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ABSTRACT

Gadolinium is a key component of magnetic resonance imaging contrast agents that are critical
tools for enhanced detection and diagnosis of tissue and vascular abnormalities. Untargeted post-
injection deposition of gadolinium in vivo, and association with diseases like nephrogenic
systemic fibrosis, has alerted regulatory agencies to re-evaluate their widespread use and
generated calls for safer gadolinium-based contrast agents (GBCAS). Increasing anthropogenic
gadolinium in surface water has also raised concerns of potential bioaccumulation in plants and
animals. Methylotrophic bacteria can acquire, transport, store and use light lanthanides as part of
a cofactor complex with pyrrologuinoline quinone (PQQ), an essential component of XoxF-type
methanol dehydrogenases (MDHS), a critical enzyme for methylotrophic growth with methanol.
We report robust gadolinium-dependent methanol growth of a genetic variant of Methylorubrum
extorquens AM1, named evo-HLn, for “evolved for heavy lanthanides”. Genetic adaptation of
evo-HLn resulted in increased xox1 promoter and XoxF MDH activities, transport and storage of
Gd**, and augmented biosynthesis of PQQ. Gadolinium-grown cells exhibited a shorter T1
relaxation time compared to cells with lanthanum or no lanthanide when analyzed by MRI. In
addition, evo-HLn was able to grow on methanol using the GBCA Gd-DTPA as the sole
gadolinium source, showing the potential of this strain for the development of novel GBCAs and

gadolinium recovery from medical waste and/or wastewater.
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Gadolinium (Gd**; atomic number 64) is a versatile element that is widely used in various
modern industries (Ebrahimi and Barbieri 2019) but is perhaps best-known for its use as a
contrast agent for MRI. Its seven unpaired electrons give Gd** unparalleled paramagnetic
properties, making it the most effective agent for clinical application (Srivastava et al. 2015).
Gd** alone is highly toxic to humans (Le Fur and Caravan 2019) and is therefore injected as a
nine-coordinate ion chelated by an octadentate polyaminocarboxylate ligand with a water
coligand (Wahsner et al. 2019) known as GBCAs. The stability of GBCAs makes them highly
effective for intravenous delivery, and as a result they are used in an estimated 30 million MRI
exams annually (Lohrke et al. 2016), with around half a billion doses administered thus far
(McDonald et al. 2018). GBCAs are excreted in urine post-injection, however, they are not
innocuous. Over the past two decades, the development of nephrogenic systemic fibrosis (NSF)
has been observed in GBCA injection patients with impaired renal function, resulting in joint
pain, immobility and even death (Grobner 2006; Marckmann et al. 2006; Boyd, Zic, and
Abraham 2007; High et al. 2007). The last five years have generated rising alarm over the use of
GBCAs with long-term retention found in patients with normal kidney function (Kanda et al.
2014, 2015; McDonald et al. 2015; Roberts et al. 2016). Anaphylactic shock and kidney failure
have also been reported as possible outcomes of Gd** accumulation in tissues (Ergiin et al. 2006;
Hasdenteufel et al. 2008). Unmetabolized, excreted GBCAs are also cause for concern as rising
anthropogenic Gd** in surface water correlates with steadily increasing annual MRI exams
worldwide (Ebrahimi and Barbieri 2019). Due to the toxicity and rising concentrations of this
microcontaminant, the potential health impacts on aquatic life and bioaccumulation in the food-
chain deserve more attention, as do wastewater treatment strategies that are sufficient to remove

Gd**.
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Gadolinium is a member of the lanthanide series of elements, a group that has recently been
added as life metals. A broader understanding of the functions of lanthanides (Ln®*) in biology is
slowly unfurling with discoveries of novel enzymes, metabolic pathways, and organisms that are
dependent on these metals. Ln®* are known to form a cofactor complex with the prosthetic group
PQQ for some alcohol dehydrogenase enzymes (Keltjens et al. 2014). XoxF MDH from the
methylotrophic bacterium Methylorubrum (formerly Methylobacterium) extorquens AM1 was
the first reported Ln®"-dependent metallo-enzyme, and members of this diverse enzyme class are
wide-spread in marine, fresh water, phyllosphere, and soil habitats (Nakagawa et al. 2012;
Taubert et al. 2015; Huang, Yu, and Chistoserdova 2018; Chistoserdova 2016; Ochsner et al.
2019; Keltjens et al. 2014). ExaF ethanol dehydrogenase was the first reported Ln3*-dependent
enzyme with a preference for a multi-carbon substrate, and its discovery has led to the
identification of related enzymes in non-methylotrophic bacteria (Wehrmann et al. 2017; Wegner
et al. 2019). Ln®* are also known to influence metabolic pathways in methylotrophic and non-
methylotrophic bacteria (Good et al. 2019; Wehrmann et al. 2020). To date, all known Ln**-
dependent metallo-enzymes are from bacteria and coordinate the metal-PQQ complex for
catalytic function. However, the physiological importance of PQQ stretches well-beyond the
prokaryotes. Mammals, including humans (Killgore et al. 1989), and plants (Choi et al. 2008)
benefit from PQQ. Eukaryotes (Takeda et al. 2015; Matsumura et al. 2014) and archaea
(Sakuraba et al. 2010) produce PQQ-dependent enzymes, though there is still much to be
discovered regarding their activities and function. Nonetheless, the link between PQQ and Ln®*-
dependent metallo-enzymes suggests that the influence of Ln** in biological processes may

spread across all three Kingdoms of life.
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Evidence for the biological use of Ln®*" in bacteria was first reported as the stimulation of
methanol growth and expression of PQQ-MDH activity in bacterial cultures grown with
lanthanum (La®*; atomic number 57) or cerium (Ce®*, atomic number 58) (Hibi et al. 2011;
Fitriyanto et al. 2011). At the time, Ln®* were considered unavailable and unutilized for
biological processes due to their insolubility in nature, and it was proposed that though Ln*" are
more potent Lewis acids than calcium (Ca?*), evolution likely passed them by in favor of the
more bioavailable metal (Lim and Franklin 2004). PQQ-MDHs were typified by MxaFI, an a2
tetrameric enzyme that coordinates Ca?* in the large subunit of each protomer (Richardson and
Anthony 1992; Adachi et al. 1990). MDH is a critical enzyme for methylotrophic bacteria,
organisms that can oxidize reduced carbon compounds with no carbon-carbon bonds, such as
methane and methanol, and has been the subject of genetic, biochemical and chemical studies for
decades (Christopher Anthony and Williams 2003; Zhang, Reddy, and Bruice 2007; Zheng et al.
2001; Goodwin and Anthony 1996; Williams et al. 2005; M. Ghosh et al. 1995). Shortly after the
discovery of Ln®" dependence for XoxF MDH activity in M. extorquens AM1 (Nakagawa et al.
2012), the extremophile methanotroph Methylacidiphilum fumariolicum SolV was shown to rely
on Ln®*" in its volcanic mudpot environment for survival (Pol et al. 2014). Several subsequent
studies noted the role of Ln®" in regulating MDH expression (Farhan Ul Haque et al. 2015; Vu et
al. 2016; Chu and Lidstrom 2016), describing the “lanthanide-switch” phenomenon in which the
presence of light Ln®* up-regulates expression of xox genes and concomitantly down-regulates
expression of mxa genes. Global studies have suggested that Ln®*" may impact more than MDH
and accessory gene expression, including alterations to downstream metabolism (Gu et al. 2016;

Good et al. 2019; Masuda et al. 2018).
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Growth studies with mesophilic methylotrophs and the Ln®* series of metals have shown that
only members of the “light” classification, ranging from La®*" to Nd** (atomic number 60), can
support growth with XoxF MDH similar to Ca?* with MxaFI MDH (Daumann 2019). In
comparison, methanol growth with Sm3* is much slower and growth has not been reported for
Ln3* of higher atomic numbers, with a couple of exceptions (Vu et al. 2016; Huang, Yu, and
Chistoserdova 2018; Wang et al. 2019). M. fumariolicum SolV can grow with the light/heavy
lanthanide Eu®* well enough to produce cultures for enzyme purification (Jahn et al. 2018). This
organism was also reported to show slow growth with Gd**, but no studies have investigated this
further (Pol et al. 2014). M. fumariolicum SolV grows optimally in acidic conditions (pH 2-5)
making Ln** soluble for uptake and utilization, and as such does not have a known dedicated
transport system for these metals. In contrast, methylotrophs that grow at neutral pH have an
ABC transport system and specific TonB-dependent receptor encoded in a “lanthanide-utilization
and transport” gene cluster (Roszczenko-Jasinska et al. 2020; Ochsner et al. 2019). Of such
organisms known to date, only a genetically manipulated mutant strain of Methylotenera mobilis
JLWS has been reported to show indications of growth with Gd3* in the form of increased culture
density (Huang, Yu, and Chistoserdova 2018). Thus, the heavy lanthanide Gd*" is the highest
atomic number species known to support methanol growth in methylotrophic bacteria. Activity
of XoxF MDH decreases with increasing atomic radius for the light Ln3* (Jahn et al. 2018; Good
et al. 2019). While decreasing XoxF MDH activity correlates with reduced growth rates seen
with Ln®* of increasing atomic mass, it is still not known if this is due solely to decreased
enzyme catalysis or if transport of the metal ions plays a role as well. Regardless of the factor(s)
limiting growth, Gd®* seems to be the pivotal Ln®*" marking the threshold of life with these

metals.
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In this study we report the characterization of a M. extorquens AM1 genetic variant that is
capable of robust growth on methanol with the heavy lanthanide Gd**, a Ln®* that does not
support growth in the ancestral strain. We identified the variant as having a single non-
synonymous substitution in a putative hybrid histidine kinase/response regulator resulting in a
gain of function mutation. The gene encoding this putative regulatory system was recently
identified as important to ExaF ethanol dehydrogenase Ln metabolism in M. extorquens AM1
(Huong N. Vu, Gabriel A. Subuyuj, Ralph Valentine Crisostomo, Elizabeth Skovran 2021). Our
variant exhibited increased xox1 promoter and MDH activities, a distinctive bright pink
coloration corresponding to augmented PQQ production, and increased transport and storage of
gadolinium. Accumulation of gadolinium was sufficient to generate a significant reduction in T1
relaxation time when scanned by MRI. Finally, we show that the variant could grow efficiently
with the GBCA Gd-DTPA as the sole Ln®* source. These discoveries provide novel avenues for
bioremediation and Ln®* recycling. Elucidation of the mechanisms governing Ln** uptake,
storage, and usage will aid in the identification and development of genetically encoded and

peptide-based imaging agents.

RESULTS

Isolation of an M. extorquens AM1 mutant strain capable of gadolinium-dependent
methanol growth. The AmxaF mutant strain of M. extorquens AM1 can grow on methanol
when provided an exogenous source of light lanthanides ranging from La®>* to Sm**, but the
heavy lanthanide Gd®* had not been tested (Vu et al. 2016). We tested the ability of AmxaF to
grow on methanol with Gd®* as the sole Ln*" available. MP methanol minimal medium with

Gd** was inoculated with AmxaF and culture density was measured over time. No detectable
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increase in culture density was observed after 14 days of incubation at 30°C. However, after
another 7 days of incubation the culture density had increased ~2.3 fold, reaching a final ODsoo
of 0.35 + 0.03 (N = 4). Gd**-grown cells were transferred to fresh methanol minimal medium
with Gd** and grown to maximum culture density. This process was repeated twice.

To verify that the cultures were not contaminated, 5 ul. was plated onto solid minimal
succinate medium with 50 ug/mL rifamycin and incubated at 30°C (Figure S1B). Growth of pink
colonies indicated the cultures were M. extorquens AML1, as the strain used is rifamycin-resistant
(Nunn and Lidstrom 1986). Using colony PCR, we determined that cells recovered from the
Gd®**-grown cultures were negative for mxaF, as was the ancestral strain, and positive for fae
encoding formaldehyde-activating enzyme, another genetic marker specific for M. extorquens
AM1 (Figure S1A). Cells from these Gd**-grown cultures were washed four times with sterile
minimal medium to remove possible residual extracellular Gd**, resuspended in 1 mL sterile
medium, and saved as freezer stocks with 5% DMSO at -80°C.

The long incubation time of the original cultures prior to growth with Gd** suggested either
an extended period of metabolic acclimation or genomic adaptation. To discern between these
two possibilities, we tested methanol growth after first passaging the strain three times on solid
succinate medium and then inoculating into liquid succinate medium to generate pre-cultures.
Cells from the liquid culture were harvested, washed four times with sterile minimal medium,
and then inoculated into methanol medium with Gd®*. Growth was measured using a microplate
spectrophotometer (Fig. 1A). The variant strain exhibited growth within ~15 hours of
inoculation, a specific growth rate of 0.03 + 0.00 h™, and a maximum culture density 0.69 + 0.04.

The lack of the 3-week lag in growth, as we observed with the ancestral AmxaF inoculation, was
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indicative of genomic adaptation, rather than metabolic acclimation, being the underlying
mechanism for growth with Gd®*.

Genomic DNA was isolated from the variant, sequenced, and analyzed for mutations relative
to ancestral AmxaF strain. Three single nucleotide polymorphisms (SNPs) were identified in the
variant compared to AmxaF (Table S1). Only one of the three mutations was categorized as non-
synonymous: a T to A nucleotide transition, resulting in a leucine to histidine amino acid
substitution in a hybrid histidine kinase/response regulator (META1_1800). The mutation was
confirmed by Sanger sequencing analysis, and the variant strain was named evo-HLn for
“evolved for growth with heavy lanthanides”. To determine SNP conferred a gain-of-function
mutation, the mutant allele was cloned into an IPTG-inducible expression vector, which was then
transformed into the AmxaF AMETA1 1800 double knockout mutant strain. When expression of
the mutant allele was induced, we observed Gd**-dependent methanol growth (final OD = 0.5; N
= 4). No growth was observed for the uninduced control condition.

Increased PQQ biosynthesis. We observed that the cells of evo-HLn grown in methanol
minimal medium with Gd** had a distinctive, bright pink coloration, and that extracts prepared
from evo-HLn cells retained this increased pigmentation (Fig. 1B inset). When analyzed by UV-
visible spectrophotometry, evo-HLn extracts displayed a unique peak at 361 nm (Fig. 1B). A
peak around this wavelength is a signature of PQQ when bound to XoxF MDH or ExaF EtDH
(Good et al. 2016, 2019). To confirm PQQ was the cause of the absorption anomaly, we spiked it
into the evo-HLn extracts and observed an increase at the same wavelength. After normalizing
for protein concentrations, the absorbance spectra indicated PQQ in evo-HLn extracts was 4-fold

higher compared to wild type and 6-fold higher compared to AmxaF extracts.
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Increased xox1 promoter and MDH activities. Since XoxF MDH is closely linked with
Ln3*-dependent methanol growth, one plausible explanation for the expanded range of metals
used by evo-HLn was increased XoxF MDH activity. Reporter-fusion assays previously showed
that xox1 promoter activity was stimulated by light Ln®** ranging from La>" to neodymium
(atomic number 60), with only a minor increase above background activity with Sm®* (Vu et al.
2016). We measured xox1 promoter activity in evo-HLn with La®* and observed a 7-fold increase
compared to AmxaF and an 11-fold increase compared to wild type (Fig. 2A). Next, we
measured xox1 promoter activity with Gd** from evo-HLn and observed a similar increase.
Further, we did not detect xox1 promoter activity in wild type with Gd** (Fig. 2A), showing that
although the wild type grows with methanol in the presence of Gd** (Fig. S2), the regulatory
switch from MxaFI MDH to XoxF MDH oxidation systems does not occur. This could be
indicative of either the wild type being unable to transport Gd** or Gd** not functioning as a
signal for the “lanthanide switch” in this strain. Regardless, it can be concluded that wild type
grows on methanol using MxaFl MDH, the Ca?*/PQQ-dependent oxidation system, when Gd®* is
present in the medium.

Next, we measured MDH activity in cell-free extracts of AmxaF and evo-HLn prepared from
cultures grown with methanol and either La®* or Gd**. When grown with La®*, MDH activity in
evo-HLn extracts was ~3-fold higher than in AmxaF extracts (Fig. 2B), verifying increased
production of XoxF enzyme. Ln*" species do not function equally well as part of the XoxF MDH
cofactor complex, along with PQQ, and the enzyme active site is finely tuned for light Ln** (Jahn
et al. 2018; Daumann 2019). Therefore, a reduction in XoxF MDH function could be expected
with Gd®* in the active site. MDH activity was detectable in extracts of evo-HLn grown with

Gd** corresponding to 68% of the activity measured in extracts of AmxaF with La®* (Fig. 2B).
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evo-HLn grows well with Gd®*, and increased production of XoxF MDH is likely a major
contributor to this metabolic capability. Increased xox1 promoter and MDH activities of evo-HLn
are suggestive of possible increases in Ln®* transport and intracellular accumulation.

Enhanced Lanthanide accumulation in evo-HLnN. Using inductively-coupled plasma mass
spectroscopy (ICP-MS), we determined the Ln®" metal content of cells grown with methanol and
a single Ln* element species. Uptake and storage of Gd®* by evo-HLn was a striking ~5 mg/g
CDW. Wild type Gd®* content was ~36-fold less, but it was measurable (Fig. 3A). Transport and
storage of Gd** by the wild type was somewhat surprising as the strain does not grow on
methanol if it is the only Ln3* provided to the growth medium. The opposite trend, though much
less pronounced, was observed when measuring accumulation of La®* with evo-HLn
accumulating ~3-fold less than the wild type. Comparing uptake and storage of each Ln®*" within
the same strain, we observed that evo-HLn accumulated ~82-fold more Gd** than La®". The wild
type, on the other hand, accumulated ~43% more La3* than Gd3*. These data suggested that the
wild type prefers uptake and storage of light Ln®*, such as La®**, over heavy Ln*'. In contrast,
increased Gd** accumulation seen for evo-HLn suggested that it may have evolved a preference
for heavy Ln®'. To test this possibility, we next compared Ln®* accumulation when the strains
were provided equal concentrations of both La®>* and Gd®* in the growth medium. Wild type
accumulated equal amounts of La** and Gd** (Fig. 3B). Total Ln®* content was ~1.7-fold the
amount of La®>" and ~2-fold the amount of Gd** that was stored when only the single Ln®**
species was provided (Fig. 3AB). Accumulation of the individual Ln3* species by evo-HLn was
also equal when both were provided, but the overall levels were ~3-fold less than what was
observed for the wild type (Fig. 3B). Total Ln*" content was ~1.5-fold that of La®* alone for evo-

HLn, but ~63-fold less than the amount of Gd®** alone (Fig. 3AB). These data suggest that light
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Ln3* may impact the capacity for evo-HLn to acquire and store heavy Ln®*" and may be an
indication of a second transport system for the latter.

Gd3 accumulation in evo-HLn shortens MRI T1 relaxation time in whole cells. Since
evo-HLn was able to transport and accumulate increased levels of Gd®*, we tested if the
paramagnetic metal could affect MRI contrast. When we scanned whole cells by MRI, we
observed a statistically significant reduction in T1 relaxation time for cells grown with Gd**
compared to cells grown with La** or without Ln®* (Fig. 3C). evo-HLn cells cultured with Gd®*
displayed a 3-fold decrease in T1 relaxation time when compared to wild type cultured without
Ln3*. The T1 relaxation time of wild type cells with Gd** was 17% less than cells without Ln®".
In contrast, intracellular accumulation of La®* by cells had very little impact on T1 relaxation
times (Fig. 3C). When evo-HLn and AmxaF cells were grown with both Gd®** and La%*, T1
relaxation times were shortened by ~10% compared to the no Ln** treatment. These data show
that MRI is sensitive enough to detect Gd** accumulation in M. extorquens AM1 and that evo-
HLn cells can accumulate Gd** to intracellular concentrations that are high enough to produce
robust MRI contrast.

Efficient acquisition of Gd®* from the GBCA Gd-DTPA. Finally, the capacity of the evo-
HLn strain to acquire Gd®* from the chelator diethylenetriamine pentaacetate (DTPA) was
demonstrated (Fig. 4). Despite the high stability of the Gd-DTPA complex (log Kinerm 22, log
Keond 17; (Tweedle et al. 1991; Wedeking, Kumar, and Tweedle 1992)), evo-HLn was able to
grow readily with no reduction growth rate compared to growth with soluble GdClz (Gd-DTPA,
0.04 h't £ 0.00; GdCI3, 0.03 h't +0.00; n = 3). This result indicates that evo-HLn has a highly
effective means of sequestering Gd** from DTPA, thus demonstrating a potential importance as a

key player in Gd** recycling and pollution remediation.
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DISCUSSION

It is common practice to inject patients with GBCAs before MRI to enhance scan
effectiveness by shortening the T1 relaxation of the target. Chelate composition and
complexation can significantly affect both T1 relaxation and the stability of GBCA complexes
(Caravan 2006). Moreover, Gd*" is conjugated to proteins for applications such as blood pool
agents, which can be done chemically (Caravan 2006) via avidin-biotin (Dafni et al. 2002; Gilad
et al. 2005) and genetically, via lanthanide binding tags (Xue et al. 2015). Alternatively, Gd**
GBCAs are used as substrates for genetically encoded reporters (Nystrom et al. 2019). Therefore,
identifying novel peptides and proteins that effectively chelate Gd* will aid in the development
of next-generation GBCAs. We show that the genetic variant of M. extorquens AM1, evo-HLn,
has acquired the ability to transport and accumulate Gd** such that a significant contrast can be
observed by MRI. These results indicate evo-HLn produces proteins and/or peptides for these
physiological processes that efficiently bind free Gd®*. M. extorquens AM1 produces several
Ln3*-binding molecules for uptake and utilization encoded in the lut gene cluster (Roszczenko-
Jasinska et al. 2020). Several lines of evidence also support the existence of excreted molecules
for extracellular Ln3* acquisition, called lanthanophores (Ochsner et al. 2019; Roszczenko-
Jasinska et al. 2020; Daumann 2019). It is likely that evo-HLn uses some or all this uptake and
utilization machinery to grow with Gd**, but the Ln®" accumulation data reported here suggests
there may be alternative or additional machinery for uptake of heavy Ln®*". Though the wild type
can transport and accumulate Gd®* intracellularly, it is not sufficient to function as a signal for
the switch from MxaFI MDH to XoxF MDH. These observations are suggestive of additional

components, including regulatory elements, being utilized or co-opted for Gd** acquisition,
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uptake, transport and/or utilization in evo-HLn. Identification of these additional
peptides/proteins may provide new candidate chelators or scaffolds for protein engineering of
more bio-safe chelates.

Although Gd** is considered safe when properly chelated, the thermodynamic and kinetic
stabilities of GBCAs differ depending on the chemical structure (Sherry, Caravan, and Lenkinski
2009). Deposition of Gd** correlates with detrimental health effects in humans, but long-term
environmental studies investigating ecotoxicological effects and bioaccumulation have yet to be
pursued (Ebrahimi and Barbieri 2019; Thomsen 2017). We show that evo-HLn grows readily on
methanol with Gd-DTPA as the sole Ln3* source, revealing that M. extorquens AM1 must
produce molecular machinery capable of sequestering Ln®* from Gd-complexes. It’s been
speculated that the Ln**-binding peptide lanmodulin may be important for transport of light Ln3*
(Cotruvo et al. 2018), but it has been shown that a null mutation in the gene encoding this
peptide does not impact La%*-dependent methanol growth in M. extorquens PA1 (Ochsner et al.
2019), a closely-related strain, nor was the gene hit in a mutant hunt to detect essential genes for
La3*-dependent methanol oxidation in M. extorquens AM1 (Roszczenko-Jasinska et al. 2020).
Further studies are needed to define if lanmodulin is necessary for Gd®* transport or if an
alternative system is necessary for this process. In addition, we provide evidence that evo-HLn
transports and stores more Gd®* than wild type does La®** or Gd**. The capability for growth with
GBCAs and increased uptake and storage of Gd** make evo-HLn an excellent candidate for the
development of a microbial platform for recovery of Gd** from wastewater and possibly even
medical waste.

The implications of evo-HLn on our understanding of Ln**-biochemistry are extensive. First,

evo-HLn is the first genetic variant reported to be adapted for growth with heavy Ln®**. Our
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results indicate wild type is unable to efficiently transport Gd®*, raising the question of exactly
how evo-HLn has adapted to efficiently acquire, transport and use the heavy Ln®* (Fig. 5).
Regarding acquisition, it is possible that evo-HLn produces a modified lanthanophore or a novel
Ln3*-chelating molecule. We showed that evo-HLn, when grown with the heavy lanthanide
Gd**, produces higher levels of PQQ. This is striking as PQQ biosynthesis genes have been
reported to be down-regulated with the light lanthanide La** (Good et al. 2019). This is
supported by the drop of absorbance at 360 nm seen in the AmxaF extracts compared to the wild
type. PQQ, already shown to bind Ln®* in solution (Lumpe and Daumann 2019), may therefore
be critical for binding heavy Ln3* and/or could serve as a signal molecule for their uptake.
Increased xox1 promoter and XoxF1 MDH activities reflect regulatory changes necessary for
methanol growth with Gd®*. However, this regulatory change appears to be insensitive to light
versus heavy Ln®* distinction, as shown by augmented XoxF1 activity with La%*. In addition,
increased Ln®" transport suggests disruption of the tightly controlled regulatory mechanisms
governing uptake (Roszczenko-Jasinska et al. 2020). The details of the molecular process and
regulation of storage are still unknown, but increased Ln%* accumulation in evo-HLn provides an
excellent comparator to wild type and ancestral strains to investigate these questions in depth.
Together, the observations reported here indicate changes in numerous physiological
processes in evo-HLn allowing for growth with heavy Ln®*. RNA-sequencing of evo-HLn
growth with Gd®*, which is already underway, will give invaluable insight into the regulatory
change(s) underlying these physiological alterations. Unraveling the links between genetic
adaptation(s) and physiological changes will further illuminate our understanding of Ln** as life
metals as well as aid in the development of microbial technologies for Gd** bioremediation and

contrast agents.

15


https://paperpile.com/c/kkO8JA/0px5N
https://paperpile.com/c/kkO8JA/8u05Q
https://paperpile.com/c/kkO8JA/SL0GA
https://doi.org/10.1101/2021.06.12.448192
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448192; this version posted June 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

MATERIALS AND METHODS

Strains and culture conditions. M. extorquens AM1 strains were routinely grown at 30°C
MP minimal medium (Delaney et al. 2013) with 15 mM succinate, shaking at 200 rpm on an
Innova 2300 platform shaker (Eppendorf, Hamburg, Germany). For growth studies, 50 mM
methanol was used as the sole carbon and energy source. Lanthanides were added as chloride
salts or gadopentetic acid (Gd-DTPA; Magnevist®) to a working concentration of 2 or 20 uM as
indicated. When necessary, 50 pg/mL kanamycin was added to the growth medium for plasmid
maintenance. Strains and plasmids used in this study are listed in Table S1 of the supplementary
material.

Plasmid construction. The METAL 1800 mutant allele was synthesized as a blunt-end 5’-
phosphrylated 1436 bp gBlock (IDT, Coralville, IA, USA) with the modified lac promoter
PL/O4/A1 (Carrillo et al. 2019) upstream. The gBlock was ligated into pCM66T digested with
Ecl13611 (Thermo Fisher Scientific, Waltham, MA, USA) to generate pNG327.

Strain construction. M. extorquens AML1 strains were transformed by electroporation
(Toyama, Anthony, and Lidstrom 2006). After 24 hours of outgrowth, transformants were
selected by plating on MP medium with 1.5% agar, 15 mM succinate and 50 pg/mL kanamycin
or 20 pg/mL tetracycline. Transformants were incubated at 30 °C until isolated colonies
appeared.

Methanol growth analysis with light and heavy lanthanides. M. extorquens AML1 strains
were grown with succinate overnight, cells were pelleted by centrifugation at 1,000 x g for 10
min at room temperature using a Sorvall Legend X1R centrifuge (Thermo Scientific, Waltham,

MA, USA), and washed in 1 mL of sterile MP medium with methanol. For growth analysis in

16


https://paperpile.com/c/kkO8JA/mbq6q
https://paperpile.com/c/kkO8JA/as9O8
https://paperpile.com/c/kkO8JA/JytL3
https://doi.org/10.1101/2021.06.12.448192
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.12.448192; this version posted June 12, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

microplates, washed cells were resuspended in 200 uL. of MP methanol medium and 10 puL were
transferred to each microplate well with 640 uL. MP methanol medium. For growth studies with
Gd-DTPA, 50 pL of inoculum was added to 3 mL MP methanol medium in sterile 14 mL
polypropylene culture tubes (Fisher Scientific, Hampton, NH, USA). Culture densities were
monitored over time by measuring light scatter at 600 nm using either a Synergy HTX multi-
mode plate reader (Biotek, Winooski, VT, USA) or an Ultraspec 10 density meter (Biochom,
Holliston, MA, USA).

UV-visible spectrophotometry. To prepare cell-free extracts, 50 mL of methanol grown
culture with Gd** or La®" was harvested, upon reaching an ODgoo of ~1.1-1.3, by centrifugation
at 4,696 x g for 10 minutes at 4 °C. The supernatant was removed and cell pellets were
resuspended in 1.5 mL of 25 mM Tris, pH 8.0 and lysed using an OS Cell Disrupter at 25,000 psi
(Constant Systems Limited, Low March, Daventry, Northants, United Kingdom). Lysates were
transferred to 1.5 mL eppendorf tubes and clarified of cell debris by centrifugation at 21,000 x g
for 10 minutes at 4 °C. Cell-free extracts were transferred to new eppendorf tubes and kept on ice
until needed. PQQ was prepared fresh to a working concentration of 5.3 mM in an opaque
conical tube and kept on ice until needed. Absorbance spectra were measured from 250-600 nm
with a Synergy HTX multi-mode plate reader. A blank buffer spectrum was subtracted as
background. Protein concentrations were determined by absorbance at 280 nm and the
bicinchoninic acid assay (ThermoFisher Scientific, Waltham, MA, USA).

Genomic DNA extraction and sequencing. The AmxaF and evo-HLn mutant strains were
grown in shake flasks with 50 mL MP with succinate to ODegoo ~ 1.0. Genomic DNA was
extracted according to the “Bacterial genomic DNA isolation using CTAB” protocol (Joint

Genome Institute, Walnut Creek, CA, USA). Samples were submitted to Genewiz (South
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Plainfield, NJ, USA) for whole genome sequencing using the Illumina HiSeq platform with 2 x
150 bp read length. Variant calling and analysis was performed by Genewiz.

Transcriptional reporter fusion assays. Strains carrying VENUS yfp fusion constructs
were grown on methanol in 48-well microplate format. Upon reaching a culture density of ODsoo
~0.35, 200 pL of culture were transferred to an optical bottom black 96-well plate. Fluorescence
was measured at an excitation wavelength of 485 nm and an emission wavelength of 520 nm.
Relative fluorescence units (RFU) were calculated as raw fluorescence (Fs2o0 nm) divided by
ODsoo.

Methanol dehydrogenase activity assays. Cell extracts were prepared as described above,
but with an additional wash step in 20 mL of 100 mM Tris-HCI, pH 9.0 before lysing. Protein
concentrations of cell-free extracts were determined by BCA assay. Methanol dehydrogenase
activity was measured by monitoring the phenazine methosulfate (PMS)-mediated reduction of
2,6-dichlorophenol indophenol (DCPIP; gs00nm = 21 mM™ cm™ (Good et al. 2016, 2019, 2020))
as described (C. Anthony and Zatman 1967; R. Ghosh and Quayle 1979; Vu et al. 2016; Good et
al. 2020). To reduce background activity, all assay reagents were dissolved in water; PES and
DCPIP solutions were prepared in opaque tubes and kept on ice; and cell-free extracts were pre-
incubated for 2 minutes at 30 °C as recommended (Jahn et al. 2020).

Whole-cell MRI. Wild type and evo-HLn mutant strains were grown in 50 mL methanol
medium to maximal culture density (ODsoo ~3). No REE was added to the medium for the wild-
type strain. Either Gd®*, La®* or both (2 uM each) was added to the medium for evo-HLn. Cells
were harvested by centrifugation at 4,696 x g for 10 minutes at room temperature. The
supernatant was removed, cells were washed two times by resuspension with 50 mL of 25 mM

Tris, pH 7.0, and centrifugation at 4,696 x g for 10 minutes at room temperature. After washing,
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1/10 of the cell pellets were resuspended in 500 puL of 25 mM Tris, pH7.0. MRI data was
acquired using a 7.0 T horizontal MRI (Bruker) equipped with a multi-channel receive array and
volumetric transmit coil ensemble. T1 maps were generated via Paravision 360, with 10 TRs
ranging from 400-17500, TE = 6.89, MTX = 128/128, FOV = 32cm?, ST = 1mm and AVG = 3.
Intracellular Ln** quantification. After whole-cell MRI analysis, cell pellets were
dehydrated at 65 °C for 72 hours. Dried pellets were weighed before deconstruction in Aqua
regia diluted in 2% nitric acid and sonicated for 0.5 h before passing through 0.45 um Whatman
syringe filters. Samples were sent to the Laboratory for Environmental Analysis (Center of

Applied Isotope Studies, University of Georgia) for ICP-MS analysis.
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TABLES

TABLE 1 Growth rates and yields of strains grown in minimal
medium with methanol Ln®*. Culture density was monitored for

up to 96 hours.

strain

wild type

wild type

wild type

AmxaF

AmxaF

AmxaF

evo-HLn

evo-HLn

evo-HLn

Ln3* source¢

none

LaCls

GdCls

none

LaCls

GdCls

none

LaCls

GdCls

growth rate®

0.15+0.01

0.15+0.01

0.14 +0.00

n.d.

0.14+0.01

n.d.

n.d.

0.11+0.01

0.03 +0.00

growth yield®

0.72+0.13

0.78 +0.14

0.77+0.14

0.90 +£0.04

0.93+0.13

0.69 + 0.04

€ Ln3* were provided in the growth medium at 2 uM

% Values represent the averages of 10 biological replicates from 3

independent experiments except where indicated. Error bars are

standard errors of the mean (SEM). n.d. is not determined. - is no

growth.
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FIGURE LEGENDS

FIG 1 Growth of M. extorquens AM1 evo-HLn with heavy Ln®*. A, AmxaF (squares) and evo-
HLn (triangles) strains were grown in methanol minimal medium with either no Ln®* (black), 2
uM Gd** (pink) or 2 uM La®* (blue). Not all data points are visible for strains and conditions
with no growth. B, UV-visible spectrum of cell extracts of wild type grown without Ln®* (black),
evo-HLn with 2 pM Gd** (pink), and AmxaF with 2 uM La*" (blue). Absorbance at 360 nm
increases in the evo-HLn extract with the addition of 130 uM PQQ (red). Cells extracts were
prepared in 25 mM Tris, pH 8.0. Inset shows visual color differences among strains and
conditions. Spectra represent the average of 3 separate replicates with extracts containing 5.3-5.6

mg/mL protein. Inset top, cell suspension; inset bottom, cell extract.

FIG 2 evo-HLn exhibits higher xox1 promoter and Ln**-dependent MDH activities with both
light and heavy Ln®*. A, wild type, AmxaF and evo-HLn carrying a xox1 promoter-yfp reporter
fusion construct were grown with methanol and either no Ln** (black), La®* (blue), or Gd**
(pink) to an OD of ~0.4 at 600 nm and promoter readout was measured as fluorescence. Box and

whisker plot shows the interquartile range of RFU determined for 9-12 biological replicates from
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3 independent experiments. Whiskers show the minimum and maximum values. Median values
marked by a bold line, and the mean as an X. For each strain and growth condition, readout from
the promoter-less construct was subtracted as background fluorescence. B, MDH activity
measured from cell extracts of AmxaF and evo-HLn grown in methanol medium with either La®*
(blue), or Gd** (pink). MDH activity was determined using the DCPIP dye-linked assay
according to Anthony and Zatman with previously reported modifications (25, 67). For both
panels A and B, *** is significant at p < 0.001 and * at p < 0.05 by One-Way ANOVA and

Tukey’s Honestly Significant Difference (HSD) test.

FIG 3 Ln*" accumulation during methanol growth. A, Intracellular Ln®* content in evo-HLn and
wild type grown on methanol minimal medium with 2 uM GdClz 2 uM LaCls or no lanthanides
(Ln) as indicated. Gd** (pink) and La®* (blue) contents are normalized to cell dry weight (CDW)
for each growth condition. Box plots show interquartile range (boxes), median (line), and
standard deviation (bars) for three biological replicates, each quantified three times by ICP-MS.
B, Intracellular Ln* concentrations in the ancestral AmxaF mutant (open boxes) and evo-HLn
(shaded boxes) when cells were grown with 2 uM GdCls and 2 uM LaCls. Plots represent data
processed the same way as in A. C, MRI T1 relaxation time measurements of whole cells grown
with Ln®*. Top shows digital scan with T1 times color coded. Bottom shows T1 relaxation times
of cells grown with La®>* (blue), Gd** (pink), or both (black). Boxes represent the upper and
lower quartiles of three independent biological replicate samples. Median lines and standard
deviations (bars) are shown. ** is significant at p value < 0.01 and *** is significant at p value <
0.00001 by One-Way ANOVA and Tukey’s HSD test. ns is not statistically significant at p <

0.05. For A, B, and C: wt, wild type; evo, evo-HLn; anc, AmxaF.
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FIG 4 Methanol growth of evo-HLn with the GBCA Gd-DTPA. Density of evo-HLn cultures is
shown as triangles. Ln* sources are denoted by color. Pink, 2 uM GdCls; orange, 2 uM Gd-
DTPA,; open symbols, no Ln; blue, 2 uM LaCls. The ancestral strain, AmxaF (squares), grown
with 2 uM La®*" is included for comparison. Data points represent the average of 6 biological

replicates from 2 independent experiments with error bars showing standard deviations.

FIG 5 Physiological implications of genetic adaptation for growth with heavy Ln®*" in evo-HLn.
Crosses indicate a change in activity or function relative to the ancestral AmxaF strain: white,
novel; black, increased. Exogenous Gd** (pink triangles) is acquired by excreted metal-chelating
molecules, called lanthanophores (yellow notched circles). Uptake of Gd** may involve an
alternative lanthanophore (green notched circle). Increased Ln®" transport suggests possible
disruption of the tight regulation of lut gene expression (gene products shown in orange, TonB-
dependent receptor, ABC transport periplasmic, membrane, and cytoplasmic components) or
upregulation of an alternative transport system for heavy Ln. Augmented Gd** storage is denoted
as the pink checked oval. Increased xoxF1 expression and XoxF1 MDH activity is shown in
blue. PQQ biosynthesis is also elevated. Gray dashed arrow represents a possible role in
signalling or metal chelation for PQQ (red rings). Gray question marks signify that the details of
the state of Ln®* in the periplasm for transport to the cytoplasm, whether free or complexed with

a lanthanophore, are not yet resolved. OM, outer membrane; IM, cytoplasmic membrane.
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