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Abstract 21 
Dynamic functional brain connectivity facilitates adaptive cognition and behavior. Abnormal 22 
alterations within such connectivity could result in disrupted functions observed across various 23 
neurological conditions. As one of the most common neurological disorders, epilepsy is defined 24 
by the seemingly random occurrence of spontaneous seizures. A central but unresolved question 25 
concerns the mechanisms by which extraordinarily diverse dynamics of seizures emerge. Here, 26 
we apply a graph-theoretical approach to assess dynamic reconfigurations in the functional brain 27 
connectivity before, during, and after seizures that display heterogeneous propagation patterns 28 
despite sharing similar origins. We demonstrate unique reconfigurations in globally-defined 29 
network properties preceding seizure onset that predict propagation patterns of impending 30 
seizures, and in locally-defined network properties that differentiate post-onset dynamics. These 31 
results characterize quantitative network features underlying the heterogeneity of seizure 32 
dynamics and the accompanying clinical manifestations. Decoding these network properties could 33 
improve personalized preventative treatment strategies for epilepsy as well as other neurological 34 
disorders. 35 
 36 
Introduction 37 
The human brain is a complex system, where a single brain region interacts with many others and 38 
collectively, these interactions give rise to a wide variety of functional connectivity patterns 39 
serving rich cognitive functions and adaptive behaviors. A foundation for capturing and 40 
understanding such rich and diverse patterns of connectivity is through a graph theoretical 41 
framework, where the brain is visualized as a graph or network composed of nodes and edges that 42 
represent brain regions and their pairwise associations, respectively (1–3). Architectural features 43 
and temporal reconfigurations of the brain’s functional connectivity networks derived within this 44 
framework have been associated with several aspects of cognitive functions and development (1, 45 
4, 5). Investigating the temporal evolution of such networks has also provided better insight into 46 
the emergence of neural properties such as specialization and efficiency of information 47 
processing, learning, and aging (6–11). Applications of network approaches has recently gained 48 
popularity particularly in clinical neuroscience for the potential to establish biomarkers of disease 49 
onset and progression. Specifically, grounded in graph theory, such techniques can identify 50 
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abnormal alterations in the dynamic functional brain connectivity that are caused by neurological 51 
conditions (6, 12–16). 52 
 53 
As one of the most common neurological disorders with roughly 50 million cases world-wide, 54 
epilepsy is characterized by its emerging spontaneous seizure activity (17, 18). Critically, one-55 
third of the patients do not respond to medications and rely on alternative interventions such as 56 
surgical and neuromodulatory approaches which have variable outcomes and subjective success 57 
rates (19–21). Tailoring effective treatment strategies requires biomarkers that can reliably predict 58 
not only the temporal complexity but also the dynamical properties of an impending seizure (22, 59 
23). However, seizures are remarkably diverse, making the search for such cues extremely 60 
challenging. One way in which the variability across seizures has been addressed is through 61 
classification on the basis of the onset regions: focal seizures originate from a localized region 62 
within one hemisphere while generalized seizures begin simultaneously from both hemispheres. 63 
A variety of computational techniques in the realm of network science and dynamical systems 64 
have been employed to better localize the onset regions and thus improve the precision with 65 
which focal and generalized seizures can be identified (24–26). However, localizing onset regions 66 
does not fully capture the breadth of dynamics and diversity associated with seizure subtypes. 67 
Adding to this complexity, once generated, a focal seizure can remain localized within the same 68 
hemisphere (i.e., focal seizures that remain focal) or propagate to the other hemisphere (i.e., focal 69 
to bilateral tonic-clonic seizures or focal seizures with bilateral spread) (27–29). Notably, these 70 
subtypes of focal seizures can coexist in a single patient (Fig. 1), where the seizures with bilateral 71 
spread generally lead to more severe behavioral and cognitive deficits that could require several 72 
minutes to hours for patients to recover from. However, the distinct propagation dynamics 73 
exhibited by different seizure types are largely ignored by traditional intervention approaches. 74 
Critically, the field currently lacks an objective analytical framework that can be utilized to 75 
investigate, understand, and predict the heterogeneity associated with propagation dynamics of 76 
seizure activity. 77 
 78 
Here, we demonstrate that the long-standing challenges associated with the heterogeneity 79 
observed across subtypes of epileptic seizures can be addressed through the lens of graph theory.  80 
Our study is built upon the idea that the manner in which functional connectivity networks within 81 
the brain reconfigure over time carries information concerning the emergent global dynamics and 82 
cognitive behaviors that are unique to the underlying neurological processes. Consequently, we 83 
probed the time-varying changes within functional networks derived from multiple hours of 84 
electrocorticogram (ECoG) recordings across 14 patients as they experienced focal seizures that 85 
remain focal or focal to bilateral tonic-clonic seizures. With this analytical framework, we aimed 86 
to gain insight into the unique nature of how the heterogenous dynamics associated with different 87 
seizure types develop and unfold in the brain. Specifically, we focused on assessing rapid 88 
alterations in the architectural attributes that provide quantitative descriptions concerning several 89 
aspects of functional connectivity networks of seizures. More specifically, we evaluated these 90 
reconfigurations before, during, and after onset of seizures that exhibited drastically different 91 
propagation patterns despite sharing similar focal origin. 92 
 93 
Our results elucidate key network components that characterize the differential neural dynamics 94 
as well as the distinct cognitive and behavioral changes associated with each type of focal 95 
seizures. We show that there exist intrinsic network signatures preceding seizure onset that are 96 
predictive of the extent to which seizure activity would propagate through the brain. Furthermore, 97 
such features emerge several minutes prior to the onset and could, therefore, aid development of 98 
successful preventative treatments. Finally, our results reveal differential network characteristics 99 
that emerge after seizure onset and characterize the distinct propagation mechanisms of seizure 100 
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subtypes, suggesting a role of network reconfiguration in regulating termination of seizures. 101 
Together, our findings elucidate the association between the evolution of seizures and their 102 
underlying network dynamics and offer exciting avenues where graph theoretical measures could 103 
be used to guide personalized clinical interventions for neurological disorders such as epilepsy, 104 
which displays extensive heterogeneity in its clinical and neurological manifestations across as 105 
well as within individual patients. 106 
 107 
 108 

 109 
Fig.1 Emergence of distinct seizure propagation patterns in a single patient. 110 
(A) During a clinical monitoring procedure to identify a seizure onset zone of patients with 111 
medication-refractory (drug-resistant) epilepsy, intracranial recording electrodes are implanted. 112 
(B) Intracranial activity during two sample seizures recorded from a single patient, which exhibit 113 
distinct propagation dynamics. On the left, the seizure activity originates from a few electrodes 114 
and persists in the localized area within a single hemisphere (i.e., focal seizure that remains focal). 115 
On the right, the seizure activity originates from a few electrodes but diffuses bilaterally to 116 
involve electrodes in both hemispheres. This type of seizure is known as focal to bilateral tonic-117 
clonic seizure or focal seizure with bilateral spread. Despite their similarly focal origin, these 118 
seizure types induce drastically differential clinical manifestations such that focal to bilateral 119 
tonic-clonic seizures are associated with more severe cognitive and behavioral deficits. We 120 
hypothesize that such heterogeneity in seizure dynamics emerges from distinct and measurable 121 
temporal alterations in the functional brain connectivity networks. 122 
 123 
Results  124 
Time-varying functional connectivity networks of focal seizures and interictal activity 125 
To examine the relationship between functional network architecture and propagation 126 
mechanisms of focal seizures, we first estimated functional brain connectivity networks from 127 
human intracranial recordings of 67 seizures (across 14 patients, 49 focal seizures that remain 128 
focal and 18 focal seizures with bilateral spread; Fig. 1B) and 67 interictal periods. For each 129 
individual seizure of either type, we epoched a 25-minute segment of electrocorticography 130 
(ECoG) data from 15 minutes before to 10 minutes after seizure onset. ECoG data for interictal 131 
periods of identical epoch size were chosen with the criterion that such ‘seizure-free’ activity had 132 
to take place at least an hour away from an onset and offset of any seizure. Based on these data, 133 
we then constructed a series of time-varying connectivity matrices corresponding to each seizure 134 
and each interictal period where functional interactions (i.e., connection strength) between the 135 
intracranial electrodes were inferred through pairwise cross correlations in sliding 1-second 136 
windows (30–33). We then applied a 30-second windowed temporal smoothing procedure such 137 
that each of the 25-minute segments of seizure and interictal activity were represented with 98 138 
consecutive functional connectivity matrices (see Materials and Methods and Fig. S1). Based on 139 
the graph theoretical framework, these inter-electrode relationships were represented by network 140 
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edges and the electrodes themselves were represented by nodes in the corresponding networks of 141 
seizures and interictal activity (see Materials and Methods; Fig. 2, A-D).  142 
 143 
To probe the alterations in these functional connectivity networks over time, we extracted a 144 
variety of graph theoretical measures which are described in detail in the Materials and Methods 145 
section and will be further discussed in the following paragraphs. We assessed and compared how 146 
these network attributes evolved during the 25-minute windows corresponding to (i) the dynamics 147 
of focal seizures that remained focal (constrained propagation), (ii) the dynamics of focal seizures 148 
that became bilateral tonic-clonic seizures (unconstrained propagation), and (iii) the dynamics of 149 
‘seizure-free’ interictal activity. Such analysis approach allowed us to directly test whether there 150 
existed unique reconfigurations of network architecture (before, during, and after seizure 151 
propagation) that gave rise to the divergent propagation patterns and diverse clinical 152 
manifestations exhibited by different subtypes of focal seizures. 153 
 154 

 155 
 156 
Fig.2 Schematic of graph theoretical analysis of functional brain dynamics. 157 
(A) Locations of implanted intracranial electrodes of a sample patient. (B) We use 158 
electrocorticography (ECoG) time-series data from all intracranial electrodes from each patient 159 
recorded during a clinical monitoring procedure to locate the seizure onset zone. We estimate the 160 
instantaneous functional connectivity of the underlying brain network by computing pairwise 161 
correlations of ECoG data across electrodes in a sliding-window manner. The magnitudes of these 162 
correlations (restricted between 0 and 1) reflect the strength of connections between each pair of 163 
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electrodes and are represented by a weighted adjacency or connectivity matrix (see Materials and 164 
Methods). (C) To investigate time-varying changes in the functional brain connectivity during 165 
temporal evolution of each seizure type, we compute a series of connectivity matrices over time 166 
and use these as bases to construct functional connectivity networks. (D) A schematic of sample 167 
constructed networks, consisting of nodes (electrodes) and edges (connection strength). To 168 
quantify alterations within these complex networks over time, we evaluate changes of a series of 169 
graph theoretical attributes which describe globally- and locally- defined properties of the 170 
constructed networks.  171 
 172 
More prominent small-world connectivity links to bilateral spread of seizure activity 173 
Small-world connectivity, characterized by a combination of dense local clustering of connections 174 
between neighboring nodes and a short path length between node pairs (1, 2, 6, 34), has been an 175 
attractive model for the functional organization of a healthy brain network (see Materials and 176 
Methods for more details). In the context of epilepsy, however, increased small-world 177 
connectivity has been put forth as a potential driver for the propagation of pathological 178 
synchronous activity across brain regions (32, 35, 36). Consequently, we first assessed the 179 
clustering coefficients and the characteristic path lengths to examine whether such properties 180 
relate to the constrained and unconstrained propagation mechanisms associated with focal 181 
seizures that remain focal and focal seizures with bilateral spread, respectively. To accomplish 182 
this, we calculated the clustering coefficient and the characteristic path length of each adjacency 183 
matrix (i.e., 98 matrices per each of the 25-minute segments of seizure activity). To evaluate these 184 
results in light of past studies, we computed averages of these values in a series of consecutive 5-185 
minute windows, separately for each seizure type. This resulted in 3 preictal, 1 ictal (during 186 
seizure), and 1 postictal windows (Fig. 3, A and B). A similar analysis was applied to interictal 187 
data to estimate baseline values to which the seizure-related network measures could be compared 188 
(37).  189 
 190 
Our results reveal that both focal seizures that remain focal and focal to bilateral tonic-clonic 191 
seizures displayed higher small-world connectivity during ictal periods when compared to 192 
seizure-free (interictal) activity as demonstrated by higher clustering coefficients and shorter 193 
characteristic path lengths (Fig. 3, A and B). Further analyses demonstrated that the ictal activity 194 
associated with focal seizures that remain focal exhibited (i) higher clustering coefficients as 195 
compared to postictal period (P = 0.03; Fig. 3A, left panel) and (ii) lower characteristic path 196 
lengths as compared to both preictal and postictal periods (preictal: P = 0.0004, < 0.0001, 0.0002; 197 
postictal: P = 0.0006; Fig. 3B, left panel). Additionally, we observed similar changes for focal 198 
seizures with bilateral propagation where the ictal activity displayed (i) higher clustering 199 
coefficients as compared to all the preictal periods (all P < 0.0001; Fig 3A, right panel) and (ii) 200 
shorter characteristic path lengths as compared to all the preictal periods (all P < 0.0001; Fig 3B, 201 
right panel). However, unlike the characteristic path lengths associated with the postictal periods 202 
of focal seizures with constrained dynamics which returned to the preictal levels, the postictal 203 
path length of focal seizures with bilateral spread exhibited a continued decrease (P = 0.0006, Fig 204 
3B, right panel). These results supported the more unconstrained diffusivity associated with focal 205 
to bilateral tonic-clonic seizures. Notably, the observed differences regarding the manner in which 206 
the small-world architecture increased in the networks of focal seizures with constrained and 207 
unconstrained dynamics were our first evidence in support of the notion that there may exist 208 
network-level signatures that contained information about the distinct propagation mechanisms of 209 
focal seizures. 210 
 211 
Further, we directly compared the temporal profiles of the small-world architecture for focal 212 
seizures that remain localized and focal seizures with bilateral spread. To account for the unequal 213 
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number of seizure samples of each seizure type, we implemented a bootstrapping procedure and 214 
established 95% confidence intervals based on which significant difference was assessed (see 215 
Materials and Methods). As expected from Figures 3A-B, we observed that the dynamics of 216 
small-world properties differed in a seizure-type specific manner only after the onset of seizures. 217 
Specifically, the clustering coefficient of focal seizures with bilateral spread was higher than that 218 
of focal seizures that remain focal, from 2 to 10 minutes after seizure onset (resampled P < 0.05; 219 
Fig. 3C). Such differences were accompanied by the shorter characteristic path length associated 220 
with focal seizures with bilateral spread (resampled P < 0.05 for 2-10 minutes after seizure onset; 221 
Fig. 3D). Notably, these observed differences emerged only after the onset and extended well 222 
beyond termination of seizures (36), suggesting that focal to bilateral tonic-clonic seizures 223 
differentially induced network reorganization that persisted even after the seizure activity ended.  224 
 225 
Additionally, after seizure onset, persistent differences in the clustering coefficient and the 226 
characteristic path length were also observed between focal seizures with bilateral spread and 227 
interictal activity such that focal seizures with bilateral spread displayed more prominent small-228 
world configuration (Fig. S2, right panels). These persistent differences between post-onset 229 
activity and interictal periods were, however, not observed in the case of focal seizures that 230 
remain focal (Fig. S2, left panels). Together, these findings suggested that the unconstrained 231 
propagation dynamics of focal to bilateral tonic-clonic seizures related to an increase in the 232 
efficiency of network communication, as illustrated by the increased small-world characteristic 233 
shortly after seizure onset. Critically, these observed seizure-type dependent network 234 
configurations emerged only after the onset, raising a question whether there also existed unique 235 
network alterations at other time points that may contribute to the distinct propagation 236 
mechanisms and clinical manifestations associated with each seizure type.  237 
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 238 
 239 
Fig 3. Small-world architecture tracks diffusivity of seizure activity. Focal to bilateral tonic-240 
clonic seizures (n = 18) display more prominent small-world connectivity (simultaneous increase 241 
in the clustering coefficient and decrease in the characteristic path length) than focal seizures that 242 
remain localized within one hemisphere (n = 49). (A) Averages of the clustering coefficients 243 
associated with each seizure type are plotted separately for preictal, ictal (during seizure), and 244 
postictal periods. The clustering coefficient of interictal (seizure-free) networks are also plotted as 245 
a baseline. (B) The characteristic path length is plotted in the same manner. (C) The clustering 246 
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coefficient of focal to bilateral tonic-clonic seizures is higher than that of focal seizures that 247 
remain focal, 2-10 minutes after seizure onset. (D) The characteristic path length of focal to 248 
bilateral tonic-clonic seizures is lower than that of focal seizures that remain focal, 2-10 minutes 249 
after seizure onset. Error bars indicate 95% CIs computed by resampling the data distributions. 250 
Solid bars show resampled P < 0.05. 251 
 252 
Alterations in the local network connectivity features after the onset reflect heterogeneous 253 
dynamics of focal seizures  254 
Given the post-onset differences in the clustering coefficient and the characteristic path length 255 
between focal seizures of different propagation mechanisms, we hypothesized that seizure-type 256 
dependent network changes should also be observed in other measures of node connectivity 257 
patterns such as the degree per node. The degree of a given node is the total sum of edge weights 258 
connected to that node. The degree of each individual node therefore reflects the centrality of that 259 
node in the network, and the averaged degree per node describes the density of the network. A 260 
network with high degree per node is well positioned to optimize integration of information and 261 
increase the efficiency of network communication (34, 37). We expected, therefore, that the 262 
network nodes after the onset of focal seizures with bilateral spread would be of higher degree on 263 
average as compared to those after the onset of focal seizures that remain focal. Supporting our 264 
hypothesis, the degree per node associated with focal to bilateral tonic-clonic seizures was found 265 
to be higher than that of focal seizures that remain focal for 1.75-10 minutes after the onset 266 
(resampled P < 0.05, Fig. 4A). Notably, the timing of the sustained differences in the degree per 267 
node mirrored that of the clustering coefficient and the characteristic path length, which also 268 
extended several minutes beyond seizure termination as each seizure typically lasted between 30 269 
seconds and 3 minutes (38).  270 
 271 
To further investigate network alterations unique to particular propagation mechanisms of focal 272 
seizures, we assessed the assortativity coefficient which measures the propensity of network 273 
nodes to connect to other nodes of similar degree (39, 40). In general, network hubs or high-274 
degree nodes of a high-assortativity network are likely to form a highly connected core, 275 
surrounded by peripheral nodes with low connectivity. Such configuration renders the network 276 
robust against a removal or failure of a single high-degree node. Notably, this core-periphery 277 
architecture has been repeatedly observed in functional connectivity networks within the brain 278 
(41, 42). In the context of seizures, our results demonstrated that the assortativity coefficient 279 
associated with focal to bilateral tonic-clonic seizures was lower than that of focal seizures that 280 
remain localized for 7.50-9.50 minutes after seizure onset (resampled P < 0.05, Fig. 4B). 281 
Additionally, similar patterns of results were observed between focal to bilateral tonic-clonic 282 
seizures and interictal activity such that the seizure networks displayed higher degree per node 283 
(resampled P < 0.05 for 1.75-10 minutes after seizures onset; Fig. S3A) and lower assortativity 284 
(resampled P < 0.05 for 6.50-7 and 7.50-9.75 minutes after seizures onset; Fig. S3A). However, 285 
these network properties did not differ between interictal activity and focal seizures that remain 286 
localized. 287 
 288 
Importantly, the observed seizure-type differences emerged after the onset of seizures and were 289 
contributed by the negative assortativity coefficient that was associated with focal seizures with 290 
bilateral propagation. These results suggested that close to seizure termination, the networks of 291 
focal seizures with unconstrained dynamics underwent reduced robustness, rendering them more 292 
susceptible to network disruptions (40, 43). These findings could potentially account for the more 293 
extensive behavioral abnormalities and cognitive deficits often observed after patients experience 294 
episodes of focal to bilateral tonic-clonic seizures (28, 44–46).  295 
 296 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.06.12.448205doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.12.448205
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

9 

Thus far, we demonstrated that consistent with the differences in the clustering coefficient and the 297 
characteristic path length after seizure onset, the degree per node and the assortativity (i.e., the 298 
measures directly derived from local or nodal connectivity), also differed as a function of seizure 299 
propagation dynamics. These findings provided better understanding regarding the association 300 
between heterogenous propagation mechanisms of seizure activity and the local connectivity 301 
within the underlying functional networks. Next, we asked if networks of different seizure types 302 
underwent distinct reconfigurations prior to seizure onset that shaped the global properties of the 303 
networks and ultimately determined the type of propagation dynamics an impending seizure 304 
would display.  305 
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Fig. 4 Various features of functional connectivity display distinct temporal changes as a 307 
function of seizure propagation dynamics. Left panels illustrate a series of graph theoretical 308 
measures computed from networks of focal seizures that remain localized (n = 49) and from 309 
networks of focal to bilateral tonic-clonic seizures (n = 18). The time-varying differences 310 
observed in each of these features as a function of seizure types are plotted in the corresponding 311 
right panels. (A) The degree per node of focal to bilateral tonic-clonic seizures is higher than that 312 
of focal seizures that remain focal, 1.75-10 minutes after seizure onset. (B) The assortativity, a 313 
measure of network robustness, is lower for focal to bilateral tonic-clonic seizures relative to focal 314 
seizures that remain focal, 7.5-9.5 minutes after seizure onset. (C) The modularity, which 315 
captures efficient network integration and global segregation, is higher for focal to bilateral tonic-316 
clonic seizures when compared to focal seizures that remain focal during temporal windows 317 
between 14.75 to 3.75 minutes before seizure onset and 0.75-1.50 minutes after the onset. (D) The 318 
synchronizability, which estimates the propensity of information to diffuse in a network, is higher 319 
for focal to bilateral tonic-clonic seizures relative to focal seizures that remain focal during 320 
temporal windows between 14.75 to 3.50 minutes before seizure onset and 0.75-1.75 minutes 321 
after seizure onset. (E) The spectral radius, which relates to the global spread of synchronization 322 
in a network, is also higher for focal to bilateral tonic-clonic seizures as compared to focal 323 
seizures that remain focal during temporal windows between14.75 to 3.50 minutes before seizure 324 
onset and 0.75-1.50 minutes after the onset. Error bars indicated 95% CIs computed by 325 
resampling the data distribution. Solid bars show resampled P < 0.05. 326 
 327 
Alterations in global network features preceding the onset predict propagation dynamics of 328 
focal seizures  329 
Building upon the findings presented thus far, we next aimed to quantify the distinct network 330 
alterations prior to seizure onset which could differentiate the propagation patterns in a predictive 331 
manner. To accomplish this, we assessed network attributes related to various aspects of 332 
information processing within a networked system, particularly, the brain connectivity network. 333 
Specifically, we focused on three network features: (i) modularity, which represents the tendency 334 
of a network to form modules that exhibit strong connectivity within themselves (i.e., strong 335 
within-module connectivity) but weak connectivity with other modules in the network (i.e., weak 336 
inter-module connectivity) (47–50); (ii) synchronizability, which quantifies how information or 337 
activity diffuses in a network (51, 52); and (iii) spectral radius, which describes the speed by 338 
which information or activity spreads through a network (53, 54). While modularity has recently 339 
been utilized in characterizing the efficiency associated with integration and segregation of 340 
information across distributed brain areas, the properties of synchronizability and spectral radius 341 
remain relatively unexplored in the context of brain networks. A couple of recent studies, 342 
however, have suggested the utility of synchronizability and spectral radius in describing 343 
dynamics of seizure activity within the brain (11) and the extent of excitability of brain networks, 344 
respectively (10). Because modularity, synchronizability, and spectral radius have been associated 345 
with different neural processes and are highly sensitive to changes in the network connectivity, 346 
we hypothesized that these measures would be powerful markers for prediction of seizure 347 
dynamics prior to the onset. As described in the Materials and Methods, each of these attributes 348 
relate to overall network architecture and their values may differ across networks with similar 349 
distribution of node degrees. Consequently, we characterized modularity, synchronizability, and 350 
spectral radius as global network features and, in the following, investigated how they change 351 
over time as a function of seizure propagation dynamics.   352 
 353 
Our results revealed that the information concerning the propagation patterns of focal seizures 354 
could be decoded from these global network attributes several minutes prior to seizure onset. 355 
Specifically, the modularity preceding the onset of focal seizures with bilateral spread was higher 356 
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than that of focal seizures that remain localized (resampled P < 0.05 for 14.75-11.75, 11.25-9.75, 357 
9.25-8.50, 8.25-8.00, 7.75-7.50, 6.75-5.75, and 4.5-3.75 minutes before seizure onset; Fig. 4C). In 358 
addition, the synchronizability associated with focal to bilateral tonic-clonic seizures was lower 359 
than that of focal seizures that remain focal (resampled P < 0.05 for 14.75-13.50, 13.25-12.25, 360 
12.00-9.50, 9.75-9.50, 8.50-8.25, 8.00-7.25, 7.00-5.75, and 5.50-3.50 minutes before seizure 361 
onset; Fig. 4D). This pattern of results was also observed in the spectral radius (resampled P < 362 
0.05 for 14.75-14.50, 14.25-11.25, 11.00-11.25, 10.00-9.50, 9.25-8.75, 7.75-7.50, 7.00-5.75, 5.50-363 
5.00, and 4.50-3.50 minutes before seizure onset; Fig. 4E). Additionally, these seizure-type 364 
dependent differences in the network modularity, synchronizability, and spectral radius 365 
reemerged shortly after seizure onset (resampled P < 0.05 for 0.75-1.50 minutes, 0.75-1.75 366 
minutes, and 0.75-1.50 minutes after seizure onset for modularity, synchronizability, and spectral 367 
radius, respectively).  368 
 369 
Similar patterns of results were also observed between focal seizures with bilateral spread and 370 
interictal activity such that preceding the onset, the seizure networks displayed higher modularity 371 
(resampled P < 0.05 for 14.75-14, 13.75-12, 10.25-9.50, and 7.75-7.50 minutes before seizure 372 
onset; Fig. S3C), lower synchronizability (resampled P < 0.05 for 15-13.5, 13.25-9.5, 8.75-8.25, 373 
8-7.25, 7-6.50, and 5.25-3.75 minutes before seizure onset; Fig. S3D), and lower spectral radius 374 
(resampled P < 0.05 for 14.75-14.50, 14-12.25, 11-9.25, 7.75-7.50, 5.25-4.75, and 4.50-3.75 375 
minutes before seizure onset; Fig. S3E). These results were accompanied by post-onset effects 376 
where focal to bilateral tonic-clonic seizures exhibited lower modularity (resampled P < 0.05 for 377 
2.50-3 minutes after seizure onset; Fig. S3C), higher synchronizability (resampled P < 0.05 for 1-378 
1.50 and 2.50-3 minutes after seizure onset; Fig. S3D), and higher spectral radius (resampled P < 379 
0.05 for 1-1.50, 2.50-3, and 5.25-5.50 minutes after seizure onset; Fig. S3E). However, focal 380 
seizures that remain localized only differed from interictal activity in the measure of modularity 381 
such that the modularity of the focal seizures was lower shortly after seizure onset (resampled P < 382 
0.05 for 0.75-4.50 minutes after seizure onset; Fig. S3C). These results mimicked the trend 383 
observed in the modularity analyses of focal to bilateral tonic-clonic seizures relative to the 384 
interictal activity. 385 
 386 
Together, our findings illustrated intrinsic topological properties of functional seizure networks 387 
preceding the onset that contained information concerning the type of propagation dynamics an 388 
impending seizure would display. Importantly, such seizure-type dependent signatures emerged 389 
several minutes prior to seizure onset, allowing sufficient time for an effective clinical 390 
intervention to be implemented. Furthermore, robust differences in such network attributes 391 
reemerged shortly after the onset, confirming the distinct architectural properties associated with 392 
the constrained and unconstrained propagation mechanisms of focal seizures. These seizure-type 393 
dependent signatures observed post-onset can be used to validate the efficiency of a particular 394 
treatment approach in preventing evolution of seizures and may help determine the extent of 395 
cognitive and behavioral deficits induced by the residue seizure activity in a scenario where the 396 
intervention did not completely eliminate the seizures. 397 
 398 
Complementary temporal reconfigurations within the functional connectivity networks 399 
sculpt seizure dynamics 400 
Using a set of graph-theoretical features, we identified reconfigurations in the functional 401 
connectivity network that characterized the propagation dynamics of different seizure types. Our 402 
results revealed that such distinguishing features can be classified into 2 groups based on the 403 
distinct and complementary temporal windows at which the differences in these features emerged 404 
as a function of seizure types. The first group of network attributes includes the global features, 405 
modularity, synchronizability, and spectral radius, which primarily captures differences between 406 
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focal seizures with constrained and unconstrained dynamics prior to seizure onset (Fig. 5). In 407 
contrast, the second group of network properties captured differences across seizure types after 408 
the onset, reflecting the network reconfigurations induced by distinct propagation mechanisms. 409 
Such features include the degree per node, assortativity, clustering coefficient, and characteristic 410 
path length (Fig. 5). To further highlight the utility of these features, we evaluated both groups of 411 
network measures at a single-seizure level in 3 seizures that had similar onset regions and were 412 
recorded from an individual patient (Fig.1 and Fig. S4). Importantly, network features associated 413 
with the two seizures (seizure 1 and 3) that remained localized within the left hemisphere 414 
exhibited similar temporal patterns which differed from that of the focal seizure with bilateral 415 
spread (seizure 2). These results further suggested that network measures could potentially be 416 
used to characterize distinct neural dynamics across different types of focal seizures, even on a 417 
single-seizure basis. 418 
 419 
 420 

 421 
 422 
Fig. 5 Summary of graph theoretical attributes probed across seizure types. The network 423 
features investigated can be categorized into 2 groups based on the temporal windows at which 424 
differential changes in these features emerge as a function of seizure propagation patterns. The 425 
time windows where such differences are observed are plotted separately for each of the network 426 
measures (resampled P < 0.05). Global features, i.e., the modularity, synchronizability, and 427 
spectral radius, primarily capture network alterations that occur prior to and shortly after seizure 428 
onset. In contrast, the degree per node, assortativity, clustering coefficient and characteristic path 429 
length characterize post-onset network reconfigurations induced by different types of propagation 430 
dynamics. 431 
 432 
Discussion 433 
The present study aimed to investigate if the emergence of heterogeneity in seizure propagation 434 
can be understood in terms of network-level changes within the brain before, during, and after the 435 
onset. To accomplish this, we evaluated the temporal evolution of a series of graph-theoretical 436 
attributes which quantify various aspects of network organization and information processing 437 
within complex systems such as the brain. We demonstrated distinct network-level signatures that 438 
predicted the extent of diffusion dynamics of an impending seizure as well as isolated 439 
architectural changes within the functional connectivity networks that emerged as the seizures 440 
terminated. These results advance our understanding of how heterogenous seizure dynamics can 441 
arise from similar onset regions. Furthermore, our findings offer exciting avenues where network 442 
features may be used to guide clinical diagnosis of seizure subtypes as well as effective 443 
intervention strategies to constrain the spread of seizures, thereby minimizing the neurological 444 
and cognitive impacts on patients. 445 
 446 
 447 
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Network alterations track temporal evolution of focal seizures 448 
The brain is an extraordinarily complex system where its microscopic activities constantly 449 
fluctuate. However, only the manifestation of such neural processes can be assessed at a 450 
macroscopic level through functional neuroimaging techniques. Consequently, features of the 451 
functional brain connectivity networks provide a means for characterizing and quantifying the 452 
manifestation of the underlying neural activities. Notably, these macroscopic representations as 453 
evaluated through the functional connectivity properties, such as the small-world architecture and 454 
modular network organization, remain relatively robust despite the fluctuations at the microscopic 455 
level. Here, we argue that sustained alterations in the underlying microscopic processes driven by 456 
environmental, cognitive, or pathological factors, lead to measurable changes in the observed 457 
macroscopic manifestations and consequently the functional connectivity features.  458 
 459 
Traditionally, seizures are thought to result from an imbalance between localized excitatory and 460 
inhibitory populations in the brain which induces initiation of spontaneous seizure activity (22, 461 
55). On the other hand, the network theory propose instead that seizures are products of aberrant 462 
activity in large-scale brain networks (3, 14, 22, 56). In line with this account, we demonstrate 463 
that dynamic reconfigurations within the functional connectivity networks during evolution of 464 
focal seizures give rise to the heterogeneity observed across seizures. While past work primarily 465 
evaluated network properties of epileptic brain by averaging the signals in large discrete time 466 
windows, we assess the continuous temporal evolution of network connectivity in combination 467 
with resampling statistical tests. This analytical framework enables us to characterize the temporal 468 
dynamics of network alterations that underlie the emerging dynamics of seizure activity in an 469 
objective and rigorous manner. By examining globally defined network features, we observe 470 
distinct macroscopic signatures which could predict the extent of diffusivity of seizure 471 
propagation minutes prior to the onset. Additionally, we further demonstrate that the 472 
heterogeneous dynamics exhibited across seizure types can be characterized by post-onset 473 
changes in relatively simplistic features of the functional connectivity networks such as the degree 474 
per node. We argue that our methodological approach provides an objective framework not only 475 
for better understanding the neural dynamics underlying evolution of seizures but also for 476 
determining whether and when a clinical intervention should be implemented to manage and 477 
control a spread of an impending seizure.  478 
 479 
Bilateral propagation of focal seizures reflects imbalance in global integration and 480 
segregation in the connectivity brain network 481 
We observed that modularity, synchronizability and spectral radius of focal seizures with bilateral 482 
spread underwent distinct changes as compared to focal seizures that remain focal and interictal 483 
activity. Notably, such differences emerged several minutes prior to seizure onset. In general, 484 
modularity, defined as the tendency of a network to separate into high within-connectivity 485 
modules, describes the brain’s ability to efficiently integrate information across task-relevant 486 
regions while segregating the information across the remaining regions. Likewise, 487 
synchronizability and spectral radius also describe global network properties and are specifically 488 
used to quantify the ease by with a network can synchronize its activity or processes. Preceding 489 
the onset, we reported increased modularity along with decreased synchronizability and spectral 490 
radius in focal to bilateral tonic-clonic seizures. Corresponding to a reduced tendency of 491 
synchronization and integration within the brain, these observed patterns of the global network 492 
properties preceding seizures with greater network diffusion are seemingly counter-intuitive. In 493 
light of classical accounts on the mechanistic underpinnings of seizures, we argue that our 494 
findings could reflect the chemical or dynamic imbalance within the underlying networks (22, 495 
57). Specifically, due to the microscopic imbalance in excitation and inhibition or the bistability 496 
of localized neural dynamics, a neural state can emerge where the connectivity network possesses 497 
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significantly low integration or compactness, which in turn results in sustained high modularity 498 
along with low synchronizability and spectral radius. To regain a more balanced state, it is likely 499 
that mechanisms enhancing the connectivity between segregated networks emerge, leading to an 500 
over-compensation which results in more unconstrained seizure dynamics. While this is a mere 501 
speculation at this point, future studies investigating large-scale non-invasive neuroimaging of 502 
epilepsy patients could seek validation and/or refinement to this hypothesis. Notably, we found 503 
that such signatures, i.e., increased modularity as well as decreased synchronizability and spectral 504 
radius, re-emerged shortly after seizure onset and then disappeared (Fig. 4). It is, therefore, 505 
possible that these features capture the manifestations of the regulatory mechanisms that control 506 
and prevent the reemergence of seizures. Further support of this conjecture comes from the fact 507 
that the modularity of functional connectivity networks also shows an increase in case of focal 508 
seizures that remain focal, shortly after seizure onset, when compared to inter-ictal activity (Fig. 509 
S3 C), suggesting its link to seizure termination and control mechanisms.  510 
 511 
Increased small-world connectivity induced by the bilateral spread of seizure dynamics  512 
Given its ability to optimize network communication and serve both distributed and specialized 513 
information processing, a small-world configuration has been an attractive model for the 514 
anatomical and functional structures of the brain (35, 58). In the context of epilepsy, theoretical 515 
and empirical work has proposed that the hypersynchronous activity associated with seizures 516 
could result from the functional brain networks adopting a configuration that exhibits increased 517 
small-world properties (6, 32, 35). We observed an increase in the clustering coefficient and a 518 
decrease in the characteristic path length, indicating increased small-world connectivity, 519 
following the onset of focal seizures regardless of their propagation mechanisms. Given that the 520 
small-world properties capture a balance between the segregation and integration of information 521 
within a network, we further hypothesized that the extent of alterations in these measures over 522 
time could link to the behavioral and cognitive effects associated with the occurrence of seizures 523 
with highly diffused propagation patterns. 524 
 525 
Consistent with the post-onset increase in the small-world connectivity, we showed that the 526 
seizure-type dependent changes in the network degree per node and assortativity emerged several 527 
minutes after seizure termination where focal seizures with bilateral spread display higher degree 528 
per node and lower assortativity relative to focal seizures with constrained dynamics. This 529 
reduction in the network resilience of focal to bilateral tonic-clonic seizures, as evident by lower 530 
assortativity, suggests that bilateral diffusion of seizure activity induced reconfigurations within 531 
the functional brain networks that lead to more severe cognitive and behavioral effects observed 532 
after termination of focal seizures with unconstrained dynamics. Our findings are also in line with 533 
previous reports of decreased assortativity in patients with Alzheimer’s disease (6, 42), and 534 
provide early evidence supporting the utility of the assortativity coefficient along with the small-535 
world measures and degree per node in assessing changes in cognitive statuses (46).  536 
 537 
Clinical implications  538 
The heterogeneity of epilepsy is a key confound to disease understanding and development of 539 
effective treatments. Here, we demonstrate graph-theoretical features as novel biomarkers that 540 
link differential reconfigurations of the functional connectivity networks to the heterogeneity in 541 
the emerging seizure dynamics. Specifically, our investigations of the global network dynamics 542 
suggest that interventions aiming to contain the spread of seizure activity may wish to situate the 543 
brain in a topological state where the modularity is lowered, while the synchronizability and 544 
spectral radius are increased. In addition, we also show that the information regarding the 545 
propagation patterns of seizures can be decoded through the seizure-type dependent changes in 546 
the network properties several minutes before seizure onset allowing sufficient time for an 547 
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intervention to be implemented. Together, these findings have important clinical implications as 548 
monitoring for these early signatures could increase the likelihood of a successful preventative 549 
treatment. Furthermore, our results reveal an important link between local network connectivity 550 
measures and differential clinical manifestations that are induced by focal seizures with 551 
constrained and unconstrained propagation dynamics. Specifically, we demonstrate that the more 552 
extensive cognitive and behavioral effects observed after patients undergo focal to bilateral tonic-553 
clonic seizures is associated with the sustained post-onset reconfigurations in the locally defined 554 
connectivity features of the underlying networks. These features could also serve as a means to 555 
evaluate the effectiveness of an intervention. Future studies that wish to characterize cognitive 556 
and behavioral changes induced by neurological disorders may also benefit from evaluating these 557 
network properties in relation to performance of patients on various test battery (6, 59). Such 558 
analyses could uncover distinct underlying pathophysiological processes that give rise to diverse 559 
cognitive and behavioral impairments across disease subtypes and across individuals, thereby 560 
improving understanding of the disease heterogeneity (60–63). Critically, such discoveries could 561 
guide development of precise and successful clinical interventions that are tailored to diverse 562 
neurological conditions. Finally, our single-seizure analyses suggest that network measures could 563 
potentially be used to characterize distinct neural dynamics across different types of seizures, 564 
even on a single-seizure basis. Such findings provide foundation for future investigation and 565 
development of effective personalized seizure treatment. 566 
  567 
Methodological considerations 568 
Given that the electrode placement was determined on a patient-to-patient basis by a neurologist 569 
for the purpose of identification of seizure onset zones, the data extracted from these electrodes 570 
inevitably provide an incomplete picture of the brain network due to the resulting partial 571 
coverage. In addition, the reported lack of differences between focal seizures that remain focal 572 
and interictal activity could be partially due to such spatial sampling of the recorded signals. To 573 
address this possibility, future studies may benefit from non-invasive recordings where whole-574 
brain dynamics can be simultaneously evaluated. Further, our analyses treated multiple seizures 575 
and interictal activity segments from the same patients as independent, and primarily disregarded 576 
individual variability in seizure heterogeneity at the patient-level. This analytical choice was 577 
made based on traditional methods (e.g., see (20)), and careful statistical comparisons were 578 
implemented to identify the seizure-type dependent alteration patterns in the functional 579 
connectivity networks of seizures. To further extend our findings and improve the specificity of 580 
the interpretations, future studies may wish to incorporate patient-level factor in their analytical 581 
frameworks.  582 
 583 
Conclusions 584 
In summary, by using a graph theoretical approach, we determined the extent to which distinct 585 
emerging dynamics of seizure networks were accounted for by temporal reconfigurations of the 586 
underlying functional connectivity. Specifically, we investigated the time-varying changes in 587 
network properties associated with focal seizures with constrained and unconstrained propagation 588 
patterns. We observed that the network modularity, synchronizability, and spectral radius 589 
preceding seizures onset differed between seizures of different propagation dynamics. In addition, 590 
the small world measures, degree per node, and assortativity after seizure onset differed as a 591 
function of the propagation patterns post seizure onset such that the seizure type dependent 592 
differences in these measures reflect the more severe impairments often observed after 593 
termination of seizures with bilateral spread. Collectively, our results illustrated a series of 594 
network metrics that can be utilized as quantitative biomarkers to distinguish between focal 595 
seizures of distinct dynamics on the basis of their propagation patterns as well as the differential 596 
extent of cognitive and behavioral effects accompanying the seizures. These results suggested that 597 
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the networks of focal seizures with unconstrained dynamics undergo early network alterations 598 
triggering processes which facilitate the bilateral diffusion of seizure activity. The propagation-599 
type dependent alterations in these metrics were observed again shortly after the onset, suggesting 600 
that these measures could also induce regulatory mechanisms necessary for the termination of 601 
seizures. Importantly, such findings of network attributes that are unique to seizures of different 602 
dynamics several minutes preceding the onset has important clinical implications as tracking 603 
fluctuations of these metrics in a time-resolved manner could inform clinicians if an impending 604 
focal seizure will diffuse bilaterally. Together, our findings provide objective means to gain better 605 
insight into the mechanisms by which seizure dynamics are regulated within the brain and provide 606 
exciting avenues where graph theoretical measures could be used to guide personalized clinical 607 
interventions. 608 
 609 
Materials and Methods 610 
Patient information and data acquisition 611 
The seizures analyzed in this study were recorded from 14 patients with medication-refractory 612 
epilepsy (Table 1) who underwent a clinical monitoring procedure to locate their seizure onset 613 
zone. Clinical electrode implantation, positioning, duration of recordings, and medication 614 
schedules were based solely on clinical need as determined by an independent team of clinicians. 615 
As indicated in Table 1, seizures analyzed in this study are of two types: 1) seizures that originate 616 
from and remain within localized (focal) regions in one hemisphere of the brain (i.e., focal 617 
seizures that remain focal); and 2) seizures that originate from focal onset regions in one 618 
hemisphere and diffuse bilaterally during the propagation period (i.e., focal to bilateral tonic-619 
clonic seizures or focal seizures with bilateral spread). Patients were implanted with intracranial 620 
subdural grids, strips, and depth electrodes for several days in a specialized hospital setting and 621 
continuous multichannel electrocorticography (ECoG) data were recorded at a sampling rate of 622 
500 Hz.  623 

Only seizures with an obvious ictal onset were selected for analysis. Experienced epileptologists, 624 
blind to this study, identified the seizure onset regions, seizure types, and onset time through 625 
inspection of the ECoG recordings, referral to the clinical report, and clinical manifestations 626 
recorded on video. A total of 67 seizures (49 focal seizures that remain focal and 18 focal to 627 
bilateral tonic-clonic seizures) were analyzed. We note that, multiple seizures from the same 628 
patients were treated as independent (see similar methods in (20)). All patients were enrolled after 629 
informed consent was obtained and approval was granted by local Institutional Review Boards 630 
(IRB) at Massachusetts General Hospital (MGH) according to National Institutes of Health (NIH) 631 
guidelines. 632 

Data preprocessing 633 
For each of these seizures, we considered ECoG data of the duration of 15 minutes before and 10 634 
minutes after the seizure onset. Each of these 25-min data segments only contained one seizure. 635 
For comparison with relatively ‘seizure-free’ activity, we extracted an equal number of interictal 636 
activity windows with the same duration. Interictal windows were selected from ECoG recordings 637 
at least an hour away from an onset and offset of any seizure. The data were band-pass filtered 638 
between 1 to 70 Hz, and notch filtered at 60 Hz to exclude potential powerline interference. A 639 
common reference was used for data analysis and the reference electrode in each case was located 640 
far from the area of recording making the introduction of spurious correlation or elimination of 641 
actual correlation between cortical regions unlikely (64). 642 

 643 
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Functional connectivity networks 644 
To evaluate functional connectivity representations associated with the temporal evolution of 645 
seizures, we employed complex network analysis. Originated from the mathematical study of 646 
networks known as graph theory, such analytical framework represents a real-world complex 647 
system as a network that is composed of a collection of nodes with edges connecting different 648 
node pairs. Here, we constructed functional brain connectivity networks where edges represented 649 
cross correlations between pairs of recording electrodes over time. 650 
 651 
Specifically, we computed symmetric functional connectivity Cij between two regions of the brain 652 
i and j as an averaged correlation of the neural signals recorded by the intracranial electrode 653 
contacts of those regions. To extract (at least approximately) the stationary aspects of ECoG data, 654 
we divided each of the 25-min ECoG data segments into consecutive 1-s windows, where each 655 
window overlapped the previous window by 0.5 seconds (56, 65). The correlation was calculated 656 
within each of these 1-s segments. To account for noise, we applied a temporal smoothing to 657 
these correlation values by averaging consecutive 30 seconds windows such that a total of 98 658 
correlation values representing the functional connectivity of 98 temporal windows were 659 
generated from each 25-min ECoG data segment. Note that different temporal smoothing 660 
parameters can be use without affecting the overall patterns of results, although a value too large 661 
may reduce the temporal precision of the observations (Fig. S1). 662 
 663 
All correlation values were bounded between −1 and +1. Negative correlation values implying 664 
long range inhibitions were then set to zero, as within our modelling framework and in line with 665 
previous studies (19, 66), we do not consider the contribution of long range direct inhibitory 666 
connections to the simulation of the epileptogenic effect. Temporal evolution of these correlations 667 
or adjacency matrices reflects the time-varying connectivity dynamics of the functional brain 668 
network from which the ECoG data were recorded. 669 
 670 
Graph theoretical network analysis  671 
For each seizure, we constructed a series of weighted, symmetric (undirected) adjacency matrices 672 
(connectivity matrices) C representing functional connectivity networks across all recording 673 
electrodes. From these networks, we computed a series of graph theorical network measures 674 
(described below) as a function of seizure types to quantify changes in network dynamics 675 
associated with evolution of focal seizures with constrained (focal seizure that remain focal) and 676 
unconstrained propagation mechanisms (focal to bilateral tonic-clonic seizures). We used the 677 
various Brain Connectivity Toolbox functions implemented in MATLAB (R2020; MathWorks) 678 
for our computation of these network features unless noted otherwise.  679 
 680 
Assessing small-world architecture 681 
In general, a network can range from completely regular where each node connects to its nearest 682 
neighbors to fully random where node pairs are connected randomly with some probability (52, 683 
67–69). Within this spectrum lies a small-world architecture which is characterized by a 684 
combination of dense local clustering of connections between neighboring nodes (like regular 685 
networks) and a short path length between distant node pairs due to the existence of relatively few 686 
long-range connections (like random networks) (1, 2, 6, 34). This architectural scheme is known 687 
to facilitate both specialized and distributed information processing in a cost-effective manner, 688 
and thus has been an attractive model for the functional organization of a healthy brain network. 689 
Mathematically, small-world architecture is characterized by high clustering coefficient and low 690 
Characteristic path length as compared to a random network.  691 
 692 
 693 
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Clustering coefficient 694 
Clustering coefficient is a measure of local connectedness of a network and has been used to 695 
describe the segregation of information in brain networks. The clustering coefficient is calculated 696 
as the ratio between the number of triangles present around a node and the maximum number of 697 
triangles that could possibly be formed around that node (16, 70). For a given node X and any 698 
other two nodes Y and Z within the network, a triangle around X represents a scenario where X, 699 
Y, and Z all have a connectivity value of 1 with one another. We used the Brain Connectivity 700 
Toolbox function clustering_coef_wu for the calculation of clustering coefficient.  701 
 702 
Characteristic path length 703 
Characteristic path length describes the averaged minimum distance between all pairs of nodes in 704 
a network and has been shown to associate with the integration of information within the brain 705 
network. The minimum path length between a pair of network nodes represents the shortest route 706 
between them through a combination of network edges. We calculated characteristic path length 707 
using the Brain Connectivity Toolbox function charpath (37).  708 
In the context of epilepsy research, it has been suggested that increased small-world architecture, 709 
i.e., increase in clustering coefficient and decrease in characteristic path length, could facilitate 710 
synchronization of seizure activity from the onset zones to other parts of the brain (32, 35, 36) and 711 
therefore, we considered small-word configuration as an important network attribute to 712 
differentiate the dynamics of different seizure subtypes.  713 
 714 
Degree per node 715 
Degree of a node represents the total sum of edge weights connected to a node in the network. To 716 
compare seizures across individuals who had different number of implanted electrodes, we 717 
computed the average degree per node which represents on an average, the total sum of edge 718 
weights connected to a node in the network. A high average degree per node indicates a large 719 
number of connections and this measure represents the ‘wiring cost’ of the network. A network 720 
with high degree per node is well positioned to optimize integration of information and increase 721 
the efficiency of network communication (31, 34). 722 
 723 

For a given node i, the degree is defined as where, C represents the connectivity matrix. 724 

Then, degree per node is calculated as where, N represents the total number of 725 

nodes in the network.  726 
 727 
Assortativity 728 
Assortativity measures the propensity of nodes to connect to others with similar degree and is 729 
calculated as a correlation coefficient between the degrees of all the nodes (39). A positive 730 
assortativity value indicates that nodes tend to link to other nodes with similar degree, whereas a 731 
negative value indicates connected nodes with dissimilar degree. Networks with high assortativity 732 
tend to make a highly connected core of network hubs. Functional brain networks have been 733 
shown to display such architecture with highly connected hub regions or core surrounded by low-734 
connectivity peripheral nodes. Assortativity quantifies network robustness as a removal or failure 735 
of a single high-degree node would induce greater impact on communication efficiency of a 736 
network with low assortativity than on a network with high assortativity. By examining the 737 
measure of assortativity across seizure subtypes, we could evaluate whether there existed a 738 
relationship between different propagation mechanisms and the extent of network resilience. We 739 
calculated assortativity using the Brain Connectivity Toolbox function assortativity_wei (37).  740 
Modularity 741 
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Modularity describes the extent to which a graph can be divided into clearly separated 742 
communities (i.e., subgraphs or modules). Each module contains several interconnected nodes, 743 
and there are relatively few connections between nodes of different modules. In the context of 744 
brain networks, modularity has been used to describe and quantify efficient integration and 745 
segregation of information across distributed sets of brain regions as a function of cognitive task 746 
demands (5, 71). We used the Brain Connectivity Toolbox function modularity_und to compute 747 
modularity of functional brain networks (48, 72).  748 
 749 
Synchronizability 750 
Synchronizability relates to the viability of synchronized dynamics within a network. Particularly 751 
in the context of epilepsy, relatively larger value of synchronizability has been associated with 752 
greater ease for neural populations to synchronize their dynamics (11). Synchronizability (S) is 753 
calculated as the ratio of the second smallest and the largest eigenvalue of the Laplacian matrix 754 
(L), which is computed as the difference between the diagonal matrix of node strength (total 755 
degree) and the adjacency matrix such that L = D – C. Thus, synchronizability estimates the 756 

spread of the eigenvalues of the network Laplacian and is computed as where  and 757 

  denote the second smallest and the largest eigenvalue of L, respectively. 758 

 759 
Spectral radius 760 
Spectral radius is a global measure of network structure that is related to the spread of 761 
synchronization in a network (10, 53, 73). Computed as the largest eigenvalue of the connectivity 762 
matrix (C), spectral radius reflects the critical coupling strength required to synchronize the 763 
system (74). As such, spectral radius represents the principal component of the system and 764 
contains information about structural characteristics as well as dynamical behavior and stability of 765 
the underlying network (75–77). In the network based models of brain dynamics, spectral radius 766 
has been associated with the ease with which the system can be transitioned into an excited state 767 
(10).  768 
 769 
Statistical analysis 770 
To compare the computed network measures as a function of seizure types in a time-resolved 771 
manner and to assess significant differences, we performed a bootstrapping procedure and 772 
established 95% confidence intervals for each corresponding measure. For each of the 773 
bootstrapping iterations, we performed resampling with replacement at the level of individual 774 
seizures and computed averages for comparison of interest (e.g., the clustering coefficient of focal 775 
seizures that remain focal vs. the clustering coefficient of focal to tonic-clonic seizures). We 776 
performed 10,000 bootstrapping iterations in order to achieve the confidence intervals reported 777 
(CIs) for each comparison. Note that this approach constrains the resolution of P values to a lower 778 
limit of P £ 0.0001. We generated permuted null distributions of each complex network measure 779 
for each individual seizure and each time point. For tests comparing a bootstrapped distribution 780 
against 0, P values were computed by conducting 2 one-tailed tests against 0 (e.g., 781 
mean[difference in clustering coefficients < 0] and mean[difference in clustering coefficients > 0] 782 
and doubling the smaller P value) 783 
 784 
 785 
 786 
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Table 1. Patient Profiles 1041 
Clinical characteristics of the patients. For each patient, we report sex, age at first reported 1042 
seizures onset, as well as age at the monitoring phase and surgery. We also report the seizure 1043 
etiology, which was clinically determined through medical history, imaging, and long-term 1044 
invasive monitoring. Additionally, we indicate the number of observed seizures associated with 1045 
the two different types of seizures which originated from one hemisphere: focal seizures that 1046 
remained localized within the same hemisphere (focal seizure; focal) and focal seizures that 1047 
propagate bilaterally to both hemispheres (focal to bilateral tonic-clonic seizure; focal to 1048 
bilateral). Surgical outcome (outcome) was based on Engel score: seizure freedom to no 1049 
improvement (I-V), and no follow-up (NF). Legend: M = male; F = female; MTS = Mesial 1050 
Temporal Sclerosis; n.a = not applicable. 1051 
 1052 
 1053 

Patient Sex Age at onset/ Etiology Seizure Type (#) Seizure Onset Resection Areas Outcome surgery Zone 
1 F 15/46 Dysplasia focal to bilateral (5) Anterior Right I 
     temporal anterior temporal  
2 F 42/55 n.a focal to bilateral (3) Temporal None I 
3 F 17/45 n.a focal (1); Temporal None n.a 
    focal to bilateral (2)    
4 M 8/23 n.a focal (10) Frontal None III 
5 M 14/35 n.a focal (9); Temporal Right n.a     

focal to bilateral (2) 
 

anterior temporal 
 

6 F 12/32 n.a focal (15) Temporal Right II       
anterior temporal 

 

7 F 7/23 n.a focal (6) Frontal Left frontal IV 
8 F 10/27 n.a focal (1) Unknown Left frontal IV 
9 F 8/19 MTS focal (1) Anterior Left III 
     temporal anterior temporal  
10 F 14/31 n.a focal to bilateral (2) Temporal Right I 
      anterior temporal  
11 F 1/21 Stroke focal (2) Temporal Left temporal IV 
12 F 9/42 n.a focal (2) Frontal None II 
13 M 39/47 n.a focal to bilateral (3) Posterior Right temporal I      

temporal 
  

14 F 50/59 n.a focal (2); Posterior Left temporal I 
    focal to bilateral (1) temporal 

  
 1054 
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