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Abstract

To rapidly process information, neural circuits have to amplify specific activity patterns tran-
siently. How the brain performs this nonlinear operation remains elusive. Hebbian assemblies
are one possibility whereby symmetric excitatory connections boost neuronal activity. However,
such Hebbian amplification is often associated with dynamical slowing of network dynamics,
non-transient attractor states, and pathological run-away activity. Feedback inhibition can al-
leviate these effects but typically linearizes responses and reduces amplification gain. At the
same time, other alternative mechanisms rely on asymmetric connectivity, in conflict with the
Hebbian doctrine. Here we propose nonlinear transient amplification (NTA), a plausible circuit
mechanism that reconciles symmetric connectivity with rapid amplification while avoiding the
above issues. NTA has two distinct temporal phases. Initially, positive feedback excitation se-
lectively amplifies inputs that exceed a critical threshold. Subsequently, short-term plasticity
quenches the run-away dynamics into an inhibition-stabilized network state. By characteriz-
ing NTA in supralinear network models, we establish that the resulting onset transients are
stimulus selective and well-suited for speedy information processing. Further, we find that
excitatory-inhibitory co-tuning widens the parameter regime in which NTA is possible. In sum-
mary, NTA provides a parsimonious explanation for how excitatory-inhibitory co-tuning and
short-term plasticity collaborate in recurrent networks to achieve transient amplification.

Introduction

Perception in the brain is reliable and strikingly fast. Recognizing a familiar face or locating an

animal in a picture only takes a split second (Thorpe et al., 1996). This pace of processing is

truly remarkable since it involves several recurrently connected brain areas each of which has to

selectively amplify or suppress specific signals before propagating them further. This process-

ing is mediated through circuits with several intriguing properties. First, excitatory-inhibitory (EI)

currents into individual neurons are commonly correlated in time and co-tuned in stimulus space
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(Wehr and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Hennequin et al., 2017;

Rupprecht and Friedrich, 2018; Znamenskiy et al., 2018). Second, neural responses to stimula-

tion are shaped through diverse forms of short-term plasticity (STP) (Tsodyks and Markram, 1997;

Markram et al., 1998; Zucker and Regehr, 2002; Pala and Petersen, 2015). Finally, mounting ev-

idence suggests that amplification rests on neuronal ensembles with strong recurrent excitation

(Marshel et al., 2019; Peron et al., 2020), whereby excitatory neurons with similar tuning prefer-

entially form reciprocal connections (Ko et al., 2011; Cossell et al., 2015). Such predominantly

symmetric connectivity between excitatory cells is consistent with the notion of Hebbian cell as-

semblies (Hebb, 1949), which are considered an essential component of neural circuits and the

putative basis of associative memory (Harris, 2005; Josselyn and Tonegawa, 2020). Computa-

tionally, Hebbian cell assemblies can amplify specific activity patterns through positive feedback,

also referred to as Hebbian amplification. Based on these principles, several studies have shown

that Hebbian amplification can drive persistent activity that outlasts a preceding stimulus (Hopfield,

1982; Amit and Brunel, 1997; Yakovlev et al., 1998; Wong and Wang, 2006; Zenke et al., 2015;

Gillary et al., 2017), comparable to selective delay activity observed in the prefrontal cortex when

animals are engaged in working memory tasks (Funahashi et al., 1989; Romo et al., 1999).

However, in most brain areas, evoked responses are transient and sensory neurons typically ex-

hibit pronounced stimulus onset responses, after which the circuit dynamics settle into a low-

activity steady-state even when the stimulus is still present (DeWeese et al., 2003; Mazor and

Laurent, 2005; Bolding and Franks, 2018). Preventing run-away excitation and multi-stable attrac-

tor dynamics in recurrent networks requires powerful and often finely tuned feedback inhibition

resulting in EI balance (Amit and Brunel, 1997; Compte et al., 2000; Litwin-Kumar and Doiron,

2012; Ponce-Alvarez et al., 2013; Mazzucato et al., 2019). However, feedback inhibition tends

to linearize steady-state activity (Van Vreeswijk and Sompolinsky, 1996; Baker et al., 2020) and

does not necessarily generate pronounced onset responses consistent with experiments. While

feedforward inhibition provides one possible explanation for transient onset dynamics (Wehr and

Zador, 2003; Vogels et al., 2011; Gjoni et al., 2018), it does not explain the recurrent excitation

commonly seen in cortical circuits. As a possible remedy, balanced amplification constitutes a

putative mechanism for transient amplification in recurrent neural networks (Murphy and Miller,

2009). However, to achieve strong amplification, several ensembles need to be chained together

into a hidden feedforward structure which manifests in strongly non-normal recurrent connectivity

(Goldman, 2009; Hennequin et al., 2012, 2014; Bondanelli and Ostojic, 2020; Gillett et al., 2020).

Yet, such network structures are at odds with the often observed symmetric excitatory connectivity

(Ko et al., 2011; Cossell et al., 2015).

We are thus faced with a conundrum. On the one hand, Hebbian assemblies, whose connec-

tivity is consistent with neurobiology, can amplify specific stimuli. But, the resulting persistent

attractor dynamics are inconsistent with the transient activity observed in experiments. On the
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other hand, non-normal connectivity offers an appealing explanation for transient amplification in

recurrent neural network models, but it is at odds with the mainly observed symmetric connec-

tivity. Importantly, however, previous studies largely ignored STP, which considerably modulates

synaptic transmission and shapes neural responses on timescales ranging from milliseconds to

minutes (Tsodyks and Markram, 1997; Markram et al., 1998; Zucker and Regehr, 2002; Pala and

Petersen, 2015). This raises the question of whether and how STP or other neuronal adaptation

mechanisms could resolve the puzzle by reconciling the seemingly disparate aspects.

Here we address this question by studying the emergence of transient dynamics in recurrent net-

work models and examine how they are shaped through neuronal nonlinearities, STP, and EI co-

tuning. Specifically, we first characterize the conditions under which individual neuronal ensembles

with symmetric excitatory connectivity succumb to explosive run-away activity in response to ex-

ternal stimulation. We then show how STP can effectively mitigate this instability by re-stabilizing

ensemble dynamics in an inhibition-stabilized network (ISN) state, but only after generating a

pronounced stimulus-triggered onset transient. We call this mechanism nonlinear transient ampli-

fication (NTA) and show that it yields selective onset responses that carry more relevant stimulus

information than the subsequent steady-state. Finally, we characterize the functional benefits of

global EI balance and co-tuning for NTA. We find that pattern classification in networks with NTA

is enhanced by EI balance in individual neurons, a feature that is widely observed in the brain

(Wehr and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich,

2018) and readily emerges in computational models endowed with activity-dependent plasticity

of inhibitory synapses (Vogels et al., 2011). Importantly, NTA purports that, following transient

amplification, neuronal ensembles settle into a stable ISN state, consistent with previous work

on stabilized supralinear networks (SSNs) (Ahmadian et al., 2013; Rubin et al., 2015; Hennequin

et al., 2018; Kraynyukova and Tchumatchenko, 2018). In summary, our work indicates that NTA

is ideally suited to amplify stimuli rapidly through the interaction of symmetric recurrent excitation

with STP.

Results

To understand the emergence of transient responses in recurrent neural networks, we studied

rate-based population models with a supralinear, power law input-output function (Fig. 1A, B; Ah-

madian et al., 2013; Hennequin et al., 2018), which captures essential aspects of neuronal acti-

vation (Priebe et al., 2004), while also being analytically tractable. We first considered an isolated

neuronal ensemble consisting of one excitatory (E) and one inhibitory (I) population (Fig. 1A).

The dynamics of this network are given by

τE
drE

dt
= −rE +

[
JEE rE − JEIrI + gE

]αE

+
(1)
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τI
drI

dt
= −rI +

[
JIE rE − JIIrI + gI

]αI

+
(2)

where rE and rI are the firing rates of the excitatory and inhibitory population, τE and τI represent

the corresponding time constants, JXY denotes the synaptic strength from the population Y to the

population X , where X , Y ∈ {E , I}, gE and gI are the external inputs to the respective populations.

Finally, αE and αI , the exponents of the respective input-output functions, are fixed at two unless

mentioned otherwise. For ease of notation, we further define the weight matrix J of the compound

system as follows:

J =

[
JEE −JEI

JIE −JII

]
(3)

To account for the strong reciprocal E-to-E synaptic connections (Ko et al., 2011; Cossell et al.,

2015), we studied networks in which the determinant

det J = −JEEJII + JIEJEI

is negative. To mimic sensory stimulation, we investigated ensemble dynamics as a function of

external input strength gE . Importantly, we assumed that most inhibition originates from recurrent

connections and (Franks et al., 2011; Large et al., 2016), hence, we kept the input to the inhibitory

population gI fixed.

Nonlinear amplification of inputs above a critical threshold

We initialized the network in a stable low-activity state in the absence of external stimulation, con-

sistent with spontaneous activity in cortical networks (Fig. 1C). However, an input gE of sufficient

strength, destabilized the network (Fig. 1C). Importantly, this behavior is distinct from linear net-

work models in which the network stability is independent of inputs (Methods). The transition from

stable to unstable dynamics can be understood by examining the phase portrait of the system

(Fig. 1D). Before stimulation, the system has a stable and an unstable fixed point (Fig. 1D, left).

However, both fixed points disappear for an input gE above a critical stimulus strength (Fig. 1D,

right).

To further understand the system’s bifurcation structure, we consider the characteristic function

F (z) = JEE

[
z
]αE

+
− JEI

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE (4)

where z denotes the total current into the excitatory population and det J represents the determi-

nant of the weight matrix (Kraynyukova and Tchumatchenko, 2018; Methods). The characteristic

function reduces the original two-dimensional system to one dimension, whereby the zero cross-

ings of the characteristic function correspond to the fixed points of the original system (cf. Eq. 1-2).

We use this correspondence to visualize how the fixed points of the system change with the input

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447718
http://creativecommons.org/licenses/by/4.0/


C

60 4
Time (s)

2

F
ir
in

g
 r

a
te

 (
H

z
)

0

10
4

10
2

10
0

stimulation

E
I

F

10
-1

10
-2

10
2

10
1

10
0

0.60

0.55

0.50

0.45

0.40

0.35
1 2 3 4

E
x
c
it
a
to

ry
 f
ir
in

g
 r

a
te

 (
H

z
)

J
E

E

g
E

unstable

JII

JIE

JEI

JEE

g
I

g
E

E I

network schematic

A

stable saddle E-nullcline I-nullclineD

before stimulation during stimulation

Excitatory firing rate
0 1 2 3 4 5

0

1

2

3

4

5

In
h
ib

it
o
ry

 f
ir
in

g
 r

a
te

Excitatory firing rate
0 1 2 3 4 5

0

1

2

3

4

5

In
h
ib

it
o
ry

 f
ir
in

g
 r

a
te

r = [current]
+

> 1

B

E

0 1 2 3
z

-5

0

10

5

15

F
(z
)

g
E : 1.5
g

E : 0.75

g
E : 3.0
g

E : 2.25

supralinear input-output function

F
ir
in

g
 r

a
te

Input current

α

α

Fig. 1. Neuronal ensembles nonlinearly amplify inputs above a critical threshold. (A) Schematic of the recurrent
ensemble model consisting of an excitatory (blue) and an inhibitory population (red). (B) Supralinear input-output
function given by a rectified power law with exponent α = 2. (C) Firing rates of the excitatory (blue) and inhibitory
population (red) in response to external stimulation during the interval from 2–4 s (gray bar). The stimulation was
implemented by temporarily increasing the input gE . (D) Phase portrait of the system before stimulation (left; cf. C
orange) and during stimulation (right; cf. C green). (E) Characteristic function F (z) for varying input strength gE . Note
that the function loses its zero crossings, which correspond to fixed points of the system for increasing external input.
(F) Heat map showing the evoked firing rate of the excitatory population for different parameter combinations JEE and
gE . The gray region corresponds to the parameter regime with unstable dynamics.

gE . Increasing gE shifts F (z) upwards, which eventually leads to all zero crossings disappearing

and the ensuing unstable dynamics (Fig. 1E; Methods). Importantly, for any weight matrix J with

negative determinant, there exists a critical input gE at which all fixed points disappear (Methods).

While for weak recurrent E-to-E connection strength JEE , the transition from stable dynamics to

unstable is gradual, in that it happens at higher firing rates (Fig. 1F), it becomes more abrupt for

stronger JEE . Thus, our analysis demonstrates that individual neuronal ensembles with negative

determinant det J nonlinearly amplify inputs above a critical threshold by switching from initially

stable to unstable dynamics.

Short-term plasticity, but not spike-frequency adaptation, can re-stabilize ensemble
dynamics

Since unstable dynamics are not observed in neurobiology, we wondered whether neuronal spike-

frequency adaptation (SFA) or STP could re-stabilize the ensemble dynamics while keeping the

nonlinear amplification character of the system. Specifically, we considered SFA of excitatory neu-

rons, E-to-E short-term depression (STD), and E-to-I short-term facilitation (STF). We focused on

these particular mechanisms because they are ubiquitously observed in the brain. Most pyrami-
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dal cells exhibit SFA (Barkai and Hasselmo, 1994) and most synapses show some form of STP

(Markram et al., 1998; Zucker and Regehr, 2002; Pala and Petersen, 2015). Moreover, the time

scales of these mechanisms are well-matched to typical timescales of perception, i.e., from mil-

liseconds to seconds (Tsodyks and Markram, 1997; Fairhall et al., 2001; Pozzorini et al., 2013).

When we simulated our model with weak SFA, it did not stabilize run-away excitation (Fig. 2A;

Methods). Increasing the strength of SFA eventually led to oscillatory ensemble activity (Fig. S1).

To understand this behavior, we analyzed the corresponding characteristic function F (z) for an

ensemble with SFA. We found that in the presence of SFA, F (z) can maximally have one stable

low-activity fixed point and one unstable high-activity fixed point (Fig. S1). This property is closely

related to SFA’s tendency to linearize a neuron’s input-output function (Ermentrout, 1998; Benda

and Herz, 2003) but not to saturate it. Thus, when an input causes the system’s fixed points to

disappear (cf. Fig. 1D, E), weak SFA either does not restore any fixed point, or the high-activity

fixed point cannot “catch up” with the run-away dynamics. Therefore, the system’s dynamics re-

main unstable. Strong SFA, on the other hand, allows the high-activity fixed point to catch up with

the increasing current into the excitatory population z, but since it is an unstable fixed point, this

results in a reduction of the excitatory ensemble activity toward the low-activity fixed point. Un-

fortunately, this change is only short-lived and as the adaptation variable recovers (cf. Eq. (21)),

the ensemble activity engages in another cycle of explosive run-away activity. Thus, while the

input is present, strong SFA creates a stable limit cycle with associated oscillatory ensemble ac-

tivity (Fig. S1, Methods), which was also shown in previous modeling studies (Van Vreeswijk and

Hansel, 2001), but is not typically observed in neurobiology (DeWeese et al., 2003; Mazor and

Laurent, 2005; Rupprecht and Friedrich, 2018).

Next, we considered STP, which is capable of saturating the effective neuronal input-output func-

tion (Mongillo et al., 2012; Zenke et al., 2015). We first analyzed the stimulus-evoked network

dynamics when we added STD to the recurrent E-to-E connections. Strong depression of synap-

tic efficacy resulted in a brief onset transient after which the ensemble dynamics quickly settled

into a stimulus-evoked steady-state with slightly higher activity than the baseline (Fig. 2B, left).

After stimulus removal, the ensemble activity returned back to its baseline level (Fig. 2B, left;

Fig. 2C). Notably, the ensemble dynamics remained stable, albeit at a much higher firing rate,

when inhibition was inactivated during stimulus presentation (Fig. 2B, right). This shows that STP

is capable of creating a stable high-activity fixed point, which is fundamentally different from the

SFA dynamics discussed above. This difference in ensemble dynamics can be readily understood

by analyzing the self-consistent solutions of F (z). Initially, the ensemble is at the stable low activity

fixed point. But the stimulus causes this fixed point to disappear, thus giving way to positive feed-

back which creates the leading edge of the onset transient (cf. Fig. 2B). However, because E-to-E

synaptic transmission is rapidly reduced by STD, the curvature of F (z) changes and a stable fixed

point is created, thereby allowing excitatory run-away dynamics to terminate and the ensemble
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dynamics settle into a steady-state at low activity levels (Fig. 2D). We found that E-to-I STF leads

to similar dynamics (Fig. 2E, left) with the only difference that this configuration requires inhibition

for network stability (Fig. 2E, right), whereas E-to-E STD stabilizes activity even without inhibition,

albeit at physiologically implausibly high activity levels. Importantly, the re-stabilization through

either form of STP did not impair an ensemble’s ability to amplify stimuli during the initial onset

phase.

To highlight the amplification power of supralinear networks over purely linear networks with equiv-

alent weight strengths, we calculated the ratio of the evoked peak amplitudes of the firing rate to

the input strength, henceforth called the “Amplification index”. Notably, amplification of stimuli

above the critical threshold in supralinear networks is orders of magnitude larger than in a lin-

ear network with comparable weights (Fig. 2F). We stress that the resulting high firing rates are

parameter-dependent (Fig. S2), but also due to the short duration of the onset peak. In experi-

ments, such high rates are observed as precisely time-locked spikes (DeWeese et al., 2003; Wehr

and Zador, 2003; Bolding and Franks, 2018; Gjoni et al., 2018).

Furthermore, we investigated how the network operating regime changes with the stimulation.

Recent studies suggested that cortical networks operate as inhibition-stabilized networks (ISNs)

(Sanzeni et al., 2020), in which the excitatory network is unstable in the absence of feedback

inhibition (Tsodyks et al., 1997). Whether a network is an ISN or not is mathematically determined

by the real part of the leading eigenvalue of the Jacobian of the excitatory-to-excitatory subnetwork

(Tsodyks et al., 1997). We computed the leading eigenvalue in our model and referred to it as

“ISN index” in the following (Methods). We found that the ISN index switches sign from negative

to positive during external stimulation, indicating that the ensemble transitions from a non-ISN

to an ISN (Fig. 2G). Notably, this behavior is distinct from linear network models in which the

network operating regime is independent of the input (Methods). One defining characteristic of

ISNs is that injecting excitatory (inhibitory) current into inhibitory neurons decreases (increases)

inhibitory firing rates, which is also known as the paradoxical effect (Tsodyks et al., 1997; Miller

and Palmigiano, 2020). To illustrate the difference in network operating regimes in terms of the

paradoxical effect, we injected excitatory current into the inhibitory population before and during

stimulus presentation. We found that before stimulation, the network did not exhibit the paradoxical

effect (Fig. 2H, left; Fig. S3). In contrast, injecting excitatory inputs into the inhibitory population

during stimulation reduced their activity (Fig. 2H, right; Fig. S3). Thus, during stimulation the

neuronal ensemble switches to an ISN state.

Despite the fact that the supralinear input-output function of our framework captures some aspects

of intracellular recordings (Priebe et al., 2004), it is unbounded and thus allows infinitely high firing

rates. This is in contrast to neurobiology where firing rates are bounded due to neuronal refractory

effects. While this assumption permitted us to analytically study the system and therefore to gain

a deeper understanding of the underlying ensemble dynamics, we wondered whether our main
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Fig. 2. Short-term plasticity, but not spike-frequency adaptation, re-stabilizes ensemble dynamics. (A) Firing
rates of the excitatory (blue) and inhibitory population (red) in the presence of spike-frequency adaptation (SFA). During
stimulation (gray bar) additional input is injected into the excitatory population. The inset shows a cartoon of how SFA
affects spiking neuronal dynamics in response to a step current input. (B) Left: Same as (A) but in the presence of E-
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E-to-E STD. Different brightness levels correspond to different time points in B left. (E) Same as (B) but in the presence
of E-to-I short-term facilitation (STF). (F) Amplification index, which is defined as the ratio of the peak amplitude to input
gE , as a function of input gE for supralinear networks (blue) and linear networks (orange) in the presence of E-to-E
STD. (G) inhibition-stabilized network (ISN) index, which corresponds to the largest real part of the eigenvalues of the
Jacobian matrix of the E-E subnetwork, as a function of time for the network with E-to-I STF in E left. For values
above zero (dashed line), the ensemble is an ISN. (H) The normalized firing rates of the excitatory (blue) and inhibitory
population (red) when injecting additional excitatory current into the inhibitory population before stimulation (left; cf.
orange bar in E), and during stimulation (right; cf. green bar in E). Initially, the ensemble is in the non-ISN regime
and injecting excitatory current into the inhibitory population increases its firing rate. During stimulation, however, the
ensemble is an ISN. In this case, excitatory current injection into the inhibitory population results in a reduction of its
firing rate, also known as the paradoxical effect.
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conclusions were also valid when we limited the maximum firing rates. To that end, we carried

out the same simulations while capping the firing rate at 300 Hz. In the absence of additional

SFA or STP mechanisms, the firing rate saturation introduced a stable high-activity state in the

ensemble dynamics which replaced the unstable dynamics in the uncapped model. As above,

the ensemble entered this high-activity steady-state when stimulated with an external input above

a critical threshold and exhibited persistent activity after stimulus removal (Fig. S4). While weak

SFA did not change this behavior, strong SFA resulted in oscillatory behavior during stimulation

consistent with previous analytical work (Fig. S4, Van Vreeswijk and Hansel, 2001), but did not in

stable steady-states commonly observed in biological circuits. In the presence of E-to-E STD or

E-to-I STF, however, the ensemble exhibited transient evoked activity at stimulation onset that was

comparable to the uncapped case. Importantly, the ensemble did not show persistent activity after

the stimulation (Fig. S4). Finally, we confirmed that all of these findings were qualitatively similar

in a realistic spiking neural network model (Fig. S5; Methods).

In summary, we found that neuronal ensembles can rapidly, nonlinearly, and transiently amplify

inputs by briefly switching from stable to unstable dynamics before being re-stabilized through STP

mechanisms. We call this mechanism nonlinear transient amplification (NTA) which, in contrast to

balanced amplification (Murphy and Miller, 2009; Hennequin et al., 2012), arises from nonlinear

population dynamics interacting with STP. NTA is characterized by a large onset response, a

subsequent ISN steady-state while the stimulus persists, and a return to a unique baseline activity

state after the stimulus is removed. Thus, NTA is ideally suited to rapidly and nonlinearly amplify

sensory inputs through symmetric recurrent excitatory connections, like reported experimentally

(Ko et al., 2011; Cossell et al., 2015), while avoiding persistent activity.

Co-tuned inhibition broadens the parameter regime of NTA

Up to now, we have focused on a single neuronal ensemble. However, to process information in the

brain, several ensembles with different stimulus selectivity presumably coexist and interact in the

same circuit. This coexistence creates potential problems. It can lead to multi-stable persistent

attractor dynamics, which are not commonly observed and could have adverse effects on the

processing of subsequent stimuli. One solution to this issue could be EI co-tuning, which arises

in network models with plastic inhibitory synapses (Vogels et al., 2011) and has been observed

experimentally in several sensory systems (Wehr and Zador, 2003; Froemke et al., 2007; Okun

and Lampl, 2008; Rupprecht and Friedrich, 2018).

To characterize the conditions under which neuronal ensembles nonlinearly amplify stimuli without

persistent activity, we analyzed the case of two interacting ensembles. More specifically, we con-

sidered networks with two excitatory ensembles and distinguished between global and co-tuned

inhibition (Fig. 3A). In the case of global inhibition, one inhibitory population non-specifically in-

hibits both excitatory populations (Fig. 3A, left). In contrast, in networks with co-tuned inhibition,
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Fig. 3. Co-tuned inhibition broad-
ens the parameter regime of NTA.
(A) Schematic of two neuronal ensem-
bles with global inhibition (left) and with
co-tuned inhibition (right). (B) Firing
rate dynamics of bi/multi-stable ensem-
ble dynamics (left) and uni-stable (right).
In both cases, additional excitatory in-
puts are injected into excitatory ensem-
ble E1 during the period marked in
gray. (C) Analytical solution of uni- and
bi/multi-stability regions for global inhibi-
tion (left) and co-tuned inhibition (right).
Co-tuning results in a larger parameter
regime of uni-stability. The triangles cor-
respond to the two examples in B.

each ensemble is formed by a dedicated pair of an excitatory and an inhibitory population which

can have cross-over connections, for instance, due to overlapping ensembles (Fig. 3A, right).

Global inhibition supports winner-take-all competition and is therefore often associated with multi-

stable attractor dynamics (Wong and Wang, 2006; Mongillo et al., 2008). We first illustrated this

effect in a network model with global inhibition. When the recurrent excitatory connections within

each ensemble were sufficiently strong, small amounts of noise in the initial condition led to one

of the ensembles spontaneously activating at elevated firing rates, while the other ensemble’s

activity remained low (Fig. 3B, left). A specific external stimulation could trigger a switch from one

state to the other in which the other ensemble was active at a high firing rate. Importantly, this

change persisted even after the stimulus had been removed, a hallmark of multi-stable dynamics.

In contrast, uni-stable systems have a global symmetric state in which both ensembles have the

same activity in the absence of stimulation. While the stimulated ensemble showed elevated

firing rates in response to the stimulus, its activity returned to the baseline level after the stimulus

is removed (Fig. 3B, right), consistent with experimental observations (DeWeese et al., 2003;

Rupprecht and Friedrich, 2018; Bolding and Franks, 2018). Note that the only difference between

these two models is that JEE is larger in the multi-stable example than in the uni-stable one.

Symmetric baseline activity is most consistent with activity observed in sensory areas. Hence,
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we sought to understand which inhibitory connectivity would be most conducive to maintain it. To

that end, we analytically identified the uni-stability conditions, which are determined by the leading

eigenvalue of the Jacobian matrix of the system, for networks with varying degrees of EI co-tuning

(Methods). We found that a broader parameter regime underlies uni-stability in networks with co-

tuned inhibition than global inhibition (Fig. 3C). Notably, this conclusion is general and extends to

networks with an arbitrary number of ensembles (Methods). However, co-tuning does not impair

an ensemble’s ability to exhibit NTA as shown above for an isolated ensemble with perfect co-

tuning. Thus, co-tuned inhibition helps to avoid persistent attractor dynamics and broadens the

parameter regime of uni-stability without adversely affecting NTA.

NTA provides better pattern completion and pattern separation than fixed points

Neural circuits are capable of generating stereotypical activity patterns in response to partial cues

and forming distinct representations in response to different stimuli. To test whether NTA achieves

pattern completion and supports pattern separation, we analyzed the transient onset activity in our

models and compared it to the fixed point activity.

To investigate pattern completion and pattern separation in our model, we considered a co-tuned

network with E-to-E STD and two distinct excitatory ensembles E1 and E2. We gave additional

input gE1 to a Subset 1, consisting of 75% of the neurons in ensemble E1 (Fig. 4A). We then mea-

sured the evoked activity in the remaining 25% of the excitatory neurons in E1 to quantify pattern

completion. To assess pattern separation, we injected additional input gE1 into the E1 neurons

during the second stimulation phase (Fig. 4A) while measuring the activity of E2. Interestingly,

we found that neurons in Subset 2, which did not receive additional input, showed large onset re-

sponses, their steady-state activity was largely suppressed (Fig. 4B). Despite the fact that inputs

to E1 caused increased transient onset responses in E2, the amount of increase was orders of

magnitude smaller than in E1 (Fig. 4B). To quantify pattern completion, we defined the

Association Index = 1 +
rE12 − rE11

rE12 + rE11

(5)

Here, rE11 and rE12 correspond to the subpopulation activities of E1, respectively. As per our

definition, the Association Index ranges from zero to one, with larger values indicating stronger

associativity. In addition, to quantify the separation between E1 and E2, we considered a binary

classifier tasked to distinguish the two input stimuli and measured the distance to the classifier’s

decision boundary, whereby larger values indicate a larger classification margin and thus better

separability (Methods). Note that the Association Index and the distance to the decision bound-

ary were computed from different input configurations corresponding to different phases in our

simulation paradigm (Fig. 4B).

With these definitions, we ran simulations with different input strengths gE1. We found that the

onset peaks showed stronger association than the fixed-point activity (Fig. 4C). Note that the
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Fig. 4. NTA yields stronger pattern completion and pattern separation than fixed points. (A) Schematic of the
network setup used to probe pattern completion and pattern separation. To assess the effect on pattern completion,
75% of the neurons (Subset 1) in ensemble E1 received additional input gE1 during Phase 1 (2–4 s), while we recorded
the firing rate of the remaining 25% (Subset 2) in the excitatory ensemble E1. To evaluate the impact on pattern
separation, all neurons in E1 received additional inputs gE1 in Phase 2 (6–8 s) while the firing rate of E2 was measured.
(B) Examples of firing rates of Subset 2 of E1 (left, blue) and E2 (right, green) with E-to-E STD. (C) Association index
as a function of input gE1 for the onset peak amplitude (magenta solid line) and fixed-point activity (gray dashed line)
for E-to-E STD. (D) Distance to the decision boundary as a function of input gE1 for the onset peak amplitude (magenta
solid line) and fixed-point activity (gray dashed line) for E-to-E STD. (E and F) Same as C and D but as a function of β,
which controls the inner- and inter-ensemble connection strength.

association index at the fixed point remained zero, a direct consequence of rE12 being suppressed

to zero (Fig. 4C). Furthermore, we found that the separation between the transient onset response

and the decision boundary was always greater than for the fixed-point activity (Fig. 4D) showing

that onset responses provide better pattern separation than fixed points.

To investigate how the recurrent excitatory connectivity affects both pattern completion and pattern

separation, we introduced the parameter β which controls the within-ensemble E-to-E strength JEE

relative to the inter-ensemble strength J
′

EE (Fig. 4A) such that JEE = βJtot and J
′

EE = (1 − β)Jtot.

These definitions ensure that the total weight Jtot = JEE +J
′

EE remains constant for any choice of β.

Notably, the overall recurrent excitation strength within an ensemble JEE increases with increasing

β. When β is larger than 0.5, the excitatory connection strength within the ensemble JEE exceeds

the one between ensembles J
′

EE .

We found that NTA’s pattern completion and separation capabilities monotonically increase with β

(Fig. 4E, F), confirming that recurrent excitatory strength is a key determinant of network dynamics.

Finally, we confirmed that our findings were also valid in networks with E-to-I STF (Fig. S6), which
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Fig. 5. NTA provides stronger amplification and pattern separation in morphing experiments than fixed point
activity. (A) Schematic of the morphing stimulation paradigm. The fraction of the additional inputs into the two excitatory
ensembles is controlled by the parameter p. (B) Peak amplitude of E1 (blue) and E2 (green) as a function of p.
Brightness levels represent different recurrent E-to-E connection strengths JEE . (C) Same as in B but for fixed-point
activity. (D) Distance to the decision boundary as a function of p for the peak onset response (magenta solid line)
and fixed-point activity (gray dashed line). (E) Same as D but with different E-to-I connection strengths J

′
IE across

ensembles.

is commonly observed in the brain (Markram et al., 1998; Zucker and Regehr, 2002; Pala and

Petersen, 2015). In summary, NTA’s transient onset responses result in overall better pattern

completion and pattern separation than fixed point activity.

NTA provides higher amplification and pattern separation in morphing experiments

So far, we only considered input to one ensemble. To examine how representations in our model

are affected by ambiguous inputs to several ensembles, we performed additional morphing ex-

periments (Freedman et al., 2001; Niessing and Friedrich, 2010). To that end, we introduced the

parameter p which interpolates between two input stimuli which target E1 and E2 respectively.

When p is zero, all additional input is injected into E1. For p equal to one, all additional input is

injected into E2. Finally, p equal to 0.5 corresponds to the symmetric case in which E1 and E2

receive the same amount of additional input (Fig. 5A).

First, we investigated how the recurrent excitatory connection strength within each ensemble JEE

affects the onset peak amplitude and fixed-point activity. We found that the peak amplitudes de-

pend strongly on JEE , whereas the fixed-point activity was only weakly dependent on JEE (Fig. 5B,

C). When we disconnected the ensembles by completely eliminating all recurrent excitatory con-
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nections, activity was noticeably decreased (Fig. 5B, C). This illustrates, that recurrent excitation

does play an important role in selectively amplifying specific stimuli similar to experimental obser-

vations (Marshel et al., 2019; Peron et al., 2020), but that amplification is highest at the onset.

Further, we examined the impact of competition through lateral inhibition as a function of the E-

to-I inter-ensemble strength J
′

IE (Methods). As above, we quantified its impact by measuring the

representational distance to the decision boundary for the transient onset responses and fixed-

point activity. We found that regardless of the specific STP mechanism, the distance was larger

for the onset responses than for the fixed-point activity, consistent with the notion that the onset

can encode the stimulus identity more reliably than the fixed-point (Fig. 5D-E, Fig. S7). Thus, NTA

provides stronger amplification and pattern separation than fixed points in response to ambiguous

stimuli.

Nonlinear transient amplification in spiking neural networks

Thus far, our analysis relied on power law neuronal input-output functions in the interest of an-

alytical tractability. To test whether our findings also qualitatively apply to more realistic network

models, we built a spiking neural network consisting of randomly connected 800 excitatory and

200 inhibitory neurons, in which the E-to-E synaptic connections were subject to STD (Methods).

Here, we defined five overlapping ensembles, each corresponding to 200 randomly selected ex-

citatory neurons. During an initial simulation phase (0–22s), we consecutively stimulated each

pattern by giving additional input to their excitatory neurons, whereas the input to other neurons

remained unchanged (Fig. 6A). In addition, we also tested pattern completion by stimulating only

75% (Subset 1) of the neurons belonging to Pattern 5 (22–24 s; Fig. 6A). We quantified each pat-

tern’s activity by calculating the population firing rate of the stored patterns (Methods). As in the

case of the rate-based model, the neuronal ensembles in the spiking model generated pronounced

transient onset responses. We then measured the difference of peak pattern activity and steady-

state activity between the stimulated pattern and the remaining unstimulated patterns (Methods).

As for the rate-based networks, this difference was consistently larger for the onset peak than for

the fixed-point (Fig. 6B, C). Thus, transient onset responses allow better stimulus separation than

fixed points also in spiking neural network models.

Finally, to visualize the neural activity, we projected the binned spiking activity during the first

10 s of our simulation onto its first two principal components. Notably, the PC trajectory does

not exhibit a pronounced rotational component (Fig. 6D) as activity is confined to one specific

ensemble, consistent with experiments (Marshel et al., 2019). Furthermore, we computed the fifth

pattern’s activity for Subset 1 and 2 during the time interval 16–26 s. In agreement with our rate

models, neurons in Subset 2 which did not receive additional inputs showed a strong response

at the onset (Fig. 6E), but not at the fixed point, suggesting that the strongest pattern completion

occurs during the initial amplification phase. Thus, the key characteristics of NTA are preserved
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Fig. 6. Spiking neural network simulations qualitatively reproduce NTA dynamics of rate models. (A) Spiking
activity of excitatory (blue) and inhibitory (red) neurons in a spiking neural network. From 2–20 s, Patterns 1–5 individ-
ually received additional input for 2 s each (colored bars). From 22–24 s, 75% of Pattern 5 neurons (Subset 1) received
additional input, whereas the rest 25% of Pattern 5 neurons (Subset 2) did not receive additional input. The symbols
at the top designate the different simulation phases of baseline activity, the onset transients, and the fixed point activ-
ity. Different colors correspond to the distinct stimulation periods. (B) Pattern activity of each stored pattern (colors).
(C) Difference in pattern activity between the stimulated pattern with the remaining patterns for the transient onset peak
and the fixed point. Points correspond to the different stimulation periods. (D) Spiking activity during the interval 0–10 s
represented in the PCA basis spanned by the first two principal components which captured approximately 40% of
the total variance. The colored lines represent the PC trajectories of the first two stimuli shown in A and B. Triangles,
points and crosses correspond to the onset peak, fixed point, and baseline activity, respectively. (E) Pattern activity of
Subset 1 (purple) and Subset 2 (gray) of Pattern five from 16–26 s. Onset peaks are marked by triangles.

across rate-based and more realistic spiking neural network models.

Discussion

In this study, we demonstrated that neuronal ensemble models with recurrent excitation and suit-

able forms of STP exhibit nonlinear transient amplification (NTA), a putative mechanism underlying

selective amplification in recurrent circuits. NTA combines a supralinear neuronal transfer func-

tion, recurrent excitation between neurons with similar tuning, and pronounced STP. Using ana-

lytical and numerical methods, we showed that NTA generates rapid transient onset responses

during which optimal stimulus separation occurs rather than at steady-states. Additionally, we
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showed that co-tuned inhibition is conducive to prevent the emergence of persistent activity, which

could otherwise interfere with processing subsequent stimuli. In contrast to balanced amplifica-

tion (Murphy and Miller, 2009), NTA is an intrinsically nonlinear mechanism for which only stimuli

above a critical threshold are amplified effectively. While the precise threshold value is parameter-

dependent, it can be arbitrarily low provided the excitatory recurrent connections are sufficiently

strong (cf. Fig. 1F). Importantly, such a critical activation threshold offers a possible explanation

for sensory perception experiments which show similar threshold behavior (Marshel et al., 2019;

Peron et al., 2020). Following transient amplification, ensemble dynamics are inhibition-stabilized,

which renders our model compatible with existing work on SSNs (Ahmadian et al., 2013; Rubin

et al., 2015; Hennequin et al., 2018; Kraynyukova and Tchumatchenko, 2018). Thus, NTA pro-

vides a parsimonious explanation for why sensory systems may rely upon neuronal ensembles

with recurrent excitation in combination with EI co-tuning, and pronounced STP dynamics.

Several theoretical studies approached the problem of transient amplification in recurrent neural

network models. One particularly well-studied mechanism relies on non-normal connectivity ma-

trices whereby stimuli are selectively amplified through asymmetric synaptic connections with an

implicit feedforward structure (Murphy and Miller, 2009; Goldman, 2009; Hennequin et al., 2014;

Bondanelli and Ostojic, 2020; Gillett et al., 2020; Christodoulou et al., 2021). Importantly, non-

normal amplification can generate rich transient activity in linear network models but lacks a critical

threshold above which amplification occurs. These properties contrast with NTA, which relies on a

nonlinear transfer function and symmetric excitatory connections within neuronal ensembles with

similar tuning. The symmetric connectivity generates potent run-away activity above a critical stim-

ulus strength. Nevertheless, the overall network dynamics are stable because run-away dynamics

are eventually quenched through STP. Crucially, after the transient amplification phase, ensemble

dynamics settle in an inhibitory-stabilized state, which renders NTA compatible with previous work

on SSNs only that in our case stabilization is accomplished dynamically through STP. Due to the

switch of the network’s dynamical state, NTA’s amplification is orders of magnitudes larger than

balanced amplification (Murphy and Miller 2009; cf. Fig. 2D, Fig. S8).

NTA requires STP and recurrent inhibition, whose role on network dynamics have been studied

in the past. Yet, STP was mainly examined in the context of stable working memory in recurrent

networks (Mongillo et al., 2008; Zenke et al., 2015; Seeholzer et al., 2019) and transient delay

activity following stimulus offset (Hempel et al., 2000; Gillary et al., 2017). However, its role in

generating strongly amplified onset transients as a possible coding paradigm was largely ignored.

Recurrent inhibition is essential for NTA to ensure uni-stability and selectivity through the sup-

pression of ensembles with different tuning. This requirement is similar in flavor to semi-balanced

networks characterized by excess inhibition to some excitatory ensembles while others are bal-

anced (Baker et al., 2020). However, the theory of semi-balanced networks has, so far, only been

applied to steady-state dynamics while ignoring transients and STP. Previous work showed that
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STP can tune networks to a critical state (Levina et al., 2007), but focused primarily on E-to-E

STD. Our work extends this notion by combining it with a distinct computational mechanism and

shows that both E-to-E STD and E-to-I STF can re-stabilize ensemble dynamics. EI co-tuning

prominently features in several models and was shown to support network stability (Vogels et al.,

2011; Hennequin et al., 2017; Znamenskiy et al., 2018), efficient coding (Denève and Machens,

2016), novelty detection (Schulz et al., 2020), changes in neuronal variability (Hennequin et al.,

2018; Rost et al., 2018), and correlation structure (Wu et al., 2020). Moreover, some studies have

argued that EI balance and co-tuning could increase robustness to noise in the brain (Rubin et al.,

2017). The present work mainly highlights its importance for preventing multi-stability and delay

activity in circuits not requiring such long-timescale dynamics.

NTA is consistent with several experimental findings. First, our model recapitulates the key findings

of Shew et al. (2015) who showed ex vivo that strong sensory inputs cause a transient shift to a

supercritical state, after which adaptive changes rapidly tune the network to criticality. Second,

NTA requires symmetric excitatory connectivity between neurons with similar tuning, which has

been reported in experiments (Ko et al., 2011; Cossell et al., 2015; Peron et al., 2020). Third,

ensemble activation in our model depends on a critical stimulus strength in line with recent all-

optical experiments in the visual cortex, which further link ensemble activation with a perceptual

threshold (Marshel et al., 2019). Fourth, sensory networks are uni-stable in that they return to a

non-selective activity state after the removal of the stimulus and usually do not show persistent

activity (DeWeese et al., 2003; Mazor and Laurent, 2005; Rupprecht and Friedrich, 2018). Fifth,

our work shows that NTA’s onset responses encode stimulus identity better than the fixed-point

activity, consistent with experiments in the locust antennal lobe (Mazor and Laurent, 2005) and

research supporting that the brain relies on coactivity on short timescales to represent information

(Stopfer et al., 1997; Engel et al., 2001; Harris et al., 2003; El-Gaby et al., 2021). Finally, EI co-

tuning, which is conducive for NTA, has been found ubiquitously in different sensory circuits (Wehr

and Zador, 2003; Froemke et al., 2007; Okun and Lampl, 2008; Rupprecht and Friedrich, 2018;

Znamenskiy et al., 2018).

In our model, we made several simplifying assumptions. For instance, we kept the input to in-

hibitory neurons fixed and only varied the input to the excitatory population. This step was mo-

tivated by experiments in the piriform cortex where the total inhibition is dominated by feedback

inhibition (Franks et al., 2011). Nevertheless, significant feedforward inhibition was observed in

other areas (Bissieére et al., 2003; Cruikshank et al., 2007; Ji et al., 2016; Miska et al., 2018).

While an in-depth comparison for different origins of inhibition was beyond the scope of the present

study, we found that increasing the inputs to the excitatory population and inhibitory population by

the same amount can still lead to NTA (Fig. S9; Methods). Therefore, we are confident that our

main findings remain unaffected in the presence of substantial feedforward inhibition. Similarly, we

limited our analysis to only a few overlapping ensembles. It will be interesting future work to study
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NTA in the case of many interacting and potentially overlapping ensembles and to determine the

maximum storage capacity above which performance degrades. Finally, we anticipate that tem-

poral differences in excitatory and inhibitory synaptic transmission may be important to preserve

NTA’s stimuli selectivity.

Our model makes several predictions. In contrast to balanced amplification, in which the network

operating regime depends solely on the connectivity, an ensemble involved in NTA transitions from

a non-ISN to an ISN state. This transition is consistent with noise variability observed in sensory

cortices (Hennequin et al., 2018) and could be tested experimentally by probing the paradoxical

effect under different stimulation conditions (Fig. 2G-H, Fig. S3). Moreover, NTA predicts that

onset activity provides a better stimulus encoding and its activity is correlated with the fixed-point

activity. This signature is different from purely non-normal amplification mechanisms which would

involve a wave of neuronal activity across several distinct ensembles similar to a synfire chain. The

difference should be clearly discernible in data. Since NTA relies on symmetric excitation between

ensemble neurons, it suggests normal dynamics in which distinct ensembles first activate and then

inactivate. The resulting dynamics have weak rotational components (cf. Fig. 6D) as seen in some

experiments (Marshel et al., 2019). Strong non-normal amplification, on the other hand, relies

on sequential activation of multiple ensembles, associated with pronounced rotational dynamics

(Hennequin et al., 2014; Gillett et al., 2020), as for instance observed in motor areas (Churchland

et al., 2012). Although both non-normal mechanisms and NTA are likely to co-exist in the brain, we

speculate that strong NTA is best suited for, and thus most like to be found in, sensory systems.

In summary, we introduced a general theoretical framework of selective transient signal amplifi-

cation in recurrent networks. Our approach derives from the minimal assumptions of a nonlinear

neuronal transfer function, symmetric excitation within neuronal ensembles, and STP. Importantly,

our analysis revealed the functional benefits of STP and EI co-tuning, both pervasively found in

sensory circuits. Finally, our work suggests that transient onset responses rather than steady-state

activity are ideally suited for coactivity-based stimulus encoding and provides several testable pre-

dictions.

18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447718
http://creativecommons.org/licenses/by/4.0/


Methods

Stability conditions for supralinear networks

The dynamics of a neuronal ensemble consisting of one excitatory and one inhibitory population

with a supralinear, power law input-output function can be described as follows:

τE
drE

dt
= −rE +

[
JEE rE − JEIrI + gE

]αE

+
(6)

τI
drI

dt
= −rI +

[
JIE rE − JIIrI + gI

]αI

+
(7)

The Jacobian M of the system is given by

M =

τ−1
E (JEEαE r

αE−1
αE

E − 1) −τ−1
E JEIαE r

αE−1
αE

E

τ−1
I JIEαIr

αI−1
αI

I −τ−1
I (1 + JIIαIr

αI−1
αI

I )

 (8)

To ensure that the system is stable, the product of M’s eigenvalues λ1λ2, which is equivalent to

the determinant of M, has to be positive. In addition, the sum of the two eigenvalues λ1 + λ2,

which corresponds to Tr(M), has to be negative. We therefore obtained the following two stability

conditions

λ1λ2 = −τ−1
E τ−1

I (JEEαE r
αE−1
αE

E − 1)(1 + JIIαIr
αI−1
αI

I ) + τ−1
E τ−1

I JEIαE r
αE−1
αE

E JIEαIr
αI−1
αI

I > 0 (9)

λ1 + λ2 = τ−1
E (JEEαE r

αE−1
αE

E − 1)− τ−1
I (1 + JIIαIr

αI−1
αI

I ) < 0 (10)

Notably, the stability conditions depend on the firing rate of the excitatory population rE and the

inhibitory population rI . Since firing rates are input-dependent, the stability of supralinear networks

is input-dependent. In contrast, in linear networks in which αE = αI = 1, the conditions can be

simplified to

λ1λ2 = −τ−1
E τ−1

I (JEE − 1)(1 + JII) + τ−1
E τ−1

I JEIJIE > 0 (11)

λ1 + λ2 = τ−1
E (JEE − 1)− τ−1

I (1 + JIIαI) < 0 (12)

and are thus input-independent.

ISN index for supralinear networks

If an ensemble is unstable without feedback inhibition, then the ensemble is an ISN (Tsodyks

et al., 1997). To determine whether a given system is an ISN, we analyzed the stability of the E-E

subnetwork, which is determined by the real part of the leading eigenvalue of the Jacobian of the

E-E subnetwork. In the following we call this leading eigenvalue the “ISN index”, which is defined

as follows:

ISN index = τ−1
E (JEEαE r

αE−1
αE

E − 1) (13)
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A positive ISN index indicates the system is an ISN. Otherwise, the system is non-ISN. For supra-

linear networks in which αE > 1, the ISN index depends on the firing rates, inputs can therefore

switch the network from non-ISN to ISN. In contrast, αE = 1 for linear networks which renders the

ISN index firing rate independent. And the ISN index in linear networks solely depends on the

recurrent E-E connection strength JEE .

Characteristic function

To investigate how network stability changes with input, we trace the steps of Kraynyukova and

Tchumatchenko (2018) and define the characteristic function F (z) as follows:

F (z) = JEE

[
z
]αE

+
− JEI

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE (14)

where

z = JEE rE − JEIrI + gE (15)

is the current into the excitatory population. The characteristic function simplifies the original two-

dimensional system to a one-dimensional system, and the zero crossings of F (z) correspond to

the fixed points of the original system. For z ≥ 0, we note:

dF (z)
dz

= JEEαE r
αE−1
αE

E − JEIαI

(
det J · J−1

EI αE r
αE−1
αE

E + J−1
EI JII

)
r
αI−1
αI

I − 1 = −τEτIλ1λ2 (16)

Therefore, if the derivative of F (z) evaluated at one of its roots is positive, the corresponding

fixed point is a saddle point. Note that as rE and rI increase, the term in parenthesis becomes

dominant. Thus, to ensure that λ1λ2 is negative also for large rE and rI , the determinant of the

weight matrix det J has to be positive. Therefore, det J has a decisive impact on the curvature of

F (z). In systems with negative determinant, F (z) bends upwards for large z. In contrast, F (z)

asymptotically bends downwards in systems with positive determinant. Hence, the high-activity

steady-state of systems with negative determinant is unstable. In addition, we can simplify the

above condition to the determinant of the weight matrix which is a necessary condition for network

stability:

det J = −JEEJII + JIEJEI > 0 (17)

To investigate how the network stability changes with input gE , we examined how F (z) varies with

changing input gE by calculating the derivative of F (z) with respect to gE ,

dF (z)
dgE

= αIJII

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
+ 1 (18)

Since dF (z)
dgE

is positive, increasing gE always shifts F (z) upwards, eventually leading to the van-

ishing of all roots and, thus, unstable dynamics in supralinear networks with negative det J. In
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scenarios in which feedforward input to the inhibitory population also changes, we have

dF (z)
dt

=
∂F (z)
∂gE

dgE

dt
+
∂F (z)
∂gI

dgI

dt

=(αIJII

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
+ 1)∆gE

− αIJEI

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI−1

+
∆gI

(19)

When the change in stimulation strength into the excitatory (∆gE ) and the inhibitory population

(∆gI) are the same, dF (z)
dt is always positive provided JII is greater than JEI . Hence, depending

on the value of JII
JEI

, stimulation can lead to unstable network dynamics even when the input to the

inhibitory population increases more than to the excitatory population.

Spike-frequency adaptation

We modeled SFA of excitatory neurons as an activity-dependent negative feedback current (Benda

and Herz, 2003; Brette and Gerstner, 2005):

τE
drE

dt
= −rE +

[
JEE rE − JEIrI + gE

]αE

+
− a (20)

τa
da
dt

= −a + brE (21)

where a is the adaptation variable, τa is the adaptation time constant, and b is the adaptation

strength.

Short-term plasticity

We modeled E-to-E STD following previous work (Tsodyks and Markram, 1997; Varela et al.,

1997):

τE
drE

dt
= −rE +

[
xJEE rE − JEIrI + gE

]αE

+
(22)

dx
dt

=
1− x
τx
− UdxrE (23)

where x is the depression variable, which is limited to the interval (0, 1] , τx is the depression time

constant, and Ud is the depression rate. The steady-state solution x∗ of STD is given by

x∗ =
1

1 + Ud rEτx
(24)

Similarly, we modeled E-to-I STF as

τI
drI

dt
= −rI +

[
uJIE rE − JIIrI + gI

]αI

+
(25)

du
dt

=
1− u
τu

+ Uf (Umax − u)rE (26)
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where u is the facilitation variable constrained to the interval [1, Umax ) , Umax is the maximal facili-

tation value, τu is the time constant of STF, and Uf is the facilitation rate. The steady-state solution

u∗ is given by

u∗ =
1 + Uf Umax rEτu

1 + Uf rEτu
(27)

Characteristic function with additional mechanisms

To visualize how network stability changes in the presence of SFA, we modified the characteristic

function by including the adaptation strength b. The characteristic function with SFA is given by:

F (z) = JEE

[
z
]αE

+
/(1 + b)− JEI

[
det J · J−1

EI

[
z
]αE

+
/(1 + b) + J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE (28)

where

det J = −JEEJII + JIEJEI (29)

Similarly, for networks with E-to-E STD, we can modify the characteristic function by including the

depression variable x . The characteristic function with E-to-E STD is given by:

F (z) = xJEE

[
z
]αE

+
− JEI

[
det J · J−1

EI

[
z
]αE

+
+ J−1

EI JIIz − J−1
EI JIIgE + gI

]αI

+
− z + gE (30)

where

det J = −xJEEJII + JIEJEI (31)

Stability conditions for supralinear networks with additional mechanisms

To ensure network stability, Equation (10) and the simplified stability condition in Equation (17)

have to be satisfied. In the presence of E-to-E STD, this results in the following conditions:

det J =

∣∣∣∣∣ x∗JEE −JEI

JIE −JII

∣∣∣∣∣ = − 1
1 + Ud rEτx

JEEJII + JIEJEI > 0 (32)

τI

[
1− 1

1 + Ud rEτx
JEEαE r

1−α−1
E

E

]
+ τE

[
1 + JIIαIr

1−α−1
I

I

]
> 0 (33)

In the case of unstable dynamics, rE goes to infinity due to run-away excitation. However, the de-

pression variable x approaches zero in this limit, as limrE→∞ x = limrE→∞
1

1+Ud rEτx
= 0. Therefore,

STD terminates excitatory run-away dynamics. As a result, the ensemble transiently becomes an

unstable system at stimulus onset. But assuming separation of timescales τx � τE , STD ensures

that the stability conditions are always satisfied.

In the presence of E-to-I STF, we found a set of similar conditions

det J =

∣∣∣∣∣ JEE −JEI

u∗JIE −JII

∣∣∣∣∣ = −JEEJII +
1 + Uf Umax rEτu

1 + Uf rEτu
JIEJEI > 0 (34)

τI

[
1− JEEαE r

1−α−1
E

E

]
+ τE

[
1 + JIIαIr

1−α−1
I

I

]
> 0 (35)
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Assuming that αE = αI = α, the second condition becomes

τI

[
1

r1−α−1

I

− JEEα

(
rE

rI

)1−α−1]
+ τE

[
1

r1−α−1

I

+ JIIα

]
> 0 (36)

Substituting the firing rates with the current into excitatory population z, we then had

τI

 1

r1−α−1

I

− JEEα

(
z

detJ · J−1
EI [z]α+ + J−1

EI JIIz − J−1
EI JIIgE + gI

)α−1
+τE

[
1

r1−α−1

I

+ JIIα

]
> 0 (37)

Importantly, we can guarantee that the first condition is satisfied by choosing Umax sufficiently

large. Since the denominator det J · J−1
EI [z]α+ + J−1

EI JIIz − J−1
EI JIIgE + gI grows faster for z � 1, the

second condition is also satisfied for large rE .

In contrast, SFA does not affect the synaptic weights, the determinant of the weight matrix there-

fore remains negative. Although the system can have two fixed points during stimulation in the

presence of weak SFA, the high-activity fixed point is always unstable. Consequently, in the pres-

ence of strong adaptation, the system exhibits oscillatory behavior (Fig. S1). To illustrate that SFA

induces a limit cycle in networks that would otherwise be unstable, we considered the simplified

system without the inhibitory population. The dynamics of the purely excitatory network with SFA

are then given as follows:

τE
drE

dt
= −rE +

[
JEE rE + gE

]αE

+
− a (38)

τa
da
dt

= −a + brE (39)

The Jacobian of the system is given as

M =

τ−1
E (JEEαE r

αE−1
αE

E − 1) −τ−1
E

τ−1
a b −τ−1

a

 (40)

To ensure the stability of the network, the trace of the Jacobian has to be negative

Tr (M) = τ−1
E (JEEαE r

αE−1
αE

E − 1)− τ−1
a < 0 (41)

To satisfy this condition when JEE or rE are large, the time constant τa of SFA has to be small. In

addition, the determinant of the Jacobian has to be positive

det M = −τ−1
a τ−1

E

(
JEEαE r

αE−1
αE

E − 1

)
+ τ−1

a τ−1
E b > 0 (42)

To fulfill this condition, the negative feedback controlled by b has to be strong. However, if both b

and τa are large, the determinant is positive but the trace switches from negative to positive. As a

result, the system undergoes a Hopf bifurcation and exhibits oscillatory behavior (Van Vreeswijk

and Hansel, 2001).

23

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447718doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.09.447718
http://creativecommons.org/licenses/by/4.0/


Uni-stability conditions

The system is said to be “uni-stable”, when it has a single stable fixed point. We first identified the

uni-stability condition for networks with global inhibition. To that end, we considered a general net-

work with N excitatory populations and N inhibitory populations. To treat this problem analytically,

we did not take STP into account in our analysis. The Jacobian matrix of networks with global

inhibition Q, can be written as follows,

Q =

[
JE←E JE←I

JI←E JI←I

]
(43)

where JE←E , JE←I , JI←E , and JI←I are N by N block matrices defined below.

JE←E =


a− e ka · · · ka

ka a− e · · · ka
...

...
. . .

...

ka ka · · · a− e

 (44)

JE←I = −bJN,N (45)

JI←E = cJN,N (46)

JI←I =


−d − f −d · · · −d

−d −d − f · · · −d
...

...
. . .

...

−d −d · · · −d − f

 (47)

where a = τ−1
E JEEαE [zE ]αE−1

+ , b = τ−1
E JEIαE [zE ]αE−1

+ , c = τ−1
I JIEαI [zI ]

αI−1
+ , d = τ−1

I JIIαI [zI ]
αI−1
+ ,

e = τ−1
E , and f = τ−1

I . Here, zE and zI denote the total current into the excitatory and inhibitory

population, respectively. Note that all these parameters are non-negative. Parameter k controls

the excitatory connection strength across different populations. JN,N is a N by N matrix of ones.

The eigenvalues of the Jacobian Q are roots of its characteristic polynomial,

det((JE←E − λ1)(JI←I − λ1)− JE←IJI←E ) = 0 (48)

where 1 represents the identity matrix of size N. The characteristic polynomial can be expanded

to: [
(a− e − ka− λ)(−f − λ)

]N−1[
(a− e − (N − 1)ka− λ)(−Nd − f − λ) + N2bc

]
= 0 (49)
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We therefore had four distinct eigenvalues:

λ1 = a− e − ka (50)

λ2 = −f (51)

and

λ3/4 =
1
2

[
(a− e − f − Nd + (N − 1)ka)

±
√

(a− e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf )− N(a− e)d − Nkaf − N(N − 1)kad + N2bc)
]

(52)

Note that the eigenvalues λ1 and λ2 have an algebraic and geometric multiplicity of (N-1), whereas

the eigenvalues λ3 and λ4 have an algebraic and geometric multiplicity of 1.

In analogy to networks with global inhibition, the Jacobian matrix of networks with co-tuned inhibi-

tion R, can be written as

R =

[
JE←E JE←I

JI←E JI←I

]
(53)

where JE←E , JE←I , JI←E , and JI←I are N by N block matrices defined as follows:

JE←E =


a− e ka · · · ka

ka a− e · · · ka
...

...
. . .

...

ka ka · · · a− e

 (54)

JE←I =


−Nb + (N − 1)mb −mb · · · −mb

−mb −Nb + (N − 1)mb · · · −mb
...

...
. . .

...

−mb −mb · · · −Nb + (N − 1)mb

 (55)

JI←E =


Nc − (N − 1)mc mc · · · mc

mc Nc − (N − 1)mc · · · mc
...

...
. . .

...

mc mc · · · Nc − (N − 1)mc

 (56)

JI←I =


−Nd + (N − 1)md − f −md · · · −md

−md −Nd + (N − 1)md − f · · · −md
...

...
. . .

...

−md −md · · · −Nd + (N − 1)md − f

 (57)

where m controls the degree of co-tuning in the network. If m = 0, the network decouples into

N independent ensembles and inhibition is perfectly co-tuned with excitation. In the case m = 1,

inhibition is global and the block matrices become identical to the above case of global inhibition.
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The eigenvalues of the matrix R are given as the roots of the characteristic polynomial defined by:

det((JE←E − λ1)(JI←I − λ1)− JE←IJI←E ) = 0 (58)

which yields the following expression:[
λ2−(a−e−ka−Nd+Nmd−f )λ−(a−e−ka)(Nd−Nmd−f )+N2bc(1−m)2

]N−1[
(a−e−(N−1)ka−λ)(−Nd−f−λ)+N2bc

]
= 0 (59)

We therefore had four distinct eigenvalues:

λ
′
1/2 =

1
2

[
(a− e − ka− Nd + Nmd − f )±

√
(a− e − ka + Nd − Nmd + f )2 − 4N2bc(1−m)2

]
(60)

λ
′
3/4 =

1
2

[
(a− e − f − Nd + (N − 1)ka)

±
√

(a− e − f − Nd + (N − 1)ka)2 − 4((−af + ef + kaf )− N(a− e)d − Nkaf − N(N − 1)kad + N2bc)
] (61)

The eigenvalues λ
′
1 and λ

′
2 have an algebraic and geometric multiplicity of (N-1), whereas the

eigenvalues λ
′
3 and λ

′
4 have an algebraic and geometric multiplicity of 1. We noted that λ3 = λ

′
3,

λ4 = λ
′
4.

To compare under which conditions networks with different structures are uni-stable, we examined

the different eigenvalues derived above. As λ2 < 0, and λ
′
1 > λ

′
2, we only had to compare λ

′
1 to

λ1. For networks with co-tuned inhibition, we have m < 1,

λ
′
1 =

1
2

[
(a− e − ka− Nd + Nmd − f ) +

√
(a− e − ka + Nd − Nmd + f )2 − 4N2bc(1−m)2

]
<

1
2

[
(a− e − ka− Nd + Nmd − f ) +

√
(a− e − ka + Nd − Nmd + f )2

]
= a− e − ka = λ1

(62)

The inequality, λ
′
1 < λ1, indicates that networks with co-tuned inhibition have a broad parameter

regime in which they are uni-stable than networks with global inhibition. Note that in the absence

of a saturating nonlinearity of the input-output function and in the absence of any additional stabi-

lization mechanisms, systems with positive eigenvalues of the Jacobian are unstable. In this case,

networks with co-tuned inhibition have a broad parameter regime of being stable than networks

with global inhibition.

To visualize the conditions in a two-dimensional plane, we reduced the conditions into a function

of a and d . For Fig. 3C, k = 0.1, m = 0.5 and bc = 0.9ad .

Distance to the decision boundary

To calculate the distance to the decision boundary in Fig. 4, Fig. 5, Fig. S6 and Fig. S7, we first

projected the excitatory activity in Phase 2 onto a two-dimensional Cartesian coordinate system

in which the x axis is the activity of the first excitatory ensemble rE1 and the y axis is the activity of

the second excitatory ensemble rE2. We then computed the distance between the projected data

and the decision boundary which corresponds to the diagonal line in the coordinate system.
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Inhibitory feedback pathways for suppressing unwanted neural activation

To identify the important neural pathways for the suppression of unwanted neural activation, we

analyzed how the activity of the second excitatory ensemble rE2 changes with the input to the first

excitatory ensemble gE1. To that end, we considered a general weight matrix for networks with

two interacting ensembles

J =


JE1E1 JE1E2 −JE1I1 −JE1I2

JE2E1 JE2E2 −JE2I1 −JE2I2

JI1E1 JI1E2 −JI1I1 −JI1I2

JI2E1 JI2E2 −JI2I1 −JI2I2

 (63)

We can write the change in firing rate of the excitatory population in the second ensemble δrE2 as

a function of the change in the input to the other δgE1:

δrE2 =
1

det(1− FJ)

[
(−f

′

E2JE2E1)f
′

I1JI1I2f
′

I2JI2I1 + f
′

E2JE2I1(−f
′

I1JI1E1)(1 + f
′

I2JI2I2)

+f
′

E2JE2I2(1 + f
′

I1JI1I1)(−f
′

I2JI2E1)− (−f
′

E2JE2E1)(1 + f
′

I1JI1I1)(1 + f
′

I2JI2I2)

−f
′

E2JE2I1f
′

I1JI1I2(−f
′

I2JI2E1)− f
′

E2JE2I2(−f
′

I1JI1E1)f
′

I2JI2I1

]
f
′

E1δgE1

(64)

where 1 is the identity matrix. And F is given by

F =


f
′

E1 0 0 0

0 f
′

E2 0 0

0 0 f
′

I1 0

0 0 0 f
′

I2

 (65)

where f
′

E1, f
′

E2, f
′

I1 and f
′

I2 are the derivatives of the input-output functions evaluated at the fixed

point.

Assuming that JE1E1 = JE2E2 = JEE , JI1E1 = JI2E2 = JIE , JE1I1 = JE2I2 = JEI , JI1I1 = JI2I2 = JII ,

JE1E2 = JE2E1 = J
′

EE , JI1E2 = JI2E1 = J
′

IE , JE1I2 = JE2I1 = J
′

EI and JI1I2 = JI2I1 = J
′

II , we find

δrE2 =
1

det(1− FJ)

[
(−f

′

E2J
′

EE )f
′

I1J
′

II f
′

I2J
′

II + f
′

E2J
′

EI(−f
′

I1JIE )(1 + f
′

I2JII)

+f
′

E2JEI(1 + f
′

I1JII)(−f
′

I2J
′

IE )− (−f
′

E2J
′

EE )(1 + f
′

I1JII)(1 + f
′

I2JII)

−f
′

E2J
′

EI f
′

I1J
′

II(−f
′

I2J
′

IE )− f
′

E2JEI(−f
′

I1JIE )f
′

I2J
′

II

]
f
′

E1δgE1

(66)

By further assuming that the weight strengths across ensembles are weak and ignoring the corre-
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sponding higher-order terms, we get

δrE2 ≈
1

det(1− FJ)

[
f
′

E2J
′

EI(−f
′

I1JIE )(1 + f
′

I2JII) + f
′

E2JEI(1 + f
′

I1JII)(−f
′

I2J
′

IE )

−(−f
′

E2J
′

EE )(1 + f
′

I1JII)(1 + f
′

I2JII)− f
′

E2JEI(−f
′

I1JIE )f
′

I2J
′

II

]
f
′

E1δgE1

=
1

det(1− FJ)

[(
J
′

II

J ′EI
f
′

I2 − (
1

JEI
+ f
′

I2
JII

JEI
)

)
J
′

EIJEIJIE f
′

E2f
′

I1

+

(
J
′

EE

J ′IE
(1 + JII f

′

I2)− JEI f
′

I2

)
J
′

IE f
′

E2(1 + f
′

I1JII)

]
f
′

E1δgE1

(67)

Note that J
′
EE

J′IE
and J

′
II

J′EI
are terms regulating the respective excitatory and inhibitory input from one

ensemble to the excitatory and inhibitory population in another ensemble. The term det(1− FJ) is

positive to ensure the stability of the system.

To suppress the activity of the excitatory population in the second ensemble rE2, in other words,

to ensure that δrE2 < 0, J
′

IE or/and J
′

EI have to be large. Therefore, we identified J
′

IE and J
′

EI

as important synaptic connections which lead to suppression of the unwanted neural activation,

suggesting that inhibition can be provided via J
′

IE through the E1-I2-E2 pathway or via J
′

EI through

the E1-I1-E2 pathway.

For Fig. 4–5, the rate-based model consists of two ensembles, each of which is composed of

100 excitatory and 25 inhibitory neurons with all-to-all connectivity.

Spiking neural network model

The spiking neural network model was composed of NE excitatory and NI inhibitory leaky integrate-

and-fire neurons. Neurons were randomly connected with probability of 20%. The dynamics of

membrane potential of neuron i , Ui , are given by (Zenke et al., 2015):

τm dUi

dt
= (U rest − Ui ) + gext

i (t)(Uexc − Ui ) + g inh
i (t)(U inh − Ui ) (68)

Here, τm is the membrane time constant and U rest is the resting potential. Spikes are triggered

when the membrane potential reaches the spiking threshold U thr. After a spike is emitted, the

membrane potential is reset to U rest and the neuron enters a refractory period of τ ref. Inhibitory

neurons obeyed the same integrate-and-fire formalism but with a shorter membrane time constant.

Excitatory synapses contain a fast AMPA component and a slow NMDA component. The dynamics

of the excitatory conductance are described by:

τampa dgampa
i
dt

= −gampa
i +

∑
j∈exc

JijSj (t) (69)

τnmda dgnmda
i
dt

= −gnmda
i + gampa

i (70)

gexc
i (t) = ξgampa

i (t) + (1− ξ)gnmda
i (t) (71)
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Here, Jij denotes the synaptic strength from neuron j to neuron i . If the connection does not exist,

Jij was set to 0. Sj (t) is the spike train of neuron j , which is defined as Sj (t) =
∑

k δ(t − tk
j ), where

δ is the Dirac delta function and tk
j the spikes times k of neuron j . ξ is a weighting parameter. The

dynamics of inhibitory conductances are governed by:

τgaba dg inh
i

dt
= −g inh

i +
∑
j∈inh

JijSj (t) (72)

In the spiking neural network models, SFA of excitatory neurons is modeled as follows,

τm dUi

dt
= (U rest − Ui ) + gext

i (t)(Uexc − Ui ) + (g inh
i (t) + ai (t))(U inh − Ui ) (73)

d
dt

ai (t) = −ai (t)
τa

+ bSi (t) (74)

where i is the index of excitatory neurons.

The dynamics of E-to-E STD are given by

d
dt

xij (t) =
1− xij (t)

τx
− UdxijSj (t) (75)

τampa dgampa
i
dt

= −gampa
i +

∑
j∈exc

xij (t)JijSj (t) (76)

where i represents the index of excitatory neurons.

The dynamics of E-to-I STF are governed by

d
dt

uij (t) =
1− uij (t)

τu
+ Uf (Umax − uij (t))Sj (t) (77)

τampa dgampa
i
dt

= −gampa
i +

∑
j∈exc

uij (t)JijSj (t) (78)

where i denotes the index of inhibitory neurons.

For Fig. 6, each excitatory and inhibitory neuron received external excitatory input from 300 neu-

rons firing with Poisson statistics at an average firing rate of 0.1 Hz at baseline. During stimulation,

the excitatory neurons corresponding to the activated pattern received external excitatory input

from 300 neurons firing with Poisson statistics at an average firing rate of 0.5 Hz. The pattern ac-

tivity with each stored pattern is quantified by the dot product of the neural activity with the stored

pattern. And neural activity is computed by the instantaneous firing rates with 10 ms bin size. The

difference in pattern activity for the peak amplitude is calculated by subtracting the average maxi-

mal pattern activity of the unstimulated patterns from the maximal pattern activity of the activated

pattern. Similarly, the difference in pattern activity for the fixed point is calculated by subtracting

the average pattern activity of the unstimulated patterns at the fixed point from the pattern activity
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of the activated pattern at the fixed point. Fixed point activity is computed by averaging the activity

of the middle 1 second within the 2-second stimulation period.

For Fig. S5, each excitatory and inhibitory neuron received external excitatory input from 300

neurons firing with Poisson statistics at an average firing rate of 0.1 Hz at the baseline. During

stimulation, each excitatory neuron received external excitatory input from 300 neurons firing with

Poisson statistics at an average firing rate of 0.3 Hz.

Simulations

Simulations were performed in Python and Mathematica. All differential equations were imple-

mented by Euler integration with a time step of 0.1 ms. All simulation parameters are listed in

Tables 1–7. The simulation source code to reproduce the figures is publicly available at https:

//github.com/fmi-basel/gzenke-nonlinear-transient-amplification.

Table 1: Parameters for Figure 1C-E

Symbol Value Unit Description

JEE 1.8 - E-to-E connection strength
JIE 1.0 - E-to-I connection strength
JEI 1.0 - I-to-E connection strength
JII 0.6 - I-to-I connection strength
αE 2 - power of excitatory input-output function
αI 2 - power of inhibitory input-output function
τE 20 ms time constant of excitatory firing dynamics
τI 10 ms time constant of inhibitory firing dynamics
gbs

E 1.55 - input to the E population at baseline
gstim

E 3.0 - input to the E population during stimulation
gI 2.0 - input to the I population

Parameters for Figure 1F

JIE 0.45 - E-to-I connection strength
JEI 1.0 - I-to-E connection strength
JII 1.5 - I-to-I connection strength
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Table 2: Parameters for Figure 2

Symbol Value Unit Description

τa 200 ms time constant of SFA
b 1.0 - strength of SFA
τx 200 ms time constant of STD
Ud 1.0 - depression rate
τu 200 ms time constant of STF
Uf 1.0 - facilitation rate
Umax 6.0 - maximal facilitation value

Note that these values are also applied elsewhere unless mentioned otherwise.

Table 3: Parameters for Figure 3 bi/multi-stable example

Symbol Value Unit Description

JEE 1.4 - within-ensemble E-to-E connection strength
JIE 0.6 - within-ensemble E-to-I connection strength
JEI 1.0 - within-ensemble I-to-E connection strength
JII 0.6 - within-ensemble I-to-I connection strength
J

′
EE 0.14 - inter-ensemble E-to-E connection strength

J
′
IE 0.6 - inter-ensemble E-to-I connection strength

J
′
EI 1.0 - inter-ensemble I-to-E connection strength

J
′
II 0.6 - inter-ensemble I-to-I connection strength

gbs
E1 2.2 - input to the E1 population at baseline

gstim
E1 3.0 - input to the E1 population during stimulation

gE2 2.2 - input to the E2 population
gI 2.0 - input to the I population

Parameters for Figure 3 uni-stable example

JEE 1.3 - within-ensemble E-to-E connection strength
J

′
EE 0.13 - inter-ensemble E-to-E connection strength
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Table 4: Parameters for Figure 4-5

Symbol Value Unit Description

NE 200 - number of excitatory neurons
NI 50 - number of inhibitory neurons
N 2 - number of ensembles
JEE 1.2/(NE/2 − 1) - within-ensemble E-to-E connection strength
JIE 1.0/(NE/2) - within-ensemble E-to-I connection strength
JEI 1.0/(NI/2) - within-ensemble I-to-E connection strength
JII 1.0/(NI/2 − 1) - within-ensemble I-to-I connection strength
J

′
EE 0.36/(NE/2 − 1) - inter-ensemble E-to-E connection strength

J
′
IE 0.4/(NE/2) - inter-ensemble E-to-I connection strength

J
′
EI 0.1/(NI/2) - inter-ensemble I-to-E connection strength

J
′
II 0.1/(NI/2) - inter-ensemble I-to-I connection strength

gI 2.0 - input to the I population

Parameters for Figure 4

gbs
E1 1.35 - input to the E1 population at baseline

gstim
E1 4.0 - input to the E1 population during stimulation

gE2 1.35 - input to the E2 population

Parameters for Figure 5

gbs
E1 1.35 - input to the E1 population at baseline

gstim
E1 1.35 + (4.0 -1.35) (1-p) - input to the E1 population during stimulation

gbs
E2 1.35 - input to the E2 population at baseline

gstim
E2 1.35 + (4.0 -1.35) p - input to the E2 population during stimulation

Here, p is a parameter between 0 and 1 controlling the additional inputs to E1 and E2.
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Table 5: Parameters for Figure 6

Symbol Value Unit Description

NE 400 - number of excitatory neurons
NI 100 - number of inhibitory neurons
U rest -70 mV resting membrane potential
Uexc 0 mV excitatory reversal potential
U inh -80 mV inhibitory reversal potential
τ ref 3 ms duration of refractory period
τm

exc 20 ms membrane time constant of excitatory neurons
τm

inh 10 ms membrane time constant of inhibitory neurons
τ ampa 5 ms time constant of AMPA receptor
τ gaba 10 ms time constant of GABA receptor
τ nmda 100 ms time constant of NMDA receptor
ξ 0.5 - receptor weighting factor
JEE 0.19 - within-ensemble E-to-E connection strength
JIE 0.10 - within-ensemble E-to-I connection strength
JEI 0.10 - within-ensemble I-to-E connection strength
JII 0.06 - within-ensemble I-to-I connection strength
J

′
EE 0.019 - inter-ensemble E-to-E connection strength

J
′
IE 0.05 - inter-ensemble E-to-I connection strength

J
′
EI 0.04 - inter-ensemble I-to-E connection strength

J
′
II 0.006 - inter-ensemble I-to-I connection strength

Table 6: Parameters for Figure S5

Symbol Value Unit Description

NE 400 - number of excitatory neurons
NI 100 - number of inhibitory neurons
JEE 0.05 - E-to-E connection strength
JIE 0.02 - E-to-I connection strength
JEI 0.05 - I-to-E connection strength
JII 0.03 - I-to-I connection strength

Table 7: Parameters for Figure S9

Symbol Value Unit Description

JEE 0.5 - E-to-E connection strength
JIE 0.45 - E-to-I connection strength
JEI 1.0 - I-to-E connection strength
JII 1.5 - I-to-I connection strength
gbs

E 0.5 - input to the E population at baseline
gbs

I 1.5 - input to the I population at baseline
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hippocampus. Nature 2003;424(6948):552–556. doi: https://doi.org/10.1038/nature01834.

Hebb DO. The organization of behavior: a neuropsychological theory. Wiley, New York; 1949. doi:

https://doi.org/10.4324/9781410612403.

Hempel CM, Hartman KH, Wang XJ, Turrigiano GG, Nelson SB. Multiple forms of short-term

plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology

2000;83(5):3031–3041. doi: https://doi.org/10.1152/jn.2000.83.5.3031.

36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 10, 2021. ; https://doi.org/10.1101/2021.06.09.447718doi: bioRxiv preprint 

https://doi.org/10.1016/j.neuron.2011.08.020
https://doi.org/10.1016/j.neuron.2011.08.020
https://doi.org/10.1126/science.291.5502.312
https://doi.org/10.1126/science.291.5502.312
https://doi.org/10.1038/nature06289
https://doi.org/10.1152/jn.1989.61.2.331
https://doi.org/10.1152/jn.1989.61.2.331
https://doi.org/10.1007/s10827-017-0662-8
https://doi.org/10.1007/s10827-017-0662-8
https://doi.org/10.1073/pnas.1918674117
https://doi.org/10.1113/JP276012
https://doi.org/10.1016/j.neuron.2008.12.012
https://doi.org/10.1038/nrn1669
https://doi.org/10.1038/nature01834
https://doi.org/10.4324/9781410612403
https://doi.org/10.1152/jn.2000.83.5.3031
https://doi.org/10.1101/2021.06.09.447718
http://creativecommons.org/licenses/by/4.0/


Hennequin G, Agnes EJ, Vogels TP. Inhibitory plasticity: Balance, control, and codepen-

dence. Annual Review of Neuroscience 2017;40:557–579. doi: https://doi.org/10.1146/

annurev-neuro-072116-031005.

Hennequin G, Ahmadian Y, Rubin DB, Lengyel M, Miller KD. The dynamical regime of sensory

cortex: Stable dynamics around a single stimulus-tuned attractor account for patterns of noise

variability. Neuron 2018;98(4):846–860.e5. doi: https://doi.org/10.1016/j.neuron.2018.04.017.

Hennequin G, Vogels TP, Gerstner W. Non-normal amplification in random balanced neuronal

networks. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 2012;86(1):1–12.

doi: https://doi.org/10.1103/PhysRevE.86.011909.

Hennequin G, Vogels TP, Gerstner W. Optimal control of transient dynamics in balanced networks

supports generation of complex movements. Neuron 2014;82(6):1394–1406. doi: https://doi.

org/10.1016/j.neuron.2014.04.045.

Hopfield JJ. Neural networks and physical systems with emergent collective computational abil-

ities. Proceedings of the national academy of sciences 1982;79(8):2554–2558. doi: https:

//doi.org/10.1073/pnas.79.8.2554.

Ji XY, Zingg B, Mesik L, Xiao Z, Zhang LI, Tao HW. Thalamocortical innervation pattern in mouse

auditory and visual cortex: Laminar and cell-type specificity. Cerebral Cortex 2016;26(6):2612–

2625. doi: https://doi.org/10.1093/cercor/bhv099.

Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science

2020;367(6473). doi: https://doi.org/10.1126/science.aaw4325.
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Fig. S1. (A) Characteristic function F(z) in networks with weak SFA which cannot stabilize run-away activity. Different
colors represent different adaptation strengths b. (B) Characteristic function F(z) in networks with strong SFA capable
of generating a limit cycle. (C) Firing rates of the excitatory (blue) and inhibitory population (red) in the presence of
strong SFA (left). The zoomed-in activity from 3.0 s to 3.2 s (right) corresponding to the green period (left) indicates
oscillatory behavior in networks with strong SFA.
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Fig. S4. (A) Firing rates of the excitatory (blue) and inhibitory population (red) in response to stimulation in a rate-based
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