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Abstract: Musculoskeletal dysfunction is an age-related syndrome associated with impaired
mitochondrial function and proteostasis. However, few interventions have tested targeting two
drivers of musculoskeletal decline. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a
transcription factor that stimulates transcription of cytoprotective genes and improves
mitochondrial function. We hypothesized daily treatment with a Nrf2 activator in Hartley guinea
pigs, a model of age-related musculoskeletal dysfunction, attenuates the progression of skeletal
muscle mitochondrial dysfunction and impaired proteostasis, preserving musculoskeletal
function. We treated 2-month- and 5-month-old male and female Hartley guinea pigs for 3 and
10 months, respectively, with the phytochemical Nrf2 activator PB125 (Nrf2a). Longitudinal
assessments of voluntary mobility were measured using Any-Maze™ open-field enclosure
monitoring. Cumulative skeletal muscle protein synthesis rates were measured using deuterium
oxide over the final 30 days of treatment. Mitochondrial oxygen consumption in permeabilized
soleus muscles was measured using ex vivo high resolution respirometry. In both sexes, Nrf2a
1) increased electron transfer system capacity; 2) attenuated the disease/age-related decline in
coupled and uncoupled mitochondrial respiration; and 3) attenuated declines in protein
synthesis in the myofibrillar, mitochondrial, and cytosolic subfractions of the soleus. These
improvements were not associated with statistically significant prolonged maintenance of
voluntary mobility in guinea pigs. Collectively, these results demonstrate that treatment with an
oral Nrf2 activator contributes to maintenance of skeletal muscle mitochondrial function and
proteostasis in a pre-clinical model of musculoskeletal decline. Further investigation is
necessary to determine if these improvements are also accompanied by slowed progression of

other aspects of musculoskeletal decline.
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Introduction

Targeting the age-related processes that underpin chronic diseases to promote “healthy
longevity” or extend the healthspan (Kaeberlein et al., 2015) is essential to decrease both
healthcare (Atella et al., 2019) and financial (Goldman et al., 2013) burdens imposed by an
increasingly aged population. Moreover, preserving health at later ages would allow for
individuals to maintain a greater quality of life. There is a growing list of interventions (Bakula et
al., 2019) that target the hallmarks (Lopez-Otin et al., 2013) and pillars (Kennedy et al., 2014) of
aging. Thus, evaluating these interventions in translational pre-clinical models represents an
essential next-step in developing therapeutics for the human population.

The musculoskeletal system is comprised of bones, joints, cartilage, tendon, and
skeletal muscle, all of which are physically and biochemically connected (Bonewald et al., 2013;
DiGirolamo et al., 2013). Age-related decline in musculoskeletal function contributes to the
health burden associated with aging (Goates et al., 2019). Musculoskeletal dysfunction imparts
a loss of mobility and independence (Roux et al., 2005) and leads to frailty (Walston et al.,
2006). It also exacerbates comorbidities including cardiometabolic disease (Baskin et al., 2015),
cancer (Williams et al., 2018), and cognitive decline (Ogawa et al., 2018); and increases
mortality (Garcia-Hermoso et al., 2018). There are no established therapeutics to slow
musculoskeletal decline (Yoshimura et al., 2017). Accordingly, the NIH identified a critical need
(PAR-15-190) to “accelerate the pace of development of novel therapeutics... for preventing
and treating key health issues affecting the elderly.”

The lack of effective therapeutics for musculoskeletal disorders is partially attributable to
the insidious nature of musculoskeletal decline in humans, as well as the absence of animal
models that recapitulate the multifactorial processes that drive musculoskeletal decline. The
Hartley guinea pig is an outbred guinea pig that develops primary (also considered spontaneous
or idiopathic) osteoarthritis (OA) starting at 4 months of age that closely resembles the onset
and disease progression in humans (Jimenez et al., 1997). By nine months of age, these guinea
pigs have diminished mobility. At 18 months of age, the severity of OA renders the guinea pigs
up to 50% less mobile (Santangelo et al., 2014). Similar to humans with OA (Kemmler et al.,
2015; Noehren et al., 2018), skeletal muscle fiber size and density decrease and type | fibers
increase by 15 months in these guinea pigs (Tonge et al., 2013; Musci et al., 2020), which in
turn worsens the disease and contributes to disability in humans (Lee et al., 2016). Thus, the
Hartley guinea pig represents a potential model to study musculoskeletal deficiencies

associated with osteoarthritis, an age-related chronic disease that affects over 30 million US
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93  adults (United States Bone and Joint Initiative, 2020), in a compressed amount of time (i.e. 5 to
94 15 months of age).
95 The musculoskeletal system is particularly susceptible to age-related declines in cellular
96 function and increases in damage because it is slow to turnover relative to tissues such as liver
97 (Drake et al., 2013). Skeletal muscle is post mitotic and turnover of both bone tissue and
98 cartilage is also slow (Vaananen, 1993; Hall, 2012; Relaix et al., 2021). Thus, targeting the
99 hallmarks of aging is likely particularly useful in counteracting age-related musculoskeletal
100 dysfunction. For example, targeting mitochondrial dysfunction likely ameliorates not just
101 impaired ATP production but also other, interconnected hallmarks of aging, such as impaired
102  proteostasis (protein homeostasis) (Musci et al., 2018). Impaired mitochondrial function is
103  associated with, and precedes, impairments in proteostasis and decrements in skeletal muscle
104  function (Gaffney et al., 2018; Gonzalez-Freire et al., 2018). Inversely, improvements in
105 proteostatic mechanisms regulating mitochondrial proteome integrity would improve
106  mitochondrial function (Hamilton & Miller, 2017), which would in turn alleviate the energetic
107  constraints that impair adequate cellular function. This cyclical and interconnected relationship
108 highlights the potential efficacy of targeting one hallmark of aging.
109 Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates
110 hundreds of genes involved in adaptation to stress, including those involved in redox
111  homeostasis, mitochondrial energetics, and proteome maintenance (Gao et al., 2020). Nrf2
112  activation leads to the transcription of genes with the antioxidant response element in the
113 promoter regions, including antioxidant genes such as SOD-1, NQO1, and HO-1 (Kobayashi &
114  Yamamoto, 2006), has anti-inflammatory effects (Ahmed et al., 2017), and has a role in
115 regulating mitochondrial biogenesis (Piantadosi et al., 2008). Transient Nrf2 activation through
116  phytochemical supplementation (Donovan et al., 2012; Reuland et al., 2013; Kubo et al., 2017;
117  Hybertson et al., 2019) is a potential therapeutic intervention that could mitigate age-related
118 chronic diseases (Houghton et al., 2016). Transiently activating Nrf2 targets several
119 interconnected drivers of aging including macromolecular damage, disrupted redox homeostasis
120 (Reuland et al., 2013; Fang et al., 2017), inflammation (Kobayashi et al., 2016), and impaired
121  proteostasis (Konopka et al., 2017). In the NIH-NIA Interventions Testing Program (ITP),
122 treatment with the phytochemical Nrf2 activator Protandim extended median lifespan of male
123 mice (Strong et al., 2016).
124 Given the positive effects of Nrf2 activator (Nrf2a) treatment, we sought to identify the

125 effects of months-long Nrf2 activator treatment in the Hartley guinea pig. We hypothesized
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126  Nrf2a treatment would improve skeletal muscle mitochondrial function and mechanisms of

127  proteostasis and attenuate musculoskeletal declines in both male and female guinea pigs.

128 Methods

129  Husbandry

130 All procedures were approved by the Colorado State University Institutional Animal Care
131 and Use Committee and were performed in accordance with the NIH Guide for the Care and
132  Use of Laboratory Animals. Dunkin-Hartley guinea pigs were obtained from Charles River

133 Laboratories (Wilmington, MA, USA) at 1- and 4- months of age (mo) for each treatment

134  regimen such that there were 14 male and female guinea pigs in each age and treatment group
135  (total n =112) (Figure 1). As mentioned, Hartley guinea pigs begin developing knee OA at 4 mo
136 and have severe OA and skeletal muscle and joint phenotypes consistent with aged human

137 musculoskeletal systems by 15 mo (Jimenez et al., 1997; Tonge et al., 2013; Santangelo et al.,
138  2014; Musci et al., 2020). Accordingly, we chose these ages to determine if Nrf2a could prevent
139  the onset (short term treatment from 2 to 5 mo) or mitigate the progression (long term treatment
140 from 5 to 15 mo) of musculoskeletal dysfunction (Jimenez et al., 1997; Santangelo et al., 2014)
141  and skeletal muscle decline (Musci et al., 2020) (Figure 1). It is important to note that because
142  knee OA was progressing as these animals age, we cannot discern the effect of age from

143  disease progression or vice-versa. Thus, for any documented effect of age, we must also

144  acknowledge that the effect could be attributed to disease progression.

145 Animals were maintained at Colorado State University’s Laboratory Animal Resources
146  housing facilities and were monitored daily by veterinary staff. All guinea pigs were singly-

147  housed in solid bottom cages, maintained on a 12-12 hour light-dark cycle, and provided ad
148 libitum access to food and water. Two control females, two Nrf2a females, one control male,
149  and two Nrf2a males required humane euthanasia prior to final analysis due to underlying

150 issues unrelated to treatment (final n = 105). Gross necropsy findings by veterinarians did not
151 raise significant concern as the cause of death in these cases were consistent with what would
152  be expected in conventionally raised guinea pigs.

153 Measurement of PB125 in OraSweet and in Guinea Pig Plasma using High Performance Liquid
154  Chromatography- Mass Spectrometry (HPLC/MS )

155 PB125 (Pathways Bioscience, Aurora, CO) is a phytochemical compound comprised of
156  rosemary, ashwagandha, and luteolin powders which contain the three active ingredients

157  carnosol (CRN), withaferin A (WFA), and luteolin (LUT) at a mixed ratio of 15:5:2 by mass,

158 respectively (Hybertson et al., 2019). Prior to treatment initiation, plasma levels of each activate

159 ingredient were measured 15, 30, 45, 60, 90, and 120 min post dosing at concentrations of 8,
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160 24, and 48 mg/ml (Supplemental Figures 1A — 1C), which corresponds with a dosage of 250,
161 750, and 1250 PPM. Compound stability in OraSweet was assessed both at room temperature
162 and 4 °C. Reference standards of LUT and WFA were purchased from Sigma Aldrich (St. Louis,
163  MO). CRN was purchased from Cayman Chemical (Ann Arbor, MI). All other reagents were
164  purchased from Thermo Fisher Scientific (Waltham, MA). HPLC grade methanol was used for
165 preparation of all solutions. Samples were analyzed at the Nathan Shock Core Analytical

166  Pharmacology Core at the University of Texas Health Medical School.

167 The liquid chromatography tandem mass spectrometry (LC/MS/MS) system consisted of
168 a Shimadzu SIL 20A HT autosampler, LC-20AD pumps (2), and an AB Sciex API 4000 tandem
169 mass spectrometer with turbo ion spray. The LC analytical column was an ACE C8 (50 x 3.0
170  mm, 3 micron) purchased from Mac-Mod Analytical (Chaddsford, PA). Mobile phase A

171  contained 0.1% formic acid dissolved in water. Mobile phase B contained 0.1% formic acid
172  dissolved in 100% HPLC grade acetonitrile. The LC Gradient was: 0 to 2 min, 25% B; 2 to 6
173  min, linear gradient to 99% B; 6 to 10 min, 99% B; 10 to 10.01 min, 99% to 25% B min; 10.1 to
174 12 min, 25%B. LUT and CRN were detected in negative mode using these transitions: 285 to
175 132.9 m/z and 329 to 285 m/z, respectively. WFA was detected in positive mode at the

176  transition of 471 to 281 m/z.

177 LUT, CRN, and WFA stock solutions were prepared in methanol at a concentration of 1
178 mg/ml and stored in aliquots at -80 °C. Working stock solutions of each drug were prepared
179  each day from the super stock solutions at a concentration of 100 pg/ml, 10 ug/ml, and 1 pg/ml
180  which were used to spike the calibrators.

181 Dosages of PB125 in OraSweet were diluted 1000x in 70% ethanol. Calibrator samples
182  were prepared daily by spiking blank OraSweet to achieve final concentrations of 0, 30.4, 152,
183 760, and 2280 pg/ml. The calibrators were then diluted 1000x in 70% ethanol. The samples
184  were transferred to injection vials and 10 pl was injected into the system. Each drug was

185 quantified by comparing the peak area ratios for each dosage sample against a linear

186 regression of calibrator peak area ratios. The concentration of each drug was reported as pug/ml.
187 Because we prepared weekly allotments of PB125 in Orasweet, we verified the stability of

188  PB125 suspended in OraSweet stored in 4°C for one week (Supplemental Figure 1D).

189 LUT, CRN, and WFA were also quantified in guinea pig plasma. The transitions used
190 were the same as the OraSweet dilutions. Calibrator samples were prepared daily by spiking
191 blank plasma to achieve final concentrations of 0, 5, 10, 25, 50, 100, 500, 1000, and 5000

192  ng/ml. Calibrators were left to sit for 5 min after spiking. Briefly, 0.1 mL of calibrator and

193  unknown plasma samples were mixed with 1.0 ml of chilled ethanol, vortexed vigorously, and
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then centrifuged at 17,000 g for 5 min at 25 °C. The supernatants were transferred to 1.5 ml
microcentrifuge tubes and dried to residue under a nitrogen stream. The residues were then
redissolved in 60 pL of 50/50 mobile phase A/mobile phase B and were centrifuged 5 min at
17,000 g. The samples were transferred to injection vials and 15 uL was injected into the
LC/MS/MS. Each drug was quantified by comparing the peak area ratios for each unknown
sample against a linear regression of calibrator peak area ratios. The concentration of LUT,
CRN, and WFA were expressed as ng/mL plasma (Supplemental Figure 1A — C).
Treatment, euthanasia, and tissue acquisition

Based on the analysis conducted at the NSC Analytical Pharmacology Core
(Supplemental Figure 1A — C), we selected a dosage of 8 mg/kg of bodyweight, which
corresponds to 250 PPM, about 2.5x the dose of PB125 mice in the NIA ITP receive
(https://lwww.nia.nih.gov/research/dab/interventions-testing-program-itp/compounds-testing).
This dose was adequate to stimulate Nrf2 activation based on an increase in Nrf2 protein
content in the gastrocnemius in a subset of both male and female guinea pigs (Supplemental
Figure 1E). Nrf2 contains an antioxidant response element (ARE) promoter region, which
activated Nrf2 proteins bind to upon activation and translocation into the nucleus. Because we
were interested in long term effects of Nrf2 treatment (Miller et al., 2016), we measured protein
concentration instead of mMRNA transcript concentration of a downstream Nrf2 target.
Additionally, the last dose of the Nrf2 activator was 24 h prior to harvest, which precludes from
measuring transcriptional responses to the PB125 treatment. After a one-month acclimation to
housing conditions, male and female guinea pigs in each age group (2 or 5 months) were
randomized to receive a daily oral dose of 8.0 mg/kg bodyweight of PB125 (Nrf2a) suspended in
OraSweet (Perrigo, Dublin, Ireland) or an equivalent volume of OraSweet only (CON). Following
established protocol, guinea pigs were given a subcutaneous injection of 0.9% saline enriched
with 99% deuterium (*H.0) equivalent to 3% of their body weight 30 days prior to euthanasia
(Musci et al., 2020). Drinking water was enriched to 8% 2H,O for the purpose of maintaining
2H,0 enrichment of the body water pool during the 30-day labelling period. At the time of
harvest, the guinea pigs were 5 mo (after 3 months of treatment) or 15 mo (after 10 months of
treatment of age). In accordance with the standards of the American Veterinary Medical
Association, animals were anesthetized with a mixture of isoflurane and oxygen; thoracic
cavities were opened and blood was collected via direct cardiac puncture. Whole blood was
centrifuged (1200 g, 4 °C, 15 min) to separate plasma, which was frozen at -80 °C until further
analysis. After blood collection, the anesthetized animals were transferred a chamber filled with

carbon dioxide for euthanasia.
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228 Upon euthanasia, the right leg of the guinea pig was promptly removed for the excision
229  of the soleus muscle. A portion of the right soleus muscle (~40 mg) was harvested and placed
230 in BIOPS preservation buffer (2.77 mM CaK2-EGTA, 7.23 mM K2-EGTA, 20 mM imidazole, 20
231  mM taurine, 50 mM K-MES, 0.5 mM dithiothreitol, 6.56 mM MgClI2, 5.77 mM ATP, and 15 mM
232 phosphocreatine, adjusted to pH 7.1) containing 12.5 uM blebbistatin to inhibit muscle

233 contraction (Pesta & Gnaiger, 2011). The rest (~70 mg) of the soleus was frozen in liquid

234 nitrogen and used for other analyses. After excision of the soleus, at least 70 mg of the right
235  gastrocnhemius was collected and frozen immediately in liquid nitrogen. Both soleus and

236  gastrocnemius muscles were trimmed of tendons and connective tissue and weighed. Bone
237  marrow was also harvested in saline from the humeri.

238  Mitochondrial respirometry

239 After the soleus was placed in BIOPS, the muscle fibers were prepared for high

240  resolution respirometry as follows. Mechanical permeabilization occurred on ice using forceps to
241  separate the fibers. After mechanical permeabilization, fibers underwent chemical

242  permeabilization for 30 min in BIOPS with 12.5 uM blebbistatin and 50 pg/mL saponin, followed
243 by a 15 minrinse in BIOPS. Approximately 2.0 mg (wet weight) of muscle fibers were placed in
244 mitochondrial respiration medium (MiR05, 0.5 mM EGTA, 3 mM MgCI.6H-0, 20 mM Taurine, 15
245 mM NazPhosphocreatine, 20 mM Imidazole, 0.5 mM Dithiothreitol, and 50 mM K* -MES at pH
246  7.1) in an Oxygraph-2k (O2K) (Oroboros, Innsbruck, Austria) for high resolution respirometry.
247  To control for oxygen flux at higher concentrations of oxygen, each morning of respirometry
248  analysis, we conducted high oxygen concentration calibrations at 450, 350, 250, and 167 (i.e.,
249  concentration of room air) nmol/ml O, (Pesta & Gnaiger, 2011). During the experiments, oxygen
250 concentrations were maintained between 225 — 450 nmol/ml O,. High resolution respirometry
251 measurements were performed in duplicate using two different protocols. Please refer to

252  Supplemental Table 1 for a detailed explanation of the protocols.

253 The first protocol (SUIT 1) was an ADP titration protocol to determine ADP sensitivity
254  (Km) and maximal oxidative capacity (Vmax) under Complex | supported respiration. We

255 measured Complex | supported leak respiration (State 2pcmy) With the addition of 10 mM

256  glutamate, 0.5 mM malate, and 5 mM pyruvate. Upon acquisition of State 2pcm;, We titrated

257  progressively greater concentrations of ADP from 0.1 mM, 0.175 mM, 0.25 mM, 1 mM, 2 mM, 4
258 mM, 8 mM, 12 mM, 20 mM, to 24 mM (State 3ppcm)), awaiting steady-state oxygen flux prior to
259  adding the subsequent titration to determine Complex | linked ADP Vmax and apparent Km (i.e.
260  ADP sensitivity). After the ADP titration was completed, we added 5 mM cytochrome C to test
261  mitochondrial membrane integrity. After cytochrome C addition, we added 10 mM succinate to
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262  acquire maximal Complex | and Il supported coupled respiration (State 3jpem +5)). We then

263 added 0.5 pM FCCP sequentially until there was no increase in respiration to determine the
264  capacity of the electron transport system to consume oxygen, or maximal uncoupled respiration
265  (ETSicrcv). Finally, we added 5 uM rotenone to measure maximal uncoupled respiration with
266  the inhibition of Complex | (ETSici-civy), followed by 2.5 uM Antimycin A to measure residual
267  oxygen consumption (ROX).

268 The second protocol (SUIT 2) measured oxygen consumption while simultaneously

269 measuring ROS production by using the fluorometer attachment of the O2K (Robinson et al.,
270  2019) and addition of 10 uM Amplex Red, 1 U/ml horseradish peroxidase, and 5 U/ml

271  superoxide dismutase. We then measured fatty acid supported leak respiration by adding 10
272 mM glutamate, 0.5 mM malate, 5 mM pyruvate, and 0.2 mM octanoylcarnitine (State 2{pem + ocy)
273  and 10 mM succinate (State 2jpem + oct + 57). After stimulating maximal leak respiration, we added
274  submaximal boluses of ADP (0.5 mM: (State 3jsub +0.507) and 1 mM: State 3sub + 1.007), followed by
275  asaturating bolus of ADP (6.0 mM: State 3sus +6.00)). We added 5 mM cytochrome C to test
276  mitochondrial membrane integrity. We set a cytochrome C control factor threshold of 0.25. We
277  set this threshold based on the presence of a negative linear relationship between the

278  cytochrome C control factor and State 3 respiration in the SUIT 2 protocol. Upon eliminating
279  respirometry trials that had a cytochrome C control factor of greater than 0.25, the negative

280 linear relationship no longer existed and all samples included in analysis were not biased by
281  over-permeabilization, which is what the cytochrome C control factor approximates (Pesta &
282  Gnaiger, 2011) (Supplemental Figure 4 A - C). We then added 5 uM rotenone to determine

283  maximal coupled respiration in the absence of Complex | (State 3jsu + b - cij) followed by

284  sequential titrations of 0.5 pM FCCP until respiration no longer increased to determine maximal
285  fatty acid supported uncoupled respiration (ETSisub +p-cij). and added 2.5 pM antimycin A to
286 measure ROX. The respiratory control ratio (RCR: State 3/State 2), which is an index of

287  mitochondrial efficiency was also evaluated.

288  Protein isolation and fractionation

289 The gastrocnemius and soleus muscles were homogenized and fractionated following
290 established laboratory protocols (Drake et al., 2013; Miller et al., 2013; Groennebaek et al.,

291  2018; Sieljacks et al., 2019; Musci et al., 2020). Briefly, tissues (20 — 50 mg) were homogenized
292  at1:10inisolation buffer (100 mM KCI, 40 mM Tris HCI, 10 mM Tris Base, 5 mM MgCI2, 1 mM
293 EDTA, 1 mM ATP, pH - 7.5) with phosphatase and protease inhibitors (HALT Thermo Scientific,
294 Rockford, IL, USA) using a tissue homogenizer (Bullet Blender, Next Advance Inc., Averill Park,
295 NY, USA) with zirconium beads (Next Advance Inc., Averill Park, NY, USA). After
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296  homogenization, subcellular fractions were isolated via differential centrifugation as previously
297  described (Musci et al., 2020). Once fractionated pellets were isolated and purified, 250 pl 1 M
298 NaOH was added and pellets were incubated for 15 min at 50 °C and 900 RPM.

299  DNA extraction

300 Approximately 100 ng/uL of total DNA was extracted from 20 mg tissue (QIAMP DNA
301 mini kit Qiagen, Valencia, CA, USA). DNA from bone marrow was extracted from the bone

302 marrow suspension and centrifuged for 10 min at 2000 g, yielding approximately 100 ng/uL.
303 Sample preparation and analysis via GC/MS: Proteins

304 Protein subfractions were hydrolyzed in 6 M HCI for 24 hours at 120 °C after which the
305 hydrolysates were ion-exchanged, dried in vacuo, and then resuspended in 1 mL of molecular
306 biology grade H,O. Half of the suspension was derivatized with 500 pL acetonitrile, 50 uL 1 M
307 Ky;HPO4, and 20 pl of pentafluorobenzyl bromide and incubated at 100 °C for 60 min.

308 Derivatives were extracted into ethyl acetate and the organic layer was transferred into vials
309 which were then dried under nitrogen. Samples were reconstituted in ethyl acetate (200 pL —
310 700 pL).

311 The derivative of alanine was analyzed on an Agilent 7890A GC coupled to an Agilent
312 5977A MS as previously described (Robinson et al., 2011; Drake et al., 2013; Miller et al., 2013;
313 Groennebaek et al., 2018; Miller et al., 2019; Sieljacks et al., 2019; Musci et al., 2020). The
314  newly synthesized fraction (f) of proteins was calculated from the true precursor enrichment (p)
315 based upon plasma analyzed for 2H,O enrichment and adjusted using mass isotopomer

316  distribution analysis (Busch et al., 2005). Protein synthesis of each subfraction was calculated
317 as the fraction of deuterium-labeled over unlabeled alanine proteins over the entire labeling
318 period (30 days) and expressed as the fractional synthesis rate (FSR). Thus, we divided fraction
319 new by our labeling period (30 days) and multiplied by 100 to express FSR as %/day. Our

320 isotope approach and analysis followed the established procedures detailed in this Core of

321 Reproducibility in Physiology publication (Miller et al., 2020).

322  Sample preparation and analysis via Gas Chromatography/Mass Spectroscopy (GC/MS): Body
323  water

324 80 pL of plasma was placed into the inner well of an o-ring cap that was screwed to tube
325 and inverted on a heating block overnight at 100 °C. After incubation, 2 uL of 10 M NaOH and
326 20 pL of acetone were added to the samples and ?H,O standards (0 — 20%) and capped

327 immediately, vortexed, and incubated at room temperature overnight. Samples were extracted
328  with 200 uL hexane and the organic layer was transferred through pipette tips filled with

329 anhydrous Na,SO, into GC vials and analyzed via El mode using a DB-17MS column.
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330 Sample preparation and analysis via GC/MS: DNA

331 Incorporation of 2H into purine deoxyribose (dR) of DNA was measured follow

332  procedures already described (Busch et al., 2007; Miller et al., 2012; Drake et al., 2013; Drake
333 etal., 2014). DNA that was isolated from tissue and bone marrow were hydrolyzed with

334  nuclease S1 and potato acid phosphatase at 37 °C shaking at 150 RPM overnight. These

335 hydrolysates were derivatized with pentafluorobenzyl hydroxylamine and acetic acid and

336 incubated at 100 °C for 30 min. After incubation, samples were acetylated with acetic anhydride
337 and 1-methylimidazole. Dichloromethane was added, mixed and then extracted, dried in vacuo,
338 and resuspended in ethyl acetate, and analyzed by GC/MS as previously described (Busch et
339  al., 2007; Miller et al., 2012; Drake et al., 2014; Drake et al., 2015). The fraction new was

340 calculated by dividing deuterated dR of the muscle tissue by the bone marrow of the same

341  animal, which represents a fully turned-over cell population, and thus indicative of precursor

342  enrichment (Miller et al., 2012; Miller et al., 2014; Drake et al., 2015).

343  Assessing protein synthesis related to mechanisms of proteostasis

344 To evaluate protein synthesis related to protein maintenance versus new cell

345  proliferation (new DNA), we calculated the ratio of protein synthesis to DNA synthesis (Drake et
346 al., 2014; Miller et al., 2014; Drake et al., 2015; Hamilton & Miller, 2017). Increases in PRO:DNA
347 isindicative of a greater proportion of protein synthesis related to protein turnover to maintain
348  the proteome, with less dedicated to proliferation.

349  Protein content

350 Western blotting was used to measure relative content of Nrf2 and OXPHOS proteins in
351 asubset of tissues. 50-70 mg portions of gastrocnemius and 30 mg portions of soleus (n=9 per
352 treatment group) were powdered under liquid nitrogen and homogenized in a Bullet Blender with
353  zirconium beads and 1.0 mL of radioimmunoprecipitation assay (RIPA) buffer (150 mM NacCl,
354 0.1 mM EDTA, 50 mM Tris, 0.1% sodium deoxycholate, 0.1% SDS, 1% Triton X-100, pH = 7.50)
355  with HALT protease inhibitors. Samples were reduced (50 pL of B-mercaptoethanol) and heated
356 at 50 °C for 10 min. Approximately 10 ug of protein was loaded into a 4% - 20% Criterion pre-
357 cast gel (Bio-Rad, Hercules, CA, USA) and resolved at 120 V for 120 min. The proteins were
358 then transferred to a PVDF membrane at 100 V for 75 min in transfer buffer (20% w/v methanol,
359  0.02% w/v SDS, 25 mM Tris Base, 192 mM glycine, pH 8.3). Protein transfer to membrane was
360 confirmed with ponceau stain. Membranes were then blocked and incubated with primary

361 antibodies against Nrf2 (Santa Cruz 13032) and total OXPHOS proteins (Abcam 110413)

362 diluted to 1:500 on a shaker overnight in 4 °C. Membranes were rinsed and then incubated with

363  appropriate secondary antibodies (Santa Cruz 2004 and 2005, respectively) diluted to 1:10,000
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364 for 45 min at room temperature. Protein carbonyls were measured by following the protocol in
365 the commercially available OxiSelect Protein Carbonyl Immunoblot Kit (Cell Biolabs STA-308)
366 as previously performed (Konopka et al., 2015; Konopka et al., 2017). After the membranes
367 were rinsed, SuperSignal West Dura Extended Duration Substrate (Thermo Fisher 34075) was
368 applied and the membranes were subsequently imaged using a FluorChem E

369 Chemiluminescence Imager (Protein Simple, San Diego, CA, USA). Analysis of densitometry
370 was completed using AlphaView SA Software. Units are expressed as density of primary

371 antibody relative to density of ponceau staining.

372 Mobility

373 Animals were acclimated over a 2-week period, before the onset of the study, to an open
374  circular field behavior monitoring system (ANY-maze™, Wood Dale, IL) to assess voluntary
375  physical mobility. Animals’ activities were recorded, and data were collected for 10 consecutive
376  minutes on a monthly basis throughout the study. Videos were analyzed for the following

377  parameters: total distance traveled (m), average speed (m/s), time mobile (s), % time mobile,
378 time in hut (s), % time in hut, and average moving speed (m/s). Because musculoskeletal

379 degradation causes immobility in Hartley guinea pigs, Kaplan Meier curves combined with log
380 rank and Gehan-Breslow-Wilcoxon tests were utilized to assess the probability of sustained
381  voluntary mobility throughout the 10-month study period of the “long term” study. The “event’
382  was task noncompliance and defined as number of weeks into the study until an animal did not
383 move (i.e., zero distanced traveled when exposed to the open circular field). Remaining

384 individuals that maintained mobility throughout the entire 40-week study duration were censored
385 atthe 40-week study endpoint.

386  Statistics

387 For mitochondrial respirometry, in line with best practices, technical replicates were
388 averaged. The average variability between these technical replicates in this study was 18%,
389  which is standard according to the literature (Jacques et al., 2020). Apparent Km and Vmax
390 values were determined using Michaelis-Menten kinetics in Prism 9.0 (La Jolla, California,

391 USA). For evaluating growth rates, a non-linear Gompertz growth line was fit to the change in
392  body mass over time (i.e. the rate of growth). The rate of growth, k, was compared between
393 treatment and control within in each sex. For respirometry, isotopic measures, and Western
394  blots, three-way ANOVAs were used to measure the main effects of sex, disease/age, and
395 Nrf2a treatment. Post-hoc analyses were performed using Bonferroni’s post-hoc test.

396 To determine the effect of Nrf2a on disease/age-related changes in mitochondrial

397 respiration and protein synthesis when a significant effect of disease/age was detected, we
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398 conducted a subset analysis using a one-way ANOVA with a Dunnett’s post-hoc test comparing
399 15 mo treated and untreated guinea pigs to 5 mo untreated guinea pigs.

400 To assess treatment and sex effects in PRO:DNA of 15 mo guinea pigs, we used a Two-
401 Way ANOVA. We excluded 5 mo guinea pigs from this analysis because of the significantly

402  greater DNA fraction new in 5 mo guinea pigs compared to 15 mo guinea pigs, which makes the
403  age-related comparison of PRO:DNA less relevant. Due to sample loss during processing of
404 bone marrow, there is a reduced sample size for DNA fraction new outcomes, which also

405  affected PRO:DNA.

406 For Western blots, a subset (n=9) of guinea pigs were randomly selected for analysis.
407  Because this study was a secondary project within a larger study with a different primary

408 outcome, we did not design this study to be powered to detect differences in mitochondrial

409 respiration and protein synthesis at a p-value <0.05. While we set statistical significance a priori
410 at p<0.05, we also report differences with p<0.10 to highlight potential directions for future

411  studies. Data are presented as mean +/- SD. All statistics were performed in Prism 9.0 (La Jolla,
412  California, USA).

413  Results

414 Growth rate (k-curves) of the group treated with PB125 (Nrf2a) did not significantly differ
415  from the control group (CON) as measured by changes of body weight throughout treatment
416  (p>0.70 for both sexes) and body mass at harvest (p>0.70) (Supplemental Figures 2A - C).

417  Skeletal muscle DNA synthesis, which is reflective of proliferation of various cell types within the
418  skeletal muscle niche, also was not different between Nrf2a and CON (Supplemental Figure 2D
419 - E). Moreover, there were no differences in absolute or relative skeletal muscle mass between
420  Nrf2a and CON (Supplemental Figure 3).

421  Disease/age-related declines in mitochondrial respiration are not sex-specific in Hartley guinea
422  pigs

423 Because mitochondrial respiratory capacity has never been measured in permeabilized
424  skeletal muscle fibers from Hartley guinea pigs, we first evaluated disease/age- and sex-

425  differences in mitochondrial respiration. As a reference, refer to Supplemental Table 1 for a

426  glossary and detailed titration data for respiratory state mentioned below. Eleven of 210 trials
427  were excluded due to over-permeabilization (cytochrome C control factor > 0.25; Supplemental
428  Figures 4A - B). Maximal coupled (State 3(ci-civy) (Figure 2A) and uncoupled (Electron Transport
429  System (ETS) [ci-civ)) (Figure 2B) respiration were significantly greater in males (p=0.006;

430 p=0.002, respectively). Uncoupled Complex II-IV (ETSici-civ;) Supported respiration was greater
431  in males than females (Figure 2C) (p=0.002). However, there was no difference in mitochondrial
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432  efficiency (RCR) between sexes (Figure 2D). Males have greater fatty acid supported coupled
433  respiration at sub-saturating (1 mM ADP) and saturating (6 mM ADP) concentrations of ADP
434  (p=0.024 and p=0.018, respectively) (Figures 3B - C).

435 Disease/age had a negative effect on several aspects of mitochondrial function in both
436 male and female guinea pigs. 15 mo male and female guinea pigs had lower coupled (State
437  3pewmes) (Figure 2A) and uncoupled (ETSici-civy) (Figure 2B) respiration (p=0.001, p=0.004,

438  respectively). There was also a disease/age-related decline (p<0.0001) in uncoupled respiration
439  without Complex | support (ETSici-civy) (Figure 2C). Disease/age had no effect on fatty acid

440 oxidation supported respiration at sub-saturating levels ADP (Figures 3A — B), though 15 mo
441  guinea pigs had lower fatty acid oxidation supported respiration at saturating levels of ADP

442  (Figure 3C; p=0.056). Mitochondrial efficiency (RCR) also decreased as a result of disease/age
443  (p=0.012) (Figure 2D).

444  Nrf2a improves mitochondrial respiration in both male and females

445 Nrf2a improved several components of mitochondrial respiration in both 5 mo and 15 mo
446  guinea pigs, and in both males and females. Nrf2a did not significantly enhance coupled

447  respiration (State 3[PGM+S]) in male and female guinea pigs (p=0.098) (Figure 2A), but did
448  significantly increase electron transport system (ETS) capacity (ETSici-civy) (Figure 2B; p=0.037).
449  However, Nrf2a did not influence uncoupled respiration with Complex | inhibited (ETS[CII-CIV])
450  (Figure 2C).

451 Nrf2a did not significantly improve fatty acid supported respiration at sub-saturating (1
452 mM ADP) and saturating (6 mM ADP) concentrations of ADP (Figures 3B - C; p=0.061,

453  p=0.074, respectively). There was no main effect of Nrf2a on RCR (Figure 2D), a metric of

454  mitochondrial efficiency, or on ROS emission (Supplemental Figure 5).

455  Nrf2a has sex specific effects on mitochondrial ADP kinetics

456 No O2K data from the ADP titration protocol were excluded based on cytochrome C
457  control factors as all values were below 0.25 (Supplemental Figure 4C). We determined ADP
458  Kkinetics by titrating progressively higher concentrations of ADP with saturating amounts of

459  pyruvate, glutamate, and malate (titration curves found in Supplemental Figure 6E — H). ADP
460 Vmax was greater in both 15 mo male and female guinea pigs compared to 5 mo counterparts
461  (p=0.049) (Figure 4A). In females, ADP Vmax was lower compared to males (p=0.001) (Figure
462  4A). Guinea pigs that received treatment with the Nrf2 activator (Nrf2a) had a greater Complex |
463  supported ADP Vmax. Post-hoc comparisons indicate that Nrf2a improved ADP Vmax in 5 mo

464  female guinea pigs (p=0.045).
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465 Despite ADP Vmax being greater in 15 mo guinea pigs, there was no effect of

466  disease/age on the apparent Km of ADP (Figure 4B). There were also no differences in Km

467  between sexes. However, Nrf2a did significantly increase the apparent Km (p=0.007) indicating
468 lower ADP sensitivity, though this is likely a consequence of increased ADP Vmax in the

469  absence of changes in respiration rates in sub-saturating amounts of ADP (Supplemental Figure
470  6). There was non-significant interaction between sex and Nrf2a treatment (p=0.092), indicating
471 that the Nrf2a-mediated decrease in Km may have occurred only in males.

472  Nrf2a attenuates age-related declines in mitochondrial respiration

473 For any main effects of disease/age on mitochondrial respiration, we evaluated if Nrf2a
474  attenuated the age-related changes. That is, where we identified significant differences between
475 5 mo CON and 15 mo CON guinea pigs, but no differences between 5 mo CON and 15 mo

476  Nrf2a animals, we reported those findings as an attenuating effect of Nrf2a treatment on age-
477  related changes in mitochondrial function. While there was a main positive effect of age on ADP
478 Vmax in the three-way ANOVA (Figure 4A), there was no difference in ADP Vmax between 5
479 mo and 15 mo CON guinea pigs (p=0.109) in the subsequent one-way ANOVA analysis (Figure
480 5A). Treated 15 mo guinea pigs, however, had a significantly higher ADP Vmax compared to 5
481 mo animals (p=0.007) (Figure 4A). Interestingly, this effect was only observed in males

482  (p=0.021) (Figure 5B). While ADP Vmax was greater in 15 mo guinea pigs, 15 mo guinea pigs
483  had a significantly (p=0.024) lower maximal coupled respiration (State 3jci-civy) compared to 5
484  mo counterparts (Figure 5C). Nrf2a, however, prevented that disease/age-related decline

485  (Figure 5C). Maximal uncoupled respiration (ETSici.civj) Was also lower between 5 mo and 15
486 mo CON (Figure 5E), but Nrf2a prevented the decline. Further interrogation revealed that 15 mo
487  females had lower ETSici.civi compared to their 5 mo counterparts, which Nrf2a attenuated

488  (Figure 5F). Interestingly, when Complex | was inhibited, Nrf2a had no effect on uncoupled

489  respiration (ETSici-civy) and had no effect on the disease/age-related decline in CII-CIV capacity
490 in either 15 mo males (p=0.035) or females (p=0.003) (Figures 5G - H). While the RCR of 15 mo
491  CON guinea pigs were lower compared to 5 mo guinea pigs, RCR was not different between 15
492  mo Nrf2a treated guinea pigs and 5 mo CON (Figure 51). However, this occurred only in males
493  where there was a significant difference (p=0.036) between 5 mo and 15 mo CON animals

494  (Figure 5J) but no difference (p=0.151) between 15 mo males treated with Nrf2a compared to 5
495 mo CON (Figure 5J). There was no difference in RCR between 5 mo and 15 mo females

496  (Figure 5J). Altogether, these data support that Nrf2a can attenuate age related declines in

497  mitochondrial respiration. Interestingly, Nrf2a had no effect on mitochondrial content as

498  assessed by Western blot (Supplemental Figure 7), suggesting that the improvements in
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499  mitochondrial function are independent of mitochondrial content in skeletal muscle and may
500 reflect improved mitochondrial quality.

501 Age- sex- and treatment- related effects on skeletal muscle protein synthesis

502 To determine whether or not Nrf2a-mediated improvement in mitochondrial respiration
503 was linked to improvements in components of proteostasis, we used ?H,O to measure

504  cumulative protein and DNA synthesis rates over 30 days. There were no differences in

505 fractional synthesis rate (FSR) in either the gastrochemius or soleus between male and female
506 guinea pigs (Figure 6). There was a disease/age-related decline in the rates of protein synthesis
507 in all subfractions in the soleus and gastrocnemius of both male and female guinea pigs (p<0.01
508 for all subfractions) (Figure 6). Nrf2a did not have a main effect on FSR in any of the

509 subfractions of either muscle from 5 mo or 15 mo, male or female guinea pigs (Figure 6).

510 However, there was a non-significant interaction between age and Nrf2a (p=0.086) in the

511  myofibrillar subfraction of the soleus of both male and female guinea pigs, suggesting that Nrf2a
512  may have had a positive effect on myofibrillar FSR at 15 mo (Figure 6A).

513  Nrf2a mitigates age-related declines protein synthesis

514 Because there was a disease/age-related decline in protein synthesis rates in all

515 subfractions of both the soleus and gastrocnemius, we sought to determine if Nrf2a prevented
516 any of those declines. Nrf2a attenuated the disease/age-related decline in myofibrillar FSR of
517 the soleus in both males and females (Figures 7A - B). Additionally, Nrf2a attenuated the

518 decline in mitochondrial FSR in the soleus (Figure 7C), but these significant differences were no
519 longer detectable when evaluated in males and females separately (Figure 7D). In the soleus,
520 Nrf2a also mitigated the decline in cytosolic FSR in males only (Figure 7F), but had no effect on
521 the decline in collagen FSR in either sex (Figures 7G - H). In contrast, Nrf2a had no attenuating
522  effect on the disease/age-related decline in protein synthesis in any subfraction of the

523  gastrocnemius (Figure 8).

524  Nrf2a does not affect protein synthesis related to proteostasis

525 Because protein synthesis is an essential process for both growth and proteostasis, it
526  was necessary to discern the relative amount of protein synthesis allocated towards protein

527  turnover (i.e. proteostasis). To do this, proteins synthesis rates were evaluated relative to the
528 rates of cell proliferation. An increased protein synthesis rate to DNA synthesis rate ratio

529 (PRO:DNA) suggests a greater allocation of newly synthesized proteins associated with

530 maintaining the cellular proteome, with less dedicated to new cell proliferation. In 5 mo guinea
531 pigs, there was no effect of Nrf2a on the PRO:DNA in the gastrocnemius or soleus

532  (Supplemental Figure 8). Similarly, there was no difference in PRO:DNA in 15 mo guinea pigs

16


https://doi.org/10.1101/2021.06.11.448143
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.448143; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

533  (Figure 9). Given the constrained sample size due to loss of sample, further investigation is

534  warranted. Given the lack of effect of Nrf2a on PRO:DNA, which is reflective of the proportion of
535  proteins synthesized allocated to proteome maintenance, it is unsurprising that there were no
536 differences in protein carbonyl content, a marker of protein damage, in the soleus or

537 gastrocnemius (Supplemental Figure 9).

538 The effect of Nrf2a on mobility

539 To determine whether or not improvements in skeletal muscle mitochondrial function and
540 proteostasis translated to improvements in mobility, we assessed voluntary activity in a dark,
541 enclosed area using overhead monitoring. Kaplan-Meier curves depicting the probability of

542  sustained voluntary mobility throughout the 40-week study period. There was no statistically
543  significant effect of Nrf2a on maintained mobility in either male or female guinea pigs. CON

544  guinea pigs lost mobility more rapidly than Nrf2a guinea pigs (Figures 10A — B; grouped sex
545  hazard ratio=0.713, 95% CI=0.3501 to 1.453; median ratio=1.5, CI=0.756 to 2.976; p=0.231).
546  Further, Nrf2a males tend to have a relative increase in mobility compared to controls until

547  about 32 weeks into the study. However, 50% of Nrf2a males lost mobility by 36 weeks, while
548 50% of CON males maintained mobility the entire 40-week study duration (remaining animals
549  were censored at this time) (Figure 10A). For the majority of the study, Nrf2a females

550 maintained their mobility compared to CON females. Approximately 50% of control females loss
551  mobility around 16 weeks, while Nrf2a treated females sustained voluntary mobility until about
552 28 weeks (Figure 10B).

553 Discussion

554 In this study, we tested the effects of a novel phytochemical Nrf2 activator, PB125 on
555 two hallmarks of aging implicated in musculoskeletal decline in humans: mitochondrial

556  dysfunction and loss of proteostasis in locomotor muscle. We observed that Nrf2 activator

557 treatment (Nrf2a) ameliorated declines in skeletal muscle mitochondrial function and protein
558 synthesis in both male and female Hartley guinea pigs as these guinea pigs age and develop
559  knee OA. The improvements and maintenance of mitochondrial respiration and proteostatic
560 mechanisms may also be associated with prolonged maintenance of voluntary activity in

561 females. Collectively, this study demonstrates the potential utility of Nrf2 activators in targeting
562  musculoskeletal decline.

563  Sex- and age/disease-related differences in mitochondrial respiration

564 This is the first study to measure skeletal muscle mitochondrial function in either male or
565 female Hartley guinea pigs using high resolution respirometry. Accordingly, we first sought to
566 characterize differences between male and female guinea pigs at 5 and 15 months of age to
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567 determine sex differences and age- and disease-related (i.e. worsening knee osteoarthritis)

568 changes in skeletal muscle mitochondrial respiration. We found a clear sex difference in

569 coupled and uncoupled respiration (females and lower rates of oxygen consumption than

570 males), accompanied by decreased fatty acid supported respiration and ADP kinetics.

571 Interestingly, these differences do not seem to be a consequence of differences in mitochondrial
572  density and may instead reflect intrinsic differences in mitochondrial function. One study in both
573  young and old men and women determined that there was no difference in phosphocreatine
574  recovery post-exercise, a metric of mitochondrial capacity (Kent-Braun & Ng, 2000). However,
575 measuring ATP production using bioluminescence revealed that mitochondria of men have

576  greater capacity to produce ATP than that of women (Karakelides et al., 2010). Employing high
577  resolution respirometry has revealed equivocal results; thus, it remains unclear whether or not
578 females have greater oxidative capacity than males (Cardinale et al., 2018; Miotto et al., 2018).
579 Regardless, it is essential to continue interrogating potential sex differences in mitochondrial
580 function and changes that occur with both age and disease in both sexes.

581 Mitochondrial function declines with age and contributes to the aging process in humans
582  (Short et al., 2005; Gonzalez-Freire et al., 2015; Distefano et al., 2017; Gonzalez-Freire et al.,
583 2018). We demonstrated that both male and female Hartley guinea pigs similarly experience a
584  decline in mitochondrial respiration as humans do. However, given the relatively early age of
585 these guinea pigs (15 months; ~10% of recorded maximal lifespan (Gorbunova et al., 2008),
586 and ~25% of average companion guinea pig lifespan (Quesenberry et al., 2021)), is difficult to
587  ascertain if these changes are a consequence of either age, a consequence of the underlying
588 factors that drive osteoarthritis and musculoskeletal dysfunction, or a combination of both. Other
589 laboratory and companion animal guinea pigs do not exhibit such phenotypes as early in their
590 lifespans (Santangelo et al., 2011; Musci et al., 2020). Notably, osteoarthritis is associated with
591 impaired mitochondrial function and redox metabolism in degenerating joints (Loeser, 2010;
592  Collins et al., 2016; Farnaghi et al., 2017; Collins et al., 2018). In the current study, both coupled
593  and uncoupled respiration, as well as mitochondrial efficiency, declined with age/disease

594  progression in both male and female guinea pig skeletal muscle (Figures 2A — D). There was
595 also a decline in fatty acid supported oxidation (Figure 3C). In contrast, ADP Vmax

596 unexpectedly increased with age in both male and female guinea pigs. Given the non-uniform
597 changes in mitochondrial complex protein content (Supplemental Figure 7F — J), it is unclear if
598 differences in mitochondrial density explain the age/disease-related declines in respiration.

599 However, these data clearly demonstrate that impaired mitochondrial respiration is a

600 characteristic of this pre-clinical model of musculoskeletal decline.
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601  Nrf2 activator treatment ameliorates age-related declines in mitochondrial respiration

602 Nrf2a treated guinea pigs had augmented mitochondrial function in 5 mo females and 15
603  mo males as characterized greater ADP Vmax and electron transport system capacity ETS(c-
604  cv. Importantly, Nrf2a attenuated age/disease-related dysfunction of Complex | and Il supported
605 coupled and uncoupled respiration and fatty acid oxidation in both sexes. Notably, Nrf2a

606  selectively attenuated the age/disease-related decline in coupled respiration in males and

607 uncoupled respiration in females. Nrf2a attenuated the age/disease-related declines in

608  mitochondrial efficiency/coupling in males only. In humans, mitochondrial coupling decreases
609  with age (Kumaran et al., 2005). Exercise-induced attenuation in loss of mitochondrial

610 efficiency/coupling with age (Conley et al., 2013) has led researchers to speculate that

611 improving mitochondrial efficiency may help attenuate sarcopenia (Harper et al., 2021).

612 Interestingly, in the presence of rotenone, a Complex I inhibitor, there was no effect of Nrf2a,
613  which suggests that Nrf2a improves mitochondrial respiration through improvements in Complex
614 | function. This is consistent with data from another study that used a different Nrf2 activator,
615 sulforaphane, and demonstrated improvements in Complex | function (Bose et al., 2020). The
616  pathways underlying the effect of Nrf2 activation on mitochondrial function are not entirely

617 understood. However, several studies have demonstrated that Nrf2 is a central mediator for

618 improvements in mitochondrial function. Nrf2 at least partially mediates exercise-induced

619  mitochondrial biogenesis and improvement in mitochondrial function (Merry & Ristow, 2016;
620 D'Souza et al., 2020; Islam et al., 2020). Interestingly, both Nrf2-related redox signaling (Safdar
621 etal., 2010) and Complex | function decrease with age in skeletal muscle (Kruse et al., 2016).
622  Thus, Nrf2a may target a critical mechanism that contributes to age-related mitochondrial

623  dysfunction, though the specific mechanisms by which Nrf2 activation might contribute to

624  Complex | function remain to be elucidated.

625 As a master regulator of cytoprotective gene transcription, Nrf2 is a critical component of
626 redox homeostasis. Skeletal muscle mitochondria of aged Nrf2 knock-out mice emit significantly
627 more ROS than aged wildtype counterparts reflecting the role of Nrf2 in regulating redox

628 balance (Kitaoka et al., 2019). In vitro, Nrf2 knock out models have compromised Complex |
629  activity due to impairments in NADH availability (Kovac et al., 2015). Importantly, pyruvate

630 dehydrogenase is a redox sensitive enzyme responsible for supplying NADH to Complex |

631  (Fisher-Wellman et al., 2015). Thus, age-related increases in oxidative stress may constrain the
632  supply of NADH to Complex I, which would explain age-associated decline in Complex |

633 capacity and how NAD+ supplementation restores mitochondrial respiratory capacity (Kruse et

634 al., 2016; McElroy et al., 2020). In our study, Nrf2a increased mitochondrial function, particularly
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635 in Complex I, which may have been mediated by improved cellular redox regulation. However,
636  future studies will need to more rigorously investigate the effect of Nrf2a on redox homeostasis.
637 Another potential mechanism by which Nrf2a enhanced mitochondrial function is through
638  greater mitochondrial protein turnover. There was no consistent age- or treatment-related effect
639  on mitochondrial protein content in the soleus or gastrocnemius (Supplemental Figure 7).

640 However, there was an age/disease-related decline in mitochondrial biogenesis, suggesting
641 that, in order to maintain mitochondrial density, degradation of mitochondrial proteins (i.e.

642  mitophagy or ubiquitin dependent degradation of mitochondrial proteins) also declined. Impaired
643  mitophagy contributes to mitochondrial dysfunction and disease in humans (Ryu et al., 2016;
644  Gouspillou et al., 2018; Newman & Shadel, 2018). Importantly, Nrf2a attenuated the

645 age/disease-related decline in mitochondrial protein synthesis, suggesting that declines in

646  degradation/mitophagy may have also been attenuated, though we did not directly measure
647  this. As such we posit that mitochondrial protein turnover, which is essential for maintenance of
648  overall mitochondrial function (Szczepanowska & Trifunovic, 2021), was maintained in 15 mo
649  Nrf2a guinea pigs compared to 15 mo CON guinea pigs in this study. Others have also

650 demonstrated that Nrf2 activators play a role in modulating mitochondrial protein turnover. In C.
651 elegans the Nrf2 homolog mediated Tomatidine-induced (a Nrf2 activator) mitophagy (Fang et
652 al., 2017). Our group has demonstrated that Protandim, also a phytochemical Nrf2 activator,
653  enhanced mitochondrial protein turnover in wheel running rats (Bruns et al., 2018). Thus, Nrf2
654  activation seems to preserve mitochondrial protein turnover in 15 mo guinea pigs while turnover
655 may have declined in 15 mo CON guinea pigs.

656 Nrf2a attenuates components of protein homeostasis

657 Decline in mechanisms to maintain proteostasis (which includes not only protein

658  synthesis and degradation, but also chaperone-mediated folding and protein trafficking (Noack
659 etal., 2014)) contributes to age-related musculoskeletal dysfunction (Kaushik & Cuervo, 2015;
660 Santra et al., 2019). There is limited insight on the effect of age on protein homeostasis in

661 humans, though basal protein synthesis appears to be unchanged with age in humans (Volpi et
662 al., 2001; Brook et al., 2016). Moreover, differences between men and women with regard to the
663  decline in skeletal muscle proteostasis remains unclear. While men generally have greater

664  muscle mass than women, men also lose muscle mass faster and muscle strength to a greater
665  degree; however, women are less fatigue resistant (thoroughly reviewed in (Gheller et al.,

666  2016). In the present study, we documented the age-related decline in protein synthesis in all
667 subfractions of the soleus and gastrocnemius muscles of both male, which we observed in our

668  previous study (Musci et al., 2020), and female Hartley guinea pigs. There were no sex
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669  differences in fractional synthesis rates in either muscle. This is the first study to characterize
670 age-related declines in protein synthesis in female guinea pigs. It is important to note, however,
671 that while we documented age-related differences in long-term protein synthesis rates to

672  minimize the bias of faster turning over proteins (Miller et al., 2015), it is possible that our

673  approach may still not accurately determine differences in fractional synthesis rates between
674  ages if the protein pools subject to turnover (i.e. the dynamic protein pools) are not the same
675 between the 5 mo and 15 mo guinea pigs. As recently demonstrated by Abbott and Lawrence
676 and colleagues, the dynamic protein pool declines with age and thus obscures the fractional
677  synthesis rates and biases towards aged animals having lower synthesis rates (Abbott et al.,
678 2021). The approach the authors employed is both novel and unique, but raises important

679 considerations when evaluating the effect of age or interventions on protein turnover in the

680  future. Employing such an approach may also help reconcile differences in observations on the
681 effect of age on protein turnover between species (Volpi et al., 2001; Miller et al., 2019; Musci et
682  al., 2020) and more accurately describe the age-related effects on protein kinetics. Importantly,
683  we agree with the authors that adopting such a rigorous approach in the future will provide

684  better guidance as to how to improve proteome integrity and maintain the dynamic protein pool
685  with age.

686 In the present study, Nrf2a attenuated the age/disease-related declines in myofibrillar
687  and mitochondrial protein synthesis rates in the soleus in both males and females. Interestingly,
688  Nrf2a had no attenuating effect on the age/disease-related declines of protein synthesis in any
689  subfraction of the gastrocnemius. One driving factor of protein synthesis is cellular proliferation
690 (Eden etal., 2011). Thus, to discern protein synthesis dedicated to proliferation as opposed to
691 proteome maintenance, we made simultaneous measurements of DNA synthesis rates to

692  provide insight about the proportion of protein synthesis dedicated towards newly synthesized
693  proteins compared to proteome maintenance (Miller et al., 2014). There was no difference in the
694  allocation of protein synthesis to proteome maintenance in the soleus or gastrochemius in either
695 male or female guinea pigs. Moreover, Nrf2a had no effect on protein carbonylation levels in
696 either the soleus or gastrocnemius. These data are in contrast with our previous studies

697 demonstrating that other Nrf2 activators promote proteome maintenance in vitro and in vivo in
698  both rats (Bruns et al., 2018) and humans (Konopka et al., 2017). Importantly, interventions that
699 activate mechanisms maintaining proteostasis are linked to healthspan extension in a variety of
700 organisms (Pride et al., 2015; Hamilton & Miller, 2017; Sands et al., 2017). Thus, while Nrf2a
701 attenuated the decline in protein synthesis in the present study, Nrf2a did not increase the

702  proportion of proteins synthesized for proteome maintenance.
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703 The mechanisms by which Nrf2a attenuated the decline in protein synthesis are not
704  entirely clear. However, alleviating energetic constraints through enhanced mitochondrial

705  function is a likely candidate to explain some of these improvements. Protein turnover is

706  energetically demanding, accounting for nearly 35% of basal metabolism (Waterlow, 1984;

707 Rolfe & Brown, 1997; Bier, 1999). Age-related impairments in mitochondrial function

708 consequentially constrain the amount of energy dedicated to proteostasis. Mitochondrial

709  dysfunction precedes the loss of proteostasis in skeletal muscle, which leads to declines in
710 function (Ben-Zvi et al., 2009; Gaffney et al., 2018). Moreover, other interventions that attenuate
711  the decline in or improve mitochondrial function, also improve proteostatic mechanisms and
712 preserve overall muscle function. For example, maintaining physical activity and caloric

713  restriction in rodents delays declines in mitochondrial function as well as skeletal muscle

714  function (Zangarelli et al., 2006; Stolle et al., 2018), a similar observation made in masters

715  athletes (Zampieri et al., 2015). While both exercise and caloric restriction have broad effects,
716  more targeted interventions focused on improving mitochondrial function also report a similar
717  phenomenon: enhancing mitochondrial function delays skeletal muscle dysfunction (Gaffney et
718 al., 2018; Campbell et al., 2019). This observation occurs in other tissues as well. Increasing
719 mitochondrial proteostasis decreases proteotoxic amyloid aggregation in cells, increasing

720 fitness and lifespan in C. elegans (Sorrentino et al., 2017). These studies emphasize the

721  importance of mitochondrial respiration and the production of ATP to facilitate proteostatic

722  mechanisms. In humans, aerobic exercise improves mitochondrial function through

723  mitochondrial remodeling and improves skeletal muscle function (Greggio et al., 2017).

724  Altogether, our data support the posit that Nrf2a-mediated improvements in mitochondrial

725  respiration alleviated constraints in energy which led to greater amount of ATP available to

726  support proteostasis.

727 Another mechanism by which Nrf2a may have attenuated declines in skeletal muscle
728  proteostasis is through the mitigation of inflammation and oxidative stress, which can have

729  deleterious effects on protein turnover, particularly protein synthesis. Protein synthesis, at rest,
730 appears to be no different between young and old individuals (Volpi et al., 2001; Brook et al.,
731  2016). However, age-related inflammation and oxidative stress can blunt the anabolic response
732  to stimuli such as exercise or feeding. This concept, termed anabolic resistance, is a contributor
733  to age-related musculoskeletal dysfunction and appears to blunt the anabolic response to

734  resistance exercise training (Cuthbertson et al., 2005; Wilkes et al., 2009; Burd et al., 2012;
735 Brook et al., 2016). Interventions designed to mitigate age-related increases oxidative stress or

736  inflammation seem to improve skeletal muscle anabolic responses to exercise (Trappe et al.,
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737 2002), feeding (Rieu et al., 2009; Smiles et al., 2019), and insulin (Rivas et al., 2016).

738  Importantly, Nrf2a stimulates transcription of endogenous antioxidant and anti-inflammatory
739  genes (Hybertson et al., 2011; Hybertson et al., 2019). Thus, it is possible that Nrf2a treatment
740 ameliorated oxidative stress and inflammation and improved the anabolic response to feeding.
741  However, because we measured cumulative protein synthesis over 30 days, rather than acutely
742  inresponse to an anabolic stimulus such as feeding, we cannot determine if there were any
743  changes specifically in the anabolic response to feeding. Future studies should investigate the
744  efficacy of this particularly Nrf2a, PB125, on abrogating inflammation and oxidative stress and,
745  in acute settings, determine whether Nrf2a enhances the anabolic response to feeding or

746  activity. In the present study, there was no observed effect of treatment on ROS emission or
747  protein oxidation. However, our lab has previously demonstrated that another Nrf2 activator
748 increases antioxidant protein expression (Reuland et al., 2013) and augmented protein

749  synthesis related to proteostasis in skeletal muscle of rats in response to wheel running

750  exercise (Bruns et al., 2018). Thus, treatment with Nrf2 activators may represent a class of

751 interventions that augment adaptation to acute stressors (Musci et al., 2019).

752  Future Directions

753 The improvements in mitochondrial respiration and proteostasis did not translate to

754  sustained improvements in mobility. However, it is important to note that our measure of mobility
755 s only one metric of musculoskeletal function. Additionally, musculoskeletal function is not the
756  only factor that dictates mobility. Thus, it is still important to assess other and more specific

757  components of musculoskeletal function, as mitochondrial function is a strong determinant in
758  physical function such as gait speed and grip strength in humans (Gonzalez-Freire et al., 2018).
759 Another observation that warrants further investigation are the sex-specific effects of
760  Nrf2a. Other interventions involving Nrf2 activators have also demonstrated sex-specific effects.
761  The Interventions Testing Program reported that treatment with the Nrf2 activator Protandim
762  extended median lifespan in heterogenous male mice, but not females (Strong et al., 2016). Our
763  lab has also previously demonstrated that Protandim only improved myofibrillar proteostasis in
764  men (Konopka et al., 2017). Other healthspan promoting interventions, such as a metformin and
765  rapamycin, also have sex specific effects (Strong et al., 2016). We have begun interrogating
766  these sex specific effects through the use of kinetic proteomics (Wolff et al., 2019; Wolff et al.,
767  2021). Moving forward, it will be necessary to interrogate these sex differences and the

768  implications they have on the efficacy of Nrf2a to attenuate musculoskeletal decline. Females
769  experience sarcopenia at a similar prevalence as males worldwide (Shafiee et al., 2017), future

770 investigation of targeting Nrf2 for musculoskeletal aging should include investigation of the
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771 mechanisms likely to underlie our sex-specific responses including interaction of reproductive
772 hormones with Nrf2 signaling.

773  Conclusions

774 Musculoskeletal dysfunction is a primary contributor to disability and dependence with
775 age. There are few existing interventions that effectively mitigate the decline in skeletal muscle
776  function with age. In this study, we further characterized a model for musculoskeletal

777  dysfunction measuring mitochondrial function and protein synthesis in both male and female
778  Hartley guinea pigs. Moreover, we tested a potential healthspan-extending phytochemical

779  compound PB125, which is currently in the NIA-ITP

780  (https://www.nia.nih.gov/research/dab/interventions-testing-program-itp/compounds-testing), on
781  mitochondrial function and proteostasis in this pre-clinical guinea pig model of musculoskeletal
782  decline. We found that this compound improved mitochondrial function and attenuated declines
783  in protein synthesis, mechanisms that likely mediate improvements in function and longevity.
784  This project adds to the growing literature that supports the use of Nrf2 activators to improve
785 organismal health. The data from this study provide mechanistic insight by which a readily

786 translatable intervention could mitigate age-related musculoskeletal decline.
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1311 Figure 1 Study Design. There were two cohorts of guinea pigs in this study. The first cohort was
1312  treated with Nrf2a or vehicle control from 2 mo to 5 mo, during which knee OA begins

1313  developing. The second cohort was treated from 5 mo to 15 mo of age, after which knee OA
1314  begins developing and during which detectable declines in musculoskeletal quality arise. In the
1315 final 30 days of each study, a bolus I.P. injection of 2H,O was administered and ?H,O was mixed
1316 in drinking for measurement of protein synthesis. A portion of the soleus was harvested for
1317  mitochondrial respirometry assessments. Another portion of the soleus as well as a portion of
1318 the gastrocnemius was harvested for isotopic measurements. Comparisons between 5 mo and
1319 15 mo guinea pigs were made between the cohorts at the day of harvest. Longitudinal weight
1320 and mobility data were acquired from the second cohort.

1321  Figure 2 Age-, Sex-, and Treatment-related differences in mitochondrial respiration. There was
1322 a significant negative effect of Age on State 3ici.civ) respiration (p=0.001). Female guinea pigs
1323  had lower levels of respiration compared to males (p=0.006). Treatment did not significantly
1324  increase respiration (p=0.098) (A). Electron transport system capacity (ETSci-civy) significantly
1325 decreased with age (p=0.004) and was lower in females (p=0.002). Nrf2a treatment increased
1326  respiration (p=0.037). The interaction effect between Sex and Age was insignificant (p=0.058)
1327 (B). There was a significant decrease in Complex Il — IV uncoupled respiration with age

1328 (p<0.0001), but there was no effect of Treatment. Female guinea pigs had lower respiration
1329 compared to male guinea pigs (p=0.002 effect of Sex) (C). Mitochondrial efficiency (RCR)

1330 decreased with age (p=0.012) (D).

1331  Figure 3 Fatty acid supported respiration. There was no difference in fatty acid supported

1332  respiration with 0.5 mM ADP between Sex, Age, or Treatment groups (A). Fatty acid supported
1333  respiration with 1.0 mM was lower in females (p=0.029 effect of Sex), but the effect of

1334  Treatment was insignificant (p=0.086) (B). At saturating amounts of ADP (6.0 mM), female

1335 guinea pigs had lower fatty acid supported respiration compared (p=0.030 effect of Sex), though
1336  there was not a significant difference between 5 mo and 15 mo guinea pigs (p=0.058 effect of
1337  Age). Nrf2a treatment did not have a significant effect on respiration (p=0.098) (C).

1338  Figure 4 Nrf2a treatment improves ADP Vmax. There was an age-related increase in ADP
1339  Vmax (p=0.049), though female guinea pigs had a lower Vmax compared males (p=0.001).
1340 Nrf2a significant increased ADP Vmax (p=0.026). Post-hoc analysis revealed Nrf2a 5 mo

1341 female had greater ADP Vmax compared to CON 5 mo female guinea pigs (p=0.045) (A). There
1342  was a significant increase in ADP Km from Nrf2a treatment (p=0.007). There was an

1343  insignificant interaction between Sex and Treatment (p=0.092) (B).
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1344  Figure 5 Nrf2a attenuates age-related declines in mitochondrial respiration. There was no

1345  difference in ADP Vmax between 5mo and 15mo CON guinea pigs (p=0.109), whereas 15mo
1346  Nrf2a guinea pigs had a higher ADP Vmax than 5mo CON guinea pigs (p=0.072) (A).

1347  Comparing sex-specific effects, Nrf2a only had a positive effect in male guinea pigs only

1348 (p=0.021) (B). There was an age-related decrease (p=0.024) in State 3pem + 5] between CON
1349  guinea pigs, though this difference was attenuated in 15mo Nrf2a guinea pigs (p=0.536) (C).
1350 The age-related decline though, was only observed in female guinea pigs (p=0.046), which was
1351  attenuated by Nrf2a (p=0.290) (D). Uncoupled respiration ETSici - civj hon-significantly (p=0.061)
1352  decreased with age, though Nrf2a attenuated this difference (p=0.875) (E), though there were
1353  no significant differences when sex was considered (F). There was a significant decrease

1354  (p<0.0001) in ETSici-civ between 5 mo and 15 mo CON guinea pigs that Nrf2a did not

1355  attenuate (p=0.0006) (G) in either sex (H).

1356  Figure 6 Fractional synthesis rates (FSR) of both the soleus and gastrocnemius subfractions
1357 decrease with age. FSR significantly decreased with age in all subfractions of the soleus

1358 (p=0.002, p=0.003, p<0.0001, p<0.0001 for myofibrillar (A), mitochondrial (B), cytosolic (C), and
1359  collagen (D) subfractions, respectively). 15 mo guinea pigs also had a significant decrease in
1360 FSR in every subfraction of gastrocnemius as well (p<0.0001 for all subfractions) (E — H).

1361  Figure 7 Nrf2a treatment attenuates age-related declines in FSR of soleus subfractions. 15 mo
1362 CON guinea pigs had lower FSR in each subfraction of the soleus (p=0.0021, p=0.030,

1363  p<0.0001, p<0.0001 for the myofibrillar (A), mitochondrial (C), cytosolic (E), and collagen (G)
1364  subfractions, respectively). Nrf2a attenuated the decline in the myofibrillar (A) and mitochondrial
1365 (C) subfractions, but not in the cytosolic (E) or collagen subfractions (G). Nrf2a attenuated the
1366  decline in myofibrillar FSR in both males (p=0.920) and females (p=0.166) (B) and attenuated
1367  the decline in cytosolic FSR in males only (p=0.207) (F).

1368  Figure 8 Nrf2a treatment does not attenuate the age-related decline in FSR in the

1369  gastrocnemius. 15 mo CON guinea pigs had significantly lower FSR compared to 5 mo CON
1370 guinea pigs in each subfraction (p<0.0001 for all subfractions) (A, C, E, G). The FSR of all
1371  subfractions of the gastrocnemius in 15 mo Nrf2a guinea pigs were also significantly lower
1372 compared to 5 mo CON guinea pigs (p<0.0001 for all subfractions) (A, C, E, G). This pattern
1373  was observed in both male and female guinea pigs (B, D, F, H).

1374  Figure 9 The effect of Nrf2a treatment on PRO:DNA synthesis ratios in the soleus and

1375 gastrocnemius. There was no effect of Nrf2a treatment in the myofibrillar, mitochondrial, or
1376  cytosolic subfractions on the ratio of protein to DNA synthesis in either the soleus or

1377  gastrocnemius of 15 mo male or female guinea pigs.
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1378  Figure 10 The probability of maintained mobility. There was a greater proportion of Nrf2a
1379 treated male (A) and female (B) guinea pigs that maintained mobility over the course of the
1380 study period. However, there was no statistically significant effect of Nrf2a on the probability of
1381  maintaining mobility throughout the course of the study.

1382
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