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Abstract

Dynamic functional brain connectivity facilitates adaptive cognition and behavior. Abnormal
alterations within such connectivity could result in disrupted functions observed across various
neurological conditions. As one of the most common neurological disorders, epilepsy is defined
by the seemingly random occurrence of spontaneous seizures. A central but unresolved question
concerns the mechanisms by which extraordinarily diverse dynamics of seizures emerge. Here,
we apply a graph-theoretical approach to assess dynamic reconfigurations in the functional brain
connectivity before, during, and after seizures that display heterogeneous propagation patterns
despite sharing similar origins. We demonstrate unique reconfigurations in globally-defined
network properties preceding seizure onset that predict propagation patterns of impending
seizures, and in locally-defined network properties that differentiate post-onset dynamics. These
results characterize quantitative network features underlying the heterogeneity of seizure
dynamics and the accompanying clinical manifestations. Decoding these network properties could
improve personalized preventative treatment strategies for epilepsy as well as other neurological
disorders.

Introduction

The human brain is a complex system, where a single brain region interacts with many others and
collectively, these interactions give rise to a wide variety of functional connectivity patterns
serving rich cognitive functions and adaptive behaviors. A foundation for capturing and
understanding such rich and diverse patterns of connectivity is through a graph theoretical
framework, where the brain is visualized as a graph or network composed of nodes and edges that
represent brain regions and their pairwise associations, respectively (/—3). Architectural features
and temporal reconfigurations of the brain’s functional connectivity networks derived within this
framework have been associated with several aspects of cognitive functions and development (7,
4, 5). Investigating the temporal evolution of such networks has also provided better insight into
the emergence of neural properties such as specialization and efficiency of information
processing, learning, and aging (6—11). Applications of network approaches has recently gained
popularity particularly in clinical neuroscience for the potential to establish biomarkers of disease
onset and progression. Specifically, grounded in graph theory, such techniques can identify
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abnormal alterations in the dynamic functional brain connectivity that are caused by neurological
conditions (6, 12—16).

As one of the most common neurological disorders with roughly 50 million cases world-wide,
epilepsy is characterized by its emerging spontaneous seizure activity (/7, 18). Critically, one-
third of the patients do not respond to medications and rely on alternative interventions such as
surgical and neuromodulatory approaches which have variable outcomes and subjective success
rates (/9-21). Tailoring effective treatment strategies requires biomarkers that can reliably predict
not only the temporal complexity but also the dynamical properties of an impending seizure (22,
23). However, seizures are remarkably diverse, making the search for such cues extremely
challenging. One way in which the variability across seizures has been addressed is through
classification on the basis of the onset regions: focal seizures originate from a localized region
within one hemisphere while generalized seizures begin simultaneously from both hemispheres.
A variety of computational techniques in the realm of network science and dynamical systems
have been employed to better localize the onset regions and thus improve the precision with
which focal and generalized seizures can be identified (24—26). However, localizing onset regions
does not fully capture the breadth of dynamics and diversity associated with seizure subtypes.
Adding to this complexity, once generated, a focal seizure can remain localized within the same
hemisphere (i.e., focal seizures that remain focal) or propagate to the other hemisphere (i.e., focal
to bilateral tonic-clonic seizures or focal seizures with bilateral spread) (27-29). Notably, these
subtypes of focal seizures can coexist in a single patient (Fig. 1), where the seizures with bilateral
spread generally lead to more severe behavioral and cognitive deficits that could require several
minutes to hours for patients to recover from. However, the distinct propagation dynamics
exhibited by different seizure types are largely ignored by traditional intervention approaches.
Critically, the field currently lacks an objective analytical framework that can be utilized to
investigate, understand, and predict the heterogeneity associated with propagation dynamics of
seizure activity.

Here, we demonstrate that the long-standing challenges associated with the heterogeneity
observed across subtypes of epileptic seizures can be addressed through the lens of graph theory.
Our study is built upon the idea that the manner in which functional connectivity networks within
the brain reconfigure over time carries information concerning the emergent global dynamics and
cognitive behaviors that are unique to the underlying neurological processes. Consequently, we
probed the time-varying changes within functional networks derived from multiple hours of
electrocorticogram (ECoG) recordings across 14 patients as they experienced focal seizures that
remain focal or focal to bilateral tonic-clonic seizures. With this analytical framework, we aimed
to gain insight into the unique nature of how the heterogenous dynamics associated with different
seizure types develop and unfold in the brain. Specifically, we focused on assessing rapid
alterations in the architectural attributes that provide quantitative descriptions concerning several
aspects of functional connectivity networks of seizures. More specifically, we evaluated these
reconfigurations before, during, and after onset of seizures that exhibited drastically different
propagation patterns despite sharing similar focal origin.

Our results elucidate key network components that characterize the differential neural dynamics
as well as the distinct cognitive and behavioral changes associated with each type of focal
seizures. We show that there exist intrinsic network signatures preceding seizure onset that are
predictive of the extent to which seizure activity would propagate through the brain. Furthermore,
such features emerge several minutes prior to the onset and could, therefore, aid development of
successful preventative treatments. Finally, our results reveal differential network characteristics
that emerge after seizure onset and characterize the distinct propagation mechanisms of seizure
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subtypes, suggesting a role of network reconfiguration in regulating termination of seizures.
Together, our findings elucidate the association between the evolution of seizures and their
underlying network dynamics and offer exciting avenues where graph theoretical measures could
be used to guide personalized clinical interventions for neurological disorders such as epilepsy,
which displays extensive heterogeneity in its clinical and neurological manifestations across as
well as within individual patients.
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Fig.1 Emergence of distinct seizure propagation patterns in a single patient.

(A) During a clinical monitoring procedure to identify a seizure onset zone of patients with
medication-refractory (drug-resistant) epilepsy, intracranial recording electrodes are implanted.
(B) Intracranial activity during two sample seizures recorded from a single patient, which exhibit
distinct propagation dynamics. On the left, the seizure activity originates from a few electrodes
and persists in the localized area within a single hemisphere (i.e., focal seizure that remains focal).
On the right, the seizure activity originates from a few electrodes but diffuses bilaterally to
involve electrodes in both hemispheres. This type of seizure is known as focal to bilateral tonic-
clonic seizure or focal seizure with bilateral spread. Despite their similarly focal origin, these
seizure types induce drastically differential clinical manifestations such that focal to bilateral
tonic-clonic seizures are associated with more severe cognitive and behavioral deficits. We
hypothesize that such heterogeneity in seizure dynamics emerges from distinct and measurable
temporal alterations in the functional brain connectivity networks.

Results

Time-varying functional connectivity networks of focal seizures and interictal activity

To examine the relationship between functional network architecture and propagation
mechanisms of focal seizures, we first estimated functional brain connectivity networks from
human intracranial recordings of 67 seizures (across 14 patients, 49 focal seizures that remain
focal and 18 focal seizures with bilateral spread; Fig. 1B) and 67 interictal periods. For each
individual seizure of either type, we epoched a 25-minute segment of electrocorticography
(ECoG) data from 15 minutes before to 10 minutes after seizure onset. ECoG data for interictal
periods of identical epoch size were chosen with the criterion that such ‘seizure-free’ activity had
to take place at least an hour away from an onset and offset of any seizure. Based on these data,
we then constructed a series of time-varying connectivity matrices corresponding to each seizure
and each interictal period where functional interactions (i.e., connection strength) between the
intracranial electrodes were inferred through pairwise cross correlations in sliding 1-second
windows (30—33). We then applied a 30-second windowed temporal smoothing procedure such
that each of the 25-minute segments of seizure and interictal activity were represented with 98
consecutive functional connectivity matrices (see Materials and Methods and Fig. S1). Based on
the graph theoretical framework, these inter-electrode relationships were represented by network
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edges and the electrodes themselves were represented by nodes in the corresponding networks of
seizures and interictal activity (see Materials and Methods; Fig. 2, A-D).

To probe the alterations in these functional connectivity networks over time, we extracted a
variety of graph theoretical measures which are described in detail in the Materials and Methods
section and will be further discussed in the following paragraphs. We assessed and compared how
these network attributes evolved during the 25-minute windows corresponding to (i) the dynamics
of focal seizures that remained focal (constrained propagation), (ii) the dynamics of focal seizures
that became bilateral tonic-clonic seizures (unconstrained propagation), and (iii) the dynamics of
‘seizure-free’ interictal activity. Such analysis approach allowed us to directly test whether there
existed unique reconfigurations of network architecture (before, during, and after seizure
propagation) that gave rise to the divergent propagation patterns and diverse clinical
manifestations exhibited by different subtypes of focal seizures.
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Fig.2 Schematic of graph theoretical analysis of functional brain dynamics.

(A) Locations of implanted intracranial electrodes of a sample patient. (B) We use
electrocorticography (ECoG) time-series data from all intracranial electrodes from each patient
recorded during a clinical monitoring procedure to locate the seizure onset zone. We estimate the
instantaneous functional connectivity of the underlying brain network by computing pairwise
correlations of ECoG data across electrodes in a sliding-window manner. The magnitudes of these
correlations (restricted between 0 and 1) reflect the strength of connections between each pair of
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electrodes and are represented by a weighted adjacency or connectivity matrix (see Materials and
Methods). (C) To investigate time-varying changes in the functional brain connectivity during
temporal evolution of each seizure type, we compute a series of connectivity matrices over time
and use these as bases to construct functional connectivity networks. (D) A schematic of sample
constructed networks, consisting of nodes (electrodes) and edges (connection strength). To
quantify alterations within these complex networks over time, we evaluate changes of a series of
graph theoretical attributes which describe globally- and locally- defined properties of the
constructed networks.

More prominent small-world connectivity links to bilateral spread of seizure activity
Small-world connectivity, characterized by a combination of dense local clustering of connections
between neighboring nodes and a short path length between node pairs (/, 2, 6, 34), has been an
attractive model for the functional organization of a healthy brain network (see Materials and
Methods for more details). In the context of epilepsy, however, increased small-world
connectivity has been put forth as a potential driver for the propagation of pathological
synchronous activity across brain regions (32, 35, 36). Consequently, we first assessed the
clustering coefficients and the characteristic path lengths to examine whether such properties
relate to the constrained and unconstrained propagation mechanisms associated with focal
seizures that remain focal and focal seizures with bilateral spread, respectively. To accomplish
this, we calculated the clustering coefficient and the characteristic path length of each adjacency
matrix (i.e., 98 matrices per each of the 25-minute segments of seizure activity). To evaluate these
results in light of past studies, we computed averages of these values in a series of consecutive 5-
minute windows, separately for each seizure type. This resulted in 3 preictal, 1 ictal (during
seizure), and 1 postictal windows (Fig. 3, A and B). A similar analysis was applied to interictal
data to estimate baseline values to which the seizure-related network measures could be compared
(37).

Our results reveal that both focal seizures that remain focal and focal to bilateral tonic-clonic
seizures displayed higher small-world connectivity during ictal periods when compared to
seizure-free (interictal) activity as demonstrated by higher clustering coefficients and shorter
characteristic path lengths (Fig. 3, A and B). Further analyses demonstrated that the ictal activity
associated with focal seizures that remain focal exhibited (i) higher clustering coefficients as
compared to postictal period (P = 0.03; Fig. 3A, left panel) and (ii) lower characteristic path
lengths as compared to both preictal and postictal periods (preictal: P =0.0004, < 0.0001, 0.0002;
postictal: P = 0.0006; Fig. 3B, left panel). Additionally, we observed similar changes for focal
seizures with bilateral propagation where the ictal activity displayed (i) higher clustering
coefficients as compared to all the preictal periods (all P <0.0001; Fig 3A, right panel) and (ii)
shorter characteristic path lengths as compared to all the preictal periods (all P <0.0001; Fig 3B,
right panel). However, unlike the characteristic path lengths associated with the postictal periods
of focal seizures with constrained dynamics which returned to the preictal levels, the postictal
path length of focal seizures with bilateral spread exhibited a continued decrease (P = 0.0006, Fig
3B, right panel). These results supported the more unconstrained diffusivity associated with focal
to bilateral tonic-clonic seizures. Notably, the observed differences regarding the manner in which
the small-world architecture increased in the networks of focal seizures with constrained and
unconstrained dynamics were our first evidence in support of the notion that there may exist
network-level signatures that contained information about the distinct propagation mechanisms of
focal seizures.

Further, we directly compared the temporal profiles of the small-world architecture for focal
seizures that remain localized and focal seizures with bilateral spread. To account for the unequal
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number of seizure samples of each seizure type, we implemented a bootstrapping procedure and
established 95% confidence intervals based on which significant difference was assessed (see
Materials and Methods). As expected from Figures 3A-B, we observed that the dynamics of
small-world properties differed in a seizure-type specific manner only after the onset of seizures.
Specifically, the clustering coefficient of focal seizures with bilateral spread was higher than that
of focal seizures that remain focal, from 2 to 10 minutes after seizure onset (resampled P < 0.05;
Fig. 3C). Such differences were accompanied by the shorter characteristic path length associated
with focal seizures with bilateral spread (resampled P < 0.05 for 2-10 minutes after seizure onset;
Fig. 3D). Notably, these observed differences emerged only after the onset and extended well
beyond termination of seizures (36), suggesting that focal to bilateral tonic-clonic seizures
differentially induced network reorganization that persisted even after the seizure activity ended.

Additionally, after seizure onset, persistent differences in the clustering coefficient and the
characteristic path length were also observed between focal seizures with bilateral spread and
interictal activity such that focal seizures with bilateral spread displayed more prominent small-
world configuration (Fig. S2, right panels). These persistent differences between post-onset
activity and interictal periods were, however, not observed in the case of focal seizures that
remain focal (Fig. S2, left panels). Together, these findings suggested that the unconstrained
propagation dynamics of focal to bilateral tonic-clonic seizures related to an increase in the
efficiency of network communication, as illustrated by the increased small-world characteristic
shortly after seizure onset. Critically, these observed seizure-type dependent network
configurations emerged only after the onset, raising a question whether there also existed unique
network alterations at other time points that may contribute to the distinct propagation
mechanisms and clinical manifestations associated with each seizure type.
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Fig 3. Small-world architecture tracks diffusivity of seizure activity. Focal to bilateral tonic-
clonic seizures (n = 18) display more prominent small-world connectivity (simultaneous increase
in the clustering coefficient and decrease in the characteristic path length) than focal seizures that
remain localized within one hemisphere (n = 49). (A) Averages of the clustering coefficients
associated with each seizure type are plotted separately for preictal, ictal (during seizure), and
postictal periods. The clustering coefficient of interictal (seizure-free) networks are also plotted as
a baseline. (B) The characteristic path length is plotted in the same manner. (C) The clustering


https://doi.org/10.1101/2021.06.12.448205
http://creativecommons.org/licenses/by-nc-nd/4.0/

AN N AW N~ O 0 0NN R WD~ OO0 0NN R WND RO VO 0NN R WD, O OO0 R WD RO O 0

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448205; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

coefficient of focal to bilateral tonic-clonic seizures is higher than that of focal seizures that
remain focal, 2-10 minutes after seizure onset. (D) The characteristic path length of focal to
bilateral tonic-clonic seizures is lower than that of focal seizures that remain focal, 2-10 minutes
after seizure onset. Error bars indicate 95% Cls computed by resampling the data distributions.
Solid bars show resampled P < 0.05.

Alterations in the local network connectivity features after the onset reflect heterogeneous
dynamics of focal seizures

Given the post-onset differences in the clustering coefficient and the characteristic path length
between focal seizures of different propagation mechanisms, we hypothesized that seizure-type
dependent network changes should also be observed in other measures of node connectivity
patterns such as the degree per node. The degree of a given node is the total sum of edge weights
connected to that node. The degree of each individual node therefore reflects the centrality of that
node in the network, and the averaged degree per node describes the density of the network. A
network with high degree per node is well positioned to optimize integration of information and
increase the efficiency of network communication (34, 37). We expected, therefore, that the
network nodes after the onset of focal seizures with bilateral spread would be of higher degree on
average as compared to those after the onset of focal seizures that remain focal. Supporting our
hypothesis, the degree per node associated with focal to bilateral tonic-clonic seizures was found
to be higher than that of focal seizures that remain focal for 1.75-10 minutes after the onset
(resampled P < 0.05, Fig. 4A). Notably, the timing of the sustained differences in the degree per
node mirrored that of the clustering coefficient and the characteristic path length, which also
extended several minutes beyond seizure termination as each seizure typically lasted between 30
seconds and 3 minutes (38).

To further investigate network alterations unique to particular propagation mechanisms of focal
seizures, we assessed the assortativity coefficient which measures the propensity of network
nodes to connect to other nodes of similar degree (39, 40). In general, network hubs or high-
degree nodes of a high-assortativity network are likely to form a highly connected core,
surrounded by peripheral nodes with low connectivity. Such configuration renders the network
robust against a removal or failure of a single high-degree node. Notably, this core-periphery
architecture has been repeatedly observed in functional connectivity networks within the brain
(41, 42). In the context of seizures, our results demonstrated that the assortativity coefficient
associated with focal to bilateral tonic-clonic seizures was lower than that of focal seizures that
remain localized for 7.50-9.50 minutes after seizure onset (resampled P < 0.05, Fig. 4B).
Additionally, similar patterns of results were observed between focal to bilateral tonic-clonic
seizures and interictal activity such that the seizure networks displayed higher degree per node
(resampled P < 0.05 for 1.75-10 minutes after seizures onset; Fig. S3A) and lower assortativity
(resampled P < 0.05 for 6.50-7 and 7.50-9.75 minutes after seizures onset; Fig. S3A). However,
these network properties did not differ between interictal activity and focal seizures that remain
localized.

Importantly, the observed seizure-type differences emerged after the onset of seizures and were
contributed by the negative assortativity coefficient that was associated with focal seizures with
bilateral propagation. These results suggested that close to seizure termination, the networks of
focal seizures with unconstrained dynamics underwent reduced robustness, rendering them more
susceptible to network disruptions (40, 43). These findings could potentially account for the more
extensive behavioral abnormalities and cognitive deficits often observed after patients experience
episodes of focal to bilateral tonic-clonic seizures (28, 44—46).
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Thus far, we demonstrated that consistent with the differences in the clustering coefficient and the
characteristic path length after seizure onset, the degree per node and the assortativity (i.e., the
measures directly derived from local or nodal connectivity), also differed as a function of seizure
propagation dynamics. These findings provided better understanding regarding the association
between heterogenous propagation mechanisms of seizure activity and the local connectivity
within the underlying functional networks. Next, we asked if networks of different seizure types
underwent distinct reconfigurations prior to seizure onset that shaped the global properties of the
networks and ultimately determined the type of propagation dynamics an impending seizure
would display.
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Fig. 4 Various features of functional connectivity display distinct temporal changes as a
function of seizure propagation dynamics. Left panels illustrate a series of graph theoretical
measures computed from networks of focal seizures that remain localized (n = 49) and from
networks of focal to bilateral tonic-clonic seizures (n = 18). The time-varying differences
observed in each of these features as a function of seizure types are plotted in the corresponding
right panels. (A) The degree per node of focal to bilateral tonic-clonic seizures is higher than that
of focal seizures that remain focal, 1.75-10 minutes after seizure onset. (B) The assortativity, a
measure of network robustness, is lower for focal to bilateral tonic-clonic seizures relative to focal
seizures that remain focal, 7.5-9.5 minutes after seizure onset. (C) The modularity, which
captures efficient network integration and global segregation, is higher for focal to bilateral tonic-
clonic seizures when compared to focal seizures that remain focal during temporal windows
between 14.75 to 3.75 minutes before seizure onset and 0.75-1.50 minutes after the onset. (D) The
synchronizability, which estimates the propensity of information to diffuse in a network, is higher
for focal to bilateral tonic-clonic seizures relative to focal seizures that remain focal during
temporal windows between 14.75 to 3.50 minutes before seizure onset and 0.75-1.75 minutes
after seizure onset. (E) The spectral radius, which relates to the global spread of synchronization
in a network, is also higher for focal to bilateral tonic-clonic seizures as compared to focal
seizures that remain focal during temporal windows between14.75 to 3.50 minutes before seizure
onset and 0.75-1.50 minutes after the onset. Error bars indicated 95% Cls computed by
resampling the data distribution. Solid bars show resampled P < 0.05.

Alterations in global network features preceding the onset predict propagation dynamics of
focal seizures

Building upon the findings presented thus far, we next aimed to quantify the distinct network
alterations prior to seizure onset which could differentiate the propagation patterns in a predictive
manner. To accomplish this, we assessed network attributes related to various aspects of
information processing within a networked system, particularly, the brain connectivity network.
Specifically, we focused on three network features: (i) modularity, which represents the tendency
of a network to form modules that exhibit strong connectivity within themselves (i.e., strong
within-module connectivity) but weak connectivity with other modules in the network (i.e., weak
inter-module connectivity) (47-50); (ii) synchronizability, which quantifies how information or
activity diffuses in a network (51, 52); and (iii) spectral radius, which describes the speed by
which information or activity spreads through a network (53, 54). While modularity has recently
been utilized in characterizing the efficiency associated with integration and segregation of
information across distributed brain areas, the properties of synchronizability and spectral radius
remain relatively unexplored in the context of brain networks. A couple of recent studies,
however, have suggested the utility of synchronizability and spectral radius in describing
dynamics of seizure activity within the brain (/7) and the extent of excitability of brain networks,
respectively (/0). Because modularity, synchronizability, and spectral radius have been associated
with different neural processes and are highly sensitive to changes in the network connectivity,
we hypothesized that these measures would be powerful markers for prediction of seizure
dynamics prior to the onset. As described in the Materials and Methods, each of these attributes
relate to overall network architecture and their values may differ across networks with similar
distribution of node degrees. Consequently, we characterized modularity, synchronizability, and
spectral radius as global network features and, in the following, investigated how they change
over time as a function of seizure propagation dynamics.

Our results revealed that the information concerning the propagation patterns of focal seizures
could be decoded from these global network attributes several minutes prior to seizure onset.

Specifically, the modularity preceding the onset of focal seizures with bilateral spread was higher
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than that of focal seizures that remain localized (resampled P < 0.05 for 14.75-11.75, 11.25-9.75,
9.25-8.50, 8.25-8.00, 7.75-7.50, 6.75-5.75, and 4.5-3.75 minutes before seizure onset; Fig. 4C). In
addition, the synchronizability associated with focal to bilateral tonic-clonic seizures was lower
than that of focal seizures that remain focal (resampled P < 0.05 for 14.75-13.50, 13.25-12.25,
12.00-9.50, 9.75-9.50, 8.50-8.25, 8.00-7.25, 7.00-5.75, and 5.50-3.50 minutes before seizure
onset; Fig. 4D). This pattern of results was also observed in the spectral radius (resampled P <
0.05 for 14.75-14.50, 14.25-11.25, 11.00-11.25, 10.00-9.50, 9.25-8.75, 7.75-7.50, 7.00-5.75, 5.50-
5.00, and 4.50-3.50 minutes before seizure onset; Fig. 4E). Additionally, these seizure-type
dependent differences in the network modularity, synchronizability, and spectral radius
reemerged shortly after seizure onset (resampled P < 0.05 for 0.75-1.50 minutes, 0.75-1.75
minutes, and 0.75-1.50 minutes after seizure onset for modularity, synchronizability, and spectral
radius, respectively).

Similar patterns of results were also observed between focal seizures with bilateral spread and
interictal activity such that preceding the onset, the seizure networks displayed higher modularity
(resampled P < 0.05 for 14.75-14, 13.75-12, 10.25-9.50, and 7.75-7.50 minutes before seizure
onset; Fig. S3C), lower synchronizability (resampled P < 0.05 for 15-13.5, 13.25-9.5, 8.75-8.25,
8-7.25, 7-6.50, and 5.25-3.75 minutes before seizure onset; Fig. S3D), and lower spectral radius
(resampled P < 0.05 for 14.75-14.50, 14-12.25, 11-9.25, 7.75-7.50, 5.25-4.75, and 4.50-3.75
minutes before seizure onset; Fig. S3E). These results were accompanied by post-onset effects
where focal to bilateral tonic-clonic seizures exhibited lower modularity (resampled P < 0.05 for
2.50-3 minutes after seizure onset; Fig. S3C), higher synchronizability (resampled P < 0.05 for 1-
1.50 and 2.50-3 minutes after seizure onset; Fig. S3D), and higher spectral radius (resampled P <
0.05 for 1-1.50, 2.50-3, and 5.25-5.50 minutes after seizure onset; Fig. S3E). However, focal
seizures that remain localized only differed from interictal activity in the measure of modularity
such that the modularity of the focal seizures was lower shortly after seizure onset (resampled P <
0.05 for 0.75-4.50 minutes after seizure onset; Fig. S3C). These results mimicked the trend
observed in the modularity analyses of focal to bilateral tonic-clonic seizures relative to the
interictal activity.

Together, our findings illustrated intrinsic topological properties of functional seizure networks
preceding the onset that contained information concerning the type of propagation dynamics an
impending seizure would display. Importantly, such seizure-type dependent signatures emerged
several minutes prior to seizure onset, allowing sufficient time for an effective clinical
intervention to be implemented. Furthermore, robust differences in such network attributes
reemerged shortly after the onset, confirming the distinct architectural properties associated with
the constrained and unconstrained propagation mechanisms of focal seizures. These seizure-type
dependent signatures observed post-onset can be used to validate the efficiency of a particular
treatment approach in preventing evolution of seizures and may help determine the extent of
cognitive and behavioral deficits induced by the residue seizure activity in a scenario where the
intervention did not completely eliminate the seizures.

Complementary temporal reconfigurations within the functional connectivity networks
sculpt seizure dynamics

Using a set of graph-theoretical features, we identified reconfigurations in the functional
connectivity network that characterized the propagation dynamics of different seizure types. Our
results revealed that such distinguishing features can be classified into 2 groups based on the
distinct and complementary temporal windows at which the differences in these features emerged
as a function of seizure types. The first group of network attributes includes the global features,
modularity, synchronizability, and spectral radius, which primarily captures differences between

12


https://doi.org/10.1101/2021.06.12.448205
http://creativecommons.org/licenses/by-nc-nd/4.0/

SO 0O 0 NN N R W= O O 0

~N O N R W= O 0 0NN BRWND RO 0 0NN R W

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448205; this version posted June 14, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

focal seizures with constrained and unconstrained dynamics prior to seizure onset (Fig. 5). In
contrast, the second group of network properties captured differences across seizure types after
the onset, reflecting the network reconfigurations induced by distinct propagation mechanisms.
Such features include the degree per node, assortativity, clustering coefficient, and characteristic
path length (Fig. 5). To further highlight the utility of these features, we evaluated both groups of
network measures at a single-seizure level in 3 seizures that had similar onset regions and were
recorded from an individual patient (Fig.1 and Fig. S4). Importantly, network features associated
with the two seizures (seizure 1 and 3) that remained localized within the left hemisphere
exhibited similar temporal patterns which differed from that of the focal seizure with bilateral
spread (seizure 2). These results further suggested that network measures could potentially be
used to characterize distinct neural dynamics across different types of focal seizures, even on a
single-seizure basis.

Modularity EESN M BN | BN O ,
Synchronizability | [ Iz TS 1N S .
Spectralradius (I NIl BRI : L]
Degree per node I .
Assortativity : ]
Clust. coefficient :
Path length . . : =
-15 -10 -5 0 5 10

Time relative to seizure onset (min)

Fig. S Summary of graph theoretical attributes probed across seizure types. The network
features investigated can be categorized into 2 groups based on the temporal windows at which
differential changes in these features emerge as a function of seizure propagation patterns. The
time windows where such differences are observed are plotted separately for each of the network
measures (resampled P < 0.05). Global features, i.e., the modularity, synchronizability, and
spectral radius, primarily capture network alterations that occur prior to and shortly after seizure
onset. In contrast, the degree per node, assortativity, clustering coefficient and characteristic path
length characterize post-onset network reconfigurations induced by different types of propagation
dynamics.

Discussion

The present study aimed to investigate if the emergence of heterogeneity in seizure propagation
can be understood in terms of network-level changes within the brain before, during, and after the
onset. To accomplish this, we evaluated the temporal evolution of a series of graph-theoretical
attributes which quantify various aspects of network organization and information processing
within complex systems such as the brain. We demonstrated distinct network-level signatures that
predicted the extent of diffusion dynamics of an impending seizure as well as isolated
architectural changes within the functional connectivity networks that emerged as the seizures
terminated. These results advance our understanding of how heterogenous seizure dynamics can
arise from similar onset regions. Furthermore, our findings offer exciting avenues where network
features may be used to guide clinical diagnosis of seizure subtypes as well as effective
intervention strategies to constrain the spread of seizures, thereby minimizing the neurological
and cognitive impacts on patients.
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Network alterations track temporal evolution of focal seizures

The brain is an extraordinarily complex system where its microscopic activities constantly
fluctuate. However, only the manifestation of such neural processes can be assessed at a
macroscopic level through functional neuroimaging techniques. Consequently, features of the
functional brain connectivity networks provide a means for characterizing and quantifying the
manifestation of the underlying neural activities. Notably, these macroscopic representations as
evaluated through the functional connectivity properties, such as the small-world architecture and
modular network organization, remain relatively robust despite the fluctuations at the microscopic
level. Here, we argue that sustained alterations in the underlying microscopic processes driven by
environmental, cognitive, or pathological factors, lead to measurable changes in the observed
macroscopic manifestations and consequently the functional connectivity features.

Traditionally, seizures are thought to result from an imbalance between localized excitatory and
inhibitory populations in the brain which induces initiation of spontaneous seizure activity (22,
55). On the other hand, the network theory propose instead that seizures are products of aberrant
activity in large-scale brain networks (3, /4, 22, 56). In line with this account, we demonstrate
that dynamic reconfigurations within the functional connectivity networks during evolution of
focal seizures give rise to the heterogeneity observed across seizures. While past work primarily
evaluated network properties of epileptic brain by averaging the signals in large discrete time
windows, we assess the continuous temporal evolution of network connectivity in combination
with resampling statistical tests. This analytical framework enables us to characterize the temporal
dynamics of network alterations that underlie the emerging dynamics of seizure activity in an
objective and rigorous manner. By examining globally defined network features, we observe
distinct macroscopic signatures which could predict the extent of diffusivity of seizure
propagation minutes prior to the onset. Additionally, we further demonstrate that the
heterogeneous dynamics exhibited across seizure types can be characterized by post-onset
changes in relatively simplistic features of the functional connectivity networks such as the degree
per node. We argue that our methodological approach provides an objective framework not only
for better understanding the neural dynamics underlying evolution of seizures but also for
determining whether and when a clinical intervention should be implemented to manage and
control a spread of an impending seizure.

Bilateral propagation of focal seizures reflects imbalance in global integration and
segregation in the connectivity brain network

We observed that modularity, synchronizability and spectral radius of focal seizures with bilateral
spread underwent distinct changes as compared to focal seizures that remain focal and interictal
activity. Notably, such differences emerged several minutes prior to seizure onset. In general,
modularity, defined as the tendency of a network to separate into high within-connectivity
modules, describes the brain’s ability to efficiently integrate information across task-relevant
regions while segregating the information across the remaining regions. Likewise,
synchronizability and spectral radius also describe global network properties and are specifically
used to quantify the ease by with a network can synchronize its activity or processes. Preceding
the onset, we reported increased modularity along with decreased synchronizability and spectral
radius in focal to bilateral tonic-clonic seizures. Corresponding to a reduced tendency of
synchronization and integration within the brain, these observed patterns of the global network
properties preceding seizures with greater network diffusion are seemingly counter-intuitive. In
light of classical accounts on the mechanistic underpinnings of seizures, we argue that our
findings could reflect the chemical or dynamic imbalance within the underlying networks (22,
57). Specifically, due to the microscopic imbalance in excitation and inhibition or the bistability
of localized neural dynamics, a neural state can emerge where the connectivity network possesses
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significantly low integration or compactness, which in turn results in sustained high modularity
along with low synchronizability and spectral radius. To regain a more balanced state, it is likely
that mechanisms enhancing the connectivity between segregated networks emerge, leading to an
over-compensation which results in more unconstrained seizure dynamics. While this is a mere
speculation at this point, future studies investigating large-scale non-invasive neuroimaging of
epilepsy patients could seek validation and/or refinement to this hypothesis. Notably, we found
that such signatures, i.e., increased modularity as well as decreased synchronizability and spectral
radius, re-emerged shortly after seizure onset and then disappeared (Fig. 4). It is, therefore,
possible that these features capture the manifestations of the regulatory mechanisms that control
and prevent the reemergence of seizures. Further support of this conjecture comes from the fact
that the modularity of functional connectivity networks also shows an increase in case of focal
seizures that remain focal, shortly after seizure onset, when compared to inter-ictal activity (Fig.
S3 C), suggesting its link to seizure termination and control mechanisms.

Increased small-world connectivity induced by the bilateral spread of seizure dynamics
Given its ability to optimize network communication and serve both distributed and specialized
information processing, a small-world configuration has been an attractive model for the
anatomical and functional structures of the brain (35, 58). In the context of epilepsy, theoretical
and empirical work has proposed that the hypersynchronous activity associated with seizures
could result from the functional brain networks adopting a configuration that exhibits increased
small-world properties (6, 32, 35). We observed an increase in the clustering coefficient and a
decrease in the characteristic path length, indicating increased small-world connectivity,
following the onset of focal seizures regardless of their propagation mechanisms. Given that the
small-world properties capture a balance between the segregation and integration of information
within a network, we further hypothesized that the extent of alterations in these measures over
time could link to the behavioral and cognitive effects associated with the occurrence of seizures
with highly diffused propagation patterns.

Consistent with the post-onset increase in the small-world connectivity, we showed that the
seizure-type dependent changes in the network degree per node and assortativity emerged several
minutes after seizure termination where focal seizures with bilateral spread display higher degree
per node and lower assortativity relative to focal seizures with constrained dynamics. This
reduction in the network resilience of focal to bilateral tonic-clonic seizures, as evident by lower
assortativity, suggests that bilateral diffusion of seizure activity induced reconfigurations within
the functional brain networks that lead to more severe cognitive and behavioral effects observed
after termination of focal seizures with unconstrained dynamics. Our findings are also in line with
previous reports of decreased assortativity in patients with Alzheimer’s disease (6, 42), and
provide early evidence supporting the utility of the assortativity coefficient along with the small-
world measures and degree per node in assessing changes in cognitive statuses (406).

Clinical implications

The heterogeneity of epilepsy is a key confound to disease understanding and development of
effective treatments. Here, we demonstrate graph-theoretical features as novel biomarkers that
link differential reconfigurations of the functional connectivity networks to the heterogeneity in
the emerging seizure dynamics. Specifically, our investigations of the global network dynamics
suggest that interventions aiming to contain the spread of seizure activity may wish to situate the
brain in a topological state where the modularity is lowered, while the synchronizability and
spectral radius are increased. In addition, we also show that the information regarding the
propagation patterns of seizures can be decoded through the seizure-type dependent changes in
the network properties several minutes before seizure onset allowing sufficient time for an
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intervention to be implemented. Together, these findings have important clinical implications as
monitoring for these early signatures could increase the likelihood of a successful preventative
treatment. Furthermore, our results reveal an important link between local network connectivity
measures and differential clinical manifestations that are induced by focal seizures with
constrained and unconstrained propagation dynamics. Specifically, we demonstrate that the more
extensive cognitive and behavioral effects observed after patients undergo focal to bilateral tonic-
clonic seizures is associated with the sustained post-onset reconfigurations in the locally defined
connectivity features of the underlying networks. These features could also serve as a means to
evaluate the effectiveness of an intervention. Future studies that wish to characterize cognitive
and behavioral changes induced by neurological disorders may also benefit from evaluating these
network properties in relation to performance of patients on various test battery (6, 59). Such
analyses could uncover distinct underlying pathophysiological processes that give rise to diverse
cognitive and behavioral impairments across disease subtypes and across individuals, thereby
improving understanding of the disease heterogeneity (60—63). Critically, such discoveries could
guide development of precise and successful clinical interventions that are tailored to diverse
neurological conditions. Finally, our single-seizure analyses suggest that network measures could
potentially be used to characterize distinct neural dynamics across different types of seizures,
even on a single-seizure basis. Such findings provide foundation for future investigation and
development of effective personalized seizure treatment.

Methodological considerations

Given that the electrode placement was determined on a patient-to-patient basis by a neurologist
for the purpose of identification of seizure onset zones, the data extracted from these electrodes
inevitably provide an incomplete picture of the brain network due to the resulting partial
coverage. In addition, the reported lack of differences between focal seizures that remain focal
and interictal activity could be partially due to such spatial sampling of the recorded signals. To
address this possibility, future studies may benefit from non-invasive recordings where whole-
brain dynamics can be simultaneously evaluated. Further, our analyses treated multiple seizures
and interictal activity segments from the same patients as independent, and primarily disregarded
individual variability in seizure heterogeneity at the patient-level. This analytical choice was
made based on traditional methods (e.g., see (20)), and careful statistical comparisons were
implemented to identify the seizure-type dependent alteration patterns in the functional
connectivity networks of seizures. To further extend our findings and improve the specificity of
the interpretations, future studies may wish to incorporate patient-level factor in their analytical
frameworks.

Conclusions

In summary, by using a graph theoretical approach, we determined the extent to which distinct
emerging dynamics of seizure networks were accounted for by temporal reconfigurations of the
underlying functional connectivity. Specifically, we investigated the time-varying changes in
network properties associated with focal seizures with constrained and unconstrained propagation
patterns. We observed that the network modularity, synchronizability, and spectral radius
preceding seizures onset differed between seizures of different propagation dynamics. In addition,
the small world measures, degree per node, and assortativity after seizure onset differed as a
function of the propagation patterns post seizure onset such that the seizure type dependent
differences in these measures reflect the more severe impairments often observed after
termination of seizures with bilateral spread. Collectively, our results illustrated a series of
network metrics that can be utilized as quantitative biomarkers to distinguish between focal
seizures of distinct dynamics on the basis of their propagation patterns as well as the differential
extent of cognitive and behavioral effects accompanying the seizures. These results suggested that
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the networks of focal seizures with unconstrained dynamics undergo early network alterations
triggering processes which facilitate the bilateral diffusion of seizure activity. The propagation-
type dependent alterations in these metrics were observed again shortly after the onset, suggesting
that these measures could also induce regulatory mechanisms necessary for the termination of
seizures. Importantly, such findings of network attributes that are unique to seizures of different
dynamics several minutes preceding the onset has important clinical implications as tracking
fluctuations of these metrics in a time-resolved manner could inform clinicians if an impending
focal seizure will diffuse bilaterally. Together, our findings provide objective means to gain better
insight into the mechanisms by which seizure dynamics are regulated within the brain and provide
exciting avenues where graph theoretical measures could be used to guide personalized clinical
interventions.

Materials and Methods

Patient information and data acquisition

The seizures analyzed in this study were recorded from 14 patients with medication-refractory
epilepsy (Table 1) who underwent a clinical monitoring procedure to locate their seizure onset
zone. Clinical electrode implantation, positioning, duration of recordings, and medication
schedules were based solely on clinical need as determined by an independent team of clinicians.
As indicated in Table 1, seizures analyzed in this study are of two types: 1) seizures that originate
from and remain within localized (focal) regions in one hemisphere of the brain (i.e., focal
seizures that remain focal); and 2) seizures that originate from focal onset regions in one
hemisphere and diffuse bilaterally during the propagation period (i.e., focal to bilateral tonic-
clonic seizures or focal seizures with bilateral spread). Patients were implanted with intracranial
subdural grids, strips, and depth electrodes for several days in a specialized hospital setting and
continuous multichannel electrocorticography (ECoG) data were recorded at a sampling rate of
500 Hz.

Only seizures with an obvious ictal onset were selected for analysis. Experienced epileptologists,
blind to this study, identified the seizure onset regions, seizure types, and onset time through
inspection of the ECoG recordings, referral to the clinical report, and clinical manifestations
recorded on video. A total of 67 seizures (49 focal seizures that remain focal and 18 focal to
bilateral tonic-clonic seizures) were analyzed. We note that, multiple seizures from the same
patients were treated as independent (see similar methods in (20)). All patients were enrolled after
informed consent was obtained and approval was granted by local Institutional Review Boards
(IRB) at Massachusetts General Hospital (MGH) according to National Institutes of Health (NIH)
guidelines.

Data preprocessing

For each of these seizures, we considered ECoG data of the duration of 15 minutes before and 10
minutes after the seizure onset. Each of these 25-min data segments only contained one seizure.
For comparison with relatively ‘seizure-free’ activity, we extracted an equal number of interictal
activity windows with the same duration. Interictal windows were selected from ECoG recordings
at least an hour away from an onset and offset of any seizure. The data were band-pass filtered
between 1 to 70 Hz, and notch filtered at 60 Hz to exclude potential powerline interference. A
common reference was used for data analysis and the reference electrode in each case was located
far from the area of recording making the introduction of spurious correlation or elimination of
actual correlation between cortical regions unlikely (64).
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Functional connectivity networks

To evaluate functional connectivity representations associated with the temporal evolution of
seizures, we employed complex network analysis. Originated from the mathematical study of
networks known as graph theory, such analytical framework represents a real-world complex
system as a network that is composed of a collection of nodes with edges connecting different
node pairs. Here, we constructed functional brain connectivity networks where edges represented
cross correlations between pairs of recording electrodes over time.

Specifically, we computed symmetric functional connectivity C;; between two regions of the brain
i and j as an averaged correlation of the neural signals recorded by the intracranial electrode
contacts of those regions. To extract (at least approximately) the stationary aspects of ECoG data,
we divided each of the 25-min ECoG data segments into consecutive 1-s windows, where each
window overlapped the previous window by 0.5 seconds (56, 65). The correlation was calculated
within each of these 1-s segments. To account for noise, we applied a temporal smoothing to
these correlation values by averaging consecutive 30 seconds windows such that a total of 98
correlation values representing the functional connectivity of 98 temporal windows were
generated from each 25-min ECoG data segment. Note that different temporal smoothing
parameters can be use without affecting the overall patterns of results, although a value too large
may reduce the temporal precision of the observations (Fig. S1).

All correlation values were bounded between —1 and +1. Negative correlation values implying
long range inhibitions were then set to zero, as within our modelling framework and in line with
previous studies (/9, 66), we do not consider the contribution of long range direct inhibitory
connections to the simulation of the epileptogenic effect. Temporal evolution of these correlations
or adjacency matrices reflects the time-varying connectivity dynamics of the functional brain
network from which the ECoG data were recorded.

Graph theoretical network analysis

For each seizure, we constructed a series of weighted, symmetric (undirected) adjacency matrices
(connectivity matrices) C representing functional connectivity networks across all recording
electrodes. From these networks, we computed a series of graph theorical network measures
(described below) as a function of seizure types to quantify changes in network dynamics
associated with evolution of focal seizures with constrained (focal seizure that remain focal) and
unconstrained propagation mechanisms (focal to bilateral tonic-clonic seizures). We used the
various Brain Connectivity Toolbox functions implemented in MATLAB (R2020; MathWorks)
for our computation of these network features unless noted otherwise.

Assessing small-world architecture

In general, a network can range from completely regular where each node connects to its nearest
neighbors to fully random where node pairs are connected randomly with some probability (52,
67-69). Within this spectrum lies a small-world architecture which is characterized by a
combination of dense local clustering of connections between neighboring nodes (like regular
networks) and a short path length between distant node pairs due to the existence of relatively few
long-range connections (like random networks) (7, 2, 6, 34). This architectural scheme is known
to facilitate both specialized and distributed information processing in a cost-effective manner,
and thus has been an attractive model for the functional organization of a healthy brain network.
Mathematically, small-world architecture is characterized by high clustering coefficient and low
Characteristic path length as compared to a random network.
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Clustering coefficient

Clustering coefficient is a measure of local connectedness of a network and has been used to
describe the segregation of information in brain networks. The clustering coefficient is calculated
as the ratio between the number of triangles present around a node and the maximum number of
triangles that could possibly be formed around that node (/6, 70). For a given node X and any
other two nodes Y and Z within the network, a triangle around X represents a scenario where X,
Y, and Z all have a connectivity value of 1 with one another. We used the Brain Connectivity
Toolbox function clustering coef wu for the calculation of clustering coefficient.

Characteristic path length

Characteristic path length describes the averaged minimum distance between all pairs of nodes in
a network and has been shown to associate with the integration of information within the brain
network. The minimum path length between a pair of network nodes represents the shortest route
between them through a combination of network edges. We calculated characteristic path length
using the Brain Connectivity Toolbox function charpath (37).

In the context of epilepsy research, it has been suggested that increased small-world architecture,
i.e., increase in clustering coefficient and decrease in characteristic path length, could facilitate
synchronization of seizure activity from the onset zones to other parts of the brain (32, 35, 36) and
therefore, we considered small-word configuration as an important network attribute to
differentiate the dynamics of different seizure subtypes.

Degree per node

Degree of a node represents the total sum of edge weights connected to a node in the network. To
compare seizures across individuals who had different number of implanted electrodes, we
computed the average degree per node which represents on an average, the total sum of edge
weights connected to a node in the network. A high average degree per node indicates a large
number of connections and this measure represents the ‘wiring cost’ of the network. A network
with high degree per node is well positioned to optimize integration of information and increase
the efficiency of network communication (31, 34).

For a given node i, the degree is defined as 4, = ZCU where, C represents the connectivity matrix.
J

N
Then, degree per node is calculated as < 4 >= i Z A, where, N represents the total number of
i=1

nodes in the network.

Assortativity

Assortativity measures the propensity of nodes to connect to others with similar degree and is
calculated as a correlation coefficient between the degrees of all the nodes (39). A positive
assortativity value indicates that nodes tend to link to other nodes with similar degree, whereas a
negative value indicates connected nodes with dissimilar degree. Networks with high assortativity
tend to make a highly connected core of network hubs. Functional brain networks have been
shown to display such architecture with highly connected hub regions or core surrounded by low-
connectivity peripheral nodes. Assortativity quantifies network robustness as a removal or failure
of a single high-degree node would induce greater impact on communication efficiency of a
network with low assortativity than on a network with high assortativity. By examining the
measure of assortativity across seizure subtypes, we could evaluate whether there existed a
relationship between different propagation mechanisms and the extent of network resilience. We
calculated assortativity using the Brain Connectivity Toolbox function assortativity wei (37).
Modularity
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Modularity describes the extent to which a graph can be divided into clearly separated
communities (i.e., subgraphs or modules). Each module contains several interconnected nodes,
and there are relatively few connections between nodes of different modules. In the context of
brain networks, modularity has been used to describe and quantify efficient integration and
segregation of information across distributed sets of brain regions as a function of cognitive task
demands (3, 77). We used the Brain Connectivity Toolbox function modularity und to compute
modularity of functional brain networks (48, 72).

Synchronizability

Synchronizability relates to the viability of synchronized dynamics within a network. Particularly
in the context of epilepsy, relatively larger value of synchronizability has been associated with
greater ease for neural populations to synchronize their dynamics (/7). Synchronizability (:5) is
calculated as the ratio of the second smallest and the largest eigenvalue of the Laplacian matrix
(L), which is computed as the difference between the diagonal matrix of node strength (total
degree) and the adjacency matrix such that L = D — C. Thus, synchronizability estimates the

L
2
L

max

AL denote the second smallest and the largest eigenvalue of L, respectively.

spread of the eigenvalues of the network Laplacian and is computed as S = where 1) and

Spectral radius

Spectral radius is a global measure of network structure that is related to the spread of
synchronization in a network (70, 53, 73). Computed as the largest eigenvalue of the connectivity
matrix (C), spectral radius reflects the critical coupling strength required to synchronize the
system (74). As such, spectral radius represents the principal component of the system and
contains information about structural characteristics as well as dynamical behavior and stability of
the underlying network (75—77). In the network based models of brain dynamics, spectral radius
has been associated with the ease with which the system can be transitioned into an excited state
(10).

Statistical analysis

To compare the computed network measures as a function of seizure types in a time-resolved
manner and to assess significant differences, we performed a bootstrapping procedure and
established 95% confidence intervals for each corresponding measure. For each of the
bootstrapping iterations, we performed resampling with replacement at the level of individual
seizures and computed averages for comparison of interest (e.g., the clustering coefficient of focal
seizures that remain focal vs. the clustering coefficient of focal to tonic-clonic seizures). We
performed 10,000 bootstrapping iterations in order to achieve the confidence intervals reported
(CIs) for each comparison. Note that this approach constrains the resolution of P values to a lower
limit of P <0.0001. We generated permuted null distributions of each complex network measure
for each individual seizure and each time point. For tests comparing a bootstrapped distribution
against 0, P values were computed by conducting 2 one-tailed tests against 0 (e.g.,
mean[difference in clustering coefficients < 0] and mean[difference in clustering coefficients > 0]
and doubling the smaller P value)
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Table 1. Patient Profiles

Clinical characteristics of the patients. For each patient, we report sex, age at first reported
seizures onset, as well as age at the monitoring phase and surgery. We also report the seizure
etiology, which was clinically determined through medical history, imaging, and long-term
invasive monitoring. Additionally, we indicate the number of observed seizures associated with
the two different types of seizures which originated from one hemisphere: focal seizures that
remained localized within the same hemisphere (focal seizure; focal) and focal seizures that
propagate bilaterally to both hemispheres (focal to bilateral tonic-clonic seizure; focal to
bilateral). Surgical outcome (outcome) was based on Engel score: seizure freedom to no
improvement (I-V), and no follow-up (NF). Legend: M = male; F = female; MTS = Mesial
Temporal Sclerosis; n.a = not applicable.

Age at onset/ Seizure Onset

Patient  Sex surgery Etiology Seizure Type (#) Zone Resection Areas  Outcome
1 F 15/46 Dysplasia  focal to bilateral (5) Anterior Right I
temporal anterior temporal
2 F 42/55 n.a focal to bilateral (3) Temporal None I
3 F 17/45 n.a focal (1); Temporal None n.a
focal to bilateral (2)
4 M 8/23 n.a focal (10) Frontal None 11
5 M 14/35 n.a focal (9); Temporal Right n.a
focal to bilateral (2) anterior temporal
6 F 12/32 n.a focal (15) Temporal Right IT
anterior temporal
7 F 7/23 n.a focal (6) Frontal Left frontal v
8 F 10/27 n.a focal (1) Unknown Left frontal v
9 F 8/19 MTS focal (1) Anterior Left 11
temporal anterior temporal
10 F 14/31 n.a focal to bilateral (2) Temporal Right I
anterior temporal
11 F 1/21 Stroke focal (2) Temporal Left temporal v
12 F 9/42 n.a focal (2) Frontal None IT
13 M 39/47 n.a focal to bilateral (3) Posterior Right temporal I
temporal
14 F 50/59 n.a focal (2); Posterior Left temporal I
focal to bilateral (1) temporal
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