

1 **Title**

2 Changes at V2 apex of HIV-1 Clade C trimer enhance elicitation of autologous neutralizing and
3 broad V1V2-scaffold antibodies

4

5 **Authors**

6 Anusmita Sahoo^{1,2}, Edgar A. Hodge³, Celia LaBranche⁴, Tiffany Turner Styles^{1,2}, Xiaoying Shen⁴,
7 Narayanaiah Cheedarla^{1,2}, Ayalnesh Shiferaw^{1,2}, Gabriel Ozorowski⁵, Wen-Hsin Lee⁵, Andrew B.
8 Ward⁵, Georgia D. Tomaras⁴, David C. Montefiori⁴, Darrell J. Irvine⁶, Kelly K. Lee³, Rama Rao
9 Amara^{1,2,*}

10

11 **Affiliations**

12 ¹Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta,
13 Georgia 30329, USA

14 ²Department of Microbiology and Immunology, Emory School of Medicine, Emory University,
15 Atlanta, Georgia 30322, USA

16 ³Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, USA

17 ⁴Department of Surgery, Duke University Medical School, Duke University, Durham, North
18 Carolina 27710, USA

19 ⁵Department of Integrative Structural and Computational Biology, The Scripps Research Institute,
20 San Diego, California 92121, USA

21 ⁶David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology,
22 Cambridge, MA 02139, USA

23

24 **Correspondence:** *Correspondence should be addressed to Dr. Rama Rao Amara. Phone: (404)
25 727-8765; FAX: (404) 727-7768; E-mail: ramara@emory.edu

26

27

28 **Keywords**

29 HIV-1 vaccine, immunogen, V2 hotspot, 173 position, V1V2-scaffold specific, breadth,
30 neutralization, C.1086 trimer, V1V2 apex, antigenic profile, time-dependent BLI.

31

32

33 **Summary**

34 HIV-1 clade C envelope immunogens that elicit both neutralizing and non-neutralizing V1V2-
35 scaffold specific antibodies (protective correlates from RV144 human trial) are urgently needed
36 due to the prevalence of this clade in the most impacted regions worldwide. To achieve this, we
37 introduced structure-guided changes followed by consensus-C sequence-guided optimizations at
38 the V2-region to generate UFO-v2-RQH¹⁷³ trimer. This improved the abundance of native-like
39 trimers and carried an intrinsic dynamic V2-loop. Following immunization of rabbits, the wild-type
40 protein failed to elicit any autologous neutralizing antibodies but UFO-v2-RQH¹⁷³ elicited both
41 autologous neutralizing and broad V1V2-scaffold antibodies. The variant with 173Y modification in
42 V2-region, most prevalent among HIV-1 sequences, showed decreased ability in displaying native-
43 like V1V2 epitope with time *in-vitro* and elicited antibodies with lower neutralizing and higher V1V2-
44 scaffold activities. Our results identify a clade C C.1086-UFO-v2-RQH¹⁷³ trimer capable of eliciting
45 improved neutralizing and V1V2-scaffold antibodies, and reveal the importance of V2-region in
46 tuning this.

47 **Introduction**

48 Generation of broadly neutralizing antibodies (bnAbs) during the course of HIV-1 infection occurs
49 in 10-25% of the population within 3-4 years after the infection (Binley et al., 2008; Doria-Rose et
50 al., 2009; Hraber et al., 2014; Landais et al., 2016; Li et al., 2009). Robust induction of a similar
51 immune response by vaccination has been a major challenge. Strategies to stabilize the envelope
52 protein in closed trimeric conformation have advanced efforts to induce neutralizing antibodies.
53 The development of SOSIP trimeric design (Sanders et al., 2013), followed by cleavage
54 independent Native Flexibly Linked (NFL) (Sharma et al., 2015), Un-cleaved preFusion Optimized
55 (UFO) (He et al., 2018; Kong et al., 2016) and “germline” bnAb precursor-targeting trimers
56 (reviewed by McGuire, 2019) opened an era of well-ordered, native-like trimers (Aldon et al., 2018;
57 Brouwer et al., 2019; Guenaga et al., 2015b; Guenaga et al., 2017; He et al., 2018; Kulp et al.,
58 2017; Sliepen et al., 2015). Immunization with these different trimeric forms and their variants
59 bearing further stabilizing substitutions as either soluble protein or multivalent nanoparticle display
60 in either homologous or heterologous prime-boost vaccine regimens successfully elicited tier2
61 homologous envelope specific neutralizing Abs (de Taeye et al., 2015; Escolano et al., 2016;
62 Huang et al., 2020; Klasse et al., 2016; Pauthner et al., 2017; Sanders et al., 2015; Voss et al.,
63 2017). The responses, however, generally had poor neutralization breadth and were primarily
64 directed towards epitopes specific to the immunizing envelope (Arunachalam et al., 2020; Bale et
65 al., 2018; Dubrovskaya et al., 2017; He et al., 2018; Klasse et al., 2018; Pauthner et al., 2017;
66 Sanders and Moore, 2017; Sanders et al., 2015; Torrents de la Pena et al., 2017). However,
67 studies (Bricault et al., 2019; Escolano et al., 2016) including work by Xu et al., 2018, to generate
68 broad neutralization activity towards the fusion-peptide, and Dubrovskaya et al., 2019 to induce
69 cross-neutralizing responses towards CD4bs and gp120-gp41 interface, mark significant steps
70 towards the induction of cross-reactive tier2 neutralizing activities by vaccination.

71 Antibodies with neutralizing properties can also display Fc-mediated anti-viral effector
72 functions such as ADCC (antibody-dependent cellular cytotoxicity), ADCVI (antibody-dependent
73 cell-mediated viral inhibition), ADCP (antibody-dependent cell-mediated phagocytosis) that help in
74 clearing virus infected cells (Berendam et al., 2021). In addition to the neutralizing Abs, non-
75 neutralizing Abs (non-nAbs) have been reported to contribute significantly towards protection in
76 the RV144 human efficacy trial (Rerks-Ngarm et al., 2009). In the RV144 trial, individuals that
77 generated a strong antibody response to HIV-1 V1V2 loops scaffolded on MuLV gp70 protein
78 (V1V2-scaffold) and against a linear epitope in the V2 loop from residues 166-178 (V2 hotspot
79 region, V2 HS (Tassaneetrithip et al., 2014)) proximal to the $\alpha_4\beta_7$ binding site showed decreased
80 risk of acquisition of HIV infection (Excler et al., 2014; Haynes et al., 2012; Jones et al., 2019;
81 Robb et al., 2012; Zolla-Pazner et al., 2014; Zolla-Pazner et al., 2013). The protective responses
82 associated with this class of Abs have been linked to (a) Fc-mediated anti-viral effector functions,

83 and (b) their ability to occlude interaction between the host integrin $\alpha_4\beta_7$ and HIV-1 envelope
84 (known to promote viral pathogenesis (Guzzo et al., 2017; Plotnik et al., 2017)) in-order to control
85 and clear the virus (Gorny et al., 2012; Perez et al., 2017; Yates et al., 2014). Hence, the ability to
86 generate broad V1V2 reactivity has been an important parameter in the immunogen design
87 portfolios.

88 The design of an immunogen with the potential to elicit both tier2 neutralizing and broad
89 V1V2-scaffold specific binding antibodies has not been explored. A closed stabilized trimer
90 designed to generate neutralizing Abs is less likely to expose the conformation presented by the
91 V1V2-scaffolds which is more flexible and lacks the quaternary contacts, making it difficult to
92 design an immunogen with a fine balance between the two kinds of responses. Although studies
93 have reported the significance of V2 region in regulating the closed-state of the envelope and
94 neutralization sensitivity (Cimbro et al., 2014; Guzzo et al., 2018), understanding how these
95 changes maintain native apex integrity with time without impacting trimer integrity is unexplored.
96 How do such changes affect the balance between inducing a neutralizing versus a broad V1V2-
97 scaffold specific response is not known. We attempted to address these by engineering a stabilized
98 clade C trimeric immunogen. Clade C immunogens are critically needed since a large proportion
99 (~48%) of global HIV-1 burden results from infection by viruses within this clade (Geretti et al.,
100 2009). We focused our efforts on C.1086 envelope since a gp120 version of this protein is used in
101 human phase 2b/3 trials by the HIV Vaccine Trials Network (HVTN) in HVTN702. There are only
102 a couple of studies describing efforts to stabilize C.1086 in native-like trimeric form (Guenaga et
103 al., 2017; He et al., 2018). The study by Geunaga et al., 2017 showed the addition of glycine
104 substitutions in gp41 region of C.1086 NFL in combination with multiple trimer derived changes
105 (Guenaga et al., 2017) to improve the generation of well-ordered trimers. However, immunization
106 studies with such stabilized trimers are yet to be reported. Here, we explored alternative strategies
107 systematically to generate stable, prefusion, native-like C.1086 trimer, compared the immune
108 responses of the design variants in rabbits to monitor if the designs could successfully induce any
109 neutralizing as well as broad V1V2-scaffold specific responses, monitor if optimized changes
110 introduced at the V2 region could maintain native apex integrity with time without affecting the
111 trimer integrity and influence the generation of neutralizing, V1V2-scaffold specific responses. A
112 wildtype (WT) C.1086 gp140 protein that does not maintain the native-like conformation failed to
113 induce autologous neutralizing antibodies (Burton et al., 2019; Kasturi et al., 2017; Styles et al.,
114 2019).

115 Given the importance of V2 region in regulating the closed-state of the envelope (Cimbro
116 et al., 2014; Guzzo et al., 2018), we carried out an integrated approach using consensus clade C
117 V2 hotspot (V2-HS, res. 166-173 in this study) sequence-guided mutational screening to design
118 UFO-v2-RQH¹⁷³ variant that improved expression of the trimeric fraction and enhanced antigenic

119 properties associated with a well-formed trimer. We analyzed the immune responses elicited by
120 the C.1086 variants in rabbits and showed that the optimized UFO-v2-RQH¹⁷³ variant enhanced
121 induction of V1V2-scaffold specific antibodies and autologous neutralizing responses. UFO-v2-
122 RQH¹⁷³ carried an intrinsic dynamic V2 loop, which otherwise was relatively less dynamic in well-
123 ordered clade A BG505 SOSIP.664 trimer. Furthermore, substituting Y at 173 (the most prevalent
124 variant in HIV-1 sequences), demonstrated decreased ability in displaying native-like V1V2 epitope
125 reactive to V1V2 specific bnAbs relative to UFO-v2-RQH¹⁷³ with time *in-vitro*, despite carrying
126 similar antigenic properties and overall structural organization. UFO-v2-RQY¹⁷³ induced
127 significantly higher V1V2-scaffold specific antibody responses than UFO-v2-RQH¹⁷³, and modestly
128 reduced neutralizing and ADCVI specific functional antibodies than its counterpart UFO-v2-
129 RQH¹⁷³. These results report the development of an optimized clade C trimeric immunogen, UFO-
130 v2-RQH¹⁷³ capable of inducing improved autologous neutralizing and broader V1V2-scaffold
131 specific responses, and highlight the contribution of residues in V2-HS in modulating these two
132 kinds of responses.

133

134 **Results**

135 **Screening of C.1086 base variants to select UFO form as the parent construct for 136 stabilization strategies.**

137 As initial steps to generate a stable C.1086 trimeric protein, we generated the SOSIP(Sanders et
138 al., 2013), NFL (Native Flexibly Linked with I559P)(Sharma et al., 2015), and UFO (Uncleaved
139 preFusion Optimized with no disulfide linkage SOS between A501 and T605)(Kong et al., 2016)
140 variants (schematic shown in Figure 1A) and compared their ability to form trimers using size
141 exclusion chromatography (SEC). The proteins were expressed in 293F cells and purified by
142 *Galanthus nivalis* lectin (GNL) mediated affinity purification, followed by isolation of trimers by SEC.
143 The majority of the SOSIP variant resulted in aggregates (only 23% trimer proportion) similar to
144 the WT protein and was not characterized further (Figure 1B). Both NFL and UFO variants formed
145 higher proportion of trimers (mean 61% and 50% respectively, Figures 1B and 1C) relative to the
146 SOSIP and WT proteins with net protein yield of 1.8 and 5.5mg/L, respectively. In addition to higher
147 protein yield, the UFO form showed a ~60-fold improved association kinetics against V1V2 apex
148 specific bnAb, PG16 (Pejchal et al., 2010) resulting in a 44-fold improved binding (K_D UFO 252nM,
149 NFL 11 μ M, Figures 1D, 1G, S1A, S1B, Table S1) against PG16; and comparable binding to other
150 bNAbs (\pm 3-fold) relative to NFL, prompting us to select UFO as the parent design to further improve
151 the trimer.

152 **Structure guided mutations in UFO backbone (UFO-v2) decrease exposure of non-
153 neutralizing epitopes and binding to CD4.**

154 Although the UFO form improved binding to PG16, it did not reduce binding to non-neutralizing
155 antibodies relative to NFL form (Figure 1D, Table S1). To minimize the exposure of non-
156 neutralizing epitopes, we introduced three structure guided mutations T316W, E64K (de Taeye et
157 al., 2015) and A433P (Kwon et al., 2015) that have been reported in the context of BG505
158 SOSIP.664 trimer to improve hydrophobic interactions at the apex, restrict CD4 induced
159 conformational changes, and reduce the exposure of off-target V3 region. We named this variant
160 as UFO-v2 (Figure 1A). The WT and NFL-TD (i.e. NFL + “trimer-derived” TD stabilizing
161 substitutions only) forms of the protein have been reported to be insufficient in forming any native-
162 like trimers by negative stain electron microscopy (EM) (Bontempo et al., 2020; Guenaga et al.,
163 2017), while NFL-TD with additional stabilizing glycine substitutions L568G or T569G in HR1
164 region efficiently formed native trimers (63% and 62%, respectively) by EM (Guenaga et al., 2017).
165 Here, both UFO and UFO-v2 constructs yielded similar proportions of trimers (50% for both
166 variants, Figures 1B and 1C) as assessed by SEC and >70% native-like trimers by EM analyses
167 (79% and 73% respectively, Figures 1B, and S2). However, UFO-v2 displayed markedly reduced
168 binding to V2i 697-30D non-nAb (70-fold) and other non-nAbs (447-52D, 39F, CH58; 6, 14 and 5-
169 fold decrease in K_D respectively); along with no apparent binding to CD4i 17b and 48d non-nAbs
170 relative to UFO, supporting reduced exposure of non-neutralizing epitopes (Figures 1E and 1F).
171 UFO-v2 also displayed reduced binding to CD4-IgG2, which however did not affect recognition by
172 CD4 binding site bnAb NIH-45-46^{G54W} (Figures 1E, 1F, S1C, Table S). This could be due to the
173 introduction of E64K substitution, which has been observed earlier to reduce binding to CD4 (Liu
174 et al., 2017). Both UFO and UFO-v2 exhibited similar binding (\pm 3-fold change in affinity) to
175 neutralizing Abs (Figures 1E and 1G, Table S1). Thus, structure guided mutations introduced in
176 the backbone of C.1086 UFO (i.e., UFO-v2) trimer decreased the exposure of non-neutralizing
177 epitopes.

178

179 **Sequence guided mutations at V2 hotspot region improve antigenicity of the V2 apex on
180 C.1086 trimers.**

181 Despite the minimized exposure of non-neutralizing epitopes, the UFO-v2 protein exhibited
182 moderate affinity towards V1V2 apex specific bnAbs (K_D >100nM, Figures 1G, S1C, Table S1). In
183 order to improve binding to this class of bnAbs and thereby stabilize the protein into a closed
184 native-like trimer, we optimized the V2 hotspot region (V2-HS, res 166-173 in the current study)
185 on envelope harboring the signature binding residues of V1V2 apex-specific bnAbs (Bricault et al.,
186 2019) by mutational screening. For this, we identified four positions viz. 166, 170, 172, 173 in
187 C.1086 (UFO-v2) differing from Clade C consensus V2-HS region (n= 22,415 sequences, Figure

188 2A) and substituted them with either dominant or sub-dominant amino acid present in the
189 consensus sequence; in the form of single, double, triple or quadruple mutants (listed in Figure 2B
190 left). These mutants (referred as UFO-v2 V2-HS mutants) were screened by ELISA to identify
191 variants which enhanced binding to PGT145 and other V1V2 targeting bnAbs.

192 We observed all designs bearing K166R to significantly improve binding to PGT145 with
193 minimal effect on binding to other envelope specific Abs (monitored by ELISA, Figures 2B and
194 S3A). The result was justified as arginine at 166 position directly interacts with the electronegative
195 moieties on PGT145 HCDR3 loop based on the structure solved previously for PGT145-BG505
196 SOSIP trimer (Lee et al., 2017), and its preference at 166 position for recognition by V1V2 apex
197 directed bnAbs (Bricault et al., 2019). V2-HS mutants viz. K166R/H170Q/H173 (referred to as
198 UFO-v2-RQH¹⁷³) and K166R/H170Q/H173Y (referred to as UFO-v2-RQY¹⁷³) showed strongest
199 binding to PGT145 by ELISA (Figures 2B and S3A), and hence were studied further. We used
200 UFO-v2-RHH¹⁷³ (K166R/H170/H173) as a control to examine if K166R had an influence on trimer
201 characteristics. Bio-layer interferometry (BLI) responses monitored for these purified proteins
202 confirmed 5 to 6-fold improved binding to PGT145 (average K_D 34nM, Figures 2C, 2D, S1D-F,
203 Table S1) with no significant change in affinity (± 3 -fold) towards other V1V2 specific bnAbs and
204 other epitope targeting bnAbs and non-nAbs (Figure 2D, Table S1) compared to the parent UFO-
205 v2. Binding affinities of these V2-HS proteins measured against V1V2 apex specific bnAbs
206 PGT145, PGDM1400 (Table S2) were similar to that reported for stabilized C.1086 NFL TD variant
207 (K_D 41nM PGT145, 40nM PGDM1400 (Guenaga et al., 2017)), suggesting an alternative strategy
208 of stabilizing C.1086 trimer. Both 173 variants UFO-v2-RQ(H/Y)¹⁷³ displayed similar antibody
209 binding profiles (Table S1, Figure 2D). This was further supported by data from hydrogen-
210 deuterium exchange mass spectrometry (HDX-MS) experiments, showing overall similar
211 backbone amide dynamics of the UFO-v2-RQ(H/Y)¹⁷³ variants (Figure S4). Additionally, UFO-
212 RQ(H/Y)¹⁷³ variants yielded high trimeric protein (~4mg/L). In summary, consensus C V2-HS
213 sequence guided changes introduced, specifically K166R to generate UFO-v2-RQ(H/Y)¹⁷³
214 constructs enhanced binding to V2 specific PGT145.

215

216 **166R, 170Q in V2-HS improve protein trimer fraction.**

217 We explored whether the enhanced binding to apex-directed PGT145 bnAb by the optimized V2-
218 HS changes was an outcome of improved trimeric protein fraction, besides restoring interaction
219 between PGT145 CDRH3 and 166R (Lee et al., 2017). To answer this, we examined the trimeric
220 proportions of C.1086 UFO-v2 V2-HS mutants from their SEC profiles. We noticed only K166R
221 and H170Q V2-HS substitutions in UFO-v2-RQ(H/Y)¹⁷³ to significantly improve the trimeric fraction
222 of the proteins relative to UFO-v2 (which has K166/H170) and UFO-v2-RHH¹⁷³ (which has
223 166R/H170) (Figures 2E left, 1B, S3B top). We did not observe any difference in the proportion of

224 trimers between the two 173 (H/Y) variants (UFO-v2-RQ(H/Y)¹⁷³, Figures 2E left, S3B top),
225 indicating that 173(H/Y) did not have any effect on this property of C.1086 trimer. In-order to see
226 if the observed effect of 166R/170Q to increase the proportion of trimers could be translated to a
227 more distant Clade A BG505 envelope, we generated BG505 SOSIP.664 V2-HS mutants at 166
228 and 170 positions and compared their SEC profiles. We sequentially modified 166R and 170Q
229 present in the WT BG505 sequence to those present in WT C.1086 (contains 166K and 170H) and
230 noticed substantial reduction in the trimeric fraction (Figure 2E right, S3B bottom). These results
231 suggested plausible role of 166R and 170Q in enhancing folding of protein and thereby the
232 proportion of trimers.

233 We monitored the purity of the C.1086 trimers by blue native PAGE (BN-PAGE). Though
234 the purification steps (after GNL and SEC) yielded >95% trimers (inset in S3B top Fig), we noticed
235 higher order oligomers and dimers by BN-PAGE (Figure 2F) and non-native like malformed trimers
236 by EM (Figure S2) in the purified trimers. The differences in the proportion of unwanted higher-
237 order species among the C.1086 UFO-RQ(H/Y)¹⁷³ variants (by BN-PAGE, Figure 2F) were likely
238 the cause of differences in the proportion of native-like trimers monitored for these variants by NE-
239 EM (S2 Fig). We anticipate additional purification steps involving anion-exchange, hydrophobic
240 interaction chromatography (Verkerke et al., 2016), bnAb, non-nAb based positive and negative
241 selection (Guenaga et al., 2015a) respectively would likely reduce the unwanted species observed
242 in the process. Nevertheless, overall, we found 166R, 170Q V2-HS residues to improve the trimeric
243 proportion of C.1086 and BG505 envelopes.

244

245 **Enhanced V1V2 dynamics of C.1086 UFO-v2 trimers compared to BG505 SOSIP.664 trimer.**
246 Previous studies have laid the importance of Y173 in influencing the neutralization sensitivity of
247 envelope (Cimbro et al., 2014; Guzzo et al., 2018). Substitution of Y173 to either Ala or Phe 173
248 altered susceptibility of the envelopes towards neutralization and increasing vulnerability towards
249 adopting an open conformation (Guzzo et al., 2018). To identify any potential structural differences
250 between C.1086 UFO-v2-RQ(H/Y)¹⁷³ trimer variants, we measured their backbone dynamics by
251 HDX-MS. HDX-MS provides a sensitive means of monitoring changes in local structural ordering,
252 particularly involving solvent accessibility and secondary structure of backbone amide groups. To
253 eliminate spurious signals in the HDX-MS experiment, we repurified the proteins by hydrophobic
254 interaction chromatography (HIC) to obtain highly monodisperse trimers. Both C.1086 UFO-v2-
255 RQ(H/Y)¹⁷³ trimers displayed similar HDX profiles for the peptides we could monitor, including res.
256 176-179 (proximal to 173 position) in the V2 region; indicating no differences in global and local
257 structural organization of the UFO-v2-RQ(H/Y)¹⁷³ trimers; which was indeed consistent with their
258 similar antigenic profiles (Figure S4, Table S1).

259 A BG505 SOSIP.664 trimer was used as a reference for HDX-MS experiments due to its
260 extensive structural characterization in past studies (de Taeye et al., 2015; Guttman et al., 2014).
261 The homologous peptic peptides between C.1086 and BG505 envelopes present at the gp120-
262 gp41 interface; res. 35-52 and res. 484-501 were observed to be protected (Figures S4, 3A, 3B),
263 which indicated that the trimers were well-folded and native-like (Verkerke et al., 2016). The C.1086
264 UFO-v2-RQ(H/Y)¹⁷³ trimers showed overall high local structural dynamics at the apex and in
265 portions of gp41 (Figure 3C), and also relative to BG505 SOSIP trimer (Figures 3A, 3B, S4).
266 Notably, the base of V1 ¹¹²WDESLKPCVKLTPL¹²⁶ and the peptide segment ¹⁷⁶FYKL¹⁷⁹ present in
267 the V2 loop of envelope was found to be more dynamic in C.1086 UFO-v2-RQ(H/Y)¹⁷³ than BG505
268 SOSIP trimer, which is known to have a well-ordered V1V2 apex (Figures 3A, 3B, S4); C.1086
269 ¹⁷⁶FYKL¹⁷⁹ being the most dynamic (Figures 3A, S4). This increased flexibility of the C.1086 V1V2
270 region was further supported by observable binding of CH58 (prefers H over Y at 173 position
271 (Liao et al., 2013)) V2p non-Ab to both C.1086 UFO-v2-RQ(H/Y)¹⁷³ trimers (Table S1, Figures S1E
272 and S1F), which was not observed against BG505 SOSIP (has 166R/170Q/173Y) trimer
273 (Bontempo et al., 2020); given the fact that CH58 recognizes a linear epitope on the V2 C β -strand
274 generally displayed on a more flexible V2 antigen such as gp70-V1V2 scaffold that lacks the native
275 display of variable loops (Figure S1G). As expected, binding of CH58 to gp70-C.1086 V1V2-
276 RQ(H/Y)¹⁷³ was higher than its affinity for the closed trimer conformation (Figures S1G and S1H).
277

278 In summary, His and Tyr variants at 173 position of C.1086 (UFO-v2-RQ(H/Y)¹⁷³) trimers
279 displayed similar overall structural dynamics. The proteins exhibited an inherent higher V2 loop
280 dynamics and accessibility relative to well characterized BG505 SOSIP.664 trimer.

281 **C.1086 UFO-v2-RQH¹⁷³ demonstrated enhanced durability in displaying the epitope
282 reactive to V1V2 bNAbs compared to UFO-v2-RQY¹⁷³ *in-vitro*.**

283 Mechanistic understanding of how alterations in the V1V2 region protect or influence native
284 integrity of the apex with time without impacting the trimer integrity is an important but unexplored
285 area. As a preliminary step to probe the influence of 173H and 173Y in the context of C.1086
286 trimers, we explored any salient differences between UFO-v2-RQ(H/Y)¹⁷³ trimers in their ability to
287 maintain the display of epitopes desirable for a well-ordered trimer, over time. To address this, we
288 incubated UFO-v2-RQ(H/Y)¹⁷³ immunogens at 25°C for time periods ranging from 0 to 15 hrs and
289 measured their binding kinetics against different bnAbs and non-nAbs by BLI. We noticed the
290 largest reduction in binding affinity by V1V2 apex targeted bnAbs after 12hrs incubation at 25°C
291 relative to other immunodominant epitope-specific bnAbs and non-nAbs, which in contrast were
292 marginally affected (Table S2, Figure 3D). Specifically, comparison between UFO-v2-RQ(H/Y)¹⁷³
293 proteins revealed a dramatic 52, 19, and 5-fold mean reduction in binding affinity of UFO-v2-

294 RQY¹⁷³ against V1V2 specific PG16, PG9, CAP256-VRC26.08 bnAbs, respectively as early as
295 4hrs, in-contrast to only <2-fold reduction observed for UFO-v2-RQH¹⁷³ (Figure 3D, Table S2).
296 Similar observation was seen for other V1V2 bnAbs PGT145, PGDM1400 (after 12hrs, UFO-v2-
297 RQY¹⁷³ 13, 96-fold reduction respectively; UFO-v2-RQH¹⁷³ 4-fold reduction in affinity for both Abs),
298 and V2p CH58 (after 4hrs, UFO-v2-RQY¹⁷³ 15-fold reduction; UFO-v2-RQH¹⁷³ no observable
299 change in affinity). This time dependent reduction in affinity was observed to be driven by reduced
300 association rate, without much influence on the dissociation rate (Figure S5A, Table S2). Thus,
301 although both the C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants displayed reduced affinity to V2 targeting
302 Abs after 12hrs relative to time 0, this effect was more pronounced for 173Y (UFO-v2-RQY¹⁷³)
303 compared to 173H (UFO-v2-RQH¹⁷³) protein variant. Binding affinities of the 173(H/Y) variants
304 remained similar and unchanged (<3-fold reduction) towards other immunodominant epitopes
305 targeted by neutralizing and non-neutralizing Abs, e.g., 39F, 447-52D non-nAbs targeting the V3
306 loop sequestered beneath the V1V2 loops (Figures 3D, S5A, Table S2, epitopes mapped on the
307 structure in Figure S5B). V2 B-C β -strands carry the binding footprint of the V1V2 apex specific
308 bnAbs (Bricault et al., 2019) and V2 C strand harbors the 173 position (Figure S5C). CH58 V2p
309 non-nAb targets a linear V2 epitope present in helix/coil conformation and map to V2 C β -strand
310 on trimer (Liao et al., 2013) (Figure S5D). Thus, the observations suggested prolonged incubation
311 of the C.1086 UFO-v2-RQ(H/Y)¹⁷³ immunogens at 25°C primarily affected the display or
312 accessibility of V2 B-C β -strands (based on the Abs tested); and the 173Y trimer variant in this
313 context demonstrated reduced durability in displaying the epitope reactive to V1V2 bnAbs with
314 time compared to UFO-v2-RQH¹⁷³ *in-vitro*, although the two C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants
315 displayed similar antibody binding profiles for V1V2 apex specific bnAbs (Table S1) at baseline
316 time 0.

317 We next performed dynamic light scattering (DLS) analysis of the HIC-purified trimers to
318 test for the formation of protein aggregates following incubation at room temperature which could
319 have contributed to the decreased binding to V2 specific neutralizing antibodies by the UFO-v2-
320 RQ(H/Y)¹⁷³ trimers *in-vitro*. Following room temperature incubation for 4 hours, we observed the
321 appearance of higher order species in both variants (Figure S5E) but they constituted only a minor
322 proportion. More heterogeneous, larger species were observed to appear in UFO-v2-RQY¹⁷³ at a
323 slightly higher proportion relative to UFO-v2-RQH¹⁷³. Both proteins remained predominantly intact
324 trimers after 4hrs (hydrodynamic radius $70\pm3\text{\AA}$). It is possible that the increased abundance of
325 higher order species in UFO-v2-RQY¹⁷³ or transient interactions at the apex not observed in HDX
326 data, can lead to decreased accessibility of V1/V2 epitopes relative to UFO-v2-RQH¹⁷³ with time
327 and plausibly influence the immune responses when immunized into animal models.

328 In summary, V1V2 point alterations 173H and 173Y in the context of C.1086 UFO-v2-
329 RQ(H/Y)¹⁷³ did not alter the structural organization of the proteins, but exhibited differences in their

330 resilience to display V1V2 epitope accessible to native apex targeting bnAbs over time (*in-vitro*)
331 without any effect on the trimer integrity.

332

333 **C.1086 UFO-v2 variants induce higher trimer specific responses in rabbits.**

334 To monitor the immunogenicity of the optimized C.1086 trimers, female New Zealand rabbits (10-
335 12 weeks old, n=4 per group) were vaccinated subcutaneously with either (1) WT, (2) UFO, (3)
336 UFO-v2, (4) UFO-v2-RQH¹⁷³, or (5) UFO-v2-RQY¹⁷³ proteins (30 μ g each immunization, 375U
337 ISCOM as adjuvant) at weeks 0, 8, 24 and 40, and bled two weeks after each immunization for
338 serum analyses (Figure 4A). All rabbits, regardless of the immunization group elicited similar
339 binding antibody responses against WT C.1086 gp140, monitored two weeks after the final protein
340 boost (Figure 4B left). All groups manifested moderate (ranging 10⁴-10⁶ ELISA end-point titer
341 without outliers) trimer specific antibody responses after first immunization, followed by a maximum
342 of 237-fold average boost in responses after the second protein, and 14, 27-fold average boost
343 after third and fourth protein respectively (all responses at two weeks post the immunization time,
344 S6A Fig). Encouragingly, UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ groups displayed 39-fold higher
345 trimer specific responses than WT (p=0.03 in each case, Figures 4B right and S6B). Although all
346 stabilized trimeric immunogens induced higher trimer-specific binding antibody than WT,
347 comparable responses against the unwanted V3 peptide were observed (Figure 4C left). This
348 resulted in a significantly lower ratio of V3 over total trimer specific responses in all UFO backbone
349 bearing groups relative to WT (Figure 4C right). The induction of similar levels of V3 specific Abs
350 in UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ groups was supported by similar V3 backbone dynamics
351 (3¹⁸YATGDIIG³²⁴ region) of the proteins monitored by HDX experiments (S4 Fig). Thus, a higher
352 proportion of trimer-specific binding Abs was induced by all C.1086 UFO variants, while unwanted
353 V3 targeting Abs normalized to total trimer specific Abs were reduced in the UFO variants relative
354 to WT protein.

355

356 **166R, 170Q modifications in V2-HS of UFO-v2 (UFO-v2-RQH¹⁷³) enhance induction of anti-
357 viral antibody responses and binding to membrane anchored tier2 envelopes.**

358 We next investigated if the different modifications introduced in C.1086 UFO designs influenced
359 the quality of immune responses induced by vaccination, e.g., generation of (a) neutralizing
360 antibodies, and (b) recognition of membrane anchored diverse tier1 and tier2 full-length envelopes.
361 In addition, we were interested (will be discussed separately below for clarity) in understanding if
362 differences at 173 position i.e., H or Y (as in UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³) would influence
363 the immune responses, despite exhibiting similar antigenicity. We assayed neutralizing antibody
364 responses against homologous and heterologous tier2 pseudotyped envelopes and binding to
365 membrane anchored gp160s constituting tier1 and tier2 global panel. We used purified IgG to

366 eliminate sporadic low-level background and to be sure that the activity was mediated by IgG. IgG
367 from all animals showed strong neutralizing antibody titers against tier1 envelope MW965.26
368 (Figures 4D, 4E right, S6F, Table S3A). WT C.1086 has been studied previously to be inefficient
369 in eliciting homologous neutralization titers(Kasturi et al., 2017; Styles et al., 2019). IgG from WT
370 and UFO immunized animals induced only sporadic clade C tier2 responses and increased only
371 marginally in UFO-v2 immunized animals. However, UFO-v2 V2-HS changes in UFO-v2-RQH¹⁷³
372 resulted in induction of overall better neutralization titers against homologous (C.1086 K160N RQH
373 and C.1086 K160N RQY) and heterologous (25710) pseudotyped viruses than WT, UFO in a
374 combined analysis (p=0.003, 0.0006 respectively) (Figures 4D, 4E left). Additionally, groups
375 immunized with UFO variants showed sporadic induction of moderately better neutralizing
376 responses against tier2 X1632 (Clade G) pseudovirus than the WT (Table S3B).

377 In an attempt to evaluate the ability of the serum to recognize diverse full-length envelopes,
378 we monitored binding of purified serum IgGs to 293T cells expressing membrane anchored gp160
379 including tier1 and tier2 Global Panel (deCamp et al., 2014) of envelopes (representative plots in
380 S7A Fig). Reactivity to the envelope panel was poor in WT and UFO groups and increased
381 significantly in UFO-v2 and UFO-v2-RQH¹⁷³ groups with UFO-v2-RQH¹⁷³ showing the highest
382 responses (Figure 4F). As anticipated, the serum antibodies recognizing the membrane anchored
383 envelope correlated positively with neutralization responses (Figure 4G). These results
384 demonstrated the UFO-v2 changes introduced to stabilize the trimer, resulted in induction of better
385 autologous neutralizing and cell surface env binding antibody responses relative to wild-type
386 protein; and the V2-HS changes K166R, H170Q in UFO-v2 (i.e., UFO-v2-RQH¹⁷³) further
387 enhanced these responses.

388

389 **173Y modification in UFO-v2-RQH¹⁷³ marginally reduces induction of functional antibody 390 responses.**

391 To understand the contribution of 173Y in the induction of functional antibody responses, we
392 compared neutralizing, antibody-dependent cell-mediated virus inhibition (ADCVI), and cell
393 surface envelope binding activity of IgGs purified from the UFO-v2-RQY¹⁷³ group. In all these
394 cases, we observed modest decrease in responses in the UFO-v2-RQY¹⁷³ group compared to
395 UFO-v2-RQH¹⁷³ group (Figures 4D, 4E left, 4F, 4H), indicating that 173Y modification can
396 negatively influence the induction of functional antibody responses in the context of UFO-v2-
397 RQH¹⁷³. This observation prompted us to investigate if 173Y would be selected over 173H in
398 natural HIV-1 isolates as it elicited weaker anti-viral responses? To address this, we analyzed V2-
399 HS region (res 166-173) of Clade C consensus sequences from tier1 (n=19), tier2 (n=150) and
400 tier3 (n=31) isolates categorized by Rademeyer, C., et al. 2016(Rademeyer et al., 2016). We

401 observed increased occupancy of highly conserved Tyr and reduced occupancy of the sub-
402 dominant His residue at 173 position as the tier level (or difficulty level to neutralize the virus)
403 increased from tier1 to tier3 (Figure 4I, tier1 Y 60% and H 15%, tier2 Y 67% and H 9%, tier3 Y
404 77% and H 7%). The data corroborated with possible selection of Tyr at 173 position in the viral
405 envelopes to increase its chances to escape the immune system by decreasing tendency to elicit
406 anti-viral responsive Abs, relative to 173H. Presence of Tyr or His at 173 position in the backbone
407 of C.1086 envelope did not influence its infectivity, in the absence of any immune pressure (S7B
408 Fig). It will be important to monitor infectivity of the variants in other cell types. It should be noted
409 that the sequence analysis was limited by the number of tier-categorized clade C sequences
410 available, and 173 was not the only position being influenced by the tier level. In summary, the
411 choice of residue (here, H/Y) at 173 position in C.1086 UFO-v2 V2-HS protein was “capable” of
412 tuning the generation of antibodies with anti-viral functions; an important implication for vaccine
413 design.

414

415 **173Y modification in UFO-v2-RQH¹⁷³ enhances the breadth of V1V2 scaffold specific
416 responses.**

417 Immune correlates in the RV144 clinical trial, multiple SIV and SHIV challenge studies in rhesus
418 macaques have shown the positive association of V1V2-scaffold specific antibodies with reduced
419 infection risk (Barouch et al., 2012; Haynes et al., 2012; Roederer et al., 2014; Zolla-Pazner et al.,
420 2019; Zolla-Pazner et al., 2013) ability to generate broad V1V2 responses as an important property
421 of an immunogen. Moreover, UFO-v2-RQ(H/Y)¹⁷³ displayed (a) higher V2 loop dynamics,
422 accessibility of this region on the C.1086 trimers relative to well-ordered BG505 SOSIP, and (b)
423 differences in ability to display V1V2 epitope targeted by specific bnAbs with time; some features
424 likely to influence the elicitation of non-native scaffold V1V2 specific responses. We thereby
425 evaluated if the mutations and V2-HS changes influenced the generation of broad V1V2-scaffold
426 specific Abs in rabbits. To investigate the breadth of V1V2-scaffold reactivity, we assayed binding
427 to gp70-V1V2 scaffold proteins from 16 HIV-1 strains spanning diverse clades by Binding Antibody
428 Multiplex Assay (BAMA) (Zolla-Pazner et al., 2014), in addition to monitoring this against the
429 homologous strain by ELISA. Rabbits immunized with the UFO variants induced higher
430 homologous V1V2-scaffold specific responses than the WT protein; notably highest titers
431 measured by ELISA were seen in UFO-v2 V2-HS groups (Figure 5A). All immunogens generated
432 cross-reactive V1V2-scaffold specific antibodies which were overall significantly higher and broad
433 in the UFO-v2 variants than the WT (Figures 5B, 5C, S6G). Interestingly, UFO-v2-RQY¹⁷³ elicited
434 markedly higher V1V2-scaffold specific responses (Figure 5B), with higher recognition breadth
435 ($p < 0.001$, Figure 5C) compared to UFO-v2-RQH¹⁷³. Rabbit #537 present in UFO-v2-RQY¹⁷³
436 immunized group, exhibited the highest V1V2 breadth. The results indicated favorable contribution

437 of UFO-v2 in enhancing the cross-reactive V1V2-scaffold breadth, which was further enhanced by
438 173Y in combination with the V2-HS changes (K166R/H170Q). In-terms of binding responses
439 measured against C.1086 V2-HS (res. 166-180) and V2 cyclic (V2 cyc) peptides, all groups
440 showed weak binding titers, and the V2 cyc specific responses correlated positively with gp70
441 C.1086 V1V2 titers (S6C-E Fig). The inherent V2 loop dynamics and accessibility of this region on
442 C.1086 trimers measured by HDX-MS may potentially explain the ability of C.1086 UFO-v2 native-
443 like trimers to elicit antibodies that show a broad range of V1V2-scaffold binding. Moreover,
444 differences observed between UFO-RQ(H/Y)¹⁷³ immunogens in terms of their ability to display
445 V1V2 epitope targeted by V1V2 specific bnAbs with time could be one of the factors leading to the
446 differences in immune responses elicited in the study.

447 PCA analysis of the immunogenicity data segregated UFO-v2-RQH¹⁷³ and UFO-v2-
448 RQY¹⁷³ into two separate clusters, implying true differences in immune responses elicited due to
449 changes at 173 position (Figure 5D). Encouragingly, UFO-v2 and UFO-v2-RQH¹⁷³ groups
450 clustered separately indicating amino-acid differences at K166R and H170Q; previously discussed
451 to be modulating native like trimer folding, resulting in measurably different immune responses as
452 well. However, V2-HS changes and optimizations in the presence of 173Y (UFO-v2-RQY¹⁷³) did
453 not seem to additionally influence immunogenicity and thereby clustered with the ancestor UFO
454 group, rabbit #537 being the outlier. Most notable variables significantly ($p<0.05$) contributing
455 towards these differences in PCA responses were binding to V1V2-scaffolds of tier2 homologous
456 and heterologous envelops, membrane anchored tier2 25710 env, and neutralization against
457 25710 pseudotyped virus (Figure S6Hs). Overall, the data suggested an important role of V2-HS
458 residues, particularly 173 position in modulating the immune responses, with nature of the residue
459 as the governing player.

460

461 **Trimer stabilizing modifications induce antibodies that compete with CD4bs specific** 462 **broadly neutralizing antibodies.**

463 To gain insights into the epitope specificity of the antibody response induced by these immunogens
464 and determine epitope-specificity induced by our trimer modifications, we performed competition
465 binding experiments between rabbit serum and a panel of well-characterized bnAbs by BLI. The
466 epitope targeted by immunized rabbit IgG was identified by a reduction in binding of C.1086 trimer
467 (or competition) to specific mAb (immobilized on biosensor) in the presence and absence of rabbit
468 IgG isolated two weeks post final protein boost (representative BLI responses shown in Figure 6A).
469 Responses from trimer + pre-bleed IgG served as negative control, while rabbit IgG in presence
470 of only buffer accounted for the background signal. Encouragingly, we observed generation of
471 CD4bs specific Abs (competition with NIH45-46^{G54W}) in all UFO-v2 backbone bearing groups
472 (Figure 6B) and correlated positively with homologous C.1086 neutralization IC₅₀; concentration of

473 IgG required for 50% neutralization of pseudovirus ($p=0.002$, $r= -0.6$, Figure 6C). All rabbits with
474 an $IC_{50} < 400\mu\text{g/ml}$ also showed modest competition with HJ16 CD4bs bnAb. These results
475 demonstrated early signs of plausible presence of CD4bs neutralizing Abs in the serum. Hence,
476 we created a series of CD4bs mutants in the 1086.C K160N RQH background: N279Q, N280D,
477 S365K, I371A, G458Y, G459(E/P); only N279Q and N280D yielded infectious units. We evaluated
478 neutralization sensitivity of these mutants to sera from the immunized rabbits and observed
479 reduced neutralization of N279Q (in few) and N280D KO mutant viruses (5-fold median reduction
480 in IC_{50} relative to parent C.1086 K160N RQH in all the purified IgGs tested, regardless of the
481 immunization group, Supplementary Table S3c). This suggested the presence of CD4bs Abs in
482 the serum which were different from VRC01-class of bnAbs (VRC01-class CD4bs bnAb activity is
483 dependent on N280(Lynch et al., 2015)); further analyses are needed to identify the fine specificity
484 of the neutralizing activity in these sera. Interestingly, rabbit #537 (IC_{50} against C.1086
485 RQH=173 $\mu\text{g/ml}$) immunized with UFO-v2-RQY¹⁷³ seemed to have elicited V1V2 specific Abs
486 competing against prototype PG16 (99%), PG9 (86%), VRC26.09 (64%), PGDM1400 (54%) and
487 PGT145 (48%) bnAbs, besides eliciting CD4bs specific Abs in the serum (Figures 6A, 6B). None
488 of the rabbits elicited V3 glycan specific (PGT121 like) antibodies. Most rabbits bearing CD4bs
489 bnAb epitope specificity also exhibited non-neutralizing V3 (39F like), V2p (CH58 like) and V2i
490 (697-30D) targeting antibodies. CAP228-16H V2p Ab recognizes both 173H and 173Y bearing V2
491 peptides unlike CH58 and exhibit potent ADCC activities(van Eeden et al., 2018). Encouragingly,
492 our data suggested the presence of CAP228-16H like Abs in all rabbits vaccinated with UFO-v2-
493 RQH¹⁷³, in contrast to only one out of four rabbits (rabbit #537) in UFO-v2-RQY¹⁷³ group. Overall,
494 the stabilized UFO variants were able to induce CD4bs-directed and, one instance of V1V2 binding
495 Abs which competed for binding with bnAbs specific for those epitopes.

496 **Discussion**

497 Here, using structure and sequence-guided strategies we engineered the C.1086 envelope
498 protein (referred as UFO-v2-RQH¹⁷³) to elicit antibodies in an animal model with improved
499 functional tier2 anti-viral activities and broad V1V2 scaffold specific binding responses compared
500 to WT protein, where past attempts using WT variants were reported to be inefficient in eliciting
501 any homologous neutralization responses (Burton et al., 2019; Kasturi et al., 2017; Styles et al.,
502 2019). The SOSIP variant of C.1086 mostly yielded aggregates as observed earlier for other
503 envelope sequences (Guenaga et al., 2015a). Disulfide bond-stabilized I201C-A433C
504 substitutions have been widely used to reduce the CD4 triggered conformational change and yield
505 better temporal stability to the HIV-1 trimer than its substitute A433P (Joyce et al., 2017; Kwon et
506 al., 2015). Here, we observed similar binding profiles of DS and 433P variants of C.1086 UFO
507 towards env specific mAbs (data not shown), and we thereby investigated the immunogenicity of

508 A433P in combination with E64K/T316W changes i.e. UFO-v2 variants in rabbits. All UFO-v2
509 variants showed reduced exposure of non-neutralizing epitopes, which resulted in lower undesired
510 V3 specific immune responses. The UFO-v2 variant also displayed ability to induce higher tier2
511 virus (envelope) targeting functional antibodies and broad V1V2-scaffold reactive antibodies. We
512 further engineered the V2 region of C.1086 UFO-v2 trimer to improve the abundance of well-
513 formed trimers displaying enhanced binding to V1V2 apex specific bnAbs; PGT145. This was
514 guided by consensus Clade C V2 hotspot sequence based mutational screens and lead to the
515 generation of UFO-v2-RQ(H/Y)¹⁷³ variants, with K166R/H170Q/173(H/Y) changes. The variable
516 V1V2 loops in C.1086 UFO-v2 trimers were more dynamic relative to BG505 SOSIP trimer, which
517 is known to have a well-structured apex V1V2, and hence a potential factor responsible for
518 induction of antibodies by C.1086 UFO-v2 variants targeting flexible V1V2 antigen, such as V1V2-
519 scaffolds.

520 The native pre-fusion state of the envelope is critically regulated by the V1V2 conformation;
521 consisting of inter V2 β -strand interactions shielded by highly dense glycan network and a cationic
522 cleft in the three-fold trimer axis. Changes at these and proximal positions are likely to influence
523 the dynamics, quaternary epitope and inter-protomer interactions at the apex. For instance, point
524 substitutions M161A, L165A, D167A in the V1V2 region of BG505 SOSIP have been previously
525 reported to form mis-folded trimers (Lee et al., 2017). In the current study, we found R166K, Q170H
526 V2 changes in C.1086 UFO-v2 and BG505 SOSIP envelope proteins to increase the proportion of
527 misfolded higher-order oligomers/aggregates, presumably by destabilizing the quaternary epitope,
528 inter-V2-strand interactions at the apex, and play a role in folding of the envelope. Molecular
529 understanding of how changes at the V2 apex influence the envelope protein folding kinetics is an
530 unanswered area.

531 Previous studies have highlighted enhanced sulfation of Tyr at 173 position to increase
532 recognition by trimer specific bnAbs, and substituting 173 Tyr to either Ala or Phe to alter
533 neutralization sensitivity specific to an “open” conformation (Cimbro et al., 2014; Guzzo et al.,
534 2018), suggesting important role of 173 position in regulating native envelope conformation.
535 Characterization of the serum elicited by the C.1086 UFO-v2-RQ(H/Y)¹⁷³ immunogens highlighted
536 the importance of sequence-guided V2 hotspot changes in tuning the immune responses,
537 specifically choice of residues His or Tyr at 173 position. The HDX-MS data indicated that the local
538 and global conformation of the trimer was not altered by the H173Y modification for the peptides
539 monitored. Our BLI results suggested, the choice of residues at 173 position (in context with
540 C.1086 UFO-v2-RQ(H/Y)¹⁷³ proteins) could influence the durability in maintaining the V1V2 apex
541 specific antigenicity (monitored at baseline) for an extended time-period, *in-vitro*. The 173H variant
542 (UFO-v2-RQH¹⁷³) displayed the reactive epitope (V2 B-C β -strands) present at the apex of trimer
543 for an extended period, at 25°C *in-vitro* compared to its 173Y counterpart. Located in the V2 C β -

544 strand, residue 173 is adjacent to N156 and its associated glycan, which is spatially proximal to
545 glycan at N160. N156 has been shown to be involved in recognition by V2 apex targeting bnAbs,
546 including PG16, PGT145 (Lee et al., 2017; Pancera et al., 2013). Loss of N156 GlcNAc on the
547 envelope has been reported to alter the inter-V2 strand interaction, form aberrant trimers (Lee et
548 al., 2017) and non-infectious units (observed in this study). Though the amino acid type at 173
549 position did not alter local structural order of proximal peptide (“FYKL” res. 176-179) monitored by
550 HDX-MS, it is conceivable that the side chain choice at N173 might influence the disposition of the
551 glycan chain at N156 and its associated interactions with the V1V2 trimer specific bnAbs; 173H
552 favoring this interaction over the 173Y in the context of C.1086 UFO-v2-RQ(H/Y)¹⁷³ trimers.
553 Additionally, it is possible that amino acid type at this position may influence native-like trimer’s
554 ability to form higher order oligomers such as larger assemblies of trimers when the proteins are
555 incubated at 25°C for an extended time-period, and occlude/alter accessibility of the V1V2 epitope
556 for recognition by V1V2 trimer specific bnAbs. Such an interaction would be consistent with (a) the
557 formation of larger and more heterogeneous species over time by UFO-v2-RQY¹⁷³, as monitored
558 by DLS at 25°C at relatively higher frequency than UFO-v2-RQH¹⁷³. This would agree with the time
559 dependent V1V2 trimer specific affinity differences; particularly against PGT145, measured for the
560 UFO-v2-RQ(H/Y)¹⁷³ proteins by BLI. These structural differences, as one of the potential factors,
561 may help explain some of differences in immune responses observed for the 173 position variants,
562 *in-vivo* in this study. Accessibility of the V1V2 quaternary epitope present at the apex of the trimer
563 could influence the induction of antibodies with anti-viral functional activities e.g. neutralization,
564 ADCVI, ADCC responses; and V1V2-scaffold specific binding responses, and could influence
565 efficacy of the immunogen in an animal challenge study. Increased V1V2-scaffold Abs have been
566 correlated with reduced risk of viral acquisition and anti-viral activities e.g. ADCC. However, UFO-
567 v2-RQY¹⁷³ immunized group exhibiting highest V1V2-scaffold binding Abs showed minimal anti-
568 viral ADCVI activity. This could be due to (a) differences in the assays, or (b) nature of the V1V2-
569 scaffold Abs induced by 173Y and other studies, including those generated by 173H variant which
570 needs in-depth study.

571 In summary, we generated clade C C.1086 trimer capable of simultaneously inducing
572 functional autologous tier2 virus reactive antibodies as well as broad V1V2-scaffold specific
573 responses in rabbits. In addition, our results highlighted the influence of V2 residues 166R, and
574 170Q in the formation of well-folded C.1086 and BG505 trimers in solution, His or Tyr at 173
575 position in altering durability in displaying V1V2 epitope reactive to V1V2 bNAbs with time *in-vitro*,
576 and in combination with the highly dynamic feature of the V1V2 region of C.1086 trimers to
577 modulate the induction of V1V2-scaffold specific responses and functional antibody responses.
578 Identification of 173(H/Y) like residues by high throughput screening and sequence analyses

579 across various regions of the envelope surface may improve our fundamental understanding of
580 linking relationship between fine-tuned antigen design and immune outcome.

581 **Materials and Methods**

582 **Immunizations in rabbits**

583 Five C.1086 immunogens viz. WT, UFO, UFO-v2, UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ were tested
584 for their immunogenicity responses in female New-Zealand white rabbits (10-12 weeks old, n=4
585 per group). The rabbits were housed and immunized at Covance Laboratories, Inc., Denver, PA,
586 USA in compliance with IUCUC protocol 0065-18. Each rabbit was immunized subcutaneously
587 with group specific protein (30 μ g/dose) on the neck (dorsal area), formulated with 375U of ISCOM
588 as adjuvant (from Darrel J. Irvine, Howard Hughes Medical Institute) on weeks 0, 8, 24 and 40.
589 Serum was collected before (pre-bleed) and two weeks after each immunization to monitor the
590 antibody responses.

591

592 **Design of C.1086 constructs and mutagenesis**

593 All C.1086 proteins generated in the study correspond to 31-664 residues (HxB2 numbering) of
594 C.1086 sequence (Genebank id FJ444392.1) and contain K160N (improve binding to PG9 bnAb),
595 V295N (2G12 binding) and N334S (improve binding to PGT121 and 10-1074) mutations. C.1086
596 WT (⁵⁰⁸RRRRRR⁵¹¹ or ⁵⁰⁸R6⁵¹¹ to increase furin cleavage efficiency), SOSIP (A501C/T605C,
597 ⁵⁰⁸RRRRRR⁵¹¹)(Sanders et al., 2013), NFL (Native Flexibly Linked, I559P,
598 ⁵⁰⁸(GGGGS)₂⁵¹¹)(Sharma et al., 2015), UFO (Uncleaved preFusion Optimized, ⁵⁰⁸(GGGGS)₂⁵¹¹,
599 ⁵⁴⁷NPDWLPDM⁵⁶⁹, no disulphide linkage A501C-T605C)(Kong et al., 2016), UFO-v2
600 (⁵⁰⁸(GGGGS)₂⁵¹¹, ⁵⁴⁷NPDWLPDM⁵⁶⁹, E64K/T316W/A433P) envelope inserts with GMCSF leader
601 sequence (MWLQGLLLLGTVACSIS) were synthesized by GenScript and subcloned between Clal
602 and Nhel sites of pGA1 vector (Kan^R). For generating V2 hotspot (HS) mutants, residues 166-173
603 in V2 hotspot region of C.1086 differing from the Clade C Consensus sequence i.e. positions 166,
604 170, 172 and 173 were mutated to either dominant and/or sub-dominant amino acids present in
605 the consensus sequence. Mutagenesis was done by inverse PCR using non-overlapping forward
606 and reverse primers. The mutant codon was present at the 5' end of the forward primer(Jain and
607 Varadarajan, 2014). pGA1 vector (Kan^R) expressing C.1086 UFO-v2 was used as the
608 parent/template for V2-HS PCR reactions. NEB® 5-alpha E. coli cells (NEB, catalog no C2987H)
609 and Sanger sequencing were used to transform, screen and confirm the positive clones
610 respectively. Mutant pCDNA3.1 full length C.1086 K160N envelope bearing plasmids (used in
611 neutralization mapping assays) were generated by introducing mutant codons as described above
612 using pCDNA3.1 C.1086 K160N vector (Amp^R) as template for PCR reactions and transformation
613 of the blunt ligated mixture in NEB® Stable Competent *E. coli* cells (NEB, catalog no C3040H,
614 30°C). To generate gp70 C.1086 V1V2 RQ(H/Y)¹⁷³ constructs, gp70 (design of gp70 V1V2 has
615 been described previously (Zolla-Pazner et al., 2014)) was synthesized by Genescrypt in frame
616 with C.1086 V1V2 (res. 120-204; K166R/H170Q for C.1086 V1V2 RQH¹⁷³ and

617 K166R/H170Q/H173Y for C.1086 V1V2 RQY¹⁷³) at its C terminus, and GMCSF leader sequence
618 followed by 6xHis tag in-frame at its N terminus, and sub-cloned between Clal and Nhel sites in
619 pGA1 vector. The BG505 SOSIP envelope insert (Genebank id ANG65466.1, res. 31-664,
620 A501C/T605C/T332N, ⁵⁰⁸RRRRRR⁵¹¹,(Sanders et al., 2013)) was synthesized by Genescrypt with
621 GMCSF leader sequence at its N terminus and sub-cloned between Clal and Nhel sites of pGA1
622 vector. To generate V2-HS mutants of BG505 SOSIP, we used inverse PCR using non-
623 overlapping forward and reverse primers as described above for generating C.1086 V2-HS
624 mutants.

625 Gp70_sequence:^{N_terminus}VYNITWEVTNGDRETVWAISGNHPLWTWWPVLTPLCMLALSGPPH
626 WGLEYQAPYSSPPGPPCCSGSSGSSAGCSRDCDEPLTSLTPRCNTAWNRLKLDQVTHKSSEG
627 FYVCPGSHRPREAKSCGGPDSFYCASWGCETTGRVYWPSSWDYITVDNNLTTSQAVQVCK
628 DNKWCNPLAIQFTNAGKQVTSWTGHYWGLRLYVSGRDPGLTFGIRLRYQNLGPRVPIGPNPV
629 LADQLSLPRPNPLPKPAKSPP^{C_terminus}.

630

631 **Purification of protein**

632 The envelope gp140 glycoproteins cloned in Kan^R pGA1 plasmid were transiently expressed from
633 Expi293F cells using the ExpiFectamineTM 293 transfection kit (ThermoScientific) per
634 manufacturer's protocol and grown at 37°C, 8% CO₂ at 130rpm. The supernatant was harvested
635 72hrs after transfection in presence of EDTA free protease inhibitor (Millipore Sigma, catalog no
636 11836170001) and affinity purified by *Galanthus nivalis* lectin agarose (Vector Labs, catalog no
637 AL-1243-5, pre-equilibrated with PBS). Bound protein was eluted in presence of 1M methyl α-D-
638 mannopyranoside (Sigma). The protein was dialyzed against PBS and subjected to size-exclusion
639 chromatography using a Superdex 200 Increase 10/300 GL (Sigma, GE Healthcare product)
640 column on an AktaTM Pure (GE) system. The trimeric peak was collected, concentrated using
641 Amicon Ultra-4, MWCO 100kDa, and quantified by BCA assay (PierceTM, ThermoScientific). To
642 obtain highly monodisperse trimeric population for HDX-MS and DLS experiments, an additional
643 hydrophobic Interaction chromatography (HIC) based purification (described by Verkerke, et. al.,
644 2016 (Verkerke et al., 2016)) was done on SEC purified protein samples prior to experiments. The
645 proteins purified from SEC were dialyzed against a high salt buffer A (2M NH₄SO₄, 100mM
646 NaH₂PO₄, 0.02% sodium azide; pH 7.4), bound to a pre-equilibrated (high-salt buffer A) Hitrap
647 Phenyl HP column (Cytiva, catalog no 17519501), and eluted using a linear gradient (0-100%) of
648 low salt buffer B (0.1M NaH₂PO₄, sodium azide 0.02%, pH 7.4) using an AktaTM Pure system (GE).
649 The eluates containing trimeric peak of interest were pooled, dialyzed against PBS, concentrated
650 and quantified. In all cases, the trimeric status and purity of the proteins were confirmed by BN-
651 PAGE (NuPAGETM, 4-12% Bis-Tris Protein Gels, ThermoScientific). The gp70 V1V2 proteins were
652 purified by His based affinity purification, using HisPurTM Ni-NTA resin (ThermoFisher,

653 catalog no 88221), as described in the manufacturer's protocol. Briefly, the supernatant was
654 diluted (1:1) in equilibration buffer (20mM sodium phosphate, 300mM sodium chloride, 10mM
655 imidazole in PBS, pH 7.4) and bound to HisPur™ Ni-NTA column (pre-equilibrated with
656 equilibration buffer). The column was washed with wash buffer (25mM imidazole in PBS; pH 7.4)
657 to remove non-specific loosely bound proteins, followed by elution of the protein in presence of
658 250mM imidazole in PBS, pH 7.4. The eluted protein was dialyzed against PBS, concentrated
659 using Amicon Ultra-4, MWCO 10kDa, and quantified by BCA assay. The purity of the protein was
660 monitored by SDS-PAGE, and western blot. BG505 SOSIP T332N protein used as reference in
661 mass spectrometry-based experiments was expressed from pPPI4 vector (kindly provided by Dr.
662 John P. Moore, Cornell University, NY, USA) in 293F cells and purified as described above for
663 C.1086 envelope gp140 constructs. For all assays using rabbit purified IgGs, IgG was purified from
664 immunized rabbit serum using Pierce™ Protein A IgG Purification Kit (ThermoFisher, cat. No.
665 44667) and dialyzed against PBS, as per manufacturer's instructions. The protein was
666 concentrated using Amicon Ultra-4, MWCO 30kDa, and quantified by BCA assay.

667

668 **Negative stain Electron Microscopy (NS-EM)**

669 Protein samples were diluted to 0.02 mg/ml, applied to a carbon coated Cu400 grid, and stained
670 with 2% (w/v) uranyl formate for 30-60 s. Data were collected on an FEI Tecnai Spirit T12
671 transmission electron microscope operating at 120 keV and equipped with a Tietz TVIPS CMOS
672 camera. A magnification of 52,000x was used, resulting in a physical pixel size at the specimen
673 plane of 2.05 Å. Data was collected using the Leginon software package (Suloway et al., 2005),
674 and processing (particle picking and stack creation) was performed in Appion (Lander et al., 2009).
675 Two-dimensional classifications were performed using MSA/MRA method described by (Ogura et
676 al., 2003). Class averages were inspected manually and compared to previously published 2D
677 class averages of HIV-1 Envelope SOSIP trimers (for example see (de Taeye et al., 2015)).

678 **Enzyme-linked Immunosorbent Assay (ELISA) to screen V2 hotspot (HS) mutants for 679 enhanced binding to V1V2 specific bnAbs**

680 C.1086 V2 hotspot envelope mutant supernatants collected 48hrs after transient transfection of
681 293T cells were screened for increase in binding to PGT145 than the parent C.1086 UFO-v2.
682 Envelope supernatants were immobilized onto ConA (Sigma, catalog no C2272, 25µg/ml in
683 HEPES buffer i.e., 10mM HEPES, 151mM NaCl, 4.7mM KCl, 2mM CaCl₂, 1.2mM MgCl₂, 7.8mM
684 Glucose, pH 8.5) coated ELISA maxisorp microtiter plates (ThermoFisher, catalog no 439454) at
685 RT for 2hrs. The plates were blocked with 5% BSA + 4% Whey in PBS, RT, 1hr. Serially diluted
686 envelope specific mAbs PGT145, PG9, PGT121, 3BNC117, 39F, CH58, CH59 Abs were added
687 to the plates at RT, 1hr, after which plates were incubated with mouse anti-human biotin (BD

688 Biosciences, catalog no 555785, 1:5000 dilution in 4% Whey buffer) and streptavidin horseradish
689 peroxidase (Vector Labs, catalog no SA5004, 1:1000 dilution) as secondary and tertiary Abs
690 respectively for 1hr at each step, RT. The plates were washed with PBS containing 0.05%Tween-
691 20 (6 times) after each incubation step. The plates were developed with 3,3',5,5'-
692 tetramethylbenzidine chromogenic substrate solution (KPL TMB Peroxidase substrate, SeraCare)
693 in dark. The reactions were quenched with phosphoric acid. Equal concentrations of the envelope
694 proteins (in supernatants) were added to the ELISA plates. The concentration was estimated by
695 densitometric analyses of the envelope specific bands monitored by western blot of SDS-PAGE
696 (+DTT) gel. ID6 (NIH AIDS reagents program, 0.5 μ g/ml), goat anti-mouse-HRP (SouthernBiotech,
697 catalog no 1030-05, 1:40,000 dilution in 4% Whey buffer) were used as primary and secondary
698 Abs for western blot. A_{450nm} recorded from the developed ELISA plates were analyzed to measure
699 binding area under the curve (AUC) against each mAb tested.

700 **ELISA to estimate C.1086 specific responses in immunized serum**

701 To monitor trimer specific responses, ELISA microtiter plates were coated with trimeric C.1086
702 UFO-v2-RQH¹⁷³ protein at 2 μ g/ml (in PBS), overnight at 4°C. The plates were blocked with 5%
703 BSA + 4% Whey in PBS, RT, 1hr. The plates were incubated with serially diluted serum at RT,
704 2hrs, followed by incubation with goat anti-rabbit HRP (SouthernBiotech, catalog no 4010-05,
705 dilution 1:4000), RT, 1hr. The plates were washed with PBS containing 0.05%Tween-20 (6 times)
706 after each incubation step and developed as described above. To monitor C.1086 V3 responses,
707 ELISA plates coated overnight with V3 peptide (res. 296-33, 1 μ g/ml in PBS) were used. gp70
708 V1V2 specific responses were monitored by using plates coated with 2 μ g/ml His-tag purified gp70
709 C.1086 V1V2 RQH (K166R/H170Q/H173) and RQY (K166R/H170Q/H173Y) (Zolla-Pazner et al.,
710 2014) proteins. V2 hotspot specific responses were monitored using V2 peptides, V2-HS 173H
711 (¹⁶⁶KDKKHKVHALFYKLD¹⁸⁰) and V2-HS 173Y (¹⁶⁶RDKKQKVYALFYKLD¹⁸⁰) (1 μ g/ml in PBS
712 coated on ELISA microtiter plates). To monitor V2 responses cyclized C.1086 V2 (cV2,
713 synthesized by GenScript) ¹⁵⁷CSFNATTELKDKKHKVHALFYKLDVPLNGNSSSGEYRLINC¹⁹⁶
714 was used at 1 μ g/ml in PBS for coating. A_{450nm} recorded from the developed ELISA plates were
715 analyzed to measure end-point titre associated with the serum responses.

716

717 **Binding antibody multiplex assay (BAMA)**

718 Binding antibody multiplex assay (BAMA) of the serum was performed as described previously
719 (Tomaras et al., 2008; Zolla-Pazner et al., 2014). Briefly, serially diluted rabbit serum (5-fold dilution
720 starting with 1:80) were tested for binding to color-coded beads by Bio-plex (Biorad). The beads
721 were coated with avi tagged C.1086 WT, UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ gp140 and gp70
722 scaffolded proteins with V1V2 grafted from B.CaseA, 7060101641, CM244.ec1, TV1.21,

723 001428.2.42, CAP210.2.00.E8, C2101.c01, BJOX002000.03.2, BF1266_431a, 96ZM651.02,
724 RHPA4259.7, Ce1086_B2, 62357.14, 700010058, 191084_B7, and TT31P.2F10.2792 HIV-1
725 strains. Biotinylated anti-rabbit IgG was used as secondary antibody followed by streptavidin
726 conjugated fluorophore to monitor mean fluorescence intensity (MFI) signal at the dilutions tested.
727 This was subsequently used to calculate binding area under curve (AUC) for analyses. Instances
728 satisfying the following criteria were considered positive, i.e. (a)MFI at 1:80 dilution >100, (b) MFI
729 at 1:80 > antigen specific cut-off (95th percentile of all prebleed for the study for each antigen),
730 and (c) MFI > 3-fold that of the matched baseline or pre-bleed samples, both before and after blank
731 bead subtraction.

732

733 **Binding of purified serum IgGs to cell surface bound gp160 envelopes**

734 293T cells were transfected with full-length envelope expressing plasmid using lipofectamine2000
735 (ThermoFisher, catalog no 11668027) as per the manufacturer's protocol. The cells were
736 harvested 36 hours after transfection and incubated with 1 μ g/ml of purified rabbit IgG (week 42 i.e.
737 two weeks after the final protein boost) for 45minutes, RT in presence of live/dead fixable stain
738 (ThermoFisher, catalog no L34975). Envelope specific mAbs PGT145 (1 μ g/ml), PGT121
739 (0.5 μ g/ml), PG9 (0.5 μ g/ml), PG16 (1 μ g/ml) were used instead of rabbit IgG as controls to monitor
740 expression of envelope on the cell surface. Goat anti-rabbit IgG PE (SouthernBiotech, cat. no.
741 4030-09, 1:1000 dilution) was used as secondary antibody, 30minutes, RT for monitoring binding
742 to immunized rabbit IgG. To monitor binding to mAbs, mouse anti-human biotin (BD Biosciences,
743 catalog no 555785, 1:5000 dilution) was used as secondary antibody followed by streptavidin
744 conjugated PE (BD Biosciences, cat. no. 554061, 1:5000 dilution), 30minutes at RT each step.
745 The cells were washed twice at 1500rpm, 5minutes, RT with BD FACS buffer after each incubation
746 step. The samples were fixed in presence of 1% paraformaldehyde (in PBS) and acquired on LSRII
747 flow cytometer. pSV-A-MLV-envelope (NIH AIDS Reagent program) was used as negative control.
748 Binding of purified rabbit IgG to this was used as reference to gate binding of corresponding rabbit
749 IgG to live envelope positive cells. All envelope plasmids tested in the study constituting the global
750 panel of HIV-1 envelopes were obtained from NIH AIDS Reagent program.

751

752 **Bio-layer Interferometry (BLI)**

753 The assay was done in 384 well format on Octet Red384 platform, Pall ForteBio. Envelope specific
754 monoclonal Abs (NIH-AIDS Reagent program) were immobilized onto anti-human Fc coated
755 biosensors at 5 μ g/ml. The purified protein was used as analyte (1000nM-12.5nM). Env-Ab
756 association (k_{on}) was monitored for 300s, followed by dissociation (k_{off}) for 600s. 10X Kinetics
757 Buffer, Pall ForteBio was used as buffer for all steps in the assay. All steps were performed with
758 agitation at 1000rpm. K_d (dissociation constant = k_{off}/k_{on}) was estimated by globally fitting the

759 reference (buffer only) subtracted sensograms to a 1:1 binding model using ForteBio Octet Data
760 Analysis v9 software. For time dependent affinity estimates, purified trimeric proteins C.1086 UFO-
761 v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ were serially diluted (800-12.5 nM) in 10X Kinetics Buffer, Pall
762 ForteBio and incubated at room temperature (25°C) for 0, 4, 5, 8, 10, 12hrs, prior to affinity
763 measurements by BLI.

764 For competition assays to monitor epitope specificity of the serum by BLI, IgG was purified
765 from immunized rabbit serum. IgGs from pre-bleed and two weeks after the final protein boost
766 were purified. To identify the epitope on C.1086 envelope protein targeted by rabbit purified IgG,
767 we monitored competition between rabbit IgG and envelope specific mAb to bind the epitope in
768 question; e.g. competition between purified rabbit IgG and HJ16 to bind CD4 binding site on the
769 protein. Anti-human Fc biosensor was immobilized with 5µg/ml of envelope specific mAb. Purified
770 C.1086 UFO-v2-RQH¹⁷³ (800nM) was pre-incubated with 6.4µM of purified rabbit IgG in 10X
771 Kinetics Buffer, Pall ForteBio at 4°C, 1hr. This was used as analyte to monitor association with the
772 immobilized biosensor for 300s and dissociation for 600s. (A) Protein only was used to estimate
773 the maximum binding signal with desired mAb. (B) Protein + pre-bleed IgG served as negative
774 control, while (C) signal from buffer + immunized purified IgG was used to monitor background or
775 non-specific signal. (D) signal from protein + immunized purified rabbit IgG. % competition was
776 calculated as 100*(D-C)/Mean(A, (B-C)). No non-specific interaction was observed between mAb
777 immobilized biosensor and purified IgG alone. Area under the curve of the BLI sensogram (t=0 to
778 600s) was used as “signal” for analyses. Negative traces were inverted to calculate AUC.
779 Competition >40% was considered positive based on examination of signals observed in (B), (D)
780 and (C). Cases where AUC_{Signal B} > 1.5x AUC_{Control signal C} were considered for analyses. All steps
781 were performed with agitation at 1000rpm.

782 **Neutralization assay**

783 Neutralizing antibody activity in serum and purified IgG samples was measured in 96-well culture
784 plates by using Tat-regulated luciferase (Luc) reporter gene expression to quantify reductions in
785 virus infection in TZM-bl cells. TZM-bl cells were obtained from the NIH AIDS Research and
786 Reference Reagent Program (catalog no 8129). Assays were performed with HIV-1 Envelope
787 pseudotyped viruses produced in 293T cells essentially as previously described (Montefiori, 2009).
788 Serum samples were heat-inactivated at 56°C for 45 minutes prior to assaying; purified IgG were
789 not heat-inactivated prior to assaying. Samples were diluted over a range of 1:20 to 1:43740 in cell
790 culture medium and pre-incubated with virus (~150,000 relative light unit equivalents) for 1 hr at
791 37°C before addition of cells. Following a 48 hr incubation, cells were lysed and Luc activity
792 determined using a microtiter plate luminometer and BriteLite Plus Reagent (Perkin Elmer).
793 Neutralization titers were the sample dilution at which relative luminescence units (RLU) were

794 reduced by 50% compared to RLU in virus control wells after subtraction of background RLU in
795 cell control wells.

796

797 **Antibody Dependent Cell Mediated Virus Inhibition (ADCVI)**

798 ADCVI assay was performed as previously described with some modifications(Kannanganat et al.,
799 2016). Briefly, on day 1, CEM-NK^r cells were spinoculated at 1500xg for 3 hrs with tier2 Clade C
800 SHIV1157ipd3N4 virus at 31 TCID50/mL. On day 2 of the assay, cryopreserved human donor
801 PBMCs were thawed, washed, and counted. Cells were added to a V-bottom plate (Corning
802 incorporated, Corning, NY) at a concentration of 1x10⁵ cells/well and allowed to rest overnight. On
803 day 3, purified rabbit IgG (250 μ g/ml) was incubated for 2 hrs with 1x10⁴ infected CEM-NK^r cells
804 that had been washed 3 times to remove unbound virus. After 2 hrs of incubation, purified rabbit
805 IgG and infected CEM-NK^r cells were added to PBMCs. PGT121 (catalog no. 12343; NIH AIDS
806 Reagent Program) and EM4C04 (anti-influenza HA antibody) served as positive and negative
807 controls respectively. Five days post incubation, cells were washed 2 times and fresh media was
808 added to all wells. On day 7 post incubation, plates were spun at 1500 rpm for 5 mins and the
809 supernatant was harvested and frozen until p27 Gap ELISAs could be performed.

810

811 **SIV Gag p27 ELISA**

812 High binding ELISA plates (Thermo Scientific, catalog no 44-2404-21) were coated at 0.5 μ g/mL
813 with goat anti-mouse IgG2b (Southern Biotech, catalog no 1090-05) overnight at 4°C. Next day,
814 plates were washed 6x with PBST (PBS + 0.05%Tween-20) and blocked with 1% BSA in PBST
815 for 30 minutes at RT. Anti-p27 2F12 (catalog no. 2343; NIH AIDS Reagent Program) antibody at
816 0.5 μ g/mL was added to ELISA plates and incubated for 1 hr at 37°C. Plates were again washed
817 6x with PBST. Supernatant from ADCVI assays which were placed in the 4°C the night before,
818 were treated with TritonX (Sigma) to a make a 0.5% Triton X solution to inactivate virus particles
819 and release Gag. Gag supernatant was diluted 3-fold and added to ELISA plates and allowed to
820 incubate for 1 ½ hour at 37°C. Plates were washed and biotinylated anti-SIV IgG diluted 1:1000
821 and added to each well. Plates were again incubated for 1 hr at 37°C. After 6x wash, neutralite-
822 avidin peroxidase (N-HRP) (Southern Biotech, Birmingham, AL) was diluted 1:4000 and added to
823 each plate for 30 minutes at RT in the dark. After incubation, bound IgG was detected using
824 tetramethylbenzidine substrate (KPL, Gaithersburg, MD). The reaction was stopped by adding 100
825 μ l 2N H₂SO₄. The readings were recorded at 450nm.

826

827 **Hydrogen/Deuterium Exchange Mass Spectrometry**

828 5 μ gs (52 pmol) per timepoint of each protein (1086.C UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ and
829 BG505.664) were incubated in deuterated buffer (20mM PBS, 85% D₂O, pH 7.5) for 3s, 1min,

830 30min, and 20hrs at room temperature. The reaction was stopped via diluting 1:1 in ice-cold
831 quench buffer (200 mM tris(2-chlorethyl) phosphate (TCEP), 8 M urea, 0.2% formic acid) to a final
832 pH of 2.5 and flash frozen in liquid nitrogen followed by storage in -80°C prior to analysis. Zero
833 time points and fully deuterated samples were prepared as described by Verkerke et al.
834 2016(Verkerke et al., 2016). Online pepsin digestion was performed and analyzed by LC-MS-IMS
835 utilizing a Waters Synapt G2-Si Q-TOF mass spectrometer as described by Verkerke et al.
836 2016(Verkerke et al., 2016). Deuterium uptake analysis was performed with HD-Examiner (Sierra
837 Analytics) followed by HX-Express v2(Guttmann et al., 2014; Weis et al., 2006). The percent
838 exchange was normalized to the fully deuterated samples. Internal exchange standards (Pro-Pro-
839 Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were included in each reaction to control for variations
840 in ambient temperature during the labeling reactions.

841

842 **Dynamic Light Scattering (DLS)**

843 Dynamic light scattering (DLS) measurements were performed on a Dynapro Nanostar (Wyatt
844 Technologies). Trimer samples were diluted to 1 mg/ml in PBS and centrifuged at 15,000xg for 20
845 min prior to loading of 10 μ l into a low-volume quartz cuvette. The mean estimated hydrodynamic
846 radius, and polydispersity were generated from 30 acquisitions of 5 s at 20°C. For time dependent
847 DLS experiments, the samples were diluted to 1 mg/mL in PBS and allowed to sit at room
848 temperature (23 °C) for 4 hours prior to centrifugation and measurement by DLS.

849

850 **Statistical Analyses**

851 All statistical analyses were performed using GraphPad Prism v8 software. Data represent mean
852 or mean \pm SD. Statistical significance between groups was performed by Mann-Whitney's test and
853 two-tailed Student's t test (small sample size, comparing time dependent affinity values between
854 two C.1086 proteins for specific mAb tested). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. p-
855 values color coded by immunization group correspond to comparison with WT.

856

857 **Acknowledgements**

858 We thank Dr. Lynn Morris for providing CAP228-16H mAb; Dr. Jens Wrammert for anti-influenza
859 EM4C04 Ab, Dr. Cynthia Derdeyn for pCDNA3.1 C.1086 K160N plasmid and Dr. Pam Kozlowski
860 for anti-SIV IgG protein, and Dr. John P. Moore for pPPI4 BG505 SOSIP T332N plasmid. We also
861 thank Dr. Genevieve Giny Fouda for providing PGT151, CAP256-VRC26.08, PGDM1400 bnAbs.
862 We are extremely thankful to Dr. Du Yuhong, Emory University, GA, USA for letting use the Octet
863 RED384 instrument for the BLI experiments. We thank Dr. Raghavan Varadarajan, IISc,
864 Bangalore, India 560012 and Dr. Robert Sonowal, Emory University, GA, USA for their valuable
865 suggestions.

866 **Funding**

867 This work was supported in part by National Institutes of Health Grants U19 AI109633 to R.R.A.
868 R01 AI140868 to K.K.L, and NCRR/NIH base grant P51 OD011132 to YNPRC. Work related to
869 negative stain electron-microscopy done at Dr. Andrew B. Ward's lab was supported by the Bill
870 and Melinda Gates Foundation through the Collaboration for AIDS Vaccine Discovery (CAVD)
871 grant OPP1115782 to A.B.W.

872

873 **Author Contributions** R.R.A. and A.S.¹ designed the study and wrote the manuscript. A.S.¹
874 performed experiments and analyzed data. E.A.H did HIC purification, H/D exchange, DLS
875 experiments (supervised by K.L.), C.L. conducted neutralization assay (supervised by D.C.M.),
876 T.T.S did ADCVI, X.S did BAMA assay (supervised by G.D.T.), G.O and W-H.L. did NS-EM
877 (supervised by A.W.). A.S¹., N.C. and A.S² purified proteins and plasmids. A.S¹ performed ELISA,
878 BLI binding experiments. D.J.I. provided ISCOM. ¹Anusmita Sahoo, ²Ayalnesh Shiferaw.

879

880 **Competing interests** A patent has been filed on the C.1086 UFO trimers developed in the study
881 and R.R.A, A.S. and T.T.S are co-inventors of this technology. The authors declare no other
882 competing interests.

883

884 **Data and materials Availability** All unique mutant plasmids generated in this study may be
885 requested from the authors with a completed Materials Transfer Agreement. The study did not
886 generate/analyze any dataset/code.

887

888 **Figure Legends**

889

890 **Figure 1. Biophysical characterization of C.1086 base constructs.**

891 **(A)** Schematic representation of different C.1086 base constructs tested in the study. GM-CSF
892 leader sequence (LS) was used as secretory signal. **(B)** SEC profiles of 293F expressed, GNL
893 affinity purified C.1086 base constructs. Trimeric peak (black arrow) elution volume and proportion
894 (%, AUC), “Agg” Aggregate/Oligomeric peak. 2D-class averages of the UFO and UFO-v2 trimers
895 (purified after SEC) monitored by negative stain electron-microscopy shown at bottom right of
896 corresponding traces with total particles imaged, %native-like (red) and non-native like malformed
897 trimers (green) indicated. **(C)** Trimeric proportion of C.1086 NFL, UFO and UFO-v2 variants (mean
898 (value indicated on top of bar) \pm SD (error bars)) of at-least three independent
899 transfection/purifications, estimated from SEC profiles. Student’s t test (two tailed) for statistical
900 comparisons, * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.000$. **(D)** Comparison of binding affinities of
901 UFO and NFL trimers for various envelope specific mAbs. K_D UFO/ K_D NFL (left y-axis) and
902 K_{on} NFL/ K_{on} UFO (right y-axis, for instances where K_D could not be calculated due to no observable
903 dissociation in the experimental setting). Values<1 were inverted and multiplied by -1 for ease of
904 visualization. All plotted values >0 or lower affinity than NFL and vice-versa. -3<Fold-change<3
905 (gray shaded area) were not considered as significant change. **(E)** Similar plot as described in (C),
906 but comparing UFO-v2 vs UFO. **(F)** Bio-Layer Interferometry (BLI) responses of 200nM C.1086
907 UFO and UFO-v2 designs to CD4i non-nAbs 17b, 48d, and CD4-IgG2. **(G)** K_D (nM) of C.1086 NFL,
908 UFO, UFO-v2 against various bnAbs. Mean \pm SD. “nd” refers to “no dissociation” observed, and
909 hence K_D could not be calculated. **(D-G)** All binding affinities estimated by BLI. All C.1086
910 constructs carried K160N/V295N/N334S changes.

911

912 **Figure 2. Sequence guided mutations at V2 hotspot region improve properties of native-like
913 trimers.**

914 **(A)** V2 hotspot (HS) region (res. 166-173) of Clade C Consensus sequence (n=22415) with
915 corresponding C.1086 region mentioned below. C.1086 residues differing from the consensus
916 sequence highlighted in red. **(B)** Influence of indicated V2 HS modifications in C.1086 UFO-v2
917 protein on binding to various mAbs. The data are average of more than two independent
918 experiments. **(C)** BLI measurements of different C.1086 purified designs (400nM each) against
919 V1/V2 trimer apex specific PGT145 bnAb. **(D)** Comparison between binding affinities of optimized
920 UFO-v2 V2-HS mutants relative to UFO-v2 (K_D UFO-v2 V2-HS / K_D UFO-v2) against various
921 envelope specific mAbs. * K_{on} UFO-v2 / K_{on} UFO-v2 V2-HS for PGT121 as K_D could not be
922 calculated due to no observable dissociation. Values<1 were inverted and multiplied by -1 for ease
923 of visualization. All plotted values >0 or lower affinity than UFO-v2 and vice-versa. \pm 3-fold change

924 in values (gray shaded area) were not considered significant. (E) Trimeric proportion of C.1086
925 UFO-v2 (left) and BG505 SOSIP.664 V2-HS variants (right, mean (value indicated) \pm SD (error
926 bars) of at-least two independent purifications, and estimated from SEC profiles. (F) Blue native
927 PAGE (BN-PAGE) of purified C.1086 proteins with molecular weight standard. *, p<0.05; **,
928 p<0.01; ***, p<0.001; ****, p<0.0001 (Student's t test (two tailed), p-value indicated on top of bar
929 (E, left) corresponds comparison with UFO-v2 which has 166K,170H,173H.

930

931 **Figure 3. Structural properties of C.1086 UFO-v2-RQ(H/Y)¹⁷³ trimers measured by HDX-MS and**

932 time dependent BLI experiments.

933 (A) Top, Butterfly plots of C.1086 UFO-v2-RQH¹⁷³ and BG505 SOSIP.664 proteins comparing the
934 %exchange or deuterium uptake for homologous peptide segments (indicated from N to C
935 terminus) of the trimers detected in the experiment at each time point. Bottom, Differences in
936 %exchange or deuterium uptake for the homologous peptide segments of C.1086 UFO-v2-RQH¹⁷³
937 relative to BG505 SOSIP.664 trimer detected at each time point of the experiment. (B) These
938 differences in exchange between C.1086 and BG505 SOSIP trimers have been mapped on the
939 unliganded structure of BG505 SOSIP.DS trimer (pdb id 4ZMJ (Kwon et al., 2015)). (C) The
940 exchange kinetics of C.1086 UFO-v2-RQH¹⁷³ were similar to UFO-v2-RQY¹⁷³ (see Figure S4) and
941 hence the average %Deuterium uptake after 1 minute of exchange of peptide segments of C.1086
942 UFO-v2-RQ(H/Y)¹⁷³ trimers were mapped onto the structure of unliganded BG505 SOSIP.DS
943 trimer (pdb id 4ZMJ(Kwon et al., 2015)). (B,C) made using UCSF Chimera v1.14 (Pettersen et al.,
944 2004). (D) Time dependent fold reduction in binding affinity (K_D t hr / K_D 0 hr) of C.1086 UFO-v2-
945 RQH¹⁷³ and UFO-v2-RQY¹⁷³ immunogens against various envelope specific mAbs measured by
946 BLI, at 25°C. The purified proteins were incubated for specific time periods (t hr) at 25°C prior to
947 affinity measurements. In case of PGT121, fold reduction in association rate (K_{on} 0hr / K_{on} t hr) was
948 plotted as K_D could not be calculated due to no observable dissociation. Bars show Mean, error
949 bars SD of at-least three independent experiments. Student's t test for statistical comparisons,
950 *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

951

952 **Figure 4. 166R, 170Q modifications in V2-HS of UFO-v2 (UFO-v2-RQH¹⁷³) enhance induction**

953 of moderate anti-viral responses and binding to membrane anchored tier2 envelopes.

954 (A) Schematic overview of the immunogenicity regimen tested in rabbits. (B) Serum binding
955 antibody responses against C.1086 WT and trimeric UFO-v2-RQH¹⁷³ proteins measured by
956 Binding Antibody mediated Multiplex Assay (BAMA, indicated by area under the curve (AUC)) and
957 ELISA respectively. (C) Serum binding antibody responses against V3 peptide (left) and
958 normalized to total trimer specific responses (right) measured by ELISA. (D, E) Neutralizing
959 antibody titer against tier1 and tier2 HIV-1 envelopes. Concentration of purified IgG required to

960 achieve 50% neutralization (IC_{50} μ g/ml) is shown. $IC_{50} > 1480$ were assigned 1500 in (E). (F)
961 Binding of purified IgG (1 μ g/ml) from immunized rabbits to broad multi-clade HIV-1 full length
962 envelopes expressed on transiently transfected 293T cells. See Figure S6A for representative flow
963 plot and gating of env⁺ live cells. Row z-scores of the frequency of env⁺ live cells plotted. Env⁺
964 frequencies measured against each envelope in the panel for each rabbit has been shown in
965 combined plot. (G) Spearman's correlation between binding responses to membrane anchored
966 envelopes (C.1086 and 25710) and concentration of IgG required for 50% neutralization of the
967 corresponding envelope specific pseudovirus. (H) Percent reduction in replication of Clade C tier2
968 SHIV1157ipd3N4 virus in human PBMCs by purified IgGs (250 μ g/ml) from various immunized
969 groups (% ADCVI activity). Each data point represents averaged data for a rabbit IgG from three
970 independent experiments, each done in duplicates. (B-H) All analyses correspond to serum
971 collected two weeks post final protein boost. Refer to panel (A) for color coding of the immunization
972 groups. (I) V2 hotspot (HS) regions (res. 166-173) of Clade C tier1(n=19), tier2(n=150) and
973 tier3(n=31) (Rademeyer et al., 2016) mentioned. (B, E, F, H) Box and whiskers plots where box
974 extends from 25th to 75th percentile, median indicated by line, minimum and maximum values
975 indicated by whiskers. Statistical comparisons between groups by Mann-Whitney test (*p<0.05,
976 **p<0.01, ***p<0.001, ****p<0.0001, p values color coded by group correspond to comparison with
977 WT). All values plotted are the average of at-least two independent experiments.
978

979 **Figure 5. 173Y modification in UFO-v2-RQH¹⁷³ enhances the breadth of V1V2 scaffold
980 specific responses.**

981 (A) Serum binding antibody responses of the immunized groups against gp70 C.1086 RQ(H/Y)¹⁷³
982 V1V2 proteins by ELISA. Plotted values are the average of two independent experiments. (B)
983 BAMA analyses (binding AUC) of serially diluted WT, UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³
984 immunized serum to V1V2-scaffolds from 16 cross-clade HIV-1 isolates. Combined plot uses the
985 AUC values obtained against the panel for each rabbit. (C) V1V2 Breadth magnitude curves of all
986 immunized rabbits (dotted line) with mean response of a group (bold line). Refer to panel (A) for
987 color coding of the immunization groups. Unpaired two-tailed Kolmogorov Smirnov test to see
988 statistical difference between UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ groups. (D) Principal
989 Component Analyses (PCA using R) of serum characterization data obtained for all immunized
990 rabbits. All analyses correspond to serum collected two weeks post final protein boost. Mann-
991 Whitney test for statistical comparisons between groups (A, B) *p<0.05, **p<0.01, ***p<0.001,
992 ****p<0.0001. p-values color coded by group correspond to comparison with WT, and in (B right)
993 those colored green corresponds to comparison with UFO group. Box and whiskers plots (A, B
994 left) where box extends from 25th to 75th percentile, median indicated by line, minimum and
995 maximum values indicated by whiskers, B right median indicated by line with interquartile ranges.

996 **Figure 6. Mapping binding specificity of antibodies elicited in rabbits immunized with**
997 **C.1086 variants.**

998 **(A)** Representative BLI traces of competition binding experiment for purified IgG (rabbit #537)
999 against envelope specific mAbs. **(B)** %Competition of rabbit purified IgGs with envelope specific
1000 mAbs to bind C.1086 UFO-v2-RQH¹⁷³ trimers and gp70 C.1086 V1V2 (for 697-30D V2i mAb),
1001 represented as heatmap. Purified IgGs from 2 weeks after final protein boost used for analyses
1002 (**A, B**). Values <40%, false positive. “ND” denotes not determined due to <1.5-fold difference in
1003 signals between background (buffer + purified IgG) and positive (buffer + trimer) control binding
1004 signals for the mAb. C.1086 K160N RQH neutralization IC₅₀ values (concentration of IgG required
1005 for 50% neutralization of the virus) of rabbit purified IgG (filled squares, color coded based on IC₅₀
1006 values, see Figure 3D) mentioned above the rabbit codes. Data representative of at-least three
1007 independent experiments. **(C)** Spearman’s correlation between C.1086 K160N neutralization IC₅₀
1008 and competition (%) with NIH45-46 (estimated in **B**). Shaded orange area represents 95%
1009 confidence band. IC₅₀ >1480 were assigned 1500 (shaded gray area).

1010

1011 **Supplementary Information**

1012 The article contains following supplementary materials.

1013

1014 **Supplementary Figure and Table Legends**

1015

1016 **Supplementary Figures and Tables**

1017 Figure S1. Binding sensograms of purified C.1086 gp140 and gp70-V1V2 variants against
1018 envelope specific mAbs monitored by Bio-layer Interferometry (BLI), related to manuscript Figures
1019 1 and 2.

1020

1021 Figure S2. 2D Class averages of purified C.1086 gp140 variants by negative-stain electron
1022 microscopy, related to manuscript Figures 1 and 2.

1023

1024 Figure S3. Screening of C.1086 UFO-v2 V2-HS mutants and influence of the V2-HS modifications
1025 on protein trimeric proportion, related to manuscript Figure 2.

1026

1027 Figure S4. HDX-MS analyses of C.1086 UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ and homologous peptic
1028 peptides in BG505 SOSIP.664 trimers, related to manuscript Figure 3.

1029

1030 Figure S5. Time dependent structural differences monitored for C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants
1031 by BLI and DLS, *in-vitro*, related to manuscript Figure 3.

1032

1033 Figure S6. Characterization of antibody responses elicited by C.1086 variants in rabbits, related to
1034 manuscript Figures 4 and 5.

1035

1036 Figure S7. Representative flow plots showing binding of purified serum IgGs to 293T cells
1037 expressing membrane anchored gp160 and comparing infectivity of TZM-bl cells by C.1086
1038 RQ(HY)¹⁷³ pseudoviruses, related to manuscript Figure 4.

1039

1040 Table S1. Binding kinetics of C.1086 gp140 variants estimated by Bio-Layer Interferometry, related
1041 to manuscript Figures 1 and 2.

1042

1043 Table S2. Time dependent binding kinetics assessment of C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants
1044 against envelope specific mAbs by BLI at 25°C, related to manuscript Figure 3 and Figure S5.

1045

1046 Table S3. Neutralization sensitivity of serum from C.1086 immunized rabbits, related to manuscript
1047 Figure 4.

1048

1049

1050

1051 **References**

1052 Aldon, Y., McKay, P.F., Allen, J., Ozorowski, G., Felfodine Levai, R., Tolazzi, M., Rogers, P., He, L., de Val, N., Fabian, K., *et al.* (2018). Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers. *Cell Rep* 24, 3324-3338 e3325.

1053

1054

1055

1056 Arunachalam, P.S., Charles, T.P., Joag, V., Bollimpelli, V.S., Scott, M.K.D., Wimmers, F., Burton, S.L., Labranche, C.C., Petitdemange, C., Gangadhara, S., *et al.* (2020). T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. *Nat Med* 26, 932-940.

1057

1058

1059

1060 Bale, S., Martine, A., Wilson, R., Behrens, A.J., Le Fourn, V., de Val, N., Sharma, S.K., Tran, K., Torres, J.L., Girod, P.A., *et al.* (2018). Cleavage-Independent HIV-1 Trimers From CHO Cell Lines Elicit Robust Autologous Tier 2 Neutralizing Antibodies. *Front Immunol* 9, 1116.

1061

1062

1063

1064 Barouch, D.H., Liu, J., Li, H., Maxfield, L.F., Abbink, P., Lynch, D.M., Iampietro, M.J., SanMiguel, A., Seaman, M.S., Ferrari, G., *et al.* (2012). Vaccine protection against acquisition of neutralization-resistant SIV challenges in rhesus monkeys. *Nature* 482, 89-93.

1065

1066

1067

1068 Berendam, S.J., Styles, T.M., Morgan-Asiedu, P.K., Tenney, D., Kumar, A., Obregon-Perko, V., Bar, K.J., Saunders, K.O., Santra, S., De Paris, K., *et al.* (2021). Systematic Assessment of Antiviral Potency, Breadth, and Synergy of Triple Broadly Neutralizing Antibody Combinations against Simian-Human Immunodeficiency Viruses. *J Virol* 95.

1069

1070

1071

1072

1073 Binley, J.M., Lybarger, E.A., Crooks, E.T., Seaman, M.S., Gray, E., Davis, K.L., Decker, J.M., Wycuff, D., Harris, L., Hawkins, N., *et al.* (2008). Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. *J Virol* 82, 11651-11668.

1074

1075

1076

1077

1078 Bontempo, A., Garcia, M.M., Rivera, N., and Cayabyab, M.J. (2020). A Systematic Approach to HIV-1 Vaccine Immunogen Selection. *AIDS Res Hum Retroviruses* 36, 762-770.

1079

1080

1081 Bricault, C.A., Yusim, K., Seaman, M.S., Yoon, H., Theiler, J., Giorgi, E.E., Wagh, K., Theiler, M., Hraber, P., Macke, J.P., *et al.* (2019). HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design. *Cell Host Microbe* 25, 59-72 e58.

1082

1083

1084

1085 Brouwer, P.J.M., Antanasijevic, A., Berndsen, Z., Yasmeen, A., Fiala, B., Bijl, T.P.L., Bontjer, I., Bale, J.B., Sheffler, W., Allen, J.D., *et al.* (2019). Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. *Nat Commun* 10, 4272.

1086

1087

1088

1089 Burton, S., Spicer, L.M., Charles, T.P., Gangadhara, S., Reddy, P.B.J., Styles, T.M., Velu, V., Kasturi, S.P., Legere, T., Hunter, E., *et al.* (2019). Clade C HIV-1 Envelope Vaccination Regimens Differ in Their Ability To Elicit Antibodies with Moderate Neutralization Breadth against Genetically Diverse Tier 2 HIV-1 Envelope Variants. *Journal of virology* 93, e01846-01818.

1090

1091

1092

1093

1094 Cimbro, R., Gallant, T.R., Dolan, M.A., Guzzo, C., Zhang, P., Lin, Y., Miao, H., Van Ryk, D., Arthos, J., Gorshkova, I., *et al.* (2014). Tyrosine sulfation in the second variable loop (V2) of HIV-1 gp120 stabilizes V2-V3 interaction and modulates neutralization sensitivity. *Proc Natl Acad Sci U S A* 111, 3152-3157.

1095

1096

1097

1098 de Taeye, S.W., Ozorowski, G., Torrents de la Pena, A., Guttman, M., Julien, J.P., van den Kerkhof, T.L., Burger, J.A., Pritchard, L.K., Pugach, P., Yasmeen, A., *et al.* (2015). Immunogenicity of Stabilized HIV-1 Envelope Trimers with Reduced Exposure of Non-neutralizing Epitopes. *Cell* 163, 1702-1715.

1099

1100

1101 deCamp, A., Hraber, P., Bailer, R.T., Seaman, M.S., Ochsenbauer, C., Kappes, J., Gottardo, R., Edlefsen, P., Self, S., Tang, H., *et al.* (2014). Global panel of HIV-1 Env reference strains for standardized
1102 assessments of vaccine-elicited neutralizing antibodies. *J Virol* 88, 2489-2507.

1103

1104 Doria-Rose, N.A., Klein, R.M., Manion, M.M., O'Dell, S., Phogat, A., Chakrabarti, B., Hallahan, C.W.,
1105 Migueles, S.A., Wrammert, J., Ahmed, R., *et al.* (2009). Frequency and phenotype of human
1106 immunodeficiency virus envelope-specific B cells from patients with broadly cross-neutralizing
1107 antibodies. *J Virol* 83, 188-199.

1108

1109 Dubrovskaya, V., Guenaga, J., de Val, N., Wilson, R., Feng, Y., Movsesyan, A., Karlsson Hedestam, G.B.,
1110 Ward, A.B., and Wyatt, R.T. (2017). Targeted N-glycan deletion at the receptor-binding site retains HIV
1111 Env NFL trimer integrity and accelerates the elicited antibody response. *PLoS Pathog* 13, e1006614.

1112

1113 Dubrovskaya, V., Tran, K., Ozorowski, G., Guenaga, J., Wilson, R., Bale, S., Cottrell, C.A., Turner, H.L.,
1114 Seabright, G., O'Dell, S., *et al.* (2019). Vaccination with Glycan-Modified HIV NFL Envelope Trimer-
1115 Liposomes Elicits Broadly Neutralizing Antibodies to Multiple Sites of Vulnerability. *Immunity* 51, 915-
1116 929 e917.

1117

1118

1119 Escolano, A., Steichen, J.M., Dosenovic, P., Kulp, D.W., Goljanin, J., Sok, D., Freund, N.T., Gitlin, A.D.,
1120 Oliveira, T., Araki, T., *et al.* (2016). Sequential Immunization Elicits Broadly Neutralizing Anti-HIV-1
1121 Antibodies in Ig Knockin Mice. *Cell* 166, 1445-1458 e1412.

1122

1123 Excler, J.L., Ake, J., Robb, M.L., Kim, J.H., and Plotkin, S.A. (2014). Nonneutralizing functional
1124 antibodies: a new "old" paradigm for HIV vaccines. *Clin Vaccine Immunol* 21, 1023-1036.

1125

1126 Geretti, A.M., Harrison, L., Green, H., Sabin, C., Hill, T., Fearnhill, E., Pillay, D., Dunn, D., and Resistance,
1127 U.K.C.G.o.H.D. (2009). Effect of HIV-1 subtype on virologic and immunologic response to starting
1128 highly active antiretroviral therapy. *Clin Infect Dis* 48, 1296-1305.

1129

1130 Gorny, M.K., Pan, R., Williams, C., Wang, X.H., Volsky, B., O'Neal, T., Spurrier, B., Sampson, J.M., Li, L.,
1131 Seaman, M.S., *et al.* (2012). Functional and immunochemical cross-reactivity of V2-specific
1132 monoclonal antibodies from HIV-1-infected individuals. *Virology* 427, 198-207.

1133

1134 Guenaga, J., de Val, N., Tran, K., Feng, Y., Satchwell, K., Ward, A.B., and Wyatt, R.T. (2015a). Well-
1135 ordered trimeric HIV-1 subtype B and C soluble spike mimetics generated by negative selection display
1136 native-like properties. *PLoS Pathog* 11, e1004570.

1137

1138 Guenaga, J., Dubrovskaya, V., de Val, N., Sharma, S.K., Carrette, B., Ward, A.B., and Wyatt, R.T. (2015b).
1139 Structure-Guided Redesign Increases the Propensity of HIV Env To Generate Highly Stable Soluble
1140 Trimers. *J Virol* 90, 2806-2817.

1141

1142 Guenaga, J., Garces, F., de Val, N., Stanfield, R.L., Dubrovskaya, V., Higgins, B., Carrette, B., Ward, A.B.,
1143 Wilson, I.A., and Wyatt, R.T. (2017). Glycine Substitution at Helix-to-Coil Transitions Facilitates the
1144 Structural Determination of a Stabilized Subtype C HIV Envelope Glycoprotein. *Immunity* 46, 792-803
1145 e793.

1146

1147 Guttman, M., Garcia, N.K., Cupo, A., Matsui, T., Julien, J.P., Sanders, R.W., Wilson, I.A., Moore, J.P.,
1148 and Lee, K.K. (2014). CD4-induced activation in a soluble HIV-1 Env trimer. *Structure* 22, 974-984.

1149 Guzzo, C., Ichikawa, D., Park, C., Phillips, D., Liu, Q., Zhang, P., Kwon, A., Miao, H., Lu, J., Rehm, C., *et*
1150 *al.* (2017). Virion incorporation of integrin alpha4beta7 facilitates HIV-1 infection and intestinal
1151 homing. *Sci Immunol* 2.

1152

1153 Guzzo, C., Zhang, P., Liu, Q., Kwon, A.L., Uddin, F., Wells, A.I., Schmeisser, H., Cimbro, R., Huang, J.,
1154 Doria-Rose, N., *et al.* (2018). Structural Constraints at the Trimer Apex Stabilize the HIV-1 Envelope in
1155 a Closed, Antibody-Protected Conformation. *mBio* 9.

1156

1157 Haynes, B.F., Gilbert, P.B., McElrath, M.J., Zolla-Pazner, S., Tomaras, G.D., Alam, S.M., Evans, D.T.,
1158 Montefiori, D.C., Karnasuta, C., Sutthent, R., *et al.* (2012). Immune-correlates analysis of an HIV-1
1159 vaccine efficacy trial. *N Engl J Med* 366, 1275-1286.

1160

1161 He, L., Kumar, S., Allen, J.D., Huang, D., Lin, X., Mann, C.J., Saye-Francisco, K.L., Copps, J., Sarkar, A.,
1162 Blizzard, G.S., *et al.* (2018). HIV-1 vaccine design through minimizing envelope metastability. *Sci Adv* 4,
1163 eaau6769.

1164

1165 Hraber, P., Seaman, M.S., Bailer, R.T., Mascola, J.R., Montefiori, D.C., and Korber, B.T. (2014).
1166 Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection. *AIDS* 28, 163-
1167 169.

1168

1169 Huang, D., Tran, J.T., Olson, A., Vollbrecht, T., Tenuta, M., Guryleva, M.V., Fuller, R.P., Schiffner, T.,
1170 Abadejos, J.R., Couvrette, L., *et al.* (2020). Vaccine elicitation of HIV broadly neutralizing antibodies
1171 from engineered B cells. *Nat Commun* 11, 5850.

1172

1173 Jain, P.C., and Varadarajan, R. (2014). A rapid, efficient, and economical inverse polymerase chain
1174 reaction-based method for generating a site saturation mutant library. *Anal Biochem* 449, 90-98.

1175

1176 Jones, A.T., Shen, X., Walter, K.L., LaBranche, C.C., Wyatt, L.S., Tomaras, G.D., Montefiori, D.C., Moss,
1177 B., Barouch, D.H., Clements, J.D., *et al.* (2019). HIV-1 vaccination by needle-free oral injection induces
1178 strong mucosal immunity and protects against SHIV challenge. *Nat Commun* 10, 798.

1179

1180 Joyce, M.G., Georgiev, I.S., Yang, Y., Druz, A., Geng, H., Chuang, G.Y., Kwon, Y.D., Pancera, M., Rawi,
1181 R., Sastry, M., *et al.* (2017). Soluble Prefusion Closed DS-SOSIP.664-Env Trimers of Diverse HIV-1
1182 Strains. *Cell Rep* 21, 2992-3002.

1183

1184 Kannanganat, S., Wyatt, L.S., Gangadhara, S., Chamcha, V., Chea, L.S., Kozlowski, P.A., LaBranche, C.C.,
1185 Chennareddi, L., Lawson, B., Reddy, P.B., *et al.* (2016). High Doses of GM-CSF Inhibit Antibody
1186 Responses in Rectal Secretions and Diminish Modified Vaccinia Ankara/Simian Immunodeficiency
1187 Virus Vaccine Protection in TRIM5alpha-Restrictive Macaques. *J Immunol* 197, 3586-3596.

1188

1189 Kasturi, S.P., Kozlowski, P.A., Nakaya, H.I., Burger, M.C., Russo, P., Pham, M., Kovalenkov, Y., Silveira,
1190 E.L., Havenar-Daughton, C., Burton, S.L., *et al.* (2017). Adjuvanting a Simian Immunodeficiency Virus
1191 Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody
1192 Responses and Enhanced Protection in TRIM5alpha Restrictive Macaques. *J Virol* 91.

1193

1194 Klasse, P.J., Ketas, T.J., Cottrell, C.A., Ozorowski, G., Debnath, G., Camara, D., Francomano, E., Pugach,
1195 P., Ringe, R.P., LaBranche, C.C., *et al.* (2018). Epitopes for neutralizing antibodies induced by HIV-1
1196 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques. *PLoS Pathog* 14, e1006913.

1197 Klasse, P.J., LaBranche, C.C., Ketas, T.J., Ozorowski, G., Cupo, A., Pugach, P., Ringe, R.P., Golabek, M.,
1198 van Gils, M.J., Guttman, M., *et al.* (2016). Sequential and Simultaneous Immunization of Rabbits with
1199 HIV-1 Envelope Glycoprotein SOSIP.664 Trimers from Clades A, B and C. *PLoS Pathog* 12, e1005864.
1200
1201 Kong, L., He, L., de Val, N., Vora, N., Morris, C.D., Azadnia, P., Sok, D., Zhou, B., Burton, D.R., Ward,
1202 A.B., *et al.* (2016). Uncleaved prefusion-optimized gp140 trimers derived from analysis of HIV-1
1203 envelope metastability. *Nat Commun* 7, 12040.
1204
1205 Kulp, D.W., Steichen, J.M., Pauthner, M., Hu, X., Schiffner, T., Liguori, A., Cottrell, C.A., Havenar-
1206 Daughton, C., Ozorowski, G., Georgeson, E., *et al.* (2017). Structure-based design of native-like HIV-1
1207 envelope trimers to silence non-neutralizing epitopes and eliminate CD4 binding. *Nat Commun* 8,
1208 1655.
1209
1210 Kwon, Y.D., Pancera, M., Acharya, P., Georgiev, I.S., Crooks, E.T., Gorman, J., Joyce, M.G., Guttman,
1211 M., Ma, X., Narpala, S., *et al.* (2015). Crystal structure, conformational fixation and entry-related
1212 interactions of mature ligand-free HIV-1 Env. *Nat Struct Mol Biol* 22, 522-531.
1213 Landais, E., Huang, X., Havenar-Daughton, C., Murrell, B., Price, M.A., Wickramasinghe, L., Ramos, A.,
1214 Bian, C.B., Simek, M., Allen, S., *et al.* (2016). Broadly Neutralizing Antibody Responses in a Large
1215 Longitudinal Sub-Saharan HIV Primary Infection Cohort. *PLoS Pathog* 12, e1005369.
1216
1217 Lander, G.C., Stagg, S.M., Voss, N.R., Cheng, A., Fellmann, D., Pulokas, J., Yoshioka, C., Irving, C.,
1218 Mulder, A., Lau, P.W., *et al.* (2009). Appion: an integrated, database-driven pipeline to facilitate EM
1219 image processing. *J Struct Biol* 166, 95-102.
1220
1221 Lee, J.H., Andrabi, R., Su, C.Y., Yasmeen, A., Julien, J.P., Kong, L., Wu, N.C., McBride, R., Sok, D.,
1222 Pauthner, M., *et al.* (2017). A Broadly Neutralizing Antibody Targets the Dynamic HIV Envelope Trimer
1223 Apex via a Long, Rigidified, and Anionic beta-Hairpin Structure. *Immunity* 46, 690-702.
1224
1225 Li, Y., Svehla, K., Louder, M.K., Wycuff, D., Phogat, S., Tang, M., Migueles, S.A., Wu, X., Phogat, A.,
1226 Shaw, G.M., *et al.* (2009). Analysis of neutralization specificities in polyclonal sera derived from human
1227 immunodeficiency virus type 1-infected individuals. *J Virol* 83, 1045-1059.
1228
1229 Liao, H.X., Bonsignori, M., Alam, S.M., McLellan, J.S., Tomaras, G.D., Moody, M.A., Kozink, D.M.,
1230 Hwang, K.K., Chen, X., Tsao, C.Y., *et al.* (2013). Vaccine induction of antibodies against a structurally
1231 heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2.
1232 *Immunity* 38, 176-186.
1233
1234 Liu, Q., Acharya, P., Dolan, M.A., Zhang, P., Guzzo, C., Lu, J., Kwon, A., Gururani, D., Miao, H., Bylund,
1235 T., *et al.* (2017). Quaternary contact in the initial interaction of CD4 with the HIV-1 envelope trimer.
1236 *Nat Struct Mol Biol* 24, 370-378.
1237
1238 Lynch, R.M., Wong, P., Tran, L., O'Dell, S., Nason, M.C., Li, Y., Wu, X., and Mascola, J.R. (2015). HIV-1
1239 fitness cost associated with escape from the VRC01 class of CD4 binding site neutralizing antibodies. *J*
1240 *Virol* 89, 4201-4213.
1241
1242 McGuire, A.T. (2019). Targeting broadly neutralizing antibody precursors: a naive approach to vaccine
1243 design. *Curr Opin HIV AIDS* 14, 294-301.
1244
1245 Montefiori, D.C. (2009). Measuring HIV neutralization in a luciferase reporter gene assay. *Methods*
1246 *Mol Biol* 485, 395-405.

1247 Ogura, T., Iwasaki, K., and Sato, C. (2003). Topology representing network enables highly accurate
1248 classification of protein images taken by cryo electron-microscope without masking. *J Struct Biol* 143,
1249 185-200.

1250

1251 Pancera, M., Shahzad-Ul-Hussan, S., Doria-Rose, N.A., McLellan, J.S., Bailer, R.T., Dai, K., Loesgen, S.,
1252 Louder, M.K., Staupe, R.P., Yang, Y., *et al.* (2013). Structural basis for diverse N-glycan recognition by
1253 HIV-1-neutralizing V1-V2-directed antibody PG16. *Nat Struct Mol Biol* 20, 804-813.

1254

1255 Pauthner, M., Havenar-Daughton, C., Sok, D., Nkolola, J.P., Bastidas, R., Boopathy, A.V., Carnathan,
1256 D.G., Chandrashekar, A., Cirelli, K.M., Cottrell, C.A., *et al.* (2017). Elicitation of Robust Tier 2
1257 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using
1258 Optimized Approaches. *Immunity* 46, 1073-1088 e1076.

1259

1260 Pejchal, R., Walker, L.M., Stanfield, R.L., Phogat, S.K., Koff, W.C., Poignard, P., Burton, D.R., and Wilson,
1261 I.A. (2010). Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that
1262 mediates potent neutralization of HIV-1. *Proc Natl Acad Sci U S A* 107, 11483-11488.

1263

1264 Perez, L.G., Martinez, D.R., deCamp, A.C., Pinter, A., Berman, P.W., Francis, D., Sinangil, F., Lee, C.,
1265 Greene, K., Gao, H., *et al.* (2017). V1V2-specific complement activating serum IgG as a correlate of
1266 reduced HIV-1 infection risk in RV144. *PLoS One* 12, e0180720.

1267

1268 Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E.
1269 (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem*
1270 25, 1605-1612.

1271

1272 Plotnik, D., Guo, W., Cleveland, B., von Haller, P., Eng, J.K., Guttman, M., Lee, K.K., Arthos, J., and Hu,
1273 S.L. (2017). Extracellular Matrix Proteins Mediate HIV-1 gp120 Interactions with alpha4beta7. *J Virol*
1274 91.

1275

1276 Rademeyer, C., Korber, B., Seaman, M.S., Giorgi, E.E., Thebus, R., Robles, A., Sheward, D.J., Wagh, K.,
1277 Garrity, J., Carey, B.R., *et al.* (2016). Features of Recently Transmitted HIV-1 Clade C Viruses that
1278 Impact Antibody Recognition: Implications for Active and Passive Immunization. *PLoS Pathog* 12,
1279 e1005742.

1280

1281 Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N.,
1282 Namwat, C., de Souza, M., Adams, E., *et al.* (2009). Vaccination with ALVAC and AIDSVAX to prevent
1283 HIV-1 infection in Thailand. *N Engl J Med* 361, 2209-2220.

1284

1285 Robb, M.L., Rerks-Ngarm, S., Nitayaphan, S., Pitisuttithum, P., Kaewkungwal, J., Kunasol, P.,
1286 Khamboonruang, C., Thongcharoen, P., Morgan, P., Benenson, M., *et al.* (2012). Risk behaviour and
1287 time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a
1288 post-hoc analysis of the Thai phase 3 efficacy trial RV 144. *Lancet Infect Dis* 12, 531-537.

1289

1290 Roederer, M., Keele, B.F., Schmidt, S.D., Mason, R.D., Welles, H.C., Fischer, W., Labranche, C., Foulds,
1291 K.E., Louder, M.K., Yang, Z.Y., *et al.* (2014). Immunological and virological mechanisms of vaccine-
1292 mediated protection against SIV and HIV. *Nature* 505, 502-508.

1293

1294 Sanders, R.W., Derking, R., Cupo, A., Julien, J.P., Yasmeen, A., de Val, N., Kim, H.J., Blattner, C., de la
1295 Pena, A.T., Korzun, J., *et al.* (2013). A next-generation cleaved, soluble HIV-1 Env trimer, BG505

1296 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing
1297 antibodies. *PLoS Pathog* 9, e1003618.

1298

1299 Sanders, R.W., and Moore, J.P. (2017). Native-like Env trimers as a platform for HIV-1 vaccine design.
1300 *Immunol Rev* 275, 161-182.

1301

1302 Sanders, R.W., van Gils, M.J., Derking, R., Sok, D., Ketas, T.J., Burger, J.A., Ozorowski, G., Cupo, A.,
1303 Simonich, C., Goo, L., *et al.* (2015). HIV-1 VACCINES. HIV-1 neutralizing antibodies induced by native-
1304 like envelope trimers. *Science* 349, aac4223.

1305

1306 Sharma, S.K., de Val, N., Bale, S., Guenaga, J., Tran, K., Feng, Y., Dubrovskaya, V., Ward, A.B., and Wyatt,
1307 R.T. (2015). Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for
1308 vaccine design. *Cell Rep* 11, 539-550.

1309

1310 Sliepen, K., Ozorowski, G., Burger, J.A., van Montfort, T., Stunnenberg, M., LaBranche, C., Montefiori,
1311 D.C., Moore, J.P., Ward, A.B., and Sanders, R.W. (2015). Presenting native-like HIV-1 envelope trimers
1312 on ferritin nanoparticles improves their immunogenicity. *Retrovirology* 12, 82.

1313

1314 Styles, T.M., Gangadhara, S., Reddy, P.B.J., Hicks, S., LaBranche, C.C., Montefiori, D.C., Derdeyn, C.A.,
1315 Kozlowski, P.A., Velu, V., and Amara, R.R. (2019). Human Immunodeficiency Virus C.1086 Envelope
1316 gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance
1317 Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human
1318 Immunodeficiency Virus Challenge. *J Virol* 93.

1319

1320 Suloway, C., Pulokas, J., Fellmann, D., Cheng, A., Guerra, F., Quispe, J., Stagg, S., Potter, C.S., and
1321 Carragher, B. (2005). Automated molecular microscopy: the new Leginon system. *J Struct Biol* 151, 41-
1322 60.

1323

1324 Tassaneetrithip, B., Tivon, D., Swetnam, J., Karasavvas, N., Michael, N.L., Kim, J.H., Marovich, M., and
1325 Cardozo, T. (2014). Cryptic determinant of alpha4beta7 binding in the V2 loop of HIV-1 gp120. *PLoS*
1326 One 9, e108446.

1327

1328 Tomaras, G.D., Yates, N.L., Liu, P., Qin, L., Fouda, G.G., Chavez, L.L., Decamp, A.C., Parks, R.J., Ashley,
1329 V.C., Lucas, J.T., *et al.* (2008). Initial B-cell responses to transmitted human immunodeficiency virus
1330 type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41
1331 antibodies with ineffective control of initial viremia. *J Virol* 82, 12449-12463.

1332

1333 Torrents de la Pena, A., Julien, J.P., de Taeye, S.W., Garces, F., Guttman, M., Ozorowski, G., Pritchard,
1334 L.K., Behrens, A.J., Go, E.P., Burger, J.A., *et al.* (2017). Improving the Immunogenicity of Native-like
1335 HIV-1 Envelope Trimers by Hyperstabilization. *Cell Rep* 20, 1805-1817.

1336

1337 van Eeden, C., Wibmer, C.K., Scheepers, C., Richardson, S.I., Nonyane, M., Lambson, B., Mkhize, N.N.,
1338 Vijayakumar, B., Sheng, Z., Stanfield-Oakley, S., *et al.* (2018). V2-Directed Vaccine-like Antibodies from
1339 HIV-1 Infection Identify an Additional K169-Binding Light Chain Motif with Broad ADCC Activity. *Cell*
1340 *Rep* 25, 3123-3135 e3126.

1341

1342 Verkerke, H.P., Williams, J.A., Guttman, M., Simonich, C.A., Liang, Y., Filipavicius, M., Hu, S.L.,
1343 Overbaugh, J., and Lee, K.K. (2016). Epitope-Independent Purification of Native-Like Envelope Trimers
1344 from Diverse HIV-1 Isolates. *J Virol* 90, 9471-9482.

1345 Voss, J.E., Andrabi, R., McCoy, L.E., de Val, N., Fuller, R.P., Messmer, T., Su, C.Y., Sok, D., Khan, S.N.,
1346 Garces, F., *et al.* (2017). Elicitation of Neutralizing Antibodies Targeting the V2 Apex of the HIV
1347 Envelope Trimer in a Wild-Type Animal Model. *Cell Rep* 21, 222-235.

1348

1349 Weis, D.D., Wales, T.E., Engen, J.R., Hotchko, M., and Ten Eyck, L.F. (2006). Identification and
1350 characterization of EX1 kinetics in H/D exchange mass spectrometry by peak width analysis. *J Am Soc*
1351 *Mass Spectrom* 17, 1498-1509.

1352

1353 Xu, K., Acharya, P., Kong, R., Cheng, C., Chuang, G.Y., Liu, K., Louder, M.K., O'Dell, S., Rawi, R., Sastry,
1354 M., *et al.* (2018). Epitope-based vaccine design yields fusion peptide-directed antibodies that
1355 neutralize diverse strains of HIV-1. *Nat Med* 24, 857-867.

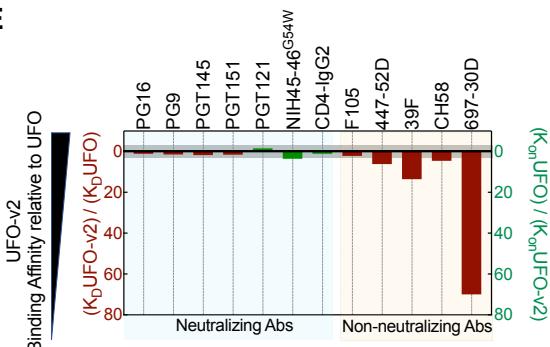
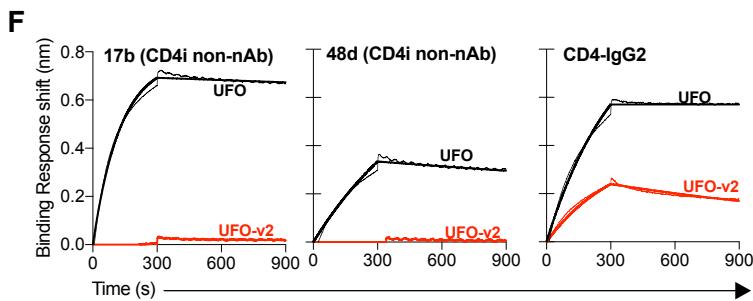
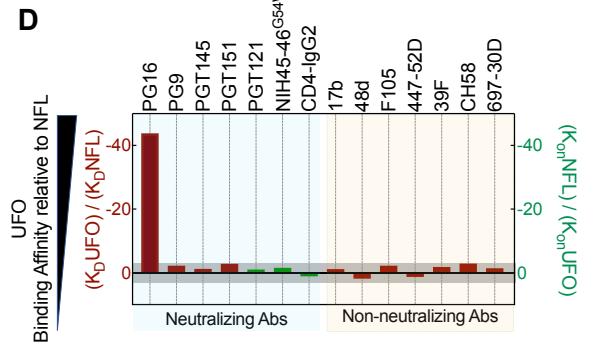
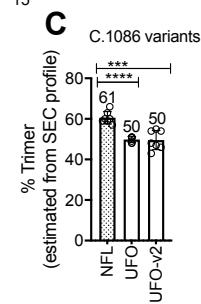
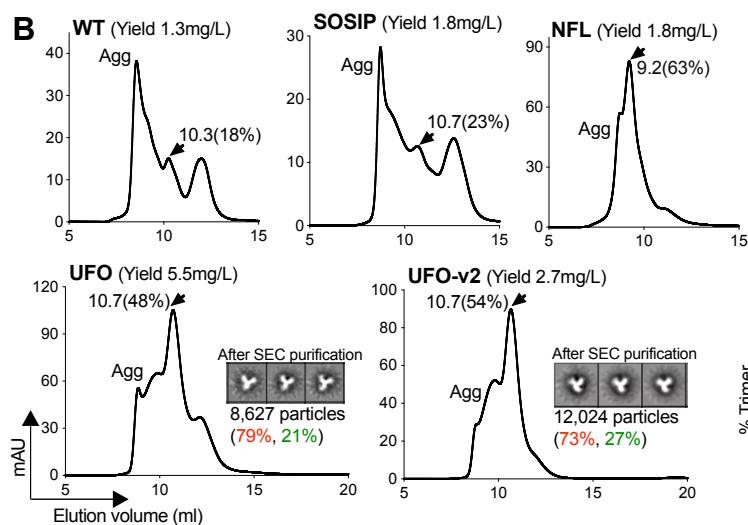
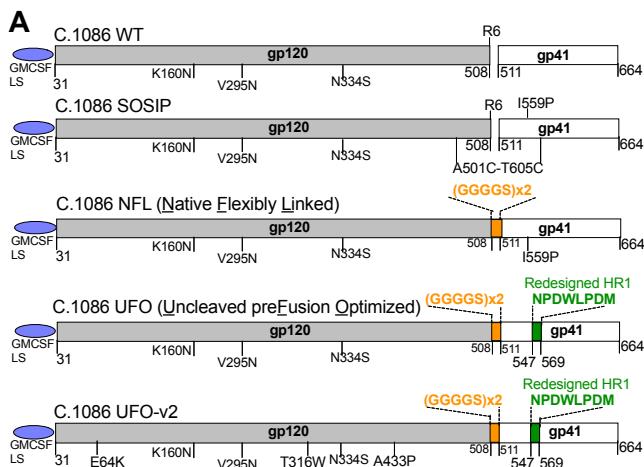
1356

1357 Yates, N.L., Liao, H.X., Fong, Y., deCamp, A., Vandergrift, N.A., Williams, W.T., Alam, S.M., Ferrari, G.,
1358 Yang, Z.Y., Seaton, K.E., *et al.* (2014). Vaccine-induced Env V1-V2 IgG3 correlates with lower HIV-1
1359 infection risk and declines soon after vaccination. *Sci Transl Med* 6, 228ra239.

1360

1361 Zolla-Pazner, S., Alvarez, R., Kong, X.P., and Weiss, S. (2019). Vaccine-induced V1V2-specific antibodies
1362 control and or protect against infection with HIV, SIV and SHIV. *Curr Opin HIV AIDS* 14, 309-317.

1363







1364 Zolla-Pazner, S., deCamp, A., Gilbert, P.B., Williams, C., Yates, N.L., Williams, W.T., Howington, R.,
1365 Fong, Y., Morris, D.E., Soderberg, K.A., *et al.* (2014). Vaccine-induced IgG antibodies to V1V2 regions
1366 of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. *PLoS One* 9, e87572.

1367

1368 Zolla-Pazner, S., deCamp, A.C., Cardozo, T., Karasavvas, N., Gottardo, R., Williams, C., Morris, D.E.,
1369 Tomaras, G., Rao, M., Billings, E., *et al.* (2013). Analysis of V2 antibody responses induced in vaccinees
1370 in the ALVAC/AIDSVAX HIV-1 vaccine efficacy trial. *PLoS One* 8, e53629.

1371

Figure 1. Biophysical characterization of C.1086 base constructs.

G K_D (nM) estimated by BLI for C.1086 K160N proteins

Specificity	bnAb	NFL	UFO	UFO-v2
V1/V2 apex	PG16	11044±4414	252±44	275±23
	PG9	167±67	74±33	108
	PGT145	136±56	111±53	197±82
Interface	PGT151	97±38	35±5	54±18
V3 glycan	PGT121	2±0.3	nd	nd
CD4 bs	NIH4546(G54W)	2±1	nd	nd
CD4 mimic	CD4-IgG2	nd	nd	43±5

nd: No dissociation observed. Hence, K_D could not be estimated.

Figure 2. Sequence guided mutations at V2 hotspot region improve properties of native like trimers

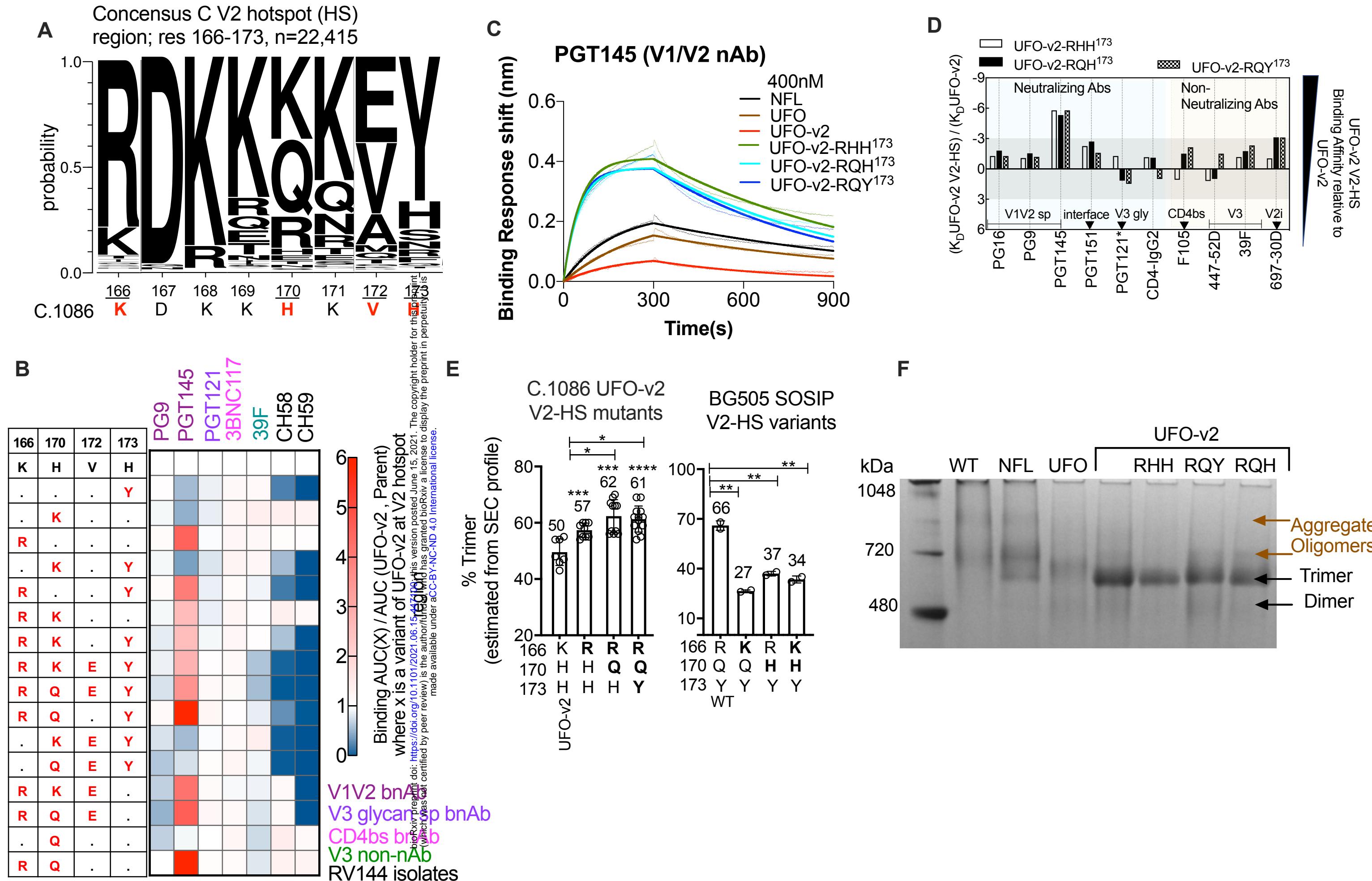
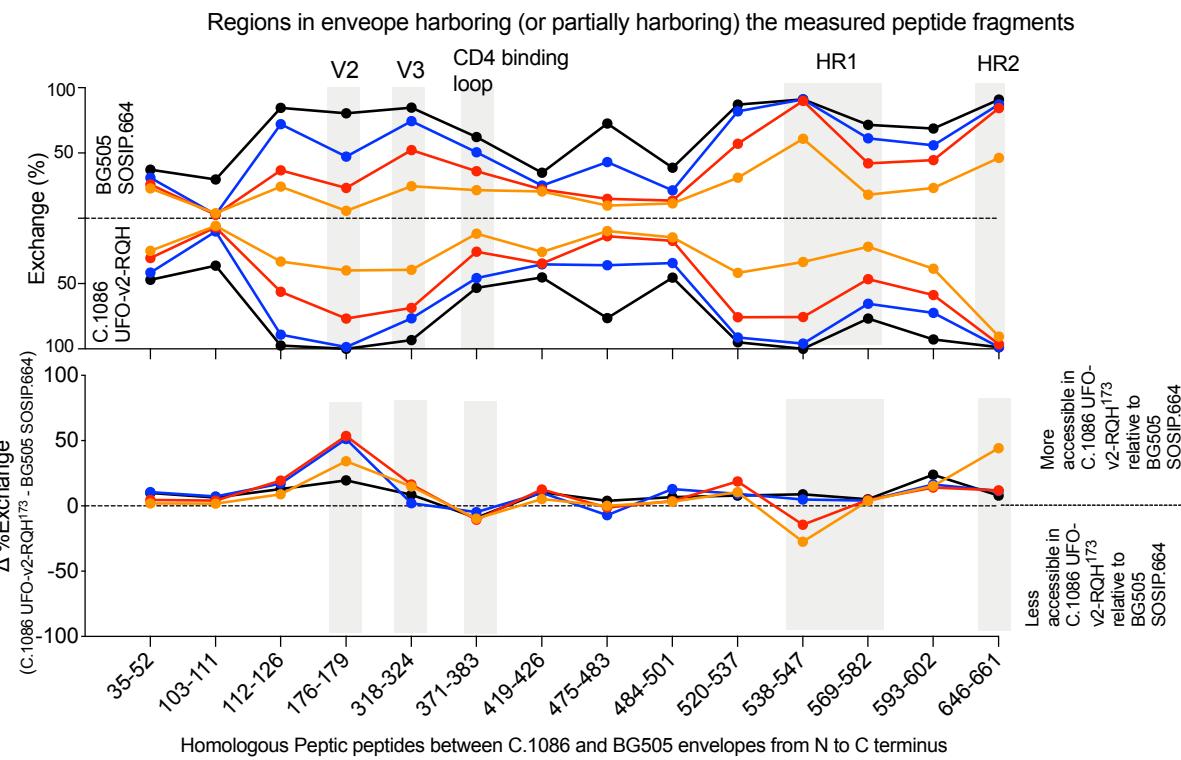
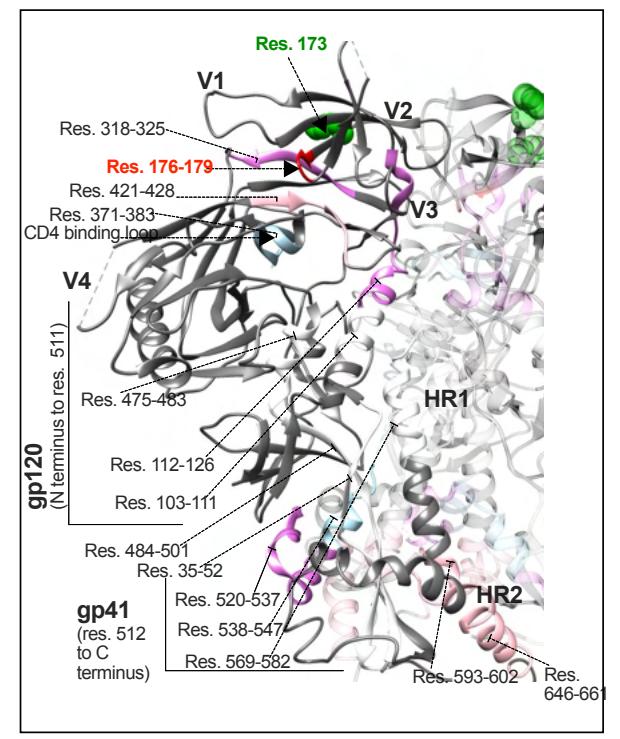
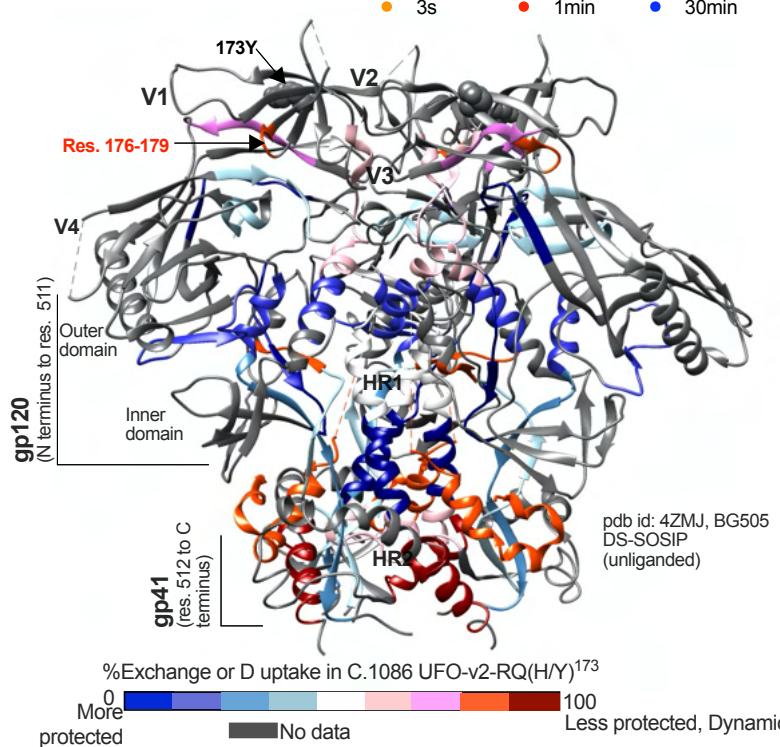
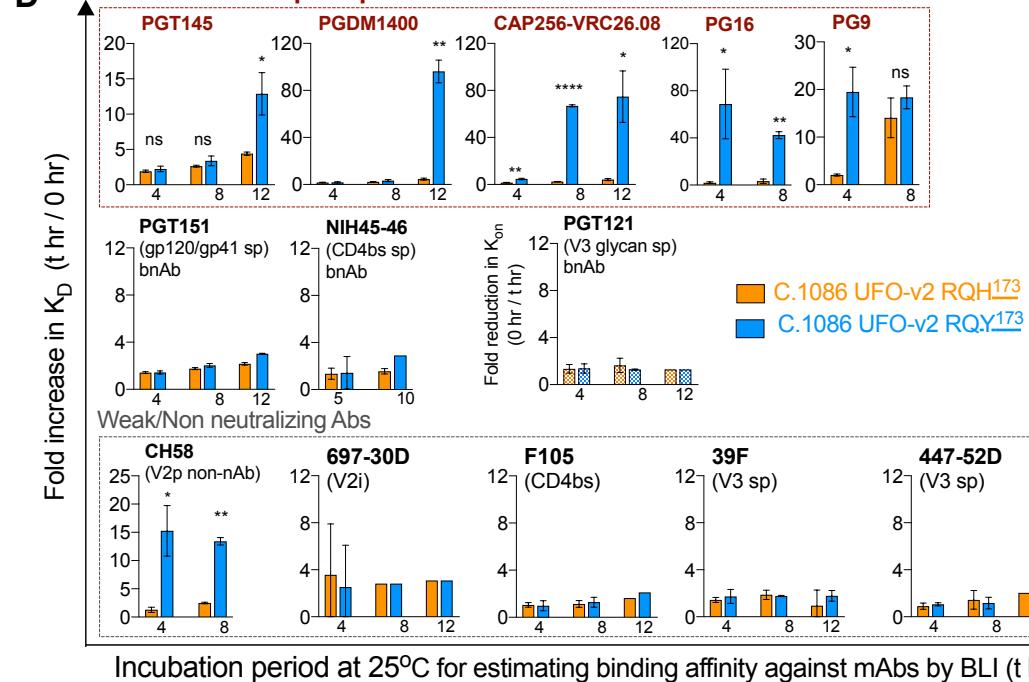
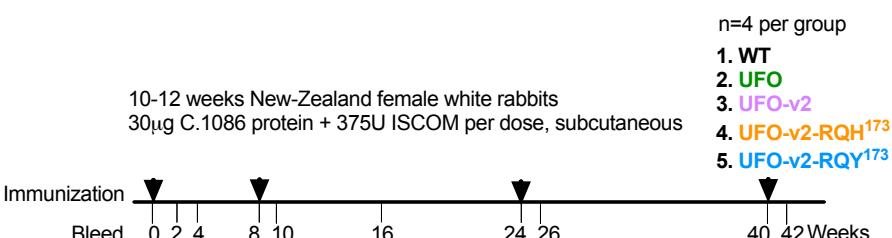




Figure 3. Structural properties of C.1086 UFO-v2-RQ(H/Y)¹⁷³ trimers measured by HDX-MS and time dependent BLI experiments.


A


B

C



V1/V2 trimeric apex specific bnAbs

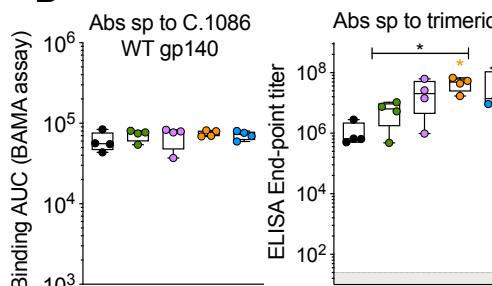
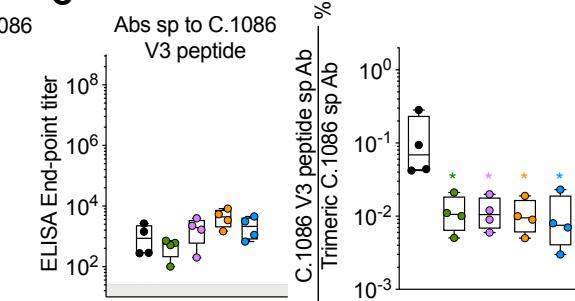
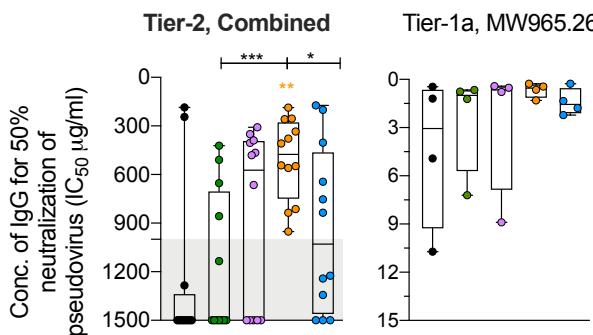


Figure 4. 166R, 170Q modifications in V2-HS of UFO-v2 (UFO-v2-RQH¹⁷³) enhance induction of moderate anti-viral responses and binding to membrane anchored tier2 envelopes

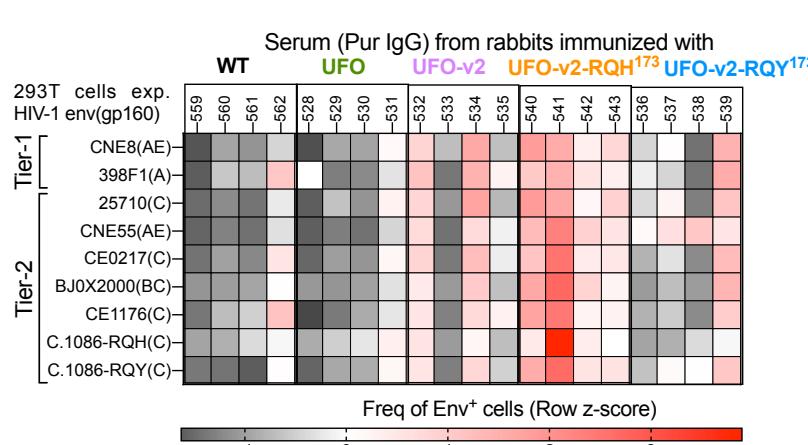

A

B

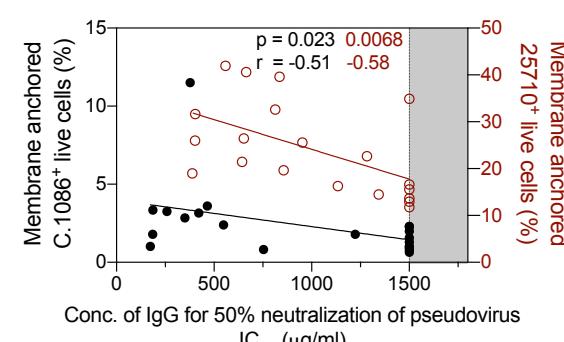
C

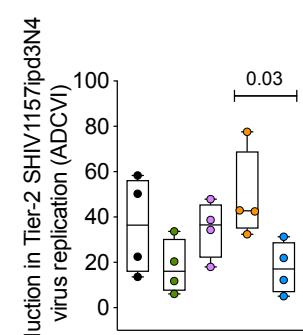


D


C.1086 immunogen used	-ve control		Clade C Tier-1a		Tier-2 Clade C		
	SVA-MLV		Ce1086_B2.K160N		25710-2.43		
	Rabbit ID	ID#8075	ID#7848	ID#9654	ID#9652	ID#8891	
WT	EM559	>1500	4.921	>2000	>2000	>1500	
	EM560	>1500	0.461	>2000	>2000	>1500	
	EM561	>1500	10.716	185	244	>1500	
	EM562	>1500	1.198	>2000	>2000	1284	
UFO	EM528	>1500	7.202	>1480	>1480	>1500	
	EM529	>1500	0.762	>1016	>1016	857	
	EM530	>1500	1.22	>1038	>1038	1134	
	EM531	>1500	0.662	421	509	653	
UFO-v2	EM532	>1500	0.524	465	481	404	
	EM533	>1500	8.897	>1216	>1216	>1500	
	EM534	>1500	0.784	350	308	664	
	EM535	>1500	0.413	>1480	>1480	389	
UFO-v2-RQH ¹⁷³	EM540	>1500	0.272	186	254	559	
	EM541	>1500	0.44	378	408	835	
	EM542	>1500	0.646	258	335	952	
	EM543	>1500	1.304	549	543	813	
UFO-v2-RQY ¹⁷³	EM536	>1500	1.338	753	836	644	
	EM537	>1500	0.271	173	201	403	
	EM538	>1500	1.778	1224	1242	1343	
	EM539	>1500	2.216	>1920	>1920	>1500	

IC50 (μ g/ml)


E


F

G

H

I

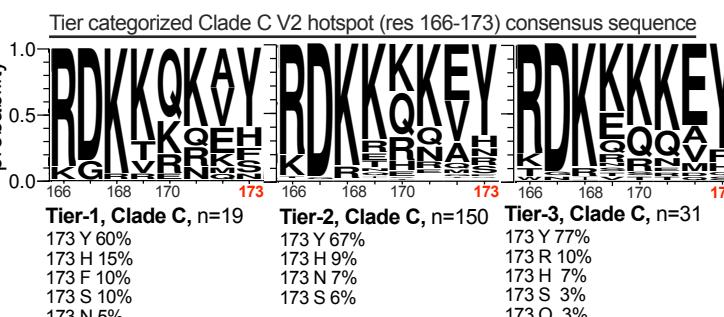
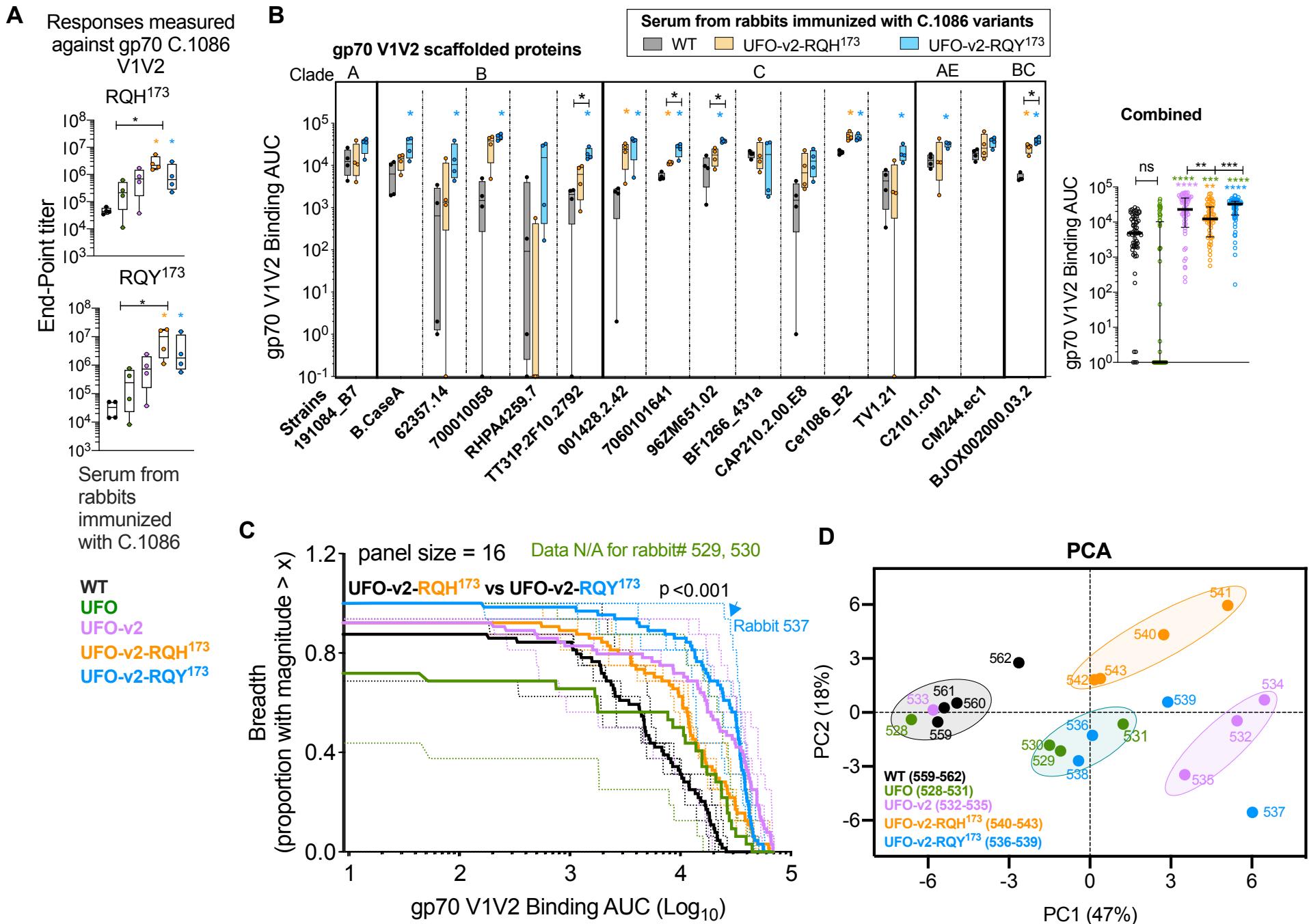
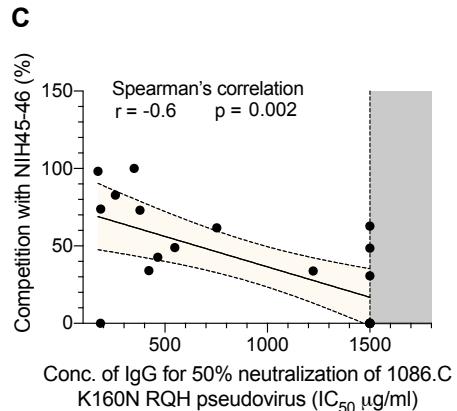
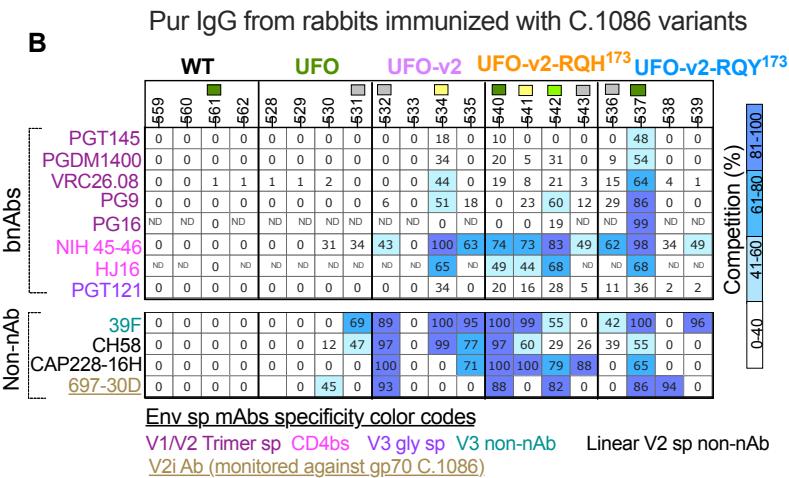
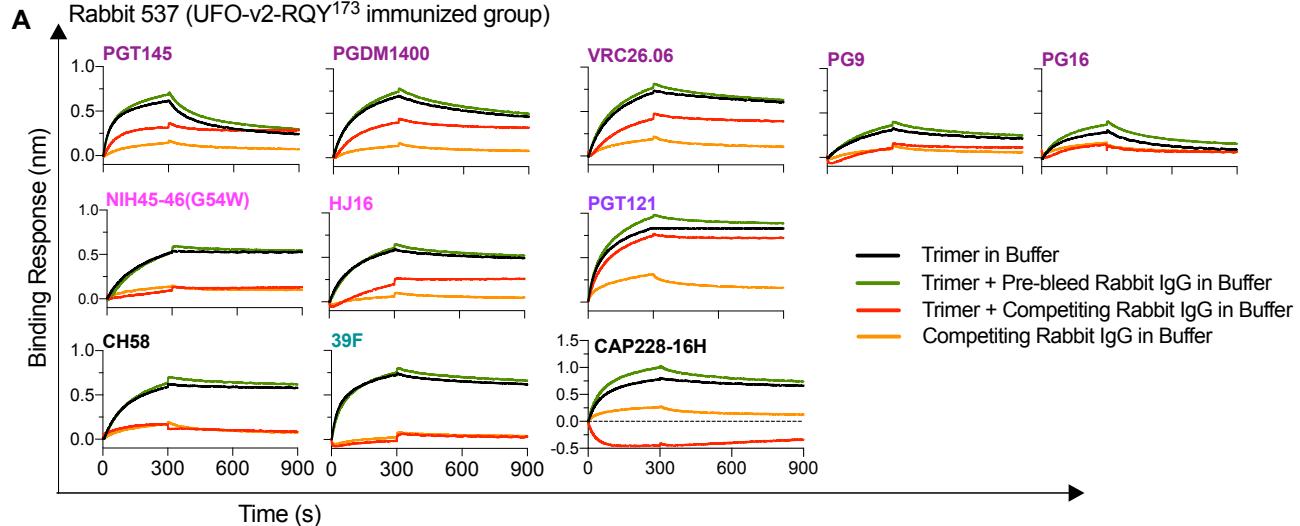






Figure 5. 173Y modification in UFO-v2-RQH¹⁷³ enhances the breadth of V1V2 scaffold specific responses

Figure 6. Mapping binding specificity of antibodies elicited in rabbits immunized with C.1086 variants

IC₅₀ (µg/ml) measured against C.1086 K160N/K166R/H170Q/H173

IC₅₀ ≤ 200 300 < IC₅₀ ≤ 400 IC₅₀ > 1000
200 < IC₅₀ ≤ 300 400 < IC₅₀ ≤ 1000

Title

Changes at V2 apex of HIV-1 Clade C trimer enhance elicitation of autologous neutralizing and broad V1V2-scaffold antibodies

Supplementary Information

The article contains following supplementary materials.

Supplementary Figure and Table Legends

Supplementary Figures and Tables

Figure S1. Binding sensograms of purified C.1086 gp140 and gp70-V1V2 variants against envelope specific mAbs monitored by Bio-layer Interferometry (BLI), related to manuscript Figures 1 and 2.

Figure S2. 2D Class averages of purified C.1086 gp140 variants by negative-stain electron microscopy, related to manuscript Figures 1 and 2.

Figure S3. Screening of C.1086 UFO-v2 V2-HS mutants and influence of the V2-HS modifications on protein trimeric proportion, related to manuscript Figure 2.

Figure S4. HDX-MS analyses of C.1086 UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ and homologous peptic peptides in BG505 SOSIP.664 trimers, related to manuscript Figure 3.

Figure S5. Time dependent structural differences monitored for C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants by BLI and DLS, *in-vitro*, related to manuscript Figure 3.

Figure S6. Characterization of antibody responses elicited by C.1086 variants in rabbits, related to manuscript Figures 4 and 5.

Figure S7. Representative flow plots showing binding of purified serum IgGs to 293T cells expressing membrane anchored gp160 and comparing infectivity of TZM-bl cells by C.1086 RQ(HY)¹⁷³ pseudoviruses, related to manuscript Figure 4.

Table S1. Binding kinetics of C.1086 gp140 variants estimated by Bio-Layer Interferometry, related to manuscript Figures 1 and 2.

Table S2. Time dependent binding kinetics assessment of C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants against envelope specific mAbs by BLI at 25°C, related to manuscript Figure 3 and Figure S5.

Table S3. Neutralization sensitivity of serum from C.1086 immunized rabbits, related to manuscript Figure 4.

Supplementary Figure and Table legends

Figure S1. Binding sensograms of purified C.1086 gp140 and gp70-V1V2 variants against envelope specific mAbs monitored by Bio-layer Interferometry (BLI), related to manuscript Figures 1 and 2.

Binding sensograms of purified C.1086 (A) NFL, (B) UFO, (C) UFO-v2, (D) UFOv2-RHH¹⁷³, (E) UFO-v2-RQH¹⁷³, (F) UFO-v2-RQY¹⁷³, (G) gp70 C.1086 V1V2 RQ(H/Y)¹⁷³ proteins by BLI. The proteins (analytes) were serially diluted (800-12.5nM) and binding kinetics were measured against desired envelope specific mAb (5 μ g/ml) immobilized on anti-human Fc Biosensors for 300s association and 600s dissociation on Octet Red384 platform (ForteBio). Each panel shows raw traces (dotted line) monitored at different concentrations of the analyte and traces fitted (solid line) to a global 1:1 binding model. Kinetic parameters indicated were obtained from globally fitting responses from the concentrations which give the best fit to a 1:1 binding model using ForteBio Data Analysis v9 software. Responses from these concentrations shown. (H) Overlay of binding sensograms monitored for 200nM, Top: gp70 C.1086 V1V2 RQH¹⁷³ and C.1086 UFO-v2-RQH¹⁷³, Bottom: gp70 C.1086 V1V2 RQY¹⁷³ and C.1086 UFO-v2-RQY¹⁷³ against env specific mAbs. All gp140 variants tested had K160N/V295N/N334S mutations in the protein backbone.

Figure S2. 2D Class averages of purified C.1086 gp140 variants by negative-stain electron microscopy, related to manuscript Figures 1 and 2.

2D class averages of C.1086 protein variants UFO, UFO-v2, UFO-v2-RHH173, UFO-v2-RQH173, UFO-v2-RQY173 with classes representing non-native trimer features (dissociated protomers or malformed trimers) boxed in red. Total particles imaged, %native-like (blue) and non-native like malformed trimers (green) indicated. The proteins used for the negative stain electron microscopy were expressed from 293F cells, purified using *Galanthus nivalis* lectin-based affinity chromatography, followed by isolation of trimer protein by size exclusion chromatography. **Figure**

S3. Screening of C.1086 UFO-v2 V2-HS mutants and influence of the V2-HS modifications on protein trimeric proportion, related to manuscript Figure 2.

(A) Screening of UFO-v2 V2 hotspot (HS) mutants by ELISA for improved binding to multiple bnAbs, specifically PGT145. Supernatants from C.1086 UFO-v2-V2 hotspot (V2-HS) mutants (listed in right) expressed from 293T cells were assayed for binding to envelope specific mAbs by ELISA. Representative binding traces of two independent experiments. (B) Size exclusion chromatograms of *Galanthus nivalis* lectin affinity purified; Top, C.1086 UFO-v2 V2-HS and Bottom, BG505 SOSIP V2-HS mutants. Inset, Re-run SEC traces (UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³) of

pooled purified trimeric fractions collected after SEC purification step. Elution volume and proportion (%), AUC) of trimeric peak (black arrow) and “Agg” Aggregate/Oligomeric indicated.

Figure S4. HDX-MS analyses of C.1086 UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ and homologous peptic peptides in BG505 SOSIP.664 trimers, related to manuscript Figure 3.

Exchange kinetics of individual peptides of purified C.1086 UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ and BG505 SOSIP.664 proteins at 0s, 1min, 60min, 20hrs. Exchange profiles of BG505 peptides homologous to C.1086 were overlayed onto the profiles of C.1086 peptides for the same region. The percent exchange was normalized to the zero-time point and fully deuterated samples. Mean \pm SD values of duplicate experiments plotted.

Figure S5. Time dependent structural differences monitored for C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants by BLI and DLS, *in-vitro*, related to manuscript Figure 3.

(A) Time dependent fold reduction in association rate (K_{on} 0hr / K_{on} t hr) of UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ variants against envelope specific mAbs. Binding kinetics of purified C.1086 UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ proteins against envelope specific mAbs was estimated by BLI after the proteins (analytes) were incubated at 25°C for t = 0, 4, 8, 12hrs or 0, 5, 10hrs. Association (300s) and dissociation (600s) traces were globally fit to a 1:1 binding model using ForteBio Data Analysis v9 software. Bars show Mean, error bars SD of at-least three independent experiments. Student's t test for statistical comparisons, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. **(B)** Glycans (represented as black sticks) and epitopes targeted by various envelope specific mAbs (color coded), V1V2 B, C β -strands, Y173, GlcNAc at N156, N160 highlighted on the structure of unliganded BG505 SOSIP.DS trimer (pdb id 4ZMJ (Kwon et al., 2015)). Protomers in solid, ribbon and dotted surface representation. **(C-D)** Enlarged view of V1V2 and V3 loop. Refer panel **(B)** for epitope specific color codes. V2 B-C strands harboring V1V2 apex sp bnAbs epitope, red. **(C)** Y173 (V2 C strand) and its adjacent glycan at N156 position (V2 B strand), cationic residues and N160 glycan in the V2 B-C strand shown. **(D)** Residues targeted by V2p CH58 non-nAb in helix/coil conformation are mapped onto the V2 C strand of the trimer. **(B-D)** were made using UCSF Chimera v1.14 (Pettersen et al., 2004). **(E)** Time dependent size distribution profiles of purified C.1086 UFO-v2-RQ(H/Y)¹⁷³ proteins monitored by Dynamic Light Scattering (DLS). For readings at 4hrs, the samples were diluted to 1 mg/mL in PBS and allowed to sit at room temperature (23 °C) for 4 hours prior to centrifugation and measurement. The mean estimated hydrodynamic radius, and polydispersity (PD) were generated from 30 acquisitions of 5 s at 20°C.

Figure S6. Characterization of antibody responses elicited by C.1086 variants in rabbits, related to manuscript Figures 4 and 5.

(A) Serum from rabbits immunized with C.1086 constructs WT, UFO, UFO-v2, UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ were assayed longitudinally (0 – 42 weeks) to monitor C.1086 UFO-v2-RQH¹⁷³ trimer specific binding antibodies by ELISA. Mean end-point titers calculated by ELISA from two independent experiments were plotted. Immunization time points indicated by black arrows. Responses of serum (2 weeks after final protein boost) against **(B)** UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ by ELISA, **(C)** C.1086 V2 hotspot (HS) peptides V2-HS 173H (166^{DKKKHKVHALFYKLD}180) and V2-HS 173Y (166^{RDKKQKVYALFYKLD}180), **(D)** C.1086 WT V2 cyclic peptides (left) and response normalized to trimer specific responses (End point titer measured against C.1086 WT V2 cyc peptide / End point titer measured against C.1086 UFO-v2-RQH¹⁷³ (right). **(E)** Spearman's correlation between responses against gp70 C.1086 V1V2 (End-point titer by ELISA) and C.1086 WT V2 cyc peptide (End-point titer by ELISA). Correlations w/o responses from WT immunized group shown. **(F)** Neutralization ID₅₀ (dilution of the serum required to neutralize 50% infection) of serum (2 weeks after final protein boost) monitored against Tier1a Clade C MW965.26 pseudotyped virus by standard TZM-bl assay (Montefiori, 2009). **(G)** Binding Antibody Multiplex Assay (BAMA) analyses (binding AUC) (Zolla-Pazner et al., 2014) of serially diluted serum from WT, UFO, UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ immunized rabbits to V1V2 from diverse 16 cross-clade HIV-1 strains (grafted onto gp70 scaffold protein, referred as V1V2-scaffold) and C.1086 WT, UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ C terminal avi tagged proteins. **(H)** Top most significant ($p < 0.05$) variables of the PCA analyses done using serum characterization data of different immunized groups. Correlation of variables with PC1, $p < 0.05$ have been plotted. PCA was carried out using the R. **(A-F)** Shaded area represents background signal based on responses to pre-bleed serum. **(G, H)** Serum collected two weeks after final protein boost used for analyses. **(B-D, F, G)** Box and whiskers plots where box extends from 25th to 75th percentile, median indicated by line, minimum and maximum values indicated by whiskers. Statistical comparisons between groups by Mann-Whitney test ($^*p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$, $^{****}p < 0.0001$). **(G)** p-values immunized group color coded correspond to comparison with WT. All values plotted are the average of at-least two independent experiments.

Figure S7. Representative flow plots showing binding of purified serum IgGs to 293T cells expressing membrane anchored gp160 and comparing infectivity of TZM-bl cells by C.1086 RQ(HY)¹⁷³ pseudoviruses, related to manuscript Figure 4.

(A) Representative flow plots showing binding of purified serum IgGs (1 μ g/ml) to live transiently transfected 293T cells expressing membrane anchored gp160. Shown here are representative binding flow plots to tier2 CNE55 env⁺ 293T cells. Binding signal of rabbit IgG to MLV transfected

cells used as -ve control to define binding signal gate. Binding of cells expressing envelopes to env sp bnAbs (here PGT145) used as +ve control. **(B)** Infectivity of TZM-bl cells by serially diluted C.1086 RQH¹⁷³ and RQY¹⁷³ pseudoviruses (input virus equalized based on p24 concentration), measured by luminescence (RLU, mean \pm SD of two independent experiments, each done in duplicates).

Table S1. Binding kinetics of C.1086 gp140 variants estimated by Bio-Layer

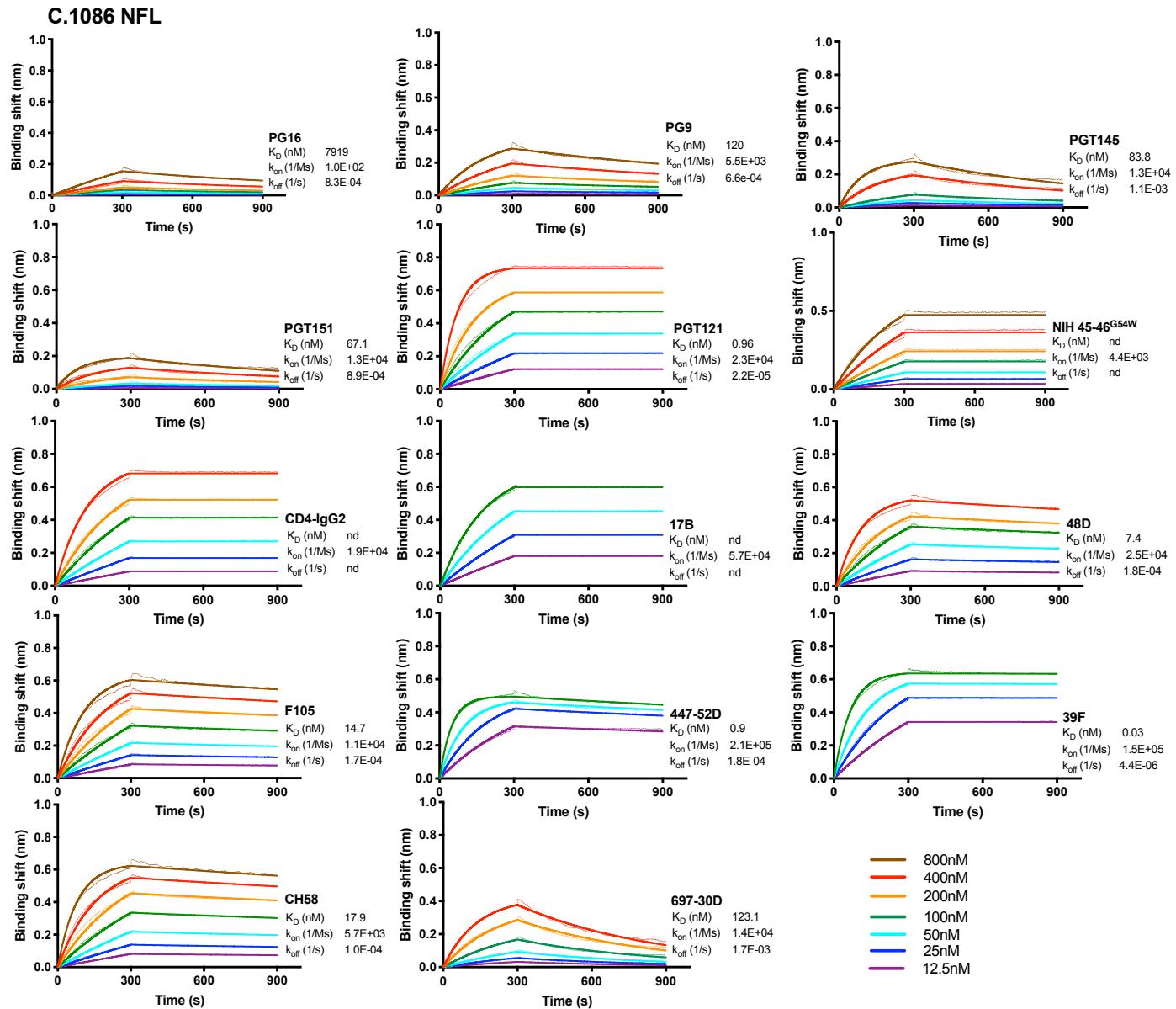
Interferometry, related to manuscript Figures 1 and 2.

Binding affinities of C.1086 gp140 proteins (NFL, UFO, UFO-v2, UFO-v2-RQH¹⁷³, UFO-v2-RHH¹⁷³, UFO-v2-RQY¹⁷³) were monitored against envelope specific mAbs by BioLayer Interferometry using Octet Red384 platform. Env specific mAbs were immobilized on anti-human Fc biosensor. The proteins were used as analyte (800-12.5nM serially diluted). The data was globally fit to a 1:1 binding model. Mean \pm SD values calculated from more than two independent experiments reported. ^and: No dissociation observed, hence K_D could not be calculated. All variants tested had K160N/V295N/N334S mutations in the protein backbone.

Table S2. Time dependent binding kinetics assessment of C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants against envelope specific mAbs by BLI at 25°C, related to manuscript Figure 3 and Figure S5.

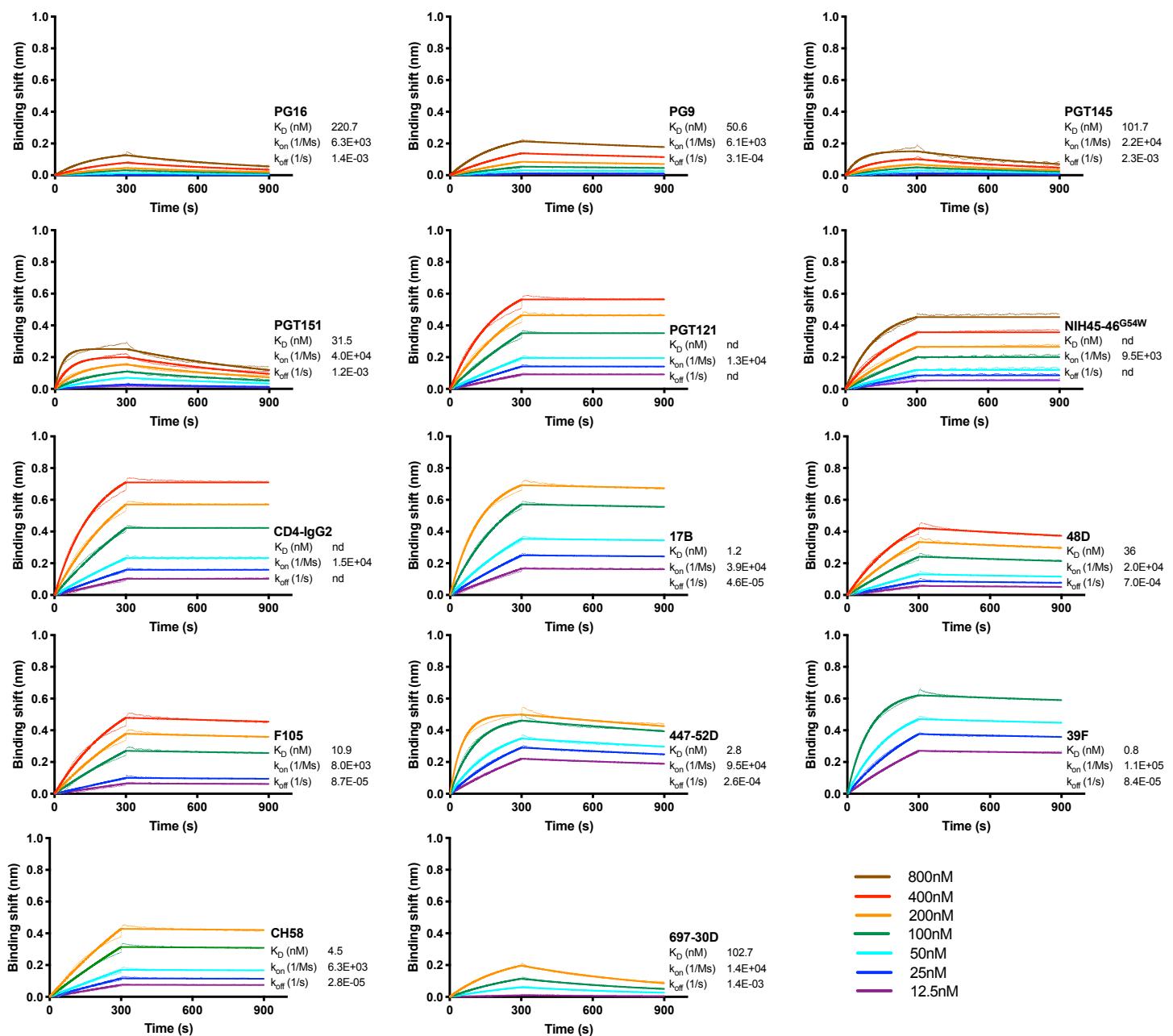
Binding kinetics parameters of C.1086 UFO-v2-RQH¹⁷³ and UFO-v2-RQY¹⁷³ proteins measured against envelope specific mAbs by BLI after the proteins (analytes) were incubated at 25°C for t = 0, 4, 8, 12hrs or 0, 5, 10hrs. Association (300s) and dissociation (600s) traces were globally fit to a 1:1 binding model using ForteBio Data Analysis v9 software. Mean \pm SD values of at-least three independent experiments reported. ^and: binding affinity not able to determine due to low binding signal to reliably globally fit the raw data, ^bnd: no dissociation observed, hence K_D could not be calculated, ^cND: not determined.

Table S3. Neutralization sensitivity of serum from C.1086 immunized rabbits, related to manuscript Figure 4.

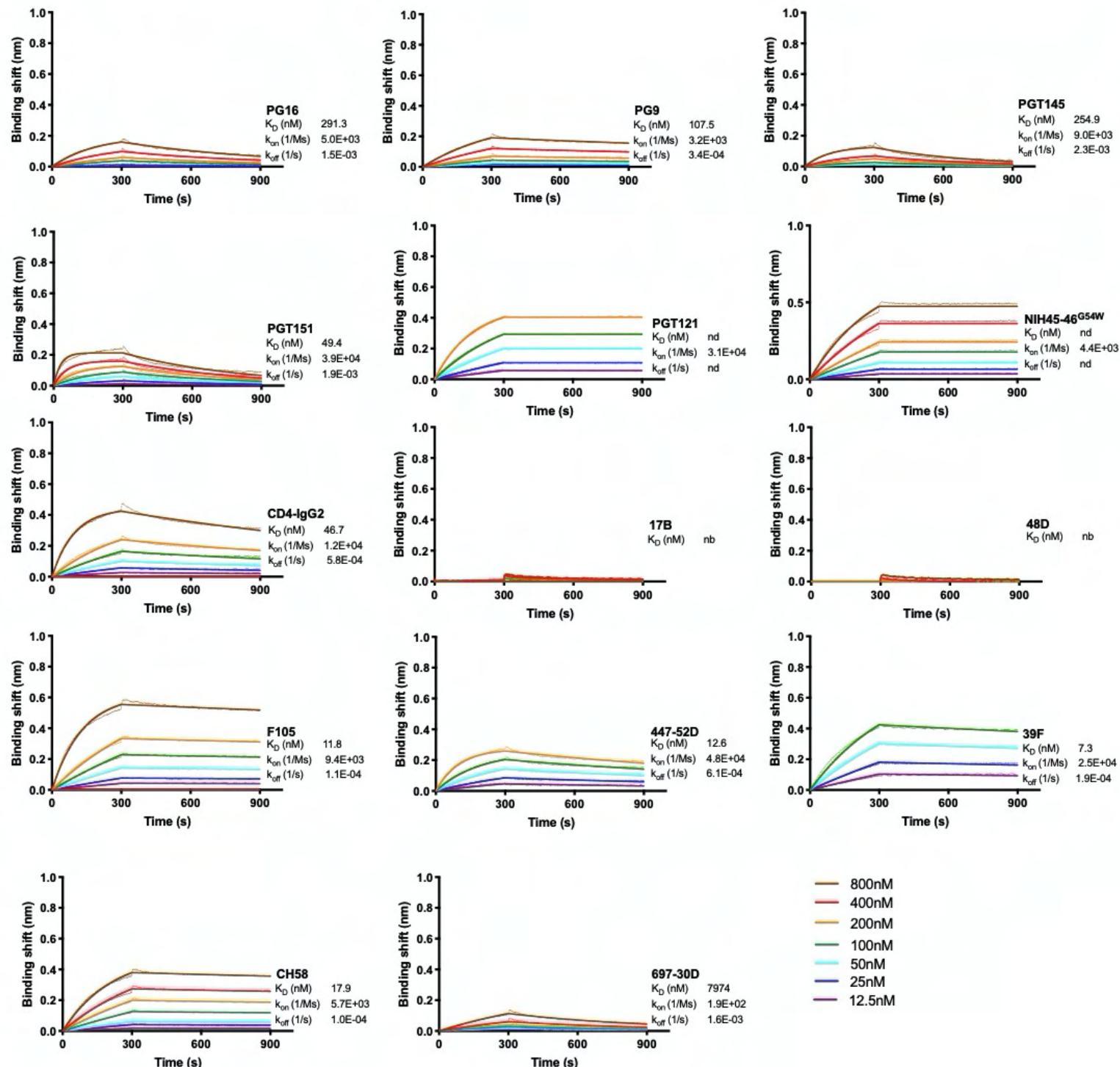

(A) Neutralization titers (ID_{50} , serum dilution to achieve 50% inhibition of viral infection by pseudotyped TZM-bl assay) using serum collected 2 weeks after 2nd (wk 10), 3rd (wk 26) and 4th (wk 42) immunizations against Tier-1 Clade C MW965.26, and wk42 responses against C.1086 pseudotyped virus variants. Serum showing non-specific activity against negative control MLV (background cut-off < 20) have been highlighted in bold. **(B)** Neutralization titers (IC_{50} μ g/ml, concentration of IgG required to achieve 50% neutralization of the pseudovirus) of purified IgG from serum collected on wk 42 i.e., 2 weeks after last immunization against global HV-1 Tier-2

panel. **(C)** Neutralization IC₅₀ (concentration of IgG required for 50% neutralization of the virus) values of rabbit purified IgG (week 42 i.e. 2 weeks after the final protein boost) from various immunized groups against C.1086 K160N RQH (parent) and CD4bs mutants N279Q, N280D monitored by standard TZM-bl assay (Montefiori, 2009).

Supplementary Figures and Tables

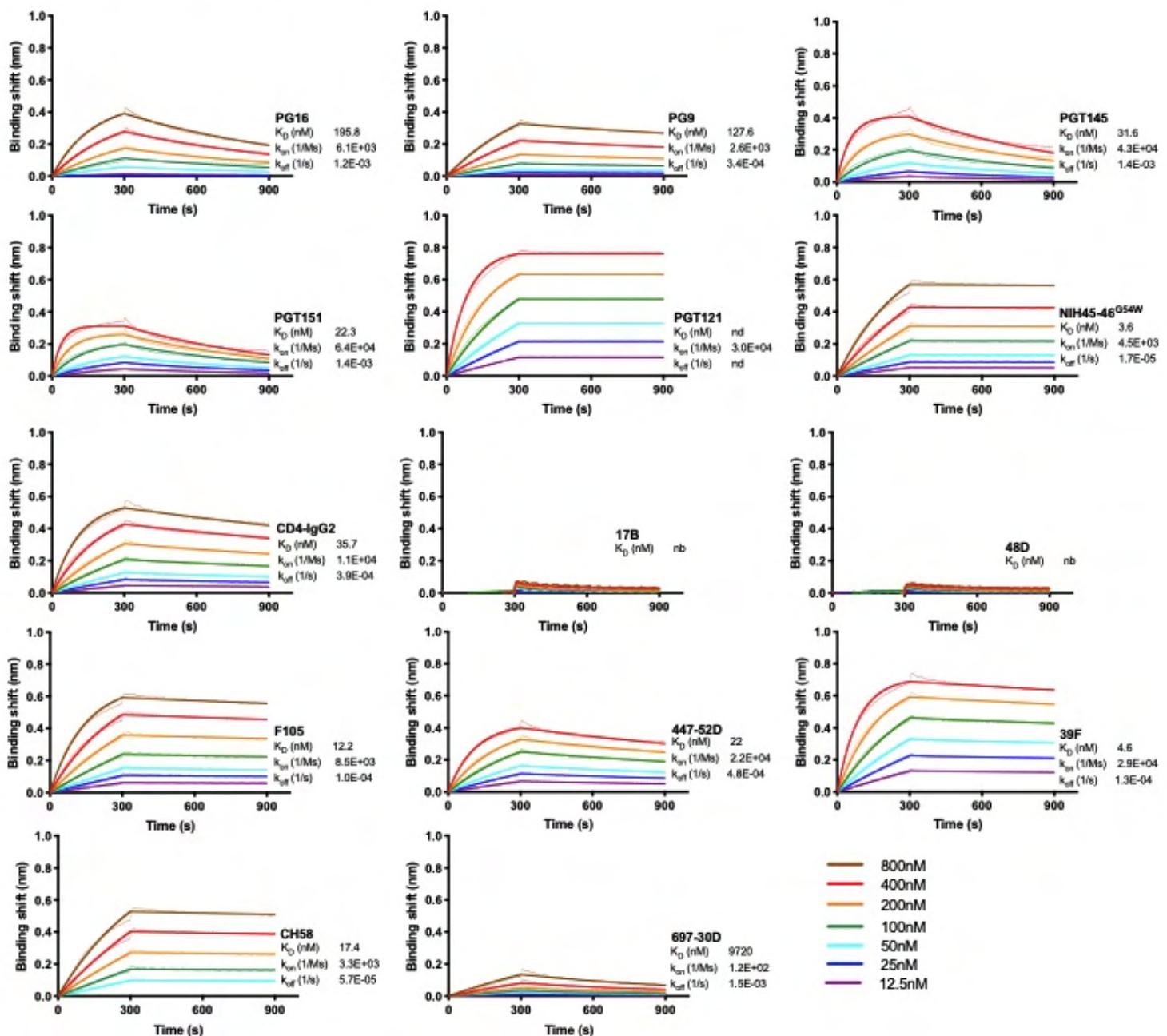

Figure S1. Binding sensograms of purified C.1086 gp140 and gp70-V1V2 variants against envelope specific mAbs monitored by Bio-layer Interferometry (BLI), related to manuscript Figures 1 and 2.

A

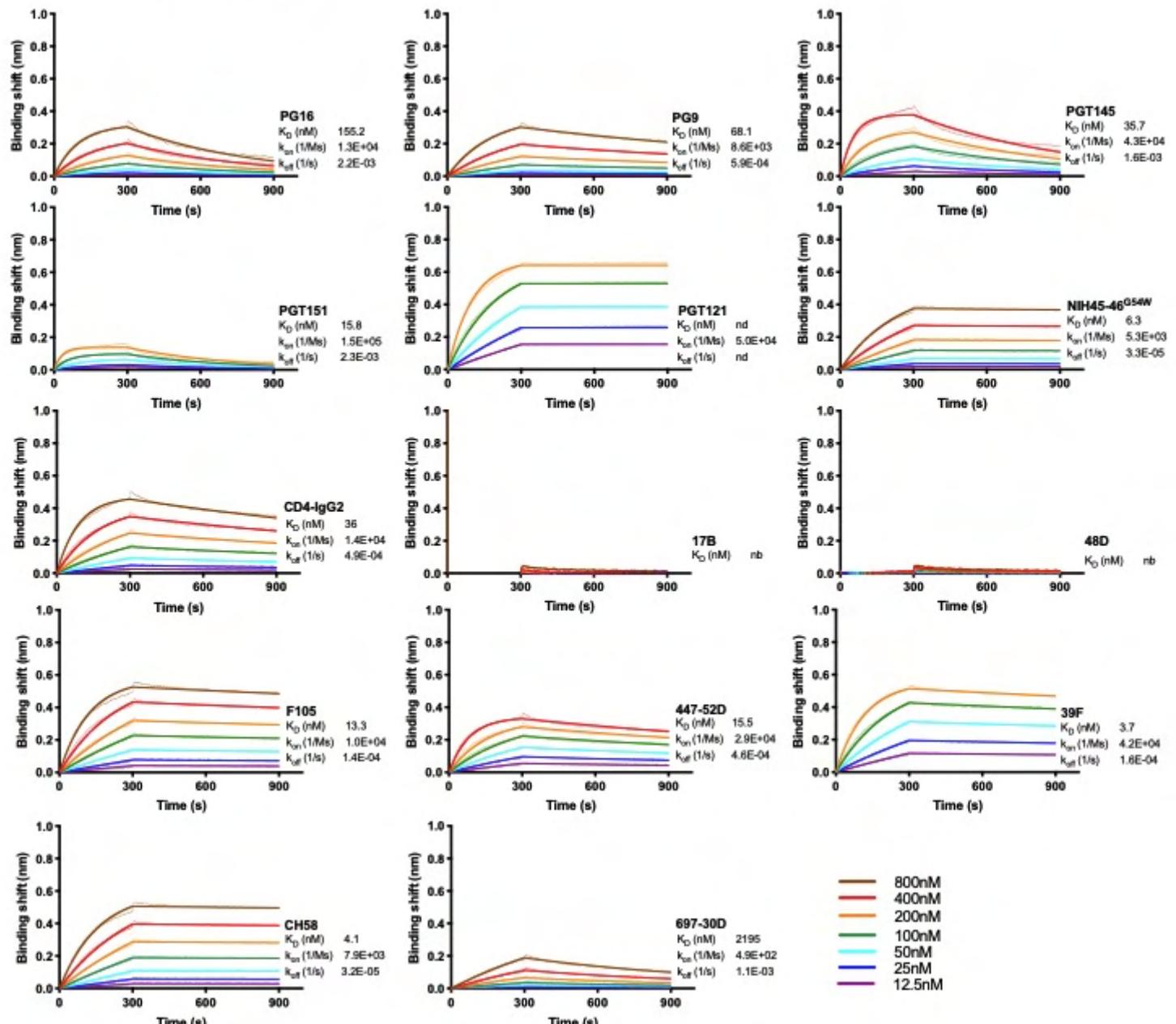


B

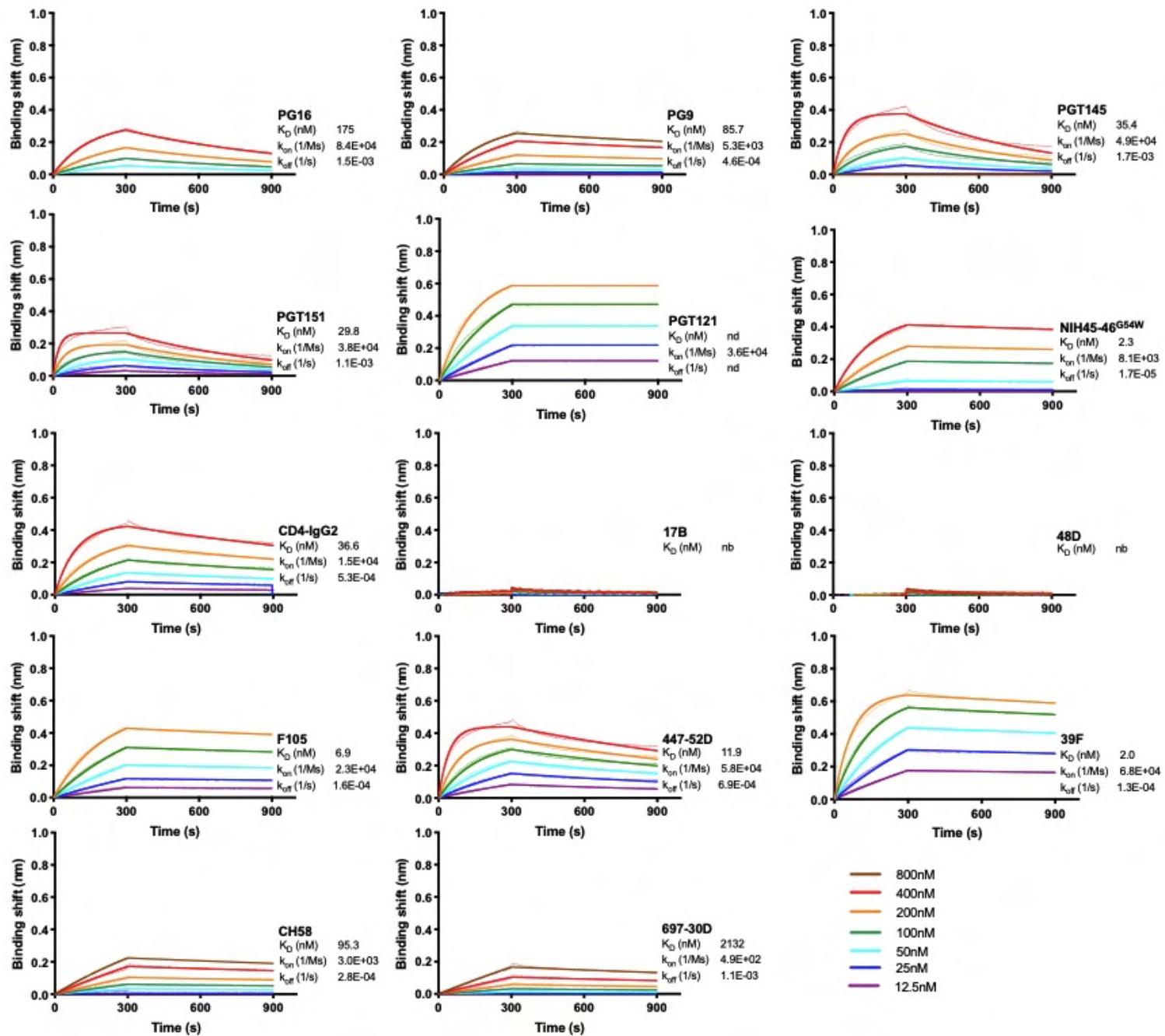
C.1086 UFO

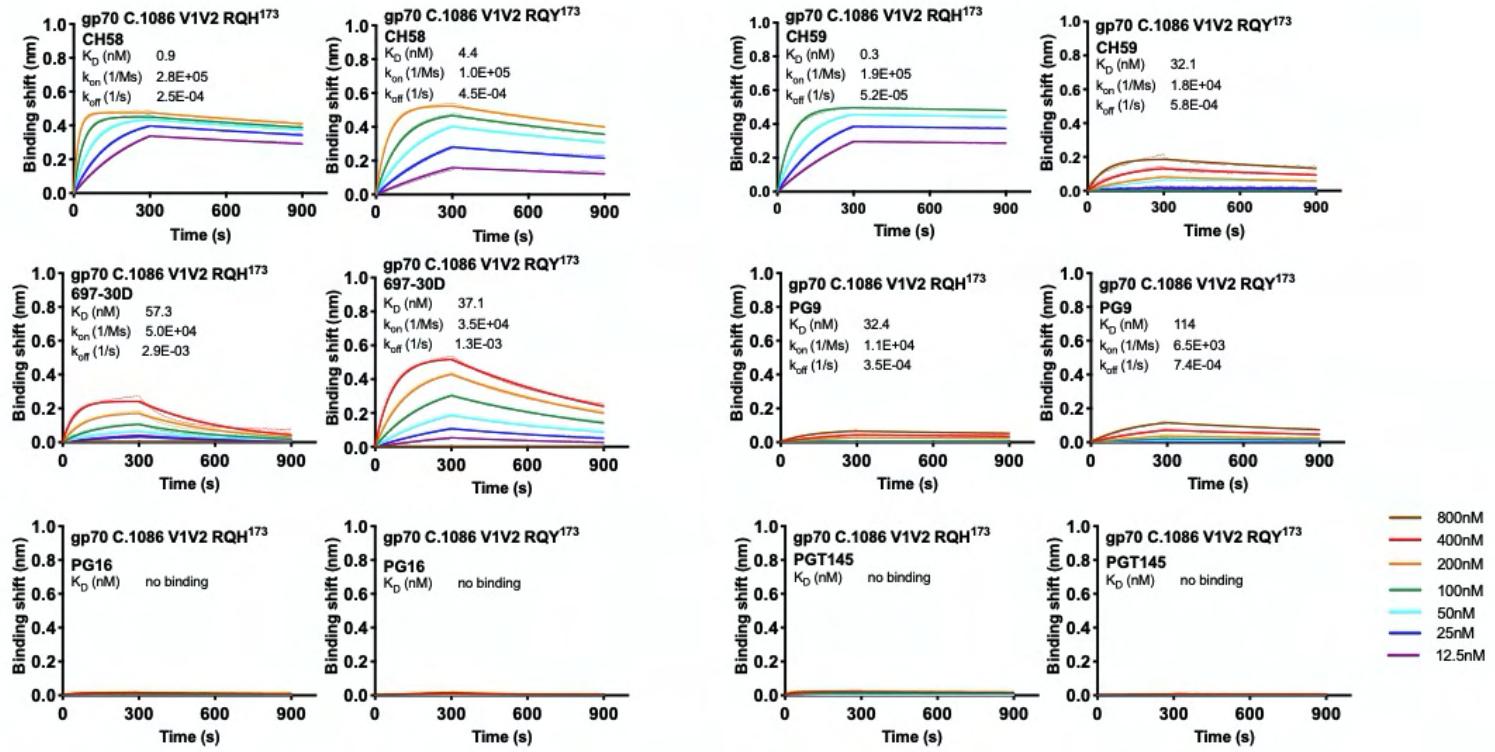


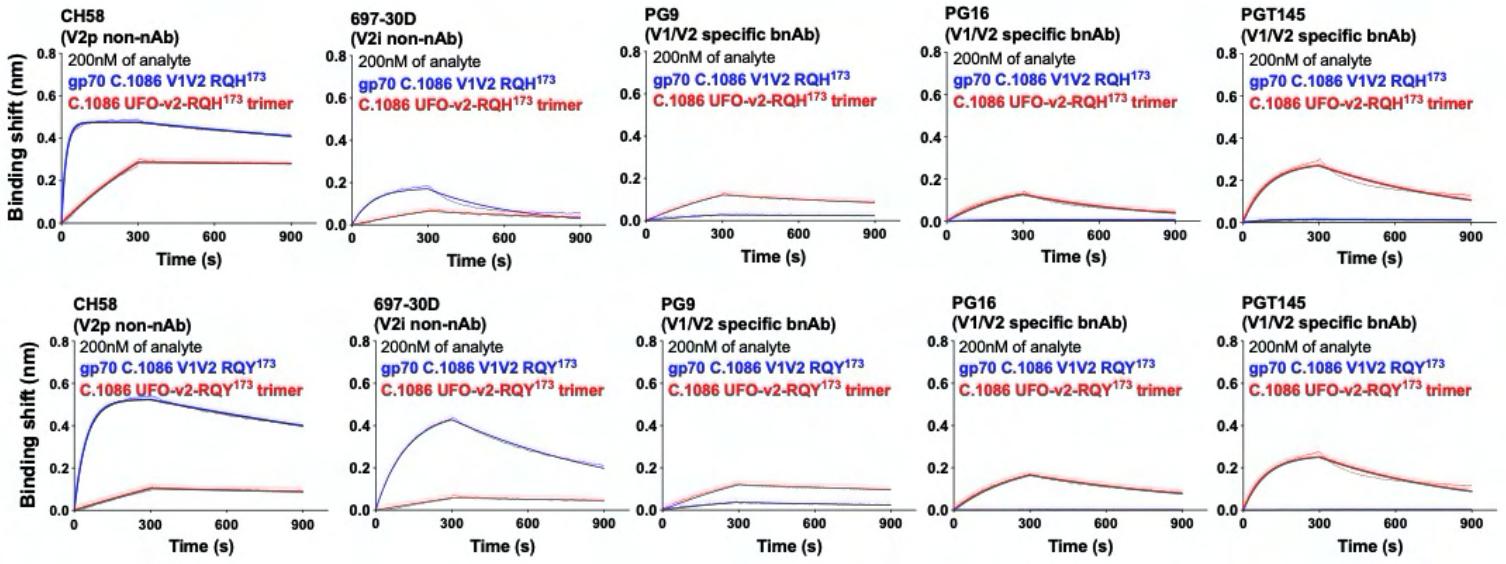
C C.1086 UFO-v2

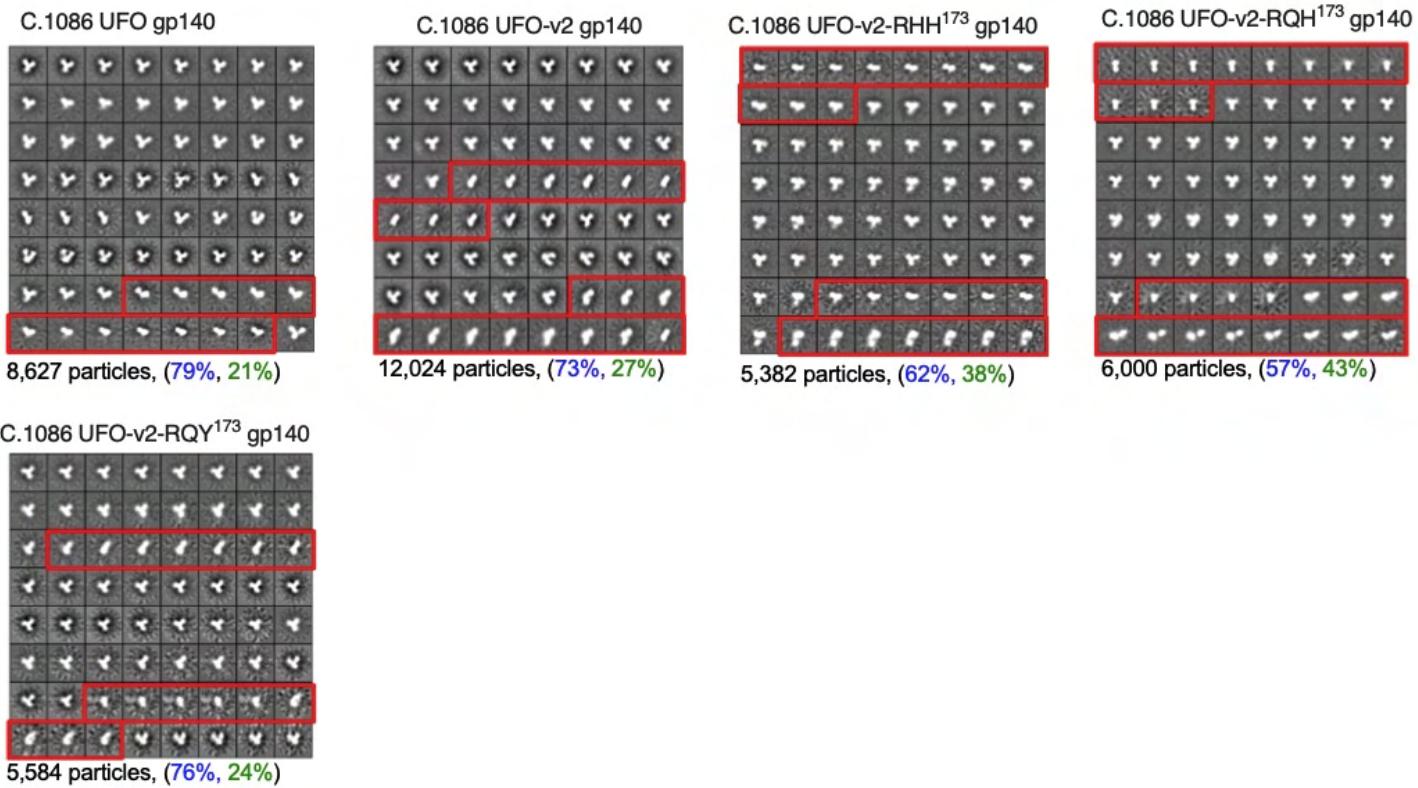


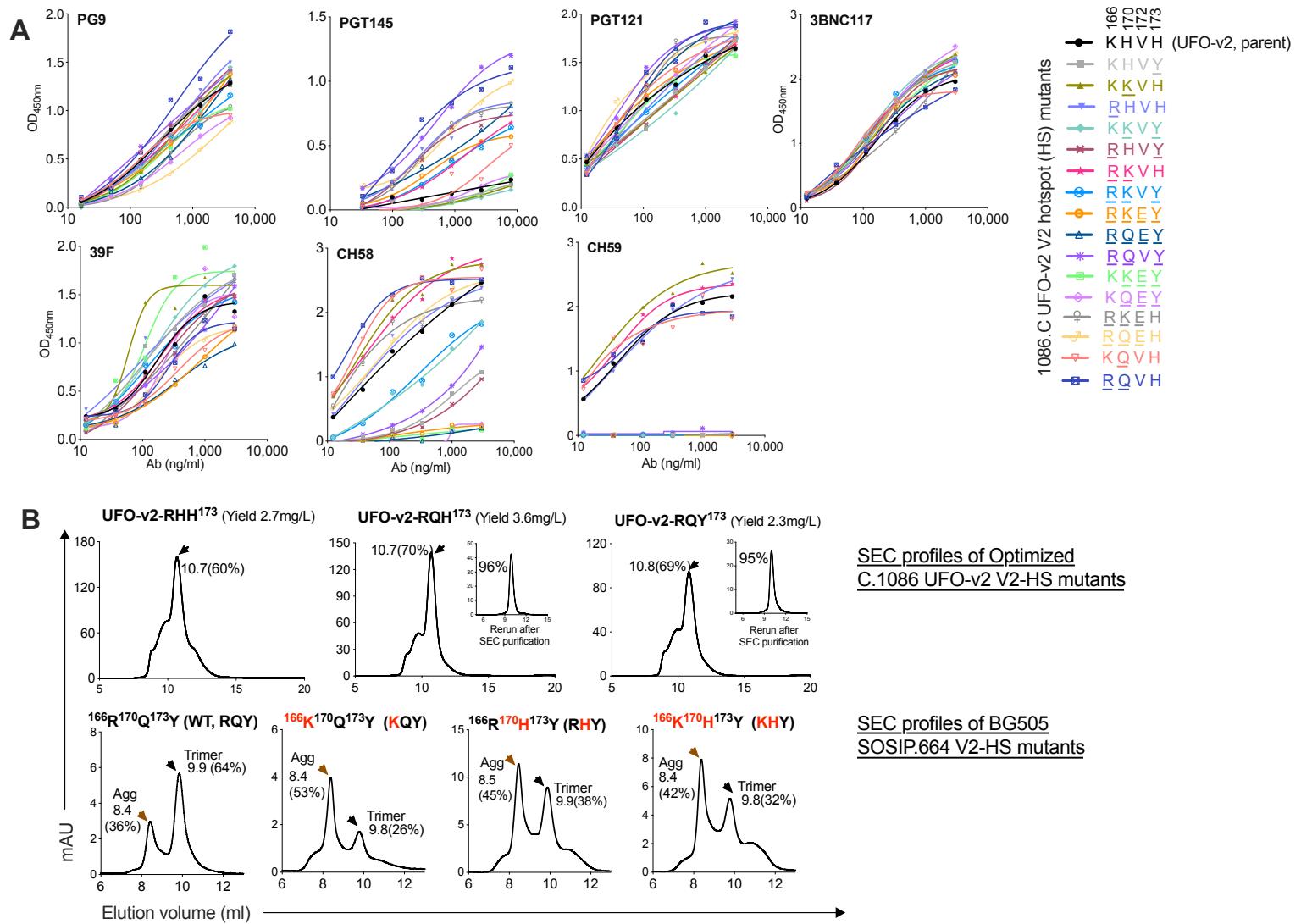
D.

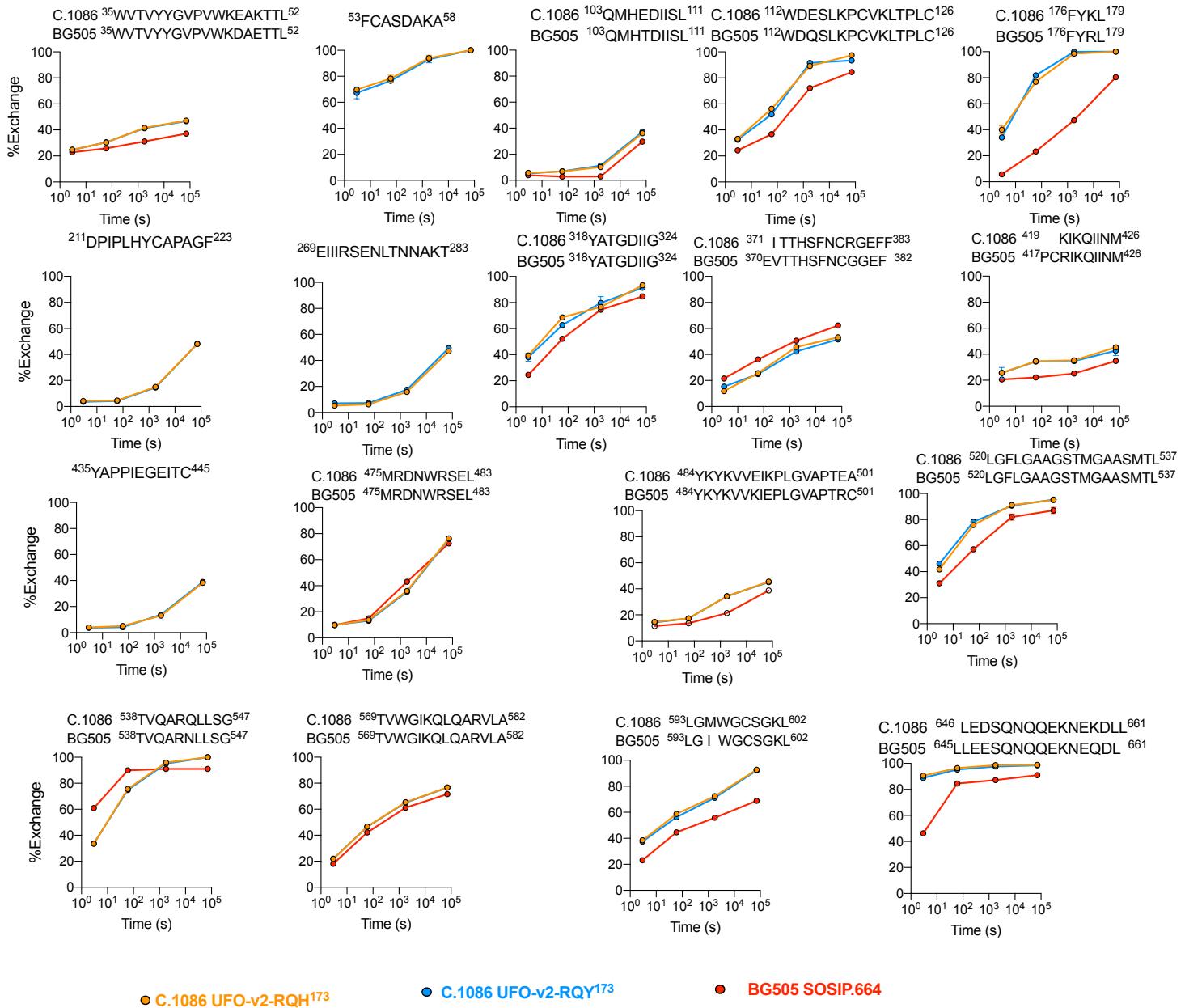

C.1086 UFO-v2-RHH¹⁷³

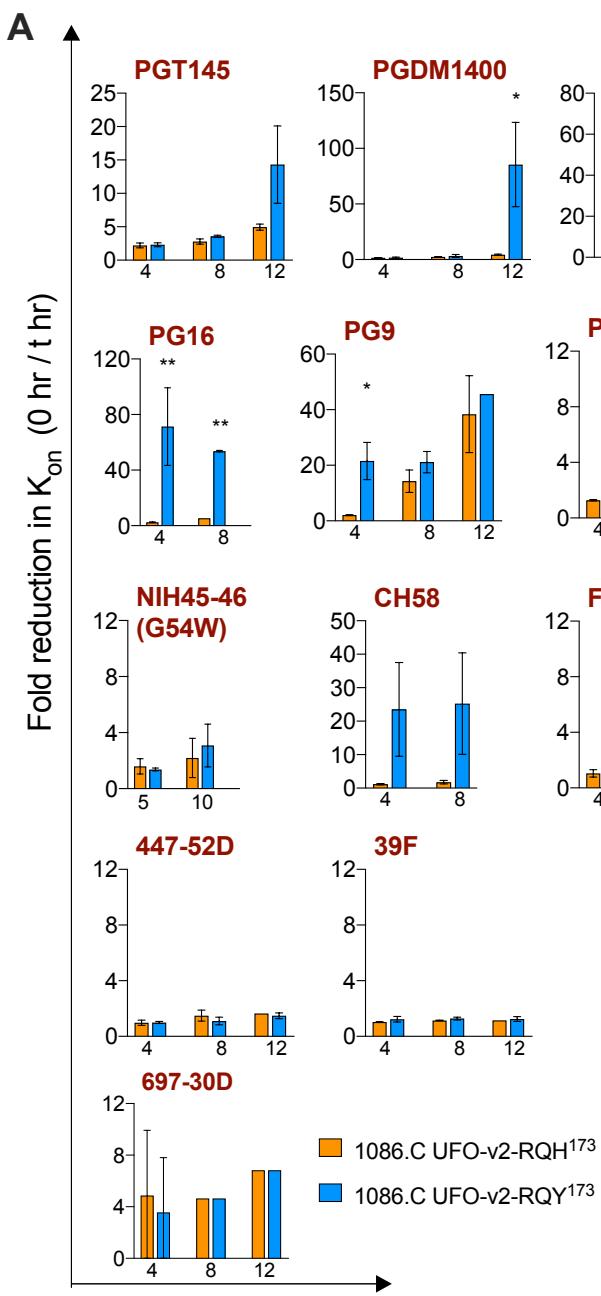

E C.1086 UFO-v2-RQH¹⁷³


F C.1086 UFO-v2-RQY¹⁷³


G gp70 C.1086 V1V2 RQH¹⁷³ and gp70 C.1086 V1V2 RQY¹⁷³


H


Figure S2. 2D Class averages of purified C.1086 gp140 variants by negative-stain electron microscopy, related to manuscript Figures 1 and 2.


Figure S3. Screening of C.1086 UFO-v2 V2-HS mutants and influence of the V2-HS modifications on protein trimeric proportion, related to manuscript Figure 2.

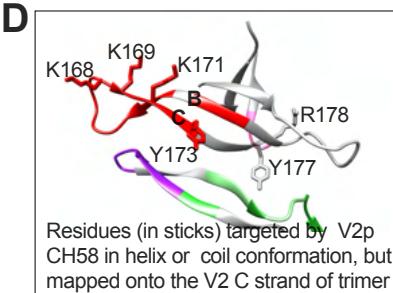
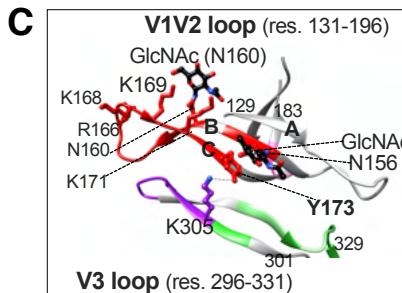
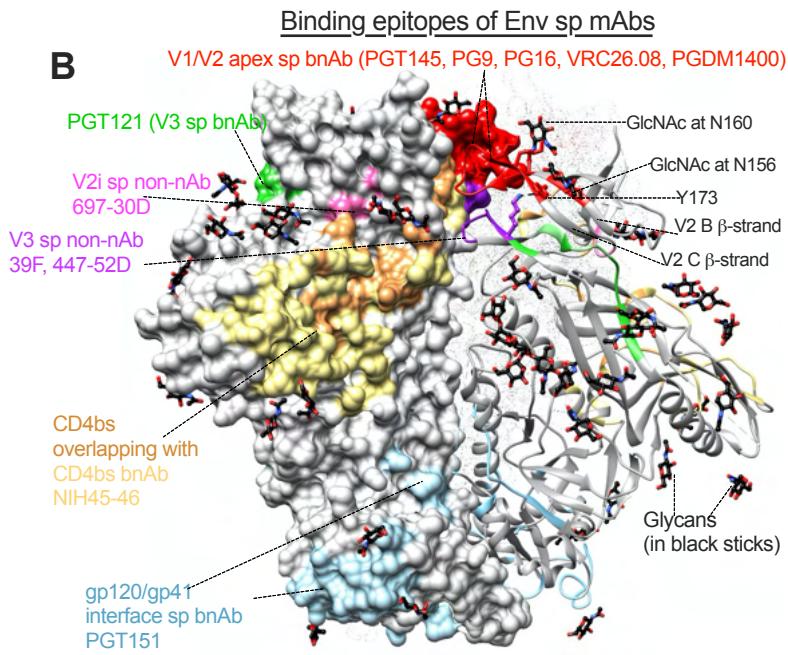
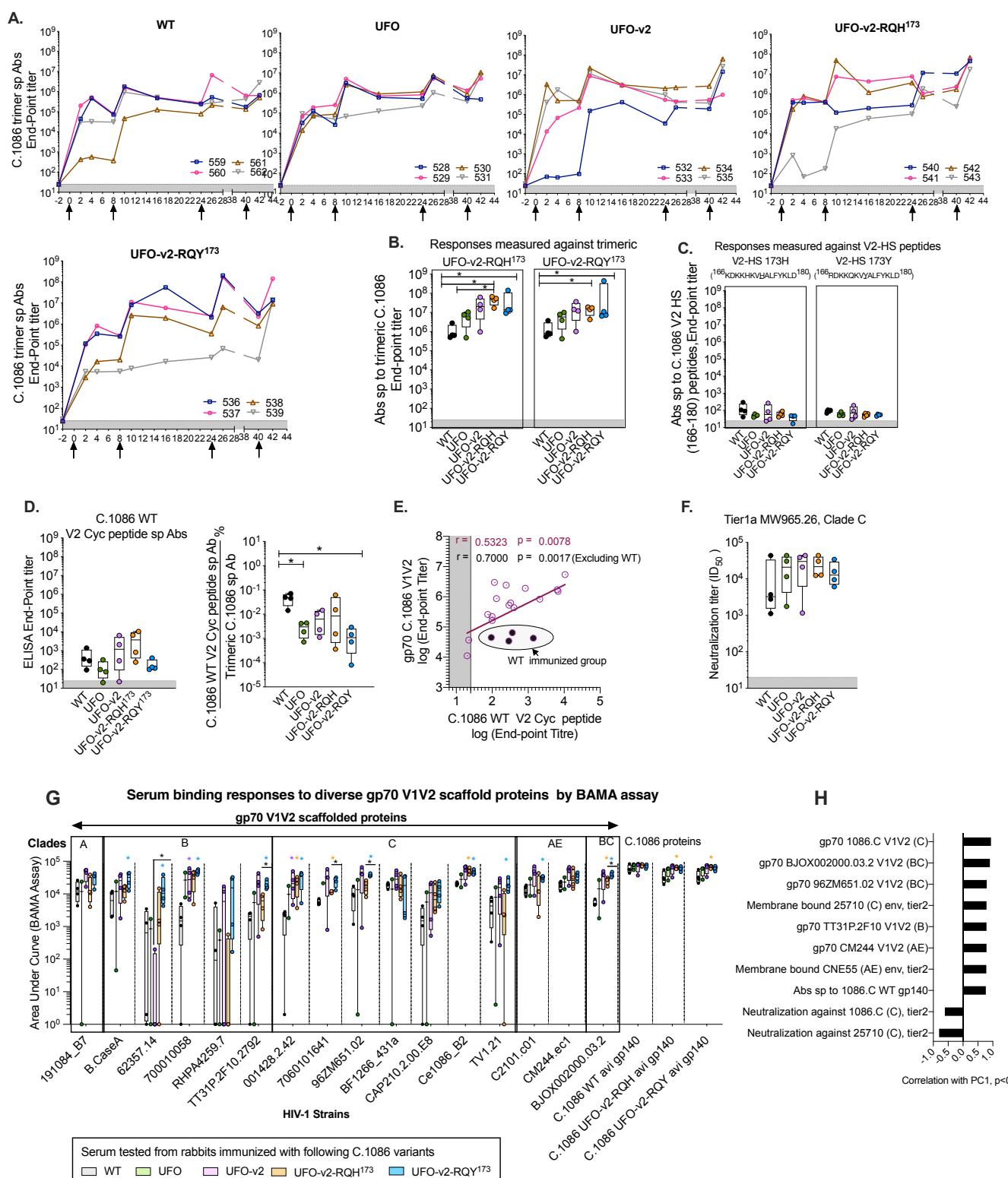
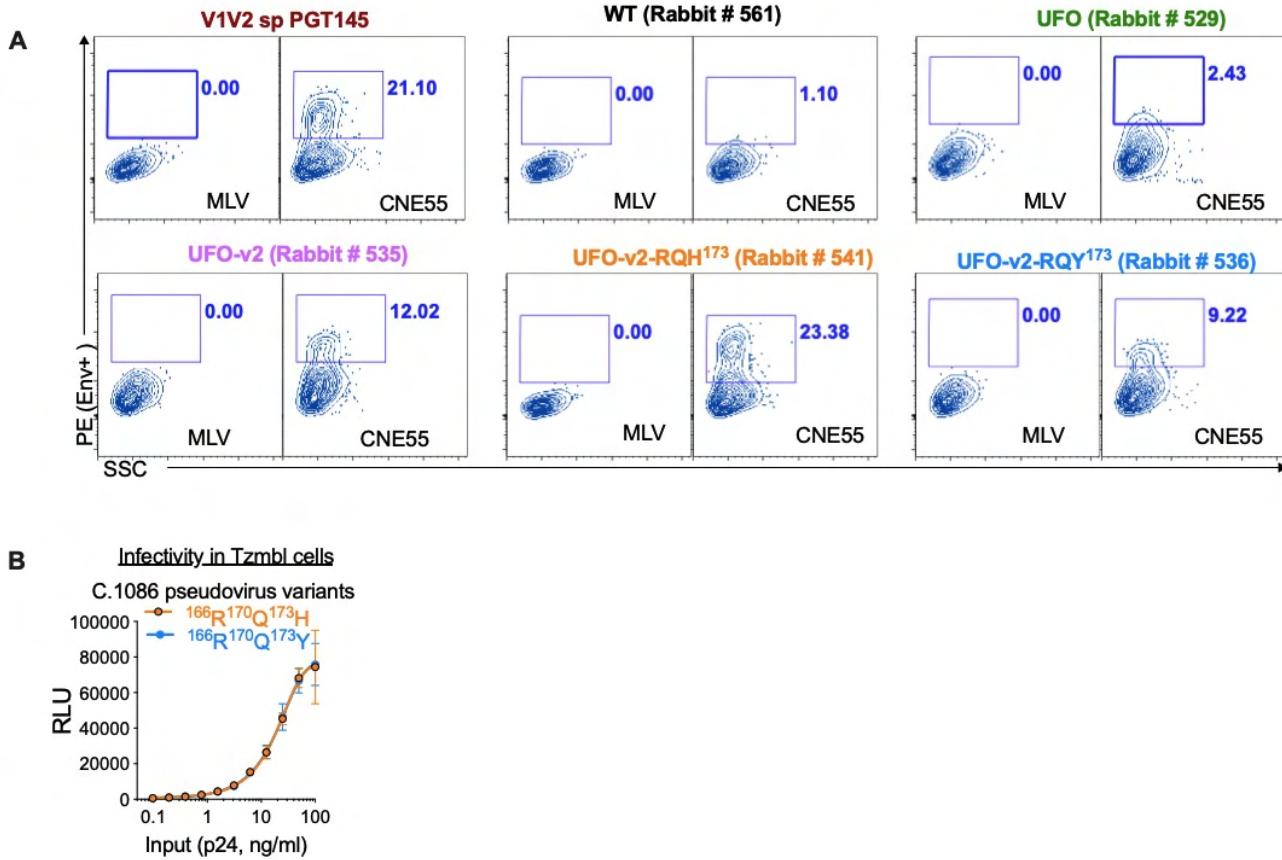



Figure S4. HDX-MS analyses of C.1086 UFO-v2-RQH¹⁷³, UFO-v2-RQY¹⁷³ and homologous peptic peptides in BG505 SOSIP.664 trimers, related to manuscript Figure 3.

Figure S5. Time dependent structural differences monitored for C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants by BLI and DLS, *in-vitro*, related to manuscript Figure 3.


Incubation period at 25°C for estimating binding affinity against mAbs by BLI (t hrs)


E Time dependent size distribution profiles of C.1086 UFO-v2-RQ(H/Y)¹⁷³ proteins monitored by Dynamic Light Scattering (DLS)

				Radius (nm)	%PD	%Mass	%Intensity
C.1086 UFO-v2- RQH ¹⁷³	Incubation at 23°C time 0	Repeat 1	Peak1	7.0	19.5	99.9	96.8
			Peak2	25.0	12.3	0.1	3.2
		Repeat 2	Peak1	7.1	9.2	99.9	98.5
			Peak2	386.3	8.0	0.1	1.5
	Incubation at 23°C for 4hrs	Repeat 1	Peak1	6.5	13.2	100.0	91.4
			Peak2	59.5	5.1	0.0	8.6
		Repeat 2	Peak1	7.1	9.1	99.9	89.5
			Peak2	93.6	11.9	0.1	10.5
C.1086 UFO-v2- RQY ¹⁷³	Incubation at 23°C time 0	Repeat 1	Peak1	7.0	11.2	100.0	95.9
			Peak2	57.6	9.4	0.0	4.1
		Repeat 2	Peak1	7.2	14.8	100.0	89.8
			Peak2	75.2	9.0	0.0	10.2
	Incubation at 23°C for 4hrs	Repeat 1	Peak1	7.1	12.0	99.2	77.1
			Peak2	90.0	13.0	0.2	21.7
			Peak3	3367.4	12.8	0.6	1.2
		Repeat 2	Peak1	1.5	3.2	29.3	0.3
			Peak2	7.1	9.0	70.0	74.9
			Peak3	90.5	12.9	0.1	23.4
			Peak4	3257.4	11.4	0.5	1.4

Figure S6. Characterization of antibody responses elicited by C.1086 variants in rabbits, related to manuscript Figures 4 and 5.

Figure S7. Representative flow plots showing binding of purified serum IgGs to 293T cells expressing membrane anchored gp160 and comparing infectivity of TZM-bl cells by C.1086 RQ(HY)¹⁷³ pseudoviruses, related to manuscript Figure 4.

Table S1. Binding kinetics of C.1086 gp140 variants estimated by Bio-Layer Interferometry, related to manuscript Figures 1 and 2.

Epitope specificity	Env sp mAb	C.1086 K160N/V295N/N334S gp140	K _D (nM)	k _{on} (1/Ms)	k _{dis} (1/s)
V1/V2 apex sp bnAb	PG16	NFL	11044±4414	1.1±0.03E+02	1.2±0.5E-03
		UFO	252±44	6.6±0.5E+03	1.7±0.4E-03
		UFO-v2	275±23	5.5±0.8E+03	1.5±0.11E-03
		UFO-v2-RHH ¹⁷³	215±27	5.8±0.4E+03	1.3±0.09E-03
		UFO-v2-RQH ¹⁷³	153±17	1.3±0.1E+04	2±0.2E-03
		UFO-v2-RQY ¹⁷³	217±84	7.3±3.8E+03	1.3±0.08E-03
	PG9	NFL	167±67	4.4±1.6E+03	6.9±0.4E-04
		UFO	74±33	5.7±0.6E+03	4.1E-04
		UFO-v2	108	3.2E+03	3.4E-04
		UFO-v2-RHH ¹⁷³	100±39	4±1.9E+03	3.6±0.3E-04
		UFO-v2-RQH ¹⁷³	70±10	8.3±0.8E+03	5.8±0.3E-04
		UFO-v2-RQY ¹⁷³	91±7	4.3±0.9E+03	3.9±0.7E-04
	PGT145	NFL	136±56	1.3±0.2E+04	1.7±0.6E-03
		UFO	111±53	1.6±0.9E+04	1.6±0.6E-03
		UFO-v2	197±82	1.2±0.5E+04	2.2±0.08E-03
		UFO-v2-RHH ¹⁷³	34±4	3.7±0.8E+04	1.3±0.1E-03
		UFO-v2-RQH ¹⁷³	37±6	4.3±1.1E+04	1.6±0.2E-03
		UFO-v2-RQY ¹⁷³	34±3	5.1±0.3E+04	1.7±0.03E-03
gp120/gp41 bnAb	PGT151	NFL	97±38	1.2±0.2E+04	1.1±0.2E-03
		UFO	35±5	3±0.9E+04	1±0.2E-03
		UFO-v2	54±18	3.8±1.7E+04	1.9±0.3E-03
		UFO-v2-RHH ¹⁷³	24±6	4.6±2E+04	1.1±0.3E-03
		UFO-v2-RQH ¹⁷³	20±2	7.5±0.8E+04	1.50E-03
		UFO-v2-RQY ¹⁷³	34±6	3.7±0.3E+04	1.2±0.1E-03
V3 glycan sp bnAn	PGT121	NFL	2±0.3	1.4±0.5E+04	2±0.3E-05
		UFO	nd	1.4±0.5E+04	nd
		UFO-v2	nd	2.2±1.3E+04	nd
		UFO-v2-RHH ¹⁷³	nd	2.8±0.3E+04	nd
		UFO-v2-RQH ¹⁷³	nd	1.9±0.6E+04	nd
		UFO-v2-RQY ¹⁷³	nd	1.5±0.5E+04	nd
CD4bs bnAb	NIH45-46(G54W)	NFL	2±1	7±2.2E+03	1.5±1.1E-05
		UFO	nd	1.1±0.2E+03	nd
		UFO-v2	nd	3.1±2.1E+03	nd
		UFO-v2-RHH ¹⁷³	4	4.5E+03	1.7E-05
		UFO-v2-RQH ¹⁷³	4±1	1.3±0.1E+04	5.4±0.8E-05
		UFO-v2-RQY ¹⁷³	2±1	8.1±2.3E+03	1.7±0.5E-05
CD4 mimic	CD4-IgG2	NFL	nd	1.4±0.2E+04	nd
		UFO	nd	1.2±0.2E+04	nd
		UFO-v2	43±5	1.2±0.04E+04	5.3±0.7E-04
		UFO-v2-RHH ¹⁷³	37±2	1.1±0.1E+04	4±0.2E-04
		UFO-v2-RQH ¹⁷³	39±4	1.5±0.2E+04	5.9±1.4E-04
		UFO-v2-RQY ¹⁷³	43±9	1.2±0.4E+04	5±0.5E-04

CD4i non-nAb	17B	NFL	3	$3.4 \pm 0.4 \text{E}+04$	$1.1 \text{E}-04$
		UFO	3 ± 2	$2.8 \pm 0.5 \text{E}+04$	$7.9 \pm 4.3 \text{E}-05$
		UFO-v2		no apparent binding	
		UFO-v2-RHH ¹⁷³		no apparent binding	
		UFO-v2-RQH ¹⁷³		no apparent binding	
		UFO-v2-RQY ¹⁷³		no apparent binding	
	48D	NFL	15 ± 7	$3.7 \pm 2.6 \text{E}+04$	$6.3 \pm 6.4 \text{E}-04$
		UFO	27 ± 13	$1.6 \pm 0.5 \text{E}+04$	$4.7 \pm 3.3 \text{E}-04$
		UFO-v2		no apparent binding	
		UFO-v2-RHH ¹⁷³		no apparent binding	
		UFO-v2-RQH ¹⁷³		no apparent binding	
		UFO-v2-RQY ¹⁷³		no apparent binding	
CD4bs non-nAb	F105	NFL	16 ± 2	$1.1 \pm 0.1 \text{E}+04$	$1.7 \pm 0.07 \text{E}-04$
		UFO	7 ± 4	$1.1 \pm 0.3 \text{E}+04$	$7.1 \pm 3.8 \text{E}-05$
		UFO-v2	15 ± 5	$9 \pm 0.7 \text{E}+03$	$1.3 \pm 0.3 \text{E}-04$
		UFO-v2-RHH ¹⁷³	16 ± 5	$8.6 \pm 0.2 \text{E}+03$	$1.3 \pm 0.4 \text{E}-04$
		UFO-v2-RQH ¹⁷³	10 ± 5	$1.3 \pm 0.4 \text{E}+04$	$1.2 \pm 0.2 \text{E}-04$
		UFO-v2-RQY ¹⁷³	7 ± 1	$1.8 \pm 0.7 \text{E}+04$	$1.3 \pm 0.4 \text{E}-04$
V3 non-nAb	447-52D	NFL	2 ± 1	$1.4 \pm 0.6 \text{E}+05$	$2.2 \pm 0.6 \text{E}-04$
		UFO	2 ± 1	$7 \pm 1.8 \text{E}+04$	$1.8 \pm 0.8 \text{E}-04$
		UFO-v2	15 ± 3	$3.4 \pm 2.1 \text{E}+04$	$4.7 \pm 2 \text{E}-04$
		UFO-v2-RHH ¹⁷³	18 ± 5	$2.2 \pm 0.09 \text{E}+04$	$4.1 \pm 1 \text{E}-04$
		UFO-v2-RQH ¹⁷³	15 ± 1	$3.6 \pm 0.9 \text{E}+04$	$5.2 \pm 0.8 \text{E}-04$
		UFO-v2-RQY ¹⁷³	10 ± 2	$5.8 \pm 0.6 \text{E}+04$	$5.5 \pm 1.9 \text{E}-04$
	39F	NFL	1 ± 1	$1.1 \pm 0.3 \text{E}+05$	$9.3 \pm 12 \text{E}-05$
		UFO	1 ± 0.4	$7.4 \pm 4.4 \text{E}+04$	$4.8 \pm 5 \text{E}-05$
		UFO-v2	7 ± 0.05	$2.2 \pm 0.4 \text{E}+04$	$1.6 \pm 0.3 \text{E}-04$
		UFO-v2-RHH ¹⁷³	6 ± 1	$2.6 \pm 0.3 \text{E}+04$	$1.5 \pm 0.2 \text{E}-04$
		UFO-v2-RQH ¹⁷³	4 ± 0.2	$4.8 \pm 0.8 \text{E}+04$	$1.7 \pm 0.2 \text{E}-04$
		UFO-v2-RQY ¹⁷³	3 ± 1	$5.7 \pm 1.6 \text{E}+04$	$1.5 \pm 0.3 \text{E}-04$
V2p non-nAb	CH58	NFL	13 ± 3	$1.4 \pm 0.2 \text{E}+04$	$1.8 \pm 0.1 \text{E}-04$
		UFO	4 ± 2	$1.3 \pm 0.3 \text{E}+04$	$6 \pm 4.4 \text{E}-05$
		UFO-v2	20 ± 3	$3.7 \pm 2.9 \text{E}+03$	$7 \pm 4.7 \text{E}-05$
		UFO-v2-RHH ¹⁷³	21 ± 6	$4.6 \pm 1.9 \text{E}+03$	$1 \pm 0.7 \text{E}-04$
		UFO-v2-RQH ¹⁷³	5 ± 0.3	$9.5 \pm 0.3 \text{E}+03$	$4.9 \pm 0.5 \text{E}-05$
		UFO-v2-RQY ¹⁷³	94 ± 3	$3.3 \pm 0.5 \text{E}+03$	$3.1 \pm 0.3 \text{E}-04$
V2i non-nAb	697-30D	NFL	151 ± 39	$1.2 \pm 0.3 \text{E}+04$	$1.7 \pm 0.04 \text{E}-03$
		UFO	107 ± 6	$1 \pm 0.5 \text{E}+04$	$1.1 \pm 0.5 \text{E}-03$
		UFO-v2	7483 ± 694	$1.7 \pm 0.3 \text{E}+02$	$1.3 \pm 0.4 \text{E}-03$
		UFO-v2-RHH ¹⁷³	7213 ± 3546	$8.8 \pm 4.3 \text{E}+01$	$7.1 \pm 6.2 \text{E}-04$
		UFO-v2-RQH ¹⁷³	2387 ± 1211	$5.5 \pm 4 \text{E}+02$	$9.7 \pm 3.5 \text{E}-04$
		UFO-v2-RQY ¹⁷³	2403 ± 1089	$4.3 \pm 4.9 \text{E}+02$	$7.1 \pm 4.9 \text{E}-04$

^and: No dissociation observed, hence K_D could not be calculated.

Table S2. Time dependent binding kinetics assessment of C.1086 UFO-v2-RQ(H/Y)¹⁷³ variants against envelope specific mAbs by BLI at 25°C, related to manuscript Figure 3 and Figure S5.

Epitope specificity	Envelope sp mAbs	Time of Incubation at 25°C (t, hr)	C.1086 UFO-v2-RQH ¹⁷³			C.1086 UFO-v2-RQY ¹⁷³		
			K _D (nM)	k _{on} (1/Ms)	k _{dis} (1/s)	K _D (nM)	k _{on} (1/Ms)	k _{dis} (1/s)
V1/V2 apex sp bnAb	PG16	0	153±17	1.3±0.1E+04	2±0.2E-03	217±84	7.3±3.8E+03	1.3±0.08E-03
		4	332±26	5.3±0.5E+03	1.8±0.1E-03	18309±6469	7.7±3.4E+01	1.3±0.1E-03
		8	719	2.50E+03	1.70E-03	11138±746	9.4±1.4E+01	1±0.08E-03
		12	a _{ntd}			17521	5.8E+01	1.00E-03
	PG9	0	70±10	8.3±0.8E+03	5.8±0.3E-04	91±7	4.3±0.9E+03	3.9±0.7E-04
		4	153±34	3.9±0.7E+03	5.8±0.2E-04	1847±615	1.8±0.4E+02	3.2±0.3E-04
		8	1071±443	5.9±2.3E+02	5.8±0.2E-04	1730±344	1.8±0.2E+02	3.1±0.3E-04
		12	2550±829	2.4±1E+02	5.6±0.9E-04	2006	8.6E+01	1.80E-04
	PGT145	0	35±1	4.5±0.3E+04	1.6±0.1E-03	43±4	3.1±0.3E+04	1.4±0.08E-03
		4	67±7	2.3±0.5E+04	1.5±0.2E-03	91±17	1.4±0.04E+04	1.3±0.2E-03
		8	90±7	1.7±0.2E+04	1.6±0.2E-03	152±45	8.3±0.8E+03	1.3±0.3E-03
		12	154±12	10±1.4E+03	1.5±0.1E-03	567±80	2.2±0.8E+02	1.2±0.3E-03
	PGDM1400	0	46±4	1.5±0.2E+04	6.5±0.3E-04	67±15	1±0.3E+04	6.7±1.1E-04
		4	76±23	9.7±2E+04	7.1±0.5E-04	117±33	6.2±0.09E+03	7.2±1.3E-04
		8	98±3	6.5±0.8E+03	6.3±0.6E-04	212±9	2.8±0.3E+03	5.9±0.4E-04
		12	208±64	3.5±0.9E+03	7.1±0.5E-04	5623±661	1.1±0.1E+02	6.4±1.3E-04
	CAP256-VRC26.08	0	27±9	1±0.4E+04	2.5±0.3E-04	35±2	6.7±1.2E+03	2.4±0.3E-04
		4	35±8	8.8±1.1E+03	3±0.3E-04	165±12	1.1±1E+03	2.7±0.2E-04
		8	53±12	6.5±0.7E+03	3.4±0.4E-04	2364±176	1.3E+02	3.1±0.2E-04
		12	91±31	3.7±0.9E+03	3.4±0.4E-04	2732±800	1.1±0.3E+02	3.2±1.7E-04
gp120/gp41 interface sp bnAb	PGT151	0	20±2	7.5±0.8E+04	1.50E-03	34±6	3.7±0.3E+04	1.2±0.1E-03
		4	28±4	5.9±0.4E+04	1.6±0.1E-03	48±4	3.1±0.08E+04	1.5±0.2E-03
		8	34±5	4.8±0.2E+04	1.7±0.2E-03	69±0.7	2.3±0.06E+04	1.6±0.1E-03
		12	42±6	3.9±0.9E+04	1.7±0.2E-03	103±20	1.6±0.06E+04	1.6±0.3E-03
V3 glycan sp bnAn	PGT121	0	^b nd	3±0.2E+04	^b nd	^b nd	2±0.8E+04	^b nd
		4	^b nd	2.3±0.5E+04	^b nd	^b nd	1.4±0.1E+04	^b nd
		8	^b nd	1.9±0.6E+04	^b nd	^b nd	1.5±0.5E+04	^b nd
		12	^b nd	2.20E+04	^b nd	^b nd	1.1E+04	^b nd

Epitope specificity	Envelope sp mAbs	Time of Incubation at 25°C (t, hr)	C.1086 UFO-v2-RQH ¹⁷³			C.1086 UFO-v2-RQY ¹⁷³		
			K _D (nM)	k _{on} (1/Ms)	k _{dis} (1/s)	K _D (nM)	k _{on} (1/Ms)	k _{dis} (1/s)
CD4bs bnAb	NIH45-46(G54W)	0	4±1	1.3±0.1E+04	5.4±0.8E-05	2±1	8.1±2.3E+03	1.7±0.5E-05
		5	5±0.6	8.5±2E+03	4.5±0.6E-05	2±1	6±2.1E+03	1.5±1.3E-05
		10	6±0.7	7.2±4E+03	4.7±3E-05	4	3.2±2.3E+03	1.90E-05
		15	11	7.50E+03	8.10E-05		ND	
CD4bs non-nAb	F105	0	11	1.5±0.2E+04	1.8±0.02E-04	16±6	1.2±0.7E+04	1.6±0.4E-04
		4	12±2.3	1.5±0.2E+04	1.8±0.1E-04	17±12	1.6±1.4E+04	1.8±0.4E-04
		8	13±3	1.3±0.04E+04	1.6±0.5E-04	21±14	1±0.8E+04	1.6±0.3E-04
		12	19	1.10E+04	2.00E-04	42	3.5E+04	1.50E-04
V3 non-nAb	447-52D	0	12±3	4.8±1E+04	5.5±0.2E-04	22±8	2.9±2E+04	5.3±1.5E-04
		4	10±1	4.9±0.1E+04	5±0.6E-04	23±10	3±2.2E+04	5.4±1E-04
		8	16±6	3.2±0.2E+04	5.1±1.6E-04	27±16	3.1±2.9E+04	5.3±0.8E-04
		12	21	3.30E+04	6.80E-04	40±0.9	1.2±0.3E+04	4.8±1.5E-04
	39F	0	3±0.6	4.2±0.4E+04	1.2±0.0E-04	7±4	2.7±2E+04	1.4±.2E-04
		4	4±0.3	4±0.3E+04	1.6±0.003E-04	10.4±3	2.1±1.2E+04	2±0.7E-04
		8	5±0.1	3.6±0.4E+04	1.9±0.2E-04	12±6	9.7±4.2E+03	2.1±0.7E-04
		12	6	3.30E+04	2.10E-04	15±7	1.3±0.3E+04	1.9±0.5E-04
V2p non-nAb	CH58	0	5±0.3	9.5±0.3E+03	4.9±0.5E-05	94±3	3.3±0.5E+03	3.1±0.3E-04
		4	7±2	8.3±1.7E+03	5.2±0.5E-05	1421±379	1.6±0.8E+02	2±0.3E-04
		8	13±1.6	5.6±1.8E+03	7.4±3.3E-05	1250±27	1.5±0.7E+02	1.9±0.9E-04
		12	14	6.80E+03	9.70E-05		ntd	
V2i non-nAb	697-30D	0	2387±1211	5.5±4E+02	9.7±3.5E-04	2403±1089	4.3±4.9E+02	7.1±4.9E-04
		4	7960±774	1.2±0.03E+02	9.5±0.7E-04	3753±4118	1.3±0.09E+02	4.5±4.7E-04
		8	3624	2.10E+02	7.70E-04	3624	2.1E+02	7.70E-04
		12	3964	1.50E+02	5.70E-04	3964	1.5E+02	5.70E-04

^antd: binding affinity not able to determine due to low binding signal to reliably globally fit the raw data, ^bnd: no dissociation observed, hence K_D could not be calculated, ^cND: not determined.

Table S3. Neutralization sensitivity of serum from C.1086 immunized rabbits, related to manuscript Figure 4.

A

Serum used for the assay, ID₅₀ reported

C.1086 K160N/V295N N334S Immunogen used		-ve control	-ve control			Tier1a, Clade C			Tier2 Clade C			
		Prebleed	Wk10	Wk26	Wk42	Wk10	Wk26	Wk42	Wk42			
		SVA-MLV	SVA- MLV	SVA- MLV	MW965.26			Ce1086_B2	Ce1086_B2 K160N	Ce1086_B2. K160N RQH	Ce1086_B2. K160N.RQY	
		Rabbit ID	ID#8075	ID#4047	ID#8075	ID#8075	ID#7847	ID#7847	ID#9310	ID#9385	ID#9653	ID#9651
WT	EM559	<20	<20	<20	<20	<20	7953	4790	<20	<20	<20	<20
	EM560	<20	<20	<20	<20	<20	23684	5173	<20	<20	<20	<20
	EM561	<20	<20	<20	<20	<20	414	1377	21	29	22	21
	EM562	<20	<20	<20	<20	<20	29442	62329	<20	<20	<20	<20
UFO	EM528	<20	<20	<20	<20	25563	16556	1754	37	21	58	45
	EM529	<20	<20	<20	<20	39117	43740	30577	<20	<20	60	36
	EM530	<20	32	24	32	9757	25813	11496	<20	56	104	44
	EM531	<20	<20	25	<20	423	>43740	>43740	<20	<20	67	33
UFO-v2	EM532	<20	<20	34	<20	<20	386	>43740	24	30	206	50
	EM533	<20	<20	<20	<20	5495	1258	1158	<20	21	24	38
	EM534	<20	<20	<20	31	7353	1719	21099	34	57	29	55
	EM535	<20	<20	<20	<20	10702	630	38886	<20	<20	23	41
UFO-v2-RQH	EM540	<20	<20	<20	26	228	>43740	>43740	104	53	58	72
	EM541	<20	<20	<20	<20	5976	11736	30512	<20	<20	22	22
	EM542	<20	<20	<20	<20	4954	7333	12719	28	52	52	73
	EM543	189	41	<20	<20	49	2568	12467	44	45	36	41
UFO-v2-RQY	EM536	21	22	55	<20	10567	>43740	15990	<20	26	24	50
	EM537	<20	<20	<20	27	7788	16315	34170	54	92	34	126
	EM538	<20	<20	46	<20	887	8218	9502	<20	30	49	52
	EM539	77	<20	21	<20	<20	<20	6113	<20	<20	<20	21

B

Purified IgG used for the assay, WK42, IC₅₀ (μg/ml) reported

C

Purified IgG used for the assay, WK42, IC₅₀ reported

C.1086 K160N/V295N N334S		-ve control	Tier-2 Clade C								
			Ce1086_B2.K160N RQH (Parent)								
		SVA-MLV	Parent	N279Q	N280D						
Immunogen used	Rabbit ID	ID#8075	ID#9653	ID#10278	ID#10284						
WT	EM559	>1500	>1500	1297	430						
	EM560	>1500	>2000	Not determined							
	EM561	>1500	147	150	28						
	EM562	>1500	>2000	Not determined							
UFO	EM528	>1500	>1480	>1480	643						
	EM529	>1500	>1016	Not determined							
	EM530	>1500	>1038	Not determined							
	EM531	>1500	431	313	97						
UFO-v2	EM532	>1500	657	535	65						
	EM533	>1500	>1216	Not determined							
	EM534	>1500	221	155	22						
	EM535	>1500	>1480	219	3						
UFO-v2-RQH	EM540	>1500	192	123	35						
	EM541	>1500	504	65	13						
	EM542	>1500	236	191	63						
	EM543	>1500	435	243	98						
UFO-v2-RQY	EM536	>1500	426	235	93						
	EM537	>1500	193	183	73						
	EM538	>1500	1224	Not determined							
	EM539	>1500	>1920	859	202						
CD4bs bnAb (+ve control)	VRC01		1.8	>50	>50						
<table border="1"> <tr> <td>1-30</td> <td>31-100</td> <td>101-300</td> <td>301-500</td> <td>501-1000</td> <td>>1000</td> </tr> </table>						1-30	31-100	101-300	301-500	501-1000	>1000
1-30	31-100	101-300	301-500	501-1000	>1000						
IC ₅₀ (μg/ml)											

References

Kwon, Y.D., Pancera, M., Acharya, P., Georgiev, I.S., Crooks, E.T., Gorman, J., Joyce, M.G., Guttman, M., Ma, X., Narpala, S., *et al.* (2015). Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. *Nat Struct Mol Biol* 22, 522-531.

Montefiori, D.C. (2009). Measuring HIV neutralization in a luciferase reporter gene assay. *Methods Mol Biol* 485, 395-405.

Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera--a visualization system for exploratory research and analysis. *J Comput Chem* 25, 1605-1612.

Zolla-Pazner, S., deCamp, A., Gilbert, P.B., Williams, C., Yates, N.L., Williams, W.T., Howington, R., Fong, Y., Morris, D.E., Soderberg, K.A., *et al.* (2014). Vaccine-induced IgG antibodies to V1V2 regions of multiple HIV-1 subtypes correlate with decreased risk of HIV-1 infection. *PLoS One* 9, e87572.