

1 **Interferon- α subtype treatment induces the repression of**
2 **SRSF1 in HIV-1 target cells and affects HIV-1 post integration**
3 **steps**

4

5 Helene Sertznig¹, Fabian Roesmann², Barbara Bleekmann¹, Carina Elsner¹, Mario Santiago³,
6 Jonas Schuhenn¹, Yvonne Benatzy⁵, Ryan Snodgrass⁵, Stefan Esser⁴, Kathrin Sutter¹, Ulf
7 Dittmer¹ and Marek Widera^{1,2*}

8

9 ¹Institute for Virology, University Hospital Essen, University Duisburg-Essen, 45147 Germany

10 ²Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am
11 Main, 60596 Germany

12 ³Department of Medicine, University of Colorado Denver, Aurora, CO 80045, USA

13 ⁴Clinic for Dermatology, HPSTD, University Hospital Essen, University Duisburg-Essen, 45147
14 Germany

15 ⁵Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, 60323
16 Frankfurt

17

18

19 *Correspondence: Dr. rer. nat. Marek Widera, marek.widera@kgu.de, Institute for Medical
20 Virology, University Hospital Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Tel: +49
21 69 6301 86102, Fax: +49 69 6301 6477

22

23 **Abstract**

24 Efficient replication of HIV-1 depends on balanced levels of host cell components, including
25 cellular splicing factors. Type I interferons (IFN-I), playing a crucial role in the innate immune
26 defense against viral infections, are well known to induce the transcription of IFN-stimulated genes
27 (ISGs) including potent host restriction factors. Not so well known is, that IFN-repressed genes
28 (IRepGs) also affect viral infections by downregulating host dependency factors that are essential
29 for viral replication. So far, knowledge about IRepGs involved in HIV-1 infection is very limited.
30 Here, we demonstrate that expression levels of the serine/arginine-rich splicing factor 1 (SRSF1)
31 were repressed upon treatment with IFN α subtypes in HIV-1 susceptible cell lines as well as
32 primary cells. Furthermore, we could demonstrate in two independent patient cohorts that HIV-1
33 infection and the concomitant inflammation during the acute and chronic phase, resulted in the
34 strong induction of ISGs, but at the same time significantly repressed SRSF1. 4sU-labeling of
35 newly transcribed mRNAs revealed that IFN-mediated repression of SRSF1 originated from a
36 transcriptional shutdown. Experimental downregulation as well as overexpression of SRSF1
37 expression levels resulted in crucial changes in HIV-1 LTR-transcription, alternative splice site
38 usage and virus production. While lower SRSF1 levels resulted in low *vif* mRNA levels and thus
39 severely reduced viral infectivity, higher levels of SRSF1 impaired LTR-Tat-activity and HIV-1
40 particle production.
41 Our data highlight the so far undescribed role of SRSF1 acting as an IFN-repressed cellular
42 dependency factor decisively regulating HIV-1 post integration steps.

43

44 **Keywords**

45 HIV-1, Type I interferons (IFN-I), IFN-stimulated genes (ISG), IFN-repressed genes (IRepGs), host
46 restriction factors, host dependency factors, viral replication, transcription, alternative splicing,
47 SRSF1, SF2/ASF

48 **Author Summary**

49 IFN-I play a central role in the innate immune defense against viral infections by regulating the
50 expression of interferon stimulated genes (ISGs) and interferon repressed genes (IRepGs). The
51 stimulation of host restriction factors and the reduction of host dependency factors decisively
52 affects the efficiency of HIV-1 replication. After the stable integration of the provirus into the host
53 chromosome, HIV-1 exploits the host cell transcription and splicing machinery for its replication.
54 A network of conserved splice sites and splicing regulatory elements maintain balanced levels of
55 viral transcripts essential for virus production and immune evasion.

56 We demonstrate the so far undescribed role of the splicing factor SRSF1 as an IRepG crucially
57 involved in HIV-1 RNA processing. In HIV-1 infected individuals, we observed inversely
58 proportional expression of high ISG15 and low SRSF1 levels, which were restored in ART treated
59 patients. We could demonstrate, that IFN-I stimulation of HIV-1 target cells resulted in a significant
60 repression of SRSF1 RNA and protein levels. Since low SRSF1 expression decisively reduced
61 HIV-1 *vif* mRNA levels, a severe impairment of viral replication was observed in APOBEC3G
62 expressing cells. As overexpression negatively affected HIV-1 LTR transcription and virus
63 production, balanced levels of SRSF1 are indispensable for efficient replication.

64

65 **Introduction**

66 The human immunodeficiency virus type 1 (HIV-1) depends on cellular components of the host,
67 which are crucial for efficient replication and thus termed host dependency factors (1). Once
68 integrated into the host genome, HIV-1 uses the cellular transcription apparatus and splicing
69 machinery for viral gene expression. Since important regulatory HIV-1 proteins are expressed
70 from spliced intron-less viral mRNAs, cellular splicing factors and splicing regulatory proteins are
71 indispensable for viral replication. Thus, alternative splicing and exploitation of the full range of the
72 cellular splicing code is required to produce balanced levels of all essential viral mRNAs (2, 3).

73 Type I interferons (IFN-I), which amongst others include 12 different IFN α subtypes and IFN β ,
74 play a crucial role in the innate immune defense against viral infections including HIV-1 (4, 5). All
75 IFN α subtypes have been shown to exert distinct biological activities dependent on their binding
76 affinities, receptor avidity or cell type specificity (6-8). In contrast to the clinically used subtype
77 IFN α 2, which shows only limited antiviral activity against HIV-1, IFN α 14 has proven to be the most
78 potent subtype against HIV-1 (7, 9, 10). After viral sensing via pattern recognition receptors (PRR)
79 like the Toll-like receptors (TLR) or the cytosolic DNA sensor cyclic GMP-AMP synthase (cGAS),
80 transcription and secretion of IFN-I is induced (11, 12). Binding of IFN-I to the IFN α / β -receptor
81 (IFNAR) induces signaling via the JAK/STAT-pathway and leads to the transcription of hundreds
82 of IFN-stimulated genes (ISG), such as host restriction factors or transcription factors, establishing
83 an antiviral state within the cell (11, 13). Among others, prominent members of ISGs with anti-
84 retroviral activity include ISG15 (IFN-stimulated gene 15), APOBEC3G (apolipoprotein B mRNA
85 editing enzyme, catalytic polypeptide-like 3G), tetherin, Mx-2 (Myxovirus resistance-2), SamHD1
86 (SAM domain and HD domain-containing protein 1) and IFITM1-3 (Interferon-induced
87 transmembrane protein 1-3) (14, 15).

88 In addition to the well-described induction of ISGs, it has also been shown that IFNs are able to
89 repress the expression of specific genes, termed IFN-repressed genes (IRepG), which in part are
90 essential for viral replication (16, 17). This downregulation might represent a possible defense
91 mechanism of the cell, limiting essential dependency factors for viral replication (16).

92 The replication strategy of HIV-1 involves the usage of multiple conserved splice donor and
93 acceptor sequences, which in various combinations enable the generation of more than 50 viral
94 transcript isoforms (3, 18). Balanced levels of all transcript isoforms are crucial for efficient virus
95 replication. The stability of the RNA duplex of the cellular U1 small nuclear (sn) RNA and the
96 respective splice donor site defines the intrinsic strength of a specific 5'-splice site (5'-ss) (19, 20).

97 In addition, the polypyrimidine content in the polypyrimidine tract (PPT) determines the intrinsic
98 strength of a splice acceptor or 3'-ss (21). Furthermore, a complex network of splicing regulatory

99 *cis*-elements, localized on the viral pre-mRNA, can be bound by host cell derived *trans*-acting
100 RNA-binding proteins, which decisively regulate the ratio of HIV-1 transcript isoforms (22, 23).
101 The protein family of serine/arginine-rich splicing factors (SRSF) belongs to the large family of
102 RNA binding proteins (24, 25). Members of this protein family are well known to act as cellular
103 splicing factors (24, 26). Depending on the position of their binding region within an exon or intron,
104 they can enhance or repress the usage of a specific splice site (26-28). Two main structural
105 features are conserved among all SR proteins, the protein-interacting RS-domain, which is rich in
106 arginine and serine (RS) dipeptides, and the RNA recognition motif (RRM) (25). The activity of SR
107 proteins is regulated via phosphorylation of the RS-domain through specific SR protein kinases
108 (SRPK) or other kinases like Akt (29). Furthermore, shuttling of SR proteins between cytoplasm
109 and nucleus is dependent on the phosphorylation state of the RS-domain (29). SR proteins are
110 generally characterized by their ability to interact with both RNA and protein structures
111 simultaneously (25).
112 As the founding member of the SRSF protein family, serine/arginine-rich splicing factor 1 (SRSF1),
113 formerly known as SRp30a or ASF/SF2 (30), was originally identified to promote spliceosomal
114 assembly and pre-mRNA splicing in HeLa cells (31), as well as to regulate alternative splicing of
115 the SV40 pre-mRNA (32). SRSF1 was shown to bind to the *cis*-regulatory elements ESE (exonic
116 splicing enhancer) M1/M2, ESE-GAR and ESE3 in the HIV-1 genome, facilitating the usage of
117 specific splice sites (33-35). While overexpression of SRSF1 resulted in enhanced Vpr, but
118 reduced Tat1, Gag and Env levels (36-38), knockdown increased levels of all viral RNAs indicating
119 an effect on both alternative splicing and LTR transcription (36). Thus, SRSF1 represents a key
120 regulator and host dependency factor important for efficient HIV-1 RNA processing, enabling the
121 emergence of the protein diversity necessary for efficient viral replication.
122 In this manuscript, we investigated whether the expression levels of SRSF proteins are influenced
123 by HIV-1 infection or IFN stimulation. We found that IFN- β treatment induces the repression of
124 SRSF1 in HIV-1 host cells affecting viral post integration steps. Our findings suggest, that

125 balanced levels of SRSF1 are crucial for efficient HIV-1 replication, as both higher and lower levels
126 led to severe impairments at the level of LTR transcription, alternative splicing or virus production.

127

128 **Results**

129 ***SRSF1 is significantly downregulated in HIV-1 infected patients***

130 In a previous RNA-sequencing based study we were able to demonstrate that levels of specific
131 host restriction factors, such as tetherin, Mx-2 or APOBEC3G were upregulated in the gut of HIV-1
132 infected individuals, confirming chronic inflammation (39). In order to analyze whether also host
133 dependency factors were significantly altered upon HIV-1 infection, we compared gene expression
134 levels of chronically HIV-1 infected patients, either naïve or under antiretroviral (ART) therapy,
135 with those of healthy individuals. Focusing on the expression levels of SRSF mRNAs, we found
136 significantly lower levels of *SRSF1*, *SRSF3*, *SRSF7* and *SRSF10* mRNA in chronically HIV-1
137 infected patients when compared to healthy individuals (**Fig 1a**). Furthermore, *SRSF2*, *SRSF5*
138 and *SRSF8* transcript levels were also lower in this cohort, albeit the difference was not significant
139 (**Fig 1a**). Surprisingly, we observed that gene expression of SRSF is generally restored in patients
140 under ART treatment and transcript levels of *SRSF1* were even significantly higher when
141 compared to healthy donors (**Fig 1b**). Even under ART-treatment, *SRSF3* and *SRSF10* mRNA
142 expression levels were still lower in chronically HIV-1 infected patients in contrast to healthy
143 individuals (**Fig 1b**). Transcript levels of *SRSF2* and *SRSF7* in ART-treated patients were
144 comparable to the levels observed in the healthy control group. (**Fig 1b**). A marginal but significant
145 difference in SRSF expression levels in healthy individuals and HIV-1 infected ART-treated
146 patients was also observed for *SRSF9*, however the total amount of transcripts was low abundant
147 (**Fig 1b**). In all patient groups, *SRSF12* transcript levels were only slightly above the limit of
148 detection (**Fig 1a-b**).

149 Since SRSF1 was the most significant of the differentially expressed genes in the patient groups
150 and also described to be crucially involved in HIV-1 RNA processing (36, 40), we analyzed the
151 expression profile of SRSF1 in HIV-1 infected patients at different phases of infection. For this
152 purpose, PBMCs were isolated from HIV-1 positive individuals during acute infection phase (Fiebig
153 I-V), chronic infection phase (Fiebig VI) or chronic infection phase under ART-treatment as well
154 as from HIV-1 negative donors. Total cellular RNA was isolated and subjected to RT-qPCR
155 analysis. To evaluate whether the patient cohort was representative, we analyzed *ISG15* mRNA
156 expression as a surrogate marker for ISG induction. Acutely and chronically HIV-1 infected
157 patients had strongly increased mRNA expression levels of *ISG15* in PBMCs when compared to
158 healthy individuals, indicating a virus-induced IFN signature proportional to the viral load (**S1 Fig**).
159 HIV-1 infected patients under ART-treatment showed reduced levels of *ISG15* when compared to
160 untreated HIV-1 infected individuals albeit still higher than healthy individuals (**Fig 1c**). The *ISG15*
161 expression data of our representative cohort were in line with previous observations of HIV-1
162 infection stimulating IFN induction and thus ISGs (41, 42). In order to investigate, whether
163 repression of SRSF1 correlates with ISG induction in HIV-1 infected patients, we performed an
164 SRSF1-specific RT-qPCR. For acutely and chronically HIV-1 infected patients, as well as ART-
165 treated patients, lower levels of *SRSF1* mRNA were detected in contrast to healthy donors (**Fig**
166 **1d**). In chronically infected patients, *SRSF1* levels were downregulated in the majority of the
167 patient derived samples. However, in some patients *SRSF1* mRNA levels were increased in
168 contrast to the healthy control group (**Fig 1d**), a finding which can be deduced from the fact that
169 chronically HIV-1 infected patients generally represent a heterogeneous cohort. ART-treated
170 patients represented a more homogeneous group in comparison to acutely or chronically infected
171 patients showing significantly decreased *SRSF1* mRNA levels (**Fig 1d**). In general, high induction
172 of *ISG15* was concomitant with strong repression of *SRSF1* in single individuals. Thus, we
173 discovered a possible interrelation between the downregulation of SRSF1 and the stimulation of
174 ISGs suggesting that SRSF1 might act as an IFN-repressed gene (IRepG).

175

176 **The strength of SRF1 repression is IFNa subtype dependent**

177 We previously showed that the 12 different IFNa subtypes exert different anti-viral activities in HIV-
178 1 infection. Their anti-HIV-1 potential correlated with the induction of ISGs known to be anti-viral
179 restriction factors against HIV-1 (7, 9). Thus, we tested all 12 IFNa subtypes (α1, α2, α4, α5, α6,
180 α7, α8, α10, α14, α16, α17, α21) upon their ability to repress *SRSF1* mRNA expression.

181 First, we used a luciferase reporter cell line which harbors the firefly luciferase gene under the
182 control of the IFN-inducible ISRE promotor to evaluate the biological activity of all IFNa subtypes
183 (43). All IFNa subtypes induced an increase in the luminescent signal compared to the PBS-
184 stimulated control except for IFNa1 (**S2 Fig**).

185 Next, THP-1 monocytic cells were differentiated into macrophage-like cells using phorbol 12-
186 myristate 13-acetate (PMA) and treated with different IFNa subtypes. In general, the intensity of
187 ISG15 induction reflected the intensity of the luminescent signal in the reporter cells, with the
188 exemption of IFNa8 (**Fig 2a and S2 Fig**). Subtypes IFNa2, α4, α6, α10, α14 and α17 induced the
189 strongest *ISG15* mRNA expression with a 50- to 100-fold increase when compared to the
190 unstimulated control. Treatment with IFNa5, α16 and α21 led to a moderate *ISG15* increase of
191 15- to 30-fold, while treatment with α1, α7 and α8 only led to a slightly enhanced *ISG15* mRNA
192 expression (**Fig 2a**). The strongest repression of *SRSF1* mRNA expression was observed for
193 IFNa10 and α14 with roughly 4-fold and 10-fold respectively (**Fig 2b**). The subtypes α4, α6, α7,
194 α8, α17 and α21 induced a moderate *SRSF1* mRNA repression of roughly 2-fold, while the
195 subtypes α1, α2, α5 and α16 only induced a weak downregulation of less than 2-fold (**Fig 2b**). The
196 vast majority of the tested IFNa subtypes showed a positive correlation between *ISG15* induction
197 and *SRSF1* repression (**Fig 2c**). However, IFNa14 downregulated *SRSF1* expression
198 disproportionately strong compared to the *ISG15* induction. In contrast, treatment with IFNa2, α4,
199 and α6 led to strong *ISG15* induction but comparatively moderate *SRSF1* repression.

200 In conclusion, for the majority of IFN α subtypes suppression of *SRSF1* mRNA expression
201 positively correlated with ISG induction. Generally, all IFN α subtypes induced a repression of
202 *SRSF1* mRNA, albeit to highly varying extent, with IFN α 10 and IFN α 14 being the most potent.

203

204 ***SRSF1 is an IRepG in macrophages and T-cells***

205 Next, we examined *SRSF1* expression levels in HIV-1 target cells upon IFN-treatment in a time-
206 course experiment. In our studies, we included IFN α 14, the subtype which induced the strongest
207 downregulation of *SRSF1* expression levels (**Fig 2**) and is the most potent IFN α subtype against
208 HIV-1 (7). Furthermore, we added IFN α 2, which is the IFN α subtype already clinically used for the
209 treatment of other viruses including hepatitis B virus (44). The induction of ISGs was monitored
210 using ISG15.

211 In differentiated macrophage-like THP-1 cells, we observed a strong 100- to 1000-fold induction
212 of *ISG15* mRNA expression levels after 4 h of treatment with both IFN α 2 and IFN α 14 (**Fig 3a**).
213 Treatment with IFN α 2 resulted in a 13-fold downregulation of *SRSF1* after 12 h while expression
214 levels were restored 24 h post treatment (**Fig 3b**). Treatment with IFN α 14 also resulted in a 13-
215 fold downregulation of *SRSF1* after 24 h and a long-lasting effect with a still 6-fold downregulation
216 after 48 h (**Fig 3c**). Overall IFN α 14 induced a stronger and more long-lasting repression than
217 IFN α 2 (**Fig 3b-c**).

218 In Jurkat T-cells, IFN-treatment with both IFN α subtypes led to a strong 10- to 100-fold induction
219 of *ISG15* mRNA expression levels after 4 h (**Fig 3d**) albeit less pronounced when compared to
220 the THP-1 cells (**Fig 3a**). A time-dependent significant downregulation of *SRSF1* mRNA levels
221 could be observed after treatment with both IFN α 2 and IFN α 14 (**Fig 3e-f**). Significant
222 downregulation of *SRSF1* in Jurkat T-cells already occurred after 4 to 8 h of treatment and was
223 much less pronounced than in THP-1 cells with an only about 2-fold reduction for both IFN α
224 subtypes (**Fig 3e-f**).

225 In conclusion, inversely to *ISG15* expression, *SRSF1* was downregulated in HIV-1 target cells, in
226 particular macrophage-like THP-1 cells, upon IFN-I stimulation and thus represents an IRepG.
227 In order to further analyze whether the IFN-induced reduction of *SRSF1* can also be observed on
228 the protein level, we performed Western Blot analysis of IFN-treated THP-1 cells. Both treatments
229 with IFN α 2 and IFN α 14 resulted in a decrease in *SRSF1* protein levels 36-42 h post treatment
230 (**Fig 3g**). While treatment with IFN α 2 only led to a weak repression, treatment with IFN α 14 resulted
231 in a strong downregulation of *SRSF1* protein levels (**Fig 3g**), which was in accordance to the
232 results on mRNA expression levels (**Fig 3b-c**). When compared to the mRNA levels, *SRSF1*
233 protein levels decrease with a time shift of 12 to 24 h, which might be explained by the half-life of
234 persisting mRNA and protein levels (**Fig 3h**).
235 In order to assess whether these findings can be translated to primary human cells, we analyzed
236 gene expression of *SRSF1* after treatment with IFN α 14 in primary human monocyte-derived
237 macrophages (MDMs). A strong 50- to 500-fold induction was observed for *ISG15* mRNA
238 expression levels after 4 h of treatment (**Fig 3i**). Concomitantly, a time-dependent repression of
239 *SRSF1* was detected with a significantly >2-fold downregulation of *SRSF1* mRNA levels after 8 h
240 (**Fig 3j**). Although less pronounced than in the cell culture system, IFN-mediated repression of
241 *SRSF1* mRNA expression could thus be confirmed in primary human cells.
242 To assess whether the downregulation of *SRSF1* was IFN-I specific, we included IFN γ as the only
243 member of the type II IFN family (45). Since IFN γ binds to the IFN γ receptor (IFN γ GR) and activates
244 a distinct signaling pathway (46), the IFN-regulatory factor 1 (IRF1) was chosen as a control of
245 IFN-II specific activation of the gamma interferon activation site (GAS) regulated promotor (47).
246 We used THP-1 macrophage-like cells since they showed the strongest repression of *SRSF1*
247 upon IFN-I treatment (**Fig 3b, c, e and f**).
248 Treatment with IFN γ led to a strong 100-fold induction of *IRF1* after 4 h (**Fig 3k**), but only a weak
249 (1.3-fold) reduction in *SRSF1* mRNA expression levels was detected after 8 h of IFN γ -treatment
250 (**Fig 3l**). However, the overall changes in mRNA expression were negligible when compared to

251 the effect of IFN-I treatment (**Fig 3b-c**). Additionally, a time-dependent increase in *SRSF1* mRNA
252 expression was observed after IFNy-treatment between 12 h to 48 h, resulting in significantly
253 elevated levels at 24 h and 48 h (**Fig 3I**). Overall, the repression of *SRSF1* seems to be a more
254 IFN-I specific effect.

255

256 ***SRSF1* downregulation occurs on transcriptional level**

257 To further investigate, whether the downregulation of *SRSF1* occurs on the transcriptional level,
258 we used the method of 4sU-tagging (17, 48-50). This method allows the metabolic labeling of
259 newly transcribed RNA using 4-thiouridine (4sU), enabling the subsequent purification and
260 separation of newly transcribed RNA from untagged pre-existing RNA (17, 49, 50).

261 Differentiated macrophage-like THP-1 cells were treated with IFN α 14 for 8 h or 24 h. 30 min before
262 harvesting the cells, 4sU was added at a concentration of 500 μ M. After purification and separation
263 of the freshly transcribed and biotinylated RNA using Streptavidin-coated magnetic beads,
264 changes in transcription rates were measured via RT-qPCR. The levels of newly transcribed
265 *ISG15* mRNA were strongly enhanced after both 8 h and 24 h of treatment with IFN α 14 (70-fold
266 and 440-fold compared to untreated, respectively) (**Fig 4a**). In contrast, the levels of newly transcribed
267 transcribed *SRSF1* mRNA were severely reduced after 8 h, with a reduction in relative mRNA
268 expression levels of around 10-fold when compared to the control. After 24 h, *SRSF1* mRNA
269 expression levels recovered but relative mRNA expression levels was still reduced by 2-fold when
270 compared to the control (**Fig 4b**). This data indicates that IFN-mediated *SRSF1* downregulation
271 most likely occurs on the transcriptional level.

272

273 ***HIV-1* counteracts IFN-mediated repression of *SRSF1***

274 Since *SRSF1* was identified as an IRepG in HIV-1 target cells (**Fig 3**), we were interested, whether
275 an HIV-1 infection would influence the time-dependent downregulation. Therefore, we infected

276 THP-1 macrophages with the R5-tropic HIV-1 laboratory strain NL4-3 (AD8) 16 h before IFN
277 stimulation. Treatment with IFN α 2, which led to a 13-fold downregulation in uninfected THP-1 cells
278 after 12 h, only led to a 3-fold reduction of SRSF1 mRNA upon HIV-1 infection (**Fig 4c**). In general,
279 SRSF1 repression was more pronounced in IFN α 2-treated uninfected cells compared to HIV-1
280 infected cells (**Fig 4c**). IFN α 14, which induced a long-lasting and 13-fold downregulation in non-
281 infected cells, led to an overall weaker SRSF1 mRNA repression of about 6-fold after 12 h in HIV-1
282 infected THP-1 cells (**Fig 4d**). Significantly higher SRSF1 expression levels were measured in
283 IFN α 14-treated HIV-1 infected cells after 24 h and 48 h when compared to non-infected cells (**Fig**
284 **4d**). These data suggest that HIV-1 counteracts the IFN-I-induced repression of SRSF1 in target
285 cells, restoring somewhat balanced levels for efficient viral replication.

286

287 ***HIV-1 sensing via TLR 7 and 8 is involved in the repression of SRSF1***

288 TLR 7 and TLR 8 recognize single-stranded (ss) RNA and thus detect infections of RNA viruses
289 such as HIV-1, leading to the secretion of cytokines like IFN-I (51, 52). Thus, we were further
290 interested whether RNA sensing might play a role in the downregulation of SRSF1. Therefore, we
291 tested the effect of the TLR 7/8 agonist Resiquimod (R848) on the expression level of SRSF1
292 mRNA in HIV-1 infected or uninfected THP-1 macrophages.

293 Differentiated macrophage-like THP-1 cells were infected with the R5-tropic HIV-1 laboratory
294 strain NL4-3 (AD8) or mock infected 16 h before treatment with R848 or IFN α 14. The obtained
295 results from the treatment of HIV-1 infected or mock infected THP-1 cells with IFN α 14 were
296 described in the previous section (**Fig 4d**). Treatment with R848 led to a significant repression of
297 SRSF1 mRNA levels in uninfected cells after 8 h and 24 h (2.5- and 3-fold respectively) (**Fig 4e**).
298 After 8 h, SRSF1 mRNA levels were repressed by 5-fold while after 24 h even a 6-fold
299 downregulation was detected in HIV-1 infected THP-1 cells (**Fig 4e**). Total viral mRNA levels were
300 measured to investigate the impact of IFN α 14 or R848 on viral replication. RT-qPCR was

301 performed using a primer pair amplifying a sequence in Exon 7, which is present in all viral mRNA
302 transcripts (**Fig 5**). The amount of total viral RNA was reduced roughly by 6-fold after 8 h upon
303 treatment with IFN α 14, while after 24 h total viral mRNA levels were comparable to the untreated
304 control (**Fig 4f**). Upon treatment with R848, a 14-fold reduction of total viral mRNA expression
305 levels was detected after 8 h. After 24 h, the expression levels were still repressed by roughly 2-
306 fold (**Fig 4f**). In conclusion, this data indicates that signaling pathways triggered by sensing via
307 TLR 7 and 8 are involved in the repression of SRSF1, which might mediate the reduction of HIV-
308 1 replication.

309

310 ***Knockdown of SRSF1 levels affect HIV-1 alternative splice site usage***

311 Several binding sites of SRSF1 on the viral pre-mRNA have been identified (34, 36, 53), thus
312 hinting at an important function of SRSF1 in HIV-1 RNA processing and replication. To evaluate
313 the impact of IFN-mediated repression of SRSF1 on HIV-1 replication, we transiently silenced
314 endogenous SRSF1 expression using a siRNA-based knockdown approach. After siRNA
315 knockdown, HEK293T cells were transiently transfected with the HIV-1 laboratory strain pNL4-3
316 PI952 (54). 72 h post transfection, cells and virus-containing supernatant were harvested and
317 subjected to various analyses.

318 Knockdown efficiency was verified via One-Step RT-qPCR, with siRNA inducing a knockdown of
319 the SRSF1 gene expression of >80 % when compared to the negative control siRNA (**Fig 6a**).
320 Intracellular total viral mRNA levels, measured via Exon 1 or 7 containing mRNAs which are
321 present in all viral mRNA isoforms, were slightly elevated upon SRSF1 knockdown, albeit only
322 significant for Exon 1 (**Fig 6b**).

323 Next, we analyzed the viral splicing pattern via semi-quantitative RT-PCR focusing on viral intron-
324 less 2 kb-, intron-containing 4 kb- and *tat* specific mRNA-classes. SRSF1 knockdown resulted in
325 significant alterations in the viral splicing pattern of all mRNA classes (**Fig 6c**). These alterations
326 could also be confirmed quantitatively by RT-qPCR using transcript specific primer pairs (**Fig 5**,

327 **Fig 6d-g, Table 1).** The mRNAs of *vif* and *vpr*, the former of which is particularly crucial for efficient
328 viral replication (55, 56), were significantly downregulated by 3- and 1.4-fold (**Fig 6d**). Since HIV-
329 1 depends on the viral protein Vif to counteract APOBEC3G (A3G)-mediated antiviral activity of
330 the host cell, this loss in *vif* mRNA might severely affect viral replication (14, 56, 57). While mRNA
331 levels of *tat1* were not altered, both *tat2* and *tat3* mRNAs were repressed by 4- and 2-fold
332 respectively (**Fig 6e**). Generally, the frequency of non-coding leader exons 2/3-including
333 transcripts was significantly repressed by the factor of 5 and 2, respectively (**Fig 6f**). Since the
334 levels of multiply spliced mRNAs (spliced from D4-A7) were slightly but significantly decreased by
335 1.25-fold, while levels of unspliced viral mRNAs (unspliced Intron 1) was significant increased by
336 1.4-fold (**Fig 6g**), knockdown of SRSF1 obviously shifts the ratio towards unspliced mRNAs.
337

338 **Table 1:** Primers used for RT-PCR and RT-qPCR.

Primer	Primer Sequence (5'-3')	Target
MW_1001	CATCGAGCAC GGCATCGTCA	ACTB fwd
MW_1002	TAGCACAGCC TGGATAGCAA C	ACTB rev
MW_1003	TGCACCACCA ACTGCTTA	GAPDH fwd
MW_1004	GGATGCAGGG ATGATGTT	GAPDH rev
MW_1005	GAGAGGCAGC GAACTCATCT	ISG15 fwd
MW_1006	AGGGACACCT GGAATTGTT	ISG15 rev
MW_1007	TTTGTATCGG CCTGTGTGAA TG	IRF1 fwd
MW_1008	AAGCATGGCT GGGACATCA	IRF1 rev
MW_1009	GAGATGGCAC TGGTGTGCG	SRSF1 fwd
MW_1010	TGCGACTCCT GCTGTTGCTT C	SRSF1 rev
MW_3380	CAATACTACT TCTTGTGGGT TGG	HIV-1 4kb mRNA class
MW_3384	CTTGAAAGCG AAAGTAAAGC	HIV-1 2kb-, 4kb-, tat mRNA class
MW_3323	CTGAGCCTGG GAGCTCTCTG GC	HIV-1 exon1 fwd
MW_3324	GGGATCTCTA GTTACCAGAG	HIV-1 exon1 rev
MW_3387	TTGCTCAATG CCACAGCCAT	HIV-1 exon7 fwd
MW_3388	TTTGACCACT TGCCACCCAT	HIV-1 exon7 rev
MW_3389	TTCTTCAGAG CAGACCAGAG C	HIV-1 unspliced mRNA fwd
MW_3390	GCTGCCAAAG AGTGATCTGA	HIV-1 unspliced mRNA rev
MW_3391	TCTATCAAAG CAACCCACCT C	HIV-1 multiply spliced mRNA fwd
MW_3392	CGTCCCAGAT AAGTGCTAAG G	HIV-1 2kb mRNA class
		HIV-1 multiply spliced mRNA rev

MW_3395	GGCGACTGGG ACAGCA	HIV-1 vif mRNA fwd
		HIV-1 tat2 mRNA fwd
		HIV-1 exon2 incl. mRNA fwd
MW_3396	CCTGTCTACT TGCCACAC	HIV-1 vif mRNA rev
MW_3397	CGGCGACTGA ATCTGCTAT	HIV-1 vpr mRNA fwd
		HIV-1 tat3 mRNA fwd
		HIV-1 exon3 incl. mRNA fwd
MW_3398	CCTAACACTA GGCAAAGGTG	HIV-1 vpr mRNA rev
MW_3381	CGGCGACTGA ATTGGGTGT	HIV-1 tat1 mRNA fwd
MW_3382	TGGATGCTTC CAGGGCTC	HIV-1 tat1 mRNA rev
		HIV-1 tat3 mRNA rev
		HIV-1 tat mRNA class
MW_3393	CCGCTTCTTC CTTGTTATGT C	HIV-1 exon3 incl. mRNA rev
MW_3385	CCGCTTCTTC CTTTCCAGAG G	HIV-1 exon2 incl. mRNA rev
MW_3386	ACCCAATTCT TTCCAGAGG	HIV-1 tat2 mRNA rev

339

340 Next, we were interested whether virus production would also be affected by the SRSF1
341 knockdown mediated changes in LTR transcription and alternative splicing. RT-qPCR analysis
342 with viral RNA extracted from the cellular supernatant was performed, revealing a slight increase
343 in viral copies, albeit not significant (**Fig 6h**). Since balanced levels of Vif are crucial for efficient
344 viral replication in A3G-expressing cells (56, 58, 59), we were interested whether the significantly
345 reduced levels of *vif* mRNA, caused by the siRNA-based knockdown of SRSF1, would impact viral
346 replication capacity. Therefore, we performed replication kinetics in A3G-deficient CEM-SS cells
347 (60, 61) and A3G-expressing CEM-T4 cells (62, 63) and monitored virus production by measuring
348 p24 capsid protein production (p24-CA) in the cellular supernatant. As controls, we included NL4-3
349 wildtype virus, a *vif*-deficient NL4-3 Δvif (64) and NL4-3 G_{13} -2 mut, which is characterized by
350 reduced *vif* expression (60%) due to an inactivating mutation in the guanosine run element (G run)
351 G_{13} -2 (58). As expected, in A3G low expressing cells (CEM-SS), both NL4-3 Δvif and NL4-3 G_{13} -2
352 mut were able to replicate efficiently (**Fig 6i**). In A3G-expressing CEM-T4 cells, however,
353 replication of both NL4-3 Δvif and NL4-3 G_{13} -2 mut was strongly delayed indicating a less efficient
354 viral replication capacity (**Fig 6j**). This data was in agreement with previously published data (58)

355 suggesting that reduced levels of *vif* mRNA, as triggered by low SRSF1 amounts, strongly impair
356 HIV-1 replication.

357 In conclusion, knockdown of SRSF1 disturbed the fine balance in the ratio of all HIV-1 mRNA
358 classes and predominantly altered *vif* mRNA expression. Reduced Vif levels finally resulted in an
359 impaired HIV-1 viral replication capacity in non-permissive cells.

360

361 ***Overexpression of SRSF1 levels negatively affects HIV-1 replication***

362 Furthermore, we were interested to which extend elevated SRSF1 levels would alter HIV-1 RNA
363 processing. Therefore, we transiently transfected HEK293T cells with the HIV-1 laboratory strain
364 pNL4-3 PI952 (54) and pcDNA-FLAG-SF2 (65). After 72 h, cells and virus containing supernatant
365 were harvested and analyzed as described above.

366 Relative mRNA expression levels of *SRSF1* were enhanced by multiple orders of magnitude (**Fig**
367 **7a**) and protein expression and nuclear localization was confirmed using immune fluorescence
368 microscopy (**S3 Fig**). As determined by the Exon 1 and 7 containing mRNAs, overexpressing
369 SRSF1 resulted in a significant decrease in total viral mRNA levels (2-fold) (**Fig 7b**). To further
370 analyze the effect of SRSF1 on the HIV-1 LTR promoter, cells were transiently transfected with a
371 reporter plasmid harboring the firefly luciferase gene under the control of the HIV-1 LTR promoter
372 (pTA-Luc-NL4-3). A plasmid coding for the viral transactivator Tat (pSVctat) (66) and a plasmid
373 expressing SRSF1 (pEGFP-SF2) (67) were co-transfected. SRSF1 reduced the Tat-
374 transactivated LTR promoter activity in a dose-dependent manner to 80% (0.1 µg) and 65% (0.2
375 µg) of the original activity respectively (**Fig 7c**).

376 Viral splicing patterns were analyzed via semi-quantitative RT-PCR using primers specific for
377 intron-less 2 kb-, intron-containing 4 kb- and *tat* specific mRNA-classes (**Fig 5, Table 1**).
378 Overexpression of SRSF1 resulted in significant changes in the viral splicing pattern of all HIV-1
379 mRNA classes (**Fig 7d**). Alterations in the expression of HIV-1 specific mRNAs were also

380 quantitatively confirmed by RT-qPCR using transcript specific primer pairs (**Fig 7e-h**). Levels of
381 *vif* and *vpr* mRNA were increased by more than 10-fold (**Fig 7e**) while *tat1* mRNA expression was
382 reduced by 3-fold and *tat2* and *tat3* mRNAs were upregulated by roughly 2- and 4-fold respectively
383 (**Fig 7f**). In contrast to tat-specific mRNA-isoforms, the frequency of overall exon 2 inclusion was
384 not altered upon SRSF1 overexpression. Exon 3 inclusion was reduced by roughly 3-fold (**Fig 7g**).
385 The levels of multiply spliced mRNAs were not altered, while levels of unspliced viral mRNAs,
386 measured via Intron 1-containing mRNAs, were significantly decreased by 1.6-fold (**Fig 7h**).
387 Next, we performed RT-qPCR analysis with virus extracted from the cellular supernatant and
388 found a decrease in viral copies, albeit not significant (**Fig 7i**). As determined by ELISA, the levels
389 of p24 capsid were significantly lower when compared to mock transfected cells (**Fig 7j**). TZM-bl
390 reporter cells were used to monitor infectivity of virus containing cellular supernatant harvested
391 from transfected cells, revealing a significantly lower luciferase activity upon elevated SRSF1
392 levels (**Fig 7k**). This reduced infectivity was confirmed by X-Gal staining of TZM-bl cells infected
393 with virus containing supernatants (**Fig 7l**).
394 Thus, overexpression of SRSF1 negatively affected Tat-LTR transcription and alternative splicing.
395 Although *vif* mRNA levels, crucial for efficient viral replication, were significantly increased, both
396 virus production and infectivity were significantly impaired.
397

398 **Discussion:**

399 Type I Interferons (IFNs) act as a first line of defense after viral infections (4, 5). Their mode of
400 action includes the stimulation of ISGs including HIV-1 host restriction factors (11, 13), as well as
401 the downregulation of IRepGs (16, 17), which are essential for viral replication. Together, both
402 regulatory mechanisms establish an anti-viral state in the host cell. In this study, we were able to
403 identify the cellular splicing factor SRSF1 as an IFN-I-repressed gene affecting HIV-1 post

404 integration steps. For efficient viral replication, optimal SRSF1 levels are needed, which are in a
405 narrow range.

406 SRSF1 was described as a key player in splicing regulation and gene expression of HIV-1 (33-35,
407 53, 68). Furthermore, SRSF1 was shown to have a much broader scope of action. Amongst a
408 crucial role in cellular alternative splicing (26), SRSF1 regulates genome stability (69), translation
409 (70), nuclear export (71) or the nonsense-mediated mRNA decay (NMD) pathway (72, 73). Loss
410 of SRSF1 protein function resulted in G2 cell cycle arrest and induced apoptosis (74). Moreover,
411 SRSF1 was defined as a proto-oncogene, since upregulation of SRSF1 favors the formation of a
412 variety of cancers (75-77). Thus, the IFN-mediated downregulation of SRSF1 described in this
413 manuscript might not only affect HIV-1 post integration steps, but also a variety of other cellular
414 functions. We could show that the downregulation of SRSF1 upon IFN-treatment is time-
415 dependent and after an initial repression, physiological levels are reached after different intervals
416 depending on the cell type and IFN subtype. 4sU-labeling and isolation of newly transcribed RNA
417 revealed the IFN-mediated repression of SRSF1 to result from an almost complete transcriptional
418 shutdown of the SRSF1 gene. However, the exact mechanism how IFN-I induce this shutdown
419 remains yet to be elucidated. A conceivable alternative or addition to a transcriptional shutdown
420 could be the induction of an early RNA degradation mechanism. Since protein levels were reduced
421 12-24 h post RNA reduction, the role of host-mediated post-translational modifications (PTM)
422 leading to protein degradation are unlikely. A prolonged SRSF1 downregulation is detrimental for
423 a variety of cellular mechanisms and to guarantee balanced levels, SRSF1 was shown to maintain
424 homeostasis through negative splicing feedback (29, 78). This autoregulatory mechanism will
425 most likely also be responsible for the rapid upregulation that occurs immediately after the trough
426 level of SRSF1 is reached.

427 Since expression levels of SRSF1 were repressed to a much higher extent in THP-1 macrophages
428 than in Jurkat T-cells, the magnitude of SRSF1 repression seems to underlie cell type specific

429 characteristics. Importantly, we were also able to confirm our cell culture derived results using
430 primary cells.

431 During our initial screen, we investigated differences in the expression levels of SRSF transcripts
432 between healthy and HIV-1-infected individuals. Upon HIV-1 infection, specific SRSF transcript
433 levels and in particular SRSF1 were significantly lower in LPMCs and PBMCs when compared to
434 healthy individuals (**Fig 1**). Since we have shown that IFN treatment has a direct effect on the
435 downregulation of SRSF1, elevated IFN-I levels as a consequence of the HIV-1 induced chronic
436 inflammation might play a key role.

437 Based on the increased ISG levels in acutely and chronically infected HIV-1 positive individuals,
438 we confirmed both our patient cohorts as being representative. Furthermore, our findings suggest
439 a direct correlation between the expression levels of ISGs including HIV-1 restriction factors and
440 the expression levels of the cellular splicing factor SRSF1 in a physiological setting. In ART-treated
441 patients, we observed that this difference could be reversed. A slight, non-significant increase was
442 even observed, hence, currently we cannot exclude the possibility of ART-treatment having an
443 influence on the transcript levels of SRSF1 or SRSF in general. Interestingly, it has been shown
444 that more than 4000 genes are differentially expressed upon ART and that the IFN-induced JAK-
445 STAT signaling pathway and several ISGs were downregulated following ART-treatment (79).
446 However, whether this effect appears to be due to a decrease in inflammation or a direct effect of
447 the administered substances needs further investigation.

448 While several IFN α subtypes elicit an antiviral activity suppressing HIV-1 infection, IFN α 14 showed
449 the most potent anti-HIV-1 activity of all subtypes both in PBMCs and LPMCs (7, 9). In an *in vivo*
450 humanized mouse model, it was shown that combined treatment of ART and IFN α 14 led to a more
451 efficient suppression in HIV-1 plasma viral load (10, 80). While a clinical study to test a concomitant
452 administration of ART and IFN α 2 has been carried out
453 (<https://clinicaltrials.gov/ct2/show/results/NCT02227277>), a benefit of subtype IFN α 14 when
454 compared to IFN α 2 for a potential use in therapy could be a higher effectiveness and fewer side

455 effects (81). The IFN-I-induced repression of SRSF1 expression was IFN subtype specific, with
456 IFN α 14 inducing the strongest downregulation of all IFN α subtypes. Furthermore, we suggest that
457 SRSF1 repression is an IFN-I specific effect, since treatment with IFN γ only led to a negligible
458 repression in THP-1 macrophages when compared to IFN α 2 or IFN α 14.

459 SRSF1 consists of two RRM, providing the RNA-binding specificity, and a relatively short RS-
460 domain (25). The purine-rich pentamer GGAGA was identified as SRSF1 binding consensus motif
461 via *in vivo* mapping (82, 83), with SRSF1 mainly binding in exonic splicing enhancer (ESE) regions
462 although interestingly introns contain a high number of potential binding sites (25). Several binding
463 sites of SRSF1 on the viral pre-mRNA have been identified (34, 36, 53) thus hinting at an important
464 function of SRSF1 in HIV-1 RNA processing and replication.

465 Altered levels of SRSF1 have been shown to induce significant changes in HIV-1 LTR transcription
466 (84). In agreement, we could confirm that overexpression of SRSF1 led to a significant reduction
467 of total viral mRNA levels, while a siRNA-induced knockdown increased viral mRNA expression
468 indicating a direct effect of SRSF1 on HIV-1 LTR transcription. Furthermore, alternative splicing
469 was crucially affected by different SRSF1 levels. Both overexpression and knockdown led to
470 significant alterations in the ratio of multiply spliced to unspliced mRNAs. Multiply spliced mRNAs
471 are characterized by splicing from donor splice site D4 to acceptor splice site A7. The exonic
472 splicing enhancer ESE3 is involved in the regulation of A7 usage and a known target of SRSF1
473 (35). Thus, altered levels of SRSF1 might affect splicing events occurring at A7. Inclusion of leader
474 exons 2 and 3 significantly changed with altered levels of SRSF1, possibly indicating a direct effect
475 of SRSF1 on splice acceptor A5. Both mRNA isoforms rely on the usage of A5, which is regulated
476 by the bidirectional splicing enhancer and known target of SRSF1 ESE GAR (34).

477 While *vif* and *vpr* mRNA were significantly reduced upon SRSF1 knockdown, both mRNAs were
478 strongly induced upon higher levels of SRSF1. Both accessory proteins Vif and Vpr play a crucial
479 role in viral replication. While Vif counteracts the host restriction factor APOBEC3G enabling viral
480 replication in non-permissive cells, Vpr is a multifunctional protein that amongst other purposes

481 transports the pre-integration complex into the nucleus for viral integration or induces G2 cell cycle
482 arrest, which enables the highest transcriptional activity of the HIV-1 LTR promoter (57, 85). *Vif*
483 mRNA is spliced from D1 to A1, while *vpr* mRNA is spliced from D1 to A2 (3). Splice site A1 is
484 regulated by the SRSF1-bound exonic splicing enhancer ESE M1/M2 (33). In presence of high
485 SRSF1 levels, ESE M1/M2 facilitates the recognition of exon 2. Furthermore, cross-exon
486 interactions between A1 and D2 (*vif* mRNA) and A2 and D3 (*vpr* mRNA) play a crucial role in the
487 formation of the respective mRNAs (3, 58). In addition, further binding sites for SRSF1 on the HIV-
488 1 pre-mRNA, as has been predicted *in silico* by the computational algorithm HEXplorer (86), might
489 influence balanced HIV alternative splicing.

490 Interestingly, a HIV-1 infection counteracted the IFN-I-induced downregulation of SRSF1 for both
491 treatments with IFN α 2 and IFN α 14. These findings hint to a crucial role of SRSF1 in HIV-1
492 replication and in particular post integration steps. Since treatment with TLR7/8 agonist R848
493 induced a similar mRNA expression pattern of SRSF1 than treatment with IFN α 14, an involvement
494 of viral sensing in the alteration of SRSF1 expression levels is indicated. TLR 7/8 signal through
495 the MyD88-mediated IFN-regulatory factor (IRF) and NF- κ B signaling pathways, stimulating the
496 production of inflammatory cytokines and IFN-I (51, 87-91). Interestingly, the tendency of a
497 concomitant HIV-1 infection to counteract SRSF1 repression upon treatment with IFN α 14 could
498 not be observed for the treatment with R848.

499 HIV infections through the mucosal route are frequently initiated by a single or a small quantity of
500 transmitted founder viruses (TFV), which are relatively resistant to IFNs. Although IFN resistance
501 has been linked to viral adaptations, specific viral properties that renders TFV IFN resistant is
502 elusive. Roughly, 80% of all HIV-1 transmission events are established from a TFV (92). The
503 genomic organization of HIV-1 TFV is generally comparable to the commonly used HIV-1 lab strain
504 NL4-3 in terms of the used donor and acceptor splice sites. The usage of the specific splice sites
505 however is strongly altered in many, but not all TFV (93). Here, analysis of the effect of altered

506 levels of SRSF1 on LTR transcription and alternative splicing could give further insight into the
507 ability of TFV to establish a successful HIV-1 transmission.

508 Reduced levels of *vif* mRNA, as observed upon knockdown of SRSF1, led to a significant
509 impairment of virus replication. Elevated levels of SRSF1, which led to strongly increased levels
510 of *vif* mRNA concomitantly reduced p24-CA levels. It has been also shown that high levels of Vif
511 might inhibit viral infectivity by impaired proteolytic Gag precursor processing (94). In conclusion,
512 balanced levels of Vif are required for efficient viral replication, which is in accordance to previously
513 published data (55).

514 CEM-SS cells lack expression of A3G and several other host restriction factors, which counteract
515 HIV-1 replication (56), and thus have a permissive phenotype allowing the replication of *vif*-
516 deficient HIV-1 virus. The cell line CEM-T4 heterogeneously expresses A3G and acts as a semi-
517 permissive cell line (62, 63) allowing both NL4-3 Δvif (64) and NL4-3 G_{I₃}-2 mut to replicate, albeit
518 with a strong delay in time when compared to the CEM-SS cells. Most likely, virus replication
519 occurs in a subpopulation of cells that express no or low A3G levels.

520 In agreement with our data, SRSF1 in high concentrations was shown to block Tat-mediated LTR
521 transcription by competing with the viral protein Tat for an overlapping binding sequence within
522 the trans-activation response element (TAR) region. However, in the absence of Tat, SRSF1
523 increased the basal levels of HIV-1 transcription (40).

524 An interesting question that remains is whether drug targeting of SRSF1 would result in viral
525 inhibition. The drug IDC16 was shown to block the replication of X4 and R5 tropic viruses, as well
526 as clinical isolates via direct interaction with SRSF1 (95). The indole derivative can significantly
527 influence splice enhancer activity of SRSF1 and impair splicing of HIV-1 pre-mRNA, thereby
528 preventing the formation of multiple spliced mRNA isoforms and the expression of the early
529 proteins Tat, Rev and Nef. However, because of the numerous influences on essential cellular
530 processes, it is unlikely that such a drug will be used to treat HIV-1 infections.

531 In summary, our work shows that IFNs, in addition to the induction of antiviral genes, can also
532 downregulate host factors which has a decisive influence on the early HIV-1 replication.

533

534 **Material and methods**

535 Cell culture, transient transfection and treatment

536 HEK293T, TZM-bl, Vero and ISRE-Luc reporter cells were maintained in Dulbecco's modified
537 Eagle medium (Gibco) supplemented with 10% (v/v) heat-inactivated fetal calf serum (FCS) and
538 1% (v/v) Penicillin-Streptomycin (P/S, 10.000 U/ml, Gibco). Jurkat, CEM-SS, CEM-T4 and THP-1
539 cells were maintained in Roswell Park Memorial Institute (RPMI) 1640 medium (Gibco)
540 supplemented with 10% (Jurkat, CEM-SS and CEM-T4) or 20% (THP-1) (v/v) heat-inactivated
541 fetal calf serum (FCS) and 1% (v/v) Penicillin-Streptomycin (10.000 U/ml, Gibco). THP-1
542 monocytes were treated with 100 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 5 days to
543 differentiate into macrophage-like cells. Differentiation was monitored via cell morphology and
544 adhesion.

545 Transient transfection experiments were performed in six-well plates at 2.5×10^5 HEK 293 T cells
546 per well using TransIT[®]-LT1 transfection reagent (Mirus Bio LLC) according to the manufacturer's
547 instructions unless indicated.

548 IFNa subtypes were produced as previously described (7), IFNy was purchased from PBL assay
549 science (Piscataway, US). For the stimulation with IFN, 10 ng/ml of the respective IFN was added
550 in fresh medium to the cells. The cells were then incubated at 37°C and 5% CO₂ for the indicated
551 amount of time before being harvested. Treatment with Resiquimod (R848) (Invivogen) was
552 carried out at a final concentration of 30 µM for the indicated amount of time.

553

554 RNA isolation, quantitative and semi-quantitative RT-PCR

555 The cells were harvested and total RNA was isolated using RNeasy Mini Kit (Qiagen) according
556 to the manufacturer's instructions. RNA concentration and quality was monitored via photometric
557 measurement using NanoDrop2000c (Thermo Scientific). For reverse transcription (RT) 1 µg RNA
558 was digested with 2 U of DNase I (NEB). After heat inactivation of the DNase at 70 °C for 5 min,
559 cDNA synthesis for infection experiments was performed for 60 min at 50 °C and 15 min at 72 °C
560 using 200 U SuperScript III Reverse Transcriptase (Invitrogen), 40 U RNase Inhibitor Human
561 Placenta (NEB), 50 pmol Oligo d(T)23 (NEB) and 10 pmol Deoxynucleotide Triphosphate Mix
562 (Promega). For all other experiments, cDNA synthesis was performed for 60 min at 42 °C and 5
563 min at 80 °C using ProtoScript II First Strand cDNA synthesis kit (NEB) according to the
564 manufacturer's instructions. Quantitative RT-PCR analysis was performed using Luna® Universal
565 qPCR Master Mix (NEB) and Rotor-Gene Q (Qiagen). Primers used for qPCR are listed in Table
566 1. ACTB or GAPDH were used as loading control for normalization. For qualitative analysis of
567 HIV-1 mRNAs, PCR was performed using GoTaq G2 DNA Polymerase (Promega) according to
568 the manufacturer's instructions. PCR products were separated on non-denaturing polyacrylamide
569 gels (12 %), stained with Midori green Advanced DNA stain (Nippon Genetics) and visualized with
570 ADVANCED Fluorescence and ECL Imager (Intas Science Imaging).

571
572 IFN-activity assay in RPE ISRE-luc reporter cell line
573 A reporter cell line of human retinal pigment epithelial (RPE) cells, stably transfected with a
574 plasmid containing the firefly luciferase reporter gene under the control of the IFN-stimulated
575 response element (ISRE), was used to determine the activity of the different IFN α -subtypes (7).
576 Cells were seeded at 1.5×10^5 cells per well in 12-well-plates and incubated overnight. The next
577 day, cells were stimulated with 10 ng/ml of the respective IFN α subtype for 5 h. Cells were then
578 lysed with Passive lysis buffer (Promega) and frozen at -80 °C overnight. After thawing, lysates
579 were spun down and transferred to a white F96 Microwell plate (Nunc) before adding firefly

580 luciferase substrate. Luminescent signal was measured using the GloMax® Multi Detection
581 System (Promega).

582

583 Preparation of virus stocks, infection and replication kinetics

584 For the preparation of virus stocks, 6.5×10^6 HEK293T cells were seeded in T175 flasks coated
585 with 0.1% gelatin solution. The next day, cells were transiently transfected with 19 μ g pNL4-3 or
586 the respective proviral DNA using TransIT®-LT1 transfection reagent (Mirus Bio LLC) according to
587 the manufacturer's instructions. After 24 h the cells were supplemented with Iscove's Modified
588 Dulbecco's Medium (IMDM, 10% (v/v) FCS, 1% (v/v) P/S) and incubated again overnight. The
589 virus containing supernatant was then purified by filtration through 0.30 μ m MACS SmartStrainers
590 (Miltenyi Biotec), aliquoted and stored at -80 °C. Differentiated THP-1 cells and Jurkat cells were
591 infected with the R5-tropic NL4-3 (AD8) (MOI, 1) or the dual tropic NL4-3 PI952 (MOI, 1)
592 respectively with a spin-inoculation for 2 h at 1,500xg. 16 h post infection, indicated treatments
593 were carried out. CEM-SS and CEM-T4 cells were infected as previously described (63). Virus
594 production was monitored via p24-CA ELISA.

595

596 Protein isolation and Western Blot

597 For protein isolation, cells were lysed with RIPA buffer (25 mM Tris HCl [pH 7.6], 150 mM NaCl,
598 1% NP-40, 1% sodium deoxycholate, 0.1% SDS, protease inhibitor cocktail [Roche]). The lysates
599 were subjected to SDS-PAGE under denaturing conditions in 12% polyacrylamide gels using Bio-
600 Rad Mini PROTEAN electrophoresis system (Bio-Rad). Gels were run for 90 min at 120 V in TGS-
601 running buffer (25 mM Tris, 192 mM glycine, 0.1 % SDS (v/v)). NC-membrane (pore size 0.45
602 mm) was used for protein transfer using Bio-Rad Mini PROTEAN blotting system (Bio-Rad).
603 Proteins were transferred for 1 h at 300 mA in transfer buffer (25 mM Tris, 192 mM glycine, 20%
604 MeOH (v/v)). The membrane was blocked in TBS-T (20 mM Tris-HCl, 150 mM NaCl, 0.1 % Tween-
605 20 (v/v) [pH 7.5]) with 5 % nonfat dry milk for 1 h at RT and then incubated overnight at 4°C with

606 the primary antibody in TBS-T including 0.5 % nonfat dry milk. The membrane was washed three
607 times for 10 min in TBS-T. The horseradish peroxidase (HRP) conjugated secondary antibody
608 was added in TBS-T including 0.5 % nonfat dry milk and incubated for 1 h at RT. The membrane
609 was washed 5 times for 12 min with TBS-T before ECL chemiluminescent detection reagent
610 (Amersham) was added and read-out was performed with ADVANCED Fluorescence and ECL
611 Imager (Intas). The following primary antibodies were used: Mouse antibody specific for SRSF1
612 (32-4500) from Invitrogen (Carlsbad, CA) and rabbit antibody specific for GAPDH (EPR16891)
613 from Abcam (United Kingdom). The following horseradish peroxidase (HRP) conjugated
614 secondary antibodies were used: anti-mouse HRP conjugate (315-035-048) from Jackson
615 Immunoresearch Laboratories Inc. (West Grove, PA) and anti-rabbit HRP conjugate (ab97051)
616 from Abcam (United Kingdom).

617

618 p24-CA ELISA

619 For the quantification of HIV-1 p24-CA a twin-site sandwich ELISA was performed as previously
620 described (55). Briefly, Immuno 96 MicroWell plates (Nunc) were coated with α -p24 polyclonal
621 antibody (7.5 μ g/ml of D7320, Aalto Bio Reagents) in bicarbonate coating buffer (NaHCO₃, 100
622 mM, pH 8.5) overnight at room temperature. The plates were washed with TBS and blocked with
623 2 % non-fat dry milk powder in TBS for 1 h at room temperature. Empigen zwitterionic detergent
624 (Sigma) was added to the samples for inactivation of HIV-1 and incubated for 30 min at 56 °C.
625 Capturing of p24 and subsequent washing was carried out according to the manufacturer's
626 instructions (Aalto Bio Reagents). An alkaline phosphatase-conjugated α -p24 monoclonal
627 antibody (BC1071 AP, Aalto Bio Reagents) was used for quantification of p24. Readout was
628 performed with the Spark® Microplate Reader (Tecan). Recombinant p24 was used to establish a
629 p24 calibration curve.

630

631 TZM-bl Luc assay and X-Gal staining

632 4,000 TZM-bl cells were seeded per well in 96-well plates and incubated overnight. 100 μ l of
633 supernatant was added to the cells and the plates were incubated for 48 h. For the luciferase
634 assay, 50 μ l lysis juice (p.j.k) was added after washing the plates with PBS and the plates were
635 shaken for 15 min at room temperature. Next, the plates were frozen for at least 1.5 h at -80 °C
636 before being thawed. Lysates were resuspended and transferred to a white F96 Microwell plate
637 (Nunc) for luminescent readout. 100 μ l beetle juice (p.j.k) was added per well and luminescence
638 was measured with the Spark® Microplate Reader (Tecan) at an integration time of 2 s. For the X-
639 Gal staining, cells were washed with PBS and fixed in 0.06 % glutaraldehyde and 0.9 %
640 formaldehyde for 10 min at 4 °C. Cells were washed twice with PBS and staining solution was
641 added containing 400 mM K₃[Fe(CN)₆], 400 mM K₄[Fe(CN)₆], 100 mM MgCl₂ and 20 mg/ml X-Gal.
642 Cells were incubated overnight at 37 °C and overlayed with 50 % glycerol. Read-out was
643 performed optically with light-microscopy.

644

645 Measurement of HIV-1 replication kinetics

646 400,000 CEM-SS or CEM-T4 cells were infected with 1.6 ng of p24-CA of wildtype or mutant
647 NL4-3 virus in serum-free RPMI medium (Invitrogen) at 37 °C. 6 h post infection, cells were
648 washed and resuspended in complete RPMI medium. Aliquots of cell-free supernatant were
649 harvested at indicated time points and p24-levels were measured via capture ELISA (see above).

650

651 siRNA based knockdown

652 HEK293T cells were transiently transfected with the indicated siRNA at a final concentration of 8
653 nM using Lipofectamine 2000 (Thermo Scientific) according to the manufacturer's instructions.
654 The following siRNAs were used in this study: Silencer Select Negative Control #2 siRNA (Thermo
655 Scientific) for the control siRNA and s12727 (Thermo Scientific) for SRSF1-specific siRNA.

656

657 4sU-tagging

658 Differentiated THP-1 cells were treated for 30 min with 4sU (Sigma Aldrich) at a final concentration
659 of 500 μ M for metabolic labeling of newly transcribed RNA following treatment with IFN α 14 for the
660 indicated amount of time. Labeling, purification and separation of freshly transcribed RNA was
661 carried out as described elsewhere (50). Newly transcribed RNA concentration and quality was
662 measured using NanoDrop2000c (Thermo Scientific).

663

664 LTR-Luc plasmids

665 The LTR promoter of the HIV-1 laboratory strain pNL4-3 was cloned into the pTA-Luc backbone
666 (Clontech) and is henceforth referred to as pTA-Luc-NL4-3. This plasmid encodes the firefly
667 luciferase gene under the control of the cloned insert, allowing the measurement of the relative
668 light units as direct correlation to the activity of the respective promotor. 100,000 Vero cells were
669 seeded per well in 12-well plates and incubated overnight. Cells were then transiently transfected
670 1 μ g pTA-Luc-NL4-3 and different amounts of pEGFP-SF2 using TransIT[®]-LT1 transfection
671 reagent (Mirus Bio LLC) according to the manufacturer's instructions. 24 h post transfection, cells
672 were lysed using 350 μ l Promega GloLysis buffer (Promega) One freeze and thaw cycle was
673 performed before lysates were harvested using a rubber policeman and centrifuged at 13,000 rpm
674 at 4 °C for 10 min. 50 μ l of the cleared lysate was transferred to a white Nunc F96 Microwell plate
675 (Nunc) for luminescent readout. 100 μ l beetle juice (p.j.k.) was added per well luminescence was
676 measured with the GloMax Discover (Promega) at an integration time of 10 s.

677

678 PBMC isolation

679 Peripheral blood mononuclear cells (PBMCs) were isolated from whole blood samples by Ficoll
680 density gradient centrifugation using LeucoSEP tubes (Greiner Bio-One) as described previously
681 (96). RNA of isolated PBMCs was harvested as described above. This study has been approved
682 by the Ethics Committee of the Medical Faculty of the University of Duisburg-Essen (14-6155-BO,

683 16-7016-BO, 19-8909-BO). Form of consent was not obtained since the data were analyzed
684 anonymously.

685

686 **Statistical analysis**

687 If not indicated differently, all experiments were repeated in three independent replicates.
688 Statistical significance compared to untreated control was determined using unpaired student's t-
689 test. Asterisks indicated p-values as * (p<0.05), ** (p<0.01), *** (p<0.005) and **** (p<0.0001).

690

691 **Acknowledgements**

692 We thank Christiane Pallas for excellent technical assistance. These studies were funded by the
693 DFG (WI 5086/1-1; SU1030/1-2), the Jürgen-Manchot-Stiftung (H.S., M.W.), and the Medical
694 Faculty of the University of Duisburg-Essen (H.S, K.S.). We thank Heiner Schaal for providing
695 plasmid pSVctat (66) and Mirko Trilling for fruitful discussions. The following reagents were
696 obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, NIAID,
697 NIH: TZM-bl cells from Dr. John C Kappes and Dr. Xiaoyun Wu. The following plasmids were
698 obtained from Addgene: pEGF-SF2 (67) and pcDNA-FLAG-SF2 (65). The authors thank the
699 Jürgen-Manchot-Stiftung for the doctoral fellowship of Helene Sertznig. This study has been
700 approved by the Ethics Committee of the Medical Faculty of the University of Duisburg-Essen (14-
701 6155-BO, 16-7016-BO, 19-8909-BO). Form of consent was not obtained since the data were
702 analyzed anonymously. The funders had no role in study design, data collection and analysis,
703 decision to publish, or preparation of the manuscript.

704

705 **Competing interests**

706 The authors declare that they have no competing interests.

707

708 References

- 709 1. Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, et al. Identification of host
710 proteins required for HIV infection through a functional genomic screen. *Science*. 2008;319(5865):921-6.
- 711 2. Stoltzfus CM. Chapter 1. Regulation of HIV-1 alternative RNA splicing and its role in virus
712 replication. *Advances in virus research*. 2009;74:1-40.
- 713 3. Sertznig H, Hillebrand F, Erkelenz S, Schaal H, Widera M. Behind the scenes of HIV-1 replication:
714 Alternative splicing as the dependency factor on the quiet. *Virology*. 2018;516:176-88.
- 715 4. Katze MG, He Y, Gale M, Jr. Viruses and interferon: a fight for supremacy. *Nat Rev Immunol*.
716 2002;2(9):675-87.
- 717 5. Lee AJ, Ashkar AA. The Dual Nature of Type I and Type II Interferons. *Front Immunol*. 2018;9:2061.
- 718 6. Gibbert K, Schlaak JF, Yang D, Dittmer U. IFN-alpha subtypes: distinct biological activities in anti-
719 viral therapy. *Br J Pharmacol*. 2013;168(5):1048-58.
- 720 7. Lavender KJ, Gibbert K, Peterson KE, Van Dis E, Francois S, Woods T, et al. Interferon Alpha
721 Subtype-Specific Suppression of HIV-1 Infection In Vivo. *J Virol*. 2016;90(13):6001-13.
- 722 8. Sutter K, Dickow J, Dittmer U. Interferon alpha subtypes in HIV infection. *Cytokine Growth Factor
723 Rev*. 2018;40:13-8.
- 724 9. Harper MS, Guo K, Gibbert K, Lee EJ, Dillon SM, Barrett BS, et al. Interferon-alpha Subtypes in an
725 Ex Vivo Model of Acute HIV-1 Infection: Expression, Potency and Effector Mechanisms. *PLoS pathogens*.
726 2015;11(11):e1005254.
- 727 10. Sutter K, Lavender KJ, Messer RJ, Widera M, Williams K, Race B, et al. Concurrent administration
728 of IFNalpha14 and cART in TKO-BLT mice enhances suppression of HIV-1 viremia but does not eliminate
729 the latent reservoir. *Scientific reports*. 2019;9(1):18089.
- 730 11. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. *Nature reviews Immunology*.
731 2014;14(1):36-49.
- 732 12. Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune
733 sensor of HIV and other retroviruses. *Science*. 2013;341(6148):903-6.
- 734 13. Stark GR, Kerr IM, Williams BR, Silverman RH, Schreiber RD. How cells respond to interferons. *Annu
735 Rev Biochem*. 1998;67:227-64.
- 736 14. Doyle T, Goujon C, Malim MH. HIV-1 and interferons: who's interfering with whom? *Nature reviews Microbiology*. 2015;13(7):403-13.
- 738 15. Okumura A, Lu G, Pitha-Rowe I, Pitha PM. Innate antiviral response targets HIV-1 release by the
739 induction of ubiquitin-like protein ISG15. *Proc Natl Acad Sci U S A*. 2006;103(5):1440-5.
- 740 16. Megger DA, Philipp J, Le-Trilling VTK, Sitek B, Trilling M. Deciphering of the Human Interferon-
741 Regulated Proteome by Mass Spectrometry-Based Quantitative Analysis Reveals Extent and Dynamics of
742 Protein Induction and Repression. *Frontiers in immunology*. 2017;8:1139.
- 743 17. Trilling M, Bellora N, Rutkowski AJ, de Graaf M, Dickinson P, Robertson K, et al. Deciphering the
744 modulation of gene expression by type I and II interferons combining 4sU-tagging, translational arrest and
745 in silico promoter analysis. *Nucleic acids research*. 2013;41(17):8107-25.
- 746 18. Ocwieja KE, Sherrill-Mix S, Mukherjee R, Custers-Allen R, David P, Brown M, et al. Dynamic
747 regulation of HIV-1 mRNA populations analyzed by single-molecule enrichment and long-read sequencing.
748 *Nucleic acids research*. 2012;40(20):10345-55.
- 749 19. Kammler S, Leurs C, Freund M, Krummheuer J, Seidel K, Tange TO, et al. The sequence
750 complementarity between HIV-1 5' splice site SD4 and U1 snRNA determines the steady-state level of an
751 unstable env pre-mRNA. *RNA*. 2001;7(3):421-34.
- 752 20. Freund M, Asang C, Kammler S, Konermann C, Krummheuer J, Hipp M, et al. A novel approach to
753 describe a U1 snRNA binding site. *Nucleic acids research*. 2003;31(23):6963-75.

754 21. Smith CW, Chu TT, Nadal-Ginard B. Scanning and competition between AGs are involved in 3' splice
755 site selection in mammalian introns. *Molecular and cellular biology*. 1993;13(8):4939-52.

756 22. Barash Y, Calarco JA, Gao W, Pan Q, Wang X, Shai O, et al. Deciphering the splicing code. *Nature*.
757 2010;465(7294):53-9.

758 23. Wang Z, Burge CB. Splicing regulation: from a parts list of regulatory elements to an integrated
759 splicing code. *RNA*. 2008;14(5):802-13.

760 24. Manley JL, Tacke R. SR proteins and splicing control. *Genes Dev*. 1996;10(13):1569-79.

761 25. Shepard PJ, Hertel KJ. The SR protein family. *Genome Biol*. 2009;10(10):242.

762 26. Zhou Z, Fu XD. Regulation of splicing by SR proteins and SR protein-specific kinases. *Chromosoma*.
763 2013;122(3):191-207.

764 27. Erkelenz S, Mueller WF, Evans MS, Busch A, Schoneweis K, Hertel KJ, et al. Position-dependent
765 splicing activation and repression by SR and hnRNP proteins rely on common mechanisms. *RNA*.
766 2013;19(1):96-102.

767 28. Fu XD, Ares M, Jr. Context-dependent control of alternative splicing by RNA-binding proteins.
768 *Nature reviews Genetics*. 2014;15(10):689-701.

769 29. Goncalves V, Jordan P. Posttranscriptional Regulation of Splicing Factor SRSF1 and Its Role in
770 Cancer Cell Biology. *Biomed Res Int*. 2015;2015:287048.

771 30. Manley JL, Krainer AR. A rational nomenclature for serine/arginine-rich protein splicing factors (SR
772 proteins). *Genes & development*. 2010;24(11):1073-4.

773 31. Krainer AR, Mayeda A, Kozak D, Binns G. Functional expression of cloned human splicing factor
774 SF2: homology to RNA-binding proteins, U1 70K, and *Drosophila* splicing regulators. *Cell*. 1991;66(2):383-
775 94.

776 32. Ge H, Manley JL. A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-
777 mRNA in vitro. *Cell*. 1990;62(1):25-34.

778 33. Kammler S, Otte M, Hauber I, Kjems J, Hauber J, Schaal H. The strength of the HIV-1 3' splice sites
779 affects Rev function. *Retrovirology*. 2006;3:89.

780 34. Caputi M, Freund M, Kammler S, Asang C, Schaal H. A bidirectional SF2/ASF- and SRp40-dependent
781 splicing enhancer regulates human immunodeficiency virus type 1 rev, env, vpu, and nef gene expression.
782 *Journal of virology*. 2004;78(12):6517-26.

783 35. Staffa A, Cochrane A. Identification of positive and negative splicing regulatory elements within
784 the terminal tat-rev exon of human immunodeficiency virus type 1. *Molecular and cellular biology*.
785 1995;15(8):4597-605.

786 36. Jablonski JA, Caputi M. Role of cellular RNA processing factors in human immunodeficiency virus
787 type 1 mRNA metabolism, replication, and infectivity. *Journal of virology*. 2009;83(2):981-92.

788 37. Jacquet S, Decimo D, Muriaux D, Darlix JL. Dual effect of the SR proteins ASF/SF2, SC35 and 9G8
789 on HIV-1 RNA splicing and virion production. *Retrovirology*. 2005;2:33.

790 38. Ropers D, Ayadi L, Gattoni R, Jacquet S, Damier L, Branlant C, et al. Differential effects of the SR
791 proteins 9G8, SC35, ASF/SF2, and SRp40 on the utilization of the A1 to A5 splicing sites of HIV-1 RNA. *J Biol
792 Chem*. 2004;279(29):29963-73.

793 39. Dillon SM, Guo K, Austin GL, Gianella S, Engen PA, Mutlu EA, et al. A compartmentalized type I
794 interferon response in the gut during chronic HIV-1 infection is associated with immunopathogenesis.
795 *AIDS*. 2018;32(12):1599-611.

796 40. Paz S, Krainer AR, Caputi M. HIV-1 transcription is regulated by splicing factor SRSF1. *Nucleic Acids
797 Res*. 2014;42(22):13812-23.

798 41. Li Y, Sun B, Esser S, Jessen H, Streeck H, Widera M, et al. Expression Pattern of Individual IFNA
799 Subtypes in Chronic HIV Infection. *Journal of interferon & cytokine research : the official journal of the
800 International Society for Interferon and Cytokine Research*. 2017;37(12):541-9.

801 42. Deeks SG, Tracy R, Douek DC. Systemic effects of inflammation on health during chronic HIV
802 infection. *Immunity*. 2013;39(4):633-45.

803 43. Zimmermann A, Trilling M, Wagner M, Wilborn M, Bubic I, Jonjic S, et al. A cytomegaloviral protein
804 reveals a dual role for STAT2 in IFN-{gamma} signaling and antiviral responses. *J Exp Med.* 2005;201(10):1543-53.

805 44. Antonelli G, Scagnolari C, Moschella F, Proietti E. Twenty-five years of type I interferon-based
806 treatment: a critical analysis of its therapeutic use. *Cytokine Growth Factor Rev.* 2015;26(2):121-31.

807 45. Billiau A, Matthys P. Interferon-gamma: a historical perspective. *Cytokine Growth Factor Rev.* 2009;20(2):97-113.

808 46. Bhat MY, Solanki HS, Advani J, Khan AA, Keshava Prasad TS, Gowda H, et al. Comprehensive
809 network map of interferon gamma signaling. *J Cell Commun Signal.* 2018;12(4):745-51.

810 47. Pine R, Decker T, Kessler DS, Levy DE, Darnell JE, Jr. Purification and cloning of interferon-
811 stimulated gene factor 2 (ISGF2): ISGF2 (IRF-1) can bind to the promoters of both beta interferon- and
812 interferon-stimulated genes but is not a primary transcriptional activator of either. *Mol Cell Biol.* 1990;10(6):2448-57.

813 48. Melvin WT, Milne HB, Slater AA, Allen HJ, Keir HM. Incorporation of 6-thioguanosine and 4-
814 thiouridine into RNA. Application to isolation of newly synthesised RNA by affinity chromatography. *Eur J
815 Biochem.* 1978;92(2):373-9.

816 49. Windhager L, Bonfert T, Burger K, Ruzsics Z, Krebs S, Kaufmann S, et al. Ultrashort and progressive
817 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. *Genome Res.* 2012;22(10):2031-42.

818 50. Garibaldi A, Carranza F, Hertel KJ. Isolation of Newly Transcribed RNA Using the Metabolic Label
819 4-Thiouridine. *Methods Mol Biol.* 2017;1648:169-76.

820 51. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, et al. Species-specific
821 recognition of single-stranded RNA via toll-like receptor 7 and 8. *Science.* 2004;303(5663):1526-9.

822 52. Meas HZ, Haug M, Beckwith MS, Louet C, Ryan L, Hu Z, et al. Sensing of HIV-1 by TLR8 activates
823 human T cells and reverses latency. *Nat Commun.* 2020;11(1):147.

824 53. Tange TO, Kjems J. SF2/ASF binds to a splicing enhancer in the third HIV-1 tat exon and stimulates
825 U2AF binding independently of the RS domain. *Journal of molecular biology.* 2001;312(4):649-62.

826 54. Polzer S, van Yperen M, Kirst M, Schwalbe B, Schaal H, Schreiber M. Neutralization of X4- and R5-
827 tropic HIV-1 NL4-3 variants by HOCl-modified serum albumins. *BMC Res Notes.* 2010;3:155.

828 55. Widera M, Hillebrand F, Erkelenz S, Vasudevan AA, Munk C, Schaal H. A functional conserved
829 intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction.
830 *Retrovirology.* 2014;11:72.

831 56. Sheehy AM, Gaddis NC, Choi JD, Malim MH. Isolation of a human gene that inhibits HIV-1 infection
832 and is suppressed by the viral Vif protein. *Nature.* 2002;418(6898):646-50.

833 57. Stopak K, de Noronha C, Yonemoto W, Greene WC. HIV-1 Vif blocks the antiviral activity of
834 APOBEC3G by impairing both its translation and intracellular stability. *Mol Cell.* 2003;12(3):591-601.

835 58. Widera M, Hillebrand F, Erkelenz S, Vasudevan A, Munk C, Schaal H. A functional conserved
836 intronic G run in HIV-1 intron 3 is critical to counteract APOBEC3G-mediated host restriction.
837 *Retrovirology.* 2014;11(1):72.

838 59. Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the
839 proteasome in response to HIV-1 Vif. *Nature medicine.* 2003;9(11):1404-7.

840 60. Nara PL, Hatch WC, Dunlop NM, Robey WG, Arthur LO, Gonda MA, et al. Simple, rapid,
841 quantitative, syncytium-forming microassay for the detection of human immunodeficiency virus
842 neutralizing antibody. *AIDS research and human retroviruses.* 1987;3(3):283-302.

843 61. Nara PL, Fischinger PJ. Quantitative infectivity assay for HIV-1 and-2. *Nature.* 1988;332(6163):469-
844 70.

845 62. Hache G, Harris RS. CEM-T4 cells do not lack an APOBEC3G cofactor. *PLoS pathogens.*
846 2009;5(7):e1000528.

851 63. Widera M, Erkelenz S, Hillebrand F, Krikoni A, Widera D, Kaisers W, et al. An Intronic G Run within
852 HIV-1 Intron 2 Is Critical for Splicing Regulation of vif mRNA. *Journal of virology*. 2013;87(5):2707-20.

853 64. Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, et al. Species-specific exclusion
854 of APOBEC3G from HIV-1 virions by Vif. *Cell*. 2003;114(1):21-31.

855 65. Huang YQ, Ling XH, Yuan RQ, Chen ZY, Yang SB, Huang HX, et al. miR30c suppresses prostate cancer
856 survival by targeting the ASF/SF2 splicing factor oncoprotein. *Mol Med Rep*. 2017;16(3):2431-8.

857 66. Schaal H, Pfeiffer P, Klein M, Gehrman P, Scheid A. Use of DNA end joining activity of a *Xenopus*
858 *laevis* egg extract for construction of deletions and expression vectors for HIV-1 Tat and Rev proteins.
859 *Gene*. 1993;124(2):275-80.

860 67. Phair RD, Misteli T. High mobility of proteins in the mammalian cell nucleus. *Nature*.
861 2000;404(6778):604-9.

862 68. Tange TO, Damgaard CK, Guth S, Valcarcel J, Kjems J. The hnRNP A1 protein regulates HIV-1 tat
863 splicing via a novel intron silencer element. *The EMBO journal*. 2001;20(20):5748-58.

864 69. Li X, Manley JL. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability.
865 *Cell*. 2005;122(3):365-78.

866 70. Sanford JR, Gray NK, Beckmann K, Caceres JF. A novel role for shuttling SR proteins in mRNA
867 translation. *Genes Dev*. 2004;18(7):755-68.

868 71. Huang Y, Gattoni R, Stevenin J, Steitz JA. SR splicing factors serve as adapter proteins for TAP-
869 dependent mRNA export. *Molecular cell*. 2003;11(3):837-43.

870 72. Aznarez I, Nomakuchi TT, Tetenbaum-Novatt J, Rahman MA, Fregoso O, Rees H, et al. Mechanism
871 of Nonsense-Mediated mRNA Decay Stimulation by Splicing Factor SRSF1. *Cell reports*. 2018;23(7):2186-
872 98.

873 73. Zhang Z, Krainer AR. Involvement of SR proteins in mRNA surveillance. *Mol Cell*. 2004;16(4):597-
874 607.

875 74. Li X, Wang J, Manley JL. Loss of splicing factor ASF/SF2 induces G2 cell cycle arrest and apoptosis,
876 but inhibits internucleosomal DNA fragmentation. *Genes Dev*. 2005;19(22):2705-14.

877 75. Fregoso OI, Das S, Akerman M, Krainer AR. Splicing-factor oncoprotein SRSF1 stabilizes p53 via
878 RPL5 and induces cellular senescence. *Mol Cell*. 2013;50(1):56-66.

879 76. Das S, Anczukow O, Akerman M, Krainer AR. Oncogenic splicing factor SRSF1 is a critical
880 transcriptional target of MYC. *Cell Rep*. 2012;1(2):110-7.

881 77. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR. The gene encoding the splicing factor
882 SF2/ASF is a proto-oncogene. *Nat Struct Mol Biol*. 2007;14(3):185-93.

883 78. Ding F, Su C, Chow K-HK, Elowitz MB. Dynamics and functional roles of splicing factor
884 autoregulation. *bioRxiv*. 2020:2020.07.22.216887.

885 79. Massanella M, Singhania A, Beliakova-Bethell N, Pier R, Lada SM, White CH, et al. Differential gene
886 expression in HIV-infected individuals following ART. *Antiviral research*. 2013;100(2):420-8.

887 80. Lavender KJ, Pace C, Sutter K, Messer RJ, Pouncey DL, Cummins NW, et al. An advanced BLT-
888 humanized mouse model for extended HIV-1 cure studies. *AIDS*. 2018;32(1):1-10.

889 81. Sleijfer S, Bannink M, Van Gool AR, Kruit WH, Stoter G. Side effects of interferon-alpha therapy.
890 *Pharm World Sci*. 2005;27(6):423-31.

891 82. Das S, Krainer AR. Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA
892 metabolism and cancer. *Molecular cancer research : MCR*. 2014;12(9):1195-204.

893 83. Chang B, Levin J, Thompson WA, Fairbrother WG. High-throughput binding analysis determines
894 the binding specificity of ASF/SF2 on alternatively spliced human pre-mRNAs. *Comb Chem High*
895 *Throughput Screen*. 2010;13(3):242-52.

896 84. Paz S, Caputi M. SRSF1 inhibition of HIV-1 gene expression. *Oncotarget*. 2015;6(23):19362-3.

897 85. Gonzalez ME. The HIV-1 Vpr Protein: A Multifaceted Target for Therapeutic Intervention. *Int J Mol*
898 *Sci*. 2017;18(1).

899 86. Erkelenz S, Theiss S, Otte M, Widera M, Peter JO, Schaal H. Genomic HEXploring allows landscaping
900 of novel potential splicing regulatory elements. *Nucleic acids research*. 2014.

901 87. Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, et al. Small anti-viral compounds
902 activate immune cells via the TLR7 MyD88-dependent signaling pathway. *Nat Immunol*. 2002;3(2):196-
903 200.

904 88. Zhou H, Yu M, Fukuda K, Im J, Yao P, Cui W, et al. IRAK-M mediates Toll-like receptor/IL-1R-induced
905 NFκappaB activation and cytokine production. *EMBO J*. 2013;32(4):583-96.

906 89. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of
907 TLR7-mediated recognition of single-stranded RNA. *Science*. 2004;303(5663):1529-31.

908 90. Ito T, Amakawa R, Kaisho T, Hemmi H, Tajima K, Uehira K, et al. Interferon-alpha and interleukin-
909 12 are induced differentially by Toll-like receptor 7 ligands in human blood dendritic cell subsets. *J Exp
910 Med*. 2002;195(11):1507-12.

911 91. Bender AT, Tzvetkov E, Pereira A, Wu Y, Kasar S, Przetak MM, et al. TLR7 and TLR8 Differentially
912 Activate the IRF and NF-κappaB Pathways in Specific Cell Types to Promote Inflammation.
913 *Immunohorizons*. 2020;4(2):93-107.

914 92. Joseph SB, Swanstrom R, Kashuba AD, Cohen MS. Bottlenecks in HIV-1 transmission: insights from
915 the study of founder viruses. *Nature reviews Microbiology*. 2015;13(7):414-25.

916 93. Emery A, Zhou S, Pollom E, Swanstrom R. Characterizing HIV-1 Splicing by Using Next-Generation
917 Sequencing. *Journal of virology*. 2017;91(6).

918 94. Akari H, Fujita M, Kao S, Khan MA, Shehu-Xhilaga M, Adachi A, et al. High level expression of human
919 immunodeficiency virus type-1 Vif inhibits viral infectivity by modulating proteolytic processing of the Gag
920 precursor at the p2/nucleocapsid processing site. *The Journal of biological chemistry*. 2004;279(13):12355-
921 62.

922 95. Bakkour N, Lin YL, Maire S, Ayadi L, Mahuteau-Betzer F, Nguyen CH, et al. Small-molecule inhibition
923 of HIV pre-mRNA splicing as a novel antiretroviral therapy to overcome drug resistance. *PLoS pathogens*.
924 2007;3(10):1530-9.

925 96. Widera M, Dirks M, Bleekmann B, Jablonka R, Daumer M, Walter H, et al. HIV-1 persistent viremia
926 is frequently followed by episodes of low-level viremia. *Med Microbiol Immunol*. 2017;206(3):203-15.

927

928

929

930

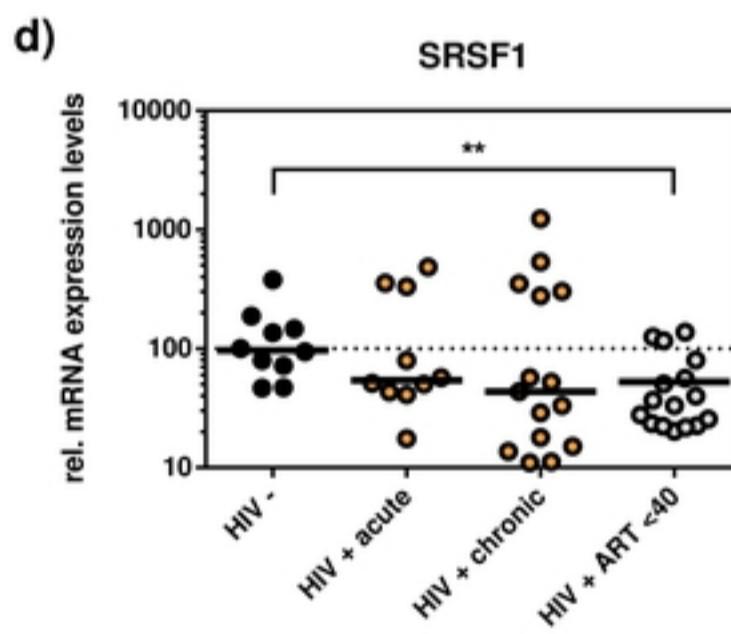
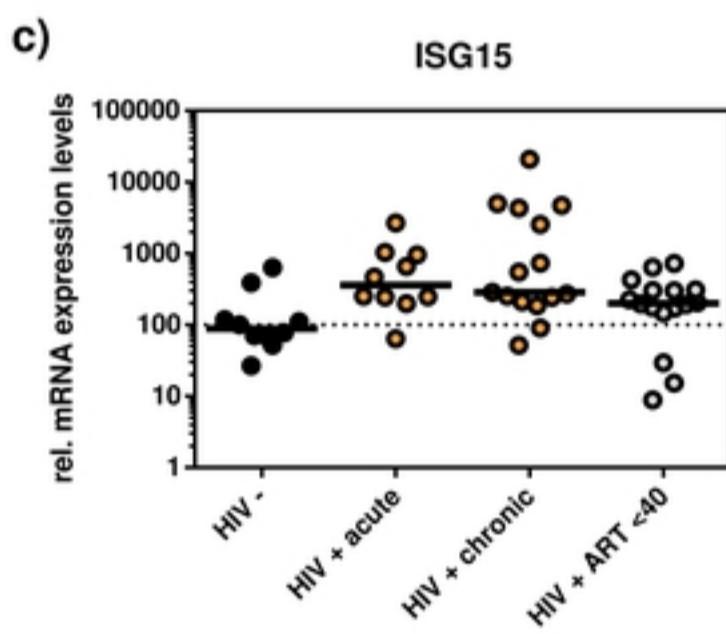
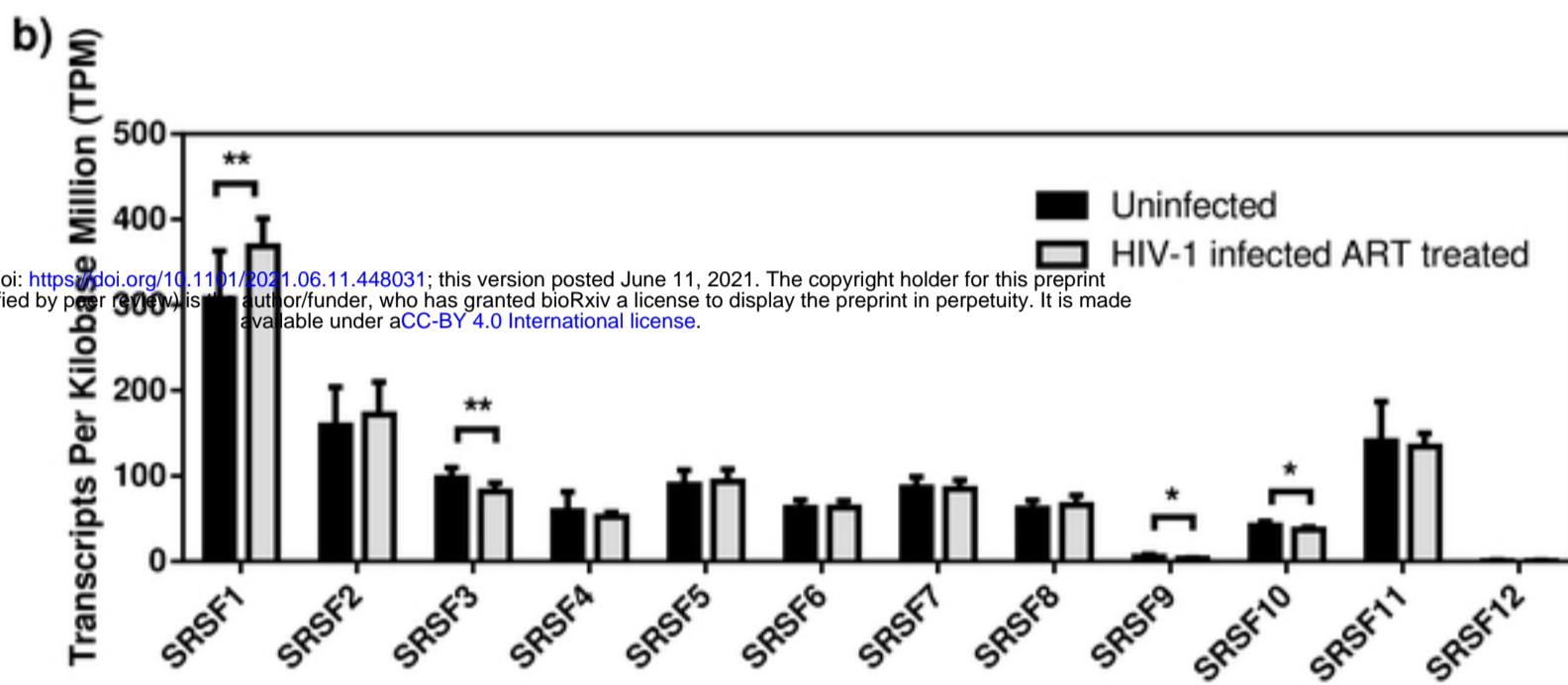
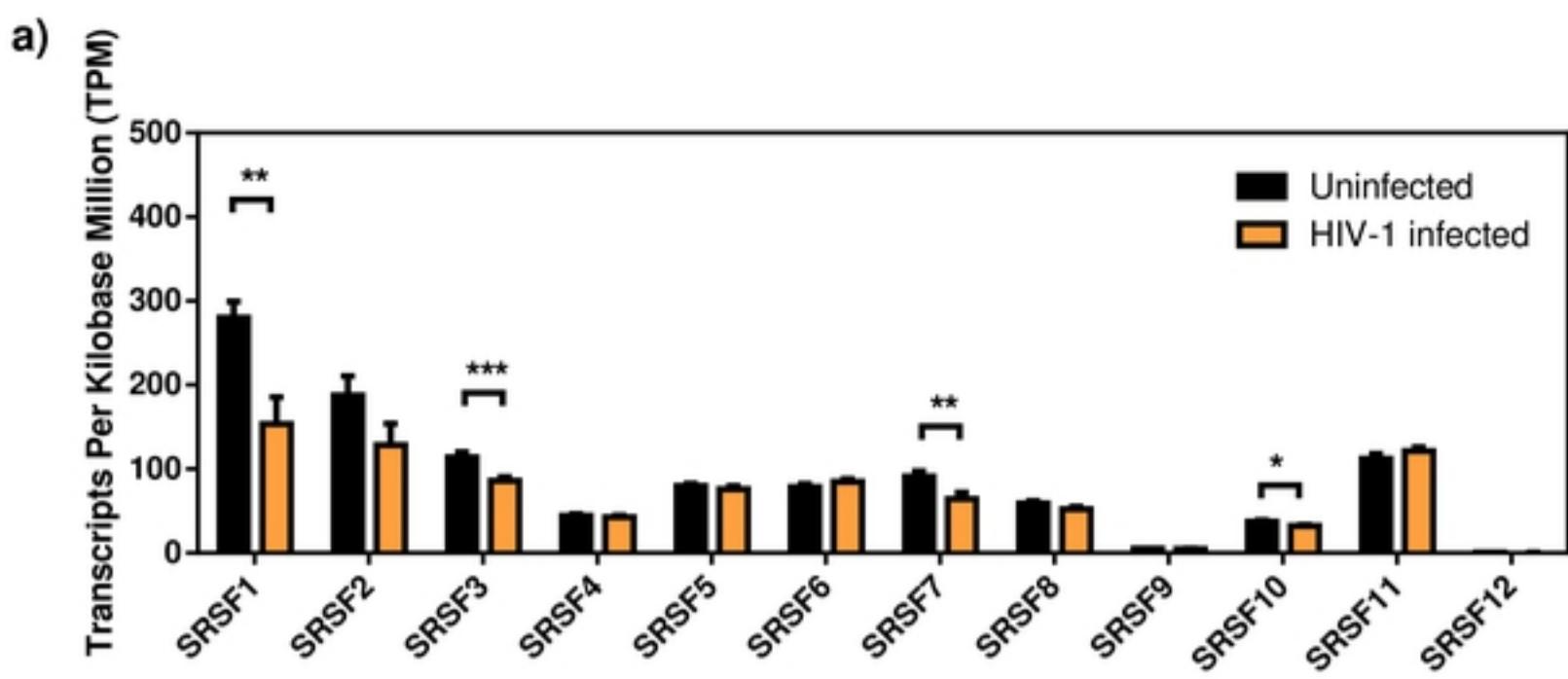
931 **Fig 1: a) – b) SRSF levels in naïve or ART-treated HIV-1 infected individuals.** Transcript levels of SRSF
932 genes were measured in colonic samples using RNA-sequencing analysis. Comparison of results from **a)**
933 naïve HIV-1 infected and healthy individuals and **b)** ART-treated HIV-1 infected and healthy individuals.
934 Mann-Whitney statistical analysis was performed to determine differences between unmatched groups. **c)**
935 – **d) SRSF1 levels inversely correlate with ISG15 expression.** RT-qPCR results for the mRNA expression
936 levels of **c) ISG15** and **d) SRSF1** in healthy individuals, acutely and chronically HIV-1 infected patients as
937 well as HIV-1 infected ART-treated individuals. ACTB was used as loading control. Unpaired t-tests were

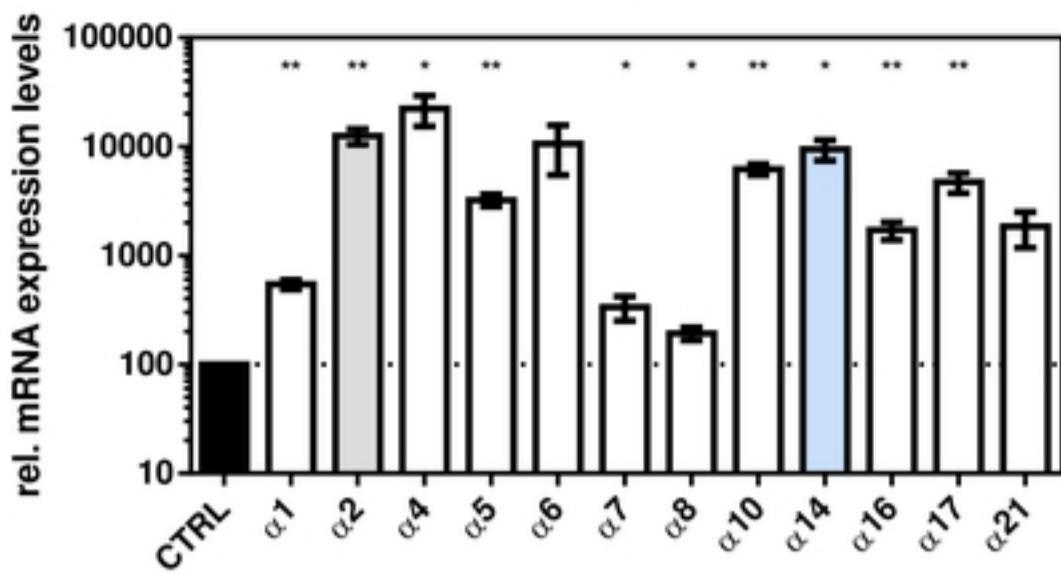
938 calculated to determine whether the difference between the group of samples reached the level of statistical
939 significance (* p<0.05, ** p<0.01 and *** p<0.001).

940 **Fig 2: Downregulation of SRSF1 is IFN α subtype dependent.** **a) - b)** Differentiated THP-1 cells were
941 treated with the indicated IFN subtype at a concentration of 10 ng/ml. 24 h post treatment, cells were
942 harvested, RNA isolated and subjected to RT-qPCR for measurement of relative **a)** ISG15 and **b)** SRSF1
943 mRNA expression levels. ACTB was used as loading control. Unpaired t tests were calculated to determine
944 whether the difference between the group of samples reached the level of statistical significance (* p<0.05,
945 ** p<0.01 and *** p<0.001). **c)** Correlation between x-fold repression of SRSF1 mRNA levels and x-fold
946 induction of ISG15 mRNA levels. IFN α subtypes 2, 4, 6 and 14 were excluded from correlation and are
947 marked in red. Pearson correlation coefficient (r) and p-value (p) are indicated.

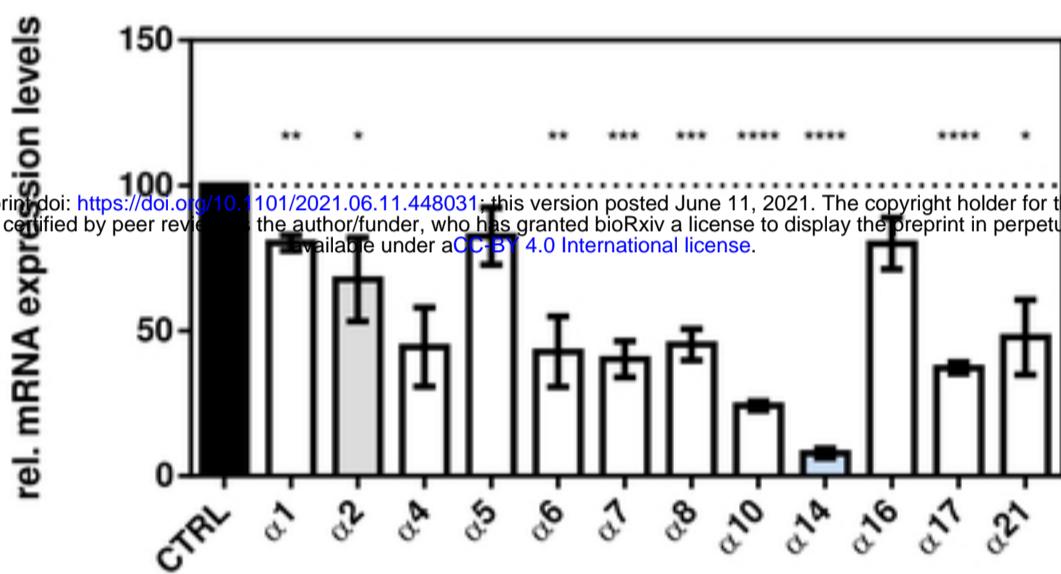
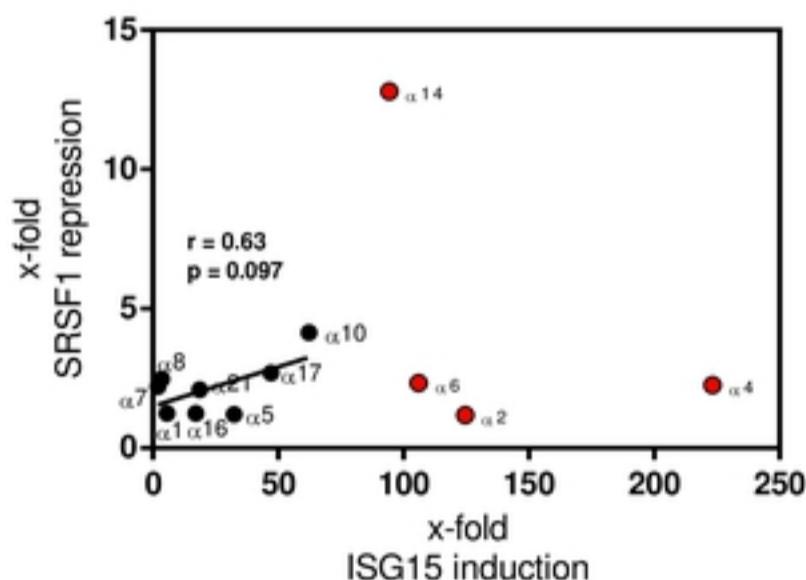
948 **Fig 3: a) – h) SRSF1 levels in HIV-1 host cells are repressed upon IFN treatment.** Differentiated THP-
949 1 macrophages and Jurkat T-cells were treated with the indicated IFN subtype over a period of 48 h at a
950 concentration of 10 ng/ml before cells were harvested and RNA was isolated. Relative mRNA expression
951 levels of ISG15 and SRSF1 were measured via RT-qPCR. ISG15 mRNA levels were measured after 4 h
952 for **a)** THP-1 cells and **d)** Jurkat cells. SRSF1 mRNA levels were measured at the indicated time points in
953 THP-1 cells after treatment with **b)** IFN α 2 and **c)** IFN α 14 and in Jurkat cells after treatment with **e)** IFN α 2
954 and **f)** IFN α 14. ACTB was used as loading control. Unpaired t-tests were calculated to determine whether
955 the difference between the group of samples reached the level of statistical significance (* p<0.05, ** p<0.01
956 and *** p<0.001). **g)** Differentiated THP-1 macrophages were treated with IFN α 2 or IFN α 14 for the indicated
957 amount of time at a concentration of 10 ng/ml before cells were harvested. Proteins were separated by
958 SDS-PAGE, blotted and analyzed with an antibody specific to SRSF1. GAPDH was used as loading control.
959 **h)** Comparison of time-dependent SRSF1-repression after IFN α 2-treatment on mRNA and protein level. **i)**
960 – **j)** **Repression of SRSF1 mRNA levels in primary human macrophages.** Monocyte-derived
961 macrophages (MDMs) were treated with IFN α 14 over a period of 48 h at a concentration of 10 ng/ml before
962 cells were harvested and RNA isolated. Relative mRNA expression levels of ISG15 and SRSF1 were
963 measured via RT-qPCR. **i)** ISG15 mRNA levels were measured 4 h post treatment. **j)** SRSF1 mRNA levels
964 were measured at the indicated time points. GAPDH was used as loading control. Unpaired t-tests were
965 calculated to determine whether the difference between the group of samples reached the level of statistical
966 significance (* p<0.05, ** p<0.01 and *** p<0.001). Time points 24 h and 48 h only include two biological
967 replicates. **k) – l) SRSF1 repression in THP-1 cells is type I IFN specific.** Differentiated THP-1 cells were
968 treated with IFN γ over a period of 48 h at a concentration of 10 ng/ml before cells were harvested and RNA
969 was isolated. Relative mRNA expression levels of IRF1 and SRSF1 were measured via RT-qPCR. **k)** IRF1
970 mRNA levels were measured after 4 h. **l)** SRSF1 mRNA levels were measured at the indicated time points.
971 GAPDH was used as loading control. Unpaired t-tests were calculated to determine whether the difference
972 between the group of samples reached the level of statistical significance (* p<0.05, ** p<0.01 and ***
973 p<0.001).

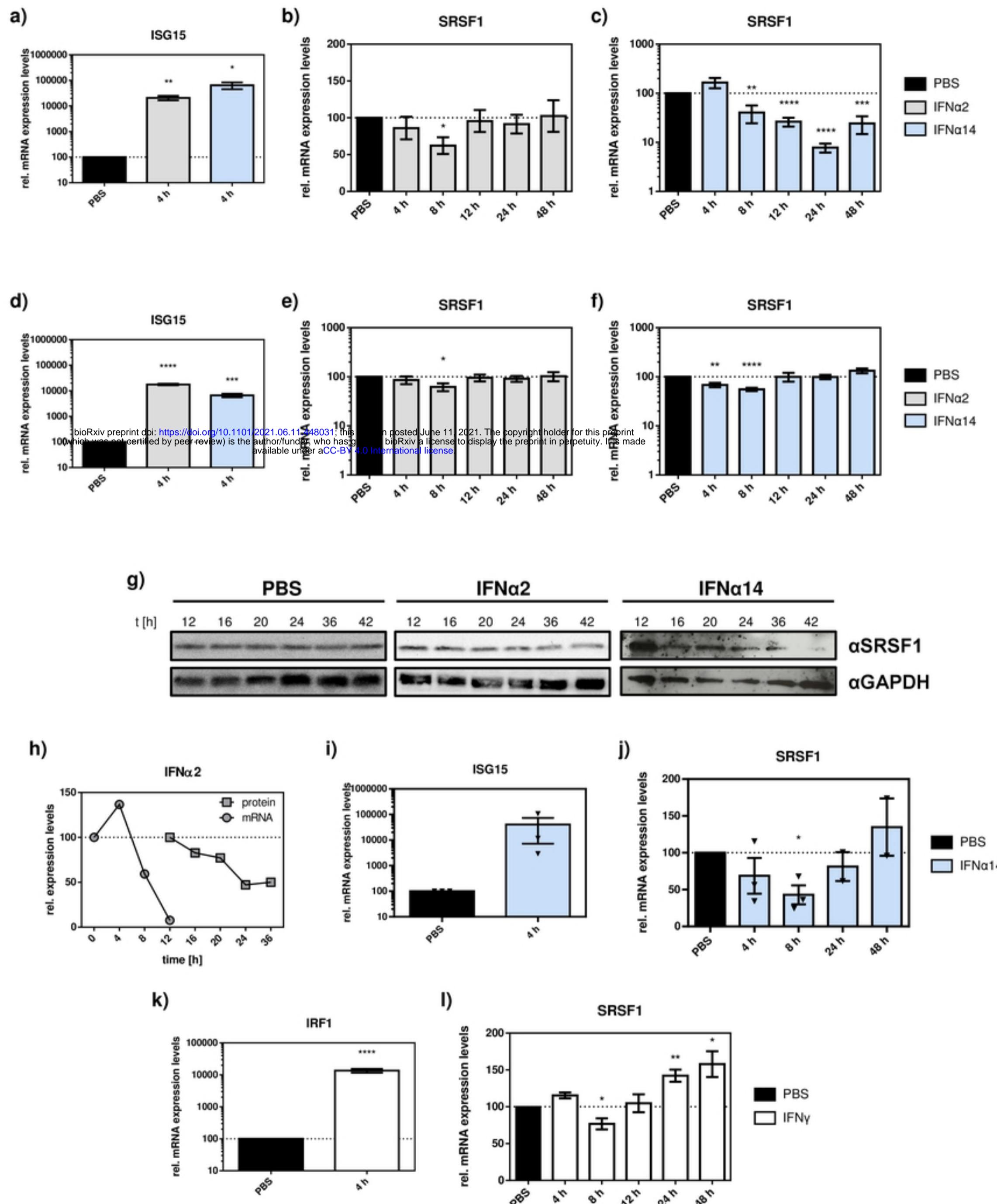
974 **Fig 4: a) – b) Changes in newly transcribed mRNAs upon treatment with IFN α 14.** Differentiated THP-
975 1 macrophages were treated with IFN α 14 for 8 h or 24 h before labeling with 4sU for 30 min at a
976 concentration of 500 μ M. Cells were then harvested and total RNA isolated. Freshly transcribed RNA was
977 labeled, purified and separated as described elsewhere (50). Relative mRNA expression levels of **a) ISG15**
978 and **b) SRSF1** were measured via RT-qPCR. 2 biological replicates were pooled for qPCR analysis. GAPDH
979 was used as loading control. **c) – d) HIV-1 counteracts repression of SRSF1 upon IFN-treatment.**
980 Differentiated THP-1 macrophages were infected with the R5-tropic NL4-3 (AD8) at an MOI of 1. 16 h post
981 infection, cells were treated with the indicated IFN subtype over a period of 48 h at a concentration of 10
982 ng/ml. Cells were then harvested, RNA isolated and subjected to RT-qPCR. Relative mRNA expression
983 levels of SRSF1 in THP-1 cells after treatment with **c) IFN α 2 or d) IFN14**. ACTB was used as loading control.
984 Unpaired t-tests were calculated to determine whether the difference between the group of samples reached
985 the level of statistical significance (* p<0.05, ** p<0.01 and *** p<0.001). **e) – f) TLR7/8 agonist R848**
986 **induces repression of SRSF1 mRNA expression levels.** Differentiated THP-1 macrophages were
987 infected with the R5-tropic NL4-3 (AD8) at an MOI of 1 or mock infected. 16 h post infection, cells were
988 treated with Resiquimod (R848) at a concentration of 30 μ M for 8 h or 24 h respectively. Cells were then
989 harvested, RNA isolated and subjected to RT-qPCR. **e) Relative mRNA expression levels of SRSF1 after**
990 **treatment with R848. f) Total viral mRNA levels were measured via RT-qPCR using a primer pair amplifying**
991 **a sequence in Exon7. GAPDH was used as loading control. Unpaired t-tests were calculated to determine**
992 **whether the difference between the group of samples reached the level of statistical significance (* p<0.05,**
993 **** p<0.01 and *** p<0.001).**

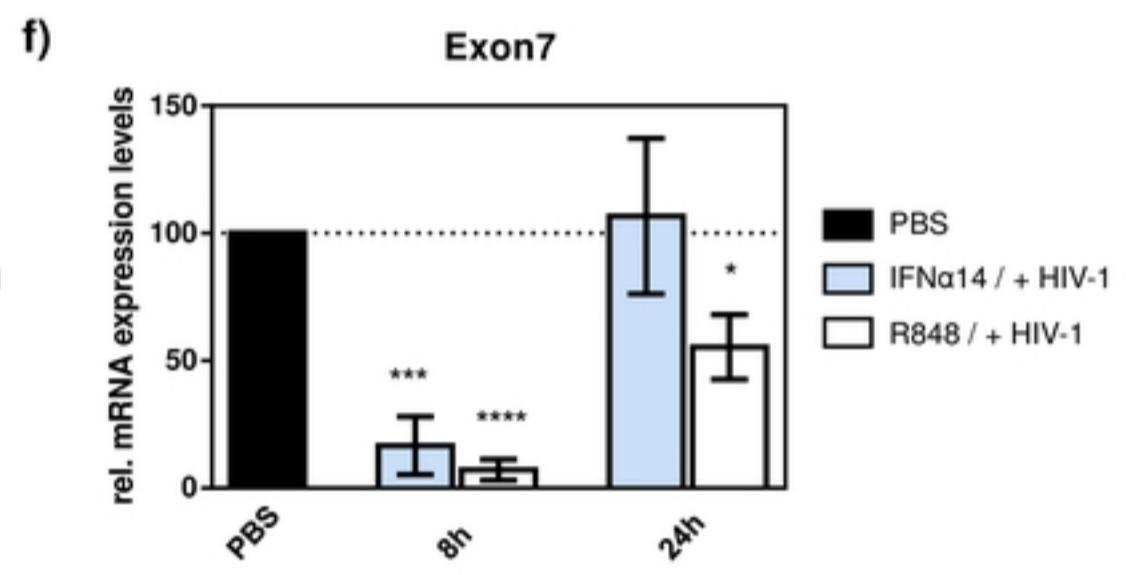
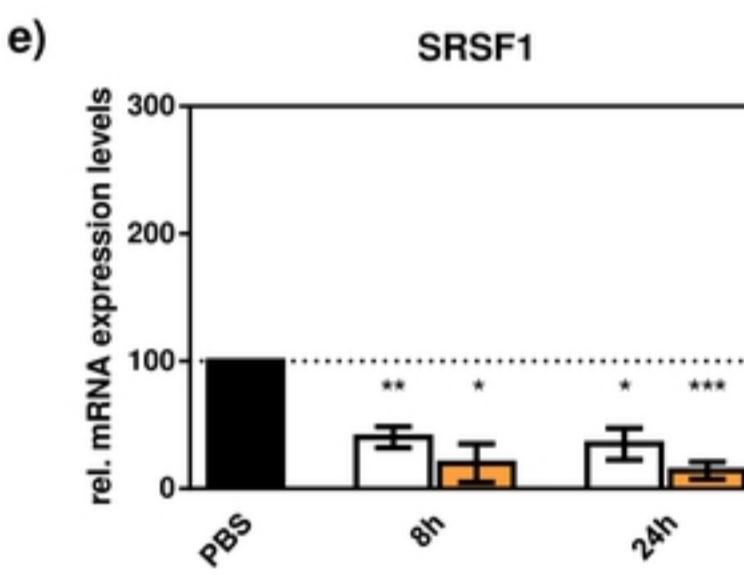
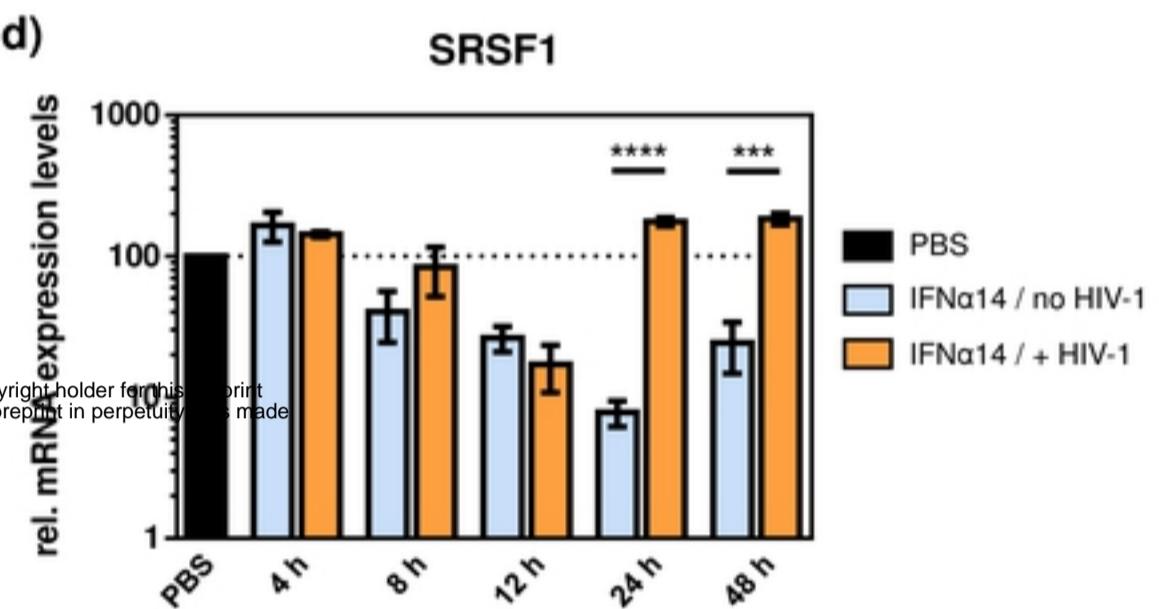
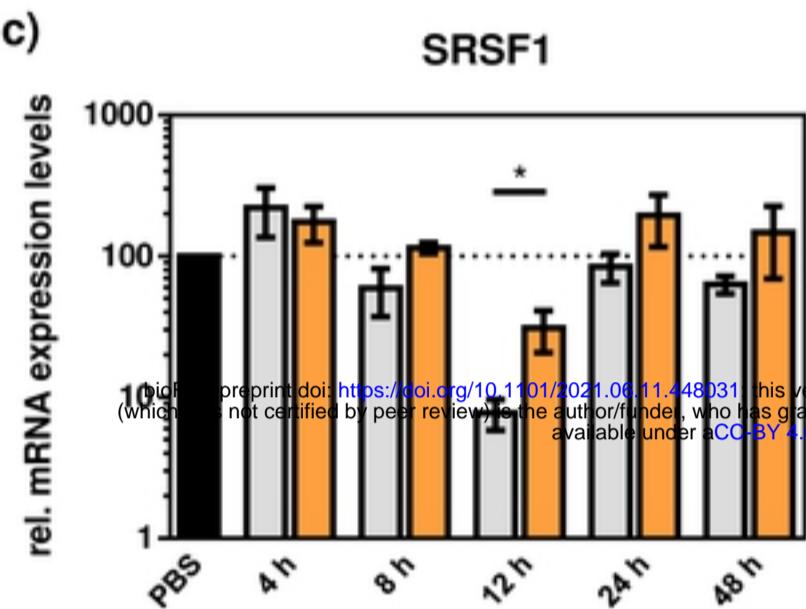
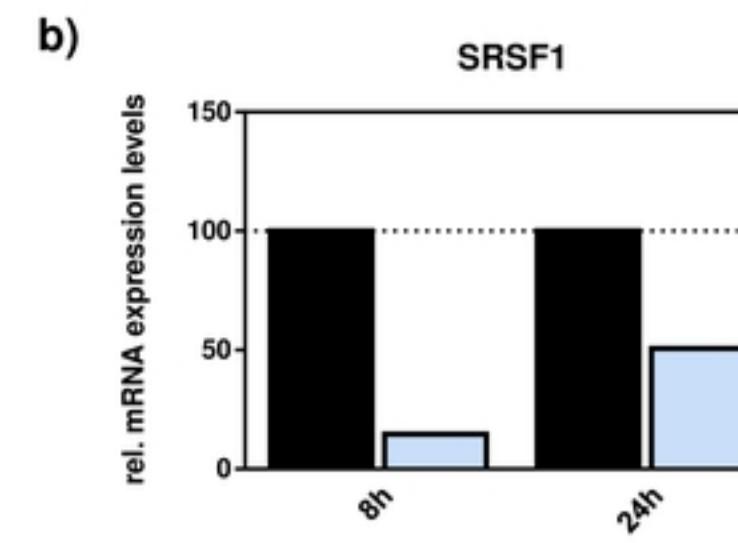
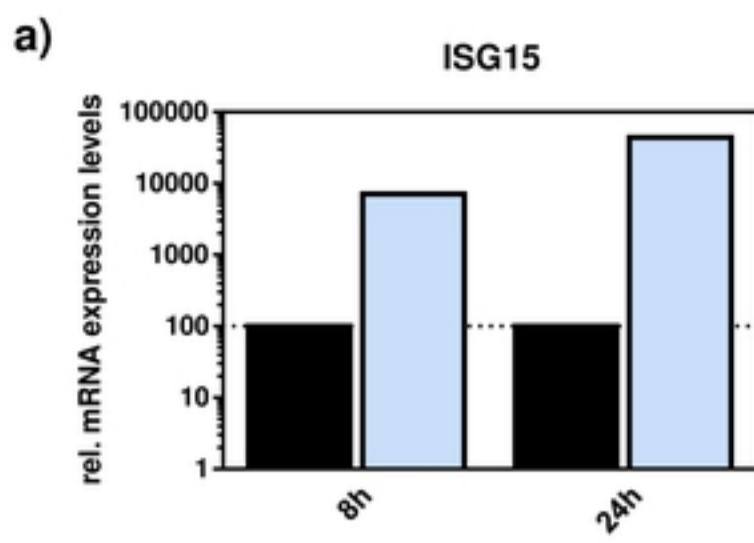




994 **Fig 5: HIV-1 NL4-3 genome.** **a) HIV-1 genome with open reading frames (ORFs) and long terminal repeats**
995 (LTRs). 5'- and 3'-splice sites are indicated as well as the Rev response element (RRE). *Vif* Exon and ORF
996 is highlighted in red. **b) Vif** and *Vpr* mRNAs are spliced from 5'-ss D1 to 3'-ss A1 and 5'-ss D1 to 3'-ss A2
997 respectively, harboring the non-coding leader Exons 2 and 3. AUG-containing Introns 2 and 3 are contained
998 respectively. **c) Binding sites of primers for RT-qPCR and RT-PCR.** Grey boxes indicate Exons, while
999 straight lines indicate Introns. Black arrowheads indicate primers. Primers with black rectangle and black
1000 arrowhead connected via dashed line indicate Exon-junction primers.

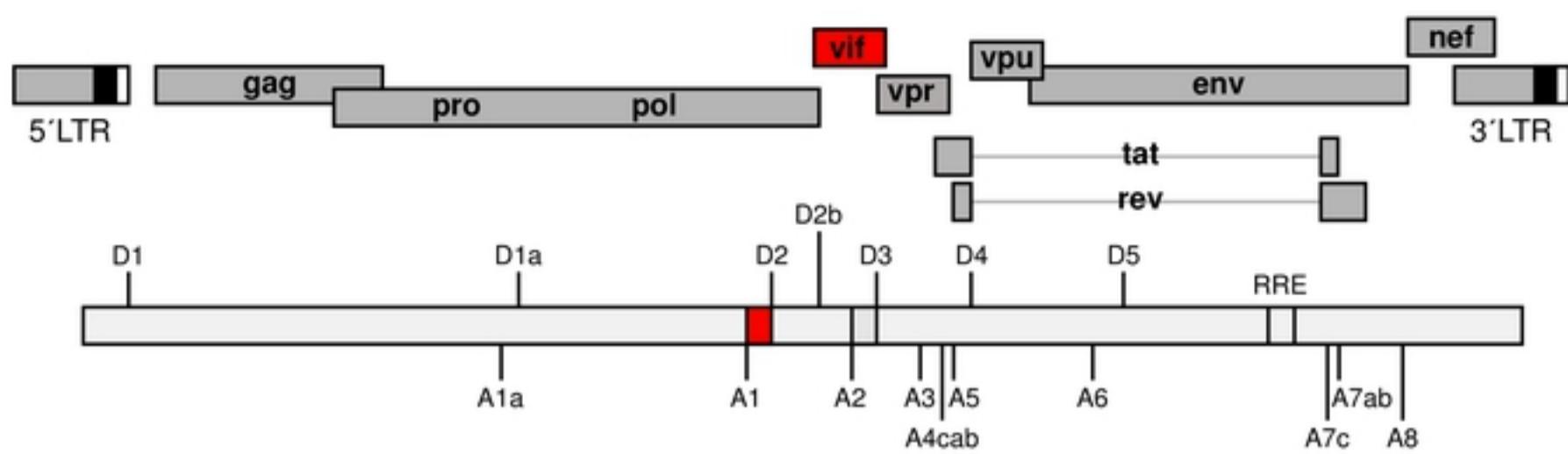
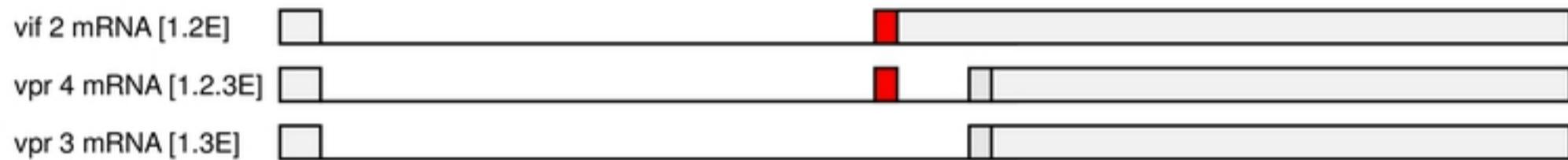

1001 **Fig 6: siRNA-induced knockdown of SRSF1.** HEK293T cells were transfected with the proviral clone
1002 pNL4-3 PI952 (54) and the indicated siRNA. 72 h post transfection, cells were harvested and RNA and viral
1003 supernatant isolated. **a) – b)** Isolated RNA was subjected to RT-qPCR. Relative mRNA expression levels
1004 of **a) SRSF1** and **b) Exon 1 and Exon 7 containing mRNAs (total viral mRNA) normalized to GAPDH. c)**
1005 Isolated RNA was subjected to RT-PCR using the indicated primer pairs for the 2 kb-, 4 kb- and *tat* mRNA-
1006 class. HIV-1 transcript isoforms are depicted on the right. To compare total RNA amounts, separate RT-
1007 PCRs amplifying HIV-1 exon 7 containing transcripts as well as cellular GAPDH were performed. PCR
1008 amplicons were separated on a 12% nondenaturing polyacrylamide gel and stained with Midori green
1009 Advance DNA stain (Nippon Genetics). **d) – g) RT-qPCR results for relative mRNA expression levels of d)**
1010 *vif* and *vpr*, **e) tat1, tat2 and tat3, f) Exon 2 and Exon 3 containing and g) multiply spliced and unspliced**

1011 mRNAs. HIV-1 mRNAs were analyzed using the indicated primers (**Table 1**). The splicing pattern of pNL4-
1012 3 PI952 was set to 100% and the relative splice site usage was normalized to total viral mRNA levels (Exon
1013 7). Unpaired t tests were calculated to determine whether the difference between the group of samples
1014 reached the level of statistical significance (* p<0.05, ** p<0.01 and *** p<0.001). **h)** Cellular supernatant
1015 was used to determine viral copy number per ml. RT-qPCR was performed analyzing relative expression
1016 levels of exon 7 containing transcripts (total viral mRNA). **i)** CEM-SS and CEM-T4 cells were infected with
1017 wildtype NL4-3, NL4-3 Δ vif, NL4-3 G_{I3}-2 mutant or mock infected. p24-CA ELISA of cellular supernatant
1018 was performed to determine virus production at the indicated time points.

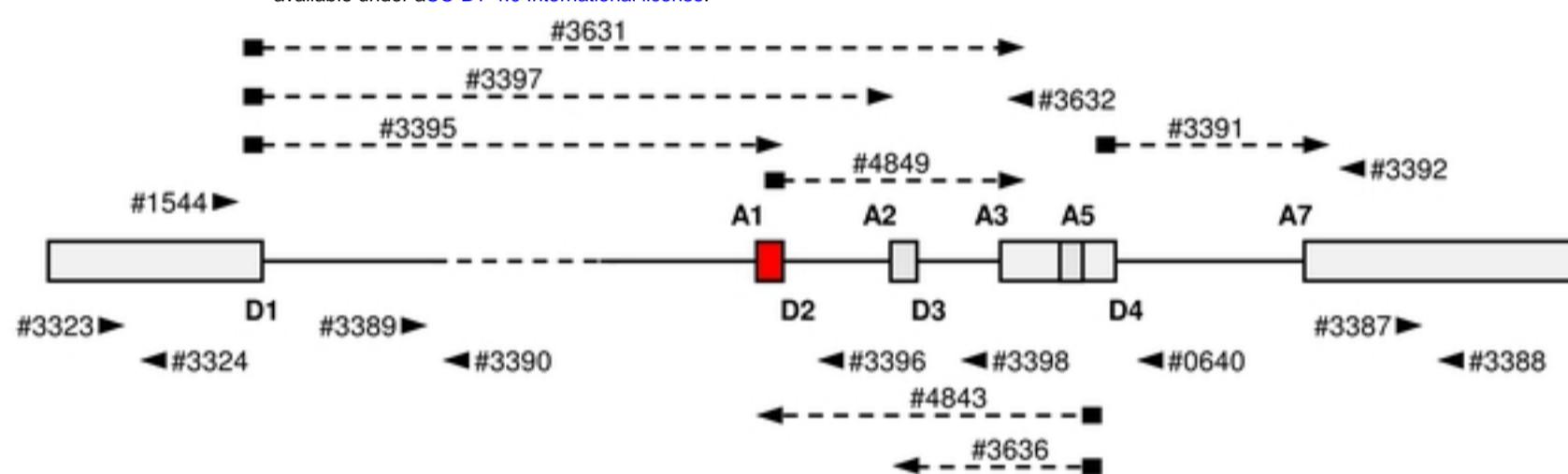


1019 **Fig 7: Overexpression of SRSF1.** HEK293T cells were transfected with the proviral clone pNL4-3 PI952
1020 (54) and pcDNA-FLAG-SF2 (65). 72 h post transfection, cells were harvested and RNA and viral
1021 supernatant isolated. **a) – b)** Isolated RNA was subjected to RT-qPCR. Relative mRNA expression levels
1022 of **a)** SRSF1 and **b)** Exon 1 and Exon 7 containing mRNAs (total viral mRNA) normalized to GAPDH. **c)**
1023 Vero cells were transiently co-transfected with pTA-Luc-NL4-3, pSVctat (66) and pEGFP-SF2 (67) at the
1024 indicated concentrations. Activity of HIV-1 LTR promoter was measured via luminescent read-out. **d)**
1025 Isolated RNA was subjected to RT-PCR using the indicated primer pairs for the 2 kb-, 4 kb- and *tat* mRNA-
1026 class. HIV-1 transcript isoforms are depicted on the right. To compare total RNA amounts, separate RT-
1027 PCRs amplifying HIV-1 exon 7 containing transcripts as well as cellular GAPDH were performed. PCR
1028 amplicons were separated on a 12% nondenaturing polyacrylamide gel and stained with Midori green
1029 Advance DNA stain (Nippon Genetics). **e) – h)** RT-qPCR results for relative mRNA expression levels of **e)**
1030 vif and vpr, **f)** tat1, tat2 and tat3, **g)** Exon 2 and Exon 3 containing and **h)** multiply spliced and unspliced
1031 mRNAs. HIV-1 mRNAs were analyzed using the indicated primers (**Table 1**). The splicing pattern of pNL4-
1032 3 PI952 was set to 100% and the relative splice site usage was normalized to total viral mRNA levels (Exon
1033 7). Unpaired t tests were calculated to determine whether the difference between the group of samples
1034 reached the level of statistical significance (* p<0.05, ** p<0.01 and *** p<0.001). **i)** Cellular supernatant
1035 was used to determine viral copy number per ml. RT-qPCR was performed analyzing relative expression
1036 levels of exon 7 containing transcripts (total viral mRNA). **h)** Virus production was measured via p24-CA
1037 ELISA of cellular supernatant. **k) - l)** Viral infectivity was determined using TZM-bl reporter cells harboring
1038 the luciferase as well as the β -galactosidase expression cassette under the control of the HIV-1 LTR
1039 promoter. **j)** Measurement of luciferase activity. Unpaired t tests were calculated to determine whether the
1040 difference between the group of samples reached the level of statistical significance (* p<0.05, ** p<0.01
1041 and *** p<0.001). **k)** X-Gal staining of TZM-bl cells incubated with cellular supernatant.

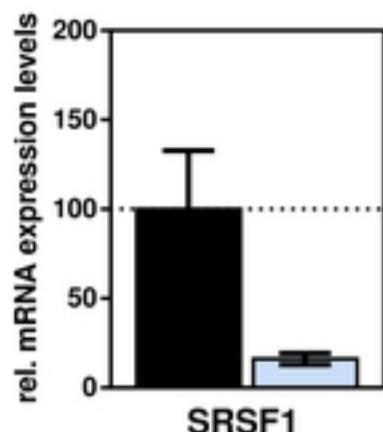

1042

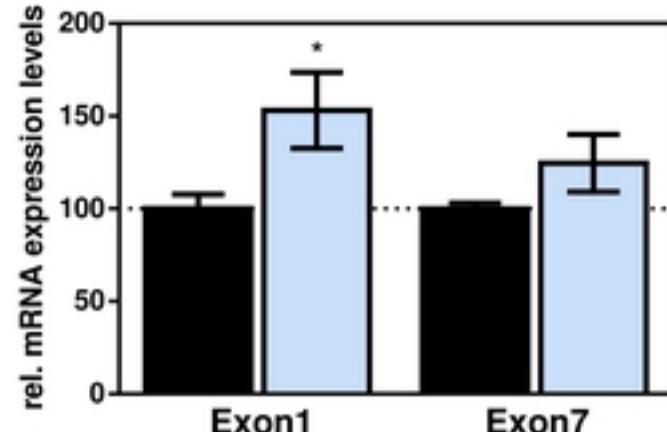


a)**ISG15****b)****SRSF1**

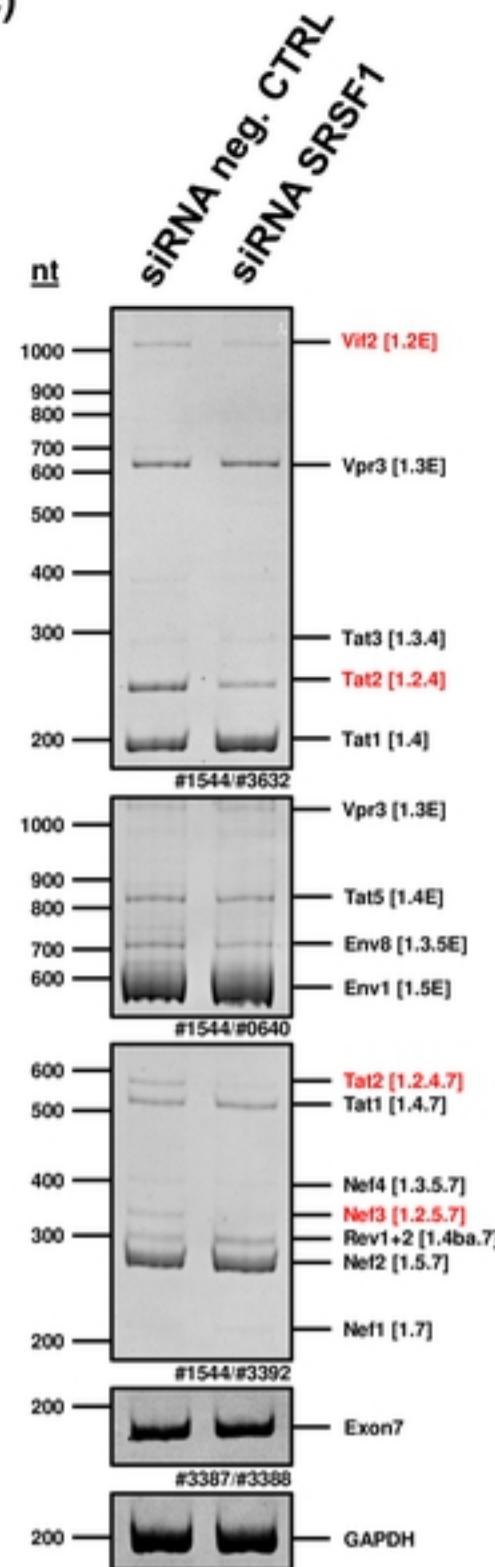
bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.11.448031>; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

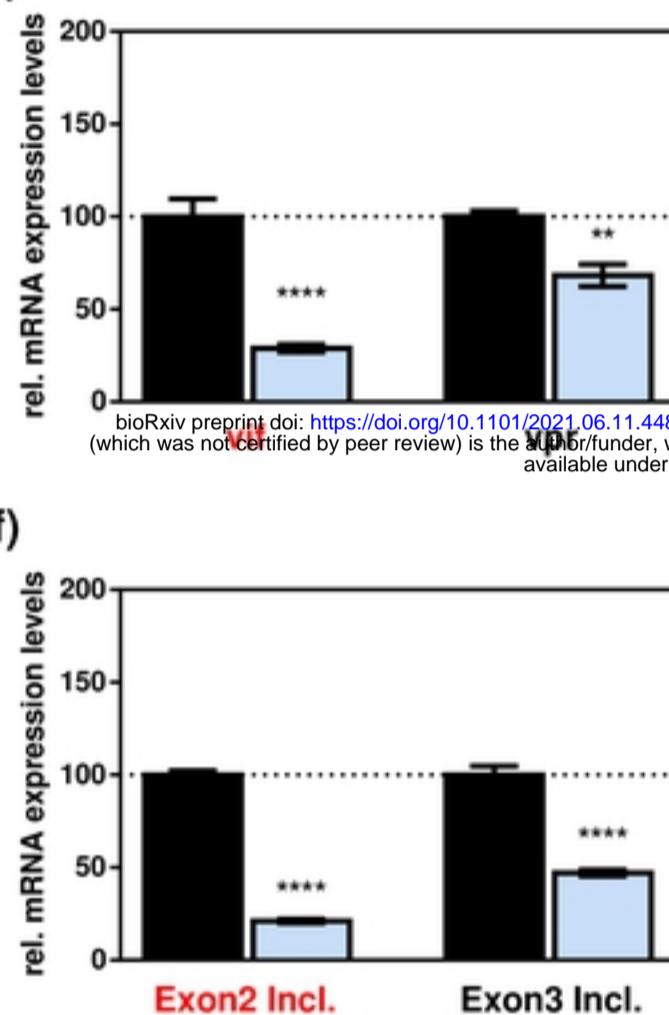

c)**ISG15 vs. SRSF1**

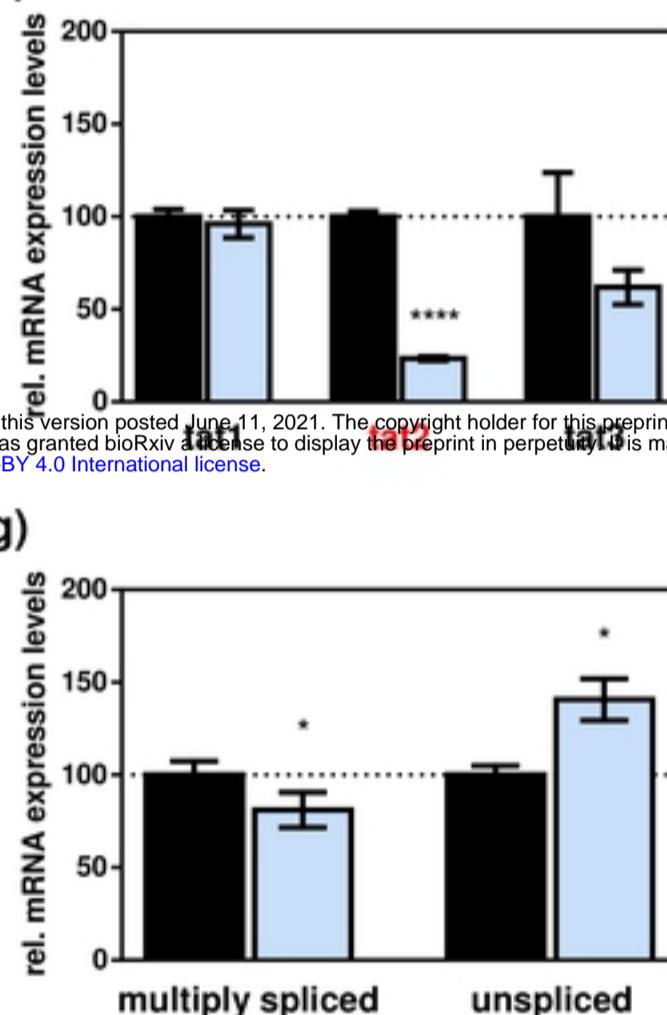


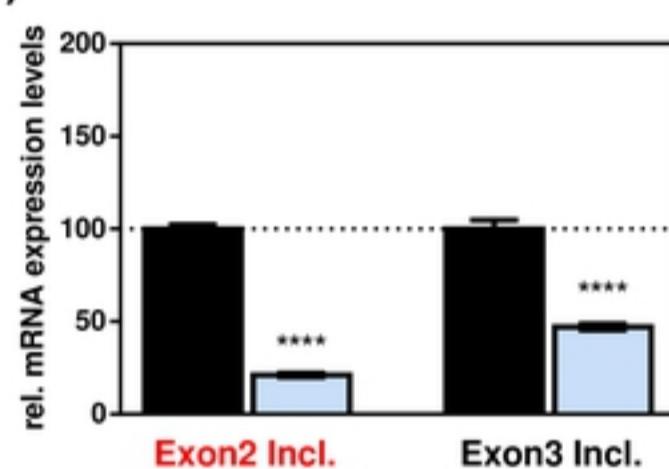
a)**b)****c)**

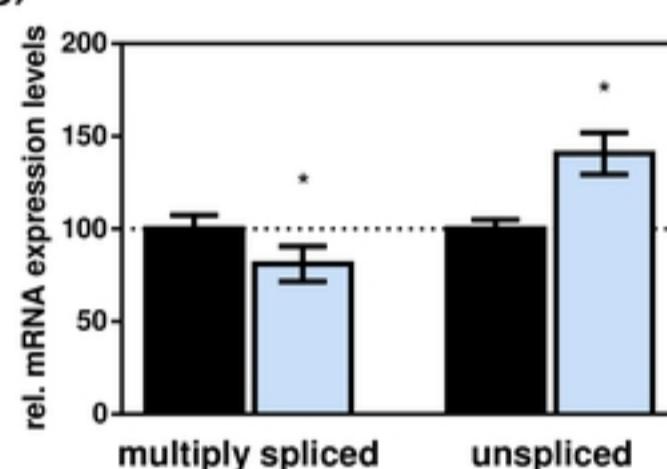

bioRxiv preprint doi: <https://doi.org/10.1101/2021.06.11.448031>; this version posted June 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

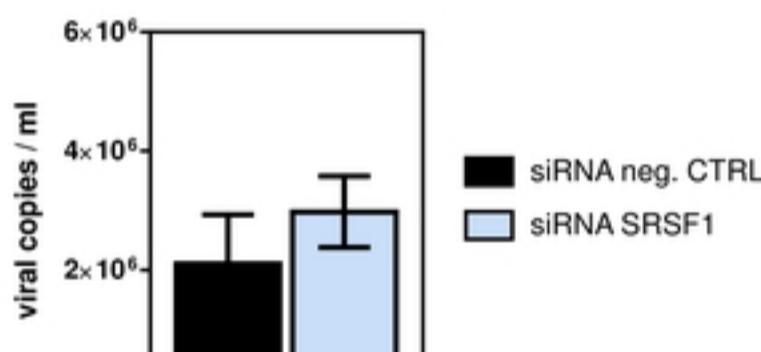

a)

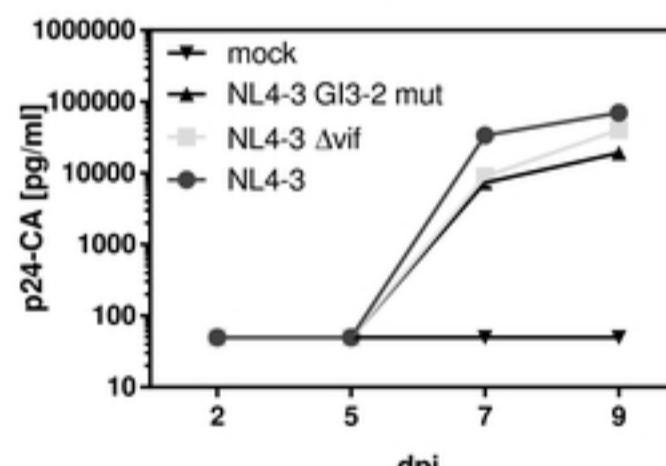

b)


c)

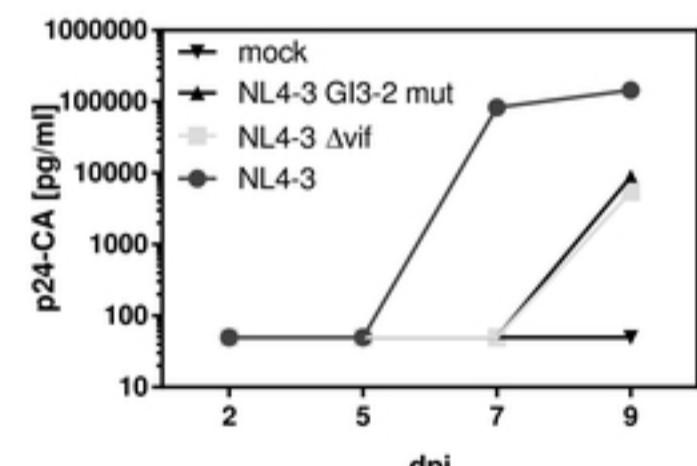

d)


e)

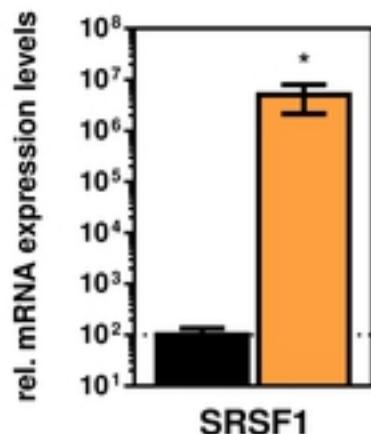

f)


g)

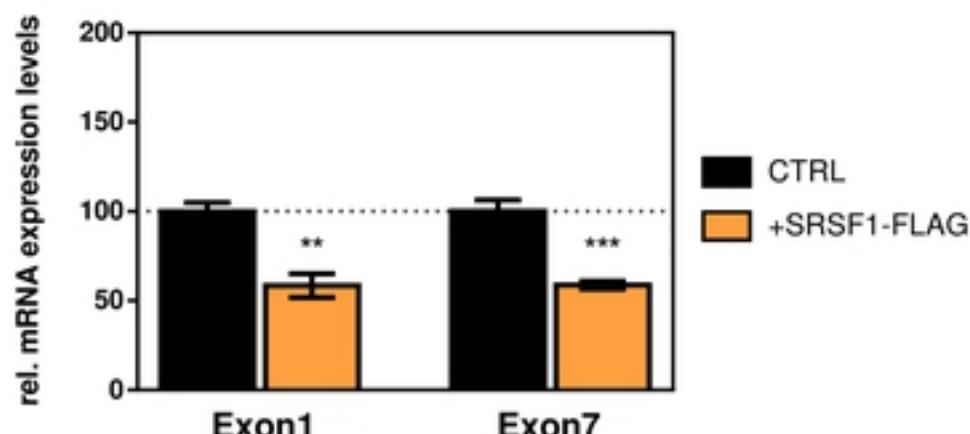
h)



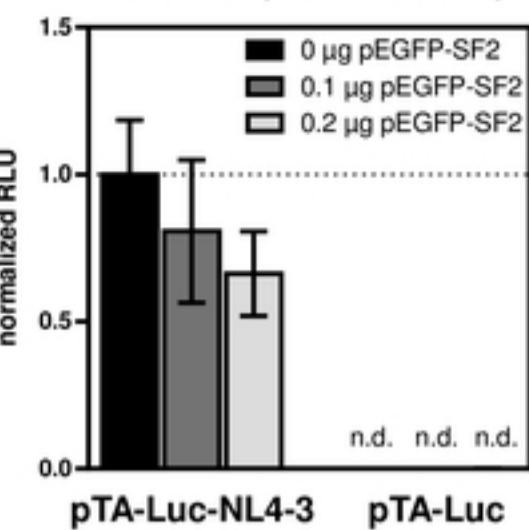
i)

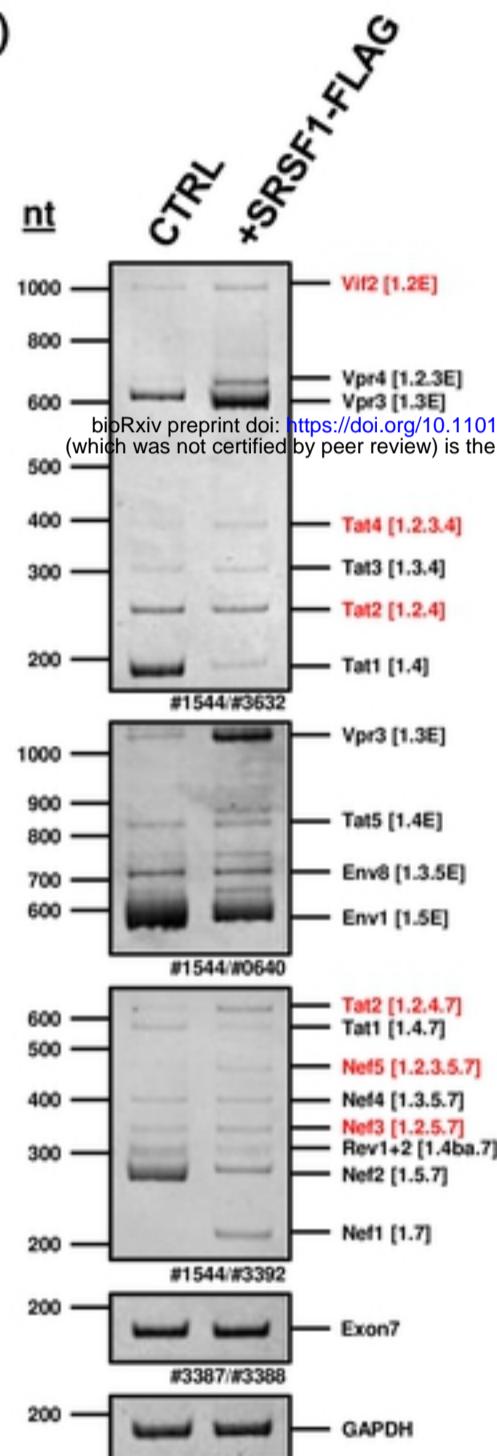

CEM-SS

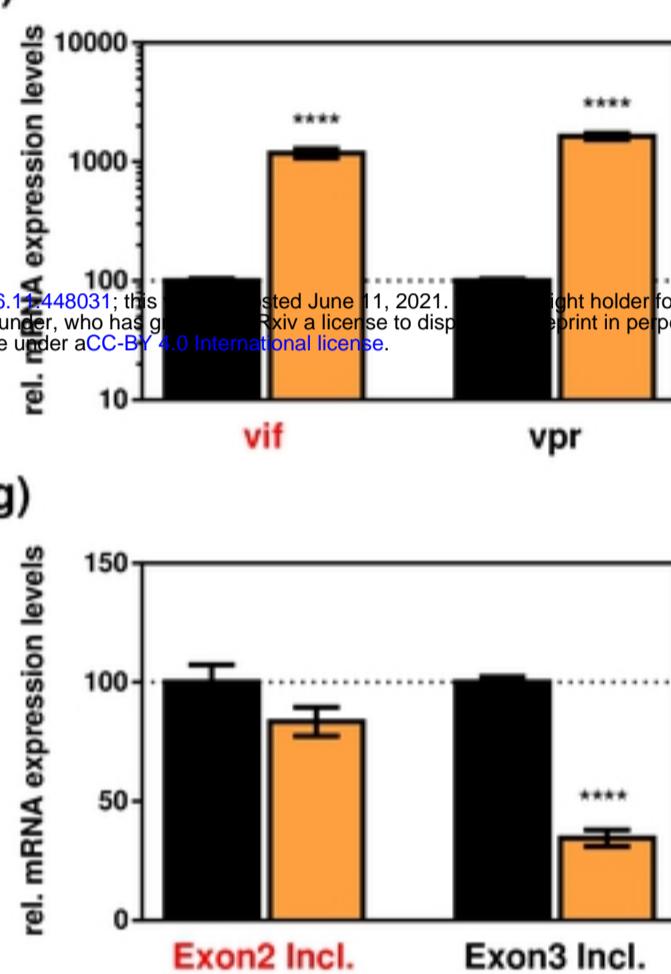
j)

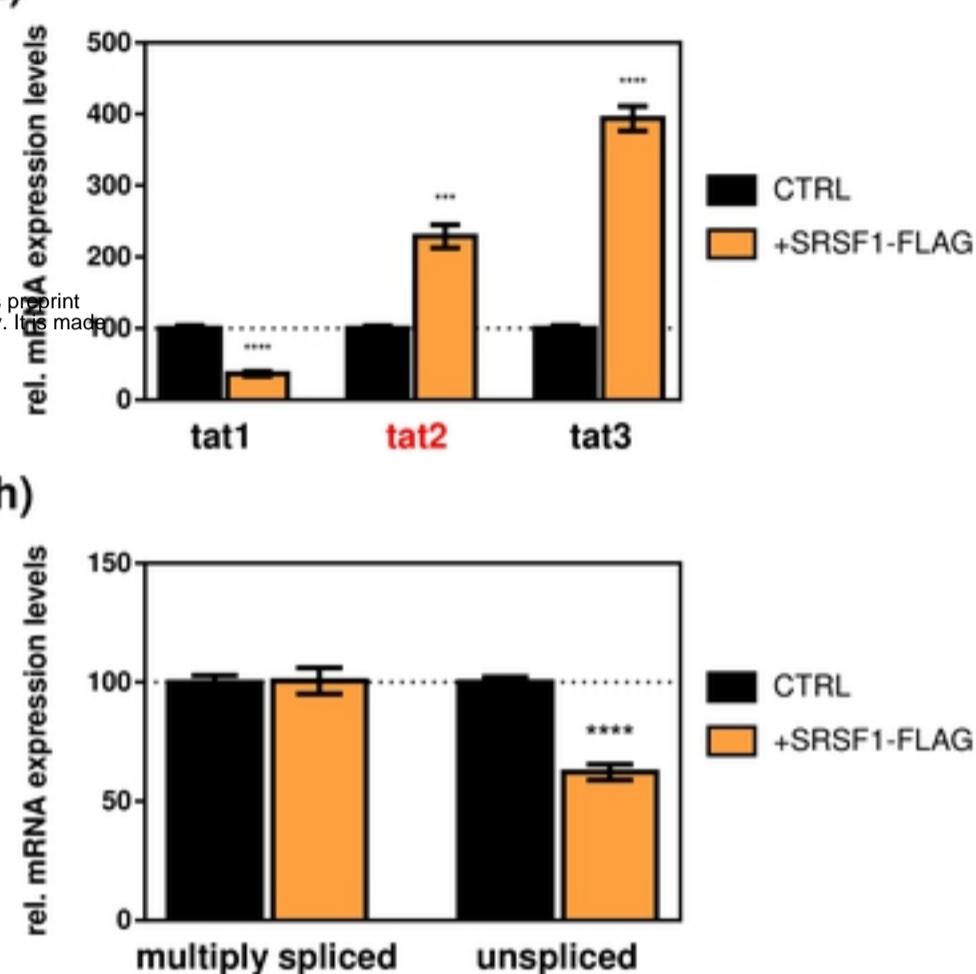


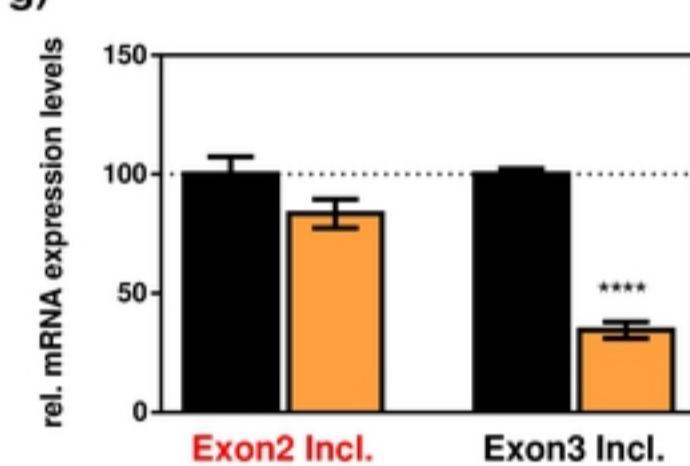
CEM-T4

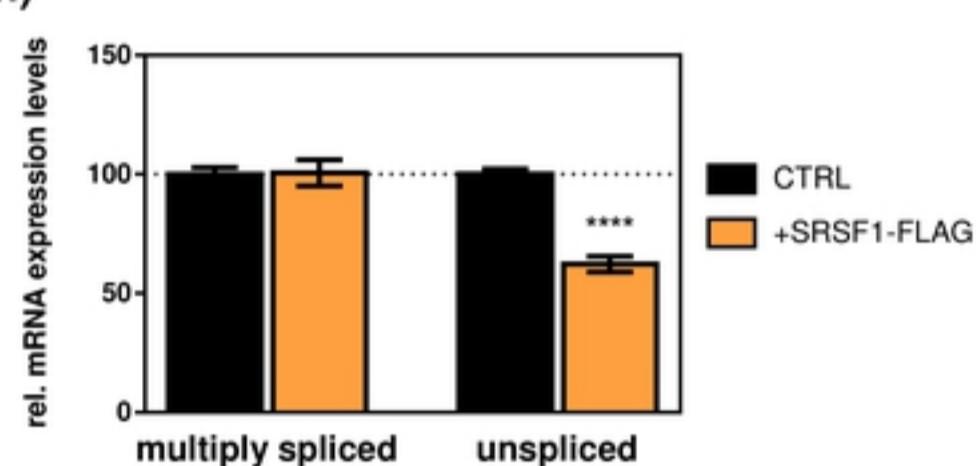

a)

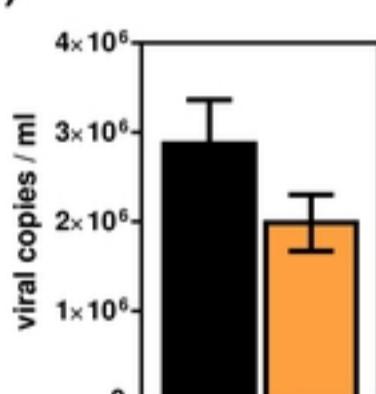

b)

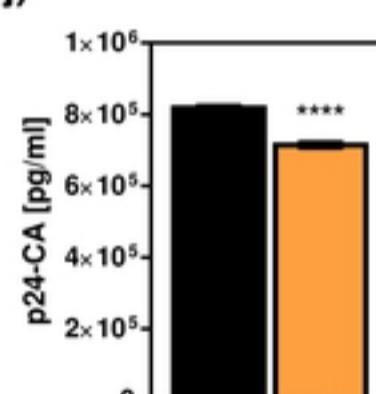

c)

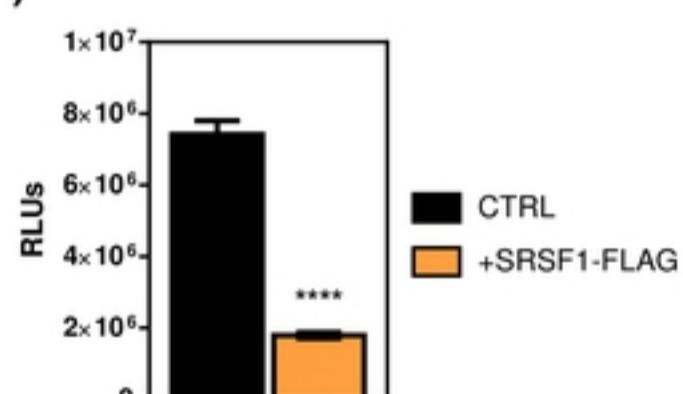

d)

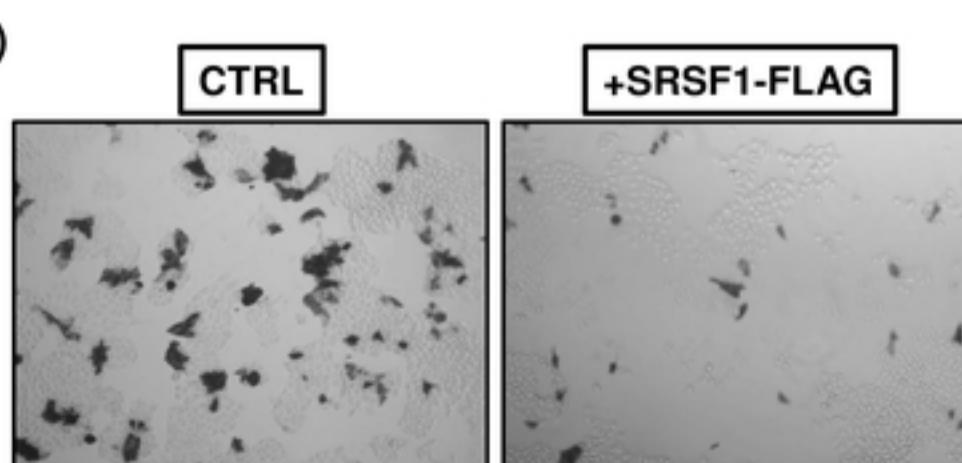

e)


f)


g)


h)


i)


j)

k)

l)

