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Summary

Glioblastoma recurrence originates from invasive cells at the tumour margin that escape
surgical debulking, but their biology remains poorly understood. Here we generated three
somatic mouse models recapitulating the main glioblastoma driver mutations to characterise
margin cells. We find that, regardless of genetics, tumours converge on a common set of neural-
like cellular states. However, bulk and margin display distinct neurogenic patterns and immune
microenvironments. The margin is immune-cold and preferentially follows developmental-like
trajectories to produce astrocyte-like cells. In contrast, injury-like programmes dominate in the
bulk, are associated with immune infiltration and generate lowly-proliferative injured neural
progenitor-like (iNPCs) cells. In vivo label-retention approaches further demonstrate that
iNPCs account for a significant proportion of dormant glioblastoma cells and are induced by
interferon signalling within T-cell niches. These findings indicate that tumour region is a major
determinant of glioblastoma cell fate and therapeutic vulnerabilities identified in bulk may not

extend to the margin residuum.

Introduction

Glioblastoma (GBM) is the most common and aggressive primary brain tumour (Weathers and
Gilbert, 2014). Current standard of care, consisting of maximally safe surgical resection
followed by chemo- and radiotherapy remains ineffective, leading to invariable recurrence and

a median survival of less than 18 months (Stupp et al., 2005).

A main cause of therapy-resistance is the ability of GBM cells to diffusely infiltrate into the
normal brain (Cuddapah et al., 2014; Vehlow and Cordes, 2013). Infiltration precludes curative
surgery, leading to tumour regrowth from cells that have invaded past the resection margin

(Cuddapah et al., 2014; Vehlow and Cordes, 2013). Despite its crucial role in recurrence
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however, the invasive GBM margin remains poorly characterised (Vehlow and Cordes,
2013). This gap in our knowledge is largely due to the paucity of available patient material
from the tumour margin, particularly from distal regions. Indeed, current knowledge of GBM
biology originates almost exclusively from analysis of the tumour bulk collected during biopsy
or surgical de-bulking. Nonetheless, as invasive cells, rather than bulk cells, give rise to
recurrence, potential differences between bulk and margin tumour cells would have profound

therapeutic implications.

The pervasive molecular and cellular heterogeneity of GBM further underlies recurrence by
limiting efficacy of both standard and targeted therapies (Qazi et al., 2017). Large scale
research efforts have carried out detailed molecular characterisation of human GBM, revealing
marked genetic, epigenetic and transcriptional inter-tumoural heterogeneity (Brennan et al.,
2013; Network, 2008; Sturm et al., 2012; Verhaak et al., 2010). Based on these analyses, GBMs
have been classified into three main molecular subtypes, termed proneural, classical and
mesenchymal, defined by distinct transcriptional signatures and associated driver mutations in
PDGFRA, EGFR and NF1, respectively (Verhaak et al., 2010; Wang et al., 2017). In addition,
GBMs display remarkable intra-tumour heterogeneity, with individual tumours containing co-
existing cell populations of different genetics and subtypes (Couturier et al., 2020; Neftel et

al., 2019; Patel et al., 2014).

At the cellular level, GBMs recapitulate developmental-like lineage hierarchies (Couturier et
al.,2020; Lan et al., 2017; Neftel et al., 2019). The apex of this hierarchy is occupied by glioma
stem-like cells (GSCs), defined by their ability to self-renew and differentiate into non-stem
tumour cells (Galli et al., 2004; Lan et al., 2017; Lathia et al., 2015; Singh et al., 2004). GSCs

are thought to play a key role in recurrence due to their tumour-initiation potential and intrinsic
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resistance to chemotherapy and radiation (Bao et al., 2006; Chen et al., 2012). Interestingly,
GSCs were also shown to be more invasive than non-stem tumour cells (Cheng et al., 2011).
This has led to the speculation that GSCs may drive infiltration at the invasive niche, but as
other studies suggest a possible loss of stemness at the margin, their exact role in invasion
remains an open question (Hoelzinger et al., 2005; Molina et al., 2010; Piccirillo et al., 2009).
In analogy to neural development and adult neurogenesis, GSCs are also thought to be slow-
cycling and give rise to actively dividing progenitor-like cells that in turn generate partially
differentiated progeny (Obernier and Alvarez-Buylla, 2019). Within the tumour bulk, lineage
progression occurs towards glia-like fate, including OPC-, astrocyte- and neural progenitor-
like states, or to a mesenchymal-like phenotype (Couturier et al., 2020; Neftel et al., 2019).
These state transitions are modulated by driver mutations and by the immune
microenvironment, with common GBM mutations biasing towards either OPC (PDGFR) or
astrocyte-like fate (EGFR), and NFI1-dependent high microglia/macrophage infiltration
promoting a mesenchymal-like fate (Hara et al., 2021; Neftel et al., 2019; Wang et al., 2017).
In contrast, little is known about the lineage progression of invasive cells. Yet, the
microenvironments of the bulk and margin are dramatically different, with the bulk comprising
hypoxic, necrotic and angiogenic regions and the margin containing largely normal brain tissue
(Brooks and Parrinello, 2017). This suggests that distinct pressures on tumour cell fate choice
might exist between the two regions and that knowledge of bulk heterogeneity may not directly

inform margin phenotypes.

Here, we investigated the biology of invasive GBM cells and how they are affected by genetic
heterogeneity. We developed three somatic mouse models of GBM that carry the main subtype-
associated patient mutations and share remarkable similarities with the human disease. By

labelling the tumour cells with fluorescent reporters and exploiting the full accessibility of the
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murine invasive front, we used these models to compare bulk and margin tumour cells by single
cell RNA-sequencing (scRNA-seq) and in functional studies. We found that regardless of
underlying mutations, all three models converge on a finite set of cellular states that resemble
normal neural cell types. However, the cancer hierarchy is distinctly modulated by tumour
region. In the bulk, injury-like neurogenic programmes are dominant. This correlates with
selective immune infiltration of the bulk and results in the generation of slow-cycling cells with
properties of injured neural progenitor cells (iNPCs). In contrast, neurodevelopmental-like
hierarchies biased towards astrocyte-like differentiation are prevalent at the margin, where the
immune microenvironment resembles that of normal brain. We also show that the injured NPC
state represents a large proportion of the GBM dormant population and is induced by high
interferon signalling from T-cells that form bulk-specific niches. Our work reveals striking
differences between bulk and margin biology and suggests that tumour region is a major

determinant of GBM fate.

Results

Development of somatic GBM mouse models

To characterise the biology of invasive tumour cells and how it is affected by genetic
alterations, we developed three somatic mouse models of GBM carrying combinations of
mutations commonly associated with the main human subtypes (Network, 2008; Verhaak et
al., 2010; Wang et al., 2017). This enabled us to directly link tumour phenotypes to disease-
relevant driver mutations and model the heterogeneity of human GBM through combined
analysis of the three mouse models. Furthermore, the introduction of a tdTomato reporter in all
tumour cells allowed us to comprehensively sample the tumour margin and discriminate

tumour cells from normal brain cells based on tdTomato fluorescence.
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Subtype-relevant mutations were introduced into endogenous neural stem cells (NSCs) of the
subventricular zone neurogenic niche (SVZ), a frequent cell of origin in GBM patients
(Alcantara Llaguno et al., 2009; Lee et al., 2018). Specifically, the following mutations were
used: EGFRVIII overexpression and Cdkn2a knock-out (hereon EGFR model); Pdgfra
overexpression and 7rp53 knock-out (hereon Pdfgra model); NfI, Pten and Trp53 knockout
(hereon Nfl model). To this end, a non-integrating plasmid encoding for the PiggyBase
transposase alone (Pdgfra and EGFR models) or with Cas9 (Nfl model) together with an
integrating piggyBac vector carrying the oncogenes, CRISPR guides to tumour suppressors,
Cre recombinase and tdTomato were co-electroporated into the lateral ventricles of Trp5™!
(Pdgfra and Nfl models) or Cdkn24"" (EGFR model) of P2 pups (Figure 1A) (Chen and
LoTurco, 2012). Upon electroporation, transient Cas9/gRNA expression results in inactivation
of the tumour suppressor genes, whereas PiggyBase-mediated integration of the piggyBac
vector ensures stable expression of the oncogenes and the td-Tomato reporter in the targeted
NSCs and their progeny. To ensure selective targeting of neural stem cells (NSC), Cas9 and
Cre expression were driven by a truncated version of the human GFAP promoter (herein
hGFAPwMIN) previously reported to maintain the specificity of the full GFAP promoter while
increasing its activity (Lee et al., 2008). Promoter specificity was confirmed by electroporation
of a hGFAPwmn-tdTomato reporter construct, which revealed selective tomato expression in
NSCs with radial glia morphology that were largely Ki67/GFAP* (Supplemental Figure 1A-
C). All genotypes generated tdTomato” tumours with histological and molecular features of
GBM, including vascular proliferation and necrosis, as well as expression of the GBM markers
Sox2, Olig2 and GFAP, within 8-15 weeks and with high penetrance (Figure 1B-E). Western
analysis of primary cells acutely isolated from the three tumour types confirmed that the

mutations were correctly introduced in each model (Supplemental Figure 1D). Together, these
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results suggest that the models closely recapitulate the human disease and can inform on GBM

biology.

Tumour cell states differ between bulk and margin

We next used scRNA-seq to profile invasive tumour cells and their bulk counterparts in each
model. The bulk and striatal margin regions of three tumours of each genotype were
microdissected under fluorescence guidance, enzymatically dissociated to single cells and
FACS-sorted based on tdTomato fluorescence (Figure 2A and Supplemental Figure 2A)
(Brooks et al., 2021). As expected, the proportion of tdTomato* tumour cells was lower at the
margin relative to the bulk, confirming accuracy of microdissection (Supplemental Figure 2B).
Transcriptomes of an average of 470 cells (ranging from 410 to 531) per region were analysed

using SMART-seq?2 protocols (Figure 2A) (Picelli et al., 2014).

We first assessed the cellular composition of the tumours irrespective of tumour region. Each
tumour model was first analysed independently and then all datasets were combined to identify
common transcriptional patterns across the three genotypes. Data integration, based on
canonical correlation analysis, revealed that cells did not segregate by genotype, but rather
intermixed, converging onto 8§ main subpopulations or states across regions (Figure 2Bi, 2Bii
and 2Biv). This is consistent with previous findings in human GBM (Couturier et al., 2020;
Neftel et al., 2019) and is indicative of common and mutation-independent biological
processes. Furthermore, all tumours contained mixtures of cells of all three transcriptional
subtypes and four cellular states identified in patients, further confirming the validity of our

models (Figure 2Biii and Supplemental Figure 2C) (Neftel et al., 2019; Wang et al., 2017).
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As our models derive from the transformation of normal postnatal NSCs, we reasoned that the
8 identified clusters might correspond to states that mirror SVZ neurogenesis. We therefore
compared expression signatures in each cluster with published scRNA-seq analyses of NSCs
and their progeny in the normal and ischemic SVZ, which we hypothesized may be a state
relevant to tumourigenesis due to the known links between injury and cancer (Supplemental
Figure 2D-G and Supplemental Table 1) (Dvorak, 1986; Kalamakis et al., 2019; Llorens-
Bobadilla et al., 2015; Mizrak et al., 2019). All tumours contained cells with signatures of
normal or injured neural progenitors (Figure 2Bii and Supplemental Figure 2D-H), 4 of which
were shared among all genotypes. Specifically, all tumours contained cells similar to active
NSCs (aNSC), transit amplifying progenitors/early neuroblasts (TA), oligodendrocytes (oligo)
and injured NPCs that result from ischemic brain injury (iNPC). The iNPC state included, but
was not restricted to mesenchymal-like cells described by Neftel et al. In addition, EGFR and
Nfl tumours contained cells with signatures of oligodendrocyte precursor cells (OPCs) and
Pdgfr and Nfl tumours cells with astrocyte-like subpopulations (Figure 2C, D). Interestingly,
although Pdgfr tumours lacked OPCs, they uniquely contained a subpopulation of cells with
signatures of immature oligodendrocytes (imOligo), indicating that Pdgfra overexpression
promotes maturation down the oligodendrocyte lineage, while concomitantly preventing
further differentiation to more mature oligodendrocytes, in line with its developmental roles
(Figure 2C, D) (Brooks et al., 2021; Zhu et al., 2014). Similarly, although EGFR tumours
lacked more mature astrocyte-like cells, they contained a subpopulation with signatures of
astrocyte progenitor-like cells (Astro pr), which was absent in the other two genotypes (Figure
2C, D). This suggests that EGFRVIII overexpression biases tumour cells towards
astrogliogenesis, as previously reported for wildtype EGFR, while again preventing full
differentiation (Neftel et al., 2019). Consistent with a differentiation block caused by mutant

RTK signalling, pseudotemporal alignment of the differentiation trajectories of the three


https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447915; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

models revealed that both EGFR and Pdgfr tumours appeared more immature than Nfl tumours
lacking constitutive RTK activity, with EGFR tumours being the most immature (Figure 2E).
Thus, our models indicate that regardless of genetics, tumour fates converge on a finite set of
phenotypes that mimic neurogenesis, with driver mutations biasing towards specific cell fates,
as observed in human GBM (Neftel et al., 2019). They also reveal that mutations control the
extent by which tumour cells differentiate, with sustained developmental RTK signalling

blocking lineage progression at immature progenitor-like states.

Next, we examined the impact of tumour region on cellular states, by comparing the frequency
of the identified clusters in the bulk and margin of the tumours (Figure 2Biv, F, G). We found
that while all cell fates were detected in both regions, location influenced the frequency of
specific cell states, with the bulk being enriched for iNPCs and the margin for astrocyte-like
fate. Interestingly, these biases were largely independent of genetics, as they were observed in
all models, regardless of basal mutation-dependent lineage bias (Supplemental Figure 2I).
These findings suggest that tumour region is dominant over driver mutations in modulating

cell state and that margin and bulk biology differ.

aNSC-like cells sit at the top of the tumour hierarchy and are not enriched at the margin
To better understand the tumour hierarchy in our models, we performed pseudotime analysis
of the integrated datasets using normal SVZ neurogenesis trajectories to infer directionality
(Figure 3A and Supplemental Figure 3A) (Mizrak et al., 2019). We found that the aNSC
compartment, which was the most highly proliferative tumour subpopulation, was at the apex
of the tumour hierarchy (Figure 3B and Supplemental Figure 3B). In analogy to findings in
human GBM, this suggests that the aNSC subpopulation corresponds to GSCs within our

models (Couturier et al., 2020). GSCs have been hypothesized to drive invasion based on the


https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447915; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

observation that GSCs-derived tumours are more invasive than tumours derived from non-stem
tumour cells (Cheng et al., 2011). However, analyses of the stemness potential of invasive cells
in vivo remain inconclusive, largely due to the challenges associated with profiling the human
GBM margin (Hoelzinger et al., 2005; Molina et al., 2010; Piccirillo et al., 2009). We therefore
took advantage of the accessibility of the margin in our models to explore the role of tumour

stem-like cells in invasion and in the context of driver mutations.

Consistent with an equal distribution of aNSCs in bulk and margin (Figure 2G), we found no
changes in stemness signatures between the two regions, suggesting that stem cell potential
may not be a prerequisite for invasion (Figure 3C) (Tirosh et al., 2016). To test this more
directly, we experimentally validated the distribution of aNSCs within tumours by
immunofluorescence analysis using the EGFR model as a paradigm. We chose EGFR tumours
for this and all later validation experiments because they reflected all phenotypes shared across
the models, while displaying the simplest hierarchical organisation (Supplemental Figure 3A).
As aNSC-like tumour cells were the most proliferative cells amongst all tumour cell types, we
used their cell cycle characteristics to label them selectively within tumour sections, as
previously reported for SVZ neurogenesis (Supplemental Figure 3C) (Codega et al., 2014;
Ponti et al., 2013). Mice were given a 2h EdU pulse prior to sacrifice and terminal tumours
were analysed for distribution of EAU* aNSCs (Figure 3D). aNSC-like cells were evenly
distributed across the entire tumour mass, as shown by quantification of EQU" cells relative to
tdTomato signal in both regions (Figure 3E, F). EAU" cells were also not enriched within the
perivascular space of the margin, one of the main invasive niches for GBM (Figure 3G, H).
Indeed, a larger proportion of EdU™ tdTomato® tumour cells than EdU" cells invaded

perivascularly (Supplemental Figure 3D). Thus, aNSC-like cells and more committed tumour
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progenitors appear to have comparable invasive potential, suggesting that invasion is driven by

all tumour compartments.

Differential evolution of cell states in bulk and margin

We next asked how the different cell states we identified in our models evolve from aNSCs
and whether tumour hierarchies vary between bulk and margin. As shown in Figure 3A,
pseudotime analysis was consistent with aNSCs undergoing lineage progression along two
main routes, a developmental-like route that bifurcated to give rise to astrocyte-like or
oligodendrocyte-like cells and an injury-like route that terminated with iNPC-like cells.
Interestingly, when analysed in the context of tumour region, it became apparent that location
impacted the tumour hierarchy in all models (Figure 4A and Supplemental Figure 4A).
Progression to oligodendrocyte-like fate along the developmental route occurred in both bulk
and margin, but astrocyte fate was favoured in the margin, consistent with the cell fate
distributions measured in Figure 2G. In contrast, progression to the iNPC state along the injury-
like route occurred almost exclusively in the bulk (Figure 4A and Supplemental Figure 4A).
Consistent with a propensity for differentiation at the margin, invasive cells were overall more

mature than bulk cells as judged by their global pseudotime alignment (Figure 4B).

To determine whether the cell state changes inferred from transcriptional signatures
corresponded to phenotypic changes, we examined the distribution of astrocyte-like cells and
iNPCs in EGFR tumours at the protein level and in their spatial context. We used Sox9, a
master regulator of astrogliogenesis and one of the most differentially expressed genes in the
astrocyte-like clusters (Supplemental Table 1), as a marker for Astro pr (Rowitch and
Kriegstein, 2010). Immunofluorescence analysis of tumour sections confirmed that Sox9* cells

were rare within the bulk of the tumour and increased as cells invaded into the striatum (Figure

11
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4C). However, Sox9 upregulation was heterogeneous within the margin, with a striking
enrichment in the nucleus accumbens and a more modest increase across the dorsal striatum
(Figure 4C). Quantification of the percentage of Sox9/tdTomato" cells within the nucleus
accumbens revealed that as much as a quarter of all tumour cells acquired Astro pr fate in this
region (Figure 4D). Thus, the margin microenvironment imposes distinct and regionally-
determined selective pressures on tumour cells. To examine the distribution of iNPCs, we
selected the MHC class I markers H-2K® and B2 microglobulin (B2m), Bst2 and MHC class 11
I-A/I-E as marker genes as they were all markedly increased in this cluster (Supplemental
Figure 2H and Supplemental Table 1). The bulk and margin regions of 3 EGFR tumours were
microdissected under fluorescence guidance, dissociated to single cells, immunolabelled and
subjected to FACS analysis. In agreement with the bioinformatics data, we found a much
greater proportion of MHC-1Meh, MHC class I1"#h, B2M"eh and Bst2* tdTomato™ iNPCs in the
bulk of the tumour relative to the margin, confirming that iNPC fate evolves selectively in the
bulk (Figure 4E and Supplemental Figure 7). Thus, the tumour hierarchy is biased by location

and subject to significant extrinsic control.

INPCs comprise a large proportion of dormant tumour cells

In the ischemic SVZ, injured neural progenitors include primed quiescent cells that are poised
for activation (Llorens-Bobadilla et al., 2015). As this cellular compartment was also
characterised by low proliferation in our models (Figure 3B), we hypothesised that iNPCs may
represent dormant/quiescent tumour cells. To test this, we modified the EGFR piggyBac
construct to incorporate a Tet-ON inducible H2B-GFP reporter of label retention (Foudi et al.,
2009). This approach allows in vivo detection of slow-cycling tumour cells by pulse-chase
experiments using doxycycline (Dox) administered in the drinking water. To simplify the

piggyBac system and enable transformation of endogenous NSCs in any mouse genetic
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background, we also introduced gRNAs for Cdkn2a into the piggyBac backbone (Figure 5A),
producing a fully integrated genetic tool for tumour initiation. Similar to the EGFR piggyBac
system, the EGFR-H2B-GFP construct produced tumours with histological features of GBM
and with high penetrance, but with shorter latency, likely due to more efficient integration of

the modified vector (Figure 6F and Supplemental Figure 5A).

Dox was administered from electroporation until week 5 of tumour development followed by
a 2- to 4-week chase period (Figure 5A). Immunofluorescence analysis before and after chase
indicated that the H2B-GFP protein was efficiently incorporated in the chromatin of >90% of
all tumour cells and effectively diluted over the chase period (Supplemental Figure 5B and C).
Furthermore, by 2 weeks of chase, H2B-GFP* cells were largely negative for the proliferation
marker Ki67, which was instead restricted to H2B-GFP- and a minority of H2B-GFP"V cells,
confirming that the approach successfully identified dormant tumour cells (Supplemental
Figure 5D). We next examined the distribution of label retaining H2B-GFP" cells (LRC) within
the tumour in situ. In agreement with the enrichment of iNPCs in the bulk identified by scRNA-
seq (Figure 2G), immunofluorescence analysis revealed that the majority of LRC were found
in the tumour bulk (Figure 5B, C). Interestingly, their distribution was not uniform, but rather
restricted to specific bulk regions, with LRCs often found in clusters, suggestive of
microenvironmental regulation (Figure 5B, C). In addition, FACS analysis indicated that H2B-
GFP" cells were selectively enriched for expression of the iNPC markers Cd44 and Bst2
relative to H2B-GFP- tumour cells (Figure 5D, E and Supplemental Figure 7). We conclude
that iNPCs are LR tumour cells, induced to enter a dormancy-like state within the bulk of the

tumour.
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Dormant tumour cells are induced by interferon in T-cell niches

To understand the signals that induce dormancy in the tumour bulk, we examined in greater
detail the gene expression profile of iNPCs. Analysis of top marker genes alongside gene
ontology analysis showed an overrepresentation of immune genes and signatures, particularly
those linked to interferon signalling, as reported in the ischemic SVZ (MHC class proteins,
innate immune response, antigen processing, response to virus, response to interferon beta)
(Figure 6A, B, Supplemental Figure 6A and Supplemental Table 2) (Llorens-Bobadilla et al.,
2015). This suggested that the iNPC state may be induced by interactions with immune cells.
To explore this idea, we examined the distribution of the main immune compartments in our
tumour models. We found that all three models were infiltrated by immune cells as in the
human disease (Pombo Antunes et al., 2020), with the EGFR model displaying a trend towards
most robust infiltration, possibly due to expression of the EGFRVIII neoantigen in the tumour
cells (Figure 6C and Supplemental Figure 7). Importantly, immune infiltration was not due to
tdTomato overexpression, as integration of a piggyBac construct encoding for tdTomato alone
did not elicit an immune response (Supplemental Figure 6B, C). We therefore next assessed
the immune microenvironment in bulk and margin by FACS and immunofluorescence analysis,
again using EGFR tumours as a model. The overall proportion of Cd45 immune cells was
significantly increased in the bulk, whereas the margin had levels of infiltration comparable to
tumour-free brain tissue (Figure 6D and Supplemental Figure 6D and 7). This indicates that
the bulk accounts for the majority of the tumour immune infiltrate whereas the margin may
represent an immune-cold microenvironment. Differences in Cd45 cells were reflected in all
immune components analysed, including microglia, macrophages, Cd4 T cells, Cd8 T cells,
Tregs and natural killer cells, which were selectively enriched in the tumour bulk (Figure 6E
and Supplemental Figure 6E and 7). This pattern was consistent with the hypothesis that

increased immune activity in the bulk induces dormancy via interferon signalling. To test this

14


https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447915; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

more directly, we used two complementary approaches. First, we examined the spatial
distribution of immune cells relative to H2B-GFP* LRC by immunofluorescence. Although
enriched in necrotic regions, microglia and macrophages were evenly distributed throughout
the rest of the bulk (Supplemental Figure 6F). Instead, rare natural killer cells were restricted
to necrotic regions (Supplemental Figure 6G). This suggests that neither cell type may be
functionally linked to acquisition of LRC phenotypes, as the distribution of H2B-GFP™ cells
was not uniform either within or outside necrotic patches (Figure 5B, Figure 6F and
Supplemental Figure 6H). In contrast, Cd4 and Cd8 T cells formed clusters in multiple tumour
areas, including around necrotic regions, which appeared to co-localise at least in part with

H2B-GFP* LRC-rich regions (Figure 6F and Supplemental Figure 6H).

To quantify a potential spatial correlation between these populations, we used digital
pathology. We applied supervised and semi-supervised algorithms to identify the exact location
of T cells and H2B-GFP* LRC in immunofluorescence confocal tile scan images of the tumours
(balanced accuracy: LRC = 0.96, T-cells = 0.95). The LRC population was subdivided
according to GFP intensity as a surrogate for their proliferative status (Supplemental Figure
5D), with H2B-GFP"eh cells being the least and H2B-GFP'% the most proliferative
(unsupervised three-classes k means applied at each sample) and spatial relationships measured
using cell-to-cell distance and abundance-based approaches (Figure 6G). Both Cd4 and Cd8 T
cells were found to be closer to H2B-GFP"eh than H2B-GFPY cells (Figure 6H; GLMM,
factor link type, T cell-GFP"eh vs T Cell-GFP!Y: F = 193.467, p = 6.22¢e-44), while Cd8 T cells
were closer to both H2B-GFP* tumour populations than Cd4 T cells (Fig 6H; GLMM, factor
T cell type Cd8 vs Cd4: F = 6.833, p = 0.039), in the absence of a significant interaction
between these variables (GLMM, interaction between factor T cell type and link type: F =

0.045, p=0.083). Furthermore, measurement of the Morisita-Horn overlap index revealed that
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the co-localisation of both Cd8 and Cd4 T cells with H2B-GFP"¢" was higher than 0 (Cd8: t[3]
=4.508, p=0.02; ; Cd4: t[3]=2.4, p=0.047) within immune hotspots (defined by Getis-Ord’s
G* on T cells distribution) and, controlling by the T cell/H2B-GFP" ratio within immune
hotspots, the co-localisation of H2B-GFPhie! cells with Cd8 T cells was higher than with Cd4
T cells (Figure 61, J; F[1,5] = 9.076, p = 0.029; 95% CI difference = 0.028 — 0.348). Outside
of immune hotspots, only co-localisation of H2B-GFPMeh cells and Cd8 T cells was
significantly different than O (one-sided t-test t[3] = 4.048, p = 0.014; Cd4: t[3] = 1.73, p =
0.09), and no significant differences in co-localisation with H2B-GFP"¢" cells were detected
between Cd4 and Cd8 T cells (Figure 61, J; GLM F[1,5] = 1.39, p = 0.29). However, H2B-
GFPMig" tuymour cells showed overall higher co-localisation with Cd4 or Cd8 T cells than H2B-
GFP"¥ cells resampled to control for difference in abundance between the two GFP
subpopulations (Supplemental Figure 6I). Together, this spatially-resolved quantification
suggests that H2B-GFPhigh LRCs reside in close proximity to T cells, particularly, to the Cd8

T cell compartment.

Second, we functionally assessed the role of interferon signalling in driving tumour dormancy.
EGFR-H2B-GFP tumours were induced in Ifnar1”~ or compound Ifnarl”Ifngrl”- mice, which
are homozygous knock-out for type I or type I/II interferon signalling, respectively (Figure 6K)
(Huang et al., 1993; Muller et al., 1994). Background-matched wildtype mice were used as
controls. Following pulse-chase experiments, we measured the proportion of H2B-GFP* LRC
in the three cohorts and found a significant decrease in both mutant strains relative to control
tumours, indicative of a reduction in dormant cells in the absence of interferon signalling
(Figure 6L). Importantly, interferon signalling-deficient and wildtype tumours had comparable
levels of immune infiltration, indicating that the phenotype was not due to reduced immune

activity in the interferon mutant strains (Supplemental Figure 6J). Consistent with these
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findings, recombinant type I or II interferons, alone or in combination, were sufficient to
decrease the proliferation of primary H2B-GFP- tumour cells purified from EGFR tumours
(generated in a wildtype background) in vitro (Figure 6M). Together, these results indicate that
dormancy is at least in part a bulk phenotype induced by interferon signalling in T-cell-rich

niches.

Discussion

The GBM margin is notoriously difficult to study in patients due to the challenges of sampling
and identifying invasive tumour cells, which, by definition, are left behind following surgical
resection (Cuddapah et al., 2014; Vehlow and Cordes, 2013). To circumvent this problem, we
developed three somatic mouse models of GBM driven by some of the most common
combinations of the human mutations. Overall, the models show striking similarities with the
human disease, recapitulating the histology, transcriptional and cellular heterogeneity, and
immune microenvironment of patient tumours (Patel et al., 2014; Wang et al., 2017). We found
that regardless of genetics, all tumours mirrored the main developmental lineages of the brain,
containing cells of astrocytic, oligodendrocytic, and transit amplifying progenitor/neuronal
progenitor fate, alongside an injured NPC-like state. These findings are remarkably consistent
with recent findings by Neftel et al. and Couturier et al., in which human GBM cells were
found to exist in astrocyte-like, oligodendrocyte-progenitor-like, neural progenitor-like and
mesenchymal-like states (Couturier et al., 2020; Neftel et al., 2019). These similarities further
underscore the accuracy of our models in recapitulating the human disease and support an NSC

origin for GBM (Alcantara Llaguno et al., 2009; Lee et al., 2018).

Although driver mutations biased the frequency of specific fates within our models, as was

observed in human tumours (Neftel et al., 2019), our results indicate that genetics play an
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overall modest role in driving tumour phenotypes. In contrast, we find that tumour region is a
major determinant. Within the bulk, tumour cells of all genotypes progressed along an injury-
like trajectory culminating with interferon-induced dormancy in T-cell niches. Intriguingly,
this behaviour is reminiscent of the aged SVZ, where neural progenitors were shown to
undergo quiescence in response to age-dependent inflammation of the niche, including the
production of interferons by infiltrating T-cells (Dulken et al., 2019; Kalamakis et al., 2019).
Interferons have also been previously linked to dormancy in a handful of cancer types, which
in a murine B-cell lymphoma model was released by Cd8 T cells (Correia et al., 2021; Farrar
etal., 1999; Liuetal., 2017; Liu et al., 2018). It is of note that both type I and type II interferons
mediated dormancy in our models. Together with the observation that dormancy often co-
localises with immune hotspots and necrotic regions, this points to a model whereby dormancy
results from a combination of paracrine adaptive interferon y signalling produced by infiltrating
T cells and autocrine innate interferon o/f3 signalling triggered by activation of the STING
pathway in response to T cell-mediated killing of neighbouring tumour cells (Zhu et al., 2019).
It is tempting to speculate that dormancy may be a general tumour response to T cell infiltration
induced by the inflammatory microenvironment of the tumour bulk and that interferon

blockade could be a promising strategy for chemosensitising GBM.

At the margin, where the immune microenvironment resembled that of normal brain, cells
followed a developmental-like tumour hierarchy biased towards astrocyte-like fate, even in
Pdgfr tumours that display an intrinsic oligodendrocyte-like fate bias. Thus, although tumours
are often compared to wounds that don’t heal, our findings suggest that injury programmes are
mostly relevant to the bulk of the tumour and may not play a major role in driving margin
phenotypes, with key implications for GBM treatment, including checkpoint blockade

immunotherapy (Dvorak, 1986). In line with our findings, a recent study proposed that human
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GSCs exist in either a neurodevelopmental or an inflammatory state (Richards, 2021). It would
be of great interest to explore whether there is a correlation between GSC state and their tumour

region of origin in patients.

The dominance of the microenvironment in controlling tumour behaviour is further emphasised
by our observation that within the invasive margin astrocyte differentiation is highly localised
to specific brain regions. We recently reported that invasion into white matter promotes
differentiation towards oligodendrocyte fate in patient-derived models (Brooks et al., 2021).
The findings presented here corroborate the observation of increased lineage progression at the
margin and further suggest that even within a specific brain region, differentiation trajectories
are highly heterogeneous and dependent on local extrinsic cues. This is of clinical relevance as
it suggests that location within the brain could be predictive of tumour biology and, potentially,
response to treatment. Comprehensively defining invasive phenotypes in their spatial context
may therefore identify key biological vulnerabilities for eradicating invasive cells and is an

important direction for future studies.

Our work also provides two important insights into the biology of stem-like tumour cells. First,
it suggests that GSCs resembling NSCs may not be slow-cycling or quiescent, as is the case
for their normal counterparts. Indeed, in agreement with recent findings in patients, in our
models, actively dividing NSC-like cells occupied the top of the tumour hierarchy (Couturier
et al., 2020). This is perhaps not surprising given that normal quiescent NSCs are maintained
by key tumour suppressors that become inactivated in GBM, including p53 and Cdkn2a (Gil-
Perotin et al., 2006; Meletis et al., 2006; Nishino et al., 2008). In further support of this idea,
we also found that the majority of label-retaining tumour cells did not have NSC signatures,

but rather represented more committed progenitors that were induced to exit the cell cycle by
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the injury-like microenvironment of the tumour bulk. This is indicative of key differences
between developmental and tumour hierarchies and highlights the importance of
injury/inflammatory response programmes in gliomagenesis (Brooks et al., 2021; Richards,
2021; Wang et al., 2017). Second, we found an equal distribution of aNSC-like cells between
bulk and margin. While we cannot exclude the possibility that other subsets of stem-like
tumour cells may be enriched at the invasive niche, this work suggests that invasive potential
is a general property of most, if not all, tumour cell subpopulations. This is somewhat
unexpected given that GSCs were shown to be more invasive than their non-stem counterparts
(Cheng et al., 2011). It remains to be determined if astrocyte-like differentiation is beneficial
for invasion or rather a by-stander effect driven by the surrounding normal brain
microenvironment. Regardless, identifying biological vulnerabilities of the astrocyte-like state
would be an important next step for the development of treatments that more effectively target

the GBM margin residuum.

In summary, our work reveals fundamental differences between the tumour bulk and margin
and suggests that analysis of the bulk is not directly informative of margin biology or treatment.
It further suggests that combinatorial therapies that take these differences into account will be

required to improve patient outcome in this devastating disease.
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Figure 1. Development of somatic mouse models of GBM. A, Schematic of method for
tumour generation and piggyBac constructs. B, Representative tile scan fluorescence images
of tumours of each genotype. Tumour cells are labelled by endogenous tdTomato expression
(red). Sections were counterstained with DAPI (blue). Scale Bar=Imm. C, Representative
haematoxylin-eosin (H&E) stainings of tumour models showing examples of microvascular
proliferation (top) and necrosis (asterisks, bottom). Scale Bars=50um and 100um, respectively.
D, Immunofluorescence staining for the GBM markers GFAP, Olig2 and Sox2 (green) of
tdTomato" (red) EGFR, Nfl and Pdgfr tumours, as indicated. Scale Bar=50um. E, Kaplan-
Meier survival plots of the three GBM models. n=20. Log Rank Mantel Cox test. (ns:
p=0.1583; ****: p<0.0001). Median survival of 87, 89 and 67 days for EGFR, Nfl and Pdgfr

models, respectively. See also Supplemental Figure 1.
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Figure 2. Tumour cell states differ between bulk and margin. A, Schematic of experimental
set up. B, UMAP visualisation of 2824 cells from the combined GBM tumour models. Cells
are coloured by 7) genotype, i7) cell type, iii) Verhaak molecular subtyping and iv) tumor region
(bulk, margin). C, Relative frequency of cell types across tumour genotypes. D, Cell type
composition of the three models. E, Schematic representation of pseudotime alignment of
differentiation trajectories in EGFR, Pdgfr and Nfl tumours. The EGFR model was used as a
reference for comparison with the other two models. F, Cell type composition of bulk and
margin regions in the combined tumour models. G, Relative proportions of cell types in the

bulk and margin regions of the combined tumour dataset. See also Supplemental Figure 2.
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Figure 3. aNSC-like cells sit at the top of the tumour hierarchy and are not enriched at
the margin. A, Differentiation trajectory analysis of 2824 GBM cells coloured by (from left
to right): cell type, genotype and pseudotime by which cells are ordered along the
differentiation path. B, Boxplots comparing the cell-cycle signature score in each tumour cell
population within the combined tumour dataset. Boxplots are ordered from higher to lower cell
cycle score and display the minimum, 1st, 2nd, 3rd quartile and maximum of scores for each
cell type. C, Boxplots comparing the Tirosh stemness signature score in bulk and margin tumor
regions. Boxplots display the minimum, 1st, 2nd, 3rd quartile and maximum of scores for each
regions. D, Schematic of experimental set up. E, Representative immunofluorescence staining
for EAU (grey) and the vascular marker Cd31 (green) of tdTomato”™ EGFR tumours. Scale
bars=200 pm and 50pm for close-up regions. F, Quantifications of the number of EAU" GSCs
in the bulk (grey) and margin (red) of EGFR tumours shown in E. n=5 tumours. Six regions of
interest (ROIs) per tumour were counted. Two-tailed Mann-Whitney test (ns: p=0.4581). G,
Quantifications of the number of EQU* aNSC-like cells in the perivascular region within the
bulk (grey) and margin (red) of EGFR tumours shown in E. n=6 tumours. Three ROIs per
tumour were counted. Two-tailed Mann-Whitney test (ns: p=0.7389). H, Quantification of
proportion of margin EJU* aNSC-like cells with or without association with the invasive
vasculature. n=5 tumours. Each independent repeat is plotted. Six ROIs per tumour were

counted. Two-tailed paired Student’s t-test (ns: p=0.0567). See also Supplemental Figure 3.
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Figure 4. Differential evolution of cell states in bulk and margin. A, Differentiation
trajectory analysis of 463 margin (left) and 494 bulk (right) EGFR cells coloured by cell type.
B, Distance matrix representative of the global alignment of bulk and margin pseudotimes.
Trajectory starts at the top left corner and ends at the bottom right corner of the plot. C,
Representative immunofluorescence image of the bulk and margin regions of tdTomato” EGFR
tumours stained for Sox9 (green). Images on the right are magnifications of the boxed regions
on left images. Scale bar=100pum and 50um for close-up regions. CC: Corpus callosum, NAc:
nucleus accumbens. D, Quantifications of the number of Sox9" astrocyte-like cells in the
tumours shown in D. n=3 EGFR tumours >150 cells per tumour were counted. Paired two-
tailed Student’s t test. Mean+SD. E, FACS analysis of expression profiles for iNPC markers
MHC-I, B2m, MHC-II and Bst2 in the bulk, margin and contralateral (Contra) regions of
EGFR tumours. Representative histogram shown. n=3 tumours. See also Supplemental Figure

4.
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Figure 5. iINPCs comprise a large proportion of dormant tumour cells. A, Schematic
representation of EGFR-H2B-GFP label-retention tumour model. Dox, doxycycline. LRC,
label retaining cells. B, Immunofluorescence tile scan image of a representative EGFR-H2B-
GFP tumour at 2 weeks of doxycycline chase. Endogenous tdTomato" (red) and H2B-GFP*
(green) fluorescence is shown. Sections were counterstained with DAPI. Note that LRC are
restricted to the tumour bulk. Scale bar=500um. C, Higher magnification images of tumour
boxed regions of the bulk and margin of the tumour shown in B. Scale bar=100pum. Dotted line
demarcates margin. D, UMAP projections of expression of GFP and iNPC markers Cd44 and
Bst2. Bulk tumour regions from four EGFR-H2B-GFP tumours at two weeks of doxycycline
chase were analysed by FACs. 3,000 tumour cells (Cd45- tdTomato") were concatenated from
each tumour and gated positive populations were projected onto UMAP. E, Quantification of
the proportion of Bst2, Cd44 and Ki67-expressing cells H2B-GFP negative (GFP") and GFP
positive LRC tumour cells (GFP") from experiment shown in D. Whisker plots show median
and min-max value range. n=4. Two-tailed paired Student’s t-test (Cd44: p=0.0003, Bst2:

p=0.0051 and Ki67: p=0.0047). See also Supplemental Figure 5.
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Figure 6. Dormant tumour cells are induced by interferon in T-cell niches. A, Heatmap of
the top 30 markers of the iNPC population. Columns are grouped by cell type (top bar).
Normalized gene expressed values (z-scores) are shown. B, Gene Ontology (GO) enrichment
analysis for iNPCs from the integrated analysis of all genotypes. Shown are the top-20 GO
terms ordered by log10 of their relative adjusted p-value. C, FACS analysis of the percentage
of Cd45" immune cells over total number of live cells in the three tumour models and normal
control brains. n=6 for Control; n=6 for EGFR; n=7 for Nfl and n=7 for Pdgfr. Welch and
Brown-Forsythe one-way ANOVA with Dunnet’s T3 multiple comparison test. Control vs
EGFR: p=0.0092; Control vs Nfl: p=0.0356; Control vs Pdgfr: p=0.0095. Mean+SD. D, FACS
analysis of the percentage of Cd45" immune cells over total number of live cells in the bulk
and margin regions of EGFR tumours and contralateral non-infiltrated brain (Contra). n=6 for
contralateral; n=8 for bulk and margin. One-way ANOVA with Tukey test. Mean+SD. E,
FACS analysis of the percentage of indicated immune populations over total number of live
cells in the bulk and margin regions of EGFR tumours and contralateral non-infiltrated brain
(Contra). n=6 for contralateral; n=8 for bulk and margin. One-way ANOVA with Tukey test.
Mean+SD. F, representative immunofluorescence staining for Cd8 (top) and Cd4 (bottom) T
cells in the bulk of EGFR-H2B-GFP tumours. Shown are examples of T-cell rich necrotic
regions surrounded by GFP positive LRCs (top) and direct cell-cell interactions between LRCs
(yellow arrows) and T-cells (white arrows, bottom). Scale bars=100um. G, Example of cell
detection, classification, and spatial distance to neighbouring cells after Delaunay triangulation
(segmented white lines). Scale bar=50um H, Quantification of distances between H2B-
GFPhigh (GFPhigh) or H2B-GFPlow (GFPlow) tumour cells and Cd4 or Cd8 T cells. Different
letters above boxplots indicate statistical differences between groups quantified with a Tukey’s
test after a significant generalised linear mixed model for hypothesis testing. I, Schematic

representation of the distribution of Cd8 T cells and H2B-GFPhigh (GFPhigh) cells in an
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EGFR-H2B-GFP tumour. Regions of T cell hotspots, detected by Getis-Ord’s G* are shown
in pink. J, Measurement of Morisita-Horn overlap indexes of indicated comparisons. An index
higher than 0 indicates a non-random distribution of cells. p-value relates to comparison of
H2B-GFPhigh (GFPhigh) cell co-localisation with Cd4 or Cd8 T cells. n=4 tumours, F test. K,
Schematic representation of experimental set up. L, FACS quantification of percentage of
H2B-GFPhigh LRC in EGFR-H2B-GFP tumours generated in wildtype (WT), Ifnarl” or Ifnari-
;Ifngrl” animals. n=7 for WT, n=6 for Ifnarl”, n=7 for Ifnarl”;Ifngri”-. One-way ANOVA
with Tukey’s multiple comparison test **: p= 0.0058; *: p=0.013; ns: p=0.9829. Mean+SD.
M, FACS quantification of the percentage of EQU™ cells in cultured primary H2B-GFP- tumour
cells isolated from EGFR tumours and left untreated or treated with the indicated recombinant
interferons for 48h. n=4 repeats. One-way ANOVA with Tukey’s multiple comparison test.
Untreated vs IFNB: p=0.0194; untreated vs IFNy: p=0.0002; untreated vs IFNB+IFNg:
p<0.0001; IFNB vs IFNy: p=0.0619; IFNB vs IFNB+IFNy: p=0.0024; IFNy vs IFNB+IFNy:

p=0.2872. Mean+SD. See also Supplemental Figure 6.
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Methods

Animals

All procedures were performed in compliance with the Animal Scientific Procedures Act, 1986
and approved by with the UCL Animal Welfare and Ethical Review Body (AWERB) in
accordance with the International guidelines of the Home Office (UK). Trp53"" mice were
obtained from the Jackson Laboratory (Trp53™/8™7; Jax 008462) (Marino et al., 2000) and
Cdkn2a"" mice were provided by A. Berns (Cdkn24m?B4) (Krimpenfort et al., 2001). Trp53""
pups were used for modelling Nfl and Pdgfr tumour models, Cdkn2a”"" mice were used for the
EGFR model. Wildtype C57Black/6 mice were purchased from Charles River and used for the
EGFR H2B-GFP model. Ifnarl” and Ifngrl”;Ifnarl”- mouse lines were provided by Michel
Aguet (Huang et al., 1993; Muller et al., 1994). Female and male mice were used for tumour
modelling. Mice were monitored daily and sacrificed when they began to show signs of disease
and reached humane endpoints. To study the distribution of GSCs between bulk and margin,
EdU (50mg/kg; Insight Biotech, sc-284628A) was injected 2 hours prior to sacrifice to label
rapidly dividing cells in the brain. To identify dormant tumour cells in the EGFR H2B-GFP
model, doxycycline (Sigma, D891) was administered through the drinking water (0.2%
doxycycline:1% sucrose) immediately following plasmid injection. Doxycycline withdrawal
was carried out for a minimum of 2 weeks to dilute the H2B-GFP reporter in actively cycling

cells.

In vivo Electroporation
Plasmids were injected into the ventricle of isoflurane-immobilized pups at postnatal day 2
using an Eppendorf Femtojet microinjector (Eppendorf, 5247000030), followed by

electroporation (5 square pulses, 50 msec/pulse at 100V, with 850 msec intervals). PiggyBase
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(0.5ug/ul) and PiggyBac vectors at a molar ratio of 1:1 were diluted in saline (0.9% NaCl)

containing 0.1% fast green (Sigma, F7258).

Tissue preparation and immunohistochemistry

Animals were perfused (4% paraformaldehyde in PBS) under terminal anaesthesia, brains
collected and post-fixed overnight at 4°C in PFA (4%). Vibratome sections (50um) were
prepared and stored in cryopreservative (glycerol:ethylene glycol:PBS 1:1:2) prior to
immunohistochemistry. For staining, floating sections were permeabilised overnight (1%
triton-X-100, 10% serum in PBS) at 4°C, incubated in primary antibody overnight (1% triton-
X-100, 10% serum in PBS) at 4°C and for 3 hours in secondary antibody (0.5% triton-X-100,
10% serum in PBS) at room temperature. Sections were counterstained with DAPI (Insight
Biotechnology, sc-3598) for 10 min at room temperature and mounted with antifade mounting
solution (Prolong gold antifade mountant, Thermo Fisher, P36934). Images were acquired on

Confocal LSM 880 (Zeiss) and analysed on ImageJ (RRID:SCR_003070).

The following antibodies were used: rabbit anti-Sox2 (1:500; Abcam, ab97959), rabbit anti-
GFAP (1:1,000; Dako, Z0334), rabbit anti-Olig2 (1:500; Millipore, ab9610), rabbit anti-RFP
(1:500; Antibodies Online, ABIN129578), goat anti-Sox9 (1:50; R&D AF3075), rat anti-Cd45
(1:500; BD, 550539), rat anti-Cd68 (1:500; Abcam, ab53444), rabbit anti-Ibal (1:1,000; Wako,
019-19741), rat anti-Cd8a (1:250; Thermofisher, 14-0808-82), rat anti-Cd4 (1:100; BD,
550280), goat anti-Nkp46 (1:250; R&D, AF2225), rat anti-Cd31 (1:100; BD, 550274). For
detection of EdU, sections were stained with Click-it EQU Alexa Fluor 647 Imaging Kit

(Invitrogen, C10340) following manufacturer guidelines.
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For histopathology assessment, brains were post-fixed in formalin overnight before tissue
processing and paraffin embedding. 3pum sections were cut and stained with haematoxylin and

eosin using standard methods.

Derivation and culture of cell lines

Neural stem cells were isolated from Trp53"" and Cdkn2a™" pups as previously described
(Ottone et al., 2014). Briefly, pup brains (P9-14) were collected and the lateral ventricles
dissected out. Neural stem cells were isolated by enzymatic digestion using papain dissociation
(Worthington, LK003178). Cells were seeded in NSC media (DMEM/F12 supplemented with
N2 (1x), B27 lacking retinoic acid (1x), kanamycin (100mg/ml)/gentamycin (2mg/ml), heparin
(4mg/ml), FGF (10ng/ul) and EGF (20ng/ul) and expanded as neurospheres for one passage
prior to plating on laminin-coated (1:200 in PBS) plates and cultured in GSC media as

previously described (Pollard et al., 2009).

For preparation of tumour cell lines from mice, brains from tumour-bearing animals were
collected into ice-cold HBSS media. Under fluorescence guidance, tdTomato" tumour regions
were microdissected, enzymatically digested and cultured as described above, with the
exception of EGFR tumour-derived cells which were maintained and subcultured as

neurospheres throughout.

Interferon treatment and cell proliferation assay

Proliferative GFP negative tumour cells were FACS-sorted from EGFR-H2B-GFP tumours
after a 2-week doxycycline chase and cultured as neurospheres as above. Cells were incubated
in the presence or absence of interferon 3 (1000 U/ml; R&D, 8234-MB-010), interferon y (1000

U/ml; PeproTech 315-05-20) or both combined for 48 hours. EAU (10mM) was added to the
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media 2 hours prior to collection to label dividing cells. Following EdU labelling (10mM;
Invitrogen, C10424) according to the manufacturer’s instructions, a minimum of 10,000 cells
were analysed using a BD LSRFortessa X-20 Flow Cytometer and cell-cycle profiles measured

using FlowJo software.

Western Blot

GBM mutations were verified on tumour-derived and NSC cell lines by Western blotting.
Protein lysates were prepared in RIPA buffer (containing protease (1:100; Sigma, P8340) and
phosphatase inhibitors (1:500; Sigma, P5726 and P0044). Western Blots were performed
following standard protocols. Membranes were incubated with primary antibodies in 5% milk
in TBST (TBS+ 0.05% Tween) overnight at 4 °C, washed and incubated in secondary antibody
(in 5% milk in TBST) at room temperature for 1h. Proteins were detected using Luminata
Crescendo (Millipore, WBLURO0500) or Classico (Millipore, WBLUCO0500) Western HRP

reagents and imaged using the ImageQuant system.

The following primary antibodies were used: rabbit anti-p16 (1:500; Abcam, ab211542), rabbit
anti-Trp53 (1:500; Novocastra Leica, NCL-L-p53-CM5P), goat anti-Pdgfra (1:500; R&D,
AF1062), rabbit anti-Nfl (1:1,000; Bethyl, A300-140A-M), rabbit anti-Pten (1:1,000, Cell
Signalling, 9559), rabbit anti-EGFR (1:1,000; Millipore, 06847) and mouse anti-Gapdh

(1:5,000; Abcam, ab8245). HRP secondary antibodies were purchased from ThermoFisher.

Plasmid generation
Constructs were generated using InFusion Kit (Clontech, 638917) and T4 DNA Ligase (NEB,
M0202S), following manufacturer’s guidelines. Plasmids were transformed in chemically

competent bacteria strains ToplO (Thermo Fisher, C303003) and Stbl3 (Thermo Fisher,
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C737303). Stbl3 bacteria strain was used for PiggyBac vectors to minimise recombination.
Plasmid construction and verification of constructs was designed using Snapgene software
(RRID: SCR 015052). Previously described sgRNA were used to target Pfen and NfI
(Zuckermann et al., 2015) for the Nfl model and the Cdkn2a locus for the EGFR-H2B-GFP

model (Weber et al., 2015).

PiggyBases

The hGFAPum-PBase plasmid was generated by inserting the hGFAPvin promoter from
pAAV-GFAP-EGFP (a gift from Bryan Roth, Addgene # 50473) into pCAG-PBase plasmid
(a gift from Paolo Salomoni) (Pathania et al., 2017). hGFAPMin-SpCas9-T2A-PBase plasmid

was generated by introduction of SpCas9-T2A into hGFAPum-PBase.

PiggyBac plasmids

‘EFla-tdTomato’ was a gift from Paolo Salomoni (Pathania et al., 2017). For the Nfl model,
hGFAPum and codon-improved Cre recombinase (iCre) sequences were inserted from
hGFAPwmin-PBase and pPBOB-CAG-iCre-SD (a gift from Inder Verma, Addgene # 12336) into
EFlo-tdTomato PB vector. sgRNAs targeting Nfl and Pten were cloned upstream of the EF1a-
tdTomato sequence, as described above. For the Pdgfr model, hGFAPMin-iCre sequence from
Nfl PB vector above and cloned into EF1a-TdTomato-CAG-Pdgfra (D842V) (a gift from
Paolo Salomoni) (Pathania et al., 2017). For the EGFR model, EGFRvVIII was PCR-amplified
and cloned into the Pdgfr model PB vector to replace Pdgfrapsszv. To generate the EGFR-H2B-
GFP PiggyBac plasmid, the EGFR model PB plasmid was modified as follows. hGFAPwmin-
iCre sequence was replaced with a U6-sgRNA sequence targeting Cdkn2a. To introduce the
H2B-GFP reporter, the tetracycline inducible expression construct was PCR-amplified from

pCW57.1 (a gift from David Root, Addgene # 41393) and the H2B-GFP reporter was PCR-
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amplified from LV-GFP (a gift from Elaine Fuchs, Addgene # 25999) (Beronja et al., 2010)

and cloned after the tdTomato sequence as a polycistronic construct with a T2A linker.

Flow cytometry analysis

Brains were collected into ice-cold HBSS media and dissected into I mm coronal sections using
a brain matrix as above (WPI, RBMS-200C). The following regions were isolated under
fluorescence guidance: tumour bulk, tumour margin and an equivalent area from the
contralateral side (unless otherwise specified). Tissue was mechanically dissociated into small
pieces, followed by enzymatic dissociation using Liberase TL (Roche, 05401119001)
supplemented with DNAse (Sigma, 101041590001) for 30min at 37°C. Following addition of
EDTA to stop the enzymatic reaction, cells were washed with PBS and filtered through a 70
um cell strainer (Falcon, 352350) to remove large debris. After a blocking step in serum and
Fc receptor blocking cocktail containing fetal bovine, mouse, rabbit and rat serums and anti-
Cd16/32 antibody (BioXCell, BE0307) for 20 min on ice, cell suspensions were incubated with
antibodies at 4°C for 20 min. For detection of intracellular epitopes, cells were fixed and
permeabilised using BD CytoFix/CytoPerm kit (BD, 554714) for 20 min at 4°C in the dark for
all panels, with the exception of the immune population panel where permeabilization and
intracellular staining were performed for 2 h at 4°C in the dark. All centrifugation steps were
carried out at 820g for 2 min and 820g for 5 min following permeabilization. Samples were

acquired on a BD FACSymphony flow cytometer.

To compare the tumour populations from the bulk and the margin (Figure 4E), the following
antibodies were used: rat anti-Cd45-BUV563 (Clone 30-F11, BD, 612924), rat anti-Cd11b-
BUV661 (Clone M1/70, BD, 565080), mouse anti-B2-microglobulin-BUV805 (Clone S19.8,

BD, 749215), mouse anti-MHC Class I H-2K*-BV510 (Clone AF6-88.5, Biolegend, 116523),
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rat anti-Bst2 (Cd317)-BV650 (Clone 927, BD, 747605), rat anti-MHC Class II (I-A/I-E)-
BV711 (Clone M5/114.15.2, BD, 563414), rabbit anti-RFP (Antibodies Online, ABIN129578)
with donkey anti-rabbit AF594, Viability dye-eFluor 780 (eBioscience, 65-0865-18). The
following antibodies were used for analysis of the H2B-GFP LR population (Figure 5): rat anti-
Cd74-BUV395 (Clone In-1, BD, 740274), rat anti-Cd45-BUVS563 (Clone 30-F11, BD,
612924), rat anti-Cd11b-BUV661 (Clone M1/70, BD, 565080), rat anti-Ki67-eFluor450
(Clone SolA15, eBio, 48-5698-80), rat anti-Bst2-BV650 (Clone 927, Biolegend, 127019), rat
anti-Cd44-BV786 (Clone IM7, Biolegend, 103059), rat anti-GFP-AF488 (Clone FM264G,
Biolegend, 33807), rabbit anti-RFP (Antibodies Online, ABIN129578) with donkey anti-rabbit
AF594, Viability dye-eFluor 780 (eBioscience, 65-0865-18). For analysis of the immune
microenvironment, the following antibodies were used: mouse anti-Nk1.1-BUV395 (Clone
PK136, BD, 564144), rat anti-Cd4-BUV496 (Clone GK1.5, BD, 564667), rat anti-Cd45-
BUV563 (Clone 30-F11, BD, 612924), rat anti-Cd11b-BUV661 (Clone M1/70, BD, 565080),
rat anti-Cd3-BUV737 (Clone 17A2, BD, 564380), rat anti-Cd8a-BUV805 (Clone 53-6.7, BD,
564920), rat anti-FoxP3-eFluor 450 (Clone FJK-16S, eBioscience, 48-5773-82), Viability dye-

eFluor 780 (eBioscience, 65-0865-18).

Data was analysed using Flowjo (v10.7.1; RRID:SCR_008520). Data was compensated and
only viable singlets were used for downstream analysis. For the analysis of tumour cells, Cd45
and Cd11b markers were used to exclude the hematopoietic compartment. Non-hematopoietic
cells were gated based on tdTomato expression and a minimum of 1,500 cells (tdTomato™ cells
for bulk and margin regions, and tdTomato™ for contralateral region) were used for further
analysis. UMAP visualization of GFP, Cd44 and Bst2 markers was performed on concatenated

data from 5 tumours (Mclnnes et al., 2018). Positive populations were manually gated based

35


https://doi.org/10.1101/2021.06.11.447915
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.11.447915; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

on fluorescence minus one controls (FMO) and projected onto UMAP to compare marker

distribution between GFP* and GFP- populations.

To study the immune cell infiltration, Cd45 and Cd11b were used to identify the hematopoietic
compartment. Main immune populations were manually gated as follows: Macrophages
(Cd45hieh Cd11b"), Microglia (Cd45°Y Cd11b*), Cd8 T cells (Cd45* Cd11b- Cd3" NKI1.1-
Cd8"), Cd4 T cells (Cd45" Cd11b Cd3" NK1.1- Cd4"), Cd4 Teff (Cd45" Cdl11b- Cd3" NKI.1-
Cd4" FoxP3"), Cd4 Tregs (Cd45" Cdl1b  Cd3* NKI1.1- Cd4" FoxP3™), Natural killers (Cd45*

Cd3- Nkl.1%), Natural killer T cells (NKT) (Cd45* Cd3* Nk1.1%). See Supplemental Figure 7.

Fluorescence-activated cell sorting for collection of single cells for RNA-sequencing

To collect single tumour cells for scRNA-seq, brains containing tumours were collected and
dissected into 1 mm coronal sections using a brain matrix (WPI, RBMS-200C). The tumour
bulk and invasive tumour front migrating into the striatum (margin) were micro dissected from
the sections under fluorescence guidance. Brain regions were enzymatically dissociated to
single cells using papain dissociation, as described above. Cells were resuspended into FACs
buffer supplemented with RNAse inhibitors (2.5 mM HEPES, 1 mM EDTA, 1.5% BSA, 2.5%
RNAse) and DAPI was added 5 min prior sorting (1:10,000; Insight Biotechnology, sc-3598).
Fluorescence-activated cell sorting was performed on a BD FACSAria Fusion Class II Type
A2 Biosafety Cabinet. Control tissue was processed in parallel to determine gating for the
tdTomato" tumour cells. These cells were sorted into 96-well plates containing RNA lysis
buffer. For quality control purposes, half of each plate was sorted with tumour cells from the
margin and the other half with tumour cells from the bulk, leaving one empty well. After
sorting, plates were snap frozen on dry ice and then stored briefly at -80°C until library

preparation.
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Single cell RNA library preparation

Full-length single-cell RNA-seq libraries were prepared using the Smart-seq2 protocol with
minor modifications (Picelli et al., 2014). Briefly, freshly harvested single cells were sorted
into 96-well plates containing the lysis buffer (0.2% triton-X-100, 1U/ul RNase inhibitor
(Takara Bio, 2313A). Reverse transcription was performed using SuperScript II (ThermoFisher
Scientific, 18064014) in the presence of 1 uM oligo-dT30VN (IDT), 1 uM template-switching
oligonucleotides (QIAGEN), and 1 M betaine (Sigma 61962). cDNA was amplified using the
KAPA Hifi Hotstart ReadyMix (Kapa Biosystems KK2601) and IS PCR primer (IDT), with
24 cycles of amplification. Following purification with Agencourt Ampure XP beads
(Beckmann Coulter, A63881), product size distribution and quantity were assessed on a
Bioanalyzer using a High Sensitivity DNA Kit (Agilent Technologies 5067-4628). A total of
140 pg of the amplified cDNA was fragmented using Nextera XT DNA sample preparation kit
(Illumina FC-131-1096) and amplified with Nextera XT indexes (Illumina FC-131-1001).
Products of each well of the 96-well plate were pooled and purified twice with Agencourt
Ampure XP beads. Final libraries were quantified and checked for fragment size distribution
using a Bioanalyzer High Sensitivity DNA Kit. Pooled sequencing of Nextera libraries was
carried out using a HiSeq2500 (Illumina, RRID:SCR_016383) to an average sequencing depth
of 0.5 million reads per cell. Sequencing was carried out as paired-end (PE75) reads with

library indexes corresponding to cell barcodes.

Single cell RNA-seq data analysis

Data pre-processing

After sequencing, libraries were inspected with the FastQC suite to assess the quality of the
reads. Reads were then demultiplexed according to the cell barcodes and mapped on the mouse

reference genome (Gencode release 21, GRCm38 (mm10)) with the RNA pipeline of the
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GEMTools 1.7.0 suite using default parameters (6% of mismatches, minimum of 80% matched
bases, and minimum quality threshold of > 26) (Marco-Sola et al., 2012). For all samples, cells
with <65% of mapped reads or <100,000 of total mapped reads were discarded. Cells in the
95% percentile of the distribution of detected genes were included in the downstream analysis,
resulting in read count matrices containing 957 (EGFR), 1033 (Pdgfr) and 834 (Nf1) cells.

Genes that were expressed in fewer than five cells were removed.

Clustering

Filtering, normalization, selection of highly variable genes (HVG), clustering and genotype
integration of cells were performed according to the Seurat package (version 2.3.4) (Butler et
al., 2018). Through this pipeline, read counts were log-normalized for each cell using the
natural logarithm of 1 + counts per ten thousand. To avoid spurious correlations, genes were
scaled and centered after library sizes were regressed out. These scaled z-scores values are then
used as normalized gene measurement input for the clustering and to visualize differences in
expression between cell clusters. Selection of HVG was based on the evaluation of the
relationship between gene dispersion and the log mean expression (with default parameters),
while their total number was limited to 3000 genes, which was close to the average of genes

per cell in EGFR and Nf1 models, while Pdgfr cells displayed around 5000 genes.

The clustering procedure projects HVG onto a reduced dimensional space before grouping
cells into subpopulations by computing a shared-nearest-neighbours (SNN) based on Euclidean
distance. The clustering algorithm is a variant of the Louvain method, which uses a resolution
parameter to determine the number of clusters (Waltman and van Eck, 2013). The resolution
parameter was set depending on both the observed heterogeneity and the biological

interpretation of the resulting clusters. At this step, the dimension of the subspace is represented
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by the number of significant principal components (PC), which was decided based on the
distribution of the PC standard deviations and by the inspection of the ElbowPlot graph. Cluster
identities were assigned using previously described genes and cluster-specific markers
obtained by differential expression analysis. UMAPs were used to visualize clusters and gene

expression of biological relevant markers and signatures.

Data integration

After the three GBM models were analysed and annotated independently, we integrated them
to find common patterns between them. The integration was performed by using the Seurat
package, by which is possible to identify biological corresponding cells (anchors) between
pairs of data sets, allowing data harmonization and comparison across tumours of different
genotype. The algorithm makes use of the Canonical Correlation Analysis (CCA), a method
that is able to learn gene correlation structures that are conserved across datasets (Hardoon et
al., 2004). To do that, it identifies a fixed number of genes (i.e. the anchor feature parameter;
in this case we used 6000 genes) that are then used to find relationships between cells across

the different data sets.

Differential Expression and GO Analysis

Cluster-specific markers were identified through the Seurat function FindAllMarkers using the
Wilcoxon’s rank sum test. The top 100 positive markers of each cell type were used as the
signature for that type in order to compare them with external signatures. To visualize the
similarity between cell type annotations from other studies, we applied matchSCore2 (Mereu
et al., 2020), which computes Jaccard Index to quantify the overlap between cell-type

signatures. Gene Ontology enrichment analysis was performed with the simpleGO package.
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Trajectory analysis

Trajectory analysis and pseudo-ordering of cells was performed with the Monocle (Qiu et al.,
2017) package (version 2.8.0) using the previously identified HVG from each individual
analysis as ordering genes. Gene counts were modelled using the negative binomial distribution
(negbinomial) as defined in the family function from the VGAM package. As for the
clustering, the expression space was reduced down before ordering cells using the “DDRTree”
algorithm, which allows 2D visualization and interpretation of the trajectory of cell states

transitions through the provided set of genes.

Alignment of single-cell trajectories

To compare the single-cell expression dynamics observed in the trajectory analysis by each
individual model, we have applied the cellAlign package (Alpert et al., 2018). CellAlign
enables the alignment of two pseudotime ordering by a quantitative framework that relies on
time warping algorithms. In doing that the tool assumes that starting and ending points of the
trajectories are matching, as it was observed in the integrated trajectory analysis of the three
GBM models. Briefly, individual pseudotime values assigned to each cell are divided into
equally distributed points (meta-cells) along the trajectory to avoid data sparsity associated
with single-cell data. Gene expression of meta-cells is averaged and their Euclidean distances
are used to identify matches between trajectories. The resulting distance matrix is then used to
represent the similarity between two trajectories. A line that minimizes the overall alignment-
based distance is displayed to recapitulate the changes along the trajectory. Identical
trajectories for example would match in each meta-cell and thus the resulting alignment-based
distance will be zero. In this case the line would be diagonal and go from the starting point of
the trajectory in the upper left of the distance matrix to the end point in the lower right. Any

deviation represented in this line indicates a shift in the pseudotime resulting from comparative
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alignment. We used EGFR as a reference data set for the pairwise comparison with the other

two models.

Digital pathology

Cell detection and validation

We applied supervised and semi-supervised algorithms to identify the exact location of T cells
and H2B-GFP" LRC in immunofluorescence confocal tile scan images of the tumours. From
each confocal image, we extracted the channels of GFP (H2B-GFP LRC), AF647 (T cells),
and DAPI. All analyses were carried out using QuPath (Bankhead et al., 2017) and ImageJ
(Schneider et al., 2012) software. For T cells, we run a cell segmentation and trained a
supervised Random Trees classifier with 1140 annotations for training and 742 annotations for
validation from non-overlapping regions with the training annotations made by CGD and LC.
To detect GFP tumour cells, we implemented a Random Trees classifier with a semi-supervised
pipeline, allowing to increase the detectability while maintaining the original label intensity of
tumour cells. For the semi-supervised algorithm, we first trained a Random Trees classifier
(classifier gfp v.1) with 1000 annotations on GFP cancer cells and 1000 annotations for the
background (made by CGD and LC). As the classifier gfp v.1 includes the bias of the observer,
it is not able to detect low-intensity GFP cells; then on the same tile, we increased the brightness
and contrast (automatic B&C Imagel). We applied the classifier gfp v.1 on that image and
saved the predictions that served as new annotations for the original GFP (non-auto B&C)
allowing us to train a new classifier (classifier gfp v.2). That approach maximises the detection
of cells with lower intensities (fast-cycling cells). To validate the classifier gfp v.2, CGD and
LC made 860 independent annotations in non-overlapping regions with the training
annotations. To compute the balanced accuracy of the T and GFP cell classifiers, we obtained

a binary mask for the predicted cells by each algorithm. We quantified true positive, true
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negative, false positive or false negative frequencies according to the value of the binary mask
for the annotations' coordinates (caret R package) (Kuhn, 2008). Finally, we run a simple cell
segmentation on the DAPI channel and obtained a dilated binary mask that allowed us to

remove detected GFP cells without DAPI marker.

This detection method allowed us to obtain the location of each cell within the sample. Only
for GFP tumour cells, we saved features related to intensity as a surrogate of the proliferative
status at single-cell resolution to assess spatial relationships of dormant and proliferative
tumour cells with immune cells. Due to the similarity between Cd4 and Cd8 markers, we use
the same algorithm for immune cells detection. All the images were formatted to 8-bit with
intensity values ranging from 0-255. To reduce biases, CGD and LC were not directly involved

in the implementation of this pipeline beyond their annotations.

Spatial metrics for co-localisation of T cells and H2B-GFP LRC

We identified LRC and proliferative phenotypes by applying unsupervised k-means clustering
with k=3 on the single-cell maximum intensity value. This identified GFP cell with low,
medium and high intensity. The clustering was applied independently to each sample. This
allowed us to examine the spatial relationship between T cells and GFPhigh and GFPlow cells
through a distance-based approach and an abundance-based approach (Maley et al., 2015).
The distance-based approach consists of representing the distribution of H2B-GFP+ cells
(GFPhigh and GFPlow) and T cells in each sample as a network, where cells are the node and
the distance between neighbouring cells are the links. For each sample, we run a Delaunay
triangulation algorithm allowing us to obtain the spatial network and the distance between cells.
We evaluated if the distance between cells differed between the two classes of links that

connect (1) T cells and GFPlow cells and (2) T cells and GFP-high cells. As a second
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explanatory variable, we compared the distance between (1) Cd4* and GFP cells and (2) Cd8+
and GFP cells, grouping GFPlow and GFPhigh cells. With these two explanatory variables,
link class and T cells, we built a linear mixed model (Ime4 R package) (Bates et al., 2015),
with the logarithm (log10) of the distance as the response variable, link class and T cells as
fixed factors, link class nested in T cells, and the sample as an explanatory variable with a
random effect. If the null hypothesis for the fixed factor is rejected, we evaluate a posteriori
comparisons between the corresponding factor levels applying the Satterthwaite method for

the computation of residual degrees of freedom.

For the abundance-based approach we computed a discrete colocalisation measure based on
the application of Morisita's dispersion and Morisita-Horn overlap indices* on the local co-
occurrence of Cd4 T cells and GFPlow or GFPhigh cells. For each sample, we computed the
Morisita dispersion index (Eq 1) at different spatial scales defined by the number of square
quadrants or patches implemented by the R package IDmining (Golay et al., 2014), that
measures the degree of randomness in cell distribution.

22 ni(n-1)
N(N-1)

The algorithm subdivides the region of interests in Q quadrants or patches with a value of the
diagonal (8) and computes /5 based on the abundance of cells (#;) in the patch and the total
number of cells or points (N). We iterated the algorithm from one to 90K subdivisions (patches)
for each sample and took the value of the diagonal that maximises /s, as the distance where the
spatial pattern diverges the most from complete spatial randomness. The value, which is
sample-dependent, was used to create a polygonal grid for each sample and compute the
Morisita-Horn overlap index (Eq 2) that calculates the probability to detect two classes of cells,

for simplicity x and y, in the same quadrant with a similar relative abundance
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X2 Y2

MH =2

Eq?2

Xy (

Where x; and y; are the quadrant abundances of the classes and X and Y are the sample
abundance of the classes. We computed the MH index at two scales within T cell hotspots
identified computing Getis-Ord G* and outside these hotspots. We tested with a one-sided t-
student if the observed MH GFPhigh-Cd4 or GFPhigh-Cd8 differs from 0 (null hypothesis is
that the observed colocalisation matches the expected for a random distribution). Additionally,
with a general linear model (GLM), we tested if the MH GFPhigh differs between T cell types,
adding the T cells/GFP ratio as a covariate. The statistical evaluation was made independently
at both scales (inside and outside of immune hotspots). The normality of the variables, raw and

residuals, was confirmed with a Shapiro-Wilk normality test.

Assessment of colocalisation between T cells and GFP subpopulations

Within samples, the abundance of GFPlow and GFPhigh cells is expected to differ because a
relative minority of tumour cells remains low-cycling (GFPhigh). To compute comparable MH
indices between T cells and GFP subpopulations (low and high) we therefore controlled for
differences in abundance to rule out density biases. After patch detection with the Morisita
dispersion index (Eq 1), we computed the Morisita-Horn overlap index for randomly sampled
GFPlow cells where their abundance equals the observed abundance of GFPhigh. For each
sample, random sampling was run 500 times; hence obtaining 500 values of MH between
GFPlow and the corresponding T cell class. We compute a z-test to evaluate if the observed
MH GFPhigh-Tcell is higher than the mean MH GFPlow-Tcell index from the random

resampling for each sample.
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Data availability
scRNAseq data generated for this study has been deposited to GEO and will be made publicly

available following publication.

Statistical analysis

All statistical analysis were performed using Prism (GraphPad, RRID:SCR_002798). Mantel-
Cox log-rank test was performed for survival data statistical analysis. Statistical tests and
significance are described in figure legends (p values = * <0.05, ** <0.01, *** < 0.001
*#%%<0.0001). Shapiro-Wilk normality test was used to test normal distribution of samples. If

no statistical significance is indicated on a graph, then ns > 0.05.
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