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Abstract

Many neurodegenerative diseases are associated with the death of specific neuron types in
particular brain regions. What makes the death of specific neuron types particularly harmful for
the integrity and dynamics of the respective network is not well understood. To start addressing
this question we used the most up-to-date biologically-realistic dense neocortical microcircuit
(NMC) of rodent, which has reconstructed a volume of 0.3 mm? and containing 31,000 neurons,
36 million synapses, and 55 morphological cell types arranged in 6 cortical layers. Using modern
network science tools, we identified “hub-neurons” in the NMC, that are connected synaptically
to a large number of their neighbors and systematically examined the impact of abolishing these
cells. In general, the structural integrity of the network is robust to cells’ attack; yet, attacking hub
neurons strongly impacted the “small worldness” topology of the network, whereas similar attacks
on random neurons have a negligible effect. Such hub-specific attacks are also impactful on the
network dynamics, both when the network is at its spontaneous synchronous state and when it was
presented with synchronized thalamo-cortical visual-like input. We found that attacking layer 5
hub neurons are most harmful to the structural and functional integrity of the NMC. The
significance of our results for understanding the role of specific neuron types and cortical layers
for disease manifestation is discussed.

Introduction

Research at the macro- and meso- scale brain anatomy has demonstrated a clear connection
between structure-to-function. Indeed, the global network structure of the brain was shown to be
altered in diseases such as schizophrenia, (Rubinov and Bullmore, 2013), and bipolar disorder
(Syan et al., 2018) and other (Stam, 2014). Yet, pathology takes place at the microscale, at the
cellular and synaptic level architecture of neuronal microcircuits. How does the connectomics at
this level shape the dynamics and functionality of biological circuits is indeed a key question in
neuroscience (Abbott et al., 2020; Turner et al., 2020). Of particular interest is the impact of
structural disruption of the connectome, whether due to natural aging or due to diseases. These
two types of disruptions are rather different. Whereas a nonselective general reduction in the
number of cells was found in the aging brain, recent studies showed selective cell vulnerability
associated with certain pathologies. For example, a significant decrease in the number of specific
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cell types in cortical areas in Alzheimer’s disease (Stranahan and Mattson, 2010; Fu et al., 2018;
Murray et al., 2018), multiple sclerosis (Schirmer et al., 2019) and Parkinson (Hammond et al.,
2007).

Experimental investigation of the role of specific cell populations in the neocortex has advanced
significantly in recent years. Optogenetic methods (Deisseroth, 2015) together with genetic
dissection of specific neurons (Luo et al., 2018) enables precise recording and manipulation
(silencing and activating) of specific neuronal populations. Manipulating the neural activity of
specific cell types during in vivo experiments is presently used to manipulate animal behavior (Guo
et al., 2015; Carrillo-Reid et al., 2019; Robinson et al., 2020), but the effects of such cell-type-
specific manipulations on circuit dynamics are rarely characterized at the network scale (Cardin et
al., 2009; Pouille et al., 2009; Adesnik and Scanziani, 2010; Xue et al., 2014; Bitzenhofer et al.,
2017). Consequently, we currently lack understanding of the role of particular cell populations,
e.g., following specific diseases, in shaping neural network dynamics and eventually network
functionality.

To address this gap, we hereby utilized theoretical approaches to explore the correlates between
microcircuitry structure and function. Towards this end we simulated the most up-to-date
biologically-realistic dense digital reconstruction of a neocortical microcircuit, NMC (Markram et
al., 2015). This 0.3 mm? cortical circuit contains some 31,000 neurons, 36 million excitatory and
inhibitory synapses, and 55 morphological cell types (m-types). This model circuit enables an
unprecedented opportunity to directly investigate the impact of network structure on system
dynamics by introducing cell-specific and layer-specific attack/damage while measuring the
collective neural activity under different physiological conditions.

Of particular interest is the question of whether certain cell types (“hub cells”) that either receive
or make a more-than-average number of synapses are particularly impactful for network dynamics
and, perhaps also for neurological diseases. Our recent experimentally-based theoretical work has
identified such “hub neurons” in the NMC (Gal et al., 2017). It was shown that, among the ~55 m-
types that constitute the mouse somatosensory cortex, only a limited number of cell types may
consist of rare hub neurons having a significantly high number of out-going and in-coming
connections, e.g., the thick tufted L5 pyramidal cells. The existence of such cell-type-specific
wiring specificities was found essentially inevitable (Gal et al., 2019) and highly connected cells
were shown to have a dominant role in shaping the cortical circuit dynamics (Setareh et al., 2017;
Luccioli et al., 2018). Is the death (“attack™) of these cells in realistic cortical microcircuits more
harmful to the network dynamics as compared to that of other cell types?

Using network science tools, we first analyzed how the circuit topology was impacted following a
cell attack. This analysis includes computing the mean shortest path between two nodes in a
network before and after such attacks; this measure is related to information flow in the network.
Another respective measure of the network topology is its Small-World characteristic. Reduction
in the “small-worldness” of the networks might imply a reduction in efficiency of information
exchange and capacity for associative memory (Bullmore and Sporns, 2009). The impact of cell
attack on additional topological measures is also examined in this study.
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We next used several measures to evaluate network dynamics such as mean firing rate, coefficient
of variance (CV), SPIKE-synchronization (Kreuz et al., 2015), etc. Each measure provides us with
different aspects of the circuit activity and, hence, helps us understand how targeted attacks on hub
neurons are more disruptive to the network functionality than attacking the same number of
neurons randomly. Combining these results with structural network measures following cells’
attack shed new light on the robustness of the neocortical microcircuit connectivity to a variety of
attacks and, at the same time, on the functional sensitivity of the network to some of these attacks.
These findings provided important insights into the impact of the death of specific cell types (e.g.,
due to certain diseases) on the dynamics and functionality of local cortical microcircuits.

Results

Hub neuron attacks impact the NMC small-world topology

To explore the structural and functional impact of attacking highly connected “hub-neurons” we
started by ranking all neurons according to their total degree (total number of pre- and post-
synaptic cells connected to a given neuron). We then removed (attacked) different quantities of
these neurons, starting from the highest degree hub cells to the lowest degree.

To quantify the structural effect, we first measured the overall connectedness of the network, as
captured by the size of the network’s largest connected component (giant component size; see
Methods). We highlight two extreme outcomes on network architecture following hubs attack
(Fig. 1A). On one extreme, the removal of hub neurons may completely break the network into
multiple smaller unconnected components (Fig. 1A top; “breakable”). In the other extreme, the
removal of hub neurons will not break the network and the remaining neurons will remain in one
connected giant component. (Fig. 1A bottom; “unbreakable”). A finer structural feature utilized
here, which relates to the efficiency of network communication and computation, is the “small-
world topology” of the network. This measure relies on two opposing requirements: a short path
length between any pair of nodes/neurons (Fig. 1B, right) and clustered interconnectivity, ¢, within
groups of nodes (Fig. 1B, left), see (Watts and Strogatz, 1998). Thus, the “small-worldness” of a
neural network reflects the degree in which it balances the needs for global integration and local
segregation of neural information (Sporns, 2013a).

We found that the giant component of the NMC is not broken by hub-attack as its size only
negligibly decreased when a large number of hub-neurons are attacked (Fig. 1C, black line),
showing that the global integrity of the circuit is robust to such attacks. Moreover, the effect was
similar to respective random cell-attacks (Fig. 1C, orange line). This implies that the NMC circuit
is of the unbreakable type. In contrast, the small-world topology of the circuit is more sensitive to
attacks on hub neurons. For example, attacking 5,000 hub neurons increased the path length from
2.48 to 2.69 (8% increase, Fig. 1D) while reducing ¢ from 0.029 to 0.025 (12% reduction, Fig.
1E). To test whether this disrupted small-world topology is expected by chance and resulting
merely due to the number of eliminated nodes, we performed control random attacks with
matching number of nodes (Fig. 1C-E). We found that the disruption of both path-length and
clustering due to hub attacks were significantly stronger than that expected from the random
attacks (p < 0.001 for both, two-tailed Wilcoxon rank sum test; n; = 10, no = 100; Methods).
Additionally, the observed disruptions were found significant (P < 0.001, two-tailed Wilcoxon
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rank sum test; n; = 10, n2 = 100; Methods) compared to that of randomly attacked networks with
similar numbers of eliminated edges (Supplementary Figure S1).
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Figure 1. Structural disruption of cortical microcircuits following attacks on hub-neurons. (A) Schematic illustration of
two network architectures having different sensitivity to a similar targeted hubs attack. Top: the case of breakable network
whereby an attack on 3 hub neurons disintegrates the network into 3 separate sub-networks. Bottom: the case of an unbreakable
network which, after an attack on 3 hub neurons, the network remains fully connected. (B) Schematic illustration of the two
features used to define “small world” networks. Right. The shortest path length connecting two nodes (cells “a” and “b”,
overplayed on the modeled neocortical microcircuit). Left. The local clustering coefficient of a node i, C;, which is the density of
connections among the neighbors of this node. In the example shown, node 1, has 8 neighbors; among them only 6 connections
out of all 8-(8-1) = 56 possible connections (¢; = 6/56 = 0.11). (C) The size of the giant component in the NMC as a function of
the number of hubs attacked (Attack strength), black line, compared to the corresponding random attacks (orange line),
demonstrating that the NMC network is “unbreakable”. (D) Mean path-length and (E) mean clustering coefficient following hub
attacks (black) versus random attack (orange). These two features are particularly sensitive to hub attack. Light orange depicts
95% confidence interval in all figures.

Hub neurons are key for network synchrony

The structural analysis has uncovered the disruptive effect of hub attacks on the small worldness
properties of the neocortical microcircuit. However, the functional implications of such structural
changes are not trivial. To elucidate the functional impact of hub neurons on network dynamics,
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we simulated MNC networks following different cells’ attacks and examined various functional
features of network activity.

It has been shown (Markram et al., 2015) that at an extracellular calcium concentration of 1.4 mM
the NMC network generates spontaneously synchronous bursts at ~1 Hz (Fig. 2A and see
Methods). At this synchronous state, the cells’ mean firing rate is 3.7 Hz, their CV is 2.16 and
SPIKE-synchronization measure is 0.25 (see Methods). We simulated the circuit after removing
2,977 hub neurons (Fig. 2B) or 2,977 random neurons (Fig. 2D). Removal of hub neurons
markedly reduced the number of bursts in the network (Fig. 2B), whereas the bursting properties
of the network were unaltered for the respective random attack (Fig. 2D). Increasing further the
number of attacked hub-neurons to 7,993 completely abolished the bursting activity of the
network, shifting it to the asynchronous state (Fig. 2C) whereas it did not change the burstiness in
the case of random cells removal (Fig. 2E). Figure 2F summarizes the change in burst number
due to different strengths of attacks. In addition to the reduction in burst activity due to removal
of hub cells from the circuit, the correlation of variation (std divided by mean ISI), CV, firing rate
and spike-synchronization all showed a stronger reduction compared to removal of random
neurons (Fig. 2G-I).

Because hub neurons are mostly excitatory (Gal et al., 2017), hub attacks primarily remove
excitatory neurons from the network. Indeed, in all analyzed hub attacks, ranging up to 15,000
neurons, the percentage of excitatory neurons in the attacked neurons was above 97%, but when
attacking random nodes, we converge to the full circuit distribution of E/I neurons (85%
excitatory). To address this discrepancy, we performed random attacks that matched both the
number and the E/I identity of nodes (Supplementary Fig. 2 and Methods). Indeed, this attack
was more disruptive than the completely random attacks, but still less than the hub attacks. We
also show that the number of edges attacked is not the main factor for this effect (Supplementary
Fig. 2). This analysis demonstrates that, in the synchronous state, the impact of a neuron on the
generations of collective synchrony in the NMC is more affected by their embedding in the
network (“hubiness”) rather than by their physiological effect (the network E/I distribution).

Finally, we repeated the above analysis also for the asynchronous state, which is induced by setting
the calcium concentration in the MNC simulations to 1.25mM (Methods and Figure 15 in
Markram et al., 2015). At this state, the difference between attacking hubs versus random neurons
is still significant, but not prominent as in the asynchronous case (Supplementary Fig. 3;
Methods). Indeed, the asynchronous state is, in general, more robust to cell-attacks.
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Figure 2. Effect of hub attacks on the dynamics of the NMC network in the synchronous regime. (A) Raster plot (top) and
time histogram (bottom) of the NMC spiking activity during spontaneous bursting state (Methods). In this state, all cortical layers
tend to burst synchronously at about 1Hz, with lower layers starting to fire earlier. (B,C) Same as (A) after attacking 2,977 and
7,993 hub neurons, respectively. (D,E) As in (B,C) but for respective random attacks. (F-G) Impact of hubs attack (black) versus
random attack (orange) on network activity as a function of attack strength. (F) Impact on the number of bursts/sec. (G) Impact
on average firing rate. (H) The impact on correlation of variation. (I) On global SPIKE synchronization measure. For all measures,
hub attack is significantly more impactful. (light orange depicts 95% confidence interval).

Functional implication of layer-specific hub attacks

We showed that hub neurons are more effective in driving network synchrony. These hubs
potentially belong to multiple cell-types at the different layers. To further detail the impact layer-
specific hubs, we measured the connectivity among excitatory and inhibitory cells within and
between layers (Fig. 3A). To compactly examine the connectivity among all 55 cell types in the
NMC, we employed a force-directed graph drawing algorithm, whose 55 nodes depict the cell
types whereas edge strengths correspond to the pairwise connection probability. In this
presentation, tightly connected nodes will tend to appear closer. Inspecting the original network,
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the existence of large cell-type groups and clusters can be seen within each layer (Fig. 3B large
nodes). After attacking 15,000 hub neurons, several changes were prominent (Fig. 3C). The
network layout had spread more widely, indicating that the strength of the connections between
cell types is reduced. Additionally, the large nodes of L5 almost disappeared, hinting to their
possible impact on disruption of network functionality (see below). The interactive version of this
algorithm implementation on the NMC is available online for further examination at intermediate
levels of hub attacks.

To test the importance of the different layers for network activity we performed layer-specific hub
attacks by simulating the circuit while removing hub neurons in specific layers. We found that, in
general, attacking L5 hub-neurons is the most distributive attack as it caused the largest change in
all the functional measures used (Fig. 3D, F-G, but see the impact of L4 in 3E). When revisiting
Figure 3A one sees that L5 excitatory cells are the most interconnected population in the circuit
(the overall percentage of incoming and outgoing connections); this is probably the reason for the
high functional influence of L5 attack. L6 attacks also resulted in a large change of the functional
measurements, although it did not influence the number of bursts.

We summarize this section by noting that attacking hub neurons is most disruptive to network
dynamics when hub neurons are attacked at all layers (Fig. 3D-G, dashed black line). Layer 5 is
the most-sensitive layer to such an attack. As neurons in different cortical layers belong to different
genetic types (Gouwens et al., 2019; Yuste et al., 2020), this result shows that, although the same
number of neurons might be degraded due to different pathologies that target specific genetic cell
types (e.g., L5 thick-tufted pyramidal cells), they will have a very different impact on the overall
dynamics of the cortical network and, thus, on the manifestation of specific diseases.
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Figure 3. Sensitivity of network dynamic to hub attack is mostly attributed to attacks on LS PCs. (A) Percentages of
synapses for excitatory (brown-red arrows) and inhibitory (blue-green arrows) connections in the NMC microcircuit (layer 1
omitted). Arrow width and corresponding numbers indicate the percentage of total synapses formed by this pathway (omitted for
pathways with <1% of synapses). The total percentage of plotted synapses is 98%; the remaining 2% originate in layer 1).
Rectangle sizes are proportional to the sizes of the corresponding number of excitatory or inhibitory populations. (B) The
connectivity among layers and cell-types is visualized using the force-directed graph algorithm (Methods). The network is
composed of 55 morphological cell-types (circular nodes, colors match to that in A); edges strength corresponds to pairwise
connection probabilities. Strongly connected cell-types are displayed closer in space. (C) Same as B, but for the network
following an attack on 15,000 hub neurons. Note the disappearance of the large nodes in Layer 5. (D-G) Different quantification
of network activity for layer-specific hub attack, global hub attack and random nodes attack. (D) Number of bursts/sec, (E)
Average network firing rate, (F) Correlation of variation, (G) On global synchronization measure (Methods). Note that attack of
L5 pyramidal cells is the most disruptive layer attack.

Functional implication of hub cells on thalamic input processing

The above sections have demonstrated that hub attacks are significantly more effective in
disrupting circuit-wide synchronization in the spontaneous synchronized case. In this section, we
set to test whether this observation is general enough, and also valid for the case where the
synchronized activity is generated by realistic sensory input. Towards this end the we innervated
the NMC circuit by 574 thalamic fibers (the thalamo-cortical, TC, input). These TC axons project
mostly to neurons in lower layers 3 and 5 (Fig. 4A), where some neurons might receive up to 750
thalamic synapses. Each reconstructed axon is making synapses on dendrites that are adjacent to
its path (Fig. 4B; Methods), functionally impacting a vertically confined space (Amsalem et al.,
2020).
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For these simulations we set the calcium concentration value to 1.25 mM; this results in the
network being in a spontaneous asynchronous state (As in Supplementary Figure 3A; see also
Figure 15 and Figure S12 in Markram et al. 2015). We then simulated a grading drifting at 1Hz by
generating the firing rate of the thalamic axons from an inhomogeneous Poisson process with a
time-varying rate that followed a sinusoidal function (Fig. 4C; Methods). The circuit responded
by following the oscillatory input firing with highly time-locked synchronized bursts of spikes at
1Hz (Figure 4D). We repeated the simulation following the attack on 2,500 random neurons (Fig.
4E) or 2,500 hub neurons (Fig. 4F). In the random attack the circuit continued to follow the
oscillatory input and the response remained synchronized to the input. However, following attack
on hub neurons, the circuit response was much less synchronized.

We next quantified the circuit activity using SPIKE-synchronization time profile in response to
the thalamic input for different cases (Fig. 4G). The blue line in this figure shows the spike-
synchronization measure of the TC axons whereas the grey line depicts the spike-synchronization
of the cortical neurons. We found that the circuit strongly sharpens the synchronicity of the
thalamic input (Fig. 4G, compare gray to blue line), and that attacking random nodes only slightly
reduced this sharpening (orange line). In contrast, attacking hub neurons reduced the
synchronization in response to the TC input dramatically (Fig. 4G, black line); this case is even
less synchronized than the thalamic input itself (Fig. 4G, compare black line to blue line). We
further conducted a complete set of simulations while attacking random or hubs neurons, and
quantified different functional features (Fig. 4H-K). Hub attacks were much more destructive
compared to the random attacks and caused a larger change of all measures. Interestingly removing
hub neurons reduced the SPIKE-synchronization profile to a value which is lower than that of the
input, showing the strong dependence of the circuit ability to follow and sharpen synchronized
input on hub neurons. These results highlight the importance of hub neurons in processing sensory
input, clearly demonstrating that the integrity of the cortical hub neurons is critical for the fast and
reliable response of the cortical circuit to sensory information (see Discussion).
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Figure 4. Network synchrony due to thalamic input is disrupted following attack on hub neurons. (A) Schematic illustration
of the NMC circuit, each neuron is color-coded by the number of thalamic synapses it receives. (B) The spatial distribution of the
thalamic input is illustrated by showing the cortical postsynaptic neurons receiving inputs from two exemplar TC axons (red and
blue axons and respective colored cortical neurons). (C) Mean thalamic activity (bottom) simulating their response moving bars at
1 Hz (top, Methods). (D) Raster plots of the circuit responding to the thalamic input. This circuit fires asynchronously at its
spontaneous state ([Ca>*]o = 1.25 mM; see Supp. Fig. 3A and Methods). (E-F) The response of the circuit to the thalamic input
after attack of 2,500 random nodes (E) and 2,500 hub neurons (F). (G) Circuit’s spike-synchronization profile (Kreuz et al., 2015)
in response to thalamic input is sharpened in the intact and randomly-attacked networks as compared to that of the TC input itself
(blue line) and it decreased dramatically after hub attacks (black line), even below that of the TC input. (H-K) Different
quantifications of network activity under thalamic input for hub and random attacks (as in Fig. 2F-G).
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Discussion

We introduced in this work a network-based approach to investigate the relation between a cortical
circuit structure to its function by removing cells according to different criteria in a highly detailed
simulation. Additionally, we proposed a network-based approach for identifying potentially
interesting neurons. Our analysis shows that the importance of a neuron in maintaining
synchronous activity is more affected by their embedding in the network (e.g., the neurons' in/out
degree, its “hubness”) rather than strictly by their physiology.

To examine the importance of different cells and layers, we simulated the network activity after
removing hub cells globally or from specific layers and compared the results to control models
where random cells were removed. We discovered that hub neuron attacks have the largest change
of structural network measures, leading to loss of the Small-World property of the simulated NMC
(Figure 1C-E). Accordingly, attacks on this population resulted in the largest decrease in the
network synchrony, firing rate and number of bursts (Figure 2). The attack changed the network
response from spontaneously synchronous to asynchronous, resulting with no bursts and reduced
CV (Nolte et al., 2019).

Among attacks targeting specific layers, mimicking a more biologically plausible scenario, we
found that attacking L5 hub-neurons resulted in the largest effect on all functional measures
(Figure 3D-G) and therefore is the most distributive attack. We believe that this phenomenon is
rooted in the high interconnectivity of L5 excitatory neurons (Figure 3A). Interestingly the specific
genetic profile of L5 excitatory neurons is widely used to optogenetically target and record from
this subset of neurons (de Vries et al., 2020), and open the possibility of examining our predictions
by specifically silencing this subpopulation while recording from the neocortex.

Hub neurons play an important role not only in maintaining spontaneous network oscillatory
activity but also in the processing of sensory input from other brain areas. When thalamic
(sensory) drifting sinusoidal input impinged on our modeled cortical circuit, the circuit not only
followed the thalamic synchrony, but resulted in activity that was more synchronized. We then
found that attacking hub cells caused a significant reduction of the synchrony of the cortical
column with respect to the oscillation of the TC input (Figure 4G-K), eventually resulting in
activity that is less synchronized than the input. Nevertheless, random attacks seem to have a minor
effect on thalamic input processing by the network, demonstrating yet again the robustness of the
cortical microcircuit to random cell death. These results highlight the functional role of hub
neurons in fast processing of sensory information in the cortical microcircuit.

Our findings can also be seen as a demonstration of how network science theory is implemented
in realistic networks. As the modeled cortical microcircuit was shown to maintain the small world
property with a high clustering coefficient and short mean path (Gal et al., 2017), we now can
systematically characterize how the targeting of fundamental components of a small-world
network, the hubs, indeed leads to loss of this characteristic in the neural microcircuit, and results
in major functional disruptions. We now have concrete evidence that hubs fulfill their theoretical
key role in a highly detailed biological model. Loss of Small-World between brain regions was
shown to be related to neurodegenerative diseases using fMRI data (Sporns, 2013b). Our
experiments suggest that a decrease in network clustering and an increase in the mean short path
can cause functional failures also at the microscale level of resolution.
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To conclude, while neurons are usually characterized according to genetic markers, morphology
and physiology (Berg et al., 2020; Yuste et al., 2020), we showed how a specific structural measure
such as the number of synapses that defines hub cells, has a direct effect on the network
functionality. As hub cells are specific subtypes of neurons (Gal et al., 2017), it is possible to use
in vivo cell-specific knockout experiments to explore the behavioral implications of the neural
network functional disruption suggested in our work.
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Methods

NMC connectedness measures.

The general connectedness of the NMC was characterized by identifying connected components
of the network. A strongly connected component is a group of nodes in which any node is
reachable from any other node through a directed path (a series of nodes and directed edges).
Intuitively, a strongly connected component reflects a group of recurrently interlinked neurons
that could give rise to an anatomical module with functional specialization.

Small-world properties.

The first property of the small-world analysis is based on the length of the shortest path /;
between pairs of nodes in the network. A path length between two nodes in the network is
expressed as the number of connections along that path. To generalize this property for the entire
network, the characteristic path length (/) of a network was used, which is the mean shortest path
length averaged over all pairs of neurons

1
P

L]
Clearly, this measure is well-defined in connected networks where any node is reachable from
any other node. The NMC network initially contained a single giant component of 31,329 + 5
neurons that were mutually reachable (99.95% + 0.01% of all neurons; see above).
The second property of the small-world analysis is captured by the tendency of nodes to cluster
together. The local clustering of individual nodes measures the level at which the neighbors of a
node are interconnected among themselves. Let the binary (unweighted) adjacency matrix of a
directed network be denoted by 4; then the local clustering coefficient ¢; of a node i is defined as,

_ (A + AT)j,
2(dfer(diet — 1) — 24%)

Ci
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where df°t depicts the total degree (in-degree + out-degree) of node i. Essentially, in directed
networks, this definition reflects the ratio of the number of triangles among a node and its
neighbors to the number of all possible triangles that could have been formed (Fagiolo, 2007).
The value of ¢; ranges from 0 (none of the neighbors are connected to each other) to 1 (all
neighbors are mutually connected). The network-wide clustering coefficient (c) is computed by
averaging over all local clustering coefficients

Hubs versus the reference random attacks

To selectively attack the highly connected “hub-neurons” we started by ranking all neurons
according to their total degree (total number of pre- and post-synaptic cells). Then, we performed
several attacks at different strengths (the number of removed hubs). In each attack, given
required number of cells to attack (s, attack strength), we removed the top degreed cells.

To test the significance of the results observed in hub attacked networks we performed several
types of random attacks for comparison. In the first, most naive random attack, for each hub
attack at strength s we performed 10 matching random attacks in which randomly selected s
neurons were attacked. In the second, for each hub attack we counted the number of excitatory
sg and inhibitory s; neurons that were attacked (s = sg + s;); we then performed 10 matching
random attacks in which sg excitatory neurons and s; inhibitory neurons were selected
randomly.

Structural analysis statistical tests

To compare the structural disruption of hub attacks to that of random node attacks (Fig. 1) we
compared the structural metric values (mean path length and clustering coefficient) of the
strongest attacks. Specifically, we took the ten strongest hub attacks (n; = 10), and the ten
matching random attacks for each strength (n> = 100). For both metrics (path length or clustering
coefficient) a two-tailed Wilcoxon rank sum test indicated that the disruption was greater for hub
attacks than for matching control (n; = 10, n> = 100, P < 0.001).

For random edge comparisons (Supplementary Fig. 1) we took the 100 strongest attacks (12 =
100) and compared to the ten closest hub attacks (rn; = 10). In agreement with the previous
control, also here, a two-tailed Wilcoxon rank sum test indicated that the disruption was greater
for hub attacks than for matching control (n; = 10, n> = 100, P < 0.001), for both metrics.

Dense model of neocortical microcircuit (NMC)

Simulations were performed on a two-week-old previously published model of a neocortical
microcircuit. Full details on the constructing of the circuits and its simulation methods were
described in Markram et al. (2015). The microcircuit (Fig 1B) consisted of 31,346 biophysical
Hodgkin-Huxley 3D reconstrued NEURON models with around 7.8 million synaptic
connections forming around 36.4 million synapses. Synaptic connectivity between 55 distinct
morphological types of neurons (m-types) was predicted algorithmically and constrained by
experimental data (Reimann et al., 2015). The densities of ion-channels on morphologically-
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detailed neuron models were optimized to reproduce the behavior of different electrical neuron
types (e-types) and synaptic dynamics recorded in vitro (Van Geit et al., 2016). Simulations were
run on HPE SGI 8600 supercomputer (BlueBrain V) using NEURON (Carnevale and Hines,
2006) and CoreNEURON (Kumbbhar et al., 2019).

Simulation of baseline spontaneous activity

To account for the missing long-range connections and missing neuromodulators, neurons were
depolarized with a noisy somatic current injection of 100% of first spike threshold (Markram et
al. 2015 Figure 15). In addition, synapses spontaneous release probability was modified by
setting the extracellular calcium concentration [Ca®"],. Two conditions were tested, [Ca**], of
1.25mM and 1.4mM each positioning the circuit in different activity regimes (Markram et al.
2015 Figure 15). Synaptic conductances and kinetics are as in Markram et al. (2015). Each attack
was simulated twice with different randomization of the noisy step currents and timing of the
spontaneous synaptic release, each time for 10 seconds.

Simulation oscillatory thalamocortical input to the NMC

The oscillatory thalamocortical input to the NMC (Figure 4) was generated by following the
same principle as in (Amsalem et al., 2016) - the spike times of the axons from inhomogeneous
Poisson process with time-varying rate as,

_ (sin(®)*f*2m)+1)1°

Alt) = - +b

where t is time in seconds, f the frequency of the oscillatory input was setto 1 Hz, B =
) 01 sin (t * 2m)1° dt is a normalization factor, so that the mean firing rate of the oscillatory part
would be equal to 7Hz, and b is the baseline spontaneous firing rate which was set to 1 Hz. For

figure 5 each simulation was of 10 seconds, and conducted 5 times with different randomly
generated thalamic input.

Burst detection

We detected bursts by extracting the multivariate SPIKE-synchronization profile (Mulansky and
Kreuz, 2016) for each simulation, smoothing the result using a running mean filter of ~200 ms
and then counting the number of events larger than half the maximal synchronization (but at least
larger than 0.15).

Force-directed graph layout

Visualization of complex networks in an informative and meaningful way is a challenging task.
How to position a large number of nodes, densely interconnected with non-obvious organization,
in a two-dimensional layout that can expose inherent symmetries and structures such as hubs and
clusters?

To provide a layout in which the distance between nodes (cell types) is more or less proportional
to their edge weight (connection probability), we employed a Force-directed graph drawing
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algorithm. The algorithm is based on a physical model that assigns different forces among the
nodes. On one hand, to promote attraction between connected nodes spring-like attractive forces,
which depend on the distance and edge weight, are simulated. On the other hand, to avoid
overlapping of nodes, repulsive forces (such as Coulomb's law between electrically charged
particles) are simulated to separate all pairs of nodes. By iteratively determining all the forces
and moving the nodes accordingly, the system gets closer to an equilibrium where all forces add
up to zero, and the position of the nodes stays stable.

Here, we used the implementation from D3.js library (https://github.com/d3/d3-force).

Visualization

Figures were created using Matplotlib (Hunter, 2007) . For analysis we used Python and Numpy
(Harris et al., 2020)

Supplementary Material
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Supplementary Figure 1: Hub attack disruption is stronger than random attacks with matching number of edges. Same as
Figure 1, only the attack strength (x-axis) is measured by the number of removed edges.

Attack type
A — Hubs B C D
— Random nodes matched E/I 4.0
15 N 1.2 s
3 L 35 g 02
5 1.0 2 S 10 3
2 - © uw
12 = 8.0 (&) ¢
5 o 0.8 = 01
m 05 E % .
ic 25 0.6
0.0
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000
Attack strength Attack strength Attack strength Attack strength
E  Attacktype F G H
— Hubs 4.0
1.5 N 1.2 s
] L 35 g 02
%
E 1.0 % > 1.0 Lu({)
12} = 3.0 o 2
5 o 0.8 = 01
@ 05 £ a0
ir 25 0.6
0.0
0 2000000 4000000 6000000 0 2000000 4000000 6000000 0 2000000 4000000 6000000 0 2000000 4000000 6000000
Attack strength (# of edges) Attack strength (# of edges) Attack strength (# of edges) Attack strength (# of edges)

Supplementary Figure 2. Matched E/I ratio to hub attack and matched with number of edges (A-D) Hub attack (black),
random attack (orange) and random attack with E/I ratio that is matched to the hub attacks (green) effects on network activity as a
function of attack strength. (A) Average network firing rate, (B) The number of bursts/sec, (C) Correlation of variation, and (D)
Global synchronization measure. (See Methods for details about the different attacks and measures). For all measures, hub attack
is much more impactful. (E-H) same as in Figure 2, only the attack strength (x-axis) is measured by the number of removed
edges.
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The role of hub neurons in modulating cortical dynamics
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Supplementary Figure 3. Effect of hub attacks on the dynamics of the NMC network in the a-synchronous regime. (A)
Raster plot (top) and PSTH (bottom) of the NMC during spontaneous asynchronous state (Methods). (B,C) Same as (A) after
attacking 3,134 and 8,149 hub neurons, respectively. (D,E) As in (B,C) but for respective random attacks. (F-G) Impact of hubs
(black) versus random (orange) attacks on network activity as a function of attack strength. (F) On the number of bursts/sec, (G)
On average network firing rate, (H) On correlation of variation (I) On global synchronization measure (Methods). For all

measures, hub attack is much more impactful.
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