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Abstract:

To conserve water in arid environments, numerous plant lineages have independently
evolved Crassulacean Acid Metabolism (CAM). Interestingly, Isoetes, an aquatic lycophyte, can
also perform CAM as an adaptation to low CO- availability underwater. However, little is known
about the evolution of CAM in aquatic plants and the lack of genomic data has hindered
comparison between aquatic and terrestrial CAM. Here, we investigated the underwater CAM in
Isoetes taiwanensis by generating a high-quality genome assembly and RNA-seq time course.
Despite broad similarities between CAM in Isoetes and terrestrial angiosperms, we identified
several key differences. Notably, for carboxylation of PEP, Isoetes recruited the lesser-known
“bacterial-type” PEPC, along with the “plant-type” exclusively used in other terrestrial CAM and
C4 plants. Furthermore, we found that circadian control of key CAM pathway genes has
diverged considerably in /soetes relative to flowering plants. This suggests the existence of
more evolutionary paths to CAM than previously recognized.
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Isoetes, commonly known as quillworts, is the only genus in the lycophyte order
Isoetales, containing roughly 250 described species’. It is the last remaining member of an
ancient lineage with a fossil record that dates back to at least the late Devonian. As such,
quillworts are believed to represent the closest living relatives of the giant, tree-like lycopsids
such as Sigillaria and Lepidodendron that dominated the terrestrial landscape during the
Carboniferous?. However, in contrast to its arborescent ancestors, modern Isoetes species are
diminutive and mostly aquatic with the vast majority of species growing completely or partially
submerged. Underwater, Isoetes can conduct CAM?, a carbon concentrating mechanism
involving the separation of carbon uptake and fixation in a time of day (TOD) fashion, with
carbon being sequestered as malate at night, to be fed into the Calvin cycle during the day.
CAM is a common strategy to improve water-use efficiency among xeric-adapted plants,
allowing them to keep their stomata closed during the day. However, its prevalence in aquatic
species of Isoetes®, as well as several aquatic angiosperms*®°, suggests that it must have some
utility unrelated to conserving water. Specifically, it is thought to be an adaptation to low aquatic
CO- availability in the oligotrophic lakes and seasonal pools where Isoetes species are
commonly found*®.

Though it has been nearly four decades since Keeley first described “CAM-like diurnal
acid metabolism” in Isoetes howellii’, relatively little is known about the genetic mechanisms
controlling CAM in Isoetes or any other aquatic plant. Previous genomic and/or transcriptomic
studies that focused on terrestrial CAM have found evidence for regulatory neofunctionalization,
enrichment of cis-regulatory elements, and/or reprogramming of gene regulatory networks that
underlie the convergent evolution of CAM in Sedum album®, Ananas comosus®, Kalanchoe
fedtschenkoi'®, several orchids''~"3, and Agavoideae species'*"®. Furthermore, a remarkable
case of amino acid sequence convergence in phosphoenolpyruvate carboxylase (PEPC), which
catalyzes the carboxylation of phosphoenolpyruvate (PEP) to yield oxaloacetate (OAA), has
also been reported among terrestrial CAM plants'®. However, the lack of a high-quality genome
assembly has made meaningful comparison of /soetes or any other aquatic CAM plant to
terrestrial CAM species impossible.

The only lycophyte genomes available to date are from the genus Selaginella'®"®,
leaving a deep, >300-million-year gap in our knowledge of lycophyte genomics and limiting
inferences of tracheophyte evolution. Selaginella is the only genus in the Selaginellales, the
sister clade to Isoetales. Notably, Selaginella is known for being one of few lineages of vascular
plants for which no ancient whole genome duplications (WGDs) have been detected.
Conversely, there is evidence from transcriptomic data for as many as two rounds of WGD in
Isoetes tegetiformans'®. As such, a thorough characterization of the history of WGD in Isoetes is
vital to future research into the effects and significance of WGD in lycophytes as a whole.

With this study we sought to investigate genome evolution as well as the genetic
underpinnings of CAM in Isoetes. To that end, we present a high-quality genome assembly for
Isoetes taiwanensis. To our knowledge, this is not only the first such assembly for the order
Isoetales, but also the first for an aquatic CAM plant. We found evidence for a single ancient
WGD event that appears to be shared among multiple species of /Isoetes. Additionally, while
many CAM pathway genes display similar expression patterns in /soetes and terrestrial
angiosperms, notable differences in gene expression suggest that the evolution of CAM may
have followed very different trajectories in these highly divergent groups.
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90 Results and Discussion:
91 Genome assembly, annotation, and organization
92 Using lllumina short-reads, Nanopore long-reads, and Bionano optical mapping, 90.13%
93  of the diploid (2n = 2x = 22 chromosomes) /. taiwanensis genome was assembled into 204
94  scaffolds (N50=17.40 Mb), with the remaining 9.87% into 909 unplaced contigs (Table 1). The
95 total assembled genome size (1.66 Gb) is congruent with what was estimated by K-mers (1.65
96 Gb) and flow cytometry (1.55 Gb) (Supplementary Fig. S1). A circular-mapping plastome was
97  also assembled, from which we identified a high level of RNA-editing (Supplementary Notes,
98  Supplementary Fig. S2).
99 A total of 39,461 high confidence genes were annotated based on ab initio prediction,
100 protein homology, and transcript evidence. The genome and proteome BUSCO scores are
101  94.5% and 91.0% respectively, which are comparable to many other seed-free plant genomes
102  (Supplementary Fig. S3) and indicative of high completeness. Orthofinder?® analysis of 25
103  genomes placed 647,535 genes into 40,144 orthogroups. Subsequent analysis of key stomatal
104  and root genes in /. taiwanensis genome supported their homology (at the molecular level) with
105  similar structures in other vascular plants. In addition, examination of lignin biosynthesis genes
106 in /. taiwanensis suggests that evolution of a novel pathway to S-lignin likely predates the
107  divergence of Isoetes and Selaginella. A detailed discussion of these analyses and Orthofinder
108 results can be found in the Supplementary Notes and Supplementary Figures S4-S20.
109 Repetitive sequences accounted for 38% of the genome assembly with transposable
110 elements (TEs) accounting for the majority of those at 37.08% of the assembly length. Long
111 terminal repeat (LTR) retrotransposons were the most abundant (15.72% of total genome
112 assembly) with the Gypsy superfamily accounting for around 68% of LTR coverage (10.7% of
113  total genome assembly; Supplementary Table 1). When repeat density was plotted alongside
114  gene density, the distribution of both was found to be homogeneous throughout the assembly
115  (Fig. 1). This even distribution of genes and repeats is markedly different from what has been
116  reported in most angiosperm genomes?' where gene density increases near the ends of
117  individual chromosomes, but consistent with several high-quality genomes published from seed-
118  free plants, including Physcomitrium patens®?, Marchantia polymorpha®, and Anthoceros
119  agrestis®*. The result from I. taiwanensis thus adds to the growing evidence that the genomic
120  organization might be quite different between seed and seed-free plants®.
121
122  Table 1. Isoetes taiwanensis genome assembly statistics.

Assembly size (Mb) 1,658.30
Scaffolds (#) 204
Scaffold length (Mb) 1494 .58
N50 of scaffold length (Mb) 17.40
Scaffolded contigs (#) 1,879
Scaffolded contig length (Mb) 1211.25
N50 length of scaffolded contigs (Mb) 1.48
Unscaffolded contig (#) 909
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Unscaffolded contig (Mb) 149.46
N50 length of unscaffolded contigs (Mb)  0.26
Genome BUSCO score (Eukaryota) (%) 94.5

Proteome BUSCO score (Eukaryota) (%) 91.0

Predicted protein coding genes (#) 39,461
Predicted repetitive sequence (%) 38
P s51 S52 S53 s

density

10Mb scaffold
LTR

density repeat density

123

124

125 Fig 1: Distribution of genes and repetitive elements in I. taiwanensis. The relatively even distributions differ from
126 angiosperm genomes, but are similar to what have been reported in other seed-free plants. Only scaffolds longer than
127 10 Mb are plotted. Center: an image of /. taiwanensis.
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131  Evidence for WGD in Isoetes taiwanensis

132 Using a combination of methods including synonymous substitutions per site (Ks),

133  phylogenetic, and synteny analyses, we identified a single ancient WGD in /. taiwanensis. This
134 s in contrast to a previous Ks analysis using 1KP transcriptome data, which found evidence for
135  two rounds of WGD, named ISTEa and ISTE, in the North American species . tegetiformans
136 and /. echinospora®®. These two WGDs have median Ks values of ~0.5 and ~1.5%

137  (Supplementary Figure S21). Our whole paranome analysis of Ks in /. taiwanensis revealed a
138  single peak at Ks ~ 1.8 (Fig. 1a), suggesting that the earlier of the two duplications (ISTER) in /.
139  tegetiformans and I. echinospora is shared by I. taiwanensis while the more recent event

140  (ISTEa) is not. Further analysis of orthologous divergence between I. taiwanensis and I.

141 lacustris indicated that ISTER predates the divergence of these two species (Supplementary
142  Figure S22). The ISTER event was subsequently confirmed by gene tree-species tree

143  reconciliation using genomic data in the WhALE package?’. WhALE returned a posterior

144  distribution of gene retention centered on q = ~0.12. This result compares favorably with a

145  previously documented WGD event in Azolla filiculoides®® (q = ~0.08) and is in stark contrast to
146  our negative control, Marchantia polymorpha® (q = ~0) (Fig. 2b,c).

147 While self-self syntenic analysis revealed 6,196 genes (15.7%) with a syntenic depth of
148  1xin 107 clusters (Supplementary Figure S23), we do not believe they resulted from WGD. Our
149  Ks analysis restricted to syntenic gene pairs failed to recover the peak at Ks ~1.8 and instead
150 consisted of an initial slope toward a much lower Ks value (Supplementary Figure S24).

151  Considering their high degree of similarity and location on separate scaffolds, it is possible that
152  these low Ks gene pairs are the result of relatively recent segmental duplications. The absence
153  of synteny from ISTER is unsurprising. The high Ks value implies that ISTE is quite ancient;
154  long enough ago for extensive genomic restructuring and fractionation to have taken place.
155  Altogether, of the two hypothesized WGDs in Isoetes, we confirmed the presence of ISTE
156  while the younger ISTEa might be either specific to /. tegetiformans and I. echinospora or an
157  artifact stemming from the quality or completeness of the transcriptomes.

158
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a 5
Q Azolla filiculoides
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160 Fig. 2: Evidence for WGD in I. taiwanensis. a, Ks plot showing a peak centered on 1.8 corresponding to the ISTE(
161 event. b, Hypothesized WGD events that were tested (colored rectangles) in our WhALE analysis are shown on a

162 phylogeny. ¢, I. taiwanensis’ posterior distribution of gene retention rates falls between that of A. filiculoides and P.
163 patens, both are known to have at least one WGD. This provides additional support for the ISTER event. Conversely,
164 the gene retention rate is close to zero for M. polymorpha, consistent with its lack of WGD.
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Similarities to terrestrial CAM plants

As a lycophyte, Isoetes represents the oldest extant lineage of vascular plants to exhibit
CAM photosynthesis (Fig 3a), and may be considered unusual among other CAM plants due to
its aquatic lifestyle. Here, we demonstrated that when submerged, titratable acidity in the leaves
of I. taiwanensis increased throughout the night, reaching peak acidity in the morning and
decreased throughout the daylight hours (Fig 3b), consistent with the cycle of carbon
sequestration and assimilation seen in dry-adapted CAM plants. To identify the underlying
genetic elements, we generated TOD RNA-seq, sampling every 3 hours over a 27-hour period
under 12 h light/12 h dark and continuous temperature (LDHH). A multidimensional scaling
(MDS) plot of normalized expression data showed that the samples were generally clustered in
a clockwise fashion as expected for TOD expression analysis (Supplemental Figure S25).

We found that some of the CAM pathway genes in I. taiwanensis exhibited TOD
expression patterns that largely resemble those found in terrestrial CAM plants (Fig. 3c-i). For
example, the strong dark expression of PHOSPHOENOLPYRUVATE CARBOXYLASE KINASE
(PPCK) appears to be conserved in /. taiwanensis as well as in all three terrestrial taxa (Fig 3i).
Likewise, we found one copy of B-CARBONIC ANHYDRASE (B-CA) that cycled similarly with
homologs in A. comosus and K. fedtschenkoi (Fig. 3g)—increasing during the night and peaking
in early morning—although this is different from S. album in which no 3-CA genes showed a
high dark expression. Similar to A. comosus where two copies of MALATE DEHYDROGENASE
(MDH) were found to cycle in green leaf tissue®, we found multiple copies of MDH that appear to
cycle in [. taiwanensis with one copy appearing to exhibit similar peak expression to its
orthologue in pineapple (Fig. 3e). However, neither of the other two MDH genes that cycle in I.
taiwanensis exhibit similar expression to their orthologues in terrestrial CAM species
(Supplementary Figure S26).

During the day, decarboxylation typically occurs by one of two separate pathways (Fig.
3a). The first utilizes NAPD-MALIC ENZYME (NADP-ME) and PYRUVATE PHOSPHATE
DIKINASE (PPDK), and appears to be favored by K. fedtschenkoi and S. album®'°. The second
utilizes MDH and PHOSPHOENOLPYRUVATE CARBOXYKINASE (PEPCK) and is favored by
A. comosus®. Based on its TOD expression of multiple copies of MDH and associated
expression dynamics, it is possible that /. taiwanensis utilizes the MDH/PEPCK pathway. While
all four genes have elevated expression levels during the day, the expression of NADP-ME is
inverted compared to K. fedtschenkoi and S. album (Fig. 3c), and PPDK exhibits relatively weak
cycling overall (R=0.637; Fig. 3d). Additionally, PEPCK and one copy of MDH have similar TOD
expression in 1. taiwanensis and A. comosus (Fig. 3f and 3e, respectively), which may indicate a
shared affinity for MDH/PEPCK decarboxylation. Interestingly, the copy of PEPCK that cycles in
I. taiwanensis is not orthologous to the copy that cycles in A. comosus, being placed in a
different orthogroup by Orthofinder?.
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Fig. 3: Key CAM pathway genes and their expression patterns in I. taiwanensis. a, The CAM pathway with
important reactions and their enzymes shown in red. b, Titratable acidity in . taiwanensis exhibited a clear diel
fluctuation. Diel expression patterns for highlighted genes are shown for the day (c-f) and night reactions (g-i). Average
of TPM normalized expression data for /. faiwanensis is plotted in blue with a shaded ribbon representing the standard
deviation (left y-axis). Relative expression profiles for homologous, cycling genes in other CAM species are plotted for
comparison (right y-axis). All times are displayed in hours after lights-on (Zeitgeber time).

I. taiwanensis has recruited bacterial-type PEPC

While TOD expression of many key CAM pathway genes was broadly similar to that seen
in terrestrial CAM plants, one important difference can be found in the PEPC enzyme, which is
the entry point of carboxylation in CAM and C4 photosynthesis (Fig. 3a). PEPC is present in all
photosynthetic organisms as well as many non-photosynthetic bacteria and archaea. It is a vital
component of plant metabolism, carboxylating PEP in the presence of HCOs to yield OAA. In
plants, the PEPC gene family consists of two clades, the “plant-type” and the “bacterial-type.”
The latter was named because of its higher sequence similarity with proteobacteria PEPC than
other plant-type PEPC genes®. All CAM and C4 plants characterized to date recruited only the
plant-type PEPC?, with the bacterial-type often being expressed at relatively low levels and/or
primarily in non-photosynthetic tissues®'.

Interestingly, in /. taiwanensis we found that both types of PEPC were cycling and that the
bacterial-type was expressed at much higher levels than plant-type PEPC (Fig. 3h). Copies from
both types had similar expression profiles in /. taiwanensis, peaking at dusk and gradually
tapering off during the night. While this may seem counterintuitive as PEPC is an important
component of the dark reactions, it is consistent with what has previously been found in other
terrestrial CAM plants, with the overall expression profile resembling that of S. album®. The
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233  advantage of recruiting bacterial-type PEPC is unclear. In vivo, both bacterial- and plant-type
234  PEPC can interact with each other to form a hetero-octameric complex that is less sensitive to
235 inhibition by malate®. Although the functional and physiological implications await future
236  studies, the unusual involvement of bacterial-type PEPC speaks to the uniqueness of /soetes’
237  underwater CAM.
238
239  No evidence for convergent evolution of PEPC
240 Plant-type PEPC was recently shown to undergo convergent amino acid substitutions in
241 concert with the evolution of CAM'™. An aspartic acid (D) residue appears to have been
242  repeatedly selected across multiple origins of CAM such as in K. fedtschenkoi and P. equestris,
243  although notably not in A. comosus'®. This residue is situated near the active site, and based on
244  in vitro assays, the substitution to aspartic acid significantly increased PEPC activity'®. However,
245 in |. taiwanensis we did not observe the same substitution in any copies of PEPC (Fig. 4);
246 instead, they have arginine (R) or lysine (H) at this position like PEPC from many non-CAM
247  plants. This lack of sequence convergence between Isoetes and flowering plants could be the
248  result of their substantial phylogenetic distance and highly divergent life histories. Alternatively,
249 itis also likely that the substitution is relevant only in the context of plant-type PEPC, and as /.
250 taiwanensis recruited the bacterial-type PEPC, the aspartic acid residue might not serve the
251 same purpose.
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253 A unique circadian regulation in Isoetes
254 Previous analysis of the A. comosus genome found promoter regions of multiple key
255 CAM pathway genes containing known circadian cis-regulatory elements (CREs) including

256  Morning Element (ME: CCACAC), Evening Element (EE: AAATATCT), CCA1-binding site (CBS:
257  AAAAATCT), G-box (CACGTG) and TCP15-binding motif (NGGNCCCAC)®. This suggests that
258  expression of CAM genes in pineapple is largely under the control of a handful of known

259  circadian clock elements. The direct involvement of circadian CREs was corroborated by a later
260  study of the facultative CAM plant S. album where shifts in diel expression patterns were tied to
261  a shift in TOD-specific enrichment of CREs: EE and

a.LHY
262  Telobox (TBX: AAACCCT):. Py
263 In order to examine the role of the circadian 2 SmLHY
264  clock and light/dark cycles in regulating /. taiwanensis — ALLHY
265 CAM, we used the HAYSTACK pipeline® to identify all " /

267 3,241 cycling genes, which is 10% of the expressed
268 genes. While 10% is low compared to land plants that
269 have been tested under this condition (LDHH)—

266  genes with TOD expression patterns. We predicted /

0 5 10 15 20

270  usually at 30-50% genes®*** a recent study found a b. PRR1
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280 expected TOD expression seen in their Arabidopsis 21 —nci

281  orthologs®. However, ZEITLUPE (ZTL) does not o

282  appear to cycle in [. taiwanensis, in contrast to "

283  orthologues in Arabidopsis and Selaginella®.

284  Furthermore, TIMING OF CAB2 1/PSEUDO- °] \

285 RESPONSE REGULATOR 1 (TOC1/PRR1) and | / t\
286  GIGANTEA (Gl), which are typically single-copy genes 0 : 10 5 20

287  inland plants, have respectively 3 and 5 predicted Zeitgeber time (hrs)

288  genes in distinct genomic locations; similarly an Fig. 5: Expression of key circadian
289  increased number of homologs was found in the associated genes is shifted In L
290 facultative CAM plant S. album®. Closer inspection ﬁ'y“,ég'ggsr'i (L?—,/Y) %éCT?/I‘:\_ﬂ, i%opl\éi_@gfoﬂf
291  confirmed all 3 TOC1/PRR1 paralogs are full length, RESPONSE REGULATOR 1 (PRR1), and c,
292  while only 1 of the G/ genes (Gla) is full length and 1 GIGANTEA (GI) orthologs in Isoetes (blue
293  other (GIb) is a true partial/truncated (and expressed) lines), Selaginella (orange line) and

L : Arabidopsis (red line) over the day. Day
294  paralog. Surprisingly, all 3 copies of TOC1/PRR1 have (yellow box): Night (black box); Zeitgeber

295  dawn-specific expression compared to the dusk-specific o (ZT) is the number of hours (hrs) after
296  expression found in all plants tested to date®’ (Fig. 5b). lights-on (O hrs).
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297  In addition, Gla and Glb have antiphasic expression, with the full length Gla having dusk-

298  specific expression, which is consistent with other plants, and GI/b having dawn-specific

299  expression (Fig. 5c).

300 The duplications and divergent expression patterns of TOC1/PRR1 and G/ in I.

301 taiwanensis have important implications on circadian clock evolution. Despite the TOD

302  expression of core circadian clock genes being highly conserved since the common ancestor of
303 green algae and angiosperms, the mechanisms may be simpler in algae® and mosses®®. This is
304 largely due to a lack of key components of the evening-phased loop including PRR1, G, and
305 ZTL in P. patens and the absence of the same along with morning-phased loop genes ELF3
306 and ELF4 in algae. While I. taiwanensis possesses all the major clock genes that are found in
307 other vascular plants, lineage specific expansion and phase-shifted gene expression in the

308 evening-phased loop could indicate that circadian control was less conserved during the early
309 evolution of land plants. However, Selaginella exhibits very similar expression of various

310 circadian modules relative to other vascular plants and likewise, possesses a single copy of
311 both G/ and PRR1%. It is thus possible that the unique TOD architecture in /. taiwanensis

312  represents a more recent adaptation to its aquatic CAM lifestyle. As a comparison, S. album
313  similarly has multiple duplicated clock genes and its transition to CAM is associated with

314  significant shifts in both phase and amplitude of gene expression®. To further investigate the
315  relationship between clock and CAM in [. taiwanensis, we next focused on characterizing the
316  circadian CREs.

317
318  Canonical circadian CREs are not enriched in Isoetes CAM cycling genes
319 We used ELEMENT®? to exhaustively search the promoter region of cycling genes for

320 putative CRE motifs. Following de novo identification, putative CREs were compared to known
321 transcription factor binding sites in Arabidopsis to determine to what degree their functions

322  might be conserved between Isoetes and flowering plants. We identified 16 significantly

323  enriched CREs motifs in the 500 bp 5’ promoter region of cycling genes identified by

324  HAYSTACK, and clustered them according to TOD expression (Supplementary Table S3). Half
325  of the motifs shared some degree of sequence similarity to known circadian CREs previously
326 identified in Arabidopsis, including the EE as well as two ‘ACGT’-containing elements (Gbox-
327 like) and two TBX-containing motifs®. In the case of TBX, both motifs were associated with
328 peak expression at dusk (at around 12 hrs after lights on; Zeitgeber Time [ZT]) in I. taiwanensis
329  (Fig. 6a,b), similar to Arabidopsis under light/dark cycles alone®. On the other hand, the EE
330 appear to be associated with peak expression at different TOD. In Arabidopsis, the EE is

331  enriched in genes with peak expression at dusk (ZT = 12), but in /. taiwanensis, this pattern is
332  shifted, with the EE associating with genes that peak in expression around mid-day (ZT= 6)
333  (Fig. 6¢). Additionally, while the two ‘ACGT’-containing elements were found upstream of genes
334  that exhibited significant cycling behavior, neither was strongly associated with peak expression
335 ata particular TOD. We also found an unidentified CRE (AGAATAAG) strongly associated with
336  peak expression in the morning (ZT = 4)(Fig. 6d).

337 We next examined the connection between circadian CREs and CAM genes in /.

338 taiwanensis. Interestingly, with the exception of the RVE1/2 motif, we did not find significant
339  enrichment of any known circadian CREs in CAM cycling genes relative to non-cycling

340 paralogues. While a targeted search of CAM cycling gene promoters did uncover circadian
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CREs including the CBS, TCP15, TBX, and EE
(Supplementary Table S4), none were strongly
associated with either light or dark phase CAM gene
expression. In addition, both ME and G-box were
conspicuously absent from the promoter regions of
cycling CAM photosynthetic genes.

In sum, TOD-specific enrichment of CREs
appears to differ significantly from Arabidopsis. While
some CRE sequences themselves are conserved
between lycophytes and angiosperms, their interaction
with various transcription factors and subsequent
regulatory function could be quite different in /soetes.
Importantly, our results stand in contrast to other CAM
plants such as S. album® and A. comosus® where CAM
genes appeared to be under the direct control of a
handful of strictly conserved circadian CREs. These
results either suggest that the circadian clock network
that emerged in Isoetes, which included the addition of
central components G/ and PRR1, was quite different
than that found to be highly conserved in seed plants, or
there is significant TOD innovation associated with the
evolution of underwater CAM. Additional Isoetes
genomes and TOD analysis of underwater CAM plants
will be required to narrow these hypotheses.

Conclusion

The assembly and analyses of the /. taiwanensis
genome bridges a substantial gap in our knowledge of
vascular plant evolution. We have combined genomic
and transcriptomic data to corroborate one of the two
hypothesized WGDs in Isoetes relative to its closest
extant relative Selaginella, highlighting the contrasting
history of WGD in these two lineages. Importantly,
comparison of TOD gene expression with genomic
sequence data has given us unique insights into the
convergent evolution of CAM photosynthesis, not only in
a lycophyte, but also in the aquatic environment. As
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Fig. 6: Multiple CREs exhibit time-
structured enrichment in I. taiwanensis.
a,b, Two telobox (TBX) containing motifs
showed similar patterns to one another, both
being enriched in genes with peak
expression at dusk. ¢, A motif containing
Evening Element (EE) was significantly
enriched in genes with peak expression at
mid-day. d, A novel motif was significantly
enriched at mid-day as well. Day (yellow
box); Night (black box); Zeitgeber time (ZT)
is the number of hours (hrs) after lights on (0
hrs).

such, our analysis stands as a necessary counterpoint to similar studies previously conducted in
terrestrial angiosperms. Shifts in expression of CAM pathway genes and the recruitment of
bacterial-type PEPC in I. taiwanensis demonstrate a remarkable degree of plasticity in the
convergent evolution of this complex trait throughout vascular plants. Likewise, differences in
the enrichment of CREs associated with circadian gene expression suggest that control of CAM,
as well as other processes tied to the circadian clock, may have diverged significantly since the
common ancestor of /soetes and flowering plants. We propose that the emergence of
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385 underwater CAM may have followed a distinct route in Isoetes, shedding new light on a classic
386  example of convergent evolution of a complex plant trait.

387

388  Methods:

389  Plant sample

390 Isoetes taiwanensis is endemic to a small pond in Northern Taiwan and has been ex situ
391 propagated in Taiwan Forestry Research Institute. This species is expected to have a low

392  genetic diversity due to a very restricted distribution and a small population size. The voucher
393  specimen was deposited at TAIF herbarium.

394
395 Genome size estimate
396 The genome size of I. taiwanensis was first determined by flow cytometry following the

397  protocols outlined in Kuo et al.** and Li et al?®. The flow cytometric experiments were performed
398 on BD FACSCan system (BD Biosciences, USA), and the Beckman buffer*! was used with

399  0.5% (v/v) 2-mercaptoethanol, 40 mg mlI”' PVP-40, and 0.1 mg mI”' RNaseA added. We used
400 Zea mays (1C = 5.57pg*?) as the internal standard. To confirm the flow cytometry-based

401 measurement, a K-mer frequency distribution was generated from lllumina 2x150 bp paired
402 reads (described below) using Jellyfish*®, which was then input into GenomeScope** and an
403 inhouse pipeline to estimate genome size and heterozygosity.

404
405 Genome sequencing
406 High molecular weight (HMW) DNA was extracted using a modified CTAB method on

407  isolated nuclei. First, leaf tissues were ground in liquid nitrogen, and the powder was

408 resuspended in the Beckman buffer (same as in our flow cytometric experiments). We then
409 used 30um nylon circular filters (Partec, Germany) to remove tissue debris, and precipitated
410  nuclei with 100g centrifugation under 4°C for 20 minutes. For the downstream CTAB

411 procedures, we followed the protocol outlined in Kuo**. HMW DNA was QC’d on an agarose gel
412  for length and quantified on a bioanalyzer. Unsheared HMW DNA was used to make Oxford
413  Nanopore Technologies (ONT) ligation-based libraries (Oxford, UK). Libraries were prepared
414  starting with 1.5ug of DNA and following all other steps in ONT’s SQK-LSK109 protocol. Final
415  libraries were loaded on an ONT flowcell (v9.4.1) and run on the GridlION. Bases were called in
416  real-time on the GridlON using the flip-flop version of Guppy (v3.1). The resulting fastq files
417  were concatenated and used for downstream genome assembly steps. The same batch of
418  HMW genomic DNA was used to construct lllumina (lllumina, USA) libraries for estimating

419  genome size (above) and correcting residual errors in the ONT assembly. Libraries were

420  constructed using the KAPA HyperPrep Kit (Kapa Biosystems, Switzerland) followed by

421 sequencing on an lllumina NovaSeq6000 with 2x150 bp paired-ends.

422
423  Genome assembly
424 ONT reads were assembled using minimap2 and miniasm*, and the resulting draft

425  assembly was then polished by racon*’ (with nanopore reads) and pilon*® (with lllumina reads).
426  Because the plants were grown non-axenically under water, the assembly inevitably contained
427  contaminations. We therefore used blobtools* to identify non-plant contigs based on a

428  combination of contig read coverage, taxonomic assignment, and GC content.
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429 To further scaffold the assembly, we generated a genome map using Bionano with the
430 Direct Label and Stain chemistry and DLE-1 labeling. For this, high molecular weight DNA was
431  extracted using the Bionano Plant DNA Isolation Kit. Hybrid scaffolding, combining the

432  nanopore draft and Bionano map, was done on the Bionano Saphyr computing platform at the
433  McDonnell Genome Institute at Washington University. We then gap-filled the scaffolded

434  genome using two rounds of LR_Gapcloser® (3 iterations each and a pilon polishing in

435  between. Finally, to remove redundancy the purge_haplotigs pipeline®' was used to obtain the
436  v1 assembly. The circular chloroplast genome was assembled from lllumina data using the
437  GetOrganelle® toolkit.

438
439  Repeat annotation
440 We generated a custom /. taiwanensis-specific repeat library using LTR-retriever®® and

441 RepeatModeler®. To identify and remove repeats with homology to plant proteins, we used
442  BLASTX to query each repeat against the uniprot plant protein database (e-value threshold at
443  1e-10). The resulting library was then input into RepeatMasker®® to annotate and mask the
444  repetitive elements in the /. taiwanensis genome.

445
446  Gene annotation
447 We trained two ab initio gene predictors, AUGUSTUS®® and SNAP®’, on the repeat-

448 masked genome using a combination of protein and transcript evidence. For the protein

449  evidence, we relied on the annotated proteomes from Selaginella moellendorffii'® and S.

450  lepidophylla’®, and for the transcript evidence, we used the RNA-seq data from our time-course
451  experiment and a separate corm sample. To train AUGUSTUS, BRAKER2%® was used and the
452  transcript evidence was input as an aligned bam file. On the other hand, SNAP was trained
453 under MAKER with 3 Iterations, and in this case, the transcript evidence was supplied as a de
454  novo assembled transcriptome done by Trinity®®. After AUGUSTUS and SNAP were trained,
455  they were fed into MAKER® along with all the evidence to provide a synthesized gene

456  prediction. Gene functional annotation was done using the eggNOG-mapper v2°'. To filter out
457  spurious gene models, we removed genes that met none of the following criteria: (1) a transcript
458  abundance greater than zero in any sample (as estimated by Stringtie®?), (2) has functional
459  annotation from eggNOG, and (3) was assigned into orthogroups in an Orthofinder? run (see
460 below). The resulting gene set was used in all subsequent analyses.

461
462 Homology assessment and gene family analysis
463 Homology was initially assessed with Orthofinder?® using genomic data from a range of

464  taxa from across the plant tree of life including all CAM plant genomes published to date:

465  Amborella trichopoda®, Ananas comosus®, Anthoceros agrestis®*, Arabidopsis thaliana®®, Azolla
466 filiculoides®®, Brachypodium distachyon®®, Ceratophyllum demersum®®, Isoetes taiwanensis (this
467  study), Kalanchoe fedtschenkoi'®, Marchantia polymorpha®, Medicago truncatula®’, Nelumbo
468  nucifera®, Nymphaea colorata®®, Phalaenopsis equestris'', Physcomitrium patens®?, Picea

469  abies’™, Salvinia cucullata®®, Sedum album®, Selaginella moellendorffii'®, Sphagnum fallax

470  (Sphagnum fallax v0.5, DOE-JGI, http://phytozome.jgi.doe.gov/), Spirodela polyrhiza’,

471  Utricularia gibba™, Vitus vinifera™, and Zostera marina’™, and one algal genome: Mesotaenium
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472  endlicherianum™ . Following homology assessment, the degree of overlap between gene
473  families was assessed using the UpsetR"® package in R.

474
475 RNA editing analysis
476 RNA-seq data was first mapped to combined nuclear and chloroplast genome

477  assemblies using HISAT2'. The reads mapping to the chloroplast genome were extracted
478  using samtools’®. SNPs were called using the mpileup function in bcftools’. The resulting vcf
479 files were filtered using bcftools to remove samples with a depth < 20, quality score < 20 and
480 mapping quality bias < 0.05. After filtering, C-to-U and U-to-C edits were identified using an
481  alternate allele frequency threshold of 10%. Finally, RNA editing sites were related to specific
482  genes using the intersect command in bedtools® and characterized using a custom python

483  script.

484

485 Ks analysis

486 Ks divergence was calculated by several different methods. Initially, a whole paranome

487  Ks distribution was generated using the ‘wgd mcl’ tool®'. Self-synteny was then assessed in i-
488  Adhore and Ks values were calculated and plotted for syntenic pairs only using the ‘wgd syn’
489  tool®. To conduct Ks analysis of related species, RNA-seq data was downloaded from the SRA
490 database for Isoetes yunguiensis, . sinensis, I. drummondii, I. echinospora, 1. lacustris and I.
491  tegetiformans. Transcriptomes were assembled using SOAPdenovo-Trans® with a Kmer length
492  of 31. Next, for each Isoetes genome and transcriptome, we used the DupPipe pipeline to

493  construct gene families and estimate the age distribution of gene duplications®*®*. We translated
494  DNA sequences and identified ORFs by comparing the Genewise®® alignment to the best-hit
495  protein from a collection of proteins from 25 plant genomes from Phytozome®®. For all DupPipe
496 runs, we used protein-guided DNA alignments to align our nucleic acid sequences while

497  maintaining the ORFs. We estimated Ks divergence using PAML® with the F3X4model for each
498 node in the gene family phylogenies. We then used mixture modeling to identify significant

499  peaks consistent with a potential WGD and to estimate their median paralog Ks values.

500 Significant peaks were identified using a likelihood ratio test in the boot.comp function of the
501 package mixtools®® in R.

502
503 Estimation of orthologous divergence
504 To place putative WGDs in relation to lineage divergence, we estimated the synonymous

505 divergence of orthologs among pairs of species that may share a WGD based on their

506 phylogenetic position and evidence from the within-species Ks plots. We used the RBH

507  Orthologue pipeline®* to estimate the mean and median synonymous divergence of orthologs,
508 and compared those with the synonymous divergence of inferred paleopolyploid peaks. We
509 identified orthologs as reciprocal best blast hits in pairs of transcriptomes. Using protein-guided
510 DNA alignments, we estimated the pairwise synonymous divergence for each pair of orthologs
511  using PAML® with the F3X4 model.

512
513  Phylogenetic assessment of ancient whole genome duplication
514 WGD inference was conducted by phylogenomic reconciliation using the WhALE

515  package implemented in Julia?’. First, prior to WhALE analysis, Orthofinder®® was used to
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516 identify groups of orthologous genes among 7 species representing 3 taxonomic groups

517  (bryophytes, lycophytes, and ferns): Azolla filiculoides?®, Isoetes taiwanensis (this study),

518  Marchantia polymorpha®®, Physcomitrium patens®?, Salvinia cucullata®, Selaginella

519  moellendorffii'®, and Sphagnum fallax (Sphagnum fallax v0.5, DOE-JGI,

520  http://phytozome.jgi.doe.gov/). These species were chosen based on phylogenetic relatedness,
521  availability of a high-quality genome assembly, and previous assessment for the presence or
522  absence of WGD. The resulting orthogroups were filtered using a custom python script to

523  remove the 5% largest orthogroups and those with less than 3 taxa. Additionally, WhALE

524  requires removal of gene families that do not contain at least one gene in both bryophytes and
525 ferns to prevent the inclusion of gene families originating after divergence from the most recent
526  common ancestor. Alignments were generated for the filtered orthogroups in PRANK®® using the
527  default settings. A posterior distribution of trees was obtained for each gene family in MrBayes
528  3.2.6% using the LG model. Chains were sampled every 10 generations for 100,000 generations
529  with a relative burn-in of 25%. Following the Bayesian analysis, conditional clade distributions
530 (CCDs) were determined from posterior distribution samples using ALEobserve in the ALE

531  software suite®'. CCD files were subsequently filtered using the ccddata.py and ccdfilter.py

532  scripts provided with the WhALE program. A dated, ultrametric species tree was generated
533  using the ‘ape’ package in R%, in which branch lengths were constrained according to 95%
534  highest posterior density of ages, assuming that bryophytes are monophyletic, as reported by
535  Morris et al.?®. Finally, the filtered CCD files were loaded in Julia along with the associated

536  species phylogeny. A hypothetical WGD node was inferred at 200 million years ago (MYA)

537  along the branch leading to /. taiwanensis, prior to the estimated crown age of extant Isoetes®.
538  Modifying the hypothetical age of this WGD node did not affect the outcome. Additional WGD
539 nodes were placed as positive controls along branches leading to Physcomitrium patens and
540  Azolla filiculoides at 40 MYA and 60 MYA, respectively, based on previous studies?*2®. A false
541 WGD event was also placed arbitrarily in Marchantia polymorpha at 160 MYA as a negative
542  control. A WhALE ‘problem’ was constructed using an independent rate prior and MCMC

543  analysis was conducted using the DynamicHMC library in Julia

544  (https://github.com/tpapp/DynamicHMC.jl) with a sample size of 1000.

545
546  Phylogenetic analysis of root, stomata, and CAM pathway genes
547 Following clustering of homologs in Orthofinder, we conducted phylogenetic analysis of

548  several gene families of interest, including those containing SMF, FAMA, TMM, RSL, and PEPC
549  genes, were subsequently identified based on homology using gene annotations from

550  Arabidopsis. Gene trees from Orthofinder were initially used to identify paralogues and remove
551  fragmented genes where appropriate. In the case of PEPC, orthogroups containing “bacterial-
552  type” and “plant-type” PEPC were combined prior to alignment. Next, amino acid sequences
553  were aligned using MUSCLE® under default settings and trimmed using TrimAL with the -strict
554  flag. An amino acid substitution model was selected according to the Bayesian Information
555  Criterion (BIC) in ModelFinder®® prior to phylogenetic reconstruction by maximum likelihood in
556  IQ-TREE v1.6.12°" with 1000 ultrafast®® bootstrap replicates.

557

558  Phylogenetic analysis of genes salient to the phenylpropanoid and lignin biosynthesis
559  pathway
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560 The datasets used for phylogenetic analysis were based on de Vries et al.*® with added
561 I taiwanensis sequences. In brief, we assembled a dataset of predicted proteins from (A) the
562 genomes of seventeen land plants: Anthoceros agrestis as well as Anthoceros punctatus®,

563  Amborella trichopoda®, Arabidopsis thaliana®, Azolla filiculoides®®, Brachypodium distachyon®,
564  Capsella grandiflora'®, Gnetum montanum'®, Isoetes taiwanensis (this study), Marchantia

565  polymorpha®, Nicotiana tabacum'®?, Oryza sativa'®, Physcomitrium patens®, Picea abies’,
566  Salvinia cucullata®®, Selaginella moellendorffii'®, and Theobroma cacao'®; (B) the genomes of
567  seven streptophyte algae: Chlorokybus atmophyticus'®, Chara braunii'®®, Klebsormidium

568  nitens', Mesotaenium endlicherianum’®, Mesostigma viride'®®, Penium margaritaceum'®,

569  Spirogloea muscicola’>—additionally, we included sequences found in the transcriptomes of
570  Spirogyra pratensis'®, Coleochaete scutata as well as Zygnema circumcarinatum'®, and

571  Coleochaete orbicularis'"; (C) the genomes of eight chlorophytes: Bathycoccus prasinos''?,
572  Chlamydomonas reinhardtii''®*, Coccomyxa subellipsoidea'®, Micromonas sp. as well as

573  Micromonas pusilla''®, Ostreococcus lucimarinus''®, Ulva mutabilis''’, Volvox carteri''®. For
574  phenylalanine ammonia-lyase, additional informative sequences were added based on de Vries
575 etal.'.

576 Building on the alignments published in de Vries et al.**, homologs of each gene family
577  (detected in the aforementioned species via BLASTp) were (re-)aligned using MAFFT v7.475'%°
578  with a L-INS-I approach; both full and partial sequences from /. taiwanensis were retained. We
579  constructed maximum likelihood phylogenies using IQ-TREE 2.0.6'?"; 1000 ultrafast® bootstrap
580 replicates were computed. To determine the best model for protein evolution, we used

581 ModelFinder® and picked the best models based on BIC. Residue information was mapped
582  next to the tree based on structural analyses by Hu et al.'?2, Pan et al.’®, Louie et al.'®*, Youn et

583  al.' and Ferrer et al."?®.

584
585  Time course titratable acidity and RNA-seq experiments
586 Leaves of /. taiwanensis were taken from five individuals every 3 hours over a 27-hour

587  period on a 12-hour light/dark cycle and constant temperature. To measure changes in acidity
588  over time, a portion of the leaf tissues was weighed, mixed with 3.5-5ml of ddH20, and titrated
589  with 0.0125M NaOH solution until pH = 7.0. At the same time, we froze the leaf tissues in liquid
590 nitrogen, and extracted RNA using a modified CTAB protocol'?”. RNA quality was examined on
591 a 1% agarose gel and RNA concentration was quantified using the Qubit RNA HS assay kit
592  (Invitrogen, USA). 2ug of total RNA was used to construct stranded RNA-seq libraries using the
593 lllumina TruSeq stranded total RNA LT sample prep kit (RS-122-2401 and RS-122-2402).

594  Multiplexed libraries were pooled and sequenced on an Illlumina NovaSeq6000 with 2x150 bp
595 paired-ends.

596
597  Differential expression analysis
598 RNA-seq reads were mapped to the combined nuclear and chloroplast genome using

599  HISAT2". Stringtie®® was used to assemble transcripts and estimate transcript abundance. A
600 gene count matrix was produced using the included prepDE.py script. We imported gene count
601  data into the DESEQ2 package in R'? for read normalization using its median of ratios method
602 as well as identification and removal of outlier samples using multidimensional scaling. A single
603  outlier sample from each of six time points (1hr, 4hrs, 7hrs, 10hrs, 13hrs and 19hrs) was
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604 removed from the final dataset. The resulting dataset was used to analyze temporal gene
605 expression patterns in the R package maSigPro'?°. Using maSigPro, genes with significantly
606 differential expression profiles were identified by computing a regression fit for each gene and
607 filtered based on the associated p-value (p<0.001).

608
609 HAYSTACK global cycling prediction
610 Genes with mean expression across all the time points below 1 TPM were considered

611  “not expressed” and filtered prior to cycling prediction with HAYSTACK

612  (https:/qitlab.com/NolanHartwick/super_cycling)®*. HAYSTACK operates by correlating the

613  observed expression levels of each gene with a variety of user specified models that represent
614  archetypal cycling behavior. We used a model file containing sinusoid, spiking traces, and

615  various rough linear interpolations of sinusoids with periods ranging from 20 hours to 28 hours
616  in one-hour increments and phases ranging from 0-23 hours in one-hour increments. Genes
617  that correlated with their best fit model at a threshold of R > 0.8 were classified as cyclers with
618 phase and period defined by the best fit model. This threshold for calling cycling genes is based
619  on previous validated observations®3*34'%_\We also validated this threshold by looking at the
620 cycling of known circadian clock genes (Fig. 5).

621
622  ELEMENT cis-regulatory elements analysis
623 Once cycling genes in |. taiwanensis were identified, we were able to find putative cis-

624  acting elements associated with TOD expression. Promoters, defined as 500 bp upstream of
625 genes, were extracted for each gene and processed by ELEMENT (https://gitlab.com/salk-
626 tm/snake_pip_element)® 3132 Briefly, ELEMENT generates an exhaustive background model
627  of all 3-7 K-mer using all of the promoters in the genome, and then compares the K-mers (3-7
628  bp) from the promoters for a specified gene list. Promoters for cycling genes were split

629  according to their TOD expression into “phase” gene lists and K-mers that were

630 overrepresented in any of these 24 promoter sets were identified by ELEMENT. By splitting up
631  cycling genes according to their associated phase, we gained the power to identify K-mers
632  associated with TOD-specific cycling behavior at every hour over the day. Our threshold for
633 identifying a K-mer as being associated with cycling was an FDR < 0.05 in at least one of the
634  comparisons. The significant K-mers were clustered according to sequence similarity (Fig. 6).
635

636  Promoter motif identification

637 Core CAM genes with significantly differential diel expression profiles (as identified in
638 maSigPro) including B-CA, PEPC, PEPCK, ME, MDH, and PPDK were selected for motif

639 enrichment analysis. Enriched motifs were identified relative to a background consisting of non-
640 cycling paralogues of photosynthetic genes using the AME utility’*3. Promoters were searched
641  for known motifs from the Arabidopsis promoter binding motif database'* with FIMO',

642

643  Data availability:

644 All the raw sequences were deposited in the NCBI Sequence Read Archive under the
645 BioProject PRUINA735564. Genome assembly and annotation are available at

646  https://genomevolution.org/coge/Genomelnfo.pl?gid=61511. Sequence alignments and tree files
647  can be found at https://github.com/dawickell/Isoetes_ CAM.
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