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36 Abstract

37  Affective biases can influence how past events are recalled from memory. However, the
38 mechanisms underlying how discrete affective events shape memory formation and

39 subsequent recall are not well understood. Further understanding this is important given
40 the central role of negative biases in affective memory recall in depression and

41 antidepressant drug action. In order to capture cognitive processes associated with

42  affective memory formation and recall, we studied value-based decision-making between
43  affective memories in two within-subject experiments (n=45 and n=74). Our findings

44  suggest that discrete affective events, created by large magnitude Wheel of Fortune

45  (WoF) outcomes, influence affective memory formation processes during reinforcement-
46  learning (RL). After 24 hours, we show that healthy volunteers display stable preferences
47  during value-based recall of affective memories in a binary decision-making task.

48  Computational modelling of these preferences demonstrated a positive bias during value-
49  based recall, induced by previously winning in the WoF. We further showed that value-
50 based decision-making between affective memories engages the pupil-linked central

51 arousal systems, leading to pupil constriction prior to, and differential pupil dilation after
52  the decision onset depending on the valence of the chosen options. Taken together, we
53 demonstrate that mechanisms underlying human affective memory systems can be

54  described by RL and probability weighting models. This approach could be used as a

55 translational assay to study the effects of novel antidepressants.
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71 Introduction

72  Human social life is arguably the most complex in the animal kingdom, enriched by our
73  ability to express and infer from others a wide spectrum of emotions. The breadth of this
74  affective repertoire, along with our tendency to process positive and negative information
75 asymmetrically'?, makes us prone to affective biases that can shape not only our present
76  experiences, but also how we recall events from the past. For example, the study of
77  eyewitness memory has highlighted that centrally relevant details (e.g. the characteristics of
78 a criminal or the weapon used in a crime) from emotional events are remembered more
79  accurately than non-affective content®. It is known that humans exhibit an asymmetry in
80 affective information processing (hence forth “affective bias”). In healthy volunteers, affective
81 bias is more frequently observed in favour of positive events, and spans across multiple

82 domains including perception, attention, reinforcement learning (RL), and memory 2*°. |

n
83  psychiatric conditions such as major depressive disorder (MDD), negative affective biases
84  (i.e. preferential processing of negative relative to positive information)®*° have been shown

1113 Nevertheless,

85 to play a role in the development and maintenance of symptoms
86  mechanisms underlying how discrete affective events induce biases that can influence

87 learning and subsequent memory recall in humans remain elusive.

88  Recent preclinical work has further elucidated how discrete affective events can influence
89 memory-guided value-based decisions, and how these can be targeted pharmacologically.
90 Stuart, et al. ** (2015) demonstrated that ketamine, a non-competitive N-methyl-D-aspartate

91 (NMDA) receptor antagonist known to have rapid antidepressant (AD) effects™™’

, injected
92 into mouse medial prefrontal cortex (MPFC), attenuates negative memory biases. This effect
93 was shown in a decision-making assay in which rodents were probed to choose between
94  two substrates with equal nutritional value: one previously paired with an anxiogenic
95 compound (FG7142) and another paired with saline during learning. This finding

96 demonstrates the malleability/plasticity of cognitive processes underlying negative affective

97 biases and has important implications for understanding the mechanisms of rapid AD
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98 treatment of depression. Translating preclinical paradigms which are developed within the

99 constraints of animal models of disease is critically important for unifying human and animal
100  work under a single mechanistic umbrella'®*®. This interdisciplinary approach can help to
101  speed up drug discovery in psychiatry®. In the current work, we will describe a behavioural
102 assay founded in RL and value-based decision-making, translating the essence of the
103 rodent assay from Stuart et al., (2015) to shed light on cognitive mechanisms underlying
104  value-based recall of affective memories in humans.
105 In humans, there is evidence demonstrating that discrete affective events influence
106  subsequent value-guided choice. Using a Wheel of Fortune (WoF) manipulation, Eldar and
107  Niv % (2015) provided quantitative evidence showing that individuals who scored highly on a
108 mood instability measure and won money in the WoF draw preferred probabilistic slot
109 machines they experienced immediately after the draw, whereas those who lost in the WoF
110 draw preferred those slot machines that preceded the draw, even though expected values of
111  the slot machines on either side of the WoF draw were comparable. In the current work, we
112 adopted a similar experimental design to manipulate participants’ affective state. Unlike
113 Eldar and Niv (2015), who assessed the impact of such affective events on participants’
114  value-based decisions shortly after the WoF manipulation, we tested participants’
115 preferences between abstract information learnt through RL, and up to 4 days later. Thus, in
116  our work, preference biases observed in participant choice behaviour would be driven by
117  “affective memories” based on information encoded through RL in earlier stages of the
118 experiment (see Methods for further details). This within-subject approach captures the
119 essence of the rodent assay and it is also similar to the methodology used in a recent study
120  which investigated serotonergic modulation of learning and memory-based decision-making
121  processes®. Here, use of the RL framework also ties in with the importance of implementing
122  computational methods for understanding the mechanisms underlying affective biases. This
123 is important because recent RL studies demonstrated that negative affective biases, which
124  are known to be causally linked to symptoms of depression®’, may develop even in healthy

125 volunteers as a rational response to environmental contingencies®® and relate to poor
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126 filtering of informative negative experiences from uninformative ones®. In these previous
127  studies, we demonstrated that the information content of negative affective events engages
128  the pupil-linked central arousal systems *. In the current study, we used pupillometry to
129  expand on these previous findings and to investigate whether value-based recall of affective

130 memories also engages central arousal systems.

131 The aim of the current study was to test whether experimentally induced changes in
132 emotional state influence human choice behaviour during RL (Figure 1). Secondly, we
133 investigated whether nonclinical volunteers display a positive bias during value-based
134  decision-making between affective memaories. Finally, we investigated whether this process
135 engages the pupil-linked central arousal systems. We predicted that discrete affective
136  events should have a significant and differential influence on human RL. We predicted that a
137  non-clinical population would overall display a positive bias, indicated by a preference for
138 shapes encoded after winning on the WoF. We analysed participant choice behaviour with a
139  well-established computational model of value-guided choice, which posits that choice
140 preferences can be expressed in terms of weighted probabilities®®. Finally, using a model-
141  based analysis of pupillary data, we tested the prediction that subjective values which guide
142  value-based decision making between affective memories will significantly influence pupil

143 dilation.

144
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146 Figure 1. (A) An overview of the studies. Two studies were conducted to understand how discrete affective
147 events influence human reinforcement learning. In Study 1 (conducted in the laboratory), participants completed
148 the task on three consecutive days. On each day they experienced a different WoF outcome, the order of which
149 was counterbalanced across participants; win (£15), loss (-£11) or a blank (see middle of panel A). Participants
150 completed a single baseline block of learning trials pre-WoF (70% reward probability) and two subsequent blocks
151 post-WoF (90% and 80% reward probabilities). In Study 2 (conducted online) participants completed the task on
152 two consecutive days. On each day they experienced a different WoF outcome, the order of which was
153 counterbalanced across participants: win (£14) and loss (-£7). On each day they completed 3 blocks of learning
154 trials pre-and-post WoF, with matched reward probabilities were matched. The table shows the probability (p)
155 associated with the higher reward probability shape, where the probability associated with the other shape is 1-p.
156 Blue diamond markers indicate the timepoints of happiness rating assessments. (B) Reinforcement learning
157 task. After a fixation period of 1 second, participants had to choose, using the left and right arrow keys, between
158 two abstract shapes. They were asked to choose the shape that was most likely to be rewarded (i.e. the shape
159 associated with a higher reward probability). After participants made their choice, a black frame appeared around
160 the chosen shape. If the choice was correct, the black frame would turn green. If the choice was incorrect, a
161 green frame would appear around the unchosen shape. On each trial, one of the shapes was linked to a 'win'
162 outcome (+2 pence) and the other shape would result in no monetary gain. The win and null outcomes were
163 dependent on each other (probabilities add up to 1). Using trial and error, participants could infer the reward
164 probability associated with each shape. This information could then be used to maximise their monetary reward.
165 Participants started with £15 and their running total, displayed below the fixation cross for the duration of every
166 trial, updated by 2p for each correct choice made. Incorrect choices did not have any monetary effect on
167  participants’ running total.
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177 Materials and Methods
178 Participants

179  Forty-five (Study 1) and seventy-four (Study 2) English-speaking healthy participants were
180 recruited from the general public using online and print advertisements around Oxfordshire,
181 UK. All of the participants had normal or corrected to normal vision and did not report a
182 present or past psychiatric diagnosis, nor any serious medical condition that could impact
183 their study participation. Participants were excluded if they were currently using psychotropic
184 medication. Participants received monetary reimbursement for their time (£50) plus
185 additional payment depending on their task performance across the learning and decision-
186 making components of the experiment (£33.26-£38.40, mean+sSD £37.25+0.90). The study
187 was approved by the University of Oxford Central Ethics Committee (CUREC; ethics
188 approval reference: R66705/RE001). All participants completed an informed consent form

189 conforming to the Declaration of Helsinki.

190 General Experimental Procedures

191 In Study 1, testing sessions took place over 5 consecutive days at the University of Oxford,
192 Department of Psychiatry at Warneford Hospital. In the first visit, the participants were taken
193  through a screening interview to assess their eligibility. Then, the participants responded to a
194  set of demographic questions and completed a battery of psychological questionnaires. After
195 the screening interview, the eligible participants continued with the first day of learning and
196 completed 3 blocks of a simple RL task in order to learn the associations between shapes
197 and rewards. In line with the aims of the study, participants’ affective state was manipulated
198 using a WoF paradigm adapted from Eldar and Niv (2015). On each day participants
199 experienced a different WoF outcome: win (£15), loss (-£11) or a blank (see Figure 1 and
200 legends about a detailed description of the experiment). We used these large magnitude
201 WoF outcomes to experimentally induce negative or positive memory biases. To probe
202 value-based recall of affective memories, after the training days, we asked participants to

203 make decisions in a two-option forced-choice (TOFC) preference task in which various
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204  combinations of the abstract shapes they had learned about were paired with each other
205 (i.e. on the last 2 days of the lab-based study, and the last day of the online study). Although
206 no explicit feedback was given to participants in the preference test, they continued to
207  accumulate money based on the reward probability of the chosen shape (i.e. 90% chance of
208 winning 2p if the participant selects the shape associated with 90% reward probability in the
209 learning phase). We were particularly interested in the pairs of shapes that had objectively
210 identical reward probabilities but appeared after different WoF outcomes, thus should be
211 encoded under different affective influence (Figure 1). Therefore, the majority of trials
212  presented during the preference tests compared shapes of equal reward probability but
213 under different affective influence (Supplementary Figure 1). All tasks were presented on a
214  laptop running MATLAB (MathWorks Inc) with Psychtoolbox (v3.1).

215 In Study 2, testing sessions took place over 3 consecutive days and were delivered using an
216 online platform (due to the global COVID-19 pandemic). We manipulated the reward
217  probabilities in each RL block pre-and-post WoF in a balanced manner in order to
218 investigate how discrete affective events influence human RL. Further details of
219  experimental procedures and statistical analysis approach and computational modelling is in
220  Supplementary Methods and Materials.
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233 Results
234  Table 1. Participant Demographics

Measure Study 1 (n =45) Study 2 (n =74)
Mean + SD Mean = SD
Age 29.33+7.98 33.94+7.95
Gender, female 31 (69%) 62 (84%)
Years of education 16.53 £ 3.00 N/A
Trait-STAI 32.51+£9.11 32.76 £ 10.94
State-STAI 29.31+7.39 29.83+11.1
BDI 3.56 £4.00 5.15+5.46
BAS Drive 6.64 +2.31 8.2+275
BAS Fun 7.16+2.01 8.45+2.71
BAS Reward 12.02+1.71 13.05+ 2.59
BIS 15.69 + 3.41 16.15 + 3.92
MDQ 3.02 +3.65 4.08 + 3.68
PANAS positive affect 34.64 £ 6.97 31.54+10.4
PANAS negative affect 17.67 +12.40 12.21+4.51

235  Trait STAI, Spielberger State-Trait Anxiety Inventory, trait form;
236  State STAI, Spielberger State-Trait Anxiety Inventory, state form;
237  BDI, Beck Depression Inventory; BAS, Behavioural Activation;
238  BIS, Behavioural Inhibition; MDQ, Mood Disorder Questionnaire;
239  PANAS, Positive and Negative Affect Schedule.

240 Participants and demographics
241 Demographics and a summary of psychological questionnaire measures are given in Table
242 1. In both Study 1 and Study 2, depression and trait anxiety scores were highly significantly

243  correlated (r = .57 and r = .70, both p< .001).

244  Discrete affective events influence happiness ratings and human reinforcement

245  learning.

246  To test whether the WoF manipulation influenced participants’ happiness, we compared their
247  happiness ratings immediately before (pre-WoF) and immediately after (post-WoF) the draw.
248  Overall, participants’ ratings indicated that they felt significantly happier immediately after
249  winning in the WoF, and felt significantly less happy immediately after losing (statistical
250 details are available in Supplementary Results and Supplementary Figure 2A). Therefore

251 the wheel of fortune was effective at modulating mood in the expected direction.
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252 In Study 1, we were able to investigate whether the valence of discrete affective events (i.e.
253  winning, losing or a blank outcome on the WoF) influence human reinforcement learning. A
254 rmANOVA did not reveal any significant main effect of WoF outcome on the probability of
255  choosing the better shape (i.e. the shape associated with higher reward probability) post-
256  WoF. This is illustrated in Figure 2A, where we show that valence of the WoF outcome does
257  not influence learning in the post-WoF blocks. Moreover, the interaction term (WoF outcome
258 by reward probability) was not significant and there was no main effect of WoF outcome
259  order (all p > .136). However, in this study (Study 1) we were only able to compare learning
260 behaviour in the post-WoF blocks which were identical in terms of their reward probabilities,
261  but we were not able to understand how learning behaviour might have changed from the
262  pre-WoF baseline, as the reward probability in the pre-WoF block was different (i.e. 70%).
263 We addressed this question by improving on the experimental design in Study 2 in which
264  participants completed an identical number of blocks pre-and post-WoF with identical reward
265  probabilities (Figure 1A). Due to lack of a significant main effect of WoF on learning
266  behaviour in the blocks subsequent to it, we did not further analyse the data from Study 1

267  with computational models.
268

269
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271 Figure 2. Summaries of probability of choosing the higher probability shape (A) In Study 1, there were no
272 significant differences in participant learning behaviour after the WoF, irrespective of the valence of WoF
273 outcome. The single blue bar at 70% before the WoF shows the baseline condition. (B) In Study 2, we were able
274 to compare pre-and-post-WoF learning behaviour. A repeated measures ANOVA model indicated a significant
275 main effect of WoF influencing participant choice behaviour, reflecting an increased probability of choosing the
276 shape associated with a high probability of reward post-WoF, irrespective of valence of the WoF outcome.
277 Downward arrow with WoF indicates the point in which participants experienced the WoF draw within the course
278 of their daily learning sessions. Note that, Study 2 only had win and loss outcomes in the WoF. In both panels,
279 error bars reflect £1 SEM. Probabilities on x-axis reflect reward probabilities from Figure 1A.

280

281 In Study 2, a rmANOVA (2 valence x 3 probability levels x 2 phases (i.e. pre versus post
282  WoF RL blocks), also including the win/loss training order as a between-subjects factor)
283 revealed, consistent with Study 1, that there was no significant main effect of valence
284  (F(1,65) = 2.439, p = .123, Figure 2B), suggesting that the outcome of the WoF did not
285  affect subsequent learning. There was, however, a significant main effect of phase (F(1,65)
286 = 17.423, p<.001), reflecting an increased probability of participants selecting the shape
287  associated with a high probability of reward post-WoF. There were no significant interactions
288 and no main effect of WoF order (F(1,65) = 1.374, p = .245). In order to understand how
289 discrete affective events influence human reinforcement learning, we further analysed
290 participant choice behaviour in the online study using computational modelling (in

291 Supplementary Results).
292
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293 Value-based decision-making between affective memories reveals stable preferences

294 In Study 1 we evaluated these preferences on two subsequent days to be able to establish
295 the stability of value-based decision-making between affective memories (2x4 rmANOVA: 2
296 preference days, 4 shape valence). There was no main effect of test day on participant
297  choice behaviour (i.e. preference day 1 versus day 2, F(1,39 = .303, p = .585), indicating
298 that value-based decision-making between affective memories remained stable (test-retest
299 reliability coefficient 0.883). We observed a significant main effect of shape valence
300 (F(3,117) = 5.912, p = .001). Shapes which were learnt following a WoF win or loss were
301 selected more frequently than shapes learnt during the baseline (pre-WoF) block and those
302 learnt following a neutral (blank) WoF (Supplementary Figure 6A). Specifically, loss
303 shapes were not preferred significantly over win shapes (day 1: (t(86)=1.1902, p=.24; day 2:
304  1(86)=1.867, p=.07), but preferred significantly over blank shapes (day 1: t(86) = 2.857, p =
305 .005; day 2: t(86) = 2.267, p = .026) and over baseline shapes (day 1: t(86) = 4.617, p <
306 .001; day 2: t(86) = 4.313, p <.001), while win shapes were chosen over blank shapes (day
307 1:t(86) = 1.689, p = .09; day 2: 1(86) = 0.465, p = .643) and over baseline shapes (day 1:
308 (86) = 3.435, p < .001; day 2: t(86) = 2.418, p < .018). The comparison between blank vs.
309 baseline shapes was not significant (day 1: t1(86) = 1.644, p = .10; day 2: t(86) = 1.784, p =
310 .078). There was no significant main effect of WoF outcome order on participant choice
311 behaviour (F(5,39) = .364, p = .870). Pairwise comparisons between equal value shape
312  pairs are summarised in Supplementary Table 1.

313  We further investigated preferences between equal value shapes in Study 2. We observed
314 that discrete affective events of comparable magnitude experienced during reinforcement
315 learning in an experimental setting do not carry enough weight to make human learners
316 negatively or positively biased across the board. After controlling for WoF (e.g. whether
317 participants experienced win or a loss outcome on Day 1) and shape identity order (e.qg.
318 whether shape A would be encountered on a win or a loss day) and individual differences in

319 how well participants learned the reward probability of the environment during the learning
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320 phase, there was no significant main effect of valence F(1, 64) = .307, p = .582, or reward
321  probability F(5,320) = 1.542, p = .176) or WoF order/shape identity on participant choice
322  behaviour (all p> .834, Supplementary Figure 7A). Within individual comparisons, we
323 observed that participants were significantly positively biased for win shapes associated with
324  60% reward probability (t(73)=2.191, p=.03). Although our experimental design did not allow
325 us to decompose this effect any further, it is important to highlight that these shapes were
326 farthest away in proximity to the affective events (i.e. win and loss outcomes in the WoF
327 draw) experienced during the learning/encoding stage, and were associated with highest
328 level of expected uncertainty among all the better shapes. Further analysis of participant
329 choice behaviour raising the possibility that expected uncertainty of the reward environment
330 may drive non-linear preferences between affective memories is available in Supplementary
331 Results.

332 Human affective memories are represented non-linearly

333  Due to a high number of equal value comparisons reported in Supplementary Table 1 and
334 in Supplementary Figure 7, and also considering the inherent stochasticity in participant
335 choice behaviour, it is difficult to establish a bird's eye view on the organisation of human
336 affective memories by solely relying on these comparisons. To be able to look beyond
337 individual comparisons and construct a model of human value-based recall of affective
338 memories which we probed with 400+ trials involving many random shape pairs (e.g. win
339 90% vs other day baseline 10%), we further analysed participant choice behaviour in the
340 preference tests with computational modelling (see Supplementary Methods and Materials
341 for details).

342  Here, it is important to highlight that in a large majority of the trials the expected value
343 difference between the options were 0 (e.g. 60% win vs 60% loss shapes, Supplementary
344  Figure 1), which would normally warrant random (i.e. 50-50) choices between these options,
345 and consequently a benchmark log likelihood value of -.69 (i.e. log(.5)) for any decision
346  model. First, we tested how well our stochastic choice model for the preference test which

347 relies on the probability weighting function, performs against this benchmark. Across both
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348 Study 1 and Study 2 this preference choice model performed significantly better than a
349 random choice model (all t>8.2, all p<.001), meaning that the model can capture the
350 subjective valuations underlying binary decision-making between affective memories. Our
351 results demonstrate that when all trials and all possible comparisons between affective
352 memories at different reward probability levels are concerned, discrete positive events (i.e.
353 winning on a WoF draw) influence subsequent value-based recall of memories associated
354  with the better option during RL (i.e. shapes associated with higher reward probabilities
355  which were sampled more frequently during the encoding stage, based on difference in area
356  under the curve Study 1 t(44)= 1.44 and 2.40, p=.15 and .02 (day 1 vs day 2 respectively);
357  Study 2: t(68)=2.027, p=.047, Figure 3). This affective influence occurs in a manner that
358 augments the subjective reward probabilities of these options during value-based recall
359 (Figure 3). Although there were some differences in the execution of preference tests
360 between 2 studies, we observed this positive induced bias consistently across 2 studies and

361 3 assessment time points.
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364 Figure 3. Probability weighting function demonstrating affective biases in memory-guided value-based
365 decision-making. (A-B) In line with the model-free results reported in Supplementary Figure 6, model-based
366 results show consistent effects between preference test days 1 and 2. The probability weighting function
367 indicates that positive biases will have a stronger effect in contaminating neutral information associated with
368 higher reward probability shapes (i.e. Baseline 70%), such that the reward probability associated with the
369 baseline shape will be augmented when they are presented on the side associated with win shapes (green curve
370 and SEM shading), whereas high probability baseline shapes will be under-weighted when they are presented on
371 the side associated with loss shapes (red curve and SEM shading). Sidedness in stimuli presentation was
372 counterbalanced across participants and between preference test days 1 and 2. This behaviour was reversed in
373 the lower reward probability spectrum (i.e. for shapes associated with reward probability 30% and below). The
374 trajectories of the weighting function capture the essence of all comparisons reported in Supplementary Table 1.
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375 (C) Perceived probabilities during value-based recall between affective memories in the online study (Study 2) in
376 which all stimuli were presented randomly on each side of the screen. The difference between win and loss
377 trajectories become more evident for higher probability shapes which were sampled more frequently during the
378  encoding stage. Shading around the population mean denotes + 1 SEM.

379 Value-based decision-making between affective memories engages the pupil-linked
380 central arousal systems

381 During the first preference test of Study 1, pupillometry data were collected across the entire
382 decision process. We used a multiple linear regression model to quantify physiological
383 response immediately before, during, and immediately after making choices between
384  shapes learned following different WoF outcomes. Prior to choice, and even after controlling
385 for the expected value difference between presented options as a proxy for choice difficulty,
386 the expected value of chosen options estimated by the computational model reported above
387  was significantly negatively correlated with pupil dilation (t(38) = -2.48, p = .018, Figure 4A).
388 This means that choosing shapes associated with lower expected value leads to pupil
389 dilation. After a choice had been made, affective memories had different physiological
390 properties, and a rmANOVA indicated a significant timebin (i.e. every 1 second interval after
391 decision-onset) by WoF outcome-valence interaction (F(9,333) = 2.28, p < .05, Figure 4B).
392 This appeared to be driven primarily by the difference in peak pupil dilation between
393 affective (i.e. win or loss) and blank shapes (a main effect of valence F(1,37)=3.865 and
394  5.997 (loss shapes versus win shapes respectively), p=.057 and .019). This neural response
395 flips over from 2500 ms in the outcome delivery period (e.g. dilation to neutral and blank

396 shapes increases over the average pupil dilation for loss shapes).

397
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Figure 4. Pupillometry results. (A) A multiple linear regression analysis of the pupillary response suggests that
pupil dilation negatively correlates with the expected values of chosen shapes based on the model shown in
Figure 4. The vertical red dashed line marks the average response time (RT) during value-based decision-
making. (B) During the outcome delivery period (i.e. once a decision has been made) affective memories lead to
a larger pupil dilation relative to neutral memories (the difference between green/red lines versus the blue line).
The significant valence x time bin interaction seems to arise from differential pupillary time courses between
negative and neutral memories which cross over towards the end of the outcome delivery period. In both panels,
shading around the population mean denotes + 1 SEM. *p<.05.
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421 Discussion

422 In the current paper, we investigated mechanisms underlying value-based decision-making
423  between affective memories formed under an RL protocol (Figure 1). Our findings from the
424  preference tests suggest that human value-based decision-making between affective
425 memories reveal stable preferences (Supplementary Figure 6). When only the pairwise
426  comparisons of equal value options are concerned, discrete affective events of opposing
427 valences do not carry enough weight to contaminate experimentally induced reward
428 memories consistently across the reward probability spectrum (Supplementary Table 1 and
429 Supplementary Figure 7). However, when we also consider the global organisation of
430 these affective memories (i.e. all cases where these memories were probed by randomly
431 drawn options), our findings suggest that healthy volunteers retain positive biases for
432 ~memories associated with better/higher probability options encoded through RL. We
433 demonstrate that value-based decision-making between affective memories relies on
434  nonlinear weighting of reward probabilities during recall (Figure 3). Taken together, these
435  results illustrate that human memory-guided value-based decision-making is influenced by
436 earlier experiences of discrete affective events and engages the pupil-linked central arousal

437  systems prior to and after the decision onset (Figure 4).

438 In the current work, we investigated the degree to which nonclinical participants display a
439 positive bias in value-based affective memory recall. Our reference point in designing this
440 experiment was a rodent assay assessing the impact of rapid versus traditional
441 antidepressants on a single negative memory relative to a single control condition®®.
442  However, in our experimental protocol, we probed a much larger pool of affective memories.
443  For example, in the online study there were 24 abstract stimuli which could be uniquely
444 paired with 23 other stimuli during the preference test, resulting in a total grid space of 552
445  combinations. When we consider this complexity and the global organisation of human
446  affective memories, an overarching and conservative interpretation of our results is that

447  nonclinical volunteers are overall positively biased in their value-based recall (Figure 3) and
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448 they maintain stable preferences between affective memories, at least during the first 48
449  hours following memory acquisition (Supplementary Figure 6). Although our approach
450 captures the essence of the rodent assay, it reveals only the tip of the iceberg when it comes
451 to fully understanding the organisation of experimentally induced affective memaries in
452  humans. There is substantial evidence, although limited to deterministic stimulus-outcome
453 associations formed under conditioning, demonstrating that human learners store abstract
454  knowledge in a grid-like code, in a manner that is similar to how the firing of entorhinal grid

2728 |n our case, value-based recall

455  cells reflect spatial navigation in laboratory animals
456 demands navigating through an abstract reward probability space which is formed under a
457  stochastic RL protocol and influenced by the valence of preceding affective events (i.e. WoF
458 outcomes); it is therefore likely to have more uncertainty and nonlinearity in the way this
459 information is stored. The second cognitive process relevant for understanding value-based
460 recall is memory replay®. Previous research suggests that humans can simulate the timeline
461 of events (e.g. remembering the loss on the WoF while recalling the reward probability
462  associated with the better shape in the block immediately after) during memory recall and
463  this can be detected through analysing the neural signature associated with different events
464  happening in a sequence®. For example, a recent study demonstrated that events which
465  generate large magnitude prediction errors create boundaries in memory formation®. In the
466 context of our experimental protocol, the WoF draws were the affective events which
467  arguably generated the largest magnitude of PEs and this might explain why we observed a
468 nonlinearity in preferences for the some of the baseline shapes (Supplementary Figure 7C-
469 F). Here, it is also worthwhile to note that our model-based analysis of individual RL blocks
470 indicated that participants did not encode shape values through associations with their
471  potential to generate large magnitude RPEs (i.e. Model 4), therefore it is more likely that in
472  our experimental protocol event boundaries in memory emerged with respect to the WoF
473  draw rather than learning individual reward associations within each block. Overall, these

474  questions about grid-like organisation of human memory®*? and memory recall through replay
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475 are timely topics within cognitive neuroscience and require further research, ideally using

476  high-field MRI (further discussion available in Supplementary Methods and Materials).

477  Finally, our results demonstrate that value-based decision-making between affective
478 memories engages the pupil-linked central arousal systems, with a negative correlation
479 indicating that the pupil dilates more to chosen shapes with a lower expected value (Figure
480 4A). This is in line with recent computational work which showed that expected values of
481 chosen options are negatively correlated with pupil dilation®. After the decision onset, the
482 physiological response to affective memories are explained by a valence x time-bin
483 interaction. Population averages of pupil traces for each outcome valence demonstrated that
484  this significant interaction was driven by differential pupil dilation to negative versus neutral
485  (i.e. blank WoF outcome) memories and between the early and late phase of the outcome
486 delivery period (Figure 4B). Considering that pupil dilation is under the influence of a
487 number of neurotransmitters such as norepinephrine, acetylcholine and serotonin®, our
488 current work may be useful for understanding the effects of psychotropic compounds on
489  affective memories. Although there is preliminary evidence to suggest that selective
490 serotonin reuptake inhibitors induce a specific positive bias during value-based recall*?,
491 physiological correlates of this positive bias remain unknown. We think that future studies

492  using imaging methods with high temporal resolution such as magnetoencephalography

493  could be valuable in understanding neurotransmitter modulation of human memory systems.
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