

1 **Detection of *Neisseria meningitidis* in Saliva and Oropharyngeal Samples**
2 **from College Students**

3
4 Willem R. Miellet^{1,3}, Rob Mariman¹, Gerlinde Pluister¹, Lieke J. de Jong^{1,2}, Ivo Grift^{1,2},
5 Stijn Wijkstra^{1,3}, Elske van Logchem¹, Janieke van Veldhuizen¹, Marie-Monique Immink²,
6 Alienke J. Wijmenga-Monsuur¹, Nynke Y. Rots¹, Elisabeth A.M. Sanders^{1,3}, Thijs Bosch^{1*}
7 and Krzysztof Trzciński^{3*#}

8
9
10 ¹ Centre for Infectious Disease Control Netherlands, National Institute for Public Health and
11 the Environment (RIVM), Bilthoven, The Netherlands;

12 ² University of Applied Sciences Utrecht, Utrecht, The Netherlands;

13 ³ Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's
14 Hospital, University Medical Center Utrecht, The Netherlands.

15
16 *contributed equally

17 #Corresponding Author

18
19 **ABSTRACT**

20
21 **Objectives:** Since conjugated polysaccharide vaccines reduce carriage of vaccine-type
22 *Neisseria meningitidis* strains, meningococcal carriage is an accepted endpoint in
23 monitoring vaccine effects. We have assessed vaccine-type genogroup carriage prevalence in
24 students at the time of MenACWY vaccine introduction in The Netherlands. In addition, we
25 evaluated the feasibility of saliva sampling and qPCR-based detection method for the
26 surveillance of meningococcal carriage.

27 **Methods:** Paired saliva and oropharyngeal samples, collected from 299 students, were cultured
28 for meningococcus. The DNA extracted from all bacterial growth was subjected to qPCRs
29 quantifying meningococcal presence and genogroup-specific genes. Samples negative by
30 culture yet positive for qPCR were cultured again for meningococcus. Results for saliva were
31 compared with oropharyngeal samples.

32 **Results:** Altogether 74 (25% of 299) students were identified as meningococcal carrier by any
33 method used. Sixty-one students (20%) were identified as carriers with qPCR. The difference
34 between number of qPCR-positive oropharyngeal (n=59) and saliva (n=52) samples was not
35 significant (McNemar's test, $p=0.07$). Meningococci were cultured from 72 students (24%),
36 with a significantly higher ($p<0.001$) number of oropharyngeal (n=70) compared with saliva
37 (n=54) samples. The prevalence of genogroups A, B, C, W, and Y was none, 9%, 1% and 6%,
38 respectively, and 8% of students carried MenACWY vaccine-type genogroup meningococci.

39 **Conclusions:** We show that the detected prevalence of meningococcal carriage between
40 oropharyngeal and saliva samples was nondifferent with qPCR and moreover, detection with
41 both samples was highly concordant. Saliva is easy to collect and when combined with qPCR
42 detection can be considered for meningococcal carriage studies.

43
44 **Keywords.** *Neisseria meningitidis*, carriage, saliva, genogroups

45
46 **INTRODUCTION**

47
48 *Neisseria meningitidis* (meningococcus) is a commensal of the human upper respiratory tract
49 (URT) and a major cause of invasive bacterial disease [1]. Adolescents are at increased risk of
50 invasive meningococcal disease (IMD) [2]. Following an outbreak of serogroup W IMD in the
51 Netherlands in the fall of 2018, a monovalent conjugate polysaccharide vaccine targeting

52 serogroup C (NeisVac-C, Pfizer) was replaced in the National Immunization Program with a
53 tetravalent conjugated polysaccharide vaccine (Nimenrix, GlaxoSmithKline) targeting
54 serogroups C, A, W, and Y [3]. Initially, the MenACWY vaccine was given only to 14-months-
55 old children but since 2019 it is also offered to 14 year olds [4]. Conjugated vaccines not only
56 protect against disease but also reduce carriage of vaccine-type (VT) strains [5]. Since the
57 prevalence of meningococcal carriage is reported to peak in adolescents and young adults,
58 vaccination in teenagehood is expected to induce herd protection across the population [2].
59 Effects of conjugated polysaccharide vaccines can be monitored via surveillance of carriage
60 [6]. For this, reliable and efficient detection methods for meningococcus are required.

61

62 Oropharyngeal samples have been widely used to detect meningococcal carriage as it has been
63 reported that oropharyngeal samples are more sensitive than nasal or nasopharyngeal samples
64 [7]. While a role for saliva in meningococcal transmission has been implicated in multiple
65 studies [8-16], and closely-related Neisseria species are often cultured from saliva [17], few
66 studies have tested saliva for meningococci [18-21]. In general, saliva is described to be poorly
67 suited for meningococcal detection [19]. Unlike oropharyngeal and nasopharyngeal swabs,
68 saliva sampling is noninvasive, and oral fluids can be easily self-collected.

69

70 Our first objective was to establish a pre-vaccination baseline for VT carriage prevalence
71 among college students as it will allow us to assess the impact of MenACWY vaccine in the
72 Netherlands in the future. The second objective was to investigate the use of saliva samples to
73 monitor meningococcal carriage.

74

75

76 MATERIALS and METHODS

77 Ethics statement

78 The study protocol was reviewed by the Centre for Clinical Expertise at the RIVM. Since
79 procedures were considered non-invasive, and participants were anonymized, the study was
80 considered outside the ambit of the WMO (Medical Research Human Subjects Act,
81 www.ccmo.nl). Consequently, the committee approved the consent procedure and granted a
82 waiver for further ethical review.

83

84 Study design and sample collection

85 In the fall of 2018, saliva and oropharyngeal swabs were collected from college students of
86 Hogeschool Utrecht (n=300). After signing informed consent, students self-collected saliva by
87 spitting 1ml into a 15ml tube (Greiner, Kremsmünster, Austria). Next, a study nurse swabbed
88 student's posterior pharyngeal wall with a nylon swab (FLOQSwabs, COPAN, Brescia, Italy)
89 to collect an oropharyngeal sample. Immediately after collection, saliva (approximately 50 µl)
90 and oropharyngeal swab were used to inoculate Neisseria Selective Medium PLUS agar plates
91 (NS-agar; Oxoid, Badhoevedorp, the Netherlands) and within 20 minutes plates were placed
92 in a 37°C, 5% CO₂ incubator. Once all samples have been collected, cultured plates were
93 transported at room temperature to the laboratory.

94

95 Meningococcal carriage detection using culture

96 Upon arrival, NS-agar cultures were incubated for up to two days at 37°C and 5% CO₂. On
97 both days cultures were screened for presence of meningococcus-like colonies (grey, round
98 and smooth colonies with convex shape). When found, 1-3 colonies were re-plated on
99 Columbia Blood agar (CBA, bioTRADING Benelux B.V., Mijdrecht, the Netherlands) and
100 tested for species identification using Matrix-assisted Laser Desorption/Ionization Time-of-
101 Flight mass spectrometry (MALDI-ToF; Bruker Daltonik GmbH, Bremen, Germany).

102 Separately for OP and saliva samples, a single isolate with a score ≥ 2.0 for *Neisseria*
103 *meningitidis* (database BDAL V8.0.0.0+SR1.0.0.0, Bruker Daltonik) was stored at -70°C in
104 Brain Heart Infusion (BHI, Oxoid) supplemented with 0.5% Yeast Extract (YE; Oxoid) and
105 10% glycerol. NS-agar cultures displaying any microbial growth were harvested into 2 ml of
106 Todd-Hewitt Broth (Oxoid) supplemented with 0.5% YE and 10% glycerol. These harvests
107 were considered to be culture-enriched for meningococci, and 0.7 ml of it stored at -70°C.
108

109 **Detection of meningococcal DNA with qPCR**

110 DNA was extracted from 100 μ l of harvest of culture-enriched samples using DNeasy Blood
111 & Tissue kit (Qiagen, Hilden, Germany) as previously described [22]. DNA eluted into 100 μ l
112 sample volume was tested in quantitative-PCRs (qPCRs) using primers and probes
113 (Eurogentec, Seraing, Belgium) targeting sequences within *metA*, a gene encoding for a
114 periplasmic protein, and a capsule transporter gene *ctrA* [23, 24]. The qPCRs were conducted
115 using Probes Master 480 (Roche) mastermix, primers and probes concentrations are listed in
116 **Table S1**, with 2 μ l of DNA used in 12.5 μ l reaction volumes. The qPCR assays were conducted
117 on LightCycler480 (Roche) with programme as described in **Table S2**. A 10-fold serial dilution
118 of DNA from a meningococcal strain (**Table S3**) was used as standard curve. C_T thresholds for
119 positivity were determined with Youden index calculated using Receiving operating
120 characteristic (ROC) curve analysis [25].
121

122 **Recovery of live meningococcus from culture-enriched samples**

123 To test whether lower sensitivity of conventional diagnostic culture could account for
124 differences between qPCR and culture results, culture-enriched samples first classified as
125 negative by culture yet positive by qPCR were revisited to recover viable meningococci. For
126 this second culture guided by qPCR results, CBA plates were inoculated with 100 μ l culture-
127 enriched sample in 10⁻²-10⁻⁴ dilutions, incubated at 37°C and 5% CO₂, and screened for
128 meningococcus as described above.
129

130 **Genogroup-specific qPCRs**

131 Two microliters of DNA extracted from culture-enriched samples were tested in 12.5 μ l of
132 reaction volume in qPCRs targeting genogroups A, B, C, W or Y [24]. Primer and probe
133 concentrations are listed in **Table S1**. These qPCRs were conducted on a LightCycler480,
134 using SensiFast probe No-ROX mastermix (Bioline, London, United Kingdom) and with
135 programme described in **Table S2**. Culture-enriched samples were regarded as positive for a
136 genogroup when the C_T was lower than the cut-off value set for *metA* and *ctrA*. Control strains
137 are listed in **Table S3**.
138

139 **Genotyping of meningococcal strains**

140 DNA extracted from cultured strains was tested in *metA*, *ctrA* and genogroup-specific qPCRs.
141 Since not all genogroups were covered by qPCRs, a simplified criterium of positivity for *ctrA*
142 was also applied to classify strain as genogroupable.
143

144 **Statistical analysis**

145 Data was analyzed using Prism (GraphPad Software; v8.4.1) and R (version 4.0.0). A *p* value
146 of <0.05 was considered significant. ROC curve analysis was performed using “cutpointr”
147 package [25], and Cohen’s Kappa (κ) was determined in analysis of methods agreement.
148 Youden index values were determined via bootstrapping (n=1,000) on *metA* qPCR data from
149 saliva and OP to determine the optimal cut-off value for qPCR detection [25].
150

151

152 **RESULTS**

153 All samples were collected in October and November 2018. Of 300 students that consented to
154 participate, one person refused to have the oropharynx swabbed and was excluded from the
155 study. Paired saliva and oropharyngeal samples from the remaining 299 (61% female; median
156 age 20 years, range 16-28 years) students were analyzed (**Figure 1**).

157
158 Bacterial strains classified with MALDI-ToF as meningococcus were cultured from 72
159 students (24% of 299) of which 70 had strains isolated from the oropharynx and 54 from saliva
160 (**Table 1**). Sixty-five (93%) of 70 oropharyngeal samples positive by culture had
161 meningococcus isolated from the first culture and the remaining five strains were recovered
162 when samples positive by qPCR yet initially culture-negative for meningococcus were
163 revisited. For saliva, the same procedure resulted in fourteen samples positive for
164 meningococcal strains in the first culture (26% of 54) and the remaining 40 in cultures guided
165 by qPCR showing that initial diagnostic cultures displayed vastly reduced sensitivity for saliva
166 when compared with oropharyngeal samples (14 vs. 65 strains cultured from 299 students,
167 McNemar's test, $p<0.0001$). The differences also remained significant after qPCR-guided
168 culture (54 vs. 70, $p<0.001$). Genogroupable meningococci were cultured from 62 students
169 (21% of 299). Here too, the number of culture-positive samples was significantly higher for
170 oropharyngeal swabs compared with saliva (58 vs. 45, $p<0.01$) (**Table 2**).

171
172 The study criterium for classification of a sample as positive for *N. meningitidis* by qPCR was
173 detection of both *metA* and *ctrA* in DNA extracted from a culture-enriched sample, and was
174 derived by calculating the optimal C_T cut-off values by using the Youden index (**Table S4**).
175 Using qPCR detection we identified 61 students (20% of 299) as a meningococcal carrier. The
176 difference in proportion of carriers detected by qPCR between oropharyngeal samples and
177 saliva samples was not significant (59 or 20% vs. 52 or 17%, McNemar's test; $p=0.07$), both
178 methods showed high agreement (96%; $\kappa=0.88$). Samples classified as positive for
179 meningococcus by qPCR displayed significant correlation between *metA* and *ctrA*, supporting
180 high specificity of molecular detection (**Figure 2**). Detection by culture and by qPCR resulted
181 in 71 (24% of 299) and 62 (21%) students identified as a meningococcal carrier in
182 oropharyngeal and saliva samples, respectively. Altogether 74 (25%) students were identified
183 as a meningococcal carrier and 62 (21%) as carrier of genogroupable meningococci by any
184 method used (**Figure 3**).

185
186 When comparing methods and specimen types used for detection of meningococcal carriage
187 overall, all evaluated procedures displayed comparable specificity of detection (**Table 1**) and
188 primarily varied in performance for sensitivity and for positive predictive value (PPV).

189
190 The criterium based on both *ctrA* and *metA* was expected to impact negatively the sensitivity
191 of meningococcal carriage detection by qPCR when compared with culture due to the presence
192 of non-genogroupable meningococci that were likely to be *ctrA*-negative. Therefore, we
193 compared methods and specimen types on samples containing genogroupable meningococci
194 (**Table 2**), which were supposed to be positive for both *ctrA* and *metA*. The PPV and sensitivity
195 of the evaluated methods were highest for detection by qPCR, whereas using saliva samples
196 resulted in decreased negative predictive values (NPV) when compared with oropharyngeal
197 samples. Detection of genogroupable meningococci using qPCR and saliva displayed increased
198 PPV and comparable sensitivity when compared with detection of meningococcus in initial
199 oropharyngeal cultures.

200

201 Next, we determined with genogroup-specific qPCRs the prevalence of genogroup A, B, C, W
202 and Y carriage. The specificity of these qPCR assays was tested using culture-enriched samples
203 negative for meningococcal carriage by culture and qPCR and none of the samples negative
204 for *ctrA* generated a signal below 25 C_T for a genogroup-specific gene (**Figure S1**). Altogether,
205 51 (83.6%) of 61 students identified as carriers of meningococci with qPCR were positive for
206 any of the genogroups targeted in group-specific qPCRs (**Figure 4**). Genogroup-specific C_Ts
207 of almost all samples positive for any of the tested genogroups corresponded strongly to the C_T
208 for *ctrA*. The exception was a single oropharyngeal sample for which results were indicative
209 of potential co-carriage of a genogroup Y strain with another *ctrA*-positive meningococcal
210 strain of unidentified group (**Figure 4E**). The prevalence of genogroup B (8.7% of 299) and Y
211 (6.4% of 299) was highest while genogroups C (0.7% of 299) and W (1.3% of 299) were less
212 prevalent. None of the samples were positive for genogroup A. MenACWY VT genogroups
213 accounted for 8.4% (95%CI 5.7-12.1) carriage prevalence or 41.0% of meningococcal
214 identified by qPCR. Results between specimen types were concordant for genogroups (**Table**
215 **3**).

216
217
218

219 **DISCUSSION**

220 In this cross-sectional study, we evaluated the application of saliva for meningococcal carriage
221 detection using both culture and qPCR-based methods. Our goal was to optimize
222 meningococcal detection for future carriage studies assessing the impact of the meningococcal
223 vaccines on carriage. Although meningococcal detection with culture resulted in fewer
224 meningococcal carriers identified in saliva when compared with oropharyngeal samples, qPCR
225 detection of meningococcus did not result in significant differences between these two sample
226 types.

227

228 Based on culture, we observed an overall carriage prevalence of 24.1%. The difference in
229 positivity for meningococcus between OP and saliva samples was likely caused by a greater
230 difficulty to isolate meningococci from saliva cultures. In the saliva, a higher abundance of
231 commensal species capable of growth on the culture media was observed as described
232 previously [18]. Using qPCR detection we observed an overall carriage prevalence of 20.4%,
233 and no significant differences were observed between OP and saliva samples in positivity for
234 meningococcus. Importantly, when detecting carriage of genogroupable meningococci, the
235 method of testing culture-enriched saliva with a qPCR performed at least equally well compare
236 with conventional diagnostic culture of oropharyngeal swab. Although numerous studies have
237 implicated oral fluids in meningococcal transmission [8-16], very few actually tested saliva as
238 specimen for assessing meningococcal carriage [18, 19]. In this context, our findings are in line
239 with a meningococcal carriage study conducted recently by Rodrigues *et al.* [20].

240

241 Among 299 students, we observed an overall meningococcal carriage rate of 24.7%, a
242 prevalence that is in line to what has been reported previously with pharyngeal swabs for this
243 age group [2, 15]. The prevalence of meningococcal carriage among young adults is considered
244 to be higher than other age groups due to increased social interactions which facilitate
245 meningococcal transmission [6]. In addition, age-related alterations in the microbiota of the
246 URT may prime individuals for meningococcal colonization [26].

247

248 VT serogroups targeted in the MenACWY vaccine accounted for 41.0% of meningococci
249 detected in carriage, corresponding to a prevalence of 8.4%. Of these VT genogroups,
250 genogroup Y was most frequently detected. While an outbreak of serogroup W was ongoing

251 in the Netherlands during the fall of 2018, the prevalence of genogroup W in carriage was low
252 (1.3%). The prevalence of genogroup C was also low, possibly reflecting reduced circulation
253 since implementation of menC vaccine in the Netherlands [27]. Serogroup A was not detected
254 in our study, its circulation appears to be limited in the Netherlands [15, 28]. The most prevalent
255 genogroup among carriers was B. Genogroups B and Y have both been described to be most
256 commonly detected genogroups among young adults [29].
257

258 Our study has a number of limitations. Firstly, MALDI-ToF may have identified more samples
259 of students positive for meningococcus than qPCR detection with *metA* and *ctrA* carriage
260 criterium as MALDI-ToF also takes non-genogroupable, unencapsulated meningococci into
261 account, and is susceptible to misidentification [30]. To avoid misidentification by MALDI-
262 ToF, we have only included bacterial strains for which identification displayed high confidence
263 (≥ 2.0). Another limitation is false-positivity of qPCR tests. To minimize this issue, we have
264 conducted ROC curve analysis and used the Youden index to determine a cut-off value for
265 qPCR detection. Considering that the majority of qPCR positive samples facilitated successful
266 recovery of viable meningococci, we conclude that false-positive results have had no
267 significant impact on our conclusions.
268

269 One of the strengths of our study was the paired comparison of saliva and oropharyngeal
270 samples in detection of meningococcal carriage. Furthermore, we have used selective media
271 and inoculated plates immediately after samples collection. Fast processing of samples may be
272 crucial for the sensitivity of meningococcal detection. Moreover, the combined use of two
273 meningococcal qPCR targets for specific meningococcal detection in polymicrobial samples
274 has allowed us to detect meningococcus with high specificity.
275

276 In conclusion, our findings show that the detected prevalence of meningococcal carriage
277 between oropharyngeal and saliva samples was nondifferent with qPCR detection, the results
278 for saliva were highly concordant with oropharyngeal swabs, and that the majority of samples
279 positive with qPCR were shown to contain viable meningococci. Since the collection of saliva
280 is easy, well tolerated and can be performed without professional assistance, we propose that
281 saliva combined with qPCR-based surveillance can be considered for future meningococcal
282 carriage studies.
283
284
285

286 **Authors' contribution.** EAMS, TB and KT had an idea and initiated the study. AJWM, NY
287 and TB secured financial support for the project. TB and KT led the project and supervised the
288 project activities. WRM, AJWM, NYR, TB and KT wrote the protocol. WRM, GP, LJdJ, IG,
289 SW, and JvV validated the methods. WRM, GP, LJdJ, IG, SW, and EvL conducted the research
290 and collected the data. WRM, RM, MMI, AJW, NYR, TB and KT managed the study. WRM,
291 RM, GP, and KT curated the data. WMR, RM and KT performed formal analysis of study data.
292 WRM and KT visualized presentation of the results and drafted the manuscript. All authors
293 amended, critically reviewed and commented on the final manuscript.
294

295 **Acknowledgements.** We gratefully acknowledge the students of Hogeschool Utrecht for their
296 participation in the study. We wish to thank Carien Voogt for assistance in setting-up molecular
297 assays. This study was presented in part at ECCMID 2019 in Amsterdam, the Netherlands.
298

299 **Financial support.** This work was supported by internal funds from the National Institute for
300 Public Health and the Environment (RIVM) and, through ZonMW, by the Dutch Ministry of

301 Public Health, Welfare and Sport (VWS) and the Netherlands Organisation for Scientific
302 Research (NWO).

303
304 **Potential Conflicts of Interest.** KT received consultation fees, fees for participation in advisory
305 boards, speaking fees and funds for unrestricted research grants from Pfizer, funds for an
306 unrestricted research grant from GlaxoSmithKline, and fees for participating in advisory boards
307 from Merck Sharp & Dohme, all paid directly to his home institution and none received in the
308 relation to the work reported here. The other authors declare no conflict of interest.

309
310
311

312 REFERENCES

- 313 1. Jafri RZ, Ali A, Messonnier NE, et al. Global epidemiology of invasive meningococcal disease. Popul Health Metr **2013**; 11(1): 17.
- 314 2. Christensen H, May M, Bowen L, Hickman M, Trotter CL. Meningococcal carriage by age: a systematic review and meta-analysis. Lancet Infect Dis **2010**; 10(12): 853-61.
- 315 3. Knol MJ, Ruijs WL, Antonise-Kamp L, de Melker HE, van der Ende A. Implementation of MenACWY vaccination because of ongoing increase in serogroup W invasive meningococcal disease, the Netherlands, 2018. Euro Surveill **2018**; 23(16).
- 316 4. Schurink-van 't Klooster TM, de Melker HE. The National Immunisation Programme in the Netherlands : Surveillance and developments in 2018-2019: Rijksinstituut voor Volksgezondheid en Milieu RIVM, **2019**.
- 317 5. Maiden MCJ, Ibarz-Pavón AB, Urwin R, et al. Impact of meningococcal serogroup C conjugate vaccines on carriage and herd immunity. The Journal of infectious diseases **2008**; 197(5): 737-43.
- 318 6. Caugant DA, Maiden MC. Meningococcal carriage and disease--population biology and evolution. Vaccine **2009**; 27 Suppl 2: B64-70.
- 319 7. Roberts J, Greenwood B, Stuart J. Sampling methods to detect carriage of *Neisseria meningitidis*; literature review. J Infect **2009**; 58(2): 103-7.
- 320 8. Stanwell-Smith RE, Stuart JM, Hughes AO, Robinson P, Griffin MB, Cartwright K. Smoking, the environment and meningococcal disease: a case control study. Epidemiol Infect **1994**; 112(2): 315-28.
- 321 9. Holdsworth G, Jackson H, Kaczmarski E. Meningococcal infection from saliva. Lancet **1996**; 348(9039): 1443.
- 322 10. Neal KR, Nguyen-Van-Tam JS, Jeffrey N, et al. Changing carriage rate of *Neisseria meningitidis* among university students during the first week of term: cross sectional study. BMJ **2000**; 320(7238): 846-9.
- 323 11. MacLennan J, Kafatos G, Neal K, et al. Social behavior and meningococcal carriage in British teenagers. Emerg Infect Dis **2006**; 12(6): 950-7.
- 324 12. Tully J, Viner RM, Coen PG, et al. Risk and protective factors for meningococcal disease in adolescents: matched cohort study. BMJ **2006**; 332(7539): 445-50.
- 325 13. Mandal S, Wu HM, MacNeil JR, et al. Prolonged university outbreak of meningococcal disease associated with a serogroup B strain rarely seen in the United States. Clin Infect Dis **2013**; 57(3): 344-8.
- 326 14. Dryden AW, Rana M, Pandey P. Primary meningococcal conjunctivitis: an unusual case of transmission by saliva. Digit J Ophthalmol **2016**; 22(1): 25-7.
- 327 15. van Ravenhorst MB, Bijlsma MW, van Houten MA, et al. Meningococcal carriage in Dutch adolescents and young adults; a cross-sectional and longitudinal cohort study. Clin Microbiol Infect **2017**; 23(8): 573 e1- e7.
- 328 16. McMillan M, Walters L, Mark T, et al. B Part of It study: a longitudinal study to assess carriage of *Neisseria meningitidis* in first year university students in South Australia. Hum Vaccin Immunother **2019**; 15(4): 987-94.
- 329 17. Nasidze I, Li J, Quinque D, Tang K, Stoneking M. Global diversity in the human salivary microbiome. Genome Res **2009**; 19(4): 636-43.
- 330 18. Gordon MH. The Inhibitory Action of Saliva on Growth of the Meningococcus. Br Med J **1916**; 1(2894): 849-51.

357 19. Orr HJ, Gray SJ, Macdonald M, Stuart JM. Saliva and meningococcal transmission. *Emerg*
358 *Infect Dis* **2003**; 9(10): 1314-5.

359 20. Rodrigues F, Christensen H, Morales-Aza B, et al. Viable *Neisseria meningitidis* is commonly
360 present in saliva in healthy young adults: Non-invasive sampling and enhanced sensitivity of
361 detection in a follow-up carriage study in Portuguese students. *PLoS One* **2019**; 14(2):
362 e0209905.

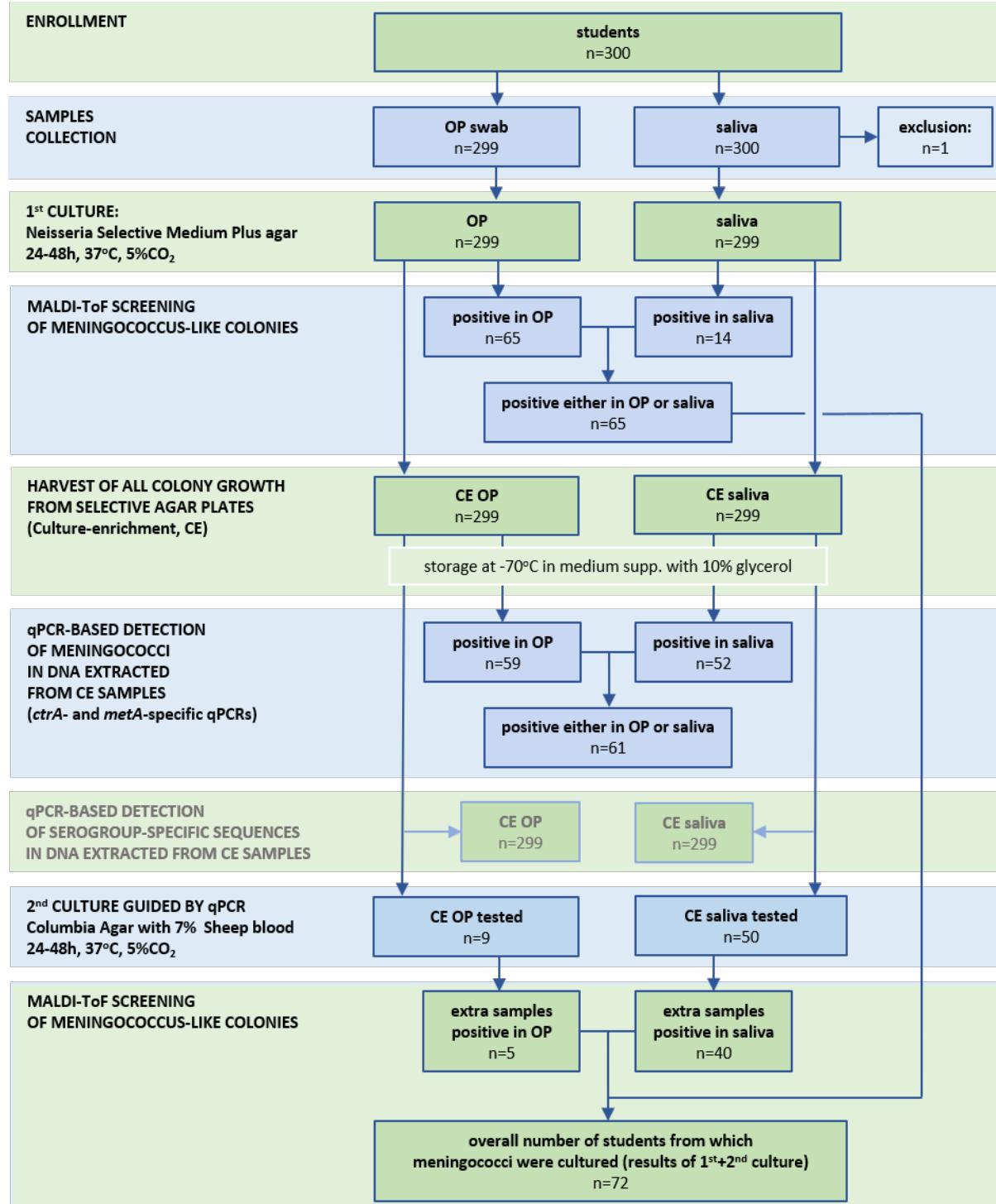
363 21. Jordens JZ, Williams JN, Jones GR, Heckels JE. Detection of meningococcal carriage by
364 culture and PCR of throat swabs and mouth gargles. *J Clin Microbiol* **2002**; 40(1): 75-9.

365 22. Miillet WR, van Veldhuizen J, Nicolaie MA, et al. Influenza-like Illness Exacerbates
366 Pneumococcal Carriage in Older Adults. *Clin Infect Dis* **2020**.

367 23. Diene SM, Bertelli C, Pillonel T, et al. Comparative genomics of *Neisseria meningitidis* strains:
368 new targets for molecular diagnostics. *Clin Microbiol Infect* **2016**; 22(6): 568 e1-7.

369 24. Rojas E, Hoyos J, Oldfield NJ, et al. Optimization of Molecular Approaches to Genogroup
370 *Neisseria meningitidis* Carriage Isolates and Implications for Monitoring the Impact of New
371 Serogroup B Vaccines. *PLoS One* **2015**; 10(7): e0132140.

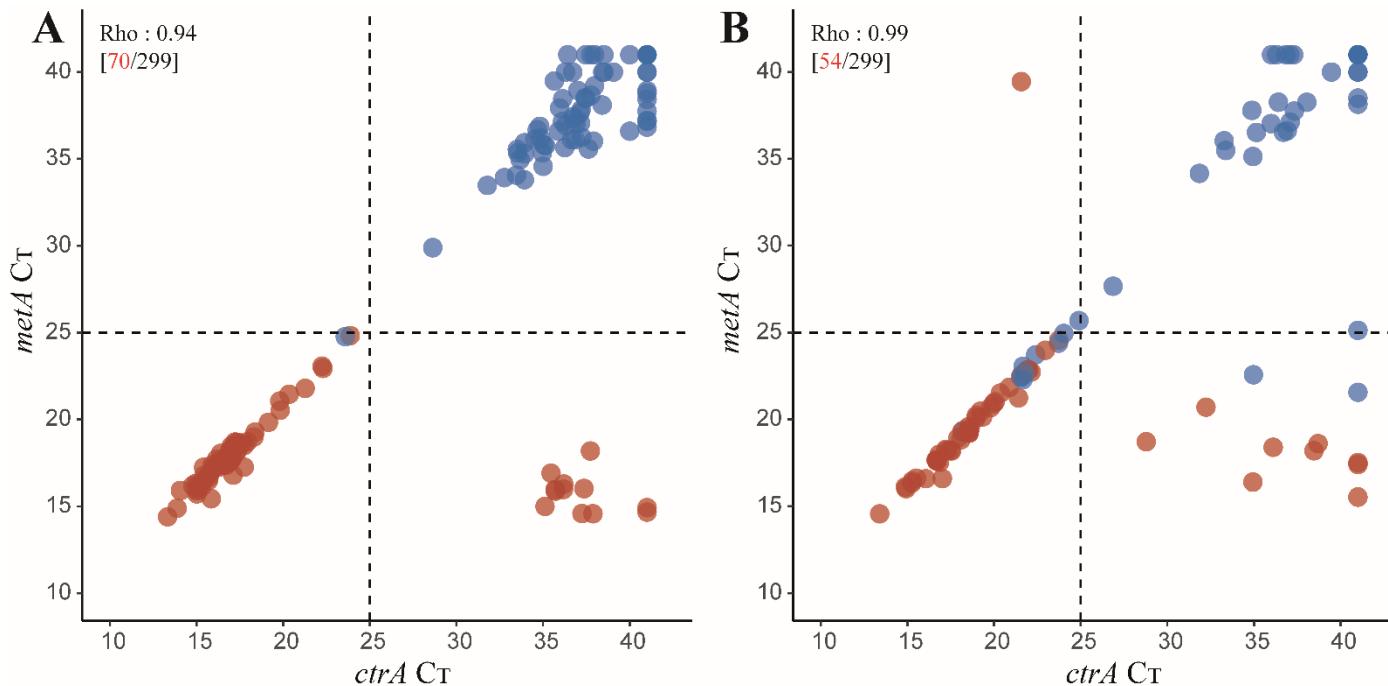
372 25. Nutz S, Doll K, Karlovsky P. Determination of the LOQ in real-time PCR by receiver operating
373 characteristic curve analysis: application to qPCR assays for *Fusarium verticillioides* and *F.*
374 *proliferatum*. *Anal Bioanal Chem* **2011**; 401(2): 717-26.


375 26. Moir JW. Meningitis in adolescents: the role of commensal microbiota. *Trends Microbiol* **2015**;
376 23(4): 181-2.

377 27. Kaaijk P, van der Ende A, Berbers G, van den Doppelsteen GP, Rots NY. Is a single dose of
378 meningococcal serogroup C conjugate vaccine sufficient for protection? experience from the
379 Netherlands. *BMC Infect Dis* **2012**; 12: 35.

380 28. Bijlsma MW, Bekker V, Brouwer MC, Spanjaard L, van de Beek D, van der Ende A. Epidemiology of invasive meningococcal disease in the Netherlands, 1960-2012: an analysis
381 of national surveillance data. *Lancet Infect Dis* **2014**; 14(9): 805-12.

383 29. Peterson ME, Li Y, Shanks H, et al. Serogroup-specific meningococcal carriage by age group:
384 a systematic review and meta-analysis. *BMJ Open* **2019**; 9(4): e024343.


385 30. Cunningham SA, Mainella JM, Patel R. Misidentification of *Neisseria polysaccharea* as
386 *Neisseria meningitidis* with the use of matrix-assisted laser desorption ionization-time of flight
387 mass spectrometry. *J Clin Microbiol* **2014**; 52(6): 2270-1.

388

389 **Figure 1:** Flowchart depicting the study workflow and results of meningococcal detection
390 using either culture-based or qPCR-based diagnostic methods.

391

392

393

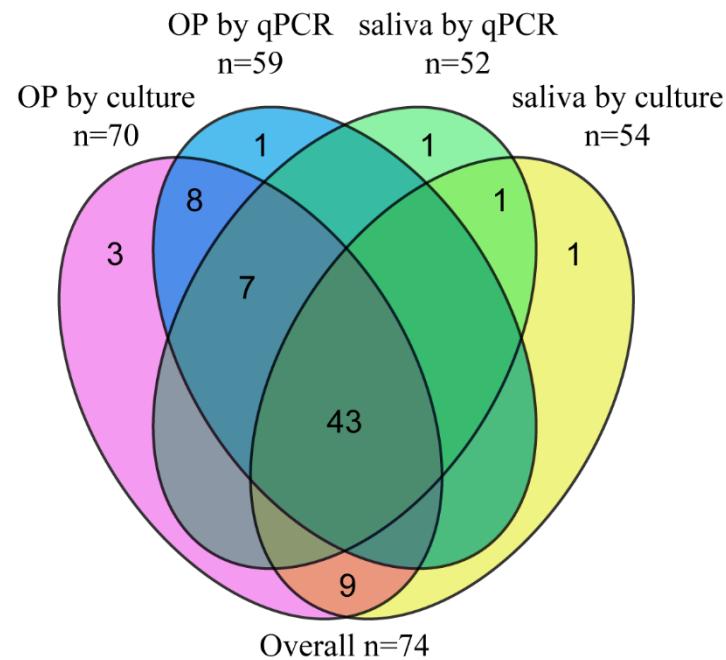
394

Figure 2: qPCR based detection of *Neisseria meningitidis* versus isolation of live meningococci from oropharyngeal and saliva samples. A scatter plot of the *metA* and *ctrA* qPCR cycle threshold (CT) values from (A) oropharyngeal and (B) saliva samples. Each symbol represents an individual sample. Samples with a CT for both *metA* and *ctrA* below 25 CT are considered as positive for meningococcal carriage when tested with molecular methods. In both oropharyngeal and saliva samples, we noted a significant correlation between *metA* and *ctrA* for meningococcus positive samples (Spearman's test $p<0.0001$). Red dots represent samples from which meningococcal strain has been cultured. Blue dots represent samples classified as positive for meningococcus when tested with molecular method but negative by culture. Numbers in brackets depict the number (in black) of all samples and (in red) number of samples from which *N. meningitidis* has been cultured.

401 **Table 1:** The accuracy of *Neisseria meningitidis* detection in oropharyngeal and saliva samples collected from 299 students and tested with culture
 402 and using molecular methods applied to DNA extracted from culture-enriched samples. Measures of diagnostic accuracy were calculated by
 403 comparing the number of individuals positive per method with the overall number of individuals positive for *N. meningitidis* by any method.

Method	Oropharyngeal swab							Saliva						
	Prevalence	PPV	NPV	Sensitivity	Specificity	Concordance	K	Prevalence	PPV	NPV	Sensitivity	Specificity	Concordance	K
	%	%	%	%	%	%		%	%	%	%	%	%	
initial culture	21.7 (17.4–26.8)	96.1 (96.5–99.8)	97.0 (78.2–93.5)	99.1 (96.5–99.8)	87.8 (78.2–93.5)	96.3	0.90	4.7 (2.8–7.7)	78.9 (13.5–22.1)	100 (14.1–22.8)	100 (100–100)	18.9 (–)	79.9 (11.4–29.6)	0.26
qPCR	19.7 (15.9–25.0)	93.8 (–)	100 (–)	100 (69.0–87.5)	79.7 (69.0–87.5)	95.0	0.86	17.4 (13.5–22.1)	91.1 (18.1–91.5)	100 (100–100)	100 (–)	70.0 (58.8–79.6)	92.6	0.78
initial plus qPCR-guided cultures	23.4 (19.0–28.5)	98.3 (–)	100 (–)	100 (85.8–98.1)	94.6 (85.8–98.1)	98.7	0.96	18.1 (14.1–22.8)	91.5 (91.5–100)	100 (–)	71.6 (60.2–80.8)	93.0	0.79	

404 PPV: positive predictive value, NPV: negative predictive value, 95%CI: 95% confidence interval, κ : Cohen's Kappa where ≤ 0 , 0.01-0.20, 0.21-
 405 0.40, 0.41-0.60, 0.61-0.80, >0.81 are interpreted as no agreement, none to slight, fair, moderate, strong, and almost perfect agreement, respectively.
 406
 407


408 **Table 2:** The accuracy of genogroupable *Neisseria meningitidis* detection in oropharyngeal and saliva samples collected from 299 students and
 409 tested with culture and using molecular methods applied to DNA extracted from culture-enriched samples. Measures of diagnostic accuracy were
 410 calculated by comparing the number of detected individuals positive per method with the overall number of individuals positive for genogroupable
 411 *N. meningitidis*.

412

Method	Oropharyngeal swab							Saliva						
	Prevalence	PPV	NPV	Sensitivity	Specificity	Concordance	K	Prevalence	PPV	NPV	Sensitivity	Specificity	Concordance	K
	%	%	%	%	%	%		%	%	%	%	%	%	
	(95%CI)			(95%CI)				(95%CI)			(95%CI)		(95%CI)	
initial culture	17.7 (13.8–22.5)	96.6	79.1	94.1 (90.3–96.5)	86.9 (75.9–93.3)	92.6	0.78	4.3 (2.6–7.3)	83.2	92.9	99.6 (97.1–99.9)	21.3 (12.8–33.3)	83.6	0.29
qPCR	19.7 (15.6–24.6)	99.2	100	100 (-)	96.7 (86.0–99.3)	99.3	0.98	17.4 (13.5–22.1)	96.4	100	100 (-)	85.2 (73.7–92.2)	97.0	0.90
initial plus qPCR-guided cultures	19.4 (15.3–24.3)	98.7	82.9	95.0 (91.3–97.1)	95.1 (85.8–98.4)	94.5	0.85	14.4 (10.9–18.8)	92.7	81.1	95.8 (92.4–97.7)	70.5 (57.9–80.6)	90.6	0.70

413 PPV: positive predictive value, NPV: negative predictive value, 95%CI: 95% confidence interval, κ : Cohen's Kappa where ≤ 0 , 0.01-0.20, 0.21-
 414 0.40, 0.41-0.60, 0.61-0.80, >0.81 are interpreted as no agreement, none to slight, fair, moderate, strong, and almost perfect agreement,
 415 respectively.

416

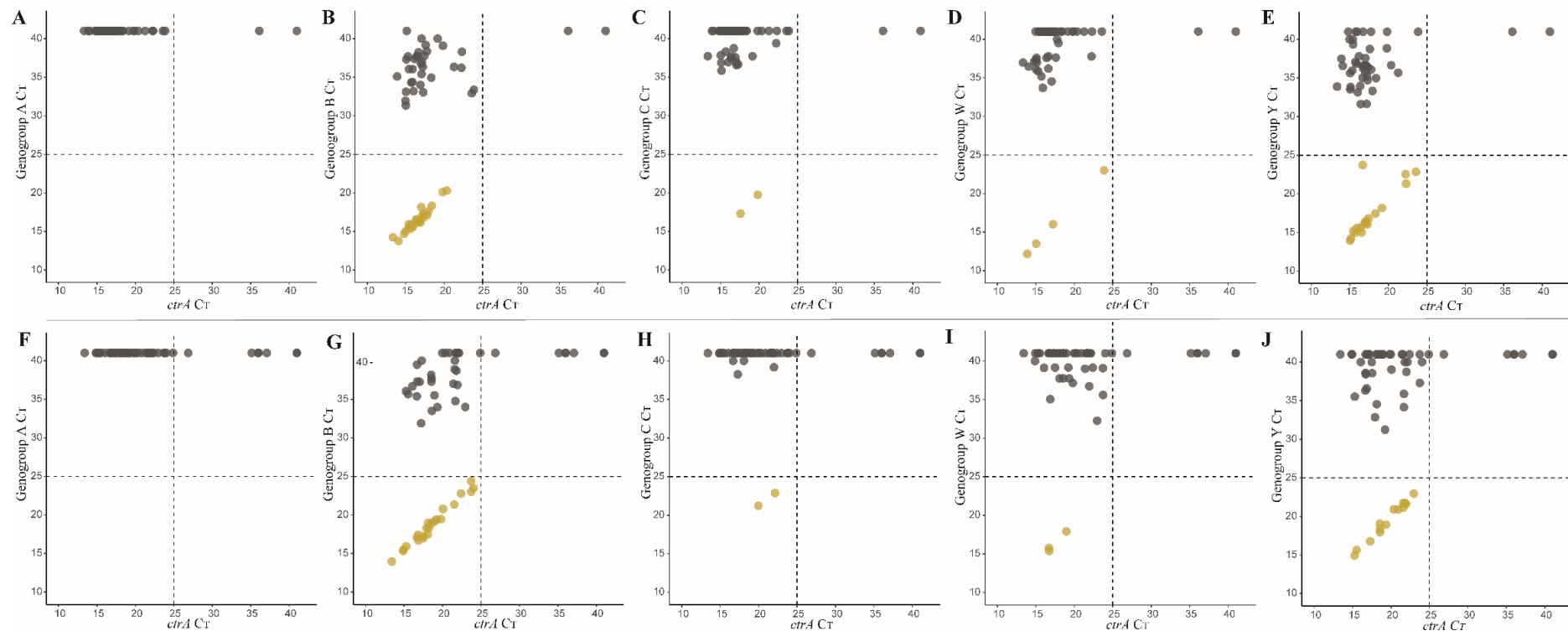
417

418

419 **Figure 3.** Venn diagram displaying the number of oropharyngeal and saliva samples positive for meningococci based on recovery of live *N. meningitidis* strain from a culture (samples positive by culture, includes qPCR-guided culturing) or when tested with qPCR.

420

421


422 **Table 3.** Prevalence of meningococcal MenACWY vaccine-type serogroups among OP and saliva samples collected from students (n=299) and
 423 tested by qPCR.

Parameter	OP n (%) (95% CI)	Saliva n (%) (95% CI)	OP and saliva n (%) (95% CI)	Either OP or saliva n (%) (95% CI)	Concordance	P value*
menA	0	0	0	0	-	-
menB	25 (8.3) (5.2-11.3)	23 (7.7) (5.2-11.3)	22 (7.3) (4.9-11.0)	26 (8.7) (6.0-12.4)	98.7%	0.6171
menC	2 (0.7) (0.1-2.4)	2 (0.7) (0.1-2.4)	2 (0.7) (0.1-2.4)	2 (0.7) (0.1-2.4)	100%	-
menW	4 (1.3) (0.5-3.4)	3 (1.0) (0.3-2.9)	3 (1.0) (0.3-3.0)	4 (1.3) (0.5-3.4)	99.7%	1.0000
menY	18 (6.0) (3.8-9.3)	14 (4.7) (2.8-7.7)	13 (4.3) (2.6-7.3)	19 (6.4) (4.1-9.7)	98.0%	0.2207

424 *: p-values are calculated from McNemar tests comparing students positive for serogroup in oropharyngeal samples and saliva samples.

425 The percentage of concordance displays the proportion of samples (n=63) with identical result in serogroup-specific qPCR assay for a particular
 426 serogroup.

427

428

429 **Figure 4. A scatter plot of the *ctrA* and genogroup-specific qPCR cycle threshold (C_T) values.** Results are displayed for oropharyngeal (A –
 430 E) and saliva (F – J) samples. Each dot represent an individual sample. Samples with a C_T for both *ctrA* and a particular genogroup below 25 C_T
 431 are considered as positive for that particular genogroup. Yellow dots represent samples classified as positive for a genogroup by qPCR and grey
 432 dots as negative for the depicted genogroup. Dashed lines depict the C_T criterium for meningococcal carriage.

433 **Supplementary Table S1** : Primer and probe concentrations used in the study.

Oligonucleotide	Sequence	Concentration (nM)	Reference
<i>metA</i> forward primer	5'-GCGAATTGCTAACCTATTTATGTGC-3'	750	Diene <i>et al</i> 2016 [23].
<i>metA</i> reverse primer	5'-AAATTTGCGCCATTACAGGTG-3'	750	
<i>metA</i> probe	5'-6-FAM-AAATTTGCGCCATTACAGGTG-3'-TAMRA	200	
<i>ctrA</i> forward primer	5'-TGGCGGTTGCAAGATC-3'	500	
<i>ctrA</i> reverse primer	5'-TGACGTTCTGCCGGCAAT-3'	500	
<i>ctrA</i> probe	5'-6-FAM-CACACCACGCGCATCA -3'-TAMRA	200	
serogroup A (<i>csAB</i>) forward primer	5'-GCCACAAAGTGCCCTTCCT-3'	800	
serogroup A (<i>csAB</i>) forward primer	5'-TGGTATATGGTGCAAGCTGGTT-3'	800	
serogroup A (<i>csAB</i>) probe	5'-6-FAM-TTTAGCTCACATGCTATTG-3'-TAMRA	300	
serogroup B (<i>csB</i>) forward primer	5'-CCTCGGCTGGTAGTTATTAATGAAC-3'	300	
serogroup B (<i>csB</i>) reverse primer	5'-GCCAGGCCTATAATTCCCTTAGGA-3'	300	Rojas <i>et al</i> 2015 [24].
serogroup B (<i>csB</i>) probe	5'-6-FAM-CCTTTCTAATTGAGCCCCCTAA-3'-TAMRA	100	
serogroup C (<i>csC</i>) forward primer	5'-GCACATTCAAGCGGGATTA-3'	200	
serogroup C (<i>csC</i>) reverse primer	5'-TTGAGATATGCGGTATTGTCTTGA-3'	100	
serogroup C (<i>csC</i>) probe	5'-6-FAM-ACAAGCCAATCTATTGCT-3'-TAMRA	400	
serogroup W (<i>siaD</i>) forward primer	5'-CAGAAAGTGAGGGATTCCATA-3'	200	
serogroup W (<i>siaD</i>) reverse primer	5'-CACAACCATTTCATTATAGTTACTGT-3'	100	
serogroup W (<i>siaD</i>) probe	5'-6-FAM-TGGAAGGCATGGTGTATGATATTG-3'-TAMRA	100	
serogroup Y (<i>csy</i>) forward primer	5'-GTACGATATCCCTATCCTGCCTATAA-3'	200	
serogroup Y (<i>csy</i>) reverse primer	5'-CCATTCCAGAAATATCACCAGTTTA-3'	100	
serogroup Y (<i>csy</i>) probe	5'-6-FAM-TGGAGCGAATGATTAGCAA-3'-TAMRA	100	

434

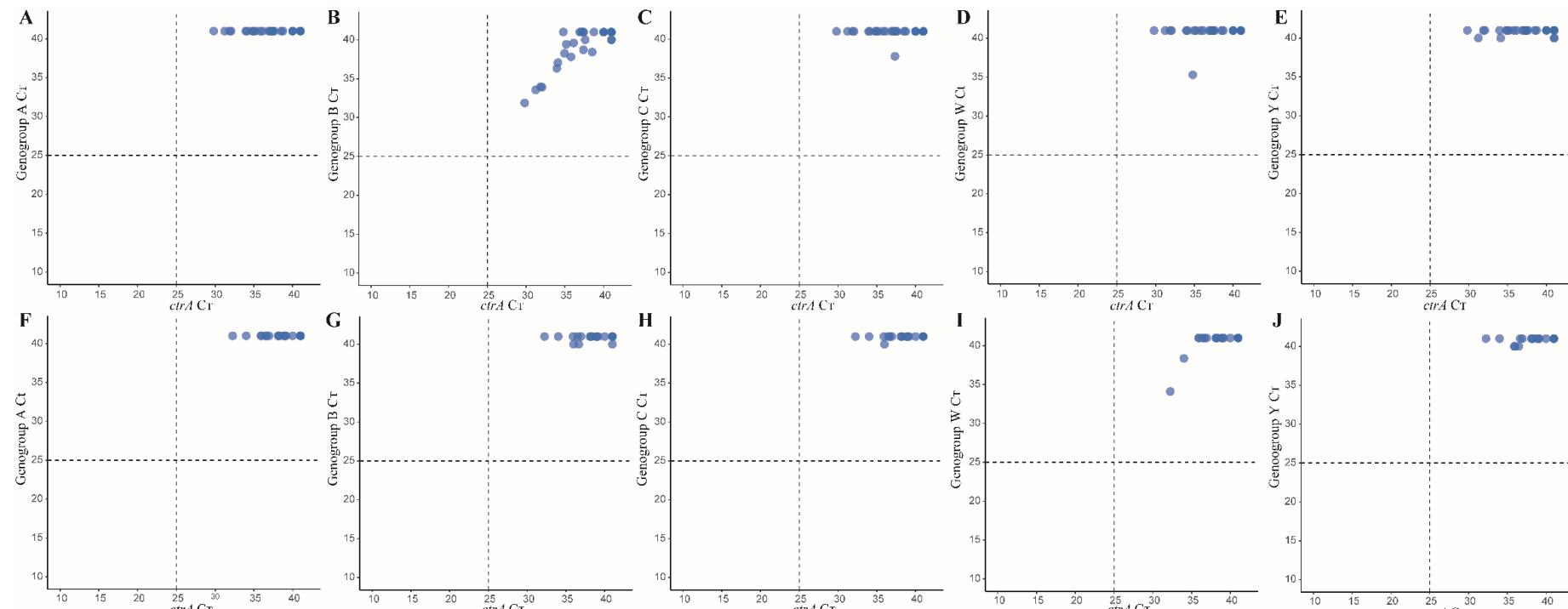
435 **Supplementary Table S2** : qPCR programmes used in this study.

qPCR assay	Step	Cycles	Temperature (°C)	Duration
<i>metA</i> and <i>ctrA</i> qPCR	Pre-incubation	1	95	10 min
	Denaturation		95	10 sec
	Annealing	45	60	45 sec
	Elongation		72	1 sec
serogroup-specific qPCR	Pre-incubation	1	95	5 min
	Denaturation		95	10 sec
	Annealing and elongation	45	60	50 sec

436

437 **Supplementary Table S3** : *Neisseria meningitidis* strains used in this study.

Strain	Description	Source
serogroup A strain 3125	used to optimize the serogroup-specific qPCR assay	Meningococcal Reference Unit Manchester, UK
serogroup B strain BD00-00032	used to optimize the serogroup-specific qPCR assay	this study
serogroup C strain BD00-00268	used to optimize the serogroup-specific qPCR assay	this study
serogroup W strain BD98-00112	used to optimize the serogroup-specific qPCR assay, <i>ctrA</i> qPCR assay and <i>metA</i> qPCR assay.	this study
serogroup Y strain BD03-00373	used to optimize the serogroup-specific qPCR assay	this study


438

439 **Supplementary Table S4 :** Optimal qPCR C_T threshold and corresponding parameters for meningococcal carriage detection on samples
440 stratified by positive or negative for culture detection.

Parameter	Optimal threshold	Youden index (J)	Sensitivity	Specificity
OP <i>metA</i>	24.83	0.9956	1	0.9956
OP <i>ctrA</i>	24.87	0.8242	0.8286	0.9956
Saliva <i>metA</i>	24.95	0.9407	0.9815	0.9592
Saliva <i>ctrA</i>	38.70	0.8302	0.9444	0.8857

441

442 For qPCR detection of *Neisseria meningitidis*, we regarded a culture-enriched sample as positive by qPCR when detection of both the *metA* and
443 *ctrA* genes was observed. For both types of samples and in both qPCRs we observed a bimodal distribution of C_Ts, with the highest C_T of any
444 culture-positive sample separated by at least 10 C_Ts from the lowest in a cluster of all culture-negative samples. Based on this distribution, we
445 performed ROC curve analysis to calculate the maximal Youden indices. For oropharyngeal samples, the difference between thresholds for
446 positivity calculated for *metA* and *ctrA* was within 0.1 C_T. For saliva samples the difference was over 13 C_Ts due to higher than among oropharyngeal
447 samples proportion of non-genogroupable to groupable strains cultured. To avoid a bias in meningococcal detection between oropharyngeal and
448 saliva samples, we applied thresholds (<25 C_T) calculated for oropharyngeal samples also to saliva. A criterium based on both *ctrA* and *metA* was
449 expected to impact negatively the sensitivity of meningococcal carriage detection by qPCR when compared with culture due to presence of non-
450 genogroupable meningococci that were likely to be *ctrA*-negative.

451

452 **Figure S1. Scatterplots of genogroup-specific qPCR assays for CE samples negative for meningococcus by qPCR.** Scatterplots displays
 453 genogroups-specific qPCR results for culture-enriched oropharyngeal (A – E) and saliva (F – J) samples negative for meningococcal carriage by
 454 qPCR and culture (n=42 for each). None of the tested samples generated a signal (C_T) below 25 C_T for any of the tested genogroups, namely
 455 serogroup A, B, C, W and Y. Dashed lines depict the C_T criterium for meningococcal carriage.