% confidence interval. NA: not applicable. Note: No outlier extraction was performed for moderate physical activity → BMI and vigorous physical activity → BMI directions, since Q test and I2 did not indicate heterogeneity.																

41

Table S4. Mendelian randomization results using the IVW, Egger, weighted median and weighted mode methods of BMI on moderate PA, vigorous PA, or sedentary time

Table S4. Mendelian randomization results using the IVW, Egger, weighted median and weighted mode methods of BMI on moderate PA, vigorous PA, or sedentary time																
Before outlier extraction																
MR method	BMI → Vigorous physical activity				BMI → Moderate physical activity				BMI → Sedentary time							
	SNP	beta	SE	p-value	SNP	beta	SE	p-value	SNP	beta	SE	p-value				
Egger	64	0.09	0.08	0.22	65	0.17	0.08	0.04	65	-0.10	0.09	0.28				
Weighted median	64	-0.04	0.03	0.21	65	0.004	0.04	0.92	65	0.03	0.04	0.44				
IVW	64	-0.08	0.03	0.005	65	-0.05	0.03	0.09	65	0.07	0.03	0.02				
Weighted mode	64	-0.01	0.07	0.86	65	0.02	0.05	0.72	65	-0.05	0.10	0.59				
Sensitivity test																
Q (p-value)	92.4		9.30E-03		83.73		0.05		97.5		4.40E-03					
I ² (CI)	31.80%		6.9%; 50.00%		23.60%		(0.00%; 44.20%)		34.40%		10.80%; 51.70%					
Q-Q' (p-value)	8.36		3.80E-03		10.86		9.81E-04		6.59		1.00E-02					
Egger intercept (p-value)	-4.99E-03		9.90E-01		-6.40E-03		9.81E-04		4.96E-03		2.00E-02					
Rucker test	Egger				Egger				Egger							
After outlier extraction																
MR method	BMI → Vigorous physical activity				BMI → Moderate physical activity				BMI → Sedentary time							
	SNP	beta	SE	p-value	SNP	beta	SE	p-value	SNP	beta	SE	p-value				
Egger	57	0.13	0.07	0.06	55	0.16	0.07	0.04	57	-0.02	0.08	0.76				
Weighted median	57	-0.04	0.03	0.27	55	2.95E-03	0.04	0.93	57	0.03	0.04	0.48				
IVW	57	-0.07	0.02	0.01	55	-0.06	0.03	0.03	57	0.07	0.03	0.01				
Weighted mode	57	-0.01	0.06	0.83	55	0.02	0.06	0.68	57	-0.06	0.08	0.46				
Sensitivity test																
Q (p-value)	61.88		0.27		40.51		0.91		56.29		0.46					
I ² (CI)	9.50%		0.00% - 35.10%		0.00%		(0.0%; 8.9%)		0.50%		0.0%; 31.50%					
Q-Q' (p-value)	9.79		1.75E-03		9.6		1.94E-03		1.62		2.00E-01					
Egger intercept	-5.70E-03		1.75E-03		-6.44E-03		9.15E-05		2.60E-03		2.00E-01					
Rucker test	IVW				IVW				IVW							
BMI, Body mass index; MR, Mendelian randomization; SNP, single nucleotide polymorphism; SE, standard error; NA, not applicable; IVW, inverse variance weighted; CI, 95% confidence interval.																

42

43

44

45

Table S5. Approximation of the causal estimates in absolute units

46

Table S5. Approximation of the causal estimates in absolute units								
Analysis	Original causal estimates (weighted)				Conversion of causal estimates			Converted causal estimates
	N SNPs	Beta	SE	P	Equation	SDexposure	SDoutcome	
Vigorous physical activity → BMI	1036	-0.09 SD	0.006 SD	9.28E-57	(Beta*SDoutcome)/SDexposure /(0,01*24 hours)	NA	4.807 kg/m2	-0.48 kg/m2 per hour of moderate physical activity per day
Moderate physical activity → BMI	914	-0.05 SD	0.005 SD	1.21E-20	(Beta*SDoutcome)/SDexposure /(0,01*24 hours)	3.76%	4.807 kg/m2	-0.27 kg/m2 per hour of moderate physical activity per day
Sedentary time → BMI	1036	0.06 SD	0.005 SD	6.33E-30	(Beta*SDoutcome)/SDexposure /(0,01*24 hours)	7.38%	4.807 kg/m2	0,14 kg/m ² per hour of sedentary time per day
BMI → Sedentary time	11849	0.16 SD	0.009 SD	2.87E-68	(Beta*SDoutcome)/SDexposure *(0.01*24 hours)	4.807 kg/m2	7.38%	3.54 min of sedentary time per kg/m2 per day

Original units of the traits:
 Moderate physical activity: Probability of moderate physical activity in a 30s-epoch frame (Doherty, Smith-Byrne et al. 2018)
 Sedentary time: Probability of sedentary time in a 30s-epoch frame (Doherty, Smith-Byrne et al. 2018)
 BMI: kg/m² (Pulit, Stoneman et al. 2019)
 Note: For vigorous physical activity, SD exposure could not be found, thus we use the same as for moderate physical activity, i.e. 3.76%
 SNP, single nucleotide polymorphism; BMI, SE, standard error; SD, standard deviation; Body mass index (BMI).

47

48

49

50

51

52

53

654 **Additional file 2. Analysis plan for causality between physical activity, sedentary behaviour, and obesity: A**
655 **Mendelian randomization study**

656
657 Date: initiated in March 2020

658
659 Motivation: Obesity is a global epidemic increasing morbidity and mortality worldwide. Physical inactivity and
660 increased sedentary time are associated with excess weight gain as shown from observational studies. However,
661 observational studies suffer from residual confounding and reverse causality. Mendelian randomization helps to
662 overcome confounding and reverse causality by instrumenting the exposure trait using genetic variants. Here, we aim
663 to assess the causality between physical activity, sedentary behaviour and body mass index in adults by bidirectional
664 Mendelian randomization analyses.

665
666 Inclusion criteria for genome wide summary level data:

- Largest published genome-wide association study summary statistics
- European ancestry
- Objectively measured continuous traits

670

671 Exposures:

- Vigorous physical activity
- Moderate physical activity
- Sedentary time
- Body mass index

676

677 Outcomes:

- Vigorous physical activity
- Moderate physical activity
- Sedentary time
- Body mass index

682

683 Directions of association for outcome and exposure:

- Vigorous physical activity → body mass index
- Moderate physical activity → body mass index
- Sedentary time → body mass index

687

- Body mass index → vigorous physical activity
- Body mass index → moderate physical activity
- Body mass index → sedentary time

691

692 Mendelian randomization methods:

- The Causal Analysis Using Summary Effect estimates (CAUSE) method
- Inverse variance weighted (IVW)
- Mendelian randomization-Egger (MR-Egger)
- Weighted median
- Weighted mode

698

699 Sensitivity tests and plots to account for heterogeneity and horizontal pleiotropy in the IVW, MR-Egger, weighted
700 median and weighted mode analyses:

- Steiger filtering
- Automated outlier removal with RadialMR

703 • Rucker framework
704 • Cochran's Q method
705 • Leave-one-out forest plots
706 • Funnel plots

707
708 Note: The Mendelian randomization analyses, sensitivity tests, and sensitivity plots for IVW, MR-Egger, weighted
709 median and weighted mode methods were repeated after outlier removal.
710

711 Post-hoc analysis:
712 When less than three genetic variants associated with the exposure trait were available for the IVW, MR-Egger,
713 weighted median, and weighted mode methods using genome-wide significant threshold ($P < 5 \times 10^{-8}$), we used a p-
714 value threshold of $P < 5 \times 10^{-7}$ to identify a sufficient number of genetic instruments to produce stable estimates and
715 plots.
716

717 R packages used:
718 CAUSE¹
719 TwoSampleMR²
720 RadialMR³
721 Meta R⁴
722

723 Additional file 2 references:
724

1. Morrison J. Introduction to CAUSE 2019. Available from: <https://jean997.github.io/cause/>.
2. Hemani G, Zheng J, Elsworth B, Wade KH, Baird D, Haberland V, Laurin C, Burgess S, Bowden J, Langdon R, Tan VY, Yarmolinsky J, Shihab HA, Timpson NJ, Evans DM, Relton C, Martin RM, Davey Smith G, Gaunt TR, Haycock PC, The MR-Base Collaboration. The MR-Base platform supports systematic causal inference across the human genome. *eLife* 2018;7:e34408. doi: 10.7554/eLife.34408
3. Bowden J, Spiller W, Del Greco MF, Sheehan N, Thompson J, Minelli C, et al. Improving the visualization, interpretation and analysis of two-sample summary data Mendelian randomization via the Radial plot and Radial regression. *Int J Epidemiol*. 2018;47(4):1264-78. Epub 2018/07/03. doi: 10.1093/ije/dyy101. PubMed PMID: 29961852; PubMed Central PMCID: PMCPMC6124632.
4. Schwarzer G, Carpenter JR, Rücker G. Meta-analysis with R: Springer; 2015.

735
736
737
738
739