

1 **Identification and differentiation of *Pseudomonas* species in field samples**
2 **using an *rpoD* amplicon sequencing methodology**

3 Jonas Greve Lauritsen, Morten Lindqvist Hansen, Pernille Kjersgaard Bech, Lars Jelsbak,
4 Lone Gram, and Mikael Lenz Strube[#].

5

6 Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts
7 Plads bldg. 221, DK-2800 Kgs Lyngby, Denmark

8

9 [#]corresponding author:

10 Mikael Lenz Strube (milst@dtu.dk)

11

12 **ORCID**

13 JGL: 0000-0001-8231-2830

14 MLH: 0000-0003-3927-2751

15 PKB: 0000-0002-6028-9382

16 LJ: 0000-0002-5759-9769

17 LG: 0000-0002-1076-5723

18 MLS: 0000-0003-0905-5705

19

20 **Running title:** High throughput identification of *Pseudomonas* species

21

22 **Keywords:** Microbiome analyses, *Pseudomonas*, diversity, *rpoD*, 16S rRNA, amplicon
23 sequencing

24 **ABSTRACT**

25 Species of the genus *Pseudomonas* are used for several biotechnological purposes, including
26 plant biocontrol and bioremediation. To exploit the *Pseudomonas* genus in environmental,
27 agricultural or industrial settings, the organisms must be profiled at species level as their
28 bioactivity potential differs markedly between species. Standard 16S rRNA gene amplicon
29 profiling does not allow for accurate species differentiation. Thus, the purpose of this study
30 was to develop an amplicon-based high-resolution method targeting a 760 nt region of the
31 *rpoD* gene enabling taxonomic differentiation of *Pseudomonas* species in soil samples. The
32 method was benchmarked on a sixteen membered *Pseudomonas* species mock community.
33 All 16 species were correctly and semi-quantitatively identified using *rpoD* gene amplicons,
34 whereas 16S rRNA V3V4 amplicon sequencing only correctly identified one species. We
35 analysed the *Pseudomonas* profile in thirteen soil samples in northern Zealand, Denmark,
36 where samples were collected from grassland (3 samples) and agriculture soil (10 samples).
37 *Pseudomonas* species represented up to 0.7% of the microbial community, of which each
38 sampling site contained a unique *Pseudomonas* composition. Thirty culturable *Pseudomonas*
39 strains were isolated from each grassland site and ten from each agriculture site and identified
40 by Sanger sequencing of the *rpoD* gene. In all cases, the *rpoD*-amplicon approach identified
41 more species than found by cultivation, including hard-to-culture non-fluorescent
42 pseudomonads, as well as more than found by 16S rRNA V3V4 amplicon sequencing. Thus,
43 *rpoD* profiling can be used for species profiling of *Pseudomonas*, and large scale prospecting
44 of bioactive *Pseudomonas* may be guided by initial screening using this method.

45

46 **Importance:** A high throughput sequence-based method for profiling of *Pseudomonas*
47 species in soil microbiomes was developed and identified more species than 16S rRNA gene
48 sequencing or cultivation. *Pseudomonas* species are used as biocontrol organisms and plant-

49 growth promoting agents, and the method will allow tracing of specific species of
50 *Pseudomonas* as well as enable screening of environmental samples for further isolation and
51 exploitation.

52

53 **INTRODUCTION**

54 *Pseudomonas* species are ubiquitous and can be isolated from a range of environments
55 including plant rhizospheres, marine habitats, and animal tissues (1–4). Whilst the genus
56 contains species that are pathogenic to plants and animals, several species express traits that
57 enable their use in bioremediation, plant growth promotion or plant disease suppression (5–
58 8). The underlying beneficial mechanisms are often linked to specific species or even strains,
59 including the production of pathogen suppressing secondary metabolites, such as the
60 antibiotic 2,4-diacetylphloroglucinol (DAPG) and pyoverdine siderophores (5, 9–11). Also,
61 some strains promote growth of plants by solubilising inorganic nutrients such as phosphate
62 and iron or by producing plant hormones (11–14). Members of the *Pseudomonas*
63 *fluorescence* group, in particular, are a major source of bioactivity since they have markedly
64 larger genomes than other pseudomonads (15) and a high number of biosynthetic gene
65 clusters as determined by genomic analysis (16). In addition to strains expressing these and
66 other beneficial traits, it is also becoming clear that the structure and diversity of the
67 *Pseudomonas* community in bulk and rhizosphere soils *per se* can be associated with
68 suppression of crop fungal pathogens (17, 18). Studies on the distribution, abundance and
69 diversity of *Pseudomonas* spp. in soil and rhizosphere often rely on cultivation dependent
70 analyses. However, Aagot *et al.* and others have demonstrated that cultivation of individual
71 species of *Pseudomonas* is dependent on the specific conditions used (e.g. level of nutrients),
72 and the decision of a specific cultivation medium is thus a source of bias (19). Given these
73 biases, linking specific *Pseudomonas* species and/or community structures to certain
74 ecosystem performance metrics (including suppression of crop fungal pathogens) remains a
75 challenge.

76

77 Amplicon sequencing of the 16S rRNA gene has become the standard for culture-
78 independent, taxonomic profiling of environmental microbial communities. However, the
79 16S rRNA gene is very similar across closely related *Pseudomonas* species with less than 1%
80 nucleotide dissimilarity between many of the species (20). For example, in the subgroup of *P.*
81 *putida*, the dissimilarities are between 0.16% and 2.31% (20). Therefore, 16S rRNA gene
82 profiling only provides taxonomic resolution at genus level, and studies of *Pseudomonas*
83 community structures and dynamics at species level require sequencing and analyses of other
84 house-keeping genes. The *rpoD* gene, which encode the sigma 70 factor of RNA polymerase,
85 is an excellent target gene for phylogenetic and taxonomic analyses of *Pseudomonas* species
86 (21). Using a highly selective pair of *Pseudomonas rpoD* primers, PsEG30F–PsEG790R (21),
87 an *rpoD*-amplicon sequencing method was used to analyse environmental DNA obtained
88 from a single water sample (22). The method was developed for the 454/Roche GS-FLX
89 platform and used an in-house *rpoD* database for sequence analysis. Given the
90 discontinuation of the 454/Roche GS-FLX platform and the understanding of *Pseudomonas*
91 phylogeny, there is a need for development of an amplicon-based method for reliable
92 identification and differentiation of *Pseudomonas* species from environmental samples.

93 The purpose of the present study was to develop an amplicon sequencing protocol
94 compatible with the Illumina MiSeq 300PE platform, and to establish a new and improved
95 bioinformatic pipeline with an updated database build upon the *Pseudomonas* type strain
96 collection and taxonomic framework from Hesse *et al.* (15). The *rpoD* amplicon method
97 allowed *Pseudomonas* species differentiation in environmental soil samples and can guide
98 future bioprospecting endeavours.

99

100

101

102 RESULTS

103 ***In silico* target gene evaluation.** We evaluated nine genes and their accompanying primer
104 sets (14 in total) for their phylogenetic discriminatory power using *in silico* PCR against two
105 sets of genomes: First, a library of the 166 type-strain genomes of Hesse *et al.* (15) acting as a
106 well curated collection of all known *Pseudomonas* and their phylogeny, although with most
107 genomes being in contig form. Second, a library of 465 genomes of *Pseudomonas* species
108 available from NCBI, all of which are complete but with high redundancy and incomplete
109 taxonomy (Table 1). The *rpoD* primer pair PsEG30F and PsEG790R (21) resulted in the best
110 phylogenetic resolution along with the highest total number of individual *Pseudomonas*
111 genomes amplified and the lowest total non-*Pseudomonas* amplifications. This pair amplified
112 160/166 (96.39%) of type strains and 460/465 (98.92%) of the complete genomes (Table S3)
113 with no amplification of the negative controls. The *gyrB*-gene primers UP-1E / APrU showed
114 100% amplification of the type strains, but unfortunately also amplified 25% of the negative
115 controls and had multiple instances of amplicons much longer than expected length. To
116 further evaluate the phylogenetic resolution of the primers, a multiple sequence alignment of
117 the amplicons and the resulting phylogeny was compared to the study by Hesse *et al.* (15), in
118 which the 166 distinct *Pseudomonas* type strains were phylogenetically resolved based on
119 Multiple Locus Sequencing Typing of 100 genes. Here, the *rpoD* primers PsEG30F and
120 PsEG790R from Mulet *et al.* (21) produced amplicons with the closest similarity to the
121 phylogenetic map of Hesse et al. (15), and separated all species in the phylogenetic tree. The
122 primers generated a ~760 nt long amplicon of the *rpoD* gene, which unfortunately led to a
123 sequencing gap of 160 nt using the 300PE platform. Therefore, two new reverse primers were
124 designed, PsJL490R and PsJL628R, however, both had lower amplification of the type strain
125 genomes at 89.16% and 83.73%, respectively. Moreover, the PsJL490R had poor *in vitro*
126 amplification for the species of the synthetic community while the PsJL628R showed

127 unspecific amplification of the negative controls *S. maltophilia*, *A. xylosoxidans* and *A.*
128 *brasilense* (Figure S1). Phylogenetic trees generated from these amplicons had comparable
129 resolving power to the PsEG30F and PsEG790R pair, albeit with fewer nodes overall. As a
130 consequence, we chose the PsEG30F and PsEG790R primer pair for *Pseudomonas* profiling.
131 The universal 16S rRNA V3V4 primers amplified 100% of the whole genomes and 87.95%
132 of the type strains (owing to 16S genes often being the breakpoint in contigs). As noted
133 previously (20), many of the amplicons are identical across *Pseudomonas* species and hence
134 cannot be used for species resolution (Figure S2).

135

136 **Synthetic community primer testing.** To benchmark the amplicon protocol, a mixture of
137 DNA from sixteen *Pseudomonas* strains was used to test the performance of the candidate
138 *rpoD* primers in comparison with the standard V3V4 16S rRNA gene amplicon sequencing
139 approach. The sixteen strains were selected to challenge the method across the genus by
140 including five groups of *Pseudomonas* species (*P. aeruginosa*, *P. fluorescens*, *P. putida*, *P.*
141 *stutzeri* and *P. syringae*) and on fine resolution by selecting closely related species especially
142 within subgroups (*P. fluorescens*, *P. mandelii*, *P. jessenii*). In contrast to the V3V4-
143 amplicons, PE300 Illumina reads of the *rpoD* amplicons do not overlap and hence cannot be
144 analysed with standard OTU-based methods. To overcome this challenge, each read pair was
145 instead aligned to a custom database of *rpoD* genes using bowtie2 (23).

146 The *rpoD* amplicon method was able to identify all sixteen strains with abundances
147 close to expected values (Figure 1) and with a very low level of variation across the five
148 technical replicates (Table 2). Of note, two species were underestimated, *P. putida* somewhat
149 (~4% of expected value) and *P. libanensis* severely so (~1% of expected value). In contrast,
150 the V3V4 method erroneously classified the sample composition as being mainly *P.*
151 *fluorescens* or *P. extremorientalis*, where the latter was not a part of the mixture. Also, low

152 amounts of *P. stutzeri* and *P. aeruginosa* were detected by the V3V4 approach. The beta
153 dispersions - a measure of multivariate variation within groups - of the V3V4 replicates, were
154 4 times higher than the *rpoD* replicates, although this difference was not significant. The
155 negative controls for both primer sets had low number of reads, later revealed to be common
156 contaminants and adaptors.

157

158 **The microbial and *Pseudomonas* species composition in soil.** Soil was sampled from
159 different sites, ranging from grassland to agricultural field soil. A total of 13 soil samples
160 with 5 replicates each (65 samples in total) were analysed and after demultiplexing according
161 to barcodes and primers, a total of 10,446,888 reads were available. Following this, 100,814
162 *rpoD* read-pairs (201,628 reads) were annotated at the species level for the genus of
163 *Pseudomonas* with sufficiently high confidence (minimum bit score of 10). According to the
164 general purpose metagenomics classification tool Centrifuge (24), the non-*Pseudomonas*
165 reads were approximately 50% PCR/adaptor-artefacts ('Synthetic constructs') along with the
166 commonly found contaminant *Bradyrhizobium* also found in the negative control. The overall
167 mean and median values observed for the annotated *rpoD* reads across all samples were
168 1,558 and 598, respectively. The average number of *Pseudomonas rpoD* reads per sampling
169 site varied between 133.4 (P8) and 4,022.2 (S7). Rarefaction curves revealed uneven
170 saturation in some samples with low read depth (Figure S3). Moreover, we observed that
171 quite few reads were concordantly mapped, this being 5.52%, likely owing to the high level
172 of PCR-artefact non-pseudomonal reads. In addition, less than 0.01% were discordantly
173 mapped.

174 Using the relative abundances (Figure 2), the performance of the method on the
175 natural samples was investigated across biological replicates. The most abundant species
176 represented the four groups of *P. syringae*, *P. lutea* (*P. graminis*), *P. putida* (*P.*

177 *coleopterorum*) and *P. fluorescens* (marked by stars in Figure 2). Within the group of *P.*
178 *fluorescens*, the five subgroups *P. jessenii* (*P. jessenii*, *P. moorei*, *P. umsongensis*), *P.*
179 *gesardii* (*P. gesardii*, *P. proteolytica*), *P. koreensis* (*P. baetica*, *P. helmanticentis*, *P.*
180 *moraviensis*), *P. mandelii* (*P. frederiksbergensis*, *P. lini*, *P. migulae*), and *P. corrugata* (*P.*
181 *brassicacearum*, *P. kilonensis*) were identified. Overall, similar abundances were found in
182 replicate samples. This was confirmed by the non-Metric Multidimensional Scaling (nMDS)
183 analysis (Figure 3), in which biological replicates clustered together although with different
184 degrees of variation. The beta dispersions of the sites were negatively correlated ($r=-0.455$) to
185 estimated *Pseudomonas* load through qPCR, suggesting that the variation increased as
186 *Pseudomonas* abundance decreased. The two sample sites P8 and P9 had the highest internal
187 variation, likely owing to the low read count in these samples.

188 The individual sites in the *rpoD* amplicon analysis differed in species composition
189 despite being sampled from similar ecological environments (Figure 2). For instance, the
190 wheat soil samples S3, S7, and S9 had different *Pseudomonas* composition. *P. moraviensis*,
191 *P. lini*, *P. helmanticensis* and *P. frederiksbergensis* were common in most or all sampled
192 soils, however, their relative abundances varied between sites.

193 The standard V3V4 amplicon methodology resulted in a total of 6,947,525 mapped
194 reads with an average of 106,885 per sample. A total of 378 families were identified with the
195 dominating being *Xanthomonadaceae*, *Sphingomonadaceae*, *Planctomycetaceae*,
196 *Chitinophagaceae*, and *Acidobacteria* (group 6) (Figure 4). At the family level, only smaller
197 variations within sample sites were observed, as visually evident in the nMDS (Figure 3),
198 such as the unique presence of *Acidobacteria* (group 1) in the P8 and P9 sites. The average
199 relative abundances of *Pseudomonas* varied from 0.008% (P8) to 0.73% (S8) in the different
200 communities (Table 3). At species level V3V4, typically only identified one or two species in
201 higher relative abundances, and similar to the synthetic communities, these species were

202 assigned to be *P. fluorescens* and *P. aeruginosa*. Each site had, on average, a 70% (P =
203 0.00004) larger beta-dispersion when profiled for *Pseudomonas* with the V3V4 method
204 compared to the *rpoD* method, and all had at least one sample with a species not found in the
205 other replicates.

206 A standard curve comparing Ct-values from qPCR and cell numbers was generated
207 using pure cultures of *P. moorei* and *Bacillus subtilis* and used to estimate total rather than
208 relative abundance. The average total CFU/g soil per sample site (Table 3) ranged from
209 $2.1 \cdot 10^7$ (S7) to $1.1 \cdot 10^8$ (S1 and P5). The average number of *Pseudomonas* CFU/ g soil was
210 calculated by multiplication with the relative abundance of *Pseudomonas* found in the V3V4
211 amplicons (Table 3) and ranged from $6.5 \cdot 10^3$ (P8) to $4.2 \cdot 10^5$ (P5) CFU/ g soil.

212

213 **Isolation and identification of presumptive *Pseudomonas*.** The *rpoD* amplicon culture-
214 independent method for *Pseudomonas* species profiling was compared to cultivation-based
215 profiling. Colonies were isolated from each of the sites on King's Agar B⁺⁺⁺ commonly used
216 for *Pseudomonas* isolation (25), 10 from each of the S1-S10 sites and 30 for the grassland
217 samples P5, P8 and P9. The isolates were taxonomically classified by Sanger sequencing of
218 part of the *rpoD* gene amplified with primers PsEG30F and PsEG790R and alignment to the
219 *rpoD* database used for the amplicon analysis. In the grassland samples, 88 of the 90 isolates
220 were classified at a species level. Of particular interest were the species belonging to the *P.*
221 *fluorescens* group to which encompassed 94% (83/88) of the isolates. This agrees with
222 culture-independent profiling of P5 and P8 in which 97% (P5) and 93% (P8) of the *rpoD*
223 reads were assigned to species in the *P. fluorescens* group. In P9, the fraction of species in the
224 *P. fluorescens* group was lower (52%) which was predominantly due to a high fraction of *P.*
225 *abietaniphila* species (39.5%) which was not observed by cultivation (Figure 5 & Figure S4).

226 The *rpoD* amplicon method identified more unique species than the cultivation
227 method (Figure 5) and species belonging to particular groups (i.e. the *P. lutea* group) and
228 sub-groups (i.e. the *P. mandelii* and *P. gessardii* subgroups of *P. fluorescens*) were almost
229 exclusively identified by the amplicon method but not with the cultivation-based method. The
230 same pattern emerged in the lesser studied sites, S1-S10, where *rpoD* profiling identified
231 between 12 and 19 species compared to the cultivation approach which found between zero
232 and five.

233

234 **DISCUSSION**

235 Global food demand is growing and since petrochemical-based industrial farming is unlikely
236 to be sustainable for future generations, there is an urgent need for novel and sustainable
237 biocontrol agents. Species of the *Pseudomonas* genus are promising as plant biocontrol
238 agents and since beneficial traits are typically linked to particular species, we developed a
239 high-throughput method for metataxonomic assignment of these species in natural
240 microbiomes. The method correctly identified all species of a *Pseudomonas* mock
241 community. In soil samples, the *rpoD* amplicon sequencing allowed a much higher degree of
242 *Pseudomonas* species differentiation than both traditional 16S rRNA V3V4 sequencing and
243 culturing. The *rpoD* profiling enables quick identification and prioritisation of soils with
244 specific *Pseudomonas* communities for further analysis and culturing.

245 A total of fourteen primer pairs targeting the genus *Pseudomonas* (26–31) were
246 examined using *in silico* PCR. The primer pair PsEG30F and PsEG790R (21) outperformed
247 all other pairs and in further analysis of the *rpoD* genes from 465 *Pseudomonas* species, two
248 alternative forward primers were identified. However, the PsEG30F and PsEG790R had
249 superior performance and was ultimately selected for further testing. Multiple studies (20, 21,
250 26, 32, 33) have shown that the *rpoD* gene is a good candidate for identification at the
251 species- and strain level for the genus of *Pseudomonas*, especially compared to the 16S
252 rRNA gene (20). The second-best candidate was identified as the *gap* primers of Sarkar and
253 Guttman (28). However, these primers also amplified non-*Pseudomonas* *in vitro* (data not
254 shown) and were therefore discarded. The PsEG30F and PsEG790R amplicons were adapted
255 to an Illumina system, which unfortunately has too short of a read length to overlap,
256 necessitating a new bioinformatic pipeline drawing inspirations from annotation of RNA-seq
257 data, as well as a database based on the genomes from Hesse *et al.* (2018) (15).

258 When testing the method on a known mixture of pseudomonads, *P. libanensis* and *P.*
259 *putida* were underestimated. Through *in silico* investigation *P. libanensis* was poorly targeted
260 by the primers implying poor amplification efficiency (data not shown). The *rpoD* genes of
261 *P. putida* KT2440 (in the mixture), *P. putida* NBRC14164 (in database), and *P. monteili*
262 DSM14164 (in database) were compared in a phylogenetic tree (Figure S5), and although the
263 three species are extremely closely related, KT2440 and DSM14164 are nearly identical and
264 likely to overlap in the investigation. In the future, the *rpoD* database could be expanded to
265 contain more strains for each species to give a wider coverage for such fringe cases. Such an
266 addition could also lead to a strain level differentiation in future studies. Alternatively, this
267 occurrence could also indicate that *P. putida* and *P. monteili* generally are very closely
268 related and difficult to separate. According to Hesse *et al.* (15), the two species are also
269 extremely closely related based on protein phylogeny of 100 gene orthologues.

270 The V3V4 amplicon data for the *in vitro* DNA sample predominantly identified one
271 species in the sample, *P. extremorientalis* or *P. fluorescens*, both of which belong to the
272 subgroup *P. fluorescens* (15). This was also seen in Mulet *et al.* (20), where species of the
273 *Pseudomonas* genus at most had 2% dissimilarity in the 16S rRNA gene, this gene did not
274 allow a species level resolution.

275 The *rpoD* amplicon methodology was used to profile the *Pseudomonas* population in
276 soil samples. The relative abundances across replicates were very similar, yet, some variation
277 was observed, which could be caused by spatial differences within the soil sampled (34).
278 Replicate variance was associated with low *Pseudomonas* load as a negative correlation ($r = -$
279 0.455) was observed between the multivariate variance of the replicates (e.g. the beta-
280 dispersion) and the observed *Pseudomonas* CFU/g soil. To our knowledge the closest non-
281 16S rRNA gene based amplicon study of *Pseudomonas* is Sánchez *et al.* (22), where an *rpoD*
282 amplicon methodology was used to identify *Pseudomonas* species in a water sample.

283 However, a direct comparison is difficult, since Sánchez *et al.* (22) analysed a single river
284 sample with no replicates and used 454 sequencing and a blastn similarity search followed by
285 OTU clustering rather than Illumina sequencing and bowtie-mapping as in our study. The use
286 of the 454 system, discontinued in 2016, results in longer (300-600bp) single end reads, thus
287 avoiding the issues with non-overlapping reads, although they are also too short to cover the
288 entire amplicon. Use of single-end reads allows for analytically simpler OTU-based
289 pipelines, but discards the phylogenetically import paired end information of our approach,
290 and hence has lower sensitivity. Sánchez *et al.* (22) assigned 10.8% (716 sequences) of the
291 *rpoD* gene sequences to one of twenty-six species in their database. Using the genomes of
292 Hesse *et al.* (15), the database now includes 166 *Pseudomonas* species, three of which are
293 subspecies. Many of the *rpoD* reads were not mapped to our *Pseudomonas* database, which is
294 likely due to the high stringency in our alignment approach and artefacts stemming from the
295 low template PCR reaction, e.g. when *Pseudomonas* is in low abundance compared to other
296 bacteria. Optimisation of the PCR-protocol may alleviate this.

297 The microbial composition as determined by V3V4 16S rRNA amplicon sequencing
298 was highly similar across biological replicates, with small differences between the sample
299 sites. The three wheat-associated sites (S3, S7 and S9) clustered, but had less overlap than a
300 cluster with sites S3, S6 and S9 which all had different vegetation. Microbial communities in
301 agricultural soils are influenced by physiochemical properties of the soil, the growth
302 condition of the crops, the individual plant genotype, and/or the evolution of the microbial
303 communities over a multitude of seasons and the present study did not have access to such
304 metadata that potentially could explain differences. The major outlier of the sites was the P8
305 site, mainly due to the high content of *Acidobacteria* (group 1), suggested to correlate with
306 Cu and Mn concentrations (35), coinciding with a high relative abundance of *P.*
307 *frederiksbergensis*.

308 The resolution at the species level was compared between the *rpoD* and the V3V4
309 amplicon sequencing methods. The *Pseudomonas* species resolution based on the latter was
310 lower than found by the *rpoD* amplicon sequencing, which was consistent with the control
311 experiment using 16 known species of pseudomonads. This is most likely a combination of
312 the low dissimilarity in the 16S rRNA gene, annotation method and the database. It is
313 important to note the usefulness of V3V4 rRNA gene amplicon sequencing as a tool to
314 determine the overall composition of the prokaryotic community. Different microbial
315 communities were observed across the different soils, some of which even have the same
316 plant host. The *rpoD* amplicon methodology did not achieve a community level resolution
317 and is therefore best used in combination with standard 16S profiling to achieve full profiling
318 of soil.

319 The *rpoD* profiling was compared to cultivation of *Pseudomonas* species from three
320 soil samples and provided the same groups or sub-groups, however, the *rpoD* amplicon
321 sequencing method was able to identify more unique species than was found by cultivation.
322 In particular, species belonging to the *P. lutea* group and the *P. mandelii* and *P. gessardii*
323 subgroups of *P. fluorescens* were captured by the *rpoD* amplicon method but not by
324 cultivation. The nutrient content of the isolation medium can influence the recovery of the
325 *Pseudomonas* diversity from environmental samples (19). King's B agar medium (36) is a
326 nutrient rich medium for *Pseudomonas* isolation, and while this is an effective and commonly
327 used cultivation method, it is possible that a larger number of *Pseudomonas* species could
328 have been cultivated using a wider range of cultivation media. Overall, the *rpoD* amplicon
329 methods can be used to find soil rich in *Pseudomonas* species and identify samples rich in
330 potential beneficial or useful pseudomonads.

331 A few species were exclusively found by the culture-independent approach, and some
332 of these are promising as bio-inoculants for plant protection (Figure 5). For example, strains

333 of *Pseudomonas frederiksbergensis* (from the *P. mandelii* sub-group), which were found in
334 all *rpoD*-profiles, but only once by cultivation (in sample S9), are effective bio-inoculants for
335 enhancing cold stress tolerance in plants (37). In addition, *Pseudomonas abietaniphila* (from
336 the *P. lutea* group), which was found in three *rpoD* profiles (P8, P9 and S10), but not in any
337 cultivations, can suppress plant diseases caused by *Botrytis cinerea* by degradation of oxalate
338 produced by the fungi (38). Also, we have recently shown that the genes for biosynthesis of
339 the anti-fungal compound thioquinolobactin are rarely found, but tightly linked to biocontrol
340 strains within the *P. gessardii* subgroup of *P. fluorescens* (39). Here, we find such species in
341 P9 only with the cultivation-independent method.

342 With the *rpoD* amplicon approach, it is possible to profile and prioritise samples for
343 intense cultivation of strains that produce specific bioactive metabolites for biocontrol or
344 exhibit other plant beneficial traits.

345

346 CONCLUSION

347 In this study, an *rpoD* gene amplicon-based technique to differentiate species within the
348 genus *Pseudomonas* was developed. The method can differentiate individual species far
349 beyond what traditional 16S rRNA gene amplicon sequencing can and is proposed as a new
350 standard for high throughput profiling of *Pseudomonas* in environmental microbial
351 communities.

352

353 **MATERIAL AND METHODS**

354 ***In silico* investigations of *Pseudomonas* species.** A *Pseudomonas* genome collection
355 consisting of the 165 genomes from Hesse *et al.* (15) as well as 465 complete genome
356 sequences of *Pseudomonas* was downloaded from NCBI (downloaded 18-02-2019). Using an
357 *in silico* PCR algorithm (*in_silico*_PCR, https://github.com/egonozer/in_silico_pcr) (one
358 mismatch, one deletion/insertion), fourteen primer sets targeting nine different genes from
359 previous studies (Table 1) were evaluated based on 1) the proportion of *Pseudomonas*
360 genomes amplified, 2) how well the amplicons followed their given phylogenetic
361 classification and 3) the proportion of non-*Pseudomonas* genomes amplified (supplementary
362 Table S1). The *in silico* PCR products were aligned with MUSCLE v3.8.1551 (40) and a
363 phylogenetic tree was generated with FastTree v2.1.10 (41) from the alignment. For
364 phylogenetic evaluation, the output tree was qualitatively compared to whole-genome based
365 tree of Hesse *et al.* (15). A custom database was built by using the PsEG30F / PsEG790R
366 primers on the *rpoD* genes of the type strains included in Hesse *et al.* (15). An issue
367 encountered in the *in silico* analysis was the poor annotations of uploaded genomes where we
368 found multiple instances of incorrectly annotated genomes, which we corrected by selecting
369 the *rpoD*-gene of outliers and re-identify them according to Hesse *et al.* (15) type strain
370 genomes.

371

372 ***Pseudomonas* strains.** Sixteen different *Pseudomonas* species were used in the *in vitro*
373 testing of the *rpoD* amplicon (Table 2). Seven were Type Culture collection strains and nine
374 were isolates obtained from on-going projects in our laboratory. They were identified to
375 species level by Sanger sequencing of the *rpoD* gene as described above. The strains were
376 grown in 10 mL Luria-Bertani (LB; Lennox; Carl Roth GmbH + Co. KG, Karlsruhe,
377 Germany) broth overnight at 30°C with aeration (shaking, 200 rpm).

378

379 **Soil samples.** Bulk soil samples were collected from thirteen sites in mid-August 2019 close
380 to harvest season. The samples were collected by scooping root-associated soil into a sterile
381 Falcon tube. The sites were distributed across Zealand, Denmark, and included different
382 types of vegetation and produce; ten samples of field soil were collected including corn (S1),
383 fallow (grass; S2), wheat (S3, S7 and S9), rye (S4), barley (S5), rapeseed (S6), grass seed
384 (S8) and lucerne (S10). In addition, three samples of pristine grass land were collected
385 including short (P5 and P9) and tall grass (P8). The soil samples were stored at 5°C for a
386 maximum of two weeks prior to analyses.

387

388 **Isolation of *Pseudomonas* from soil samples.** Soil was sieved (4.75 mm X 4.75 mm grid)
389 and mixed with 0.9% NaCl in a 1 (g):9 (ml) ratio and 10-fold serial diluted. Dilutions were
390 plated on 1/4-diluted King's B⁺⁺⁺ Agar plates (Sigma-Aldrich) supplemented with 13 mg/L
391 chloramphenicol, 40 mg/L ampicillin, 100 mg/L cycloheximide (25)). The plates were
392 incubated at 30°C for 5 days. The plates were examined under UV-light after 2 and 5 days to
393 reveal fluorescent colonies. Up to thirty colonies from the P5, P8 and P9 sites as well as 10
394 from the S1-S10 sites were streaked on LB Agar plates and incubated at 30°C for 2 days. The
395 colonies were selected based on fluorescence and distinct colony morphology.

396

397 **DNA extraction from pure cultured *Pseudomonas* and soil samples.** For identification of
398 *Pseudomonas* isolated from soil, DNA from each bacterial colony was extracted by boiling in
399 demineralised H₂O (dH₂O) at 99°C for 15 min. For soil samples and selected *Pseudomonas*
400 strains, Genomic DNA (gDNA) was extracted with a DNAeasy® Powersoil® Kit (Qiagen,
401 Hilden, Germany) according to manufacturer's instructions. The extractions of gDNA from
402 soil were done in five biological replicates for each site. As a negative control, 250 µL sterile

403 dH₂O was extracted for gDNA using the same methodology. The gDNA was stored at -20°C.

404 The DNA extraction of soil was done at the latest two days after cultivation of soil

405 *Pseudomonas*.

406

407 **Identification of *Pseudomonas* isolates from soil samples.** *Pseudomonas* species isolated

408 from soil were identified by full length sequencing of the *rpoD* gene. The 25 µL PCR

409 reaction mixture was; 10.6 µL Sigma Water, 12.5 µL 2x TEMPase, 0.8 µL forward primer

410 (10 µM; PsEG30F; 5'- ATY GAA ATC GCC AAR CG -3'), 0.8 µL reverse primer (10 µM;

411 PsEG790R; 5'- CGG TTG ATK TCC TTG A -3'), and 0.3 µL template DNA. The PCR

412 program was: 1) 1 cycle of 95°C for 15 min, 2) 30 cycles of a) 95°C for 30 s, b) 51°C for 30

413 s, and c) 72°C for 30 s, and 3) 1 cycle of 72°C for 5 min (21). PCR products were sequenced

414 at Macrogen Europe (Amsterdam, the Netherlands). The *rpoD* sequences were classified

415 using BLASTN against the custom built *rpoD* gene database.

416

417 **Defined *in vitro* DNA mixture for *Pseudomonas* profiling.** As a positive control, a defined

418 *Pseudomonas* DNA mixture was made as an equimolar mixture of individual extractions of

419 the strains in Table 2 as measured by Nanodrop (Denovix DS-11; Saveen & Werner AB,

420 Linhansvägen, Sweden). The equimolar mixture was based on DNA concentrations.

421

422 **Amplicon preparation, purification and sequencing.** Amplicons were prepared by

423 amplifying DNA using barcoded primers (Table S2). The five biological replicates of each

424 soil site, five technical replicates of the *in vitro* DNA mix (positive control) and the negative

425 control all were amplified using both the *rpoD*-specific primers and primers targeting the

426 V3V4 region of the 16S rRNA gene. Each sample used identical barcodes across both primer

427 sets (Table S2) and Illumina adaptors for the two setups. For the amplification of *rpoD* genes,

428 25 μ L PCR reaction was mixed as 10.15 μ L Sigma Water, 12.5 μ L 2x TEMPase, 0.8 μ L
429 forward primer (10 μ M; Barcoded PsEG30), 0.8 μ L reverse primer (10 μ M; Barcoded
430 PsEG790), 0.25 μ L MgCl₂ (25 mM), and 0.5 μ L Template DNA were used. The PCR
431 program was as follows 1) 15 min at 95°C, 2) 40 cycles of a) 30 s at 95°C, b) 30 s at 51°C,
432 and c) 30 s at 72°C, and 3) 5 min at 72°C. The amplicons were stored at -20°C until
433 purification.

434 For the amplification of V3V4 regions, 25 μ L PCR reaction was missed as; 10.6 μ L
435 Sigma Water, 12.5 μ L 2x TEMPase, 0.8 μ L forward primer (10 μ M; Barcoded 341F; 5'-CCT
436 ACG GGN GGC WGC AG-3'), 0.8 μ L reverse primer (10 μ M; Barcoded 805R; 5'-
437 GACTACHVGGGTATCTAATCC-3'), and 0.3 μ L Template DNA were used (42). The PCR
438 program was as follows 1) 15 min at 95°C, 2) 30 cycles of a) 30 s at 95°C, b) 30 s at 60°C,
439 and c) 30 s at 72°C and 3) 5 min at 72°C. The amplicons were stored at -20°C until
440 purification.

441 The amplicons were purified using an Agencourt AMPure XP kit (Beckman Coulter,
442 Brea, CA, USA) following the manufacturer's instructions. The products were eluted in
443 tris(hydroxymethyl)aminomethane (Tris; 10 mM, pH 8.5) buffer. After purification, the PCR
444 products were equimolar pooled together.

445 The amplicon pools were delivered at the CfB NGS Lab (Novo Nordisk Foundation
446 Center for Biosustainability, DTU, Kongens Lyngby, Denmark) for sequencing on an
447 Illumina MiSeq 300PE platform (MiSeq Reagent Kit v3; PE300).

448

449 **Enumeration of soil bacteria.** The number of cells in each soil site were quantified using
450 quantitative PCR (qPCR). The qPCR targeted the V3 region of the 16S rRNA gene using the
451 primers 338F and 518R (43). A 20 μ L PCR reaction was mixed as follows: 5.2 μ L Sigma
452 Water, 10 μ L Luna Universal qPCR Master Mix (New England Biolabs Inc., Bionordika

453 Denmark A/S, Denmark), 1.4 μ L of each primer (10 μ M), and 2 μ L Template DNA. The
454 accompanied instruction for the qPCR programme was followed. A standard curve relating
455 cycle thresholds (Ct) to CFU/g soil was prepared by combining CFU/g versus Ct for *Bacillus*
456 *subtilis* ATCC 6051 and *Pseudomonas moorei* DSM 12647 ($R^2 = 0.86$, $E = 174.5\%$). ATCC
457 6051 and DSM 12647 were incubated O/N in 5 mL LB broth at 30°C with aeration. At OD₆₀₀
458 approximately 1 (circa 24 hours of growth), DNA was extracted from the cultures and further
459 diluted. The standard curves were prepared in biological duplicates.

460

461 **Processing the V3V4 and *rpoD* amplicons.** The V3V4-amplicons were cleaned, merged,
462 quality filtered, and chimera-checked before quality-aware clustering at 99% similarity and
463 mapping against the RDP-II SSU (Cole et al., 2005) database (v. 11.5) using the BION-meta
464 software (Danish Genome Institute, Aarhus, Denmark). For the *rpoD*-amplicons (PsEG30F /
465 PsEG790R), the BION-meta software (Danish Genome Institute, Aarhus, Denmark) was used
466 to demultiplex the amplicons. The fastp function (44) was used for quality filtering. Since the
467 paired reads do not overlap, clustering was avoided and instead each read pair was aligned to
468 the custom database of *rpoD* genes using bowtie2 (23). The resulting SAM-file was then
469 filtered for only concordant pairs mapped with a quality of > 10 using samtools (45). Data for
470 both sets of amplicons was normalized to 100,000 reads for each sample before further
471 analysis. Centrifuge was used for profiling of non-*Pseudomonas* reads using the p+h+v
472 database (24).

473

474 **Statistics.** The amplicon sequencing data for both *rpoD* and V3V4 were analysed with Non-
475 metric multidimensional scaling (nMDS) to compare the diversities between the replicates
476 and sample sites. To determine the multivariable variation within groups, the beta dispersion
477 was calculated using R v3.6.2 package vegan, default settings and tested using a Mann-

478 Whitney U test. Multiple distances were evaluated for robustness and the Bray-Curtis
479 distance was chosen since this distance metric had the best trade-off in terms of separation of
480 sites and stress of the nMDS.

481

482 **Data availability.** The raw, amplicon sequencing data of the Illumina sequencing is available
483 at the Sequencing Read Archive (SRA) as bioproject PRJNA613913. Code for both *in silico*
484 primer analysis and the bioinformatic classification pipeline is available at
485 <https://github.com/mikaells/PseudomonasRPOD>.

486

487 **ACKNOWLEDGEMENTS**

488 We thank local farmers and governmental agencies, whom provided sites for soil collection,
489 Heiko T. Kiesewalter for assistance with sampling and providing *Bacillus subtilis* ATCC
490 6051, and the laboratory technicians Jette Melchiorsen, Sophia Rasmussen and Susanne
491 Koefoed for support.

492

493 **Funding.** This study was carried out as part of the Center of Excellence for Microbial
494 Secondary Metabolites funded by The Danish National Research Foundation (DNRF137).

495

496 REFERENCES

497 1. Spiers AJ, Buckling A, Rainey PB. 2000. The causes of *Pseudomonas* diversity. *Microbiology*
498 146:2345–2350.

499 2. Lloyd-Jones G, Laurie AD, Tizzard AC. 2005. Quantification of the *Pseudomonas* population
500 in New Zealand soils by fluorogenic PCR assay and culturing techniques. *J Microbiol Methods*
501 60:217–224.

502 3. Selezska K, Kazmierczak M, Müsken M, Garbe J, Schobert M, Häussler S, Wiehlmann L,
503 Rohde C, Sikorski J. 2012. *Pseudomonas aeruginosa* population structure revisited under
504 environmental focus: Impact of water quality and phage pressure. *Environ Microbiol* 14:1952–
505 1967.

506 4. Monteil CL, Lafolie F, Laurent J, Clement JC, Simler R, Travi Y, Morris CE. 2014. Soil water
507 flow is a source of the plant pathogen *Pseudomonas syringae* in subalpine headwaters. *Environ*
508 *Microbiol* 16:2038–2052.

509 5. Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D,
510 Defago G. 1992. Suppression of Root Diseases by *Pseudomonas fluorescens* CHA0:
511 Importance of the Bacterial Secondary Metabolite 2,4-Diacetylphloroglucinol. *Mol Plant-*
512 *Microbe Interact* 5:4–13.

513 6. Milus EA, Rothrock CS. 1997. Efficacy of bacterial seed treatments for controlling pythium
514 root rot of winter wheat. *Plant Dis* 81:180–184.

515 7. Niu GL, Zhang JJ, Zhao S, Liu H, Boon N, Zhou NY. 2009. Bioaugmentation of a 4-
516 chloronitrobenzene contaminated soil with *Pseudomonas putida* ZWL73. *Environ Pollut*
517 157:763–771.

518 8. Khan H, Parmar N, Kahlon RS. 2016. *Pseudomonas*-Plant Interactions I: Plant Growth
519 Promotion and Defense-Mediated Mechanisms, p. 419–468. *In* Kahlon, RS (ed.),
520 *Pseudomonas: Molecular and Applied Biology*, 1st ed. Springer International Publishing.

521 9. Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P. 2007.
522 Thioquinolobactin, a *Pseudomonas* siderophore with antifungal and anti-Pythium activity.

523 Environ Microbiol 9:425–434.

524 10. Lanteigne C, Gadkar VJ, Wallon T, Novinscak A, Filion M. 2012. Production of DAPG and
525 HCN by *Pseudomonas* sp. LBUM300 contributes to the biological control of bacterial canker
526 of tomato. *Phytopathology* 102:967–973.

527 11. Mousa WK, Raizada MN. 2016. Natural Disease Control in Cereal Grains, p. 257–263. *In*
528 Wrigley, C, Corke, H, Seetharaman, K, Faubion, J (eds.), *Encyclopedia of Food Grains*, 2nd
529 ed. Oxford Academic Press.

530 12. Wang C, Wang D, Zhou Q. 2004. Colonization and persistence of a plant growth-promoting
531 bacterium *Pseudomonas fluorescens* strain CS85, on roots of cotton seedlings. *Can J Microbiol*
532 50:475–481.

533 13. Gopalakrishnan S, Srinivas V, Prakash B, Sathya A, Vijayabharathi R. 2015. Plant growth-
534 promoting traits of *Pseudomonas geniculata* isolated from chickpea nodules. *3 Biotech* 5:653–
535 661.

536 14. Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN. 2015. Plant
537 growth promotion induced by phosphate solubilizing endophytic *Pseudomonas* isolates. *Front*
538 *Microbiol* 6:1–9.

539 15. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Hassan KA, Varghese N,
540 Elbourne LDH, Paulsen IT, Kyrpides N, Woyke T, Loper JE. 2018. Genome-based
541 evolutionary history of *Pseudomonas* spp. *Environ Microbiol* 20:2142–2159.

542 16. Stefanato FL, Trippel C, Uszkoreit S, Ferrafiat L, Grenga L, Dickens R, Kelly N, Kingdon
543 AD, Ambrosetti L, Findlay KC, Cheema J, Trick M, Chandra G, Tomalin G, Malone JG,
544 Truman AW. 2019. Pan-genome analysis identifies intersecting roles for *Pseudomonas*
545 specialized metabolites in potato pathogen inhibition. *bioRxiv* 783258.

546 17. Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JHM, Piceno YM,
547 DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM. 2011. Deciphering the
548 rhizosphere microbiome for disease-suppressive bacteria. *Science* (80-) 332:1097–1100.

549 18. Mehrabi Z, McMillan VE, Clark IM, Canning G, Hammond-Kosack KE, Preston G, Hirsch
550 PR, Mauchline TH. 2016. *Pseudomonas* spp. diversity is negatively associated with

551 suppression of the wheat take-all pathogen. *Sci Rep* 6:1–10.

552 19. Aagot N, Nybroe O, Nielsen P, Johnsen K. 2001. An Altered *Pseudomonas* Diversity Is
553 Recovered from Soil by Using Nutrient-Poor *Pseudomonas*-Selective Soil Extract Media. *Appl*
554 *Environ Microbiol* 67:5233–5239.

555 20. Mulet M, Gomila M, Lemaitre B, Lalucat J, García-Valdés E. 2012. Taxonomic
556 characterisation of *Pseudomonas* strain L48 and formal proposal of *Pseudomonas entomophila*
557 sp. nov. *Syst Appl Microbiol* 35:145–149.

558 21. Mulet M, Bennasar A, Lalucat J, Garcí E, García-Valdés E. 2009. An *rpoD*-based PCR
559 procedure for the identification of *Pseudomonas* species and for their detection in
560 environmental samples. *Mol Cell Probes* 23:140–147.

561 22. Sánchez D, Matthijs S, Gomila M, Tricot C, Mulet M, García-Valdés E, Lalucat J. 2014. *rpoD*
562 gene pyrosequencing for the assessment of *Pseudomonas* diversity in a water sample from the
563 Woluwe river. *Appl Environ Microbiol* 80:4738–4744.

564 23. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. *Nat Methods*
565 9:357–359.

566 24. Kim D, Song L, Breitwieser FP, Salzberg SL. 2016. Centrifuge: rapid and sensitive
567 classification of metagenomic sequences. *Genome Res* 26:1–9.

568 25. Landa BB, De Werd HAE, McSpadden Gardener BB, Weller DM. 2002. Comparison of three
569 methods for monitoring populations of different genotypes of 2,4-diacetylphloroglucinol-
570 producing *Pseudomonas fluorescens* in the rhizosphere. *Phytopathology* 92:129–137.

571 26. Lu S, Tian Q, Zhao W, Hu B. 2017. Evaluation of the Potential of five Housekeeping Genes
572 for Identification of Quarantine *Pseudomonas syringae*. *J Phytopathol* 165:73–81.

573 27. Hilario E, Buckley TR, Young JM. 2004. Improved resolution on the phylogenetic
574 relationships among *Pseudomonas* by the combined analysis of *atpD*, *carA*, *recA* and 16S
575 rDNA. *Antonie van Leeuwenhoek, Int J Gen Mol Microbiol* 86:51–64.

576 28. Sarkar SF, Guttman DS. 2004. Evolution of the Core Genome of *Pseudomonas syringae*, a
577 Highly Clonal, Endemic Plant Pathogen. *Appl Environ Microbiol* 70:1999–2012.

578 29. Santos SR, Ochman H. 2004. Identification and phylogenetic sorting of bacterial lineages with

579 universally conserved genes and proteins. *Environ Microbiol* 6:754–759.

580 30. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S. 2000. Phylogeny of
581 the genus *Pseudomonas*: Intrageneric structure reconstructed from the nucleotide sequences of
582 *gyrB* and *rpoD* genes. *Microbiology* 146:2385–2394.

583 31. Ait Tayeb L, Ageron E, Grimont F, Grimont PAD. 2005. Molecular phylogeny of the genus
584 *Pseudomonas* based on *rpoB* sequences and application for the identification of isolates. *Res
585 Microbiol* 156:763–773.

586 32. Yamamoto S, Harayama S. 1998. Phylogenetic relationships of *Pseudomonas putida* strains
587 deduced from the nucleotide sequences of *gyrB*, *rpoD* and 16S rRNA genes. *Int J Syst
588 Bacteriol* 48:813–819.

589 33. Mulet M, Lalucat J, García-Valdés E. 2010. DNA sequence-based analysis of the
590 *Pseudomonas* species. *Environ Microbiol* 12:1513–1530.

591 34. Ettema CH, Wardle DA. 2002. Spatial soil ecology. *Trends Ecol Evol* 17:177–183.

592 35. Chaves MG, Silva GG, Rossetto R, Edwards RA, Tsai SM, Navarrete AA. 2019.
593 Acidobacteria subgroups and their metabolic potential for carbon degradation in sugarcane soil
594 amended with vinasse and nitrogen fertilizers. *Front Microbiol* 10:1–16.

595 36. King EO, Ward MK, Raney DE. 1954. Two simple media for the demonstration of pyocyanin
596 and fluorescin. *J Lab Clin Med* 44:301–307.

597 37. Chatterjee P, Samaddar S, Anandham R, Kang Y, Kim K, Selvakumar G, Sa T. 2017.
598 Beneficial soil bacterium *pseudomonas frederiksbergensis* Os261 augments salt tolerance and
599 promotes red pepper plant growth. *Front Plant Sci* 8:1–9.

600 38. Lee Y, Choi O, Kang B, Bae J, Kim S, Kim J. 2020. Grey mould control by oxalate
601 degradation using non-antifungal *Pseudomonas abietaniphila* strain ODB36. *Sci Rep* 10:1–11.

602 39. Sazinas P, Hansen ML, Aune MI, Fischer MH, Jelsbak L. 2019. A Rare Thioquinolobactin
603 Siderophore Present in a Bioactive *Pseudomonas* sp. DTU12.1. *Genome Biol Evol* 11:3529–
604 3533.

605 40. Edgar RC. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high
606 throughput. *Nucleic Acids Res* 32:1792–1797.

607 41. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 - Approximately maximum-likelihood trees
608 for large alignments. PLoS One 5:e9490.

609 42. Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 2013.
610 Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation
611 sequencing-based diversity studies. Nucleic Acids Res 41:1–11.

612 43. Einen J, Thorseth IH, Øvreås L. 2008. Enumeration of Archaea and Bacteria in seafloor basalt
613 using real-time quantitative PCR and fluorescence microscopy. FEMS Microbiol Lett
614 282:182–187.

615 44. Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: An ultra-fast all-in-one FASTQ preprocessor.
616 Bioinformatics 34:i884–i890.

617 45. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
618 2009. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079.

619

620

621

622

623

624

625

626

627

628

629

630

631

632 **FIGURE AND TABLE LEGENDS**

633 **Figure 1.** Composition of a defined mixture of DNA from 16 *Pseudomonas* species as
634 analysed by *rpoD* gene amplicon sequencing and V3V4 16S rRNA gene sequencing in
635 comparison to the theoretical composition. Leftmost bar is the assumed theoretical
636 abundances in the defined *Pseudomonas* DNA mixture. Each sample has been normalized to
637 100.000 reads.

638

639 **Figure 2.** Relative abundances of the 20 most abundant *Pseudomonas* species in 13 soil
640 samples as analysed by *rpoD* amplicon sequencing. Each sample has been normalized to
641 100.000 reads. Fluorescent species are marked by *. S1: corn, S2: fallow (grass), S3, S7 and
642 S9: wheat, S4: rye, S5: barley, S6: rapeseed, S8: grass seed S10: Lucerne, P5 and P9: pristine
643 short grass, P8: pristine long grass.

644

645 **Figure 3.** Multivariate analysis by nMDS using Bray-Curtis distances of 13 soil sample sites
646 using amplicon sequencing of A) the *rpoD* gene (stress 0.1883) and B) V3V4-region of the
647 rRNA gene (stress 0.1039). S1: corn, S2: fallow (grass), S3, S7 and S9: wheat, S4: rye, S5:
648 barley, S6: rapeseed, S8: grass seed S10: Lucerne, P5 and P9: pristine short grass, P8: pristine
649 long grass.

650

651 **Figure 4.** Relative abundances of the 20 most abundant bacterial families in 13 soil samples
652 as analysed by amplicon sequencing of the V3V4-region of the rRNA gene. Each sample has
653 been normalized to 100.000 reads. S1: corn, S2: fallow (grass), S3, S7 and S9: wheat, S4:
654 rye, S5: barley, S6: rapeseed, S8: grass seed S10: Lucerne, P5 and P9: pristine short grass,
655 P8: pristine long grass.

656

657
658 **Figure 5.** Heatmap of presence (red) and absence (blue) of *Pseudomonas* species identified
659 across sites by the *rpoD* amplicon method and the cultivation approach for each of the
660 sampled sites. 30 isolates were sampled from each of the sites P5, P8 and P9, and 10 from the
661 sites S1-S10 (left-most colour annotation). Fluorescent species are highlighted by green in the
662 upper colour annotation. Row labels denoted with –rpoD and –culture denote analysis by
663 *rpoD* sequencing and culture, respectively.

664
665 **Table 1.** Overview of genes and primers selected for as primary targets for *in_silico_PCR* of
666 465 *Pseudomonas* strains.

667
668 **Table 2.** List of *Pseudomonas* species used in the artificial DNA mixture for positive control.

669
670 **Table 3.** The average total CFU per site estimated by qPCR and the estimated relative and
671 absolute abundance of *Pseudomonas* species based on V3V4 amplicon sequencing.

672
673
674
675
676
677
678
679
680
681

682

683 LEGENDS FOR SUPPLEMENTARY TABLES AND FIGURES

684

685 **Figure S1:** Gel electrophoresis of PCR products generated from members of the synthetic
686 community using A) PsEG30F / PsEG790R, B) PsEG30F / PsJL490R, and C) PsEG30F /
687 PsJL628R. Contrasts has been enhanced. Ladders are 50 bp GeneRuler (ThermoFisher
688 Scientific, Vilnius, Lithuania).

689

690 **Figure S2.** Phylogenetic tree of the *in silico* PCR amplicons generated from the 16S rRNA
691 gene using V3V4 primers. The PCR products were clustered at 97% similarity and aligned
692 with MUSCLE v3.8.1551 (40) and a phylogenetic tree was generated with FastTree v2.1.10
693 (41) from the alignment. Tips are coloured as clades generated by TreeCluster with similar
694 colours denoting highly similar or identical amplicons.

695

696 **Figure S3:** Alpha diversity of the *Pseudomonas* population as described using the *rpoD*-
697 methodology. A) rarefaction curves and B) Chao1 diversity.

698

699 **Figure S4.** Number and identity of *Pseudomonas* species isolated by cultivation from the 13
700 soil sample sites.

701

702 **Figure S5.** Phylogenetic tree of the *in silico* PCR amplicons generated from the *rpoD* gene
703 of *P. putida* KT2440 and four closely related species. The PCR products were aligned with
704 MUSCLE v3.8.1551 (40) and a phylogenetic tree was calculated with FastTree v2.1.10 (41)
705 from the alignment.

706

707

708 **Table S1:** Genomes of non-*Pseudomonas* used to test *Pseudomonas* gene primer specificity

709 profiling.

710

711 **Table S2:** List of barcodes tagged on primers for Illumina sequencing of amplicons of the

712 *Pseudomonas rpoD* gene.

713

714 **Table S3.** *In silico* PCR amplification of 465 complete *Pseudomonas* genomes and 24 non-

715 *Pseudomonas* genomes using 14 different primer pairs.

716 **TABLES**

717 **Table 1.** Overview of genes and primers selected for as primary targets for *in silico*_PCR of

718 465 *Pseudomonas* strains.

Target Gene	Primer Name	Sequence (5'-3')	Length	Citation
16S rRNA	16S-341F	CCTACGGGNNGCWGCAG	464 nt	(42)
	16S-805R	GAATCAGTGGGTATCTAATCC		
16S rRNA	16sF-LYP-3	GCGTAGAGTTGATCCTGGCTCAG	1253 nt	(26)
	16sR-LYP-3	GACGGCGGTGTGTRCA		
16S rRNA	16S-rRNA-F	AGCGGCGGACGGGTGAGTAATG	1300 nt	(27)
	16S-rRNA-R	AAGGAGGGGATCCAGCCGCA		
atpD	atpD-F	CTGGGCCGSATCATGGACG	900 nt	(27)
	atpD-F	GTCCATGCCAGGATSGCG		
carA	carA-F	TTCAACACCGCCATGACCGG	700 nt	(27)
	carA-R	TGATGRCCSAGGCAGATRCC		
gapA	gapA-Fps	CGCCATYCGCAACCCG	690 nt	(28)
	gapA-Rps	CCCAATCGTTGTCGTACCA		
gltA	gltA-F	GGTGACAATGGCATTCTGC	294 nt	(26)
	gltA-R	GTGCTCGGRTTATTGATGT		
gyrB	gyrBBAUP2	GCGGAAGCGGCCNGSNATGTA	-	(29)
	APrU	GCNGGRTCYTTYTCYTGRCA		
gyrB	UP-1E	AYGSNNGNGGNARTTYRA	888-891 nt	(30)
	APrU	GCNGGRTCYTTYTCYTGRCA		
recA	recA-F	TCSGGYAAARACCACSGCTGAC	600 nt	(27)
	recA-R	RTACCAGGCRCGGACTTCT		
rpoB	LAPS	TGGCCGAGAACCAAGTCCCGCGT	1247 nt	(31)
	LAPS27	CGGCTTCGTCCAGCTTGTTCAG		
rpoD	PsEG30F	ATYGAAATGCCAARCG	437 nt	(21)
	PsJL490R	AGYTTGATYGGGATGAA		
rpoD	PsEG30F	ATYGAAATGCCAARCG	575 nt	(21)
	PsJL628R	GGGAACWKCGCGCAGGAARTC		
rpoD	PsEG30F*	ATYGAAATGCCAARCG	736 nt	(21)
	PsEG790R*	CGGTTGATKTCCTTGA		

719 *Primers used for this study

720

721

722

723

724

725

726

727 **Table 2.** List of *Pseudomonas* species used in the artificial DNA mixture for positive control.

<i>Pseudomonas</i> species	Strain	Group ^a	Type strain	<i>rpoD</i> relative ratio [%] ^b
<i>aeruginosa</i>	PAO1	<i>P. aeruginosa</i>	Yes	140.38 ± 5.59
<i>cedrina</i>	May11.4	<i>P. fluorescens</i>	No	69.38 ± 45.31
<i>frederiksbergensis</i>	Nina6.10	<i>P. mandelii</i>	No	85.08 ± 4.04
<i>helmanticensis</i>	Nina1.7	<i>P. koreensis</i>	No	114.60 ± 7.36
<i>jessenii</i>	May3.1	<i>P. jessenii</i>	No	161.69 ± 34.83
<i>libanensis</i>	Nina5.10	<i>P. fluorescens</i>	No	1.82 ± 1.00
<i>lini</i>	Nina1.6	<i>P. mandelii</i>	No	66.73 ± 4.50
<i>lurida</i>	Nina3.4	<i>P. fluorescens</i>	No	45.56 ± 8.51
<i>migulae</i>	DSM 17966	<i>P. mandelii</i>	Yes	67.20 ± 5.35
<i>monteil</i>	DSM 14164	<i>P. putida</i>	Yes	192.34 ± 23.44
<i>moorei</i>	DSM 12647	<i>P. jessenii</i>	Yes	47.53 ± 3.51
<i>protegens</i>	DTU9.1	<i>P. protegens</i>	No	58.01 ± 6.16
<i>proteolytica</i>	May3.3	<i>P. gessardii</i>	No	194.56 ± 20.10
<i>putida</i>	KT2440	<i>P. putida</i>	Yes	4.12 ± 2.71
<i>stutzeri</i>	DSM 5190	<i>P. stutzeri</i>	Yes	151.88 ± 24.48
<i>syringae</i>	DSM 10604	<i>P. syringae</i>	Yes	164.45 ± 9.25

728 ^aThe groups and subgroups of *Pseudomonas* according to Hesse *et al.* (2018).

729 ^bobserved *rpoD* relative abundance versus theoretical abundance given by mean and standard deviation where

730 100% is the expected value.

731

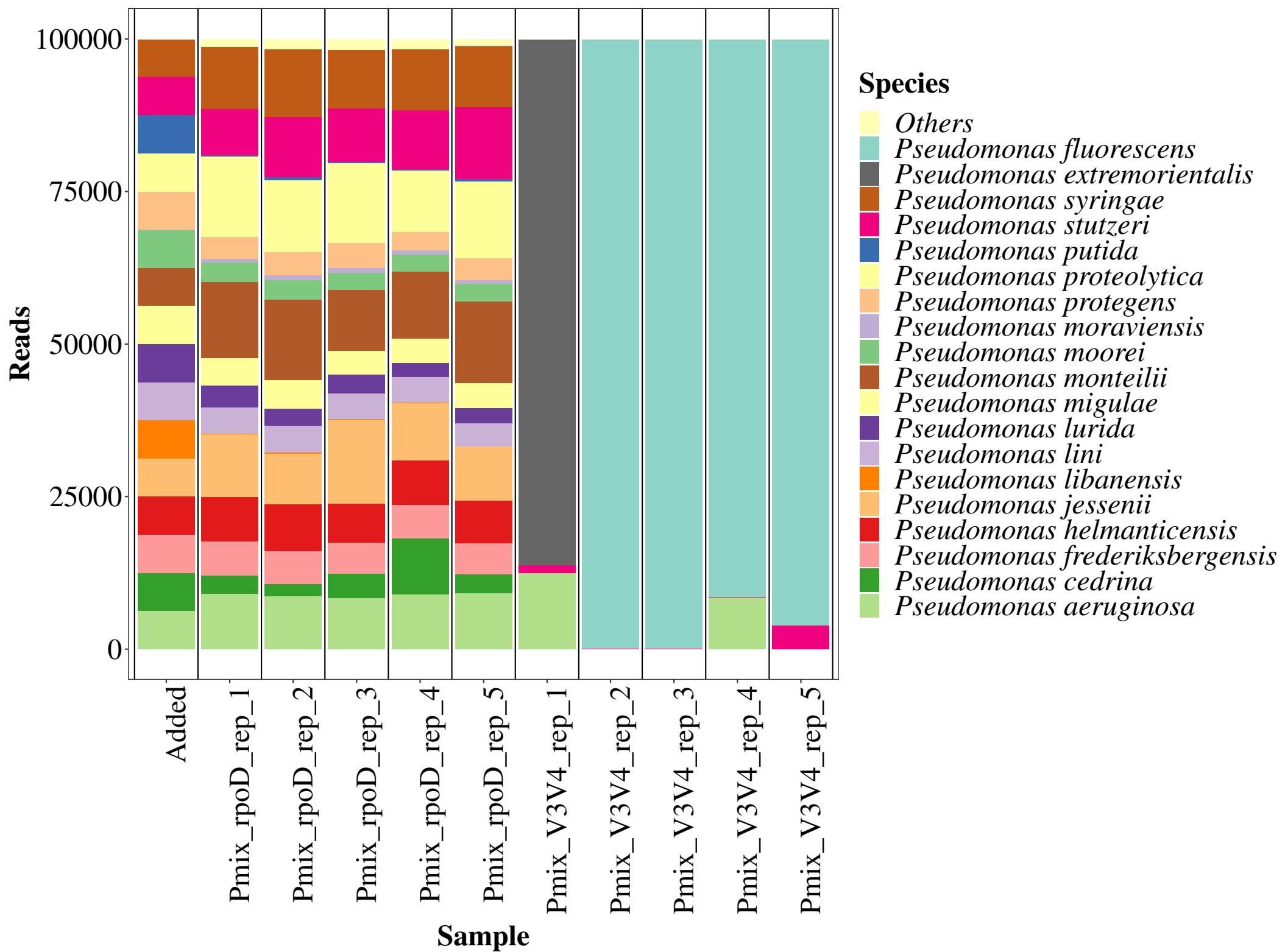
732

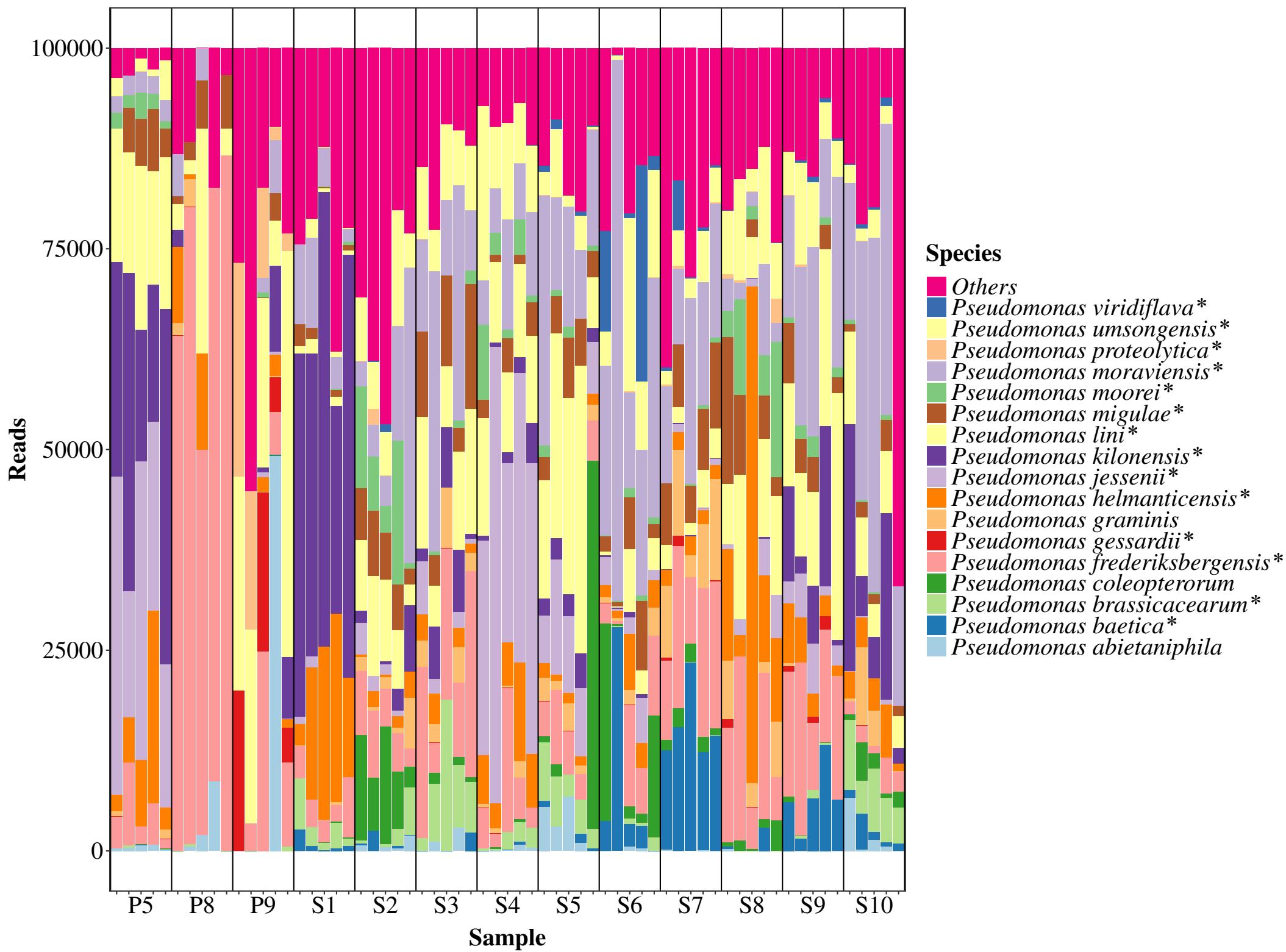
733

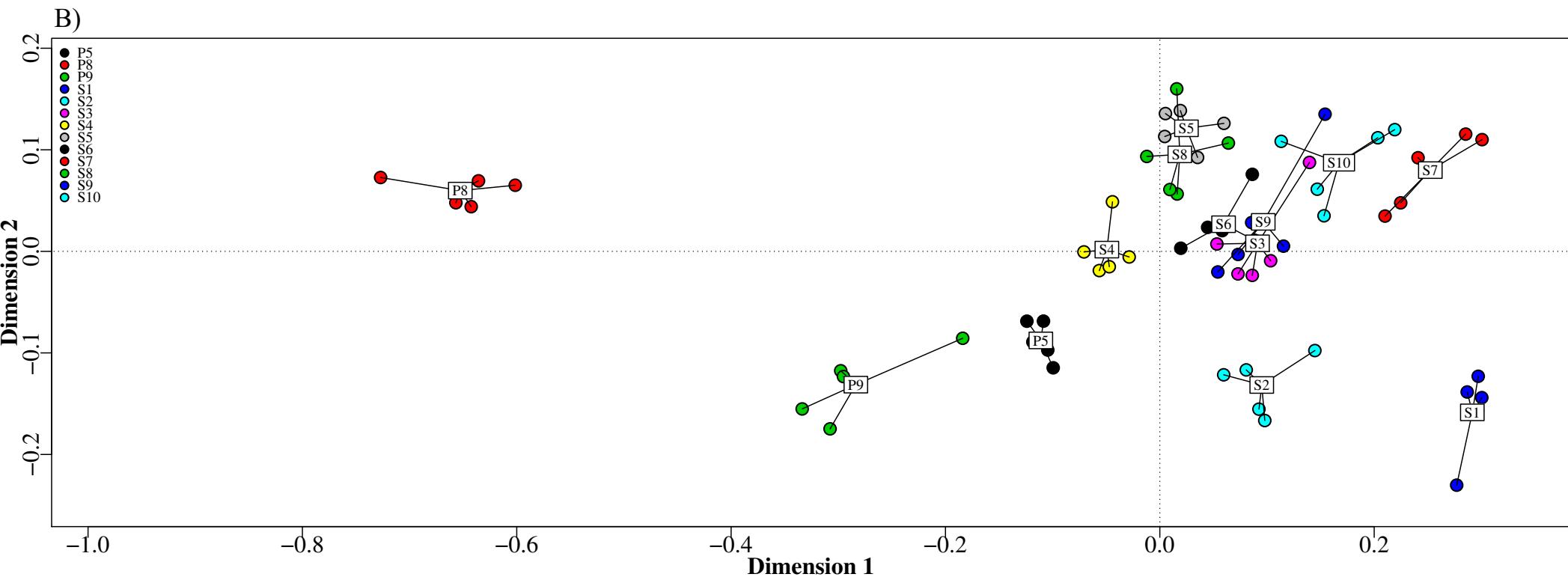
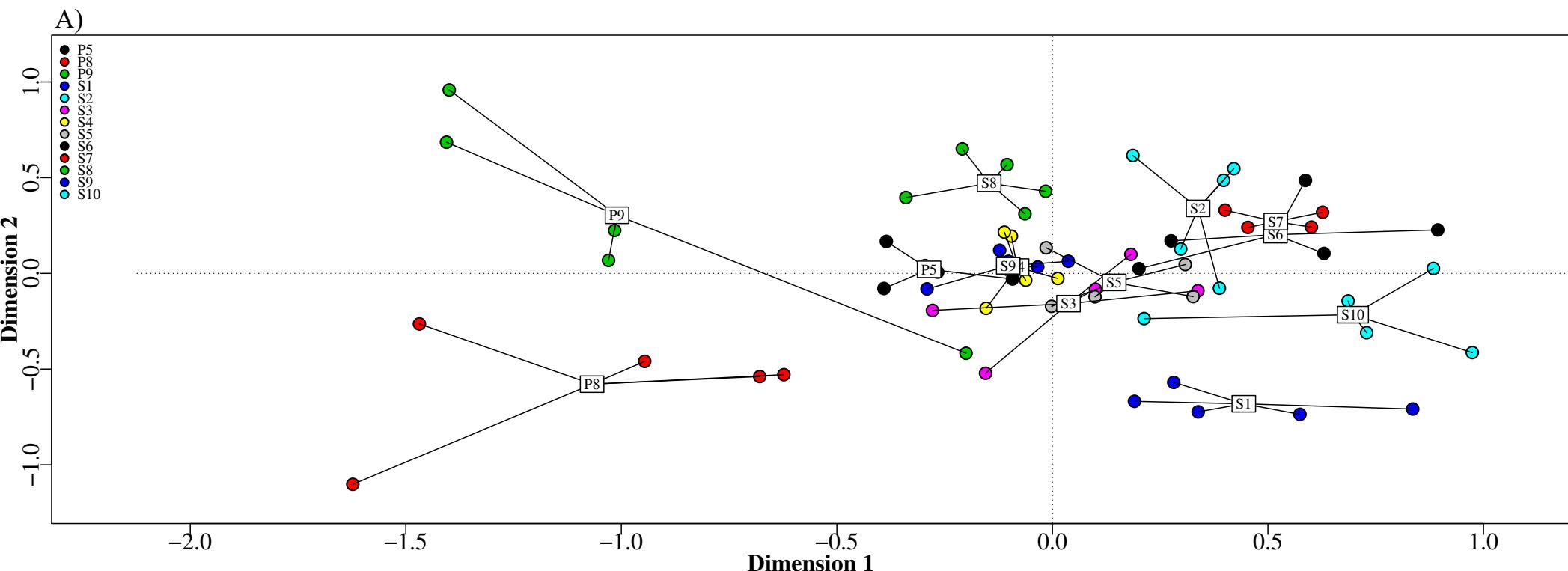
734

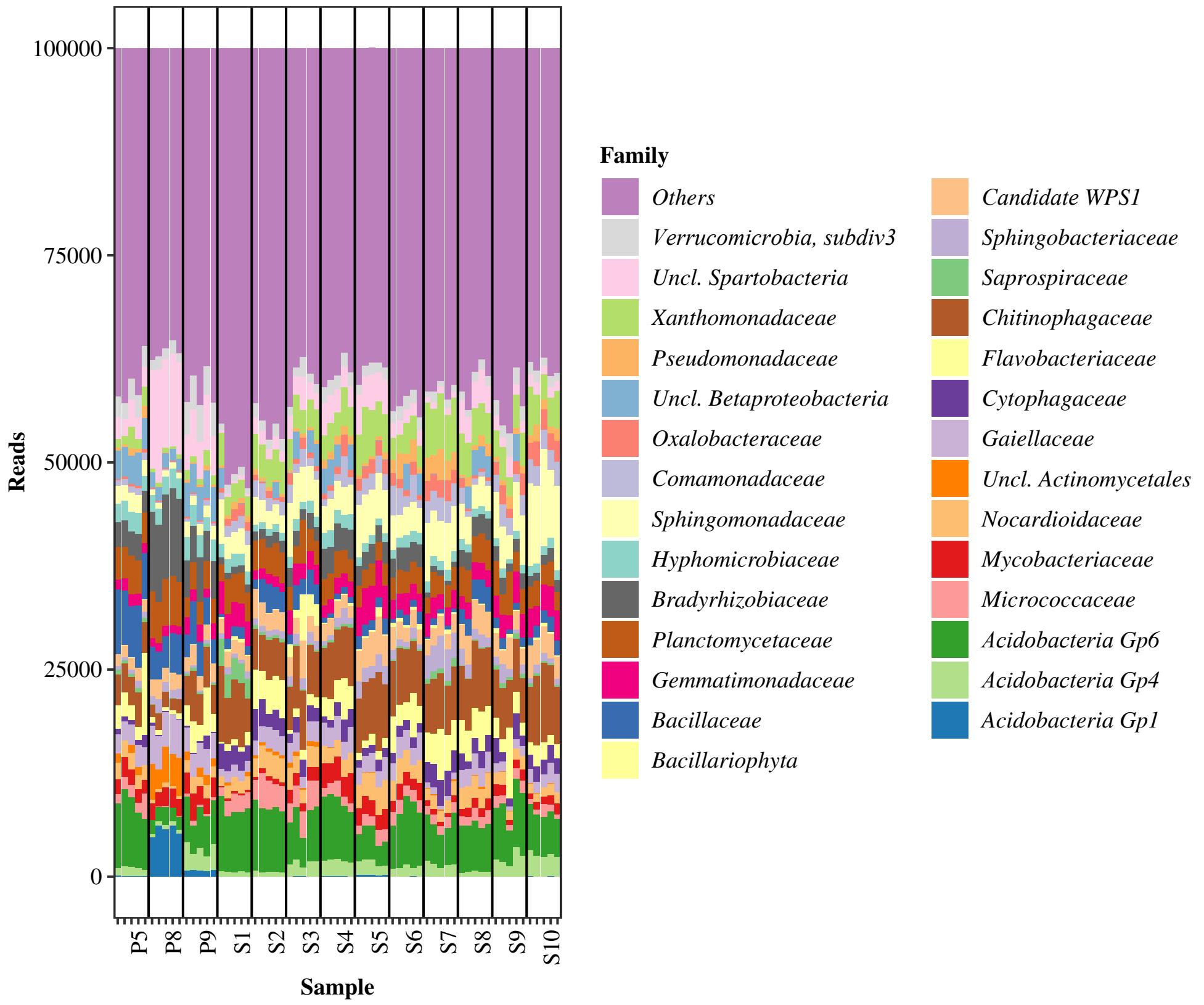
735

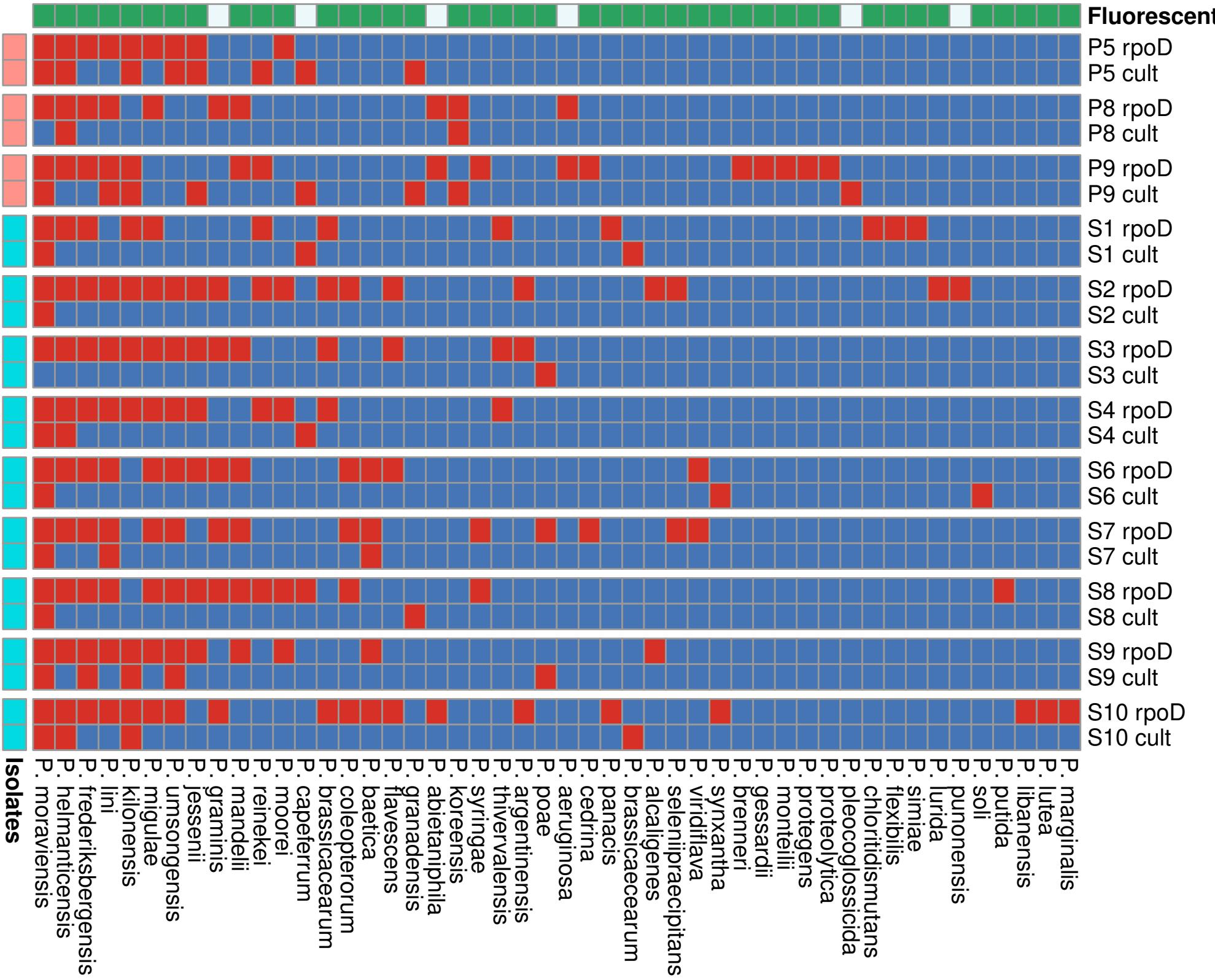
736


737


738



739 **Table 3.** The average total CFU per site estimated by qPCR and the estimated relative and
740 absolute abundance of *Pseudomonas* species based on V3V4 amplicon sequencing.


Site	Total bacteria, CFU/g soil	Relative level of <i>Pseudomonas</i> , %	Total <i>Pseudomonas</i> , CFU/g soil
P5	$1.10 \cdot 10^8$	0.381	$4.19 \cdot 10^5$
P8	$8.13 \cdot 10^7$	0.008	$6.50 \cdot 10^3$
P9	$5.30 \cdot 10^7$	0.027	$1.43 \cdot 10^4$
S1	$1.10 \cdot 10^8$	0.288	$3.17 \cdot 10^5$
S2	$3.37 \cdot 10^7$	0.053	$1.79 \cdot 10^4$
S3	$3.56 \cdot 10^7$	0.021	$7.48 \cdot 10^3$
S4	$4.81 \cdot 10^7$	0.290	$1.39 \cdot 10^5$
S5	$2.21 \cdot 10^7$	0.065	$1.44 \cdot 10^4$
S6	$2.78 \cdot 10^7$	0.649	$1.80 \cdot 10^5$
S7	$2.13 \cdot 10^7$	0.209	$4.45 \cdot 10^4$
S8	$4.29 \cdot 10^7$	0.731	$3.14 \cdot 10^5$
S9	$4.27 \cdot 10^7$	0.126	$5.38 \cdot 10^4$
S10	$2.73 \cdot 10^7$	0.276	$7.53 \cdot 10^4$


741

