

1 Microstructural variation in the 2 human striatum using non-negative 3 matrix factorization

4 **Corinne Robert^{1*}, Raihaan Patel^{1,3}, Nadia Blostein^{1,2}, Christopher C.
5 Steele^{5,6}, M. Mallar Chakravarty^{1,2,3,4*}**

*For correspondence:

corinne.robert@mail.mcgill.ca
(FMS); mallar@cobralab.ca (FS)

6 ¹Cerebral Imaging Centre, Douglas Mental Health University Institute,
7 Verdun, QC, Canada; ²Integrated Program in Neuroscience, McGill
8 University, Montreal, QC, Canada; ³Department of Biological and
9 Biomedical Engineering, McGill University, Montreal, QC, Canada;
10 ⁴Department of Psychiatry, McGill University, Montreal, QC, Canada;
11 ⁵Department of Psychology, Concordia University, Montreal, QC, Canada;
12 ⁶Department of Neurology, Max Planck Institute for Human Cognitive
13 and Brain Sciences, Leipzig, Germany

14

15 **Abstract**

16 The striatum is a major subcortical connection hub that has been heavily implicated in a
17 wide array of motor and cognitive functions. Here, we developed a normative
18 multimodal, data-driven microstructural parcellation of the striatum using multiple
19 magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and
20 the ratio between T1- and T2-weighted structural) from the Human Connectome Project
21 Young Adult dataset (n=329 unrelated participants, age range: 22-35, F/M: 185/144). We
22 further explored the biological and functional relationships of this parcellation by
23 relating our findings to motor and cognitive performance in tasks known to involve the
24 striatum as well as demographics. We identified 5 spatially distinct striatal components,
25 for each hemisphere. We also show the gain in component stability when using
26 multimodal versus unimodal metrics. Our findings suggest distinct microstructural
27 patterns in the human striatum that are largely symmetric and that relate mostly to age
28 and sex. Our work also highlights the putative functional relevance of these striatal
29 components to different designations based on a Neurosynth meta-analysis.

30

31 **Introduction**

32 The striatum is a deep grey matter nucleus known to be implicated in motor control
33 (*Rolls, 1994*) and various executive and cognitive functions, including: goal-directed deci-
34 sion making (*Stott and Redish, 2014; Haber et al., 2006a*), reward and motivation (*van den
35 Bos et al., 2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a*), habitual motor
36 learning (*Graybiel and Grafton, 2015*) and emotional regulation (*Hare et al., 2005*). Vari-

37 aitions in striatal structure and function have been implicated in various brain disorders
38 including Parkinson's disease (*Albin et al., 1989; Hacker et al., 2012*), Huntington's disease(*Rosenblatt and Leroi, 2000*), addiction (*Yager et al., 2015; Li et al., 2015; Graybiel and Grafton, 2015*), obsessive-compulsive disorders (*Graybiel and Rauch, 2000; Shaw et al., 2015; Milad and Rauch, 2012*), autism spectrum disorder (*Schuetze et al., 2016*),
42 and schizophrenia (*Chakravarty et al., 2015*). Thus, the spatial subdivision of the striatum
43 into regions informed by neuroanatomy is essential to relating striatal anatomy to func-
44 tion and behaviour. Previous parcellations of this important structure have leveraged
45 magnetic resonance imaging (MRI) data using a combination of heuristic and contrast-
46 based definitions (*Lehéricy et al., 2004; Burrel et al., 2020; Caravaggio et al., 2018; Leh et al., 2007*). To overcome limitations inherent to these subjective definitions, data-driven
48 parcellations based on structural connectivity (*Draganski et al., 2008; Tziortzi et al., 2014; Parkes et al., 2017*), resting-state functional connectivity, (*Jung et al., 2014; Janssen et al., 2015; Choi et al., 2012; Marquand et al., 2017*) and task-based functional connectivity
51 (*Pauli et al., 2016*) have been proposed. However, the existing parcellations have failed to
52 characterize the tissue microstructure that necessarily constrains the organization and
53 functional variation of the striatum.

54 In previous work, microstructural aspects of brain organization have been captured
55 using structural and diffusion metrics derived from magnetic resonance imaging (MRI).
56 Such microstructural metrics included the ratio between T1-weighted and T2-weighted
57 images (T1w/T2w) (*Glasser and Van Essen, 2011; Glasser et al., 2016; Tullo et al., 2019; Patel et al., 2020; Tardif et al., 2016*), fractional anisotropy (FA) (*Alexander et al., 2007; Lebel et al., 2008; Patel et al., 2020; Tardif et al., 2016*) and mean diffusivity (MD) (*Lebel et al., 2008; Patel et al., 2020; Tardif et al., 2016*). Typically these indices are used in isol-
61 ation. The main goal of this study is to develop a data-driven microstructural parcellation
62 of the striatum using a combination of T1w/T2w, FA and MD, and to link inter-individual
63 variations in the obtained microstructural pattern to behavior and demographics. We will
64 be using a framework previously developed and thoroughly investigated in *Patel et al. (2020)* that used a similar approach to develop a multimodal parcellation of the human
66 hippocampus using non-negative matrix factorization (NMF). The uncovered spatially dis-
67 tinct hippocampal parcels were found to be microstructurally distinct and stable across
68 subjects.

69 We hypothesize that the decomposition of the covariance between the T1w/T2w, FA
70 and MD metrics should yield parcels of the striatum that are more stable across our sub-
71 jects relative to a decomposition based on a single metric. (*Sotiras et al., 2015; Patel et al., 2020*). Another goal of this study is to relate inter-individual variations in the ob-
73 tained microstructural parcels to motor and cognitive performance. Finally, we aim to
74 relate group-level microstructural patterns of the striatum to brain function through a
75 functional MRI (fMRI) based platform called Neurosynth (*Yarkoni et al., 2011*).

76 Methods and Materials

77 Overview

78 A schematic illustration of the methods of analyses used in the present study can be
79 found in **Figure 1**. We used structural and diffusion MRI data from the Human Connec-
80 tome Project (Data). The striatum segmentations were generated automatically using the

81 Multiple Automatically Generated Templates (MAGeT) Brain algorithm (Automatic striatum segmentation). A population average constructed using the T1w and T2w images
82 of each subjects was also generated to provide a common space for the microstructural
83 metrics used in our analyses (Population average). The obtained striatal labels, T1w/T2w,
84 FA and MD maps to this common space to construct the input matrices that then under-
85 went NMF decomposition (Implementation, **Figure 1** A, B, &C). A stability analysis was per-
86 formed to find the optimal number of components (Stability analysis) and the final solu-
87 tion was compared to unimodal solutions. The final multi-modal NMF solution was used
88 to generate neuroanatomically distinct clusters that are used to describe the microstruc-
89 tural anatomy of the striatum (Non-negative matrix factorization, **Figure 1**D). Then, we
90 use the inter-individudal variability in the striatal components, characterized by the NMF
91 subject-level weights (Non-negative matrix factorization, **Figure 1**E) to understand how
92 patterns of covariance may relate to behaviour and demographics using Partial Least
93 Squares correlation analysis (Microstructure-behaviour relationships, **Figure 1**G).Finally,
94 to ascertain their putative functional relevance, these clusters were used as input to Neu-
95 rosynth meta-analytical decoder to compare them to meta-analyzed fMRI findings (Neu-
96 rosynth image decoder, **Figure 1**F).

98 **Data**

99 We used multimodal MRI along with behavioural and demographic data from the Human
100 Connectome Project (HCP) Young Adult dataset. We selected structural and diffusion MRI
101 data from 333 unrelated subjects (from a cohort of 1086 twin and non-twin siblings) with
102 age ranging from 22-35 years (*Van Essen et al., 2013*). Most of the participants were
103 individuals born in Minnesota and participants were excluded for severe neurodevelop-
104 mental, neuropsychiatric or neurologic disorders (*Van Essen et al., 2013*). All structural
105 and diffusion MRI data were acquired on a customized Siemens 3T Skyra scanner with a
106 100 mT/m gradient (*Van Essen et al., 2013*).

107 **T1w/T2w images**

108 We used preprocessed T1 (T1w)- and T2-weighted (T2w) images from the **HCP database**
109 (0.7 mm isotropic images) (*Van Essen et al., 2013*). T1w images were further prepro-
110 cessed using the minc-bpipe library **minc-bpipe library** to perform intensity non-uniformity
111 correction, cropping of the neck region and brain mask generation. T1w images were
112 used to derive a minimally-biased group template (as described below) and the T1w/T2w
113 images were used as a putative measure of voxel-wise myelin content (*Glasser and Van Es-
114 sen, 2011; Tullo et al., 2019*). Detailed preprocessing of the HCP data is described in detail
115 elsewhere (*Van Essen et al., 2013; Glasser et al., 2013*).

116 **DWI scalars**

117 The preprocessed diffusion weighted imaging data (1.25 mm isotropic voxel dimensions)
118 were also downloaded via the HCP online portal. The processing pipeline applied to the
119 diffusion data by the HCP is described in *Glasser et al. (2013)*. The diffusion data were
120 further processed by R.P. in another study from our group (*Patel et al., 2020*) with **MRtrix**
121 (*Tournier et al., 2012*) to estimate MD and FA maps for each subject. To do so, single shell
122 (b1000) data was used to construct the tensor with weighted least-squares (*Basser et al.,
123 1994a*) and iterated least-squares (*Veraart et al., 2013*) using the dwi2tensor command.

124 Then, the MD and FA maps were estimated from the tensor using the tensor2metric
125 command (**Basser et al., 1994b; Westin et al., 1997**).

126 Automatic striatum segmentation

127 The striatum was segmented in each subject's T1w image using the publicly available
128 MAGeT brain algorithm (**Chakravarty et al., 2013**). We used **5 high-resolution manually**
129 **segmented subcortical atlases** based on the reconstruction of serial histological data
130 (**Chakravarty et al., 2006; Tullo et al., 2018**). All registrations in this section and the next
131 section were performed using the **Automatic Normalization Registration Tools (ANTs)**
132 (**Avants et al., 2010**). Two runs of MAGeT brain were performed by N. B. on the entire HCP
133 cohort (N=1086); manual quality control of the outputs from the first run allowed for the
134 selection of the 21 subjects with the best segmentations; these subjects were then used
135 as templates for the second and final run. This allowed for more subjects to pass manual
136 quality control for output quality (see the **guide**). MAGeT brain was run separately for
137 each hemisphere to account for anatomical asymmetries and to improve segmentation
138 accuracy.

139 Population average

140 A population average was used to obtain a voxel-wise correspondence between our 333
141 subjects and was computed by R.P. in another study from our group (**Patel et al., 2020**).
142 We used the transformation files from the T1w images to common space to warp each
143 subject's striatum segmentation, T1w/T2w, FA and MD images to the common space using
144 the antsApplyTransforms command. T1w/T2w images were filtered using a Gaussian
145 weighted average to remove any outlier values (**Patel et al., 2020; Glasser and Van Essen,**
146 **2011**).

147 Striatum labels that passed quality control (left, n=252; right, n=289) were transformed
148 to the common space and a unified label was generated by voxel-wise majority vote. The
149 final labels were adjusted for over-segmentation in areas such as the lateral ventricle or
150 the internal capsule (see examples [here](#)) to minimize partial voluming effects of ventri-
151 cles.

152 Non-negative matrix factorization

153 We used an orthonormal projective variant of non-negative matrix factorization (OPNMF).
154 This method provides a part-based decomposition of the input variables while prioritizing
155 sparsity in the solution (**Yang and Oja, 2010; Sotiras et al., 2015**). OPNMF has already
156 been proven effective in estimating covariance patterns in neuroimaging data while pro-
157 viding an easier interpretation of the results than other matrix decomposition techniques
158 such as principal component analysis (PCA) or independent component analysis (ICA)
159 (**Sotiras et al., 2015**). Briefly, NMF decomposes an input matrix ($m \times n$) into two matrices;
160 a component matrix W ($m \times k$) and a weight matrix H ($k \times n$) where k is the number of
161 components that needs to be specified by the user, m is the number of striatal voxels and
162 n is the number of subjects (329) for the unimodal implementation and the number of
163 subject-metric pairs (329*3) for the multimodal implementation. Here we use the same
164 nomenclature as in **Patel et al. (2020)**. As we are using the orthogonal projective version
165 of NMF (OPNMF), our decomposition identifies k spatially distinct patterns of covariance
166 across voxels (found in W) and across subjects and metrics (found in H). We describe

167 below how we implemented OPNMF as well as how we interpreted the decomposition
168 results. More theoretical concepts about OPNMF and its implementation can be found
169 in the supplements. We examined each microstructural measure (T1w/T2w, FA and MD)
170 separately through a unimodal implementation of OPNMF and simultaneously through
171 a multimodal implementation of OPNMF. More details on the implementation of the uni-
172 modal and multimodal OPNMF analyses are described below.

173 Implementation

174 Input matrices

175 We used the fused left and right average striatum labels (Population average) to perform
176 a ROI-based extraction for the T1w/T2w, FA and MD metrics using the [TractREC pack-](#)
177 [age](#). For each subject, the voxels of the striatum labels were extracted and stacked into a
178 column vector of size (# striatal voxels x 1 subject). Therefore, we obtained voxel-wise col-
179 umn vectors for each subject and each of the microstructural metric (T1w/T2w, FA and
180 MD). Hence, we obtained 3 metric vectors per hemisphere for every subject, resulting
181 in 6 column vectors per subject. As OPNMF was applied on the two hemispheres sepa-
182 rately, the left and right input matrices for the unimodal and multimodal OPNMF were
183 constructed independently.

184 For the unimodal input matrices, we concatenated the 329 corresponding column
185 vectors to obtain 6 (# striatal voxels x 329 subjects) matrices (per hemisphere and met-
186 ric). The unimodal matrices were normalized using a standard z-score and shifted by the
187 minimum value to obtain non-negativity.

188 For the multimodal matrices, we concatenated the unimodal matrices that were nor-
189 malized to account for different scales of magnitude, resulting in one (striatal voxels x
190 3 x 329) matrix per hemisphere. We then shifted all the values in our multimodal input
191 matrices by the minimum value.

192 Once the input matrices were constructed, we applied the OPNMF algorithm on the
193 left and right striatum separately. We used MatLab R2016a and some [OPNMF matlab](#)
194 [functions](#) (*Sotiras et al., 2015; Boutsidis and Gallopoulos, 2008; Halko et al., 2011; Yang*
195 *and Oja, 2010*). The OPNMF algorithm was initialize using non-negative double singular
196 value decomposition (SVD) and the following hyperparameters: max iterations = 100000
197 and tolerance = 0.00001 as in (*Patel et al., 2020*).

198 Interpretability

199 OPNMF outputs a component matrix W and a weight matrix H . The (striatal voxels x
200 k) component matrix W describes how much each voxel contribute to a specific compo-
201 nent. The (k x (3 x 329 subjects)) weight matrix H presents the loading of each subject's
202 metrics onto each component, describing microstructural variation in T1w/T2w, FA and
203 MD between subjects.

204 The properties of OPNMF enable us to cluster voxels via a winner take all approach of
205 each voxels component scores, such that each voxel was assigned to a single cluster for
206 which it had the highest component score. Therefore, W provides spatial information
207 about the striatal components.

208 For the weight matrix H , we have the subject-metric pairs as columns, component
209 as rows and every entry represents the proportion of the metric-subject pair that con-
210 tributes to each component. For a given component, the weight of a microstructural

211 metric should be similar across subjects with some variability. Hence H conveys information
212 about how much T1w/T2w, FA and MD contribute to each striatal component as
213 well as how those proportions vary across individuals within each component.

214 **Stability analysis**

215 To select the optimal number of components, a stability analysis was run to assess the
216 accuracy and spatial stability at each granularity from 2 to 10 (*Patel et al., 2020*). The
217 stability analyses for the left and right striatum were performed independently.

218 We split our 329 subjects into two groups (a and b) of size $n_a = 164$ and $n_b = 165$ that
219 were stratified by age. We repeated this procedure to create 10 different splits, to obtain
220 $10 \times 2 = 20$ groups. For each split we created multimodal input matrices X_a and X_b as
221 described in Implementation and ran OPNMF on each split independently (resulting in 20
222 $\times 2 \times 9 = 360$ runs). For each split and granularity we obtained two-component matrices
223 W_a and W_b which are of dimension (#striatal voxels x granularity) and two weight matrices
224 H_a and H_b of dimensions (granularity x (n_a or n_b)). The reconstruction error for each split
225 was computed as follows:

$$226 \text{Reconstruction error } A = \|X_a - W_a H_a\|_F^2 \text{ and reconstruction error } B = \|X_b - W_b H_b\|_F^2 \quad (1)$$

227 Where X_a and X_b are the input matrices of two respective groups in a split. We reported
228 the gradient reconstruction error that corresponds to the change in the reconstruction
229 error from a granularity k to the granularity $k + 1$. Hence, the gradient reconstruction
230 error was computed by subtracting reconstruction error matrix of the granularity $k + 1$
231 with the reconstruction error matrix of the granularity k and then averaging all the differ-
232 ences. Then we average over all splits to get reconstruction error average and standard
233 deviation for every granularity.

234 The accuracy is computed for each split by first taking two similarities matrix CW_a
235 and CW_b of dimensions (# striatal voxels x # striatal voxels). CW_{ij} contains the cosine
236 similarity between the components scores of voxel i and voxel j . If cosine similarity is
237 high, it means that voxels i and j have similar component scores and that they are likely
238 in the same cluster (*Patel et al., 2020*). Hence, a row i in the matrix CW_a represents the
239 similarity of the voxel i with all the other voxels for the group a. This is the same for the
240 matrix CW_b . Then, we computed the correlation between corresponding rows of CW_a
241 and CW_b , to know if a certain voxel i is similar to the same group of voxels when OPNMF
242 is applied on another group (*Patel et al., 2020*). If the correlation between corresponding
243 rows of voxels was high, we conclude that the stability was high for this voxel (stability
244 coefficient close to 1). On the other hand, instability (stability coefficient close to -1) was
245 implied by a low correlation between corresponding rows of voxels. Finally, we took the
246 average for all voxels and we repeated this procedure for each split to get the average
247 and standard deviation stability coefficient for every granularity.

248 To assess the benefit of using multimodal data versus unimodal data, we carried out
249 a unimodal stability analysis for the T1w/T2w, FA and MD metrics separately. As for the
250 multimodal stability analyses, the left and right unimodal stability analyses were con-
251 ducted separately, for a total of 6 unimodal stability analyses.

252 **Microstructure-behaviour relationships**

253 To link inter-individual variation in striatal OPNMF components to behaviour and demo-
254 graphics, we sought to examine their relationship to a set of behaviours and demograph-

254 ics available from the HCP by using subject-level weights as a measure of their specific
255 microstructural loadings (in matrix H for each component, see Implementation). We
256 considered all the motor-related behaviours available in the HCP test battery, as the re-
257 lationship between the striatum and motor function is well known (Mink, 1996; Delong
258 et al., 1983). This included endurance (NIH Toolbox 2-minute Walk Endurance Test), loco-
259 motion (NIH Toolbox 4-Meter Walk Gait Speed Test), dexterity (NIH Toolbox 9-hole Peg-
260 board Dexterity Test) and strength (NIH Toolbox Grip Strength Test). We also considered
261 cognitive tests related to impulsivity (Hariri et al., 2006; Buckholtz et al., 2010; Dalley
262 et al., 2008), motor inhibition and cognitive control (Vink et al., 2005; Schouuppe et al.,
263 2014). Impulsivity was assessed using the delay-discount task (DD) (Green et al., 2007;
264 Estle et al., 2006) with the area under the curve (AUC) of DD as a summary measure.
265 Low values for the AUC suggests delayed rewards are less valuable to the subject and
266 vice versa (Myerson et al., 2001). Motor inhibition and cognitive control were measured
267 by the HCP using the Flanker task from the NIH toolbox (Schouuppe et al., 2014). We also
268 considered age in years, years of education and gender as demographic measures.

269 Partial Least Squares

270 To associate the selected behaviours to the subjects' metric-wise component weight-
271 ings, we used Partial Least Squares Correlation (PLSC). PLSC is a multivariate statisti-
272 cal technique that analyses the association between two sets of high-dimensional vari-
273 ables (Krishnan et al., 2011; Zeighami et al., 2019; McIntosh and Lobaugh, 2004; Patel
274 et al., 2020). In the context of the current study, we related the set of individual com-
275 ponent weightings obtained from the H matrix in OPNMF (brain data) to the set of be-
276 havioural/demographics variables mentioned above (behaviour data).

277 Briefly, in PLSC, major patterns of covariance are extracted from the correlation ma-
278 trix of our to initial sets using SVD (Krishnan et al., 2011; Zeighami et al., 2019). The SVD
279 decomposition yields a set of uncorrelated latent variables (LVs) (Krishnan et al., 2011;
280 Zeighami et al., 2019). Each LV has a singular value, which is the proportion of covari-
281 ance explained by this LV. There are also a set of brain scores and behavioural scores,
282 describing the extent to which brain and behavioural elements are contributing to the
283 LV on a per-subject basis (Krishnan et al., 2011; Zeighami et al., 2019).

284 We assessed significance of each LV using non-parametric permutation testing on the
285 singular values. The stability of the individual brain and behavioural scores elements or
286 weight were assessed by using bootstrap sampling (Krishnan et al., 2011; Zeighami et al.,
287 2019; McIntosh and Lobaugh, 2004; Patel et al., 2020).

288 Implementation

289 Here, the brain matrix had dimensions (329 subjects x 3 metrics x k components) with one
290 row for each subject and one column for each component-metric pair. The behavioural
291 variables were stored in a 329 x 10 matrix, with the subjects as rows and the performance
292 of selected behavioural tests along with age, sex (coded as 0/1 for M/F) and years of
293 education as columns. Our PLSC outputs represent a pattern of covariance between
294 the selected behaviours and component-wise microstructural data. For the permutation
295 testing, we computed 10000 permuted brain matrices to construct a null distribution of
296 singular values. We considered a threshold of $P < 0.05$ to be significant, as it corresponds
297 to a 95% confidence that the singular value of the original LV is higher than the singular

Table 1. Participants demographics. MMSE: score on 30 of the Mini-mental state examination

Sex	Number	Mean age (years)	Mean Handedness	Mean overall cognition (MMSE)
Females	185	29.01±3.63	66.59±47.31	29.18±0.97
Males	144	27.71±3.68	59.69±44.20	29.01±1.08
Overall	329	63.57±46.06	63.57±46.04	29.11±1.02

²⁹⁸ value of the permuted LV (*Patel et al., 2020*). As for the bootstrap sampling, we generated
²⁹⁹ 1000 bootstrap samples and considered a brain salience weight with $BSR > 2.58$ to be
³⁰⁰ significant as it corresponds to $P < 0.01$ (99% confidence) (*Krishnan et al., 2011; McIntosh*
³⁰¹ *and Lobaugh, 2004; Patel et al., 2020*).

³⁰² **Neurosynth image decoder**

³⁰³ We related each component to functional MRI findings by using the Neurosynth associa-
³⁰⁴ tion test framework that meta-analytically relates striatal components to brain function
³⁰⁵ (*Yarkoni et al. (2011)*). The [Neurosynth database](#) is comprised of meta-analytic functional
³⁰⁶ maps for 1335 terms automatically generated from 14371 studies. Through the Neu-
³⁰⁷ rosynth [Image Decoder](#), it is possible to compare any brain map to the entire Neurosynth
³⁰⁸ database and thus quantitatively infer cognitive states for each uploaded map (*Yarkoni*
³⁰⁹ *et al., 2011; Chang et al., 2012*). More specifically, provides posterior probability maps
³¹⁰ associated with a given term representing the likelihood that this term is being used in a
³¹¹ study if activation is observed in the striatal voxels that we provided (see [association test](#)).
³¹² As our striatal components were in the previously computed common space (Population
³¹³ average), we warped the components to MNI space before uploading them one by one to
³¹⁴ NeuroVault as ROI-based NIFTI images. Our [MNI space striatal components](#) are publicly
³¹⁵ and can be used for further analysis. From the posterior probability maps provided by
³¹⁶ Neurosynth, we excluded maps with anatomical keywords to focus on cognition related
³¹⁷ terms. We also excluded maps with keywords that were either unspecific, such as "life",
³¹⁸ or redundant like "loss" and "losses".

³¹⁹ **Results**

³²⁰ **Data**

³²¹ The final sample size included 329 subjects from the Human Connectome Project Young
³²² Adult dataset. The demographic information of our participants is displayed in **Table 1**.
³²³ We note that there is a significant difference in the mean age between males and females
³²⁴ ($t(327) = 3.1$, $p < 0.05$), and there is no significant difference between males and females
³²⁵ in handedness ($t(327) = 1.4$, $p > 0.1$) and overall cognition ($t(327) = 1.4$, $p > 0.1$).

³²⁶ **Stability analysis**

³²⁷ The results of the stability analysis are shown in **Figure 2**. In **Figure 2A**, the stability coef-
³²⁸ ficient (red) of the multimodal OPNMF decomposition is displayed for the left and right
³²⁹ striatum, as well as the gradient of the reconstruction error (blue) for all chosen granu-
³³⁰ larities. In the right striatum, there is a net drop in the stability of the OPNMF clusters at
³³¹ $k = 4$, while the stability of the left OPNMF clusters slightly decay for $k \geq 3$.

332 The gradient reconstruction error increases as the granularity increases for both hemi-
333 spheres. The gradient reconstruction error going from $k = 3$ to $k = 4$ increases dramati-
334 cally for both the left and right striatum, suggesting that there is more gain from going to
335 $k = 2$ to $k = 3$ components than from $k = 3$ to $k = 4$ components. However, the gain in the
336 reconstruction error of the left striatum is better than expected when going from $k = 4$
337 to $k = 5$. The plateau in the reconstruction error for $k = 6$ in both hemispheres suggests
338 that major patterns of covariance have been captured. Hence, $k = 5$ was chosen as the
339 optimal number of components for the left and right striatum as it is the granularity that
340 provides the best balance between the stability coefficient and the reconstruction error
341 (accuracy) of the OPNMF multimodal decomposition.

342 The results of the stability analysis comparing the multimodal versus the unimodal
343 OPNMF decomposition with k ranging from 2 to 10 is shown in **Figure 2B**. The stabil-
344 ity coefficient of the unimodal metrics T1w/T2w (green), FA (black) and an MD (blue) is
345 lower than the stability achieved with the multimodal decomposition (red) for both hemi-
346 spheres. Due to the gain in stability of the multimodal decomposition, we decided to only
347 conserve the 5-component multimodal solution for further analysis.

348 **Striatal components**

349 **Figure 3A** shows a 3D representation of the left and right striatal components, while
350 **Figure 3B** displays selected labelled and unlabelled coronal slices. The weight matrix in
351 **Figure 3C** shows the metrics proportion in each component. We only show the left weight
352 matrix as it is almost identical to the right weight matrix. The weight matrix was divided
353 by the mean within rows to offer better visualization of within component variation in
354 the microstructural metrics.

- 355 • Component 1 (lilac in **Figure 3A&B**) is characterized by higher values of T1w/T2w
356 compared to MD and FA with slightly lower values of FA compared to the previous
357 metrics (first row from the bottom in **Figure 3C**). Component 1 includes the dorsal
358 putamen as well as the dorsolateral caudate nucleus.
- 359 • Component 2 (dark magenta in **Figure 3A&B**) is characterized by a high proportion
360 of FA, followed by T1w/T2w and MD (second row from the bottom in **Figure 3C**).
361 Component 2 forms a thin capsule around the dorsal putamen and also includes
362 the exterior lateral caudate next to the internal capsule.
- 363 • Component 3 (light mint in **Figure 3A&B**) is characterized by high MD metrics com-
364 pared to the proportion of T1w/T2w and FA (third row from the bottom in **Figure 3C**).
365 Component 3 is a thin cluster including the anterior and posterior medial caudate
366 nucleus along the anterior horn of the lateral ventricle.
- 367 • Component 4 (orange in **Figure 3A&B**) is characterized by lower T1w/T2w values
368 compared to FA and MD (fourth row from the bottom in **Figure 3C**). Both FA and MD
369 in component 4 are slightly above average. This component includes the nucleus
370 accumbens and a part of the outer ventrolateral putamen.
- 371 • Component 5 (dark green in **Figure 3A&B**) is characterized by lower values of FA
372 compared to the values of T1w/T2w and MD in this component (last row from the
373 bottom in **Figure 3C**). Component 5 includes the inner anterior ventral caudate, the
374 medial caudate body and some part of the ventral putamen.

375 **Partial Least Square analysis**

376 To relate individuals subject's weighting from the weight matrix of OPNMF to selected be-
377 haviours and demographics, we used Partial Least Square correlation analysis on the left
378 and right hemisphere independently. Using permutation testing, we identified four sig-
379 nificant latent variables, two for the left striatum ($p<0.05$) and two for the right striatum
380 ($p<0.05$) shown in **Figure 4**. **Figure 4A** shows the behavioural patterns associated with
381 the LV where the y-axis shows the behaviour and demographic measures and the x-axis
382 shows the correlation of that behaviour/demographic and the LV. **Figure 4B** shows the
383 microstructural patterns associated with the LV where the y-axis shows the component-
384 metric pairs and the x-axis denotes the bootstrap ratio (BSR).

385 The first left LV (left LV1; **Figure 4A** top row) explains 57% of the covariance between
386 our two and was associated with young age ($R=-0.383$, 95% C.I.=[-0.467,-0.300]), male sex
387 ($R=-0.232$, 95% C.I.=[-0.330,-0.150]), increased average performance on the Flanker task
388 ($R=0.107$, 95% C.I.=[0.018,0.199]), increased strength ($R=0.125$, 95% C.I.=[0.030,0.261]) and
389 decreased dexterity ($R=-0.097$, 95% C.I.=[-0.185,-0.013]). The correlated microstructural
390 features include increased MD across all 5 components, decreased FA in components
391 1,2 and 4 and decreased T1w/T2w in component1.

392 Left LV2 (**Figure 4A** bottom row) explains 29% of the variance and is associated with
393 lower age ($R=-0.213$, 95% C.I.=[-0.350,-0.035]), female sex ($R=0.186$, 95% C.I.=[0.097,0.314]),
394 decreased strength ($R=-0.190$, 95% C.I.=[-0.308,-0.124]) and endurance ($R=-0.136$, 95%
395 C.I.=[-0.230,-0.058]). The correlated microstructural features include decreased FA in
396 components 1, 3, 5 and decreased T1w/T2w across all components.

397 Right LV1 (**Figure 4B** top row) explains 58% of the variance and was mainly driven by
398 younger age ($R=-0.227$, 95% C.I.=[-0.335,-0.122]), male sex ($R=-0.329$, 95% C.I.=[-0.410,-
399 0.267]), increased strength ($R=0.2737$, 95% C.I.=[0.213,0.362]), decreased dexterity ($R=-$
400 0.1571, 95% C.I.=[-0.241,-0.079]) and AUC for both delay discounting measures DD AUC
401 200\$ ($R=-0.1015$, 95% C.I.=[-0.191,-0.013]) and DD AUC 40 000\$ ($R=-0.0734$, 95% C.I.=[-0.160,
402 0.019]). The correlated microstructural features include increased MD across all compo-
403 nents.

404 Right LV2 (**Figure 4B** bottom row) explained 31% of the variance and was associated
405 with young age ($R=0.293$, 95% C.I.=[0.188,0.400]), male sex ($R=-0.09$, 95% C.I.=[-0.213,0.025]),
406 increased endurance ($R=0.145$, 95% C.I.=[0.049,0.243]) and below average performance
407 in the Flanker task ($R=-0.090$, 95% C.I.=[-0.177,-0.004]). The correlated microstructural
408 features included increased FA across all components, increased T1w/T2w in compo-
409 nents 1 and 3 and decreased MD in component 1.

410 **Decoding with Neurosynth**

411 The results of the association test performed by Neurosynth for the left and right striatal
412 components are in **Figure 5**. Some posterior probability maps were unique for certain
413 components. Posterior probability maps with keywords related to motor function such
414 as "motor control" and "motor response" were only associated with the first component
415 of the left and right striatum. The same result was found for maps related to Parkinson's
416 disease. The posterior probability map associated with the keyword "age" was only as-
417 sociated with the fifth right striatal component. In general, the correlations obtained for
418 right striatal components were smaller than the correlations obtained for the left striatal
419 components. There was also a lot of overlap within the set of posterior probability maps

420 across components and hemispheres, but the correlation values associated with similar
421 maps was different between components. For instance, in **Figure 5** top, we can see that
422 both the left component 3 (light green) and the left component 4 (orange) are associated
423 both associated with the "reward" posterior probability map. However, the left compo-
424 nent 4 has a bigger correlation with the "reward" map then the left component 3.

425 Discussion

426 Overview

427 We identified 5 spatially distinct microstructural components for the left and right stria-
428 tum using OPNMF. We also found an increase in cluster stability when performing a mul-
429 timodal decomposition rather than decomposing T1w/T2w, FA and MD data indepen-
430 dently. By using brain-behaviour PLSC, we found four significant latent variables (two for
431 each the left and right hemispheres) relating individual subject's microstructural weight-
432 ings in each component to behaviours and demographics. Finally, we also investigated
433 how striatum clusters related to brain function using the Neurosynth database and as-
434 certained some putative functional relationship of the specific clusters that we describe.

435 Spatial striatal components and microstructure

436 Compared to other recent parcellations of the striatum, we notice that our multimodal
437 clusters segregate across both the caudate and the putamen which have been observed
438 in a recent (*Liu et al., 2020*) multi-modal parcellation of the striatum but not in other im-
439 portant data-driven parcellations (*Pauli et al., 2016; Janssen et al., 2015; Jung et al., 2014*).
440 We also observe that the nucleus accumbens is encapsulated in its own cluster (com-
441 ponent 4; orange) which is consistent with other striatum decompositions mentioned
442 above.

443 Component 1 showed increased T1w/T2w in voxels corresponding to the dorsal puta-
444 men as well as some part of the posteromedial caudate. It has been observed that both
445 FA and T1w/T2w are positively correlated with myelin density (*Uddin et al., 2019*). How-
446 ever, FA was shown to be a much stronger correlate of myelin content compared to
447 T1w/T2w especially in subcortical grey matter structures (*Uddin et al., 2019*). Hence, the
448 higher proportion of T1w/T2w compared to FA in component 1 might be attributed to
449 another tissue microstructure property, like iron concentration (*Tardif et al., 2016; Uddin*
450 *et al., 2019; Péran et al., 2009*).

451 Component 2 describes high FA compared to other metrics in voxels overlapping with
452 a thin cluster along the anterior-posterior axis of lateral caudate and putamen. High
453 FA might suggest a preferred fibre orientation in this region and myelination, although
454 FA is sensitive to a wide range of cellular mechanism (*Tardif et al., 2016; Uddin et al.,*
455 *2019*). High T1w/T2w signal also suggests increased myelination in this region (*Uddin*
456 *et al., 2019*), which combined with increased FA, could indicate the presence of fibre
457 bundles. This may capture the anterior-posterior fibre organization in the caudate nu-
458 cleus and inferior-superior myelinated fibre bundles between the caudate nucleus and
459 globus pallidus through the internal capsule, which has recently been investigated using
460 *in vivo* dMRI analyses and polarized light imaging in *Kotz et al. (2013)*.

461 Component 4 included voxels overlapping with the nucleus accumbens structure as
462 defined in *Haber et al. (1990)* and a thin cluster around the dorsal putamen. Component

463 4 describes increased FA and MD compared to T1w/T2w.

464 Component 5 is characterized by lower MD in some part of the inner anterior ven-
465 tral caudate, the medial caudate body along the voxels of component 3 and some part
466 of the ventral putamen. Decreased MD in these regions may suggest a denser tissue
467 microstructure (Beaulieu, 2002; Sagi et al., 2012).

468 The striatum has often been divided into functionally distinct regions based on cor-
469 ticostratial inputs as there are no clear cytoarchitectonic parcellations of this structure.
470 Tracing studies in non-human primates have identified a tripartite organization of the
471 striatum based on structural connectivity to the cortex into the limbic region (ventral
472 striatum), the association region (central striatum) and sensorimotor region (dorsolat-
473 eral striatum) (Haber et al., 1994, 1995). Similar findings from tractography studies using
474 diffusion MRI in humans have been observed in Draganski et al. (2008). The limbic region
475 identified in (Haber et al., 1994, 1995, 2006b) overlaps with our component 4 (orange in
476 Figure 3) that also segregates the nucleus accumbens from the rest of the striatum. The
477 association and sensorimotor regions from Haber et al. (1994, 1995, 2006b) do not over-
478 lap as clearly with other components as our parcellation of the limbic region and compo-
479 nent 4. However, we still see similarities between the association striatal regions and our
480 fifth striatal component (dark green in Figure 3), where both overlap with some part of
481 the anterior caudate and anterior putamen. The somatosensory striatal region in Haber
482 et al. (1995, 2006b) corresponds the most to our component 1 (light purple in Figure 3),
483 comprised of the posterior putamen and posteromedial caudate.

484 Although our map does not exactly recapitulate this tripartite organization, we do see
485 some similarities. This might suggest that some extrinsic structural connectivity proper-
486 ties of the striatum might be captured by the combination of intrinsic measures we used
487 for our parcellation.

488 It is also known that the striatum contains two histochemically distinct compartments;
489 the striosomes and matrix compartment (Graybiel and Ragsdale, 1978; Flaherty and
490 Graybiel, 1994; Holt et al., 1997), that also differ in their input-output organization (Gimenez-
491 Amaya and Graybiel, 1991; Eblen and Graybiel, 1995). As the striosomes patches make
492 up only 15% (Brimblecombe and Cragg, 2017) of the adult striatum and that these patches
493 seems to be broadly distributed in the caudate and putamen (Mikula et al., 2009), it is
494 not clear how this binary compartmentalization would affect our decomposition. Further-
495 more, current MRI protocols do not allow for the direct distinction between the striosome
496 and matrix compartment (Blood et al., 2018) and it has yet been shown if and how the
497 striosomes and matrix compartment affect the microstructural metrics derived from MRI
498 that we used here.

499 **Individual-level variation in microstructure & behaviour**

500 Microstructural components were also investigated at the individual level, where we as-
501 sessed the relation between single-subject microstructure and behaviour. Using PLSC
502 analysis, we identified two significant LVs for each the left and right striatum. Left LV1
503 and right LV1 displayed a similar pattern of increased MD across the left and right stria-
504 tum correlated with young age, male sex and some measure of motor performance (in-
505 creased strength and endurance and decreased dexterity). The inverse correlation be-
506 tween MD and age is consistent with evidence of decreased MD in early adulthood in
507 deep grey matter structures (Lebel et al., 2008). The positive relationship between age

508 and FA which is observed in left LV1 has also been established in *Lebel et al. (2008)*, al-
509 though here, this pattern is only observed in the left striatum. As for the behaviours,
510 we note increased strength and decreased dexterity as well as an above-average perfor-
511 mance of the Flanker task in both left and right LV1. The motor behaviour correlation
512 pattern in the left and right LV1 is consistent with the sex effect observed in those LVs.
513 Indeed, increased strength and endurance as well as decreased dexterity in males have
514 been observed in those tasks before (*Hanten et al., 1999; Bohannon et al., 2015; Peters*
515 *and Campagnaro, 1996*)

516 Left LV2 described a covariance mostly related to age and sex where young females
517 exhibited a decrease in T1w/T2w across the left striatum and a decrease in FA in the puta-
518 men and the caudate nucleus (excluding the NA and the 'outer rim' of the putamen). The
519 positive relationship between FA and age has been observed in previous studies (*Lebel*
520 *et al., 2008*). Recent work has also identified a positive correlation between T1w/T2w and
521 age during early adulthood, where a bilateral increase of T1w/T2w was observed in the
522 striatum until a peak and subsequent decline at around 50 years old (*Tullo et al., 2019*).
523 The left LV2 also displayed decreased strength and endurance. As for in the left and right
524 LV1, we note that the motor pattern in left LV2 is also consistent with the sex effect in
525 that LV.

526 The right LV2 displayed an inverse age-related pattern to the left LV2, where age cor-
527 related with increased FA in the entire striatum, increased T1w/T2w in the putamen and
528 medial caudate along the ventricle, and decreased MD in the putamen. The positive re-
529 lationship between age and FA in the right LV2 is consistent with findings in *Lebel et al.*
530 *(2008)*. The pattern of older age and increased T1w/T2w has also been observed in *Tullo*
531 *et al. (2019)*. In terms of behaviour and other demographics, this LV correlated with male
532 sex, below-average performance in the Flanker task as well as increased strength and en-
533 durance.

534 As the female sample in this study has a slightly higher mean age than the males
535 (mean female age = 29.01 ± 3.62 , mean male age = 27.71 ± 3.67), the correlation patterns
536 between the significant LVs with age and sex might be affected. For instance, a true cor-
537 relation between an LV with age might also drive a correlation between the LV and sex
538 or vice versa due to the previously noted bias in the sample. To investigate further the
539 effect of sex in our LVs, we performed the same OPNMF followed by PLS on males and
540 females independently. We found that for the left hemisphere, there was no significant
541 difference between males and females in the striatum parcellation. Hence, we ran the
542 PLS analysis for the left hemisphere without the sex as a variable and obtained similar
543 LVs were the left LV1 mostly shows an effect of age and left LV2 shows an effect of the
544 motor behaviours as seen in *Figure 4*. As the right striatum parcellation was slightly differ-
545 ent between males and females, we conducted the PLS analysis independently between
546 males and females. We found that the microstructural patterns uncovered by the right
547 LVs were different between males and females, probably due to the difference in the
548 parcellation. However, the behavioural patterns were highly similar between the two
549 groups. Indeed, the right LV1 for males and females shows mostly an effect of age and
550 motor related behaviours while the right LV2 shows a stronger effect of impulsivity re-
551 lated behaviours, similar to what we show in *Figure 4* where the males and females were
552 combined. More details on the sex specific analysis can be found in the supplement.

553 Moreover, relationships between brain structure and psychological traits using mass

554 univariate approaches have been shown to have low replicability while there exist robust
555 associations between brain structure and non-psychological traits such as age (*Masouleh*
556 *et al., 2019*). This previously observed robust relationship between brain structure and
557 age paired with the low variability in the HCP behavioural data might explain why we
558 see such a strong effect of age and sex on our LVs compared to the other striatal re-
559 lated behaviours. In sum, we also note that the directionality of our PLSC results were as
560 expected and we observed no laterality effects.

561 As discussed in another study from our group (*Patel et al., 2020*), the combination
562 of OPNMF and PLS reduces the potential for false-positive as we are analyzing spatial
563 components of voxels rather than performing univariate testing on every voxel. PLS is a
564 multivariate technique that relates multiple variables simultaneously as opposed to mul-
565 tivariate testing, thus accounting for some difficulties encountered in univariate testing.

566 **Correlation with fMRI maps**

567 The Neurosynth reverse-inference framework found multiple correlations between out-
568 put components and posterior predictive maps associated with reward, incentive and
569 decision-making related map, which are functions that have been attributed to the stria-
570 tum in previous studies (*Stott and Redish, 2014; Haber et al., 2006a; van den Bos et al.,*
571 *2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a*). Correlations with motor-
572 related maps were stronger with putamen-related clusters (component 1, light purple),
573 which is consistent with previous findings associating the putamen to somatosensory
574 processes (*Arsalidou et al., 2013; Pauli et al., 2016*). We found the strongest correlation
575 with reward-related words in the bilateral component 4, which mostly overlaps with the
576 nucleus accumbens. This is consistent with a recent finding (*Pauli et al., 2016*). However,
577 the small size of our other components (component 2, 3 and 5) resulted in a major over-
578 lap between the components and the Neurosynth maps. Although all of the words are
579 related to previously reported striatal fucntions, the component-map correlations are
580 not particularly specific in components 2, 3 and 5.

581 We also note that the correlations uncovered by the Neurosynth framework are in-
582 fluenced by confirmation bias. For instance, studies that looked at reward or addiction
583 related behaviours are more likely to mention the striatum or vice-versa as it has long
584 been thought that such associations exists.

585 **Choice of parcellation**

586 **Striatal clustering**

587 Previous parcellations of the striatum have used a combination of heuristic and contrast-
588 based definitions. In recent years, the increased quantity and quality of available MRI
589 data have allowed for data-driven parcellations that rely on no *a priori* assumptions on
590 striatal organization, overcoming the limitations of past parcellation schemes. To iden-
591 tify spatial striatal components, previous studies have used clustering techniques such as
592 K-means clustering (*Pauli et al., 2016; Parkes et al., 2017; Jung et al., 2014*), and decompo-
593 sition techniques such as PCA, ICA and probabilistic modelling, such as Gaussian mixture
594 model (*Janssen et al., 2015*). Amongst the variety of possible parcellation schemes, one
595 has to be careful in the selection of a clustering/decomposition algorithm as it depends
596 heavily on the type of data and the aims of the study.

597 Although OPNMF has been shown to be mathematically equivalent to the K-means

598 algorithm (*Eickhoff et al., 2018*), OPNMF was a suitable method for this study as we aimed
599 to investigate inter-individual variability in the subjects' weightings. *Sotiras et al. (2015)*
600 showed that compared to other decomposition techniques (PCA and ICA), components
601 captured by NMF seemed to reflect relevant biological processes related to age and were
602 less prone to overfitting. The advantages of OPNMF interpretability have already been
603 noted in previous studies (*Sotiras et al., 2015; Patel et al., 2020; Varikuti et al., 2018*).
604 Here, we took advantage of the flexibility of NMF decomposition while capitalizing on a
605 part-based representation of the striatum by adding the orthogonality constraint to NMF.
606 We also note the data-driven symmetry in the component obtained in each hemisphere.

607 Multimodal vs. unimodal

608 Although T1w/T2w, FA and MD are typically used in isolation, we hypothesized that since
609 each of these measures has differential sensitivity to the underlying cellular anatomy but
610 still some overlap in their range of sensitivities (i.e they are all sensitive to myelin) (*Glasser*
611 *and Van Essen, 2011; Tardif et al., 2016; Tullo et al., 2019*), combining them would yield
612 more robust parcels. Here, we note that the stability of the multimodal OPNMF decom-
613 position was notably higher than the stability of the unimodal decomposition, which pro-
614 vides evidence for the benefit of integrating multiple metrics to construct a parcellation.

615 There are multiple ways to obtain multimodal maps, however this is not a method
616 typically employed in the literature. One way to obtain multi-modal maps is to super-
617 impose all the parcellation schemes derived from one modality (*Eickhoff et al., 2018*).
618 In this method, the final multimodal parcellation is based on the overlap of the voxels
619 that had a similar cluster assignment in all the unimodal parcellation schemes (*Eickhoff*
620 *et al., 2018; Xia et al., 2017; Wang et al., 2015*). Although such parcellation schemes pro-
621 vide useful confirmatory information, the voxels with ambiguous overlap between the
622 distinct unimodal parcellation schemes were not necessarily included in the final map,
623 which can lead to fragmented final multimodal parcellations (*Eickhoff et al., 2018; Wang*
624 *et al., 2015*).

625 OPNMF and other similar methods, such as PCA and ICA, try to overcome this limita-
626 tion by integrating multiple modalities into the parcellation, making use of the confirma-
627 tory and complementary information provided by the multiple metrics.

628 Limitations

629 An inherent limitation in this study is the lack of specificity regarding the underlying mech-
630 anism of structural and diffusion MRI derived metrics that we used. It is still not clear
631 how specific aspects of tissue microstructure influence T1w/T2w, FA and MD. Other than
632 myelin, the T1w and T2w signals are sensitive to the presence of macromolecules and
633 iron concentration (*Tardif et al., 2016; Uddin et al., 2019*). FA and MD are also sensitive
634 to a wide range of additional cellular properties including axonal density and orientation,
635 water in the tissue and the presence of different cell types (*Tardif et al., 2016; Jones et al.,*
636 *2013*). Although the combination of those microstructural metrics provides complemen-
637 tary and confirmatory information, it is still unclear what the underlying microstructure
638 looks like in our identified striatal clusters. As with most non-invasive imaging studies,
639 the resolution used in this study is subject to partial volume effects. Partial volume ef-
640 ffects may affect metrics proportion in our striatal components, especially in components
641 2, 4 that are adjacent to major white matter tracts which might be contributing to the in-

642 crease of FA. Partial volume effects may also play a role in the high proportion of MD in
643 component 3 as it is adjacent to the the anterior horn of the lateral ventricle.

644 Conclusion

645 In this work, we used a combination of three microstructural metrics to construct a part-
646 based decomposition of the human striatum in a healthy population using non-negative
647 matrix factorization. By using the stability and accuracy of OPNMF decomposition, we
648 identified 5 spatially distinct microstructural patterns for the left and right striatum sepa-
649 rately. Then, we used partial least squares correlation to link inter-individual variation in
650 the striatal components to selected behaviours and demographics. Our findings suggest
651 distinct microstructural patterns in the human striatum that relate mostly to demograph-
652 ics. Our work also highlights the gain in clusters' stability when using multimodal versus
653 unimodal metrics. We note that the identified striatal components are associated with
654 complex patterns of microstructure and behavioural variation. Further, the striatal com-
655 ponents appear to be functionally relevant.

656 This work can serve as a template for examining how one can investigate subject-
657 level variation that links brain and behaviour across numerous brain imaging measures.
658 This may, in turn, allow for more specific interpretations of brain imaging findings that
659 improve our mechanistic insights on brain-behaviour relationships. Further, this work
660 could be applied in future studies of brain development and in the context of neuropsy-
661 chiatric disorders to parse heterogeneity.

662 Figures and Tables

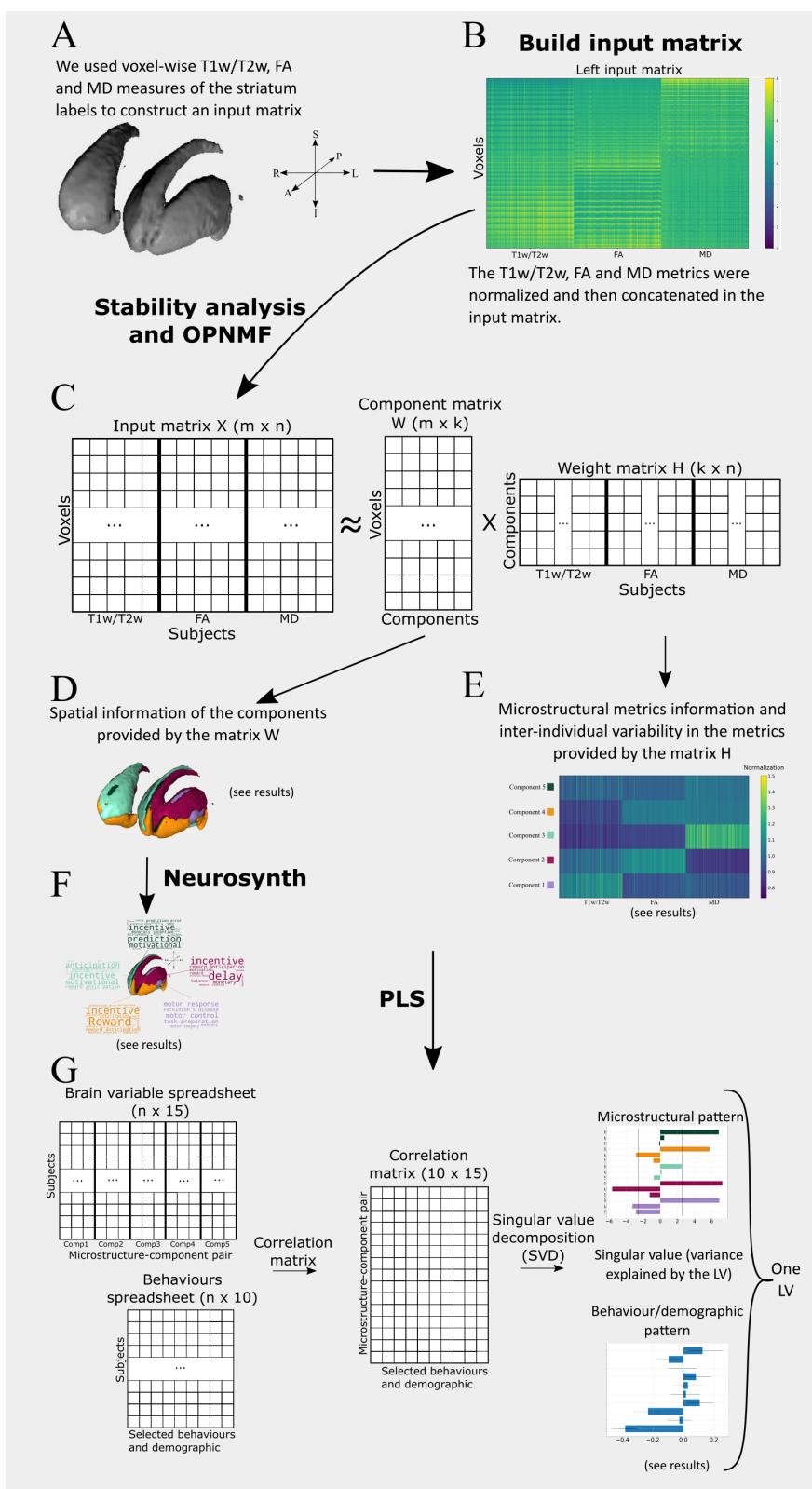


Figure 1. A) We used the chosen microstructural metrics in automatically segmented striatum labels (obtained with the MAGeT Brain algorithm) of our subjects in the a constructed common space B) We concatenated the striatal voxels in column vectors of all our subjects to build an input matrix. The left and right input matrix were build independently. C) We extracted spatially distinct components representing patterns of covariance in microstructure across subjects using orthogonal projective non-negative matrix factorization (OPNMF). OPNMF decomposes an input matrix into a component matrix W and a weight matrix H. As OPNMF extracts a predefined number of component k, we performed a stability analysis to assess the accuracy and spatial stability at each granularity from 2 to 10 (see **Figure 2A**). D) The component matrix W describes how much each voxel weight into a specific component providing spatial information about the clusters. E) We related each component to functional MRI findings by using the Neurosynth reverse-inference framework that meta-analytically relates striatal components to psychological states. E) The weight matrix H contains the weight of each subject's metrics onto each component, describing microstructural variation in the metrics found in the input matrix (T1w/T2w, FA, MD) between subjects. G) We used Partial Least Squares (PLS) analysis to identify patterns of covariance between the striatal components T1w/T2w, FA and MD proportions with behavioural and demographic data. PLS is a multivariate technique that analyses the association between our component-metric pairs (leftmost top) and selected behaviour/demographics (leftmost bottom) variables resulting in a set of LVs. The significance of the covariance patterns uncovered by the LVs was assessed using permutation testing while the reliability of each brain specific weight was assessed using bootstrap sampling.

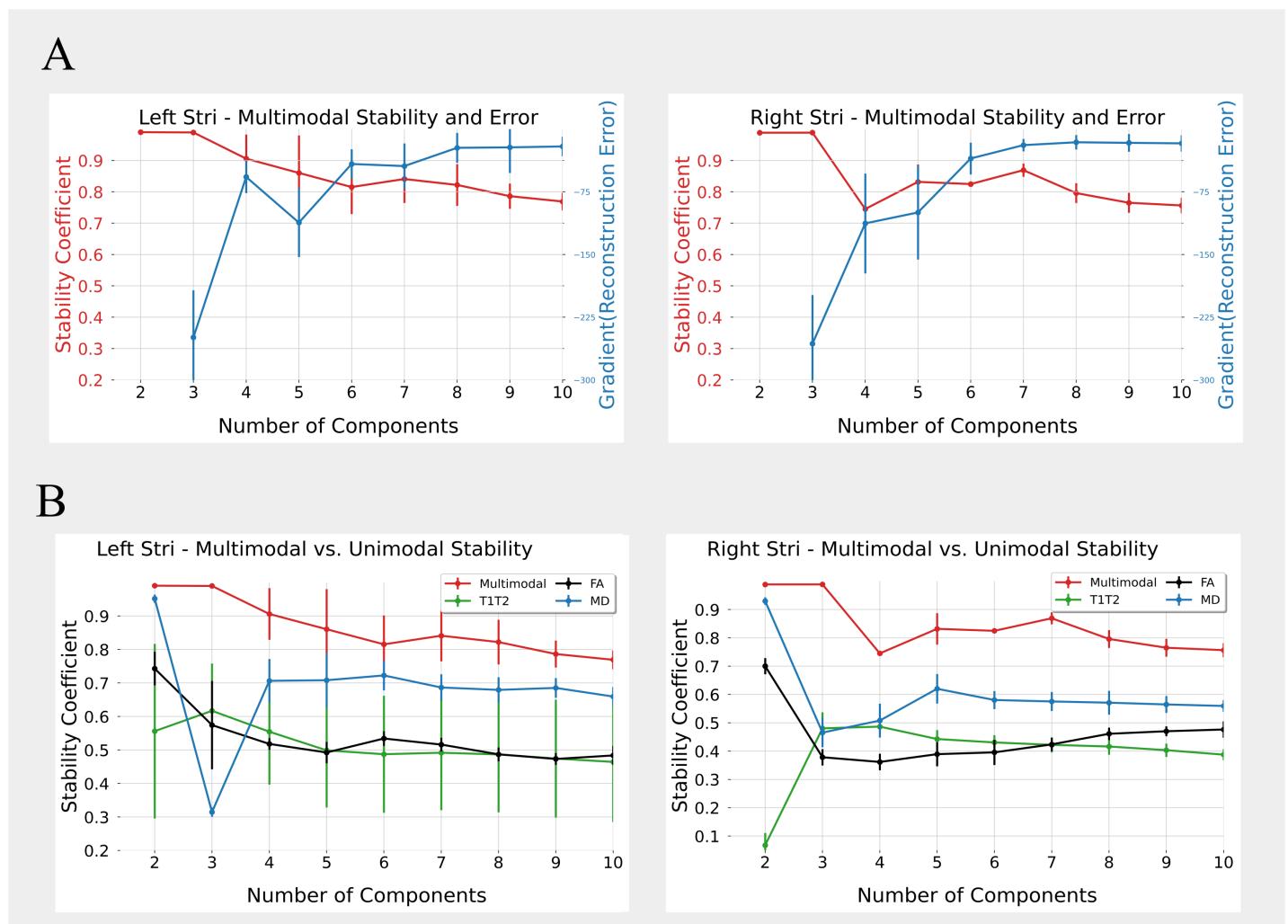


Figure 2. A) Stability score and gradient reconstruction error when performing NMF using 2 to 10 clusters. As we want to maximize the stability while minimizing the reconstruction error, we chose to use 5 components for the rest of the analysis. B) Comparison of the stability score of NMF on multimodal data (a combination of T1w/T2w, FA and MD (red)) versus unimodal data (either only T1w/T2w (green), only FA (black) or only MD (blue)) using 2 to 10 clusters.

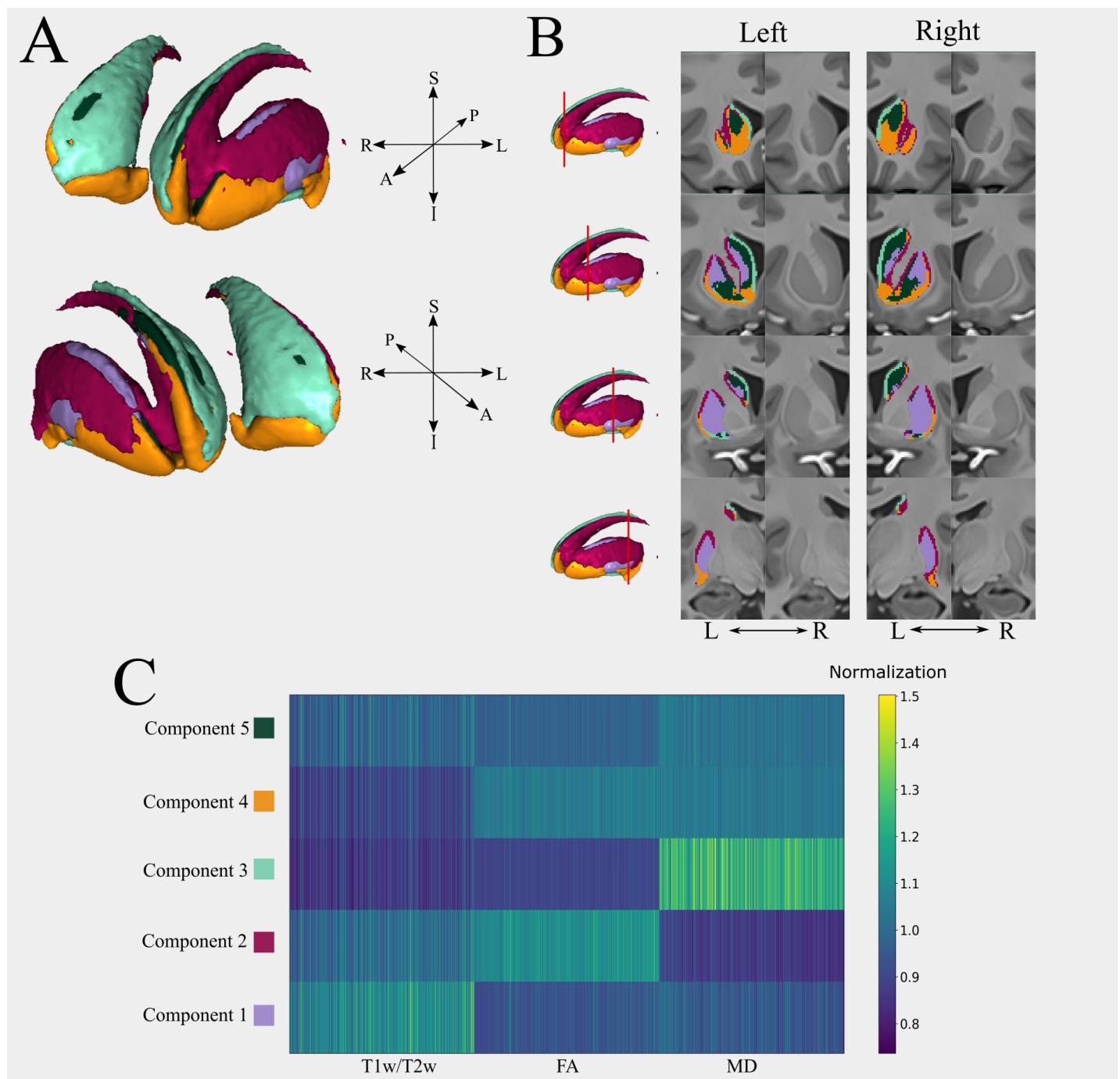


Figure 3. A) 3D rendering of the 5 components solution (A: anterior, P: posterior, S: superior, I: inferior, R: right, L: left). B) Coronal slices showing the labelled and unlabelled (side-by-side columns) left and right striatum. C) Weight matrix output from NMF of the left striatum, showing how the microstructural metrics weight into each component (the right weight matrix is almost identical). For the normalization, we divided each component (row in the matrix) by the mean value in that specific component to show within component variation in the microstructural metrics.

Figure 4. Results of the PLS analysis, we show only the latent variables (LVs) that were significant ($p<0.05$). The percentage next to the LV's name corresponds to the covariance explained by this LV. A) Behavioural patterns of the left LV1 (first column), left LV2 (second column), right LV1 (third column) and right LV2 (fourth column). The y-axis denotes the behavioural and demographics measures used in the analysis (DD AUC: Delay discounting area under the curve), while the x-axis corresponds to the correlation of the behaviours with the LV. B) Microstructural patterns associated with the four significant LVs identified. Here, the y-axis correspond to the component-metric pairs and the x-axis denotes the bootstrap ratio (BSR). The black line in the microstructural patterns graph represent a BSR of 2.58 (equivalent to a 99% C.I.). The colors of the bars are associated with the component (see *Figure 3C*).

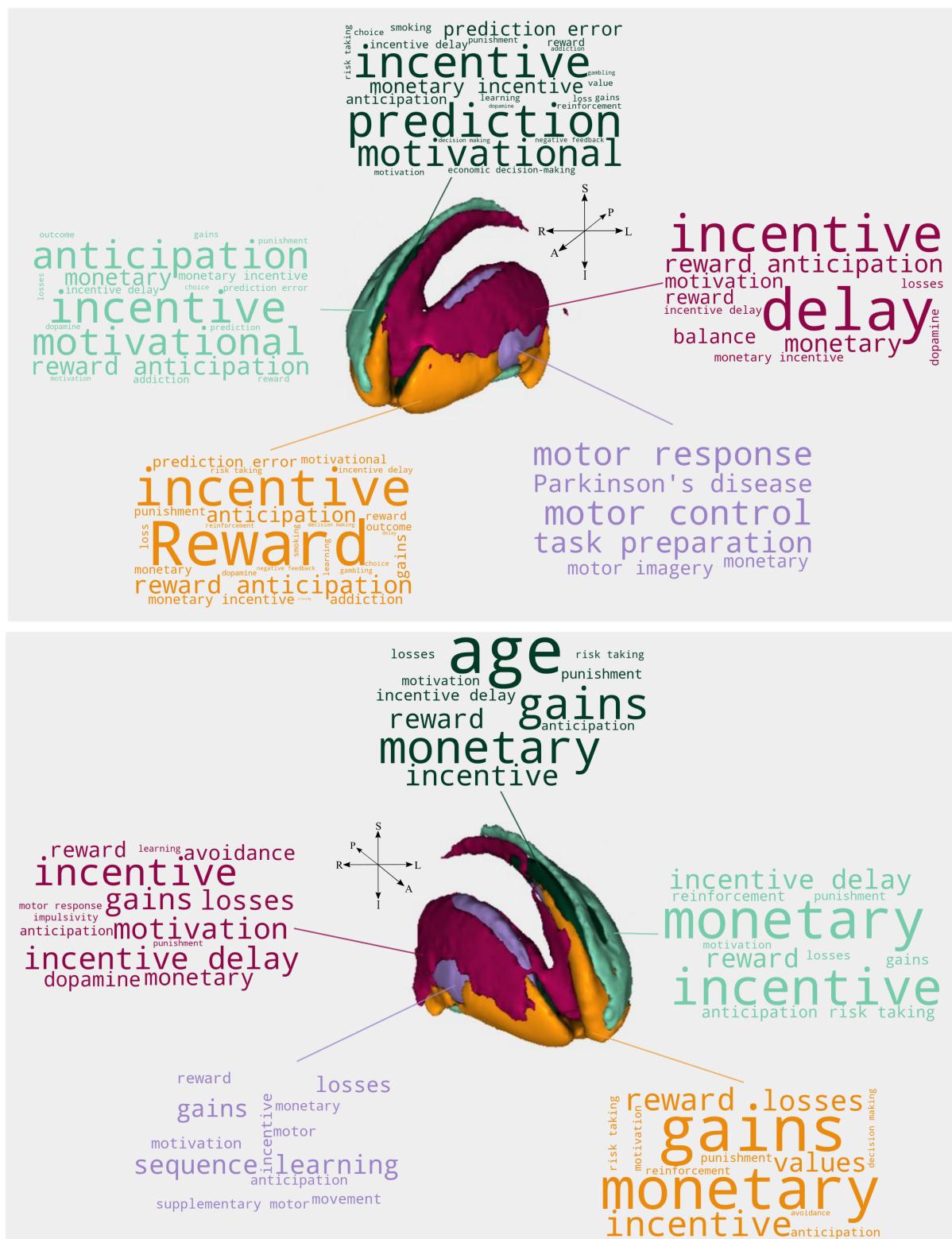


Figure 5. (Top) Left striatal components Neurosynth results.(Bottom) Right striatal components Neurosynth results. Here, the color of the words describe the components to which the posterior probability maps was related to (see **Figure 3C**). The font of the word represents the Pearson correlation strength between the map of the component and the keyword related map from Neurosynth. Notice that the keywords' font were not normalized across components. Hence, the keyword with the biggest font represents the term with the biggest correlation in that component and not in all components.

663 Acknowledgments

664 Data were provided [in part] by the Human Connectome Project, WU-Minn Consortium
665 (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by
666 the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Re-
667 search; and by the McDonnell Center for Systems Neuroscience at Washington Univer-
668 sity.

669 References

670 **Albin RL**, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. . 1989; .

671 **Alexander AL**, Lee JE, Lazar M, Field AS. Diffusion Tensor Imaging of the Brain. Neurotherapeutics.
672 2007; 4(3):316 – 329. <http://www.sciencedirect.com/science/article/pii/S1933721307000955>, doi:
673 <https://doi.org/10.1016/j.nurt.2007.05.011>, advances in Neuroimaging/Neuroethics.

674 **Arsalidou M**, Duerden EG, Taylor MJ. The centre of the brain: Topographical model of motor,
675 cognitive, affective, and somatosensory functions of the basal ganglia. Human Brain Map-
676 ping. 2013; 34(11):3031–3054. <https://onlinelibrary.wiley.com/doi/abs/10.1002/hbm.22124>, doi:
677 <https://doi.org/10.1002/hbm.22124>.

678 **Avants BB**, Yushkevich P, Pluta J, Minkoff D, Korczykowski M, Detre J, Gee JC. The optimal template
679 effect in hippocampus studies of diseased populations. Neuroimage. 2010; 49(3):2457–2466.

680 **Basser PJ**, Mattiello J, LeBihan D. Estimation of the effective self-diffusion tensor from the NMR
681 spin echo. J Magn Reson B. 1994; 103(3):247–54. doi: [10.1006/jmrb.1994.1037](https://doi.org/10.1006/jmrb.1994.1037).

682 **Basser PJ**, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;
683 66(1):259–67. doi: [10.1016/s0006-3495\(94\)80775-1](https://doi.org/10.1016/s0006-3495(94)80775-1).

684 **Beaulieu C**. The basis of anisotropic water diffusion in the nervous system-a technical review.
685 NMR in Biomedicine: An International Journal Devoted to the Development and Application of
686 Magnetic Resonance In Vivo. 2002; 15(7-8):435–455.

687 **Blood AJ**, Waugh JL, Münte TF, Heldmann M, Domingo A, Klein C, Breiter HC, Lee LV, Rosales
688 RL, Brüggemann N. Increased insula-putamen connectivity in X-linked dystonia-parkinsonism.
689 NeuroImage: Clinical. 2018; 17:835–846. <https://www.sciencedirect.com/science/article/pii/S2213158217302656>, doi: <https://doi.org/10.1016/j.nicl.2017.10.025>.

691 **Bohannon RW**, Wang YC, Gershon RC. Two-minute walk test performance by adults 18 to 85 years:
692 normative values, reliability, and responsiveness. Archives of physical medicine and rehabilita-
693 tion. 2015; 96(3):472–477.

694 **van den Bos W**, Rodriguez CA, Schweitzer JB, McClure SM. Connectivity Strength of Dissociable Stri-
695 atal Tracts Predict Individual Differences in Temporal Discounting. The Journal of Neuroscience.
696 2014; 34(31):10298. <http://www.jneurosci.org/content/34/31/10298.abstract><https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4577570/pdf/zns10298.pdf>, doi: [10.1523/JNEUROSCI.4105-13.2014](https://doi.org/10.1523/JNEUROSCI.4105-13.2014).

698 **Boutsidis C**, Gallopolous E. SVD based initialization: A head start for nonnegative matrix factoriza-
699 tion. Pattern Recognition. 2008; 41(4):1350–1362. <http://www.sciencedirect.com/science/article/pii/S0031320307004359>, doi: <https://doi.org/10.1016/j.patcog.2007.09.010>.

701 **Brimblecombe KR**, Cragg SJ. The striosome and matrix compartments of the striatum: a path
702 through the labyrinth from neurochemistry toward function. ACS chemical neuroscience. 2017;
703 8(2):235–242. <https://pubs.acs.org/doi/pdf/10.1021/acschemneuro.6b00333>.

704 **Buckholtz JW**, Treadway MT, Cowan RL, Woodward ND, Li R, Ansari MS, Baldwin RM, Schwartzman
705 AN, Shelby ES, Smith CE, Kessler RM, Zald DH. Dopaminergic Network Differences in Human
706 Impulsivity. *Science*. 2010; 329(5991):532–532. <https://science.sciencemag.org/content/329/5991/532>, doi: [10.1126/science.1185778](https://doi.org/10.1126/science.1185778).

708 **Burrer A**, Caravaggio F, Manoliu A, Plitman E, Gütter K, Habermeyer B, Stämpfli P, Abivardi A,
709 Schmidt A, Borgwardt S, Chakravarty M, Lepage M, Dagher A, Graff-Guerrero A, Seifritz E, Kaiser
710 S, Kirschner M. Apathy is not associated with reduced ventral striatal volume in patients with
711 schizophrenia. *Schizophr Res*. 2020; 223:279–288. doi: [10.1016/j.schres.2020.08.018](https://doi.org/10.1016/j.schres.2020.08.018).

712 **Caravaggio F**, Plavén-Sigray P, Matheson GJ, Plitman E, Chakravarty MM, Borg J, Graff-Guerrero A,
713 Cervenka S. Trait impulsivity is not related to post-commissural putamen volumes: A replication
714 study in healthy men. *PLoS One*. 2018; 13(12):e0209584. doi: [10.1371/journal.pone.0209584](https://doi.org/10.1371/journal.pone.0209584).

715 **Chakravarty MM**, Bertrand G, Hodge CP, Sadikot AF, Collins DL. The creation of a brain atlas for
716 image guided neurosurgery using serial histological data. *Neuroimage*. 2006; 30(2):359–76. doi:
717 [10.1016/j.neuroimage.2005.09.041](https://doi.org/10.1016/j.neuroimage.2005.09.041).

718 **Chakravarty MM**, Rapoport JL, Giedd JN, Raznahan A, Shaw P, Collins DL, Lerch JP, Gog-
719 tay N. Striatal shape abnormalities as novel neurodevelopmental endophenotypes
720 in schizophrenia: a longitudinal study. *Human brain mapping*. 2015; 36(4):1458–
721 1469. <http://europemc.org/abstract/MED/25504933><https://doi.org/10.1002/hbm.22715><https://europemc.org/articles/PMC6869651><https://europemc.org/articles/PMC6869651?pdf=render>, doi:
722 [10.1002/hbm.22715](https://doi.org/10.1002/hbm.22715).

724 **Chakravarty MM**, Steadman P, van Eede MC, Calcott RD, Gu V, Shaw P, Raznahan A, Collins DL,
725 Lerch JP. Performing label-fusion-based segmentation using multiple automatically generated
726 templates. *Human brain mapping*. 2013; 34(10):2635–2654.

727 **Chang LJ**, Yarkoni T, Khaw MW, Sanfey AG. Decoding the Role of the Insula in Human Cognition:
728 Functional Parcellation and Large-Scale Reverse Inference. *Cerebral Cortex*. 2012 03; 23(3):739–
729 749. <https://doi.org/10.1093/cercor/bhs065>, doi: [10.1093/cercor/bhs065](https://doi.org/10.1093/cercor/bhs065).

730 **Choi EY**, Yeo BT, Buckner RL. The organization of the human striatum estimated by intrinsic func-
731 tional connectivity. *Journal of neurophysiology*. 2012; 108(8):2242–2263.

732 **Dalley JW**, Mar AC, Economidou D, Robbins TW. Neurobehavioral mechanisms of impulsivity:
733 Fronto-striatal systems and functional neurochemistry. *Pharmacology Biochemistry and Behav-
734 ior*. 2008; 90(2):250 – 260. <http://www.sciencedirect.com/science/article/pii/S0091305707003826>, doi:
735 <https://doi.org/10.1016/j.pbb.2007.12.021>, microdialysis: recent developments.

736 **Delong MR**, Crutcher MD, Georgopoulos AP. Relations between movement and single cell dis-
737 charge in the substantia nigra of the behaving monkey. *Journal of Neuroscience*. 1983; 3(8):1599–
738 1606.

739 **Draganski B**, Kherif F, Klöppel S, Cook PA, Alexander DC, Parker GJM, Deichmann R, Ashburner
740 J, Frackowiak RSJ. Evidence for Segregated and Integrative Connectivity Patterns in the Human
741 Basal Ganglia. *The Journal of Neuroscience*. 2008; 28(28):7143. <http://www.jneurosci.org/content/28/28/7143.abstract><https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6670486/pdf/zns7143.pdf>, doi:
742 [10.1523/JNEUROSCI.1486-08.2008](https://doi.org/10.1523/JNEUROSCI.1486-08.2008).

744 **Eblen F**, Graybiel A. Highly restricted origin of prefrontal cortical inputs to striosomes in the
745 macaque monkey. *Journal of Neuroscience*. 1995; 15(9):5999–6013. <https://www.jneurosci.org/content/15/9/5999>, doi: [10.1523/JNEUROSCI.15-09-05999.1995](https://doi.org/10.1523/JNEUROSCI.15-09-05999.1995).

747 **Eickhoff SB**, Yeo BTT, Genon S. Imaging-based parcellations of the human brain. *Nature Reviews Neuroscience*. 2018; 19(11):672–686. <https://doi.org/10.1038/s41583-018-0071-7><https://www.nature.com/articles/s41583-018-0071-7.pdf>, doi: 10.1038/s41583-018-0071-7.

750 **Estle SJ**, Green L, Myerson J, Holt DD. Differential effects of amount on temporal and probability discounting of gains and losses. *Memory & Cognition*. 2006; 34(4):914–928.

752 **Flaherty A**, Graybiel AM. Input-output organization of the sensorimotor striatum in the squirrel monkey. *Journal of Neuroscience*. 1994; 14(2):599–610.

754 **Gimenez-Amaya J**, Graybiel A. Modular organization of projection neurons in the matrix compartment of the primate striatum. *Journal of Neuroscience*. 1991; 11(3):779–791. <https://www.jneurosci.org/content/11/3/779>, doi: 10.1523/JNEUROSCI.11-03-00779.1991.

757 **Glasser MF**, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Ugurbil K, Andersson J, Beckmann CF, Jenkinson M, Smith SM, Van Essen DC. A multi-modal parcellation of human cerebral cortex. *Nature*. 2016; 536(7615):171–178. <https://doi.org/10.1038/nature18933>, doi: 10.1038/nature18933.

761 **Glasser MF**, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, Van Essen DC, Jenkinson M. The minimal preprocessing pipelines for the Human Connectome Project. *NeuroImage*. 2013; 80:105 – 124. <http://www.sciencedirect.com/science/article/pii/S1053811913005053>, doi: <https://doi.org/10.1016/j.neuroimage.2013.04.127>, mapping the Connectome.

766 **Glasser MF**, Van Essen DC. Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI. *Journal of Neuroscience*. 2011; 31(32):11597–11616. <https://www.jneurosci.org/content/31/32/11597>, doi: 10.1523/JNEUROSCI.2180-11.2011.

769 **Graybiel AM**, Grafton ST. The striatum: where skills and habits meet. *Cold Spring Harbor perspectives in biology*. 2015; 7(8):a021691. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4526748/pdf/cshperspect-LNM-a021691.pdf>.

772 **Graybiel AM**, Ragsdale CW. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. *Proceedings of the National Academy of Sciences*. 1978; 75(11):5723–5726.

775 **Graybiel AM**, Rauch SL. Toward a neurobiology of obsessive-compulsive disorder. *Neuron*. 2000; 28(2):343–347.

777 **Green L**, Myerson J, Shah AK, Estle SJ, Holt DD. Do adjusting-amount and adjusting-delay procedures produce equivalent estimates of subjective value in pigeons? *Journal of the experimental analysis of behavior*. 2007; 87(3):337–347.

780 **Haber SN**, Lynd E, Klein C, Groenewegen HJ. Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. *J Comp Neurol*. 1990; 293(2):282–98. doi: 10.1002/cne.902930210.

783 **Haber SN**, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. *Journal of Neuroscience*. 2006; 26(32):8368–8376. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673798/pdf/zns8368.pdf>.

787 **Haber SN**, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. *The Journal of neuroscience : the official journal of the Society for*

790 Neuroscience. 2006; 26(32):8368-8376. <https://pubmed.ncbi.nlm.nih.gov/16899732https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6673798/>, doi: 10.1523/JNEUROSCI.0271-06.2006.

792 793 Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E. The orbital and medial prefrontal circuit through the primate basal ganglia. Journal of Neuroscience. 1995; 15(7):4851-4867.

794 795 Haber SN, Lynd-Balta E, Spooren WP. Integrative aspects of basal ganglia circuitry. In: *The basal ganglia IV* Springer; 1994.p. 71-80.

796 797 798 Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ. Resting state functional connectivity of the striatum in Parkinson's disease. Brain. 2012 11; 135(12):3699-3711. <https://doi.org/10.1093/brain/aws281>, doi: 10.1093/brain/aws281.

799 800 Halko N, Martinsson PG, Tropp JA. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review. 2011; 53(2):217-288.

801 802 803 Hanten WP, Chen WY, Austin AA, Brooks RE, Carter HC, Law CA, Morgan MK, Sanders DJ, Swan CA, Vanderslice AL. Maximum grip strength in normal subjects from 20 to 64 years of age. Journal of hand therapy. 1999; 12(3):193-200.

804 805 806 807 Hare TA, Tottenham N, Davidson MC, Glover GH, Casey BJ. Contributions of amygdala and striatal activity in emotion regulation. Biological Psychiatry. 2005; 57(6):624-632. [http://www.sciencedirect.com/science/article/pii/S0006322304013812https://www.biologicalpsychiatryjournal.com/article/S0006-3223\(04\)01381-2/fulltext](http://www.sciencedirect.com/science/article/pii/S0006322304013812https://www.biologicalpsychiatryjournal.com/article/S0006-3223(04)01381-2/fulltext), doi: <https://doi.org/10.1016/j.biopsych.2004.12.038>.

808 809 810 811 Hariri AR, Brown SM, Williamson DE, Flory JD, de Wit H, Manuck SB. Preference for Immediate over Delayed Rewards Is Associated with Magnitude of Ventral Striatal Activity. Journal of Neuroscience. 2006; 26(51):13213-13217. <https://www.jneurosci.org/content/26/51/13213>, doi: 10.1523/JNEUROSCI.3446-06.2006.

812 813 Holt DJ, Graybiel AM, Saper CB. Neurochemical architecture of the human striatum. Journal of Comparative Neurology. 1997; 384(1):1-25.

814 815 816 817 Janssen RJ, Jylänki P, Kessels RPC, van Gerven MAJ. Probabilistic model-based functional parcellation reveals a robust, fine-grained subdivision of the striatum. NeuroImage. 2015; 119:398 – 405. <http://www.sciencedirect.com/science/article/pii/S1053811915005893>, doi: <https://doi.org/10.1016/j.neuroimage.2015.06.084>.

818 819 820 821 Jones DK, Knösche TR, Turner R. White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI. NeuroImage. 2013; 73:239-254. <http://www.sciencedirect.com/science/article/pii/S1053811912007306https://www.sciencedirect.com/science/article/abs/pii/S1053811912007306?via%3Dihub>, doi: <https://doi.org/10.1016/j.neuroimage.2012.06.081>.

822 823 824 825 Jung WH, Jang JH, Park JW, Kim E, Goo EH, Im OS, Kwon JS. Unravelling the intrinsic functional organization of the human striatum: a parcellation and connectivity study based on resting-state fMRI. PLoS one. 2014; 9(9):e106768. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4159235/pdf/pone.0106768.pdf>.

826 827 828 Kotz SA, Anwander A, Axer H, Knösche TR. Beyond Cytoarchitectonics: The Internal and External Connectivity Structure of the Caudate Nucleus. PLOS ONE. 2013; 8(7):e70141. <https://doi.org/10.1371/journal.pone.0070141>, doi: 10.1371/journal.pone.0070141.

829 830 831 832 Krishnan A, Williams LJ, McIntosh AR, Abdi H. Partial Least Squares (PLS) methods for neuroimaging: A tutorial and review. NeuroImage. 2011; 56(2):455 – 475. <http://www.sciencedirect.com/science/article/pii/S1053811910010074>, doi: <https://doi.org/10.1016/j.neuroimage.2010.07.034>, multivariate Decoding and Brain Reading.

833 **Lebel C**, Walker L, Leemans A, Phillips L, Beaulieu C. Microstructural maturation of the human
834 brain from childhood to adulthood. *Neuroimage*. 2008; 40(3):1044–1055.

835 **Leh SE**, Ptito A, Chakravarty MM, Strafella AP. Fronto-striatal connections in the human brain: a
836 probabilistic diffusion tractography study. *Neuroscience letters*. 2007; 419(2):113–118. <https://pubmed.ncbi.nlm.nih.gov/17485168><https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5114128/>, doi:
837 10.1016/j.neulet.2007.04.049.

838

839 **Lehéricy S**, Ducros M, Van De Moortele PF, Francois C, Thivard L, Poupon C, Swindale N, Ugurbil K,
840 Kim DS. Diffusion tensor fiber tracking shows distinct corticostriatal circuits in humans. *Annals
841 of Neurology*. 2004; 55(4):522–529. <https://onlinelibrary.wiley.com/doi/abs/10.1002/ana.20030>, doi:
842 <https://doi.org/10.1002/ana.20030>.

843 **Li Y**, Yuan K, Cai C, Feng D, Yin J, Bi Y, Shi S, Yu D, Jin C, von Deneen KM, Qin W,
844 Tian J. Reduced frontal cortical thickness and increased caudate volume within
845 fronto-striatal circuits in young adult smokers. *Drug and Alcohol Dependence*. 2015;
846 151:211–219. <http://www.sciencedirect.com/science/article/pii/S0376871615001799><https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407161/>, doi:
847 <https://doi.org/10.1016/j.drugalcdep.2015.03.023>.

848

849 **Liu X**, Eickhoff SB, Hoffstaedter F, Genon S, Caspers S, Reetz K, Dogan I, Eickhoff CR, Chen J, Caspers
850 J, Reuter N, Mathys C, Aleman A, Jardri R, Riedl V, Sommer IE, Patil KR. Joint Multi-modal Parcel-
851 lation of the Human Striatum: Functions and Clinical Relevance. *Neuroscience Bulletin*. 2020;
852 36(10):1123–1136. <https://doi.org/10.1007/s12264-020-00543-1>, doi: 10.1007/s12264-020-00543-1.

853

854 **Marquand AF**, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict
855 goal directed behaviour in humans. *Nature human behaviour*. 2017; 1(8):0146–0146. <https://pubmed.ncbi.nlm.nih.gov/28804783><https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5549843/>, doi:
856 10.1038/s41562-017-0146.

857

858 **Masouleh SK**, Eickhoff SB, Hoffstaedter F, Genon S, Initiative ADN, et al. Empirical examination of
859 the replicability of associations between brain structure and psychological variables. *Elife*. 2019;
860 8:e43464.

861 **McIntosh AR**, Lobaugh NJ. Partial least squares analysis of neuroimaging data: applications and
862 advances. *NeuroImage*. 2004; 23:S250 – S263. <http://www.sciencedirect.com/science/article/pii/S1053811904003866>, doi: <https://doi.org/10.1016/j.neuroimage.2004.07.020>, mathematics in
863 Brain Imaging.

864

865 **Mikula S**, Parrish SK, Trimmer JS, Jones EG. Complete 3D visualization of primate striosomes
866 by KChIP1 immunostaining. *Journal of Comparative Neurology*. 2009; 514(5):507–517. <https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.22051>, doi: <https://doi.org/10.1002/cne.22051>.

866

867 **Milad MR**, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways.
868 *Trends in Cognitive Sciences*. 2012; 16(1):43 – 51. <http://www.sciencedirect.com/science/article/pii/S1364661311002361>, doi: <https://doi.org/10.1016/j.tics.2011.11.003>, special Issue: Cognition
869 in Neuropsychiatric Disorders.

870

871

872 **Mink JW**. The basal ganglia: focused selection and inhibition of competing motor programs.
873 *Progress in neurobiology*. 1996; 50(4):381–425.

874

875 **Myerson J**, Green L, Warusawitharana M. Area under the curve as a measure of discounting. *Journal
876 of the experimental analysis of behavior*. 2001; 76(2):235–243.

876 **Parkes L**, Fulcher BD, Yücel M, Fornito A. Transcriptional signatures of connectomic subregions of
877 the human striatum. *Genes, Brain and Behavior*. 2017; 16(7):647–663. <https://onlinelibrary.wiley.com/doi/abs/10.1111/gbb.12386>, doi: <https://doi.org/10.1111/gbb.12386>.

879 **Patel R**, Steele CJ, Chen AGX, Patel S, Devenyi GA, Germann J, Tardif CL, Chakravarty MM. Investigating
880 microstructural variation in the human hippocampus using non-negative matrix factorization. *NeuroImage*. 2020; 207:116348. <http://www.sciencedirect.com/science/article/pii/S1053811919309395>, doi: <https://doi.org/10.1016/j.neuroimage.2019.116348>.

883 **Pauli WM**, O'Reilly RC, Yarkoni T, Wager TD. Regional specialization within the human striatum
884 for diverse psychological functions. *Proceedings of the National Academy of Sciences*. 2016;
885 113(7):1907–1912. <https://www.pnas.org/content/113/7/1907>, doi: 10.1073/pnas.1507610113.

886 **Peters M**, Campagnaro P. Do women really excel over men in manual dexterity? *Journal of Experimental
887 Psychology: Human Perception and Performance*. 1996; 22(5):1107.

888 **Péran P**, Cherubini A, Luccichenti G, Hagberg G, Démonet JF, Rascol O, Celsis P, Caltagirone C,
889 Spalletta G, Sabatini U. Volume and iron content in basal ganglia and thalamus. *Human brain
890 mapping*. 2009; 30(8):2667–2675. <https://pubmed.ncbi.nlm.nih.gov/19172651/>, doi: 10.1002/hbm.20698.

892 **Rolls E**. Neurophysiology and cognitive functions of the striatum. *Revue neurologique*. 1994; 150
893 8-9:648–60.

894 **Rosenblatt A**, Leroi I. Neuropsychiatry of Huntington's Disease and Other Basal Ganglia Disorders.
895 *Psychosomatics*. 2000; 41(1):24 – 30. <http://www.sciencedirect.com/science/article/pii/S0033318200711704>, doi: [https://doi.org/10.1016/S0033-3182\(00\)71170-4](https://doi.org/10.1016/S0033-3182(00)71170-4).

897 **Sagi Y**, Tavor I, Hofstetter S, Tzur-Moryosef S, Blumenfeld-Katzir T, Assaf Y. Learning in the Fast Lane:
898 New Insights into Neuroplasticity. *Neuron*. 2012; 73(6):1195–1203. <http://www.sciencedirect.com/science/article/pii/S089662731200178X>, doi: <https://doi.org/10.1016/j.neuron.2012.01.025>.

900 **Schouuppe N**, Demanet J, Boehler CN, Ridderinkhof KR, Notebaert W. The Role of the Striatum
901 in Effort-Based Decision-Making in the Absence of Reward. *Journal of Neuroscience*. 2014;
902 34(6):2148–2154. <https://www.jneurosci.org/content/34/6/2148>, doi: 10.1523/JNEUROSCI.1214-13.2014.

904 **Schuetze M**, Park MT, Cho IY, MacMaster FP, Chakravarty MM, Bray SL. Morphological Alterations in
905 the Thalamus, Striatum, and Pallidum in Autism Spectrum Disorder. *Neuropsychopharmacology*.
906 2016; 41(11):2627–37. doi: 10.1038/npp.2016.64.

907 **Shaw P**, Sharp W, Sudre G, Wharton A, Greenstein D, Raznahan A, Evans A, Chakravarty MM,
908 Lerch JP, Rapoport J. Subcortical and cortical morphological anomalies as an endophenotype
909 in obsessive-compulsive disorder. *Mol Psychiatry*. 2015; 20(2):224–31. doi: 10.1038/mp.2014.3.

910 **Sotiras A**, Resnick SM, Davatzikos C. Finding imaging patterns of structural covariance via
911 Non-Negative Matrix Factorization. *NeuroImage*. 2015; 108:1–16. <https://pubmed.ncbi.nlm.nih.gov/25497684/>, <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357179/>, <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4357179/pdf/nihms649302.pdf>, doi: 10.1016/j.neuroimage.2014.11.045.

914 **Stott JJ**, Redish AD. A functional difference in information processing between orbitofrontal cortex
915 and ventral striatum during decision-making behaviour. *Philosophical Transactions of the Royal
916 Society B: Biological Sciences*. 2014; 369(1655):20130472. <https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2013.0472>, doi: doi:10.1098/rstb.2013.0472.

918 **Tardif CL**, Gauthier CJ, Steele CJ, Bazin PL, Schäfer A, Schaefer A, Turner R, Villringer A. Advanced
919 MRI techniques to improve our understanding of experience-induced neuroplasticity. *NeuroImage*. 2016; 131:55–72. <http://www.sciencedirect.com/science/article/pii/S1053811915007661> <https://doi.org/10.1016/j.neuroimage.2015.08.047>.

923 **Tournier JD**, Calamante F, Connelly A. MRtrix: diffusion tractography in crossing fiber regions.
924 *International journal of imaging systems and technology*. 2012; 22(1):53–66.

925 **Tullo S**, Devenyi GA, Patel R, Park MTM, Collins DL, Chakravarty MM. Warping an atlas derived from
926 serial histology to 5 high-resolution MRIs. *Scientific data*. 2018; 5:180107.

927 **Tullo S**, Patel R, Devenyi GA, Salaciak A, Bedford SA, Farzin S, Włodarski N, Tardif CL, Group PAR,
928 Breitner JCS, Chakravarty MM. MR-based age-related effects on the striatum, globus pallidus,
929 and thalamus in healthy individuals across the adult lifespan. *Human brain mapping*. 2019;
930 40(18):5269–5288. <https://pubmed.ncbi.nlm.nih.gov/31452289/> <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864890/>, doi: 10.1002/hbm.24771.

932 **Tziortzi AC**, Haber SN, Searle GE, Tsoumpas C, Long CJ, Shotbolt P, Douaud G, Jbabdi S, Behrens TEJ,
933 Rabiner EA, Jenkinson M, Gunn RN. Connectivity-Based Functional Analysis of Dopamine Release
934 in the Striatum Using Diffusion-Weighted MRI and Positron Emission Tomography. *Cerebral
935 Cortex*. 2014; 24(5):1165–1177. <https://doi.org/10.1093/cercor/bhs397> <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977617/pdf/bhs397.pdf>, doi: 10.1093/cercor/bhs397.

937 **Uddin MN**, Figley TD, Solar KG, Shatil AS, Figley CR. Comparisons between multi-component myelin
938 water fraction, T1w/T2w ratio, and diffusion tensor imaging measures in healthy human brain
939 structures. *Scientific Reports*. 2019; 9(1):2500. <https://doi.org/10.1038/s41598-019-39199-x> https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384876/pdf/41598_2019_Article_39199.pdf, doi:
941 10.1038/s41598-019-39199-x.

942 **Van Essen DC**, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K. The WU-Minn Human
943 Connectome Project: An overview. *NeuroImage*. 2013; 80:62–79. <http://www.sciencedirect.com/science/article/pii/S1053811913005351>, doi: <https://doi.org/10.1016/j.neuroimage.2013.05.041>.

945 **Varikuti DP**, Genon S, Sotiras A, Schwender H, Hoffstaedter F, Patil KR, Jockwitz C, Caspers S, Moe-
946 bus S, Amunts K. Evaluation of non-negative matrix factorization of grey matter in age predic-
947 tion. *NeuroImage*. 2018; 173:394–410. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911196/pdf/nihms952495.pdf>.

949 **Veraart J**, Sijbers J, Sunaert S, Leemans A, Jeurissen B. Weighted linear least squares estimation
950 of diffusion MRI parameters: strengths, limitations, and pitfalls. *NeuroImage*. 2013; 81:335–346.
951 doi: 10.1016/j.neuroimage.2013.05.028.

952 **Vink M**, Kahn RS, Raemaekers M, van den Heuvel M, Boersma M, Ramsey NF. Function of striatum
953 beyond inhibition and execution of motor responses. *Human Brain Mapping*. 2005; 25(3):336–
954 344. <https://doi.org/10.1002/hbm.20111> <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6871687/pdf/HBM-25-336.pdf>, doi: 10.1002/hbm.20111.

956 **Wang J**, Yang Y, Fan L, Xu J, Li C, Liu Y, Fox PT, Eickhoff SB, Yu C, Jiang T. Convergent functional ar-
957 chitecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches.
958 *Human brain mapping*. 2015; 36(1):238–257.

959 **Westin CF**, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical Diffusion Measures for MRI
960 from Tensor Basis Analysis. In: *ISMRM '97* Vancouver Canada; 1997. p. 1742.

961 **Xia X**, Fan L, Cheng C, Eickhoff SB, Chen J, Li H, Jiang T. Multimodal connectivity-based parcellation
962 reveals a shell-core dichotomy of the human nucleus accumbens. *Human Brain Mapping*. 2017;
963 38(8):3878–3898. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685173/pdf/HBM-38-3878.pdf>,
964 doi: [10.1002/hbm.23636](https://doi.org/10.1002/hbm.23636).

965 **Yager LM**, Garcia AF, Wunsch AM, Ferguson SM. The ins and outs of the striatum: Role in drug
966 addiction. *Neuroscience*. 2015; 301:529 – 541. <http://www.sciencedirect.com/science/article/pii/S0306452215005746>, doi: <https://doi.org/10.1016/j.neuroscience.2015.06.033>.

968 **Yang Z**, Oja E. Linear and Nonlinear Projective Nonnegative Matrix Factorization. *IEEE Transactions
969 on Neural Networks*. 2010; 21(5):734–749. doi: [10.1109/TNN.2010.2041361](https://doi.org/10.1109/TNN.2010.2041361).

970 **Yarkoni T**, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of
971 human functional neuroimaging data. *Nature Methods*. 2011; 8(8):665–670. <https://doi.org/10.1038/nmeth.1635>, doi: [10.1038/nmeth.1635](https://doi.org/10.1038/nmeth.1635).

973 **Zeighami Y**, Fereshtehnejad SM, Dadar M, Collins DL, Postuma RB, Mišić B, Dagher A. A clinical-
974 anatomical signature of Parkinson's disease identified with partial least squares and magnetic
975 resonance imaging. *NeuroImage*. 2019; 190:69 – 78. <http://www.sciencedirect.com/science/article/pii/S1053811917310741>, doi: <https://doi.org/10.1016/j.neuroimage.2017.12.050>, mapping
976 diseased brains.

977