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Abstract15

The striatum is a major subcortical connection hub that has been heavily implicated in a16

wide array of motor and cognitive functions. Here, we developed a normative17

multimodal, data-driven microstructural parcellation of the striatum using multiple18

magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and19

the ratio between T1- and T2-weighted structural) from the Human Connectome Project20

Young Adult dataset (n=329 unrelated participants, age range: 22-35, F/M: 185/144). We21

further explored the biological and functional relationships of this parcellation by22

relating our findings to motor and cognitive performance in tasks known to involve the23

striatum as well as demographics. We identified 5 spatially distinct striatal components,24

for each hemisphere. We also show the gain in component stability when using25

multimodal versus unimodal metrics. Our findings suggest distinct microstructural26

patterns in the human striatum that are largely symmetric and that relate mostly to age27

and sex. Our work also highlights the putative functional relevance of these striatal28

components to different designations based on a Neurosynth meta-analysis.29

30

Introduction31

The striatum is a deep grey matter nucleus known to be implicated in motor control32

(Rolls, 1994) and various executive and cognitive functions,including: goal-directed deci-33

sionmaking (Stott andRedish, 2014;Haber et al., 2006a), reward andmotivation (vanden34

Bos et al., 2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a), habitual motor35

learning (Graybiel and Grafton, 2015) and emotional regulation (Hare et al., 2005). Vari-36
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ations in striatal structure and function have been implicated in various brain disorders37

including Parkinson’s disease (Albin et al., 1989; Hacker et al., 2012), Huntington’s dis-38

ease(Rosenblatt and Leroi, 2000), addiction (Yager et al., 2015; Li et al., 2015; Graybiel39

and Grafton, 2015), obsessive-compulsive disorders (Graybiel and Rauch, 2000; Shaw40

et al., 2015; Milad and Rauch, 2012), autism spectrum disorder (Schuetze et al., 2016),41

and schizophrenia (Chakravarty et al., 2015). Thus, the spatial subdivision of the striatum42

into regions informed by neuroanatomy is essential to relating striatal anatomy to func-43

tion and behaviour. Previous parcellations of this important structure have leveraged44

magnetic resonance imaging (MRI) data using a combination of heuristic and contrast-45

based definitions (Lehéricy et al., 2004; Burrer et al., 2020; Caravaggio et al., 2018; Leh46

et al., 2007). To overcome limitations inherent to these subjective definitions, data-driven47

parcellations based on structural connectivity (Draganski et al., 2008; Tziortzi et al., 2014;48

Parkes et al., 2017), resting-state functional connectivity, (Jung et al., 2014; Janssen et al.,49

2015; Choi et al., 2012; Marquand et al., 2017)and task-based functional connectivity50

(Pauli et al., 2016) have been proposed. However, the existing parcellations have failed to51

characterize the tissue microstructure that necessarily constrains the organization and52

functional variation of the striatum.53

In previous work, microstructural aspects of brain organization have been captured54

using structural and diffusion metrics derived from magnetic resonance imaging (MRI).55

Such microstructural metrics included the ratio between T1-weighted and T2-weighted56

images (T1w/T2w) (Glasser and Van Essen, 2011; Glasser et al., 2016; Tullo et al., 2019;57

Patel et al., 2020; Tardif et al., 2016), fractional anisotropy (FA) (Alexander et al., 2007;58

Lebel et al., 2008; Patel et al., 2020; Tardif et al., 2016) and mean diffusivity (MD) (Lebel59

et al., 2008; Patel et al., 2020; Tardif et al., 2016). Typically these indices are used in isola-60

tion. The main goal of this study is to develop a data-driven microstructural parcellation61

of the striatum using a combination of T1w/T2w, FA and MD, and to link inter-individual62

variations in the obtainedmicrostructural pattern to behavior and demographics. Wewill63

be using a framework previously developed and thoroughly investigated in Patel et al.64

(2020) that used a similar approach to develop a multimodal parcellation of the human65

hippocampus using non-negativematrix factorization (NMF). The uncovered spatially dis-66

tinct hippocampal parcels were found to be microstructurally distinct and stable across67

subjects.68

We hypothesize that the decomposition of the covariance between the T1w/T2w, FA69

and MDmetrics should yield parcels of the striatum that are more stable across our sub-70

jects relative to a decomposition based on a single metric. (Sotiras et al., 2015; Patel71

et al., 2020). Another goal of this study is to relate inter-individual variations in the ob-72

tained microstructural parcels to motor and cognitive performance. Finally, we aim to73

relate group-level microstructural patterns of the striatum to brain function through a74

functional MRI (fMRI) based platform called Neurosynth (Yarkoni et al., 2011).75

Methods and Materials76

Overview77

A schematic illustration of the methods of analyses used in the present study can be78

found in Figure 1. We used structural and diffusion MRI data from the Human Connec-79

tome Project (Data). The striatum segmentationswere generated automatically using the80
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Multiple Automatically Generated Templates (MAGeT) Brain algorithm (Automatic stria-81

tum segmentation). A population average constructed using the T1w and T2w images82

of each subjects was also generated to provide a common space for the microstructural83

metrics used in our analyses (Population average). The obtained striatal labels, T1w/T2w,84

FA and MDmaps to this common space to construct the input matrices that then under-85

went NMF decomposition (Implementation, Figure 1 A. B, &C). A stability analysis was per-86

formed to find the optimal number of components (Stability analysis) and the final solu-87

tion was compared to unimodal solutions. The final multi-modal NMF solution was used88

to generate neuroanatomically distinct clusters that are used to describe the microstruc-89

tural anatomy of the striatum (Non-negative matrix factorization, Figure 1D). Then, we90

use the inter-indiviudal variability in the striatal components, characterized by the NMF91

subject-level weights (Non-negative matrix factorization, Figure 1E) to understand how92

patterns of covariance may relate to behaviour and demographics using Partial Least93

Squares correlation analysis (Microstructure-behaviour relationships, Figure 1G).Finally,94

to ascertain their putative functional relevance, these clusters were used as input to Neu-95

rosynth meta-analytical decoder to compare them to meta-analyzed fMRI findings (Neu-96

rosynth image decoder, Figure 1F).97

Data98

Weusedmultimodal MRI along with behavioural and demographic data from the Human99

Connectome Project (HCP) Young Adult dataset. We selected structural and diffusionMRI100

data from 333 unrelated subjects (from a cohort of 1086 twin and non-twin siblings) with101

age ranging from 22-35 years (Van Essen et al., 2013). Most of the participants were102

individuals born in Minnesota and participants were excluded for severe neurodevelop-103

mental, neuropsychiatric or neurologic disorders (Van Essen et al., 2013). All structural104

and diffusion MRI data were acquired on a customized Siemens 3T Skyra scanner with a105

100 mT/m gradient (Van Essen et al., 2013).106

T1w/T2w images107

We used preprocessed T1 (T1w)- and T2-weighted (T2w) images from the HCP database108

(0.7 mm isotropic images) (Van Essen et al., 2013). T1w images were further prepro-109

cessedusing theminc-bpipe libraryminc-bpipe library to perform intensity non-uniformity110

correction, cropping of the neck region and brain mask generation. T1w images were111

used to derive a minimally-biased group template (as described below) and the T1w/T2w112

imageswere used as a putativemeasure of voxel-wisemyelin content (Glasser andVan Es-113

sen, 2011; Tullo et al., 2019). Detailed preprocessing of the HCP data is described in detail114

elsewhere (Van Essen et al., 2013; Glasser et al., 2013).115

DWI scalars116

The preprocessed diffusion weighted imaging data (1.25mm isotropic voxel dimensions)117

were also downloaded via the HCP online portal. The processing pipeline applied to the118

diffusion data by the HCP is described in Glasser et al. (2013). The diffusion data were119

further processed by R.P. in another study from our group (Patel et al., 2020) with MRtrix120

(Tournier et al., 2012) to estimateMD and FAmaps for each subject. To do so, single shell121

(b1̄000) data was used to construct the tensor with weighted least-squares (Basser et al.,122

1994a) and iterated least-squares (Veraart et al., 2013) using the dwi2tensor command.123
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Then, the MD and FA maps were estimated from the tensor using the tensor2metric124

command (Basser et al., 1994b;Westin et al., 1997).125

Automatic striatum segmentation126

The striatum was segmented in each subject’s T1w image using the publicly available127

MAGeT brain algorithm (Chakravarty et al., 2013). We used 5 high-resolution manu-128

ally segmented subcortical atlases based on the reconstruction of serial histological data129

(Chakravarty et al., 2006; Tullo et al., 2018). All registrations in this section and the next130

section were performed using the Automatic Normalization Registration Tools (ANTs)131

(Avants et al., 2010). Two runs ofMAGeT brainwere performed byN. B. on the entire HCP132

cohort (N=1086): manual quality control of the outputs from the first run allowed for the133

selection of the 21 subjects with the best segmentations; these subjects were then used134

as templates for the second and final run. This allowed for more subjects to pass man-135

ual quality control for output quality (see the guide). MAGeT brain was run separately for136

each hemisphere to account for anatomical asymmetries and to improve segmentation137

accuracy.138

Population average139

A population average was used to obtain a voxel-wise correspondence between our 333140

subjects and was computed by R.P. in another study from our group (Patel et al., 2020).141

We used the transformation files from the T1w images to common space to warp each142

subject’s striatum segmentation, T1w/T2w, FA and MD images to the common space us-143

ing the antsApplyTransforms command. T1w/T2w images were filtered using a Gaussian144

weighted average to remove any outlier values (Patel et al., 2020; Glasser and Van Essen,145

2011).146

Striatum labels that passedquality control (left, n=252; right, n=289)were transformed147

to the common space and a unified label was generated by voxel-wise majority vote. The148

final labels were adjusted for over-segmentation in areas such as the lateral ventricle or149

the internal capsule (see examples here) to minimize partial voluming effects of ventri-150

cles.151

Non-negative matrix factorization152

Weused an orthonormal projective variant of non-negativematrix factorization (OPNMF).153

This method provides a part-based decomposition of the input variables while prioritiz-154

ing sparsity in the solution (Yang and Oja, 2010; Sotiras et al., 2015). OPNMF has already155

been proven effective in estimating covariance patterns in neuroimaging data while pro-156

viding an easier interpretation of the results than othermatrix decomposition techniques157

such as principal component analysis (PCA) or independent component analysis (ICA)158

(Sotiras et al., 2015). Briefly, NMF decomposes an input matrix (m x n) into two matrices;159

a component matrix W (m x k) and a weight matrix H (k x n) where k is the number of160

components that needs to be specified by the user, m is the number of striatal voxels and161

n is the number of subjects (329) for the unimodal implementation and the number of162

subject-metric pairs (329∗3) for the multimodal implementation. Here we use the same163

nomenclature as in Patel et al. (2020). As we are using the orthogonal projective version164

of NMF (OPNMF), our decomposition identifies k spatially distinct patterns of covariance165

across voxels (found in W) and across subjects and metrics (found in H). We describe166
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below how we implemented OPNMF as well as how we interpreted the decomposition167

results. More theoretical concepts about OPNMF and its implementation can be found168

in the supplements. We examined each microstructural measure (T1w/T2w, FA and MD)169

separately through a unimodal implementation of OPNMF and simultaneously through170

a multimodal implementation of OPNMF. More details on the implementation of the uni-171

modal and multimodal OPNMF analyses are described below.172

Implementation173

Input matrices174

We used the fused left and right average striatum labels (Population average) to perform175

a ROI-based extraction for the T1w/T2w, FA and MD metrics using the TractREC pack-176

age. For each subject, the voxels of the striatum labels were extracted and stacked into a177

column vector of size (# striatal voxels x 1 subject). Therefore, we obtained voxel-wise col-178

umn vectors for each subject and each of the microstructural metric (T1w/T2w, FA and179

MD). Hence, we obtained 3 metric vectors per hemisphere for every subject, resulting180

in 6 column vectors per subject. As OPNMF was applied on the two hemispheres sepa-181

rately, the left and right input matrices for the unimodal and multimodal OPNMF were182

constructed independently.183

For the unimodal input matrices, we concatenated the 329 corresponding column184

vectors to obtain 6 (# striatal voxels x 329 subjects) matrices (per hemisphere and met-185

ric). The unimodal matrices were normalized using a standard z-score and shifted by the186

minimum value to obtain non-negativity.187

For the multimodal matrices, we concatenated the unimodal matrices that were nor-188

malized to account for different scales of magnitude, resulting in one ( striatal voxels x189

3 x 329) matrix per hemisphere. We then shifted all the values in our multimodal input190

matrices by the minimum value.191

Once the input matrices were constructed, we applied the OPNMF algorithm on the192

left and right striatum separately. We used MatLab R2016a and some OPNMF matlab193

functions (Sotiras et al., 2015; Boutsidis and Gallopoulos, 2008; Halko et al., 2011; Yang194

and Oja, 2010). The OPNMF algorithm was initialize using non-negative double singular195

value decomposition (SVD) and the following hyperparameters: max iterations = 100000196

and tolerance = 0.00001 as in (Patel et al., 2020).197

Interpretability198

OPNMF outputs a component matrix W and a weight matrix H . The ( striatal voxels x199

k) component matrixW describes how much each voxel contribute to a specific compo-200

nent. The (k x (3 x 329 subjects)) weight matrix H presents the loading of each subject’s201

metrics onto each component, describing microstructural variation in T1w/T2w, FA and202

MD between subjects.203

The properties of OPNMF enable us to cluster voxels via a winner take all approach of204

each voxels component scores, such that each voxel was assigned to a single cluster for205

which it had the highest component score. Therefore, W provides spatial information206

about the striatal components.207

For the weight matrix H , we have the subject-metric pairs as columns, component208

as rows and every entry represents the proportion of the metric-subject pair that con-209

tributes to each component. For a given component, the weight of a microstructural210
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metric should be similar across subjects with some variability. Hence H conveys infor-211

mation about how much T1w/T2w, FA and MD contribute to each striatal component as212

well as how those proportions vary across individuals within each component.213

Stability analysis214

To select the optimal number of components, a stability analysis was run to assess the215

accuracy and spatial stability at each granularity from 2 to 10 (Patel et al., 2020). The216

stability analyses for the left and right striatum were performed independently.217

We split our 329 subjects into two groups (a and b) of size na = 164 and nb = 165 that218

were stratified by age. We repeated this procedure to create 10 different splits, to obtain219

10 x 2 = 20 groups. For each split we created multimodal input matrices Xa and Xb as220

described in Implementation and ranOPNMF on each split independently (resulting in 20221

x 2 x 9 = 360 runs). For each split and granularity we obtained two-component matrices222

Wa andWbwhich are of dimension (#striatal voxels x granularity) and twoweightmatrices223

Ha andHb of dimensions (granularity x ( na or nb)). The reconstruction error for each split224

was computed as follows:225

Reconstruction error A = ‖Xa−WaHa‖
2
F and reconstruction error B = ‖Xb−WbHb‖

2
F (1)

Where Xa and Xb are the input matrices of two respective groups in a split. We reported226

the gradient reconstruction error that corresponds to the change in the reconstruction227

error from a granularity k to the granularity k + 1. Hence, the gradient reconstruction228

error was computed by subtracting reconstruction error matrix of the granularity k + 1229

with the reconstruction error matrix of the granularity k and then averaging all the differ-230

ences. Then we average over all splits to get reconstruction error average and standard231

deviation for every granularity.232

The accuracy is computed for each split by first taking two similarities matrix CWa233

and CWb of dimensions (# striatal voxels x # striatal voxels). CWij contains the cosine234

similarity between the components scores of voxel i and voxel j. If cosine similarity is235

high, it means that voxels i and j have similar component scores and that they are likely236

in the same cluster (Patel et al., 2020). Hence, a row i in the matrix CWa represents the237

similarity of the voxel i with all the other voxels for the group a. This is the same for the238

matrix CWb. Then, we computed the correlation between corresponding rows of CWa239

and CWb, to know if a certain voxel i is similar to the same group of voxels when OPNMF240

is applied on another group (Patel et al., 2020). If the correlation between corresponding241

rows of voxels was high, we conclude that the stability was high for this voxel (stability242

coefficient close to 1). On the other hand, instability (stability coefficient close to -1) was243

implied by a low correlation between corresponding rows of voxels. Finally, we took the244

average for all voxels and we repeated this procedure for each split to get the average245

and standard deviation stability coefficient for every granularity.246

To assess the benefit of using multimodal data versus unimodal data, we carried out247

a unimodal stability analysis for the T1w/T2w, FA and MD metrics separately. As for the248

multimodal stability analyses, the left and right unimodal stability analyses were con-249

ducted separately, for a total of 6 unimodal stability analyses.250

Microstructure-behaviour relationships251

To link inter-individual variation in striatal OPNMF components to behaviour and demo-252

graphics, we sought to examine their relationship to a set of behaviours and demograph-253
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ics available from the HCP by using subject-level weights as a measure of their specific254

microstructural loadings (in matrix H for each component, see Implementation). We255

considered all the motor-related behaviours available in the HCP test battery, as the re-256

lationship between the striatum and motor function is well known (Mink, 1996; Delong257

et al., 1983). This included endurance (NIH Toolbox 2-minute Walk Endurance Test), loco-258

motion (NIH Toolbox 4-Meter Walk Gait Speed Test), dexterity (NIH Toolbox 9-hole Peg-259

board Dexterity Test) and strength (NIH Toolbox Grip Strength Test). We also considered260

cognitive tests related to impulsivity (Hariri et al., 2006; Buckholtz et al., 2010; Dalley261

et al., 2008), motor inhibition and cognitive control (Vink et al., 2005; Schouppe et al.,262

2014). Impulsivity was assessed using the delay-discount task (DD) (Green et al., 2007;263

Estle et al., 2006) with the area under the curve (AUC) of DD as a summary measure.264

Low values for the AUC suggests delayed rewards are less valuable to the subject and265

vice versa (Myerson et al., 2001). Motor inhibition and cognitive control were measured266

by the HCP using the Flanker task from the NIH toolbox (Schouppe et al., 2014). We also267

considered age in years, years of education and gender as demographic measures.268

Partial Least Squares269

To associate the selected behaviours to the subjects’ metric-wise component weight-270

ings, we used Partial Least Squares Correlation (PLSC). PLSC is a multivariate statisti-271

cal technique that analyses the association between two sets of high-dimensional vari-272

ables(Krishnan et al., 2011; Zeighami et al., 2019; McIntosh and Lobaugh, 2004; Patel273

et al., 2020). In the context of the current study, we related the set of individual com-274

ponent weightings obtained from the H matrix in OPNMF (brain data) to the set of be-275

havioural/demographics variables mentioned above (behaviour data).276

Briefly, in PLSC, major patterns of covariance are extracted from the correlation ma-277

trix of our to initial sets using SVD (Krishnan et al., 2011; Zeighami et al., 2019). The SVD278

decomposition yields a set of uncorrelated latent variables (LVs) (Krishnan et al., 2011;279

Zeighami et al., 2019). Each LV has a singular value, which is the proportion of covari-280

ance explained by this LV. There are also a set of brain scores and behavioural scores,281

describing the extent to which brain and behavioural elements are contributing to the282

LV on a per-subject basis (Krishnan et al., 2011; Zeighami et al., 2019).283

We assessed significance of each LV using non-parametric permutation testing on the284

singular values. The stability of the individual brain and behavioural scores elements or285

weight were assessed by using bootstrap sampling (Krishnan et al., 2011; Zeighami et al.,286

2019;McIntosh and Lobaugh, 2004; Patel et al., 2020).287

Implementation288

Here, the brainmatrix haddimensions (329 subjects x 3metrics x k components)with one289

row for each subject and one column for each component-metric pair. The behavioural290

variables were stored in a 329 x 10matrix, with the subjects as rows and the performance291

of selected behavioural tests along with age, sex (coded as 0/1 for M/F ) and years of292

education as columns. Our PLSC outputs represent a pattern of covariance between293

the selected behaviours and component-wise microstructural data. For the permutation294

testing, we computed 10000 permuted brain matrices to construct a null distribution of295

singular values. We considered a threshold of P<0.05 to be significant, as it corresponds296

to a 95% confidence that the singular value of the original LV is higher than the singular297
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Table 1. Participants demographics. MMSE: score on 30 of the Mini-mental state examination
Sex Number Mean age (years) Mean Handedness Mean overall cognition

(MMSE)
Females 185 29.01±3.63 66.59±47.31 29.18±0.97
Males 144 27.71±3.68 59.69±44.20 29.01±1.08
Overall 329 63.57±46.06 63.57±46.04 29.11±1.02

value of the permuted LV (Patel et al., 2020). As for the bootstrap sampling, we generated298

1000 bootstrap samples and considered a brain salience weight with BSR>2.58 to be299

significant as it corresponds to P<0.01 (99% confidence) (Krishnan et al., 2011;McIntosh300

and Lobaugh, 2004; Patel et al., 2020).301

Neurosynth image decoder302

We related each component to functional MRI findings by using the Neurosynth associa-303

tion test framework that meta-analytically relates striatal components to brain function304

(Yarkoni et al. (2011)). TheNeurosynth database is comprised ofmeta-analytic functional305

maps for 1335 terms automatically generated from 14371 studies. Through the Neu-306

rosynth Image Decoder, it is possible to compare any brainmap to the entire Neurosynth307

database and thus quantitatively infer cognitive states for each uploaded map (Yarkoni308

et al., 2011; Chang et al., 2012). More specifically, provides posterior probability maps309

associated with a given term representing the likelihood that this term is being used in a310

study if activation is observed in the striatal voxels that we provided (see association test).311

As our striatal components were in the previously computed common space (Population312

average), wewarped the components toMNI space before uploading themone by one to313

NeuroVault as ROI-based NIFTI images. Our MNI space striatal components are publicly314

and can be used for further analysis. From the posterior probability maps provided by315

Neurosynth, we excluded maps with anatomical keywords to focus on cognition related316

terms. We also excluded maps with keywords that were either unspecific, such as "life",317

or redundant like "loss" and "losses".318

Results319

Data320

The final sample size included 329 subjects from the Human Connectome Project Young321

Adult dataset. The demographic information of our participants is displayed in Table 1.322

Wenote that there is a significant difference in themean age betweenmales and females323

( t(327) = 3.1, p<0.05), and there is no significant difference between males and females324

in handedness ( t(327) = 1.4, p>0.1) and overall cognition ( t(327) = 1.4, p>0.1).325

Stability analysis326

The results of the stability analysis are shown in Figure 2. In Figure 2A, the stability coef-327

ficient (red) of the multimodal OPNMF decomposition is displayed for the left and right328

striatum, as well as the gradient of the reconstruction error (blue) for all chosen granu-329

larities. In the right striatum, there is a net drop in the stability of the OPNMF clusters at330

k = 4, while the stability of the left OPNMF clusters slightly decay for k ≥3.331
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The gradient reconstruction error increases as the granularity increases for both hemi-332

spheres. The gradient reconstruction error going from k = 3 to k = 4 increases dramati-333

cally for both the left and right striatum, suggesting that there is more gain from going to334

k = 2 to k = 3 components than from k = 3 to k = 4 components. However, the gain in the335

reconstruction error of the left striatum is better than expected when going from k = 4336

to k = 5. The plateau in the reconstruction error for k6 in both hemispheres suggests337

that major patterns of covariance have been captured. Hence, k = 5 was chosen as the338

optimal number of components for the left and right striatum as it is the granularity that339

provides the best balance between the stability coefficient and the reconstruction error340

(accuracy) of the OPNMF multimodal decomposition.341

The results of the stability analysis comparing the multimodal versus the unimodal342

OPNMF decomposition with k ranging from 2 to 10 is shown in Figure 2B. The stabil-343

ity coefficient of the unimodal metrics T1w/T2w (green), FA (black) and an MD (blue) is344

lower than the stability achieved with themultimodal decomposition (red) for both hemi-345

spheres. Due to the gain in stability of themultimodal decomposition, we decided to only346

conserve the 5-component multimodal solution for further analysis.347

Striatal components348

Figure 3A shows a 3D representation of the left and right striatal components, while349

Figure 3B displays selected labelled and unlabelled coronal slices. The weight matrix in350

Figure 3C shows themetrics proportion in each component. We only show the left weight351

matrix as it is almost identical to the right weight matrix. The weight matrix was divided352

by the mean within rows to offer better visualization of within component variation in353

the microstructural metrics.354

• Component 1 (lilac in Figure 3A&B) is characterized by higher values of T1w/T2w355

compared to MD and FA with slighty lower values of FA compared to the previous356

metrics (first row from the bottom in Figure 3C). Component 1 includes the dorsal357

putamen as well as the dorsolateral caudate nucleus.358

• Component 2 (dark magenta in Figure 3A&B) is characterized by a high proportion359

of FA, followed by T1w/T2w and MD (second row from the bottom in Figure 3C).360

Component 2 forms a thin capsule around the dorsal putamen and also includes361

the exterior lateral caudate next to the internal capsule.362

• Component 3 (light mint in Figure 3A&B) is characterized by high MD metrics com-363

pared to the proportion of T1w/T2w and FA (third row from the bottom in Figure 3C).364

Component 3 is a thin cluster including the anterior and posterior medial caudate365

nucleus along the anterior horn of the lateral ventricle.366

• Component 4 (orange in Figure 3A&B) is characterized by lower T1w/T2w values367

compared to FA andMD (fourth row from the bottom in Figure 3C). Both FA andMD368

in component 4 are slightly above average. This component includes the nucleus369

accumbens and a part of the outer ventrolateral putamen.370

• Component 5 (dark green in Figure 3A&B) is characterized by lower values of FA371

compared to the values of T1w/T2w and MD in this component (last row from the372

bottom in Figure 3C). Component 5 includes the inner anterior ventral caudate, the373

medial caudate body and some part of the ventral putamen.374
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Partial Least Square analysis375

To relate individuals subject’s weighting from the weight matrix of OPNMF to selected be-376

haviours and demographics, we used Partial Least Square correlation analysis on the left377

and right hemisphere independently. Using permutation testing, we identified four sig-378

nificant latent variables, two for the left striatum (p<0.05) and two for the right striatum379

(p<0.05) shown in Figure 4. Figure 4A shows the behavioural patterns associated with380

the LV where the y-axis shows the behaviour and demographic measures and the x-axis381

shows the correlation of that behaviour/demographic and the LV. Figure 4B shows the382

microstructual patterns associated with the LV where the y-axis shows the component-383

metric pairs and the x-axis denotes the bootstrap ratio (BSR).384

The first left LV (left LV1; Figure 4A top row) explains 57% of the covariance between385

our two and was associated with young age (R=-0.383, 95% C.I.=[-0.467,-0.300]), male sex386

(R=-0.232, 95% C.I.=[-0.330,-0.150]), increased average performance on the Flanker task387

(R=0.107, 95%C.I.=[0.018,0.199]), increased strength (R=0.125,95%C.I.=[0.030,0.261]) and388

decreased dexterity (R=-0.097,95% C.I.=[-0.185,-0.013]). The correlated microstructural389

features include increased MD across all 5 components, decreased FA in components390

1,2 and 4 and decreased T1w/T2w in component1.391

Left LV2 (Figure 4A bottom row) explains 29% of the variance and is associated with392

lower age (R=-0.213, 95%C.I.=[-0.350,-0.035]), female sex (R=0.186, 95%C.I.=[0.097,0.314]),393

decreased strength (R=-0.190, 95% C.I.=[-0.308,-0.124]) and endurance (R=-0.136, 95%394

C.I.=[-0.230,-0.058]). The correlated microstructural features include decreased FA in395

components 1, 3, 5 and decreased T1w/T2w across all components.396

Right LV1 (Figure 4B top row) explains 58% of the variance and was mainly driven by397

younger age (R=-0.227, 95% C.I.=[-0.335,-0.122]), male sex (R=-0.329, 95% C.I.=[-0.410,-398

0.267]), increased strength (R=0.2737,95% C.I.=[0.213,0.362]), decreased dexterity (R=-399

0.1571, 95% C.I.=[-0.241,-0.079]) and AUC for both delay discounting measures DD AUC400

200$(R=-0.1015, 95%C.I.=[-0.191,-0.013]) andDDAUC40000$(R=-0.0734,95%C.I.=[-0.160,401

0.019]). The correlated microstructural features include increased MD across all compo-402

nents.403

Right LV2 (Figure 4B bottom row) explained 31% of the variance and was associated404

with young age (R=0.293, 95%C.I.=[0.188,0.400]), male sex (R=-0.09, 95%C.I.=[-0.213,0.025]),405

increased endurance (R=0.145, 95% C.I.=[0.049,0.243]) and below average performance406

in the Flanker task (R=-0.090, 95% C.I.=[-0.177,-0.004]). The correlated microstructural407

features included increased FA across all components, increased T1w/T2w in compo-408

nents 1 and 3 and decreased MD in component 1.409

Decoding with Neurosynth410

The results of the association test performed by Neurosynth for the left and right striatal411

components are in Figure 5. Some posterior probability maps were unique for certain412

components. Posterior probability maps with keywords related to motor function such413

as "motor control" and "motor response" were only associated with the first component414

of the left and right striatum. The same result was found for maps related to Parkinson’s415

disease. The posterior probability map associated with the keyword "age" was only as-416

sociated with the fifth right striatal component. In general, the correlations obtained for417

right striatal components were smaller than the correlations obtained for the left striatal418

components. There was also a lot of overlap within the set of posterior probability maps419
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across components and hemispheres, but the correlation values associated with similar420

maps was different between components. For instance, in Figure 5 top, we can see that421

both the left component 3 (light green) and the left component 4 (orange) are associated422

both associated with the "reward" posterior probability map. However, the left compo-423

nent 4 has a bigger correlation with the "reward" map then the left component 3.424

Discussion425

Overview426

We identified 5 spatially distinct microstructural components for the left and right stria-427

tum using OPNMF. We also found an increase in cluster stability when performing a mul-428

timodal decomposition rather than decomposing T1w/T2w, FA and MD data indepen-429

dently. By using brain-behaviour PLSC, we found four significant latent variables (two for430

each the left and right hemispheres) relating individual subject’s microstructural weight-431

ings in each component to behaviours and demographics. Finally, we also investigated432

how striatum clusters related to brain function using the Neurosynth database and as-433

certained some putative functional relationship of the specific clusters that we describe.434

Spatial striatal components and microstructure435

Compared to other recent parcellations of the striatum, we notice that our multimodal436

clusters segregate across both the caudate and the putamen which have been observed437

in a recent (Liu et al., 2020) multi-modal parcellation of the striatum but not in other im-438

portant data-driven parcellations (Pauli et al., 2016; Janssen et al., 2015; Jung et al., 2014).439

We also observe that the nucleus accumbens is encapsulated in its own cluster (com-440

ponent 4; orange) which is consistent with other striatum decompositions mentioned441

above.442

Component 1 showed increased T1w/T2w in voxels corresponding to the dorsal puta-443

men as well as some part of the posteromedial caudate. It has been observed that both444

FA and T1w/T2w are positively correlated with myelin density (Uddin et al., 2019). How-445

ever, FA was shown to be a much stronger correlate of myelin content compared to446

T1w/T2w especially in subcortical grey matter structures (Uddin et al., 2019). Hence, the447

higher proportion of T1w/T2w compared to FA in component 1 might be attributed to448

another tissue microstructure property, like iron concentration(Tardif et al., 2016; Uddin449

et al., 2019; Péran et al., 2009).450

Component 2 describes high FA compared to othermetrics in voxels overlapping with451

a thin cluster along the anterior-posterior axis of lateral caudate and putamen. High452

FA might suggest a preferred fibre orientation in this region and myelination, although453

FA is sensitive to a wide range of cellular mechanism (Tardif et al., 2016; Uddin et al.,454

2019). High T1w/T2w signal also suggests increased myelination in this region (Uddin455

et al., 2019), which combined with increased FA, could indicate the presence of fibre456

bundles. This may capture the anterior-posterior fibre organization in the caudate nu-457

cleus and inferior-superior myelinated fibre bundles between the caudate nucleus and458

globus pallidus through the internal capsule, which has recently been investigated using459

in vivo dMRI analyses and polarized light imaging in Kotz et al. (2013).460

Component 4 included voxels overlapping with the nucleus accumbens structure as461

defined in Haber et al. (1990) and a thin cluster around the dorsal putamen. Component462
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4 describes increased FA and MD compared to T1w/T2w.463

Component 5 is characterized by lower MD in some part of the inner anterior ven-464

tral caudate, the medial caudate body along the voxels of component 3 and some part465

of the ventral putamen. Decreased MD in these regions may suggest a denser tissue466

microstructure (Beaulieu, 2002; Sagi et al., 2012).467

The striatum has often been divided into functionally distinct regions based on cor-468

ticostriatal inputs as there are no clear cytoarchitectonic parcellations of this structure.469

Tracing studies in non-human primates have identified a tripartite organization of the470

striatum based on structural connectivity to the cortex into the limbic region (ventral471

striatum), the association region (central striatum) and sensorimotor region (dorsolat-472

eral striatum) (Haber et al., 1994, 1995). Similar findings from tractography studies using473

diffusionMRI in humans have been observed inDraganski et al. (2008). The limbic region474

identified in (Haber et al., 1994, 1995, 2006b) overlaps with our component 4 (orange in475

Figure 3) that also segregates the nucleus accumbens from the rest of the striatum. The476

association and sensorimotor regions from Haber et al. (1994, 1995, 2006b) do not over-477

lap as clearly with other components as our parcellation of the limbic region and compo-478

nent 4. However, we still see similarities between the association striatal regions and our479

fifth striatal component (dark green in Figure 3), where both overlap with some part of480

the anterior caudate and anterior putamen. The somatosensory striatal region in Haber481

et al. (1995, 2006b) corresponds the most to our component 1 (light purple in Figure 3),482

comprised of the posterior putamen and posteromedial caudate.483

Although ourmap does not exactly recapitulate this tripartite organization, we do see484

some similarities. This might suggest that some extrinsic structural connectivity proper-485

ties of the striatummight be captured by the combination of intrinsic measures we used486

for our parcellation.487

It is also known that the striatum contains two histochemically disinct compartments;488

the striosomes and matrix compartment (Graybiel and Ragsdale, 1978; Flaherty and489

Graybiel, 1994;Holt et al., 1997), that also differ in their input-output organization (Gimenez-490

Amaya and Graybiel, 1991; Eblen and Graybiel, 1995). As the striosomes patches make491

uponly 15% (BrimblecombeandCragg, 2017) of the adult striatumand that these patches492

seems to be broadly distributed in the caudate and putamen (Mikula et al., 2009), it is493

not clear how this binary compartmentalizationwould affect our decomposition. Further-494

more, currentMRI protocols do not allow for the direct distinction between the striosome495

and matrix compartment (Blood et al., 2018) and it has yet been shown if and how the496

striosomes andmatrix compartment affect themicrostructuralmetrics derived fromMRI497

that we used here.498

Individual-level variation in microstructure & behaviour499

Microstructural components were also investigated at the individual level, where we as-500

sessed the relation between single-subject microstructure and behaviour. Using PLSC501

analysis, we identified two significant LVs for each the left and right striatum. Left LV1502

and right LV1 displayed a similar pattern of increased MD across the left and right stria-503

tum correlated with young age, male sex and some measure of motor performance (in-504

creased strength and endurance and decreased dexterity). The inverse correlation be-505

tween MD and age is consistent with evidence of decreased MD in early adulthood in506

deep grey matter structures (Lebel et al., 2008). The positive relationship between age507
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and FA which is observed in left LV1 has also been established in Lebel et al. (2008), al-508

though here, this pattern is only observed in the left striatum. As for the behaviours,509

we note increased strength and decreased dexterity as well as an above-average perfor-510

mance of the Flanker task in both left and right LV1. The motor behaviour correlation511

pattern in the left and right LV1 is consistent with the sex effect observed in those LVs.512

Indeed, increased strength and endurance as well as decreased dexterity in males have513

been observed in those tasks before (Hanten et al., 1999; Bohannon et al., 2015; Peters514

and Campagnaro, 1996)515

Left LV2 described a covariance mostly related to age and sex where young females516

exhibited a decrease in T1w/T2w across the left striatum and a decrease in FA in the puta-517

men and the caudate nucleus (excluding the NA and the ’outer rim’ of the putamen). The518

positive relationship between FA and age has been observed in previous studies (Lebel519

et al., 2008). Recent work has also identified a positive correlation between T1w/T2w and520

age during early adulthood, where a bilateral increase of T1w/T2w was observed in the521

striatum until a peak and subsequent decline at around 50 years old (Tullo et al., 2019).522

The left LV2 also displayed decreased strength and endurance. As for in the left and right523

LV1, we note that the motor pattern in left LV2 is also consistent with the sex effect in524

that LV.525

The right LV2 displayed an inverse age-related pattern to the left LV2, where age cor-526

related with increased FA in the entire striatum, increased T1w/T2w in the putamen and527

medial caudate along the ventricle, and decreased MD in the putamen. The positive re-528

lationship between age and FA in the right LV2 is consistent with findings in Lebel et al.529

(2008).The pattern of older age and increased T1w/T2w has also been observed in Tullo530

et al. (2019). In terms of behaviour and other demographics, this LV correlated withmale531

sex, below-average performance in the Flanker task as well as increased strength and en-532

durance.533

As the female sample in this study has a slightly higher mean age than the males534

(mean female age = 29.01±3.62, mean male age = 27.71±3.67), the correlation patterns535

between the significant LVs with age and sex might be affected. For instance, a true cor-536

relation between an LV with age might also drive a correlation between the LV and sex537

or vice versa due to the previously noted bias in the sample. To investigate further the538

effect of sex in our LVs, we performed the same OPNMF followed by PLS on males and539

females independently. We found that for the left hemishpere, there was no significant540

difference between males and females in the striatum parcellation. Hence, we ran the541

PLS analysis for the left hemisphere without the sex as a variable and obtained similar542

LVs were the left LV1 mostly shows an effect of age and left LV2 shows an effect of the543

motor behaviours as seen in Figure 4. As the right striatumparcellationwas slightly differ-544

ent between males and females, we conducted the PLS analysis independently between545

males and females. We found that the microstructural partterns uncovered by the right546

LVs were different between males and females, probably due to the difference in the547

parcellation. However, the behavioural patterns were highly similar between the two548

groups. Indeed, the right LV1 for males and females shows mostly an effect of age and549

motor related behaviours while the right LV2 shows a stronger effect of impulsivity re-550

lated behaviours, similar to what we show in Figure 4where themales and females were551

combined. More details on the sex specific analysis can be found in the supplement.552

Moreover, relationships between brain structure and psychological traits using mass553
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univariate approaches have been shown to have low replicability while there exist robust554

associations between brain structure and non-psychological traits such as age (Masouleh555

et al., 2019). This previously observed robust relationship between brain structure and556

age paired with the low variability in the HCP behavioural data might explain why we557

see such a strong effect of age and sex on our LVs compared to the other striatal re-558

lated behaviours. In sum, we also note that the directionality of our PLSC results were as559

expected and we observed no laterality effects.560

As discussed in another study from our group (Patel et al., 2020), the combination561

of OPNMF and PLS reduces the potential for false-positive as we are analyzing spatial562

components of voxels rather than performing univariate testing on every voxel. PLS is a563

multivariate technique that relates multiple variables simultaneously as opposed to mul-564

tivariate testing, thus accounting for some difficulties encountered in univariate testing.565

Correlation with fMRI maps566

The Neurosynth reverse-inference framework found multiple correlations between out-567

put components and posterior predictive maps associated with reward, incentive and568

decision-making related map, which are functions that have been attributed to the stria-569

tum in previous studies (Stott and Redish, 2014; Haber et al., 2006a; van den Bos et al.,570

2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a). Correlations with motor-571

related maps were stronger with putamen-related clusters (component 1, light purple),572

which is consistent with previous findings associating the putamen to somatosensory573

processes (Arsalidou et al., 2013; Pauli et al., 2016). We found the strongest correlation574

with reward-related words in the bilateral component 4, which mostly overlaps with the575

nucleus accumbens. This is consistent with a recent finding (Pauli et al., 2016). However,576

the small size of our other components (component 2, 3 and 5) resulted in a major over-577

lap between the components and the Neurosynth maps. Although all of the words are578

related to previously reported striatal fucntions, the component-map correlations are579

not particularly specific in components 2, 3 and 5.580

We also note that the correlations uncovered by the Neurosynth framework are in-581

fluenced by confirmation bias. For instance, studies that looked at reward or addiction582

related behaviours are more likely to mention the striatum or vice-versa as it has long583

been thought that such associations exists.584

Choice of parcellation585

Striatal clustering586

Previous parcellations of the striatum have used a combination of heuristic and contrast-587

based definitions. In recent years, the increased quantity and quality of available MRI588

data have allowed for data-driven parcellations that rely on no a priori assumptions on589

striatal organization, overcoming the limitations of past parcellation schemes. To iden-590

tify spatial striatal components, previous studies have used clustering techniques such as591

K-means clustering (Pauli et al., 2016; Parkes et al., 2017; Jung et al., 2014), and decompo-592

sition techniques such as PCA, ICA and probabilistic modelling, such as Gaussianmixture593

model (Janssen et al., 2015). Amongst the variety of possible parcellation schemes, one594

has to be careful in the selection of a clustering/decomposition algorithm as it depends595

heavily on the type of data and the aims of the study.596

Although OPNMF has been shown to be mathematically equivalent to the K-means597
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algorithm (Eickhoff et al., 2018), OPNMFwas a suitablemethod for this study aswe aimed598

to investigate inter-individual variability in the subjects’ weightings. Sotiras et al. (2015)599

showed that compared to other decomposition techniques (PCA and ICA), components600

captured by NMF seemed to reflect relevant biological processes related to age andwere601

less prone to overfitting. The advantages of OPNMF interpretability have already been602

noted in previous studies (Sotiras et al., 2015; Patel et al., 2020; Varikuti et al., 2018).603

Here, we took advantage of the flexibility of NMF decomposition while capitalizing on a604

part-based representation of the striatum by adding the orthogonality constraint to NMF.605

We also note the data-driven symmetry in the component obtained in each hemisphere.606

Multimodal vs. unimodal607

Although T1w/T2w, FA and MD are typically used in isolation, we hypothesized that since608

each of thesemeasures has differential sensitivity to the underlying cellular anatomy but609

still someoverlap in their range of sensitivities (i.e they are all sensitive tomyelin) (Glasser610

and Van Essen, 2011; Tardif et al., 2016; Tullo et al., 2019), combining them would yield611

more robust parcels. Here, we note that the stability of the multimodal OPNMF decom-612

position was notably higher than the stability of the unimodal decomposition, which pro-613

vides evidence for the benefit of integrating multiple metrics to construct a parcellation.614

There are multiple ways to obtain multimodal maps, however this is not a method615

typically employed in the literature. One way to obtain multi-modal maps is to super-616

impose all the parcellation schemes derived from one modality (Eickhoff et al., 2018).617

In this method, the final multimodal parcellation is based on the overlap of the voxels618

that had a similar cluster assignment in all the unimodal parcellation schemes (Eickhoff619

et al., 2018; Xia et al., 2017;Wang et al., 2015). Although such parcellation schemes pro-620

vide useful confirmatory information, the voxels with ambiguous overlap between the621

distinct unimodal parcellation schemes were not necessarily included in the final map,622

which can lead to fragmented final multimodal parcellations (Eickhoff et al., 2018;Wang623

et al., 2015).624

OPNMF and other similar methods, such as PCA and ICA, try to overcome this limita-625

tion by integrating multiple modalities into the parcellation, making use of the confirma-626

tory and complementary information provided by the multiple metrics.627

Limitations628

An inherent limitation in this study is the lack of specificity regarding the underlyingmech-629

anism of structural and diffusion MRI derived metrics that we used. It is still not clear630

how specific aspects of tissue microstructure influence T1w/T2w, FA andMD. Other than631

myelin, the T1w and T2w signals are sensitive to the presence of macromolecules and632

iron concentration(Tardif et al., 2016; Uddin et al., 2019). FA and MD are also sensitive633

to a wide range of additional cellular properties including axonal density and orientation,634

water in the tissue and the presence of different cell types (Tardif et al., 2016; Jones et al.,635

2013). Although the combination of those microstructural metrics provides complemen-636

tary and confirmatory information, it is still unclear what the underlying microstructure637

looks like in our identified striatal clusters. As with most non-invasive imaging studies,638

the resolution used in this study is subject to partial volume effects. Partial volume ef-639

fects may affect metrics proportion in our striatal components, especially in components640

2, 4 that are adjacent to major white matter tracts which might be contributing to the in-641
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crease of FA. Partial volume effects may also play a role in the high proportion of MD in642

component 3 as it is adjacent to the the anterior horn of the lateral ventricle.643

Conclusion644

In this work, we used a combination of three microstructural metrics to construct a part-645

based decomposition of the human striatum in a healthy population using non-negative646

matrix factorization. By using the stability and accuracy of OPNMF decomposition, we647

identified 5 spatially distinct microstructural patterns for the left and right striatum sepa-648

rately. Then, we used partial least squares correlation to link inter-individual variation in649

the striatal components to selected behaviours and demographics. Our findings suggest650

distinct microstructural patterns in the human striatum that relatemostly to demograph-651

ics. Our work also highlights the gain in clusters’ stability when using multimodal versus652

unimodal metrics. We note that the identified striatal components are associated with653

complex patterns of microstructure and behavioural variation. Further, the striatal com-654

ponents appear to be functionally relevant.655

This work can serve as a template for examining how one can investigate subject-656

level variation that links brain and behaviour across numerous brain imaging measures.657

This may, in turn, allow for more specific interpretations of brain imaging findings that658

improve our mechanistic insights on brain-behaviour relationships. Further, this work659

could be applied in future studies of brain development and in the context of neuropsy-660

chiatric disorders to parse heterogeneity.661
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Figures and Tables662

Figure 1. A) We used the chosen
microstructural metrics in automatically
segmentated striatum labels (obtained with
the MAGeT Brain algorithm) of our subjects in
the a constructed common space B) We
concatenated the striatal voxels in column
vectors of all our subjects to build an input
matrix. The left and right input matrix were
build independently. C) We extracted spatially
distinct components representing patterns of
covariance in microstructure across subjects
using orthogonal projective non-negative
matrix factorization (OPNMF). OPNMF
decomposes an input matrix into a component
matrix W and a weight matrix H. As OPNMF
extracts a predefined number of component k,
we performed a stability analysis to assess the
accuracy and spatial stability at each
granularity from 2 to 10 (see Figure 2A ). D) The
component matrix W describes how much
each voxel weight into a specific component
providing spatial information about the
clusters. F) We related each component to
functional MRI findings by using the
Neurosynth reverse-inference framework that
meta-analytically relates striatal components
to psychological states. E) The weight matrix H
contains the weight of each subject’s metrics
onto each component, describing
microstructural variation in the metrics found
in the input matrix ( T1w/T2w, FA , MD)
between subjects. G) We used Partial Least
Squares (PLS) analysis to identify patterns of
covariance between the striatal components
T1w/T2w, FA and MD proportions with
behavioural and demographic data. PLS is a
multivariate technique that analyses the
association between our component-metric
pairs (leftmost top) and selected
behaviour/demographics (leftmost bottom)
variables resulting in a set of LVs. The
significance of the covariance patterns
uncovered by the LVs was assessed using
permutation testing while the reliability of each
brain specific weight was assessed using
bootstrap sampling.
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Figure 2. A) Stability score and gradient reconstruction error when performing NMF using 2 to 10 clusters. As we want to
maximize the stability while minimizing the reconstruction error, we chose to use 5 components for the rest of the analysis. B)
Comparison of the stability score of NMF on multimodal data (a combination of T1w/T2w, FA and MD (red)) versus unimodal
data (either only T1w/T2w (green), only FA (black) or only MD (blue)) using 2 to 10 clusters.
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Figure 3. A) 3D rendering of the 5 components solution (A: anterior, P: posterior, S: superior, I: inferior, R: right, L: left). B)
Coronal slices showing the labelled and unlabelled (side-by-side columns) left and right striatum. C) Weight matrix output from
NMF of the left striatum, showing how the microstructural metrics weight into each component (the right weight matrix is
almost identical). For the normalization, we divided each component (row in the matrix) by the mean value in that specific
component to show within component variation in the microstructural metrics.
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Figure 4. Results of the PLS analysis, we show only the latent variables (LVs) that were significant (p<0.05). The percentage next
to the LV’s name corresponds to the covariance explained by this LV. A) Behavioural patterns of the left LV1 (first column), left
LV2 (second column), right LV1 (third column) and right LV2 (fourth column). The y-axis denotes the behavioural and
demographics measures used in the analysis (DD AUC: Delay discounting area under the curve), while the x-axis corresponds to
the correlation of the behaviours with the LV. B) Microstructural patterns associated with the four significant LVs identified.
Here,the y-axis correspond to the component-metric pairs and the x-axis denotes the bootstrap ratio (BSR). The black line in the
microstructural patterns graph represent a BSR of 2.58 (equivalent to a 99% C.I.). The colors of the bars are associated with the
component (see Figure 3C).
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Figure 5. (Top) Left striatal components Neurosynth results.(Bottom) Right striatal components Neurosynth results. Here, the
color of the words describe the components to which the posterior probability maps was related to (see Figure 3C). The font of
the word represents the Pearson correlation strength between the map of the component and the keyword related map from
Neurosynth. Notice that the keywords’ font were not normalized across components. Hence, the keyword with the biggest font
represents the term with the biggest correlation in that component and not in all components.
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