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Abstract

The striatum is a major subcortical connection hub that has been heavily implicated in a
wide array of motor and cognitive functions. Here, we developed a normative
multimodal, data-driven microstructural parcellation of the striatum using multiple
magnetic resonance imaging-based metrics (mean diffusivity, fractional anisotropy, and
the ratio between T1- and T2-weighted structural) from the Human Connectome Project
Young Adult dataset (n=329 unrelated participants, age range: 22-35, F/M: 185/144). We
further explored the biological and functional relationships of this parcellation by
relating our findings to motor and cognitive performance in tasks known to involve the
striatum as well as demographics. We identified 5 spatially distinct striatal components,
for each hemisphere. We also show the gain in component stability when using
multimodal versus unimodal metrics. Our findings suggest distinct microstructural
patterns in the human striatum that are largely symmetric and that relate mostly to age
and sex. Our work also highlights the putative functional relevance of these striatal
components to different designations based on a Neurosynth meta-analysis.

Introduction

The striatum is a deep grey matter nucleus known to be implicated in motor control
(Rolls, 1994) and various executive and cognitive functions,including: goal-directed deci-
sion making (Stott and Redish, 2014; Haber et al., 2006a), reward and motivation (van den
Bos et al., 2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a), habitual motor
learning (Graybiel and Grafton, 2015) and emotional regulation (Hare et al., 2005). Vari-
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ations in striatal structure and function have been implicated in various brain disorders
including Parkinson's disease (Albin et al., 1989; Hacker et al., 2012), Huntington’s dis-
ease(Rosenblatt and Leroi, 2000), addiction (Yager et al., 2015; Li et al., 2015; Graybiel
and Grafton, 2015), obsessive-compulsive disorders (Graybiel and Rauch, 2000; Shaw
et al., 2015; Milad and Rauch, 2012), autism spectrum disorder (Schuetze et al., 2016),
and schizophrenia (Chakravarty et al., 2015). Thus, the spatial subdivision of the striatum
into regions informed by neuroanatomy is essential to relating striatal anatomy to func-
tion and behaviour. Previous parcellations of this important structure have leveraged
magnetic resonance imaging (MRI) data using a combination of heuristic and contrast-
based definitions (Lehéricy et al., 2004; Burrer et al., 2020; Caravaggio et al., 2018; Leh
et al., 2007). To overcome limitations inherent to these subjective definitions, data-driven
parcellations based on structural connectivity (Draganski et al., 2008; Tziortzi et al., 2014;
Parkes et al., 2017), resting-state functional connectivity, (Jung et al., 2014; Janssen et al.,
2015; Choi et al., 2012; Marquand et al., 2017)and task-based functional connectivity
(Pauli et al., 2016) have been proposed. However, the existing parcellations have failed to
characterize the tissue microstructure that necessarily constrains the organization and
functional variation of the striatum.

In previous work, microstructural aspects of brain organization have been captured
using structural and diffusion metrics derived from magnetic resonance imaging (MRI).
Such microstructural metrics included the ratio between T1-weighted and T2-weighted
images (T1w/T2w) (Glasser and Van Essen, 2011; Glasser et al., 2016; Tullo et al., 2019;
Patel et al., 2020; Tardif et al., 2016), fractional anisotropy (FA) (Alexander et al., 2007,
Lebel et al., 2008; Patel et al., 2020; Tardif et al., 2016) and mean diffusivity (MD) (Lebel
et al., 2008; Patel et al., 2020; Tardif et al., 2016). Typically these indices are used in isola-
tion. The main goal of this study is to develop a data-driven microstructural parcellation
of the striatum using a combination of T1w/T2w, FA and MD, and to link inter-individual
variations in the obtained microstructural pattern to behavior and demographics. We will
be using a framework previously developed and thoroughly investigated in Patel et al.
(2020) that used a similar approach to develop a multimodal parcellation of the human
hippocampus using non-negative matrix factorization (NMF). The uncovered spatially dis-
tinct hippocampal parcels were found to be microstructurally distinct and stable across
subjects.

We hypothesize that the decomposition of the covariance between the T1w/T2w, FA
and MD metrics should yield parcels of the striatum that are more stable across our sub-
jects relative to a decomposition based on a single metric. (Sotiras et al., 2015; Patel
et al., 2020). Another goal of this study is to relate inter-individual variations in the ob-
tained microstructural parcels to motor and cognitive performance. Finally, we aim to
relate group-level microstructural patterns of the striatum to brain function through a
functional MRI (fMRI) based platform called Neurosynth (Yarkoni et al., 20117).

Methods and Materials

Overview

A schematic illustration of the methods of analyses used in the present study can be
found in Figure 1. We used structural and diffusion MRI data from the Human Connec-
tome Project (Data). The striatum segmentations were generated automatically using the
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Multiple Automatically Generated Templates (MAGeT) Brain algorithm (Automatic stria-
tum segmentation). A population average constructed using the T1w and T2w images
of each subjects was also generated to provide a common space for the microstructural
metrics used in our analyses (Population average). The obtained striatal labels, T1w/T2w,
FA and MD maps to this common space to construct the input matrices that then under-
went NMF decomposition (Implementation, Figure 1 A. B, &C). A stability analysis was per-
formed to find the optimal number of components (Stability analysis) and the final solu-
tion was compared to unimodal solutions. The final multi-modal NMF solution was used
to generate neuroanatomically distinct clusters that are used to describe the microstruc-
tural anatomy of the striatum (Non-negative matrix factorization, Figure 1D). Then, we
use the inter-indiviudal variability in the striatal components, characterized by the NMF
subject-level weights (Non-negative matrix factorization, Figure 1E) to understand how
patterns of covariance may relate to behaviour and demographics using Partial Least
Squares correlation analysis (Microstructure-behaviour relationships, Figure 1G).Finally,
to ascertain their putative functional relevance, these clusters were used as input to Neu-
rosynth meta-analytical decoder to compare them to meta-analyzed fMRI findings (Neu-
rosynth image decoder, Figure 1F).

Data

We used multimodal MRI along with behavioural and demographic data from the Human
Connectome Project (HCP) Young Adult dataset. We selected structural and diffusion MRI
data from 333 unrelated subjects (from a cohort of 1086 twin and non-twin siblings) with
age ranging from 22-35 years (Van Essen et al., 2013). Most of the participants were
individuals born in Minnesota and participants were excluded for severe neurodevelop-
mental, neuropsychiatric or neurologic disorders (Van Essen et al., 2013). All structural
and diffusion MRI data were acquired on a customized Siemens 3T Skyra scanner with a
100 mT/m gradient (Van Essen et al., 2013).

T1w/T2w images

We used preprocessed T1 (T1w)- and T2-weighted (T2w) images from the HCP database
(0.7 mm isotropic images) (Van Essen et al., 2013). T1w images were further prepro-
cessed using the minc-bpipe library minc-bpipe library to perform intensity non-uniformity
correction, cropping of the neck region and brain mask generation. T1w images were
used to derive a minimally-biased group template (as described below) and the T1w/T2w
images were used as a putative measure of voxel-wise myelin content (Glasser and Van Es-
sen, 2011; Tullo et al., 2019). Detailed preprocessing of the HCP data is described in detail
elsewhere (Van Essen et al., 2013; Glasser et al., 2013).

DWI scalars

The preprocessed diffusion weighted imaging data (1.25 mm isotropic voxel dimensions)
were also downloaded via the HCP online portal. The processing pipeline applied to the
diffusion data by the HCP is described in Glasser et al. (2013). The diffusion data were
further processed by R.P. in another study from our group (Patel et al., 2020) with MRtrix
(Tournier et al., 2012) to estimate MD and FA maps for each subject. To do so, single shell
(b71000) data was used to construct the tensor with weighted least-squares (Basser et al.,
1994a) and iterated least-squares (Veraart et al., 2013) using the dwi2tensor command.
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Then, the MD and FA maps were estimated from the tensor using the tensor2metric
command (Basser et al., 1994b; Westin et al., 1997).

Automatic striatum segmentation

The striatum was segmented in each subject's T1w image using the publicly available
MAGeT brain algorithm (Chakravarty et al., 2013). We used 5 high-resolution manu-
ally segmented subcortical atlases based on the reconstruction of serial histological data
(Chakravarty et al., 2006; Tullo et al., 2018). All registrations in this section and the next
section were performed using the Automatic Normalization Registration Tools (ANTS)
(Avants et al., 2010). Two runs of MAGeT brain were performed by N. B. on the entire HCP
cohort (N=1086): manual quality control of the outputs from the first run allowed for the
selection of the 21 subjects with the best segmentations; these subjects were then used
as templates for the second and final run. This allowed for more subjects to pass man-
ual quality control for output quality (see the guide). MAGeT brain was run separately for
each hemisphere to account for anatomical asymmetries and to improve segmentation
accuracy.

Population average

A population average was used to obtain a voxel-wise correspondence between our 333
subjects and was computed by R.P. in another study from our group (Patel et al., 2020).
We used the transformation files from the T1w images to common space to warp each
subject’s striatum segmentation, T1w/T2w, FA and MD images to the common space us-
ing the antsApplyTransforms command. T1w/T2w images were filtered using a Gaussian
weighted average to remove any outlier values (Patel et al., 2020; Glasser and Van Essen,
2011).

Striatum labels that passed quality control (left, n=252; right, n=289) were transformed
to the common space and a unified label was generated by voxel-wise majority vote. The
final labels were adjusted for over-segmentation in areas such as the lateral ventricle or
the internal capsule (see examples here) to minimize partial voluming effects of ventri-
cles.

Non-negative matrix factorization

We used an orthonormal projective variant of non-negative matrix factorization (OPNMF).
This method provides a part-based decomposition of the input variables while prioritiz-
ing sparsity in the solution (Yang and Oja, 2010; Sotiras et al., 2015). OPNMF has already
been proven effective in estimating covariance patterns in neuroimaging data while pro-
viding an easier interpretation of the results than other matrix decomposition techniques
such as principal component analysis (PCA) or independent component analysis (ICA)
(Sotiras et al., 2015). Briefly, NMF decomposes an input matrix (m x n) into two matrices;
a component matrix W (m x k) and a weight matrix H (k x n) where k is the number of
components that needs to be specified by the user, mis the number of striatal voxels and
n is the number of subjects (329) for the unimodal implementation and the number of
subject-metric pairs (329x3) for the multimodal implementation. Here we use the same
nomenclature as in Patel et al. (2020). As we are using the orthogonal projective version
of NMF (OPNMF), our decomposition identifies k spatially distinct patterns of covariance
across voxels (found in W) and across subjects and metrics (found in H). We describe
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below how we implemented OPNMF as well as how we interpreted the decomposition
results. More theoretical concepts about OPNMF and its implementation can be found
in the supplements. We examined each microstructural measure (T1w/T2w, FA and MD)
separately through a unimodal implementation of OPNMF and simultaneously through
a multimodal implementation of OPNMF. More details on the implementation of the uni-
modal and multimodal OPNMF analyses are described below.

Implementation

Input matrices

We used the fused left and right average striatum labels (Population average) to perform
a ROI-based extraction for the T1w/T2w, FA and MD metrics using the TractREC pack-
age. For each subject, the voxels of the striatum labels were extracted and stacked into a
column vector of size (# striatal voxels x 1 subject). Therefore, we obtained voxel-wise col-
umn vectors for each subject and each of the microstructural metric (T1w/T2w, FA and
MD). Hence, we obtained 3 metric vectors per hemisphere for every subject, resulting
in 6 column vectors per subject. As OPNMF was applied on the two hemispheres sepa-
rately, the left and right input matrices for the unimodal and multimodal OPNMF were
constructed independently.

For the unimodal input matrices, we concatenated the 329 corresponding column
vectors to obtain 6 (# striatal voxels x 329 subjects) matrices (per hemisphere and met-
ric). The unimodal matrices were normalized using a standard z-score and shifted by the
minimum value to obtain non-negativity.

For the multimodal matrices, we concatenated the unimodal matrices that were nor-
malized to account for different scales of magnitude, resulting in one ( striatal voxels x
3 x 329) matrix per hemisphere. We then shifted all the values in our multimodal input
matrices by the minimum value.

Once the input matrices were constructed, we applied the OPNMF algorithm on the
left and right striatum separately. We used MatLab R2016a and some OPNMF matlab
functions (Sotiras et al., 2015; Boutsidis and Gallopoulos, 2008; Halko et al., 2011; Yang
and Oja, 2010). The OPNMF algorithm was initialize using non-negative double singular
value decomposition (SVD) and the following hyperparameters: max iterations = 100000
and tolerance = 0.00001 as in (Patel et al., 2020).

Interpretability

OPNMF outputs a component matrix W and a weight matrix H. The ( striatal voxels x
k) component matrix W describes how much each voxel contribute to a specific compo-
nent. The (k x (3 x 329 subjects)) weight matrix H presents the loading of each subject's
metrics onto each component, describing microstructural variation in T1w/T2w, FA and
MD between subjects.

The properties of OPNMF enable us to cluster voxels via a winner take all approach of
each voxels component scores, such that each voxel was assigned to a single cluster for
which it had the highest component score. Therefore, W provides spatial information
about the striatal components.

For the weight matrix H, we have the subject-metric pairs as columns, component
as rows and every entry represents the proportion of the metric-subject pair that con-
tributes to each component. For a given component, the weight of a microstructural
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metric should be similar across subjects with some variability. Hence H conveys infor-
mation about how much T1w/T2w, FA and MD contribute to each striatal component as
well as how those proportions vary across individuals within each component.

Stability analysis

To select the optimal number of components, a stability analysis was run to assess the
accuracy and spatial stability at each granularity from 2 to 10 (Patel et al., 2020). The
stability analyses for the left and right striatum were performed independently.

We split our 329 subjects into two groups (a and b) of size n, = 164 and n, = 165 that
were stratified by age. We repeated this procedure to create 10 different splits, to obtain
10 x 2 = 20 groups. For each split we created multimodal input matrices X, and X, as
described in Implementation and ran OPNMF on each splitindependently (resulting in 20
X 2 x 9 =360 runs). For each split and granularity we obtained two-component matrices
W, and W, which are of dimension (#striatal voxels x granularity) and two weight matrices
H, and H, of dimensions (granularity x ( n, or n,)). The reconstruction error for each split
was computed as follows:

Reconstruction error A = ||Xa—WaHa||fv and reconstruction error B = ||Xb—Wbe||f, (M

Where X, and X, are the input matrices of two respective groups in a split. We reported
the gradient reconstruction error that corresponds to the change in the reconstruction
error from a granularity k to the granularity k£ + 1. Hence, the gradient reconstruction
error was computed by subtracting reconstruction error matrix of the granularity k + 1
with the reconstruction error matrix of the granularity k and then averaging all the differ-
ences. Then we average over all splits to get reconstruction error average and standard
deviation for every granularity.

The accuracy is computed for each split by first taking two similarities matrix CW,
and CW, of dimensions (# striatal voxels x # striatal voxels). CW;; contains the cosine
similarity between the components scores of voxel i and voxel j. If cosine similarity is
high, it means that voxels i and j have similar component scores and that they are likely
in the same cluster (Patel et al., 2020). Hence, a row i in the matrix CW, represents the
similarity of the voxel i with all the other voxels for the group a. This is the same for the
matrix CW,. Then, we computed the correlation between corresponding rows of CW,
and CW,, to know if a certain voxel i is similar to the same group of voxels when OPNMF
is applied on another group (Patel et al., 2020). If the correlation between corresponding
rows of voxels was high, we conclude that the stability was high for this voxel (stability
coefficient close to 1). On the other hand, instability (stability coefficient close to -1) was
implied by a low correlation between corresponding rows of voxels. Finally, we took the
average for all voxels and we repeated this procedure for each split to get the average
and standard deviation stability coefficient for every granularity.

To assess the benefit of using multimodal data versus unimodal data, we carried out
a unimodal stability analysis for the T1w/T2w, FA and MD metrics separately. As for the
multimodal stability analyses, the left and right unimodal stability analyses were con-
ducted separately, for a total of 6 unimodal stability analyses.

Microstructure-behaviour relationships
To link inter-individual variation in striatal OPNMF components to behaviour and demo-
graphics, we sought to examine their relationship to a set of behaviours and demograph-
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ics available from the HCP by using subject-level weights as a measure of their specific
microstructural loadings (in matrix H for each component, see Implementation). We
considered all the motor-related behaviours available in the HCP test battery, as the re-
lationship between the striatum and motor function is well known (Mink, 1996; Delong
et al., 1983). This included endurance (NIH Toolbox 2-minute Walk Endurance Test), loco-
motion (NIH Toolbox 4-Meter Walk Gait Speed Test), dexterity (NIH Toolbox 9-hole Peg-
board Dexterity Test) and strength (NIH Toolbox Grip Strength Test). We also considered
cognitive tests related to impulsivity (Hariri et al., 2006; Buckholtz et al., 2010; Dalley
et al., 2008), motor inhibition and cognitive control (Vink et al., 2005; Schouppe et al.,
2014). Impulsivity was assessed using the delay-discount task (DD) (Green et al., 2007;
Estle et al., 2006) with the area under the curve (AUC) of DD as a summary measure.
Low values for the AUC suggests delayed rewards are less valuable to the subject and
vice versa (Myerson et al., 2007). Motor inhibition and cognitive control were measured
by the HCP using the Flanker task from the NIH toolbox (Schouppe et al., 2014). We also
considered age in years, years of education and gender as demographic measures.

Partial Least Squares

To associate the selected behaviours to the subjects’ metric-wise component weight-
ings, we used Partial Least Squares Correlation (PLSC). PLSC is a multivariate statisti-
cal technique that analyses the association between two sets of high-dimensional vari-
ables(Krishnan et al., 2011; Zeighami et al., 2019; Mcintosh and Lobaugh, 2004; Patel
et al., 2020). In the context of the current study, we related the set of individual com-
ponent weightings obtained from the H matrix in OPNMF (brain data) to the set of be-
havioural/demographics variables mentioned above (behaviour data).

Briefly, in PLSC, major patterns of covariance are extracted from the correlation ma-
trix of our to initial sets using SVD (Krishnan et al., 2011; Zeighami et al., 2019). The SVD
decomposition yields a set of uncorrelated latent variables (LVs) (Krishnan et al., 2011,
Zeighami et al., 2019). Each LV has a singular value, which is the proportion of covari-
ance explained by this LV. There are also a set of brain scores and behavioural scores,
describing the extent to which brain and behavioural elements are contributing to the
LV on a per-subject basis (Krishnan et al., 2011; Zeighami et al., 2019).

We assessed significance of each LV using non-parametric permutation testing on the
singular values. The stability of the individual brain and behavioural scores elements or
weight were assessed by using bootstrap sampling (Krishnan et al., 2011; Zeighami et al.,
2019; Mcintosh and Lobaugh, 2004; Patel et al., 2020).

Implementation

Here, the brain matrix had dimensions (329 subjects x 3 metrics x k components) with one
row for each subject and one column for each component-metric pair. The behavioural
variables were stored in a 329 x 10 matrix, with the subjects as rows and the performance
of selected behavioural tests along with age, sex (coded as 0/1 for M/F ) and years of
education as columns. Our PLSC outputs represent a pattern of covariance between
the selected behaviours and component-wise microstructural data. For the permutation
testing, we computed 10000 permuted brain matrices to construct a null distribution of
singular values. We considered a threshold of P<0.05 to be significant, as it corresponds
to a 95% confidence that the singular value of the original LV is higher than the singular
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Table 1. Participants demographics. MMSE: score on 30 of the Mini-mental state examination

Sex Number Mean age (years) Mean Handedness Mean overall cognition
(MMSE)
Females 185 29.01+3.63 66.59+47.31 29.18+0.97
Males 144 27.71+3.68 59.69+44.20 29.01+1.08
Overall 329 63.57+46.06 63.57+46.04 29.11+£1.02

value of the permuted LV (Patel et al., 2020). As for the bootstrap sampling, we generated
1000 bootstrap samples and considered a brain salience weight with BSR>2.58 to be
significant as it corresponds to P<0.01 (99% confidence) (Krishnan et al., 2011; Mcintosh
and Lobaugh, 2004; Patel et al., 2020).

Neurosynth image decoder

We related each component to functional MRI findings by using the Neurosynth associa-
tion test framework that meta-analytically relates striatal components to brain function
(Yarkoni et al. (2011)). The Neurosynth database is comprised of meta-analytic functional
maps for 1335 terms automatically generated from 14371 studies. Through the Neu-
rosynth Image Decoder, itis possible to compare any brain map to the entire Neurosynth
database and thus quantitatively infer cognitive states for each uploaded map (Yarkoni
et al., 2011; Chang et al., 2012). More specifically, provides posterior probability maps
associated with a given term representing the likelihood that this term is being used in a
study if activation is observed in the striatal voxels that we provided (see association test).
As our striatal components were in the previously computed common space (Population
average), we warped the components to MNI space before uploading them one by one to
NeuroVault as ROI-based NIFTI images. Our MNI space striatal components are publicly
and can be used for further analysis. From the posterior probability maps provided by
Neurosynth, we excluded maps with anatomical keywords to focus on cognition related
terms. We also excluded maps with keywords that were either unspecific, such as "life",
or redundant like "loss" and "losses".

Results

Data

The final sample size included 329 subjects from the Human Connectome Project Young
Adult dataset. The demographic information of our participants is displayed in Table 1.
We note that there is a significant difference in the mean age between males and females
(t(327) = 3.1, p<0.05), and there is no significant difference between males and females
in handedness ( t(327) = 1.4, p>0.1) and overall cognition ( t(327) = 1.4, p>0.1).

Stability analysis

The results of the stability analysis are shown in Figure 2. In Figure 2A, the stability coef-
ficient (red) of the multimodal OPNMF decomposition is displayed for the left and right
striatum, as well as the gradient of the reconstruction error (blue) for all chosen granu-
larities. In the right striatum, there is a net drop in the stability of the OPNMF clusters at
k = 4, while the stability of the left OPNMF clusters slightly decay for k >3.
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The gradient reconstruction error increases as the granularity increases for both hemi-
spheres. The gradient reconstruction error going from k = 3 to k = 4 increases dramati-
cally for both the left and right striatum, suggesting that there is more gain from going to
k =2to k =3 components than from k = 3 to k = 4 components. However, the gain in the
reconstruction error of the left striatum is better than expected when going from k = 4
to k = 5. The plateau in the reconstruction error for k6 in both hemispheres suggests
that major patterns of covariance have been captured. Hence, k = 5 was chosen as the
optimal number of components for the left and right striatum as it is the granularity that
provides the best balance between the stability coefficient and the reconstruction error
(accuracy) of the OPNMF multimodal decomposition.

The results of the stability analysis comparing the multimodal versus the unimodal
OPNMF decomposition with k ranging from 2 to 10 is shown in Figure 2B. The stabil-
ity coefficient of the unimodal metrics T1w/T2w (green), FA (black) and an MD (blue) is
lower than the stability achieved with the multimodal decomposition (red) for both hemi-
spheres. Due to the gain in stability of the multimodal decomposition, we decided to only
conserve the 5-component multimodal solution for further analysis.

Striatal components

Figure 3A shows a 3D representation of the left and right striatal components, while
Figure 3B displays selected labelled and unlabelled coronal slices. The weight matrix in
Figure 3C shows the metrics proportion in each component. We only show the left weight
matrix as it is almost identical to the right weight matrix. The weight matrix was divided
by the mean within rows to offer better visualization of within component variation in
the microstructural metrics.

« Component 1 (lilac in Figure 3A&B) is characterized by higher values of TTw/T2w
compared to MD and FA with slighty lower values of FA compared to the previous
metrics (first row from the bottom in Figure 3C). Component 1 includes the dorsal
putamen as well as the dorsolateral caudate nucleus.

« Component 2 (dark magenta in Figure 3A&B) is characterized by a high proportion
of FA, followed by T1w/T2w and MD (second row from the bottom in Figure 3C).
Component 2 forms a thin capsule around the dorsal putamen and also includes
the exterior lateral caudate next to the internal capsule.

+ Component 3 (light mint in Figure 3A&B) is characterized by high MD metrics com-
pared to the proportion of T1w/T2w and FA (third row from the bottom in Figure 3C).
Component 3 is a thin cluster including the anterior and posterior medial caudate
nucleus along the anterior horn of the lateral ventricle.

+ Component 4 (orange in Figure 3A&B) is characterized by lower T1w/T2w values
compared to FA and MD (fourth row from the bottom in Figure 3C). Both FAand MD
in component 4 are slightly above average. This component includes the nucleus
accumbens and a part of the outer ventrolateral putamen.

« Component 5 (dark green in Figure 3A&B) is characterized by lower values of FA
compared to the values of T1w/T2w and MD in this component (last row from the
bottom in Figure 3C). Component 5 includes the inner anterior ventral caudate, the
medial caudate body and some part of the ventral putamen.
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Partial Least Square analysis

To relate individuals subject’s weighting from the weight matrix of OPNMF to selected be-
haviours and demographics, we used Partial Least Square correlation analysis on the left
and right hemisphere independently. Using permutation testing, we identified four sig-
nificant latent variables, two for the left striatum (p<0.05) and two for the right striatum
(p<0.05) shown in Figure 4. Figure 4A shows the behavioural patterns associated with
the LV where the y-axis shows the behaviour and demographic measures and the x-axis
shows the correlation of that behaviour/demographic and the LV. Figure 4B shows the
microstructual patterns associated with the LV where the y-axis shows the component-
metric pairs and the x-axis denotes the bootstrap ratio (BSR).

The first left LV (left LV1; Figure 4A top row) explains 57% of the covariance between
our two and was associated with young age (R=-0.383, 95% C.I.=[-0.467,-0.300]), male sex
(R=-0.232, 95% C.1.=[-0.330,-0.150]), increased average performance on the Flanker task
(R=0.107,95% C.1.=[0.018,0.199]), increased strength (R=0.125,95% C..=[0.030,0.261]) and
decreased dexterity (R=-0.097,95% C.I.=[-0.185,-0.013]). The correlated microstructural
features include increased MD across all 5 components, decreased FA in components
1,2 and 4 and decreased T1w/T2w in component1.

Left LV2 (Figure 4A bottom row) explains 29% of the variance and is associated with
lower age (R=-0.213, 95% C.1.=[-0.350,-0.035]), female sex (R=0.186, 95% C.1.=[0.097,0.314]),
decreased strength (R=-0.190, 95% C.1.=[-0.308,-0.124]) and endurance (R=-0.136, 95%
C.1.=[-0.230,-0.058]). The correlated microstructural features include decreased FA in
components 1, 3, 5 and decreased T1w/T2w across all components.

Right LV1 (Figure 4B top row) explains 58% of the variance and was mainly driven by
younger age (R=-0.227, 95% C.I.=[-0.335,-0.122]), male sex (R=-0.329, 95% C.|.=[-0.410,-
0.267]), increased strength (R=0.2737,95% C.1.=[0.213,0.362]), decreased dexterity (R=-
0.1571, 95% C.1.=[-0.241,-0.079]) and AUC for both delay discounting measures DD AUC
200%$(R=-0.1015, 95% C.I.=[-0.191,-0.013]) and DD AUC 40 000$(R=-0.0734,95% C.I.=[-0.160,
0.019]). The correlated microstructural features include increased MD across all compo-
nents.

Right LV2 (Figure 4B bottom row) explained 31% of the variance and was associated
with young age (R=0.293, 95% C.1.=[0.188,0.400]), male sex (R=-0.09, 95% C.1.=[-0.213,0.025]),
increased endurance (R=0.145, 95% C.1.=[0.049,0.243]) and below average performance
in the Flanker task (R=-0.090, 95% C.I.=[-0.177,-0.004]). The correlated microstructural
features included increased FA across all components, increased T1w/T2w in compo-
nents 1 and 3 and decreased MD in component 1.

Decoding with Neurosynth

The results of the association test performed by Neurosynth for the left and right striatal
components are in Figure 5. Some posterior probability maps were unique for certain
components. Posterior probability maps with keywords related to motor function such
as "motor control" and "motor response" were only associated with the first component
of the left and right striatum. The same result was found for maps related to Parkinson'’s
disease. The posterior probability map associated with the keyword "age" was only as-
sociated with the fifth right striatal component. In general, the correlations obtained for
right striatal components were smaller than the correlations obtained for the left striatal
components. There was also a lot of overlap within the set of posterior probability maps
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across components and hemispheres, but the correlation values associated with similar
maps was different between components. For instance, in Figure 5 top, we can see that
both the left component 3 (light green) and the left component 4 (orange) are associated
both associated with the "reward" posterior probability map. However, the left compo-
nent 4 has a bigger correlation with the "reward" map then the left component 3.

Discussion

Overview

We identified 5 spatially distinct microstructural components for the left and right stria-
tum using OPNMF. We also found an increase in cluster stability when performing a mul-
timodal decomposition rather than decomposing T1w/T2w, FA and MD data indepen-
dently. By using brain-behaviour PLSC, we found four significant latent variables (two for
each the left and right hemispheres) relating individual subject's microstructural weight-
ings in each component to behaviours and demographics. Finally, we also investigated
how striatum clusters related to brain function using the Neurosynth database and as-
certained some putative functional relationship of the specific clusters that we describe.

Spatial striatal components and microstructure

Compared to other recent parcellations of the striatum, we notice that our multimodal
clusters segregate across both the caudate and the putamen which have been observed
in a recent (Liu et al., 2020) multi-modal parcellation of the striatum but not in other im-
portant data-driven parcellations (Pauli et al., 2016; Janssen et al., 2015; Jung et al., 2014).
We also observe that the nucleus accumbens is encapsulated in its own cluster (com-
ponent 4; orange) which is consistent with other striatum decompositions mentioned
above.

Component 1 showed increased T1w/T2w in voxels corresponding to the dorsal puta-
men as well as some part of the posteromedial caudate. It has been observed that both
FA and T1w/T2w are positively correlated with myelin density (Uddin et al., 2019). How-
ever, FA was shown to be a much stronger correlate of myelin content compared to
T1w/T2w especially in subcortical grey matter structures (Uddin et al., 2019). Hence, the
higher proportion of T1w/T2w compared to FA in component 1 might be attributed to
another tissue microstructure property, like iron concentration(Tardif et al., 2016; Uddin
et al., 2019; Péran et al., 2009).

Component 2 describes high FA compared to other metrics in voxels overlapping with
a thin cluster along the anterior-posterior axis of lateral caudate and putamen. High
FA might suggest a preferred fibre orientation in this region and myelination, although
FA is sensitive to a wide range of cellular mechanism (Tardif et al., 2016; Uddin et al.,
2019). High T1w/T2w signal also suggests increased myelination in this region (Uddin
et al., 2019), which combined with increased FA, could indicate the presence of fibre
bundles. This may capture the anterior-posterior fibre organization in the caudate nu-
cleus and inferior-superior myelinated fibre bundles between the caudate nucleus and
globus pallidus through the internal capsule, which has recently been investigated using
in vivo dMRI analyses and polarized light imaging in Kotz et al. (2013).

Component 4 included voxels overlapping with the nucleus accumbens structure as
defined in Haber et al. (1990) and a thin cluster around the dorsal putamen. Component
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s34 describes increased FA and MD compared to T1w/T2w.

a64 Component 5 is characterized by lower MD in some part of the inner anterior ven-
«s tral caudate, the medial caudate body along the voxels of component 3 and some part
s Of the ventral putamen. Decreased MD in these regions may suggest a denser tissue
sz Microstructure (Beaulieu, 2002; Sagi et al., 2012).

a68 The striatum has often been divided into functionally distinct regions based on cor-
w0 ticostriatal inputs as there are no clear cytoarchitectonic parcellations of this structure.
a0 Tracing studies in non-human primates have identified a tripartite organization of the
a1 Striatum based on structural connectivity to the cortex into the limbic region (ventral
a2 Striatum), the association region (central striatum) and sensorimotor region (dorsolat-
a3 eral striatum) (Haber et al., 1994, 1995). Similar findings from tractography studies using
«7a  diffusion MRIin humans have been observed in Draganski et al. (2008). The limbic region
a5 identified in (Haber et al., 1994, 1995, 2006b) overlaps with our component 4 (orange in
«7e  Figure 3) that also segregates the nucleus accumbens from the rest of the striatum. The
477 @ssociation and sensorimotor regions from Haber et al. (1994, 1995, 2006b) do not over-
azs lap as clearly with other components as our parcellation of the limbic region and compo-
aze  Nent4. However, we still see similarities between the association striatal regions and our
a0 fifth striatal component (dark green in Figure 3), where both overlap with some part of
s the anterior caudate and anterior putamen. The somatosensory striatal region in Haber
2 et al. (1995, 2006b) corresponds the most to our component 1 (light purple in Figure 3),
s comprised of the posterior putamen and posteromedial caudate.

a8a Although our map does not exactly recapitulate this tripartite organization, we do see
s Some similarities. This might suggest that some extrinsic structural connectivity proper-
a6 ties of the striatum might be captured by the combination of intrinsic measures we used
a7 for our parcellation.

ass Itis also known that the striatum contains two histochemically disinct compartments;
w0 the striosomes and matrix compartment (Graybiel and Ragsdale, 1978; Flaherty and
w0 Graybiel, 1994; Holt et al., 1997), that also differ in their input-output organization (Gimenez-
w1 Amaya and Graybiel, 1991; Eblen and Graybiel, 1995). As the striosomes patches make
a2 Uponly 15% (Brimblecombe and Cragg, 2017) of the adult striatum and that these patches
w3 Seems to be broadly distributed in the caudate and putamen (Mikula et al., 2009), it is
ss Notclear how this binary compartmentalization would affect our decomposition. Further-
25 More, current MRI protocols do not allow for the direct distinction between the striosome
w6 and matrix compartment (Blood et al., 2018) and it has yet been shown if and how the
w7 Striosomes and matrix compartment affect the microstructural metrics derived from MR
s that we used here.

« Individual-level variation in microstructure & behaviour

s0  Microstructural components were also investigated at the individual level, where we as-
s Sessed the relation between single-subject microstructure and behaviour. Using PLSC
sz analysis, we identified two significant LVs for each the left and right striatum. Left LV1
sos and right LV1 displayed a similar pattern of increased MD across the left and right stria-
s0a tum correlated with young age, male sex and some measure of motor performance (in-
sos Creased strength and endurance and decreased dexterity). The inverse correlation be-
s0s tween MD and age is consistent with evidence of decreased MD in early adulthood in
sz deep grey matter structures (Lebel et al., 2008). The positive relationship between age
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and FA which is observed in left LV1 has also been established in Lebel et al. (2008), al-
though here, this pattern is only observed in the left striatum. As for the behaviours,
we note increased strength and decreased dexterity as well as an above-average perfor-
mance of the Flanker task in both left and right LV1. The motor behaviour correlation
pattern in the left and right LV1 is consistent with the sex effect observed in those LVs.
Indeed, increased strength and endurance as well as decreased dexterity in males have
been observed in those tasks before (Hanten et al., 1999; Bohannon et al., 2015; Peters
and Campagnaro, 1996)

Left LV2 described a covariance mostly related to age and sex where young females
exhibited a decrease in TTw/T2w across the left striatum and a decrease in FA in the puta-
men and the caudate nucleus (excluding the NA and the 'outer rim’ of the putamen). The
positive relationship between FA and age has been observed in previous studies (Lebel
et al., 2008). Recent work has also identified a positive correlation between T1w/T2w and
age during early adulthood, where a bilateral increase of T1w/T2w was observed in the
striatum until a peak and subsequent decline at around 50 years old (Tullo et al., 2019).
The left LV2 also displayed decreased strength and endurance. As for in the left and right
LV1, we note that the motor pattern in left LV2 is also consistent with the sex effect in
that LV.

The right LV2 displayed an inverse age-related pattern to the left LV2, where age cor-
related with increased FA in the entire striatum, increased T1w/T2w in the putamen and
medial caudate along the ventricle, and decreased MD in the putamen. The positive re-
lationship between age and FA in the right LV2 is consistent with findings in Lebel et al.
(2008).The pattern of older age and increased T1w/T2w has also been observed in Tullo
et al. (2019). In terms of behaviour and other demographics, this LV correlated with male
sex, below-average performance in the Flanker task as well as increased strength and en-
durance.

As the female sample in this study has a slightly higher mean age than the males
(mean female age = 29.01+£3.62, mean male age = 27.71+3.67), the correlation patterns
between the significant LVs with age and sex might be affected. For instance, a true cor-
relation between an LV with age might also drive a correlation between the LV and sex
or vice versa due to the previously noted bias in the sample. To investigate further the
effect of sex in our LVs, we performed the same OPNMF followed by PLS on males and
females independently. We found that for the left hemishpere, there was no significant
difference between males and females in the striatum parcellation. Hence, we ran the
PLS analysis for the left hemisphere without the sex as a variable and obtained similar
LVs were the left LV1 mostly shows an effect of age and left LV2 shows an effect of the
motor behaviours as seenin Figure 4. As the right striatum parcellation was slightly differ-
ent between males and females, we conducted the PLS analysis independently between
males and females. We found that the microstructural partterns uncovered by the right
LVs were different between males and females, probably due to the difference in the
parcellation. However, the behavioural patterns were highly similar between the two
groups. Indeed, the right LV1 for males and females shows mostly an effect of age and
motor related behaviours while the right LV2 shows a stronger effect of impulsivity re-
lated behaviours, similar to what we show in Figure 4 where the males and females were
combined. More details on the sex specific analysis can be found in the supplement.

Moreover, relationships between brain structure and psychological traits using mass
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univariate approaches have been shown to have low replicability while there exist robust
associations between brain structure and non-psychological traits such as age (Masouleh
et al., 2019). This previously observed robust relationship between brain structure and
age paired with the low variability in the HCP behavioural data might explain why we
see such a strong effect of age and sex on our LVs compared to the other striatal re-
lated behaviours. In sum, we also note that the directionality of our PLSC results were as
expected and we observed no laterality effects.

As discussed in another study from our group (Patel et al., 2020), the combination
of OPNMF and PLS reduces the potential for false-positive as we are analyzing spatial
components of voxels rather than performing univariate testing on every voxel. PLS is a
multivariate technique that relates multiple variables simultaneously as opposed to mul-
tivariate testing, thus accounting for some difficulties encountered in univariate testing.

Correlation with fMRI maps

The Neurosynth reverse-inference framework found multiple correlations between out-
put components and posterior predictive maps associated with reward, incentive and
decision-making related map, which are functions that have been attributed to the stria-
tum in previous studies (Stott and Redish, 2014; Haber et al., 2006a; van den Bos et al.,
2014; Pauli et al., 2016; Jung et al., 2014; Haber et al., 2006a). Correlations with motor-
related maps were stronger with putamen-related clusters (component 1, light purple),
which is consistent with previous findings associating the putamen to somatosensory
processes (Arsalidou et al., 2013; Pauli et al., 2016). We found the strongest correlation
with reward-related words in the bilateral component 4, which mostly overlaps with the
nucleus accumbens. This is consistent with a recent finding (Pauli et al., 2016). However,
the small size of our other components (component 2, 3 and 5) resulted in a major over-
lap between the components and the Neurosynth maps. Although all of the words are
related to previously reported striatal fucntions, the component-map correlations are
not particularly specific in components 2, 3 and 5.

We also note that the correlations uncovered by the Neurosynth framework are in-
fluenced by confirmation bias. For instance, studies that looked at reward or addiction
related behaviours are more likely to mention the striatum or vice-versa as it has long
been thought that such associations exists.

Choice of parcellation

Striatal clustering
Previous parcellations of the striatum have used a combination of heuristic and contrast-
based definitions. In recent years, the increased quantity and quality of available MRI
data have allowed for data-driven parcellations that rely on no a priori assumptions on
striatal organization, overcoming the limitations of past parcellation schemes. To iden-
tify spatial striatal components, previous studies have used clustering techniques such as
K-means clustering (Pauli et al., 2016; Parkes et al., 2017; Jung et al., 2014), and decompo-
sition techniques such as PCA, ICA and probabilistic modelling, such as Gaussian mixture
model (Janssen et al., 2015). Amongst the variety of possible parcellation schemes, one
has to be careful in the selection of a clustering/decomposition algorithm as it depends
heavily on the type of data and the aims of the study.

Although OPNMF has been shown to be mathematically equivalent to the K-means
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algorithm (Eickhoff et al., 2018), OPNMF was a suitable method for this study as we aimed
to investigate inter-individual variability in the subjects’ weightings. Sotiras et al. (2015)
showed that compared to other decomposition techniques (PCA and ICA), components
captured by NMF seemed to reflect relevant biological processes related to age and were
less prone to overfitting. The advantages of OPNMF interpretability have already been
noted in previous studies (Sotiras et al., 2015; Patel et al., 2020; Varikuti et al., 2018).
Here, we took advantage of the flexibility of NMF decomposition while capitalizing on a
part-based representation of the striatum by adding the orthogonality constraint to NMF.
We also note the data-driven symmetry in the component obtained in each hemisphere.

Multimodal vs. unimodal
Although T1w/T2w, FA and MD are typically used in isolation, we hypothesized that since
each of these measures has differential sensitivity to the underlying cellular anatomy but
still some overlap in their range of sensitivities (i.e they are all sensitive to myelin) (Glasser
and Van Essen, 2011; Tardif et al., 2016; Tullo et al., 2019), combining them would yield
more robust parcels. Here, we note that the stability of the multimodal OPNMF decom-
position was notably higher than the stability of the unimodal decomposition, which pro-
vides evidence for the benefit of integrating multiple metrics to construct a parcellation.

There are multiple ways to obtain multimodal maps, however this is not a method
typically employed in the literature. One way to obtain multi-modal maps is to super-
impose all the parcellation schemes derived from one modality (Eickhoff et al., 2018).
In this method, the final multimodal parcellation is based on the overlap of the voxels
that had a similar cluster assignment in all the unimodal parcellation schemes (Eickhoff
et al., 2018; Xia et al., 2017; Wang et al., 2015). Although such parcellation schemes pro-
vide useful confirmatory information, the voxels with ambiguous overlap between the
distinct unimodal parcellation schemes were not necessarily included in the final map,
which can lead to fragmented final multimodal parcellations (Eickhoff et al., 2018; Wang
et al., 2015).

OPNMF and other similar methods, such as PCA and ICA, try to overcome this limita-
tion by integrating multiple modalities into the parcellation, making use of the confirma-
tory and complementary information provided by the multiple metrics.

Limitations

Aninherentlimitation in this study is the lack of specificity regarding the underlying mech-
anism of structural and diffusion MRI derived metrics that we used. It is still not clear
how specific aspects of tissue microstructure influence T1w/T2w, FA and MD. Other than
myelin, the T1w and T2w signals are sensitive to the presence of macromolecules and
iron concentration(Tardif et al., 2016; Uddin et al., 2019). FA and MD are also sensitive
to a wide range of additional cellular properties including axonal density and orientation,
water in the tissue and the presence of different cell types (Tardif et al., 2016; Jones et al.,
2013). Although the combination of those microstructural metrics provides complemen-
tary and confirmatory information, it is still unclear what the underlying microstructure
looks like in our identified striatal clusters. As with most non-invasive imaging studies,
the resolution used in this study is subject to partial volume effects. Partial volume ef-
fects may affect metrics proportion in our striatal components, especially in components
2, 4 that are adjacent to major white matter tracts which might be contributing to the in-
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crease of FA. Partial volume effects may also play a role in the high proportion of MD in
component 3 as it is adjacent to the the anterior horn of the lateral ventricle.

Conclusion

In this work, we used a combination of three microstructural metrics to construct a part-
based decomposition of the human striatum in a healthy population using non-negative
matrix factorization. By using the stability and accuracy of OPNMF decomposition, we
identified 5 spatially distinct microstructural patterns for the left and right striatum sepa-
rately. Then, we used partial least squares correlation to link inter-individual variation in
the striatal components to selected behaviours and demographics. Our findings suggest
distinct microstructural patterns in the human striatum that relate mostly to demograph-
ics. Our work also highlights the gain in clusters’ stability when using multimodal versus
unimodal metrics. We note that the identified striatal components are associated with
complex patterns of microstructure and behavioural variation. Further, the striatal com-
ponents appear to be functionally relevant.

This work can serve as a template for examining how one can investigate subject-
level variation that links brain and behaviour across numerous brain imaging measures.
This may, in turn, allow for more specific interpretations of brain imaging findings that
improve our mechanistic insights on brain-behaviour relationships. Further, this work
could be applied in future studies of brain development and in the context of neuropsy-
chiatric disorders to parse heterogeneity.
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Figure 1. A) We used the chosen
microstructural metrics in automatically
segmentated striatum labels (obtained with
the MAGeT Brain algorithm) of our subjects in
the a constructed common space B) We
concatenated the striatal voxels in column
vectors of all our subjects to build an input
matrix. The left and right input matrix were
build independently. C) We extracted spatially
distinct components representing patterns of
covariance in microstructure across subjects
using orthogonal projective non-negative
matrix factorization (OPNMF). OPNMF
decomposes an input matrix into a component
matrix W and a weight matrix H. As OPNMF
extracts a predefined number of componentk,
we performed a stability analysis to assess the
accuracy and spatial stability at each
granularity from 2 to 10 (see Figure 2A). D) The
component matrix W describes how much
each voxel weight into a specific component
providing spatial information about the
clusters. F) We related each component to
functional MRI findings by using the
Neurosynth reverse-inference framework that
meta-analytically relates striatal components
to psychological states. E) The weight matrix H
contains the weight of each subject's metrics
onto each component, describing
microstructural variation in the metrics found
in the input matrix ( T1w/T2w, FA, MD)
between subjects. G) We used Partial Least
Squares (PLS) analysis to identify patterns of
covariance between the striatal components
T1w/T2w, FA and MD proportions with
behavioural and demographic data. PLSis a
multivariate technique that analyses the
association between our component-metric
pairs (leftmost top) and selected
behaviour/demographics (leftmost bottom)
variables resulting in a set of LVs. The
significance of the covariance patterns
uncovered by the LVs was assessed using
permutation testing while the reliability of each
brain specific weight was assessed using
bootstrap sampling.
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Figure 2. A) Stability score and gradient reconstruction error when performing NMF using 2 to 10 clusters. As we want to
maximize the stability while minimizing the reconstruction error, we chose to use 5 components for the rest of the analysis. B)
Comparison of the stability score of NMF on multimodal data (a combination of T1w/T2w, FA and MD (red)) versus unimodal
data (either only T1w/T2w (green), only FA (black) or only MD (blue)) using 2 to 10 clusters.
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Figure 3. A) 3D rendering of the 5 components solution (A: anterior, P: posterior, S: superior, I: inferior, R: right, L: left). B)
Coronal slices showing the labelled and unlabelled (side-by-side columns) left and right striatum. C) Weight matrix output from
NMF of the left striatum, showing how the microstructural metrics weight into each component (the right weight matrix is
almost identical). For the normalization, we divided each component (row in the matrix) by the mean value in that specific
component to show within component variation in the microstructural metrics.

19 of 29


https://doi.org/10.1101/2021.06.10.447764
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.10.447764; this version posted June 11, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A Left LV1 (57%) Left LV2 (29%) Right LV1 (58%) Right LV2 (31%)
Strength [ — I § e
Dexterity . L N ——
GaitSpeed —t— —il —- i
Endurance | — —— | e
DD AUC 40 000$ —— — — ——
DD AUC 200% —— —— N L
Flanker Task | —t— - —
Sex F — | s — I —
Education i —+— —t— B
Age in years — — I — .
—0.4 —0.2 0.0 0.2 —-03 -02 -01 00 01 02 03 —-0.4 -03 -02 -01 00 01 02 03 04 —-02 -01 00 0.1 0.2 0.3 0.4
B Comp5 MD

Comp5 FA
Comp5 T1T2
Comp4 MD
Comp4 FA
Comp4 T1T2
Comp3 MD
Comp3 FA
Comp3 T1T2
Comp2 MD
Comp2 FA
Comp2 T1T2
Compl MD
Comp1 FA
Comp1 T1T2

Figure 4. Results of the PLS analysis, we show only the latent variables (LVs) that were significant (p<0.05). The percentage next
to the LV's name corresponds to the covariance explained by this LV. A) Behavioural patterns of the left LV1 (first column), left
LV2 (second column), right LV1 (third column) and right LV2 (fourth column). The y-axis denotes the behavioural and
demographics measures used in the analysis (DD AUC: Delay discounting area under the curve), while the x-axis corresponds to
the correlation of the behaviours with the LV. B) Microstructural patterns associated with the four significant LVs identified.
Here,the y-axis correspond to the component-metric pairs and the x-axis denotes the bootstrap ratio (BSR). The black line in the
microstructural patterns graph represent a BSR of 2.58 (equivalent to a 99% C.1.). The colors of the bars are associated with the
component (see Figure 3C).
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Figure 5. (Top) Left striatal components Neurosynth results.(Bottom) Right striatal components Neurosynth results. Here, the
color of the words describe the components to which the posterior probability maps was related to (see Figure 3C). The font of
the word represents the Pearson correlation strength between the map of the component and the keyword related map from
Neurosynth. Notice that the keywords’ font were not normalized across components. Hence, the keyword with the biggest font
represents the term with the biggest correlation in that component and not in all components.
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