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Abstract 36 

Affective biases can influence how past events are recalled from memory. However, the 37 
mechanisms underlying how discrete affective events shape memory formation and 38 
subsequent recall are not well understood. Further understanding this is important given 39 
the central role of negative biases in affective memory recall in depression and 40 
antidepressant drug action.  In order to capture cognitive processes associated with 41 
affective memory formation and recall, we studied value-based decision-making between 42 
affective memories in two within-subject experiments (n=45 and n=74). Our findings 43 
suggest that discrete affective events, created by large magnitude Wheel of Fortune 44 
(WoF) outcomes, influence affective memory formation processes during reinforcement-45 
learning (RL). After 24 hours, we show that healthy volunteers display stable preferences 46 
during value-based recall of affective memories in a binary decision-making task. 47 
Computational modelling of these preferences demonstrated a positive bias during value-48 
based recall, induced by previously winning in the WoF. We further showed that value-49 
based decision-making between affective memories engages the pupil-linked central 50 
arousal systems, leading to pupil constriction prior to, and differential pupil dilation after 51 
the decision onset depending on the valence of the chosen options. Taken together, we 52 
demonstrate that mechanisms underlying human affective memory systems can be 53 
described by RL and probability weighting models.  This approach could be used as a 54 
translational assay to study the effects of novel antidepressants. 55 
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Introduction 71 

Human social life is arguably the most complex in the animal kingdom, enriched by our 72 

ability to express and infer from others a wide spectrum of emotions. The breadth of this 73 

affective repertoire, along with our tendency to process positive and negative information 74 

asymmetrically1,2, makes us prone to affective biases that can shape not only our present 75 

experiences, but also how we recall events from the past. For example, the study of 76 

eyewitness memory has highlighted that centrally relevant details (e.g. the characteristics of 77 

a criminal or the weapon used in a crime) from emotional events are remembered more 78 

accurately than non-affective content3. It is known that humans exhibit an asymmetry in 79 

affective information processing (hence forth “affective bias”). In healthy volunteers, affective 80 

bias is more frequently observed in favour of positive events, and spans across multiple 81 

domains including perception, attention, reinforcement learning (RL), and memory 2,4,5. In 82 

psychiatric conditions such as major depressive disorder (MDD), negative affective biases 83 

(i.e. preferential processing of negative relative to positive information)6-10 have been shown 84 

to play a role in the development and maintenance of symptoms11-13. Nevertheless, 85 

mechanisms underlying how discrete affective events induce biases that can influence 86 

learning and subsequent memory recall in humans remain elusive. 87 

Recent preclinical work has further elucidated how discrete affective events can influence 88 

memory-guided value-based decisions, and how these can be targeted pharmacologically. 89 

Stuart, et al. 14 (2015) demonstrated that ketamine, a non-competitive N-methyl-D-aspartate 90 

(NMDA) receptor antagonist known to have rapid antidepressant (AD) effects15-17, injected 91 

into mouse medial prefrontal cortex (mPFC), attenuates negative memory biases. This effect 92 

was shown in a decision-making assay in which rodents were probed to choose between 93 

two substrates with equal nutritional value: one previously paired with an anxiogenic 94 

compound (FG7142) and another paired with saline during learning. This finding 95 

demonstrates the malleability/plasticity of cognitive processes underlying negative affective 96 

biases and has important implications for understanding the mechanisms of rapid AD 97 
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treatment of depression. Translating preclinical paradigms which are developed within the 98 

constraints of animal models of disease is critically important for unifying human and animal 99 

work under a single mechanistic umbrella18,19. This interdisciplinary approach can help to 100 

speed up drug discovery in psychiatry20. In the current work, we will describe a behavioural 101 

assay founded in RL and value-based decision-making, translating the essence of the 102 

rodent assay from Stuart et al., (2015) to shed light on cognitive mechanisms underlying 103 

value-based recall of affective memories in humans. 104 

In humans, there is evidence demonstrating that discrete affective events influence 105 

subsequent value-guided choice. Using a Wheel of Fortune (WoF) manipulation, Eldar and 106 

Niv 21 (2015) provided quantitative evidence showing that individuals who scored highly on a 107 

mood instability measure and won money in the WoF draw preferred probabilistic slot 108 

machines they experienced immediately after the draw, whereas those who lost in the WoF 109 

draw preferred those slot machines that preceded the draw, even though expected values of 110 

the slot machines on either side of the WoF draw were comparable. In the current work, we 111 

adopted a similar experimental design to manipulate participants’ affective state. Unlike 112 

Eldar and Niv (2015), who assessed the impact of such affective events on participants’ 113 

value-based decisions shortly after the WoF manipulation, we tested participants’ 114 

preferences between abstract information learnt through RL, and up to 4 days later. Thus, in 115 

our work, preference biases observed in participant choice behaviour would be driven by 116 

“affective memories” based on information encoded through RL in earlier stages of the 117 

experiment (see Methods for further details). This within-subject approach captures the 118 

essence of the rodent assay and it is also similar to the methodology used in a recent study 119 

which investigated serotonergic modulation of learning and memory-based decision-making 120 

processes22. Here, use of the RL framework also ties in with the importance of implementing 121 

computational methods for understanding the mechanisms underlying affective biases. This 122 

is important because recent RL studies demonstrated that negative affective biases, which 123 

are known to be causally linked to symptoms of depression23, may develop even in healthy 124 

volunteers as a rational response to environmental contingencies24 and relate to poor 125 
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filtering of informative negative experiences from uninformative ones25. In these previous 126 

studies, we demonstrated that the information content of negative affective events engages 127 

the pupil-linked central arousal systems 24. In the current study, we used pupillometry to 128 

expand on these previous findings and to investigate whether value-based recall of affective 129 

memories also engages central arousal systems.  130 

The aim of the current study was to test whether experimentally induced changes in 131 

emotional state influence human choice behaviour during RL (Figure 1). Secondly, we 132 

investigated whether nonclinical volunteers display a positive bias during value-based 133 

decision-making between affective memories. Finally, we investigated whether this process 134 

engages the pupil-linked central arousal systems. We predicted that discrete affective 135 

events should have a significant and differential influence on human RL. We predicted that a 136 

non-clinical population would overall display a positive bias, indicated by a preference for 137 

shapes encoded after winning on the WoF. We analysed participant choice behaviour with a 138 

well-established computational model of value-guided choice, which posits that choice 139 

preferences can be expressed in terms of weighted probabilities26. Finally, using a model-140 

based analysis of pupillary data, we tested the prediction that subjective values which guide 141 

value-based decision making between affective memories will significantly influence pupil 142 

dilation.  143 

 144 
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 145 

Figure 1. (A) An overview of the studies. Two studies were conducted to understand how discrete affective 146 
events influence human reinforcement learning. In Study 1 (conducted in the laboratory), participants completed 147 
the task on three consecutive days.  On each day they experienced a different WoF outcome, the order of which 148 
was counterbalanced across participants; win (£15), loss (-£11) or a blank (see middle of panel A).  Participants 149 
completed a single baseline block of learning trials pre-WoF (70% reward probability) and two subsequent blocks 150 
post-WoF (90% and 80% reward probabilities). In Study 2 (conducted online) participants completed the task on 151 
two consecutive days. On each day they experienced a different WoF outcome, the order of which was 152 
counterbalanced across participants:  win (£14) and loss (-£7).  On each day they completed 3 blocks of learning 153 
trials pre-and-post WoF, with matched reward probabilities were matched. The table shows the probability (p) 154 
associated with the higher reward probability shape, where the probability associated with the other shape is 1-p. 155 
Blue diamond markers indicate the timepoints of happiness rating assessments. (B) Reinforcement learning 156 
task. After a fixation period of 1 second, participants had to choose, using the left and right arrow keys, between 157 
two abstract shapes. They were asked to choose the shape that was most likely to be rewarded (i.e. the shape 158 
associated with a higher reward probability). After participants made their choice, a black frame appeared around 159 
the chosen shape. If the choice was correct, the black frame would turn green. If the choice was incorrect, a 160 
green frame would appear around the unchosen shape. On each trial, one of the shapes was linked to a 'win' 161 
outcome (+2 pence) and the other shape would result in no monetary gain. The win and null outcomes were 162 
dependent on each other (probabilities add up to 1). Using trial and error, participants could infer the reward 163 
probability associated with each shape. This information could then be used to maximise their monetary reward. 164 
Participants started with £15 and their running total, displayed below the fixation cross for the duration of every 165 
trial, updated by 2p for each correct choice made. Incorrect choices did not have any monetary effect on 166 
participants’ running total. 167 
 168 
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 170 
 171 
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Materials and Methods 177 

Participants  178 

Forty-five (Study 1) and seventy-four (Study 2) English-speaking healthy participants were 179 

recruited from the general public using online and print advertisements around Oxfordshire, 180 

UK. All of the participants had normal or corrected to normal vision and did not report a 181 

present or past psychiatric diagnosis, nor any serious medical condition that could impact 182 

their study participation. Participants were excluded if they were currently using psychotropic 183 

medication. Participants received monetary reimbursement for their time (£50) plus 184 

additional payment depending on their task performance across the learning and decision-185 

making components of the experiment (£33.26-£38.40, mean±SD £37.25±0.90). The study 186 

was approved by the University of Oxford Central Ethics Committee (CUREC; ethics 187 

approval reference: R66705/RE001). All participants completed an informed consent form 188 

conforming to the Declaration of Helsinki.  189 

General Experimental Procedures  190 

In Study 1, testing sessions took place over 5 consecutive days at the University of Oxford, 191 

Department of Psychiatry at Warneford Hospital. In the first visit, the participants were taken 192 

through a screening interview to assess their eligibility. Then, the participants responded to a 193 

set of demographic questions and completed a battery of psychological questionnaires. After 194 

the screening interview, the eligible participants continued with the first day of learning and 195 

completed 3 blocks of a simple RL task in order to learn the associations between shapes 196 

and rewards. In line with the aims of the study, participants’ affective state was manipulated 197 

using a WoF paradigm adapted from Eldar and Niv (2015). On each day participants 198 

experienced a different WoF outcome: win (£15), loss (-£11) or a blank (see Figure 1 and 199 

legends about a detailed description of the experiment). We used these large magnitude 200 

WoF outcomes to experimentally induce negative or positive memory biases. To probe 201 

value-based recall of affective memories, after the training days, we asked participants to 202 

make decisions in a two-option forced-choice (TOFC) preference task in which various 203 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.14.448275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448275
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

combinations of the abstract shapes they had learned about were paired with each other 204 

(i.e. on the last 2 days of the lab-based study, and the last day of the online study). Although 205 

no explicit feedback was given to participants in the preference test, they continued to 206 

accumulate money based on the reward probability of the chosen shape (i.e. 90% chance of 207 

winning 2p if the participant selects the shape associated with 90% reward probability in the 208 

learning phase). We were particularly interested in the pairs of shapes that had objectively 209 

identical reward probabilities but appeared after different WoF outcomes, thus should be 210 

encoded under different affective influence (Figure 1). Therefore, the majority of trials 211 

presented during the preference tests compared shapes of equal reward probability but 212 

under different affective influence (Supplementary Figure 1). All tasks were presented on a 213 

laptop running MATLAB (MathWorks Inc) with Psychtoolbox (v3.1). 214 

In Study 2, testing sessions took place over 3 consecutive days and were delivered using an 215 

online platform (due to the global COVID-19 pandemic). We manipulated the reward 216 

probabilities in each RL block pre-and-post WoF in a balanced manner in order to 217 

investigate how discrete affective events influence human RL. Further details of 218 

experimental procedures and statistical analysis approach and computational modelling is in 219 

Supplementary Methods and Materials. 220 

 221 
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Results 233 

Table 1. Participant Demographics  234 

Measure Study 1 (n = 45) 

Mean ± SD 

Study 2 (n = 74) 

Mean ± SD 

Age             29.33 ± 7.98             33.94 ± 7.95 

Gender, female 31 (69%) 62 (84%) 

Years of education 16.53 ± 3.00 N/A 

Trait-STAI 32.51 ± 9.11 32.76 ± 10.94 

State-STAI 29.31 ± 7.39 29.83 ± 11.1 

BDI 3.56 ± 4.00 5.15 ± 5.46 

BAS Drive 6.64 ± 2.31 8.2 ± 2.75 

BAS Fun 7.16 ± 2.01 8.45 ± 2.71 

BAS Reward 12.02 ± 1.71 13.05 ± 2.59 

BIS 15.69 ± 3.41 16.15 ± 3.92 

MDQ 3.02 ± 3.65 4.08 ± 3.68 

PANAS positive affect 34.64 ± 6.97 31.54 ± 10.4 

PANAS negative affect 17.67 ± 12.40 12.21 ± 4.51 

Trait STAI, Spielberger State-Trait Anxiety Inventory, trait form; 235 
State STAI, Spielberger State-Trait Anxiety Inventory, state form; 236 
BDI, Beck Depression Inventory; BAS, Behavioural Activation; 237 
BIS, Behavioural Inhibition; MDQ, Mood Disorder Questionnaire; 238 
PANAS, Positive and Negative Affect Schedule.  239 

Participants and demographics  240 

Demographics and a summary of psychological questionnaire measures are given in Table 241 

1. In both Study 1 and Study 2, depression and trait anxiety scores were highly significantly 242 

correlated (r = .57 and r = .70, both p< .001). 243 

Discrete affective events influence happiness ratings and human reinforcement 244 

learning. 245 

To test whether the WoF manipulation influenced participants’ happiness, we compared their 246 

happiness ratings immediately before (pre-WoF) and immediately after (post-WoF) the draw. 247 

Overall, participants’ ratings indicated that they felt significantly happier immediately after 248 

winning in the WoF, and felt significantly less happy immediately after losing (statistical 249 

details are available in Supplementary Results and Supplementary Figure 2A). Therefore 250 

the wheel of fortune was effective at modulating mood in the expected direction.  251 
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In Study 1, we were able to investigate whether the valence of discrete affective events (i.e. 252 

winning, losing or a blank outcome on the WoF) influence human reinforcement learning. A 253 

rmANOVA did not reveal any significant main effect of WoF outcome on the probability of 254 

choosing the better shape (i.e. the shape associated with higher reward probability) post-255 

WoF. This is illustrated in Figure 2A, where we show that valence of the WoF outcome does 256 

not influence learning in the post-WoF blocks. Moreover, the interaction term (WoF outcome 257 

by reward probability) was not significant and there was no main effect of WoF outcome 258 

order (all p > .136). However, in this study (Study 1) we were only able to compare learning 259 

behaviour in the post-WoF blocks which were identical in terms of their reward probabilities, 260 

but we were not able to understand how learning behaviour might have changed from the 261 

pre-WoF baseline, as the reward probability in the pre-WoF block was different (i.e. 70%). 262 

We addressed this question by improving on the experimental design in Study 2 in which 263 

participants completed an identical number of blocks pre-and post-WoF with identical reward 264 

probabilities (Figure 1A). Due to lack of a significant main effect of WoF on learning 265 

behaviour in the blocks subsequent to it, we did not further analyse the data from Study 1 266 

with computational models. 267 

 268 

 269 
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 270 

Figure 2. Summaries of probability of choosing the higher probability shape (A) In Study 1, there were no 271 
significant differences in participant learning behaviour after the WoF, irrespective of the valence of WoF 272 
outcome. The single blue bar at 70% before the WoF shows the baseline condition. (B) In Study 2, we were able 273 
to compare pre-and-post-WoF learning behaviour. A repeated measures ANOVA model indicated a significant 274 
main effect of WoF influencing participant choice behaviour, reflecting an increased probability of choosing the 275 
shape associated with a high probability of reward post-WoF, irrespective of valence of the WoF outcome. 276 
Downward arrow with WoF indicates the point in which participants experienced the WoF draw within the course 277 
of their daily learning sessions. Note that, Study 2 only had win and loss outcomes in the WoF. In both panels, 278 
error bars reflect ±1 SEM. Probabilities on x-axis reflect reward probabilities from Figure 1A. 279 

 280 

In Study 2, a rmANOVA (2 valence x 3 probability levels x 2 phases (i.e. pre versus post 281 

WoF RL blocks), also including the win/loss training order as a between-subjects factor) 282 

revealed, consistent with Study 1, that there was no significant main effect of valence 283 

(F(1,65) = 2.439, p = .123, Figure 2B), suggesting that the outcome of the WoF did not 284 

affect subsequent learning. There was, however, a significant main effect of phase (F(1,65) 285 

= 17.423, p<.001), reflecting an increased probability of participants selecting the shape 286 

associated with a high probability of reward post-WoF. There were no significant interactions 287 

and no main effect of WoF order (F(1,65) = 1.374, p = .245). In order to understand how 288 

discrete affective events influence human reinforcement learning, we further analysed 289 

participant choice behaviour in the online study using computational modelling (in 290 

Supplementary Results). 291 

 292 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.14.448275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448275
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Value-based decision-making between affective memories reveals stable preferences 293 

In Study 1 we evaluated these preferences on two subsequent days to be able to establish 294 

the stability of value-based decision-making between affective memories (2x4 rmANOVA: 2 295 

preference days, 4 shape valence). There was no main effect of test day on participant 296 

choice behaviour (i.e. preference day 1 versus day 2, F(1,39 = .303, p = .585), indicating 297 

that value-based decision-making between affective memories remained stable (test-retest 298 

reliability coefficient 0.883). We observed a significant main effect of shape valence 299 

(F(3,117) = 5.912, p = .001). Shapes which were learnt following a WoF win or loss were 300 

selected more frequently than shapes learnt during the baseline (pre-WoF) block and those 301 

learnt following a neutral (blank) WoF (Supplementary Figure 6A). Specifically, loss 302 

shapes were not preferred significantly over win shapes (day 1: (t(86)=1.1902, p=.24; day 2: 303 

t(86)=1.867, p=.07), but preferred significantly over blank shapes (day 1: t(86) = 2.857, p = 304 

.005; day 2: t(86) = 2.267, p = .026) and over baseline shapes (day 1: t(86) = 4.617, p < 305 

.001; day 2: t(86) = 4.313, p < .001), while win shapes were chosen over blank shapes (day 306 

1: t(86) = 1.689, p = .09; day 2: t(86) = 0.465, p = .643) and over baseline shapes (day 1: 307 

t(86) = 3.435, p < .001; day 2: t(86) = 2.418, p < .018). The comparison between blank vs. 308 

baseline shapes was not significant (day 1: t(86) = 1.644, p = .10; day 2: t(86) = 1.784, p = 309 

.078). There was no significant main effect of WoF outcome order on participant choice 310 

behaviour (F(5,39) = .364, p = .870). Pairwise comparisons between equal value shape 311 

pairs are summarised in Supplementary Table 1.  312 

We further investigated preferences between equal value shapes in Study 2. We observed 313 

that discrete affective events of comparable magnitude experienced during reinforcement 314 

learning in an experimental setting do not carry enough weight to make human learners 315 

negatively or positively biased across the board. After controlling for WoF (e.g. whether 316 

participants experienced win or a loss outcome on Day 1) and shape identity order (e.g. 317 

whether shape A would be encountered on a win or a loss day) and individual differences in 318 

how well participants learned the reward probability of the environment during the learning 319 
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phase, there was no significant main effect of valence F(1, 64) = .307, p = .582, or reward 320 

probability F(5,320) = 1.542, p = .176) or WoF order/shape identity on participant choice 321 

behaviour (all p> .834, Supplementary Figure 7A). Within individual comparisons, we 322 

observed that participants were significantly positively biased for win shapes associated with 323 

60% reward probability (t(73)=2.191, p=.03). Although our experimental design did not allow 324 

us to decompose this effect any further, it is important to highlight that these shapes were 325 

farthest away in proximity to the affective events (i.e. win and loss outcomes in the WoF 326 

draw) experienced during the learning/encoding stage, and were associated with highest 327 

level of expected uncertainty among all the better shapes. Further analysis of participant 328 

choice behaviour raising the possibility that expected uncertainty of the reward environment 329 

may drive non-linear preferences between affective memories is available in Supplementary 330 

Results. 331 

Human affective memories are represented non-linearly 332 

Due to a high number of equal value comparisons reported in Supplementary Table 1 and 333 

in Supplementary Figure 7, and also considering the inherent stochasticity in participant 334 

choice behaviour, it is difficult to establish a bird's eye view on the organisation of human 335 

affective memories by solely relying on these comparisons. To be able to look beyond 336 

individual comparisons and construct a model of human value-based recall of affective 337 

memories which we probed with 400+ trials involving many random shape pairs (e.g. win 338 

90% vs other day baseline 10%), we further analysed participant choice behaviour in the 339 

preference tests with computational modelling (see Supplementary Methods and Materials 340 

for details). 341 

Here, it is important to highlight that in a large majority of the trials the expected value 342 

difference between the options were 0 (e.g. 60% win vs 60% loss shapes, Supplementary 343 

Figure 1), which would normally warrant random (i.e. 50-50) choices between these options, 344 

and consequently a benchmark log likelihood value of -.69 (i.e. log(.5)) for any decision 345 

model. First, we tested how well our stochastic choice model for the preference test which 346 

relies on the probability weighting function, performs against this benchmark. Across both 347 
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Study 1 and Study 2 this preference choice model performed significantly better than a 348 

random choice model (all t>8.2, all p<.001), meaning that the model can capture the 349 

subjective valuations underlying binary decision-making between affective memories. Our 350 

results demonstrate that when all trials and all possible comparisons between affective 351 

memories at different reward probability levels are concerned, discrete positive events (i.e. 352 

winning on a WoF draw) influence subsequent value-based recall of memories associated 353 

with the better option during RL (i.e. shapes associated with higher reward probabilities 354 

which were sampled more frequently during the encoding stage, based on difference in area 355 

under the curve Study 1 t(44)= 1.44 and 2.40, p=.15 and .02 (day 1 vs day 2 respectively); 356 

Study 2: t(68)=2.027, p=.047, Figure 3). This affective influence occurs in a manner that 357 

augments the subjective reward probabilities of these options during value-based recall 358 

(Figure 3). Although there were some differences in the execution of preference tests 359 

between 2 studies, we observed this positive induced bias consistently across 2 studies and 360 

3 assessment time points. 361 

 362 
 363 
Figure 3. Probability weighting function demonstrating affective biases in memory-guided value-based 364 
decision-making. (A-B) In line with the model-free results reported in Supplementary Figure 6, model-based 365 
results show consistent effects between preference test days 1 and 2. The probability weighting function 366 
indicates that positive biases will have a stronger effect in contaminating neutral information associated with 367 
higher reward probability shapes (i.e. Baseline 70%), such that the reward probability associated with the 368 
baseline shape will be augmented when they are presented on the side associated with win shapes (green curve 369 
and SEM shading), whereas high probability baseline shapes will be under-weighted when they are presented on 370 
the side associated with loss shapes (red curve and SEM shading). Sidedness in stimuli presentation was 371 
counterbalanced across participants and between preference test days 1 and 2. This behaviour was reversed in 372 
the lower reward probability spectrum (i.e. for shapes associated with reward probability 30% and below). The 373 
trajectories of the weighting function capture the essence of all comparisons reported in Supplementary Table 1. 374 
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(C) Perceived probabilities during value-based recall between affective memories in the online study (Study 2) in 375 
which all stimuli were presented randomly on each side of the screen. The difference between win and loss 376 
trajectories become more evident for higher probability shapes which were sampled more frequently during the 377 
encoding stage. Shading around the population mean denotes ± 1 SEM. 378 
Value-based decision-making between affective memories engages the pupil-linked 379 

central arousal systems 380 

During the first preference test of Study 1, pupillometry data were collected across the entire 381 

decision process. We used a multiple linear regression model to quantify physiological 382 

response immediately before, during, and immediately after making choices between 383 

shapes learned following different WoF outcomes. Prior to choice, and even after controlling 384 

for the expected value difference between presented options as a proxy for choice difficulty, 385 

the expected value of chosen options estimated by the computational model reported above 386 

was significantly negatively correlated with pupil dilation (t(38) = -2.48, p = .018, Figure 4A). 387 

This means that choosing shapes associated with lower expected value leads to pupil 388 

dilation. After a choice had been made, affective memories had different physiological 389 

properties, and a rmANOVA indicated a significant timebin (i.e. every 1 second interval after 390 

decision-onset) by WoF outcome-valence interaction (F(9,333) = 2.28, p < .05, Figure 4B). 391 

This appeared to be driven primarily by the difference in peak pupil dilation between 392 

affective (i.e. win or loss) and blank shapes (a main effect of valence F(1,37)=3.865 and 393 

5.997 (loss shapes versus win shapes respectively), p=.057 and .019). This neural response 394 

flips over from 2500 ms in the outcome delivery period (e.g. dilation to neutral and blank 395 

shapes increases over the average pupil dilation for loss shapes). 396 

 397 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 15, 2021. ; https://doi.org/10.1101/2021.06.14.448275doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.14.448275
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 398 
 399 

Figure 4. Pupillometry results. (A) A multiple linear regression analysis of the pupillary response suggests that 400 
pupil dilation negatively correlates with the expected values of chosen shapes based on the model shown in 401 
Figure 4. The vertical red dashed line marks the average response time (RT) during value-based decision-402 
making. (B) During the outcome delivery period (i.e. once a decision has been made) affective memories lead to 403 
a larger pupil dilation relative to neutral memories (the difference between green/red lines versus the blue line). 404 
The significant valence x time bin interaction seems to arise from differential pupillary time courses between 405 
negative and neutral memories which cross over towards the end of the outcome delivery period. In both panels, 406 
shading around the population mean denotes ± 1 SEM. *p<.05. 407 
 408 
 409 

 410 

 411 

 412 

 413 
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 415 

 416 

 417 
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 419 

 420 
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Discussion 421 

In the current paper, we investigated mechanisms underlying value-based decision-making 422 

between affective memories formed under an RL protocol (Figure 1). Our findings from the 423 

preference tests suggest that human value-based decision-making between affective 424 

memories reveal stable preferences (Supplementary Figure 6). When only the pairwise 425 

comparisons of equal value options are concerned, discrete affective events of opposing 426 

valences do not carry enough weight to contaminate experimentally induced reward 427 

memories consistently across the reward probability spectrum (Supplementary Table 1 and 428 

Supplementary Figure 7). However, when we also consider the global organisation of 429 

these affective memories (i.e. all cases where these memories were probed by randomly 430 

drawn options), our findings suggest that healthy volunteers retain positive biases for 431 

memories associated with better/higher probability options encoded through RL. We 432 

demonstrate that value-based decision-making between affective memories relies on 433 

nonlinear weighting of reward probabilities during recall (Figure 3). Taken together, these 434 

results illustrate that human memory-guided value-based decision-making is influenced by 435 

earlier experiences of discrete affective events and engages the pupil-linked central arousal 436 

systems prior to and after the decision onset (Figure 4). 437 

In the current work, we investigated the degree to which nonclinical participants display a 438 

positive bias in value-based affective memory recall. Our reference point in designing this 439 

experiment was a rodent assay assessing the impact of rapid versus traditional 440 

antidepressants on a single negative memory relative to a single control condition19. 441 

However, in our experimental protocol, we probed a much larger pool of affective memories. 442 

For example, in the online study there were 24 abstract stimuli which could be uniquely 443 

paired with 23 other stimuli during the preference test, resulting in a total grid space of 552 444 

combinations. When we consider this complexity and the global organisation of human 445 

affective memories, an overarching and conservative interpretation of our results is that 446 

nonclinical volunteers are overall positively biased in their value-based recall (Figure 3) and 447 
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they maintain stable preferences between affective memories, at least during the first 48 448 

hours following memory acquisition (Supplementary Figure 6). Although our approach 449 

captures the essence of the rodent assay, it reveals only the tip of the iceberg when it comes 450 

to fully understanding the organisation of experimentally induced affective memories in 451 

humans. There is substantial evidence, although limited to deterministic stimulus-outcome 452 

associations formed under conditioning, demonstrating that human learners store abstract 453 

knowledge in a grid-like code, in a manner that is similar to how the firing of entorhinal grid 454 

cells reflect spatial navigation in laboratory animals27,28. In our case, value-based recall 455 

demands navigating through an abstract reward probability space which is formed under a 456 

stochastic RL protocol and influenced by the valence of preceding affective events (i.e. WoF 457 

outcomes); it is therefore likely to have more uncertainty and nonlinearity in the way this 458 

information is stored. The second cognitive process relevant for understanding value-based 459 

recall is memory replay29. Previous research suggests that humans can simulate the timeline 460 

of events (e.g. remembering the loss on the WoF while recalling the reward probability 461 

associated with the better shape in the block immediately after) during memory recall and 462 

this can be detected through analysing the neural signature associated with different events 463 

happening in a sequence30. For example, a recent study demonstrated that events which 464 

generate large magnitude prediction errors create boundaries in memory formation31. In the 465 

context of our experimental protocol, the WoF draws were the affective events which 466 

arguably generated the largest magnitude of PEs and this might explain why we observed a 467 

nonlinearity in preferences for the some of the baseline shapes (Supplementary Figure 7C-468 

F). Here, it is also worthwhile to note that our model-based analysis of individual RL blocks 469 

indicated that participants did not encode shape values through associations with their 470 

potential to generate large magnitude RPEs (i.e. Model 4), therefore it is more likely that in 471 

our experimental protocol event boundaries in memory emerged with respect to the WoF 472 

draw rather than learning individual reward associations within each block. Overall, these 473 

questions about grid-like organisation of human memory32 and memory recall through replay 474 
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are timely topics within cognitive neuroscience and require further research, ideally using 475 

high-field MRI (further discussion available in Supplementary Methods and Materials).  476 

Finally, our results demonstrate that value-based decision-making between affective 477 

memories engages the pupil-linked central arousal systems, with a negative correlation 478 

indicating that the pupil dilates more to chosen shapes with a lower expected value (Figure 479 

4A). This is in line with recent computational work which showed that expected values of 480 

chosen options are negatively correlated with pupil dilation33. After the decision onset, the 481 

physiological response to affective memories are explained by a valence x time-bin 482 

interaction. Population averages of pupil traces for each outcome valence demonstrated that 483 

this significant interaction was driven by differential pupil dilation to negative versus neutral 484 

(i.e. blank WoF outcome) memories and between the early and late phase of the outcome 485 

delivery period (Figure 4B). Considering that pupil dilation is under the influence of a 486 

number of neurotransmitters such as norepinephrine, acetylcholine and serotonin34, our 487 

current work may be useful for understanding the effects of psychotropic compounds on 488 

affective memories. Although there is preliminary evidence to suggest that selective 489 

serotonin reuptake inhibitors induce a specific positive bias during value-based recall22, 490 

physiological correlates of this positive bias remain unknown. We think that future studies 491 

using imaging methods with high temporal resolution such as magnetoencephalography 492 

could be valuable in understanding neurotransmitter modulation of human memory systems. 493 
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