

1 **An Efficient and Cost-effective Purification Methodology for SaCas9 Nuclease**
2
3

4 Allen C. T. Teng^{1,2,*}, Marjan Tavassoli^{1,2}, Suja Shrestha^{1,3}, Kyle Lindsay^{2,4}, Evgeni Ivakine^{2,4},
5 Ronald Cohn⁴, J. Paul Santerre^{1,3}, Anthony O. Gramolini^{1,2,*}
6
7

8 ¹ Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research,
9 University of Toronto, Toronto, ON.

10 ² Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON.

11 ³ Faculty of Dentistry, University of Toronto, Toronto, ON

12 ⁴ Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON., Canada

13 * Corresponding authors
14

15 **Abstract**

16 With an ever-increasing demand for laboratory-grade Cas9 proteins by many groups advancing
17 the use of CRISPR technology, a more efficient and scalable process for generating the
18 proteins, coupled with rapid purification methods is in urgent demand. Here, we introduce a
19 modified methodology for rapid purification of active SaCas9 protein within 24 hours. The
20 product has over 90% protein purity. The simplicity and cost-effectiveness of such methodology
21 will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating the
22 advancement of CRISPR/Cas9-based research.

23
24 **Key words** Cas9, protein purification, IMAC, ion exchange chromatography.

25
26 **Corresponding authors**

27 Anthony O. Gramolini, PhD
28 Translational Biology and Engineering
29 Program
30 Ted Rogers Centre for Heart Failure
31 Department of Physiology, Faculty of
32 Medicine
33 University of Toronto
34 661 University Avenue, 14th Floor
35 Toronto, Ontario, M5G 1M1, Canada
36 Tel: 416-946-8257
37 Email: Anthony.gramolini@utoronto.ca
49

38 Allen C. T. Teng, PhD
39 Translational Biology and Engineering
40 Program
41 Ted Rogers Centre for Heart Failure
42 Department of Physiology, Faculty of
43 Medicine
44 University of Toronto
45 661 University Avenue, 14th Floor
46 Toronto, Ontario, M5G 1M1, Canada
47 Tel: 647-575-2301
48 Email: Allen.teng@utoronto.ca

50 **Abbreviations**

51 CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats

52 SaCas9: *Staphylococcus aureus* Cas9

53 CIEX: cation exchange chromatography

54 SDS-PAGE: sodium dodecyl sulphate-polyacrylamide gel electrophoresis

55 TCE: 2, 2, 2-trichloroethanol

56 FPLC: fast protein liquid chromatography

57 ddH₂O: double distilled water

58 IPTG: Isopropyl-β-D-thiogalactopyranoside

59 dsDNA: Double-stranded DNA

60

61

62 **Introduction**

63 Precise editing of genomic DNA remained challenging until the advent of the clustered regularly
64 interspaced short palindromic repeats (CRISPR)-associated protein (Cas) system. CRISPR/Cas
65 was first identified as an adaptive immune system in bacteria and archaea as a defense against
66 invading viruses and plasmids ¹. Different types of Cas proteins can target double stranded
67 DNA, single stranded DNA, or RNA ²⁻⁶. One best characterized Cas subtype is Cas9, which has
68 now been routinely used for modifying genomic DNA of model organisms in laboratories. Of the
69 many identified Cas9 proteins, Cas9 from *Staphylococcus aureus* (SaCas9) has emerged as a
70 preferred genetic editing tool, because of its smaller size (1053 amino acids) allowing for an
71 efficient encapsulation into transfecting complexes or transducing viral DNA ^{7,8}. For example,
72 SaCas9 has been extensively used as a genome editing tool for developing an array of
73 therapeutic strategies investigating human inherited diseases in animal models ^{2,9}. However,
74 with an increasing demand, but currently time consuming and high cost-associated methods for
75 generating purified SaCas9, acquiring this protein remains a challenge for many laboratories
76 that are not adequately equipped for protein purification. Here, we report an advancement of
77 the purification methods for SaCas9 from bacterial cells. A major advantage of this
78 methodology is associated with achieving over 90% purity, at large batch sizes (concentrations
79 at 1 mg/L) within a day. Purified SaCas9 can be directly used for *in vitro* applications. The new
80 methodology is superior to the majority of conventional approaches, which depends on French
81 press, high-frequency sonicator, or fast protein liquid chromatography ^{10,11}.

82

83 **Materials and Methods**

84 **Materials**

85 A glycerol stock of XJb autolysis *E. coli* cells (ZYMO Research, Irvine, CA) containing the His₈-
86 TEV-SaCas9 (MN_548085.1) expression plasmid. LB broth, LB agar, carbenicillin, Isopropyl-b-
87 D-thiogalactopyranoside, L-arabinose, MgCl₂, dithiothreitol, imidazole, PMSF are from Bioshop
88 (Toronto, Canada). HEPES, KCl, NaCl, glycerol, MgCl₂, 2,2,2-Trichloroethanol, and Amicon
89 Ultra-15 centrifugal filter units are from Sigma-Aldrich. Universal Nuclease (Pierce). HisTrap
90 high performance and HiTrap SP HP columns are from Cytiva.

91

92 **Methods**

93 **Overexpression of His₈-TEV-SaCas9 proteins in *E. coli*.**

94 XJb *E. coli* cells (ZYMO research, Irvine, CA) containing His8-TEV-SaCas9 expression
95 plasmids were grown in a 4 L LB broth (Bioshop, Toronto, Canada) containing 100 µg/mL
96 carbenicillin (Bioshop, Toronto, Canada) at 37°C/250 rpm until optical density 600 nm (O.D.600)
97 reached 0.6~0.8 at 37°C. Induced protein expression with 0.5 mM IPTG (final concentration)
98 and 3 mM L-arabinose solution (final concentration) overnight at 180 rpm, 18°C. Next morning,
99 bacteria pellet was collected by centrifugation at 6,000xg and suspended 1 L of bacteria pellet
100 with 40 mL buffer A supplemented with 1 mM PMSF. Homogenized bacteria can be stored at -
101 80°C until protein purification.

102

103 **Ni²⁺-NTA column purification of His₈-SaCas9 proteins**

104 Cells were lysed in a 37°C water bath for 20 minutes and ribonucleic acids were digested with
105 0.75 µL of universal ribonuclease (Pierce, 88701) at 37°C for 1 hour. Insoluble fraction was
106 removed by spinning protein lysate at 15,000 xg for an hour and then soluble proteins were
107 filtered through a 0.22 µm filter. Ni²⁺-NTA column connected to a syringe pump was set up as
108 shown in Figure 1. Equilibrated column with 25 mL ddH₂O, 25 mL solution B (20 mM HEPES;

109 pH 7.5, 300 mM NaCl, 250 mM Imidazole, 0.5 mM DTT), and 25 mL solution A (20 mM HEPES,
110 pH7.5, 300 mM NaCl, 25 mM Imidazole) at the rate of 4 mL/min. Applied filtered supernatant
111 into the Ni²⁺-NTA column at the rate of 2 mL/min. Washed column with 30 mL washing buffer
112 (21 mL solution A + 9 mL solution B, 30% solution B). Eluted His₈-TEV-SaCas9 proteins in 15
113 mL elution buffer (100% solution B). Ran 40 μ L eluted proteins on a SDS-PAGE gel for protein
114 visualization.

115

116 **Cation exchange chromatography purification of His₈-SaCas9 proteins.**

117 Diluted eluted His₈-TEV-SaCas9 proteins by 3-fold with 30 mL buffer C (20 mM HEPES; pH 7.5,
118 200 mM KCl, 10 mM MgCl₂, 0.5 mM DTT) and filter through a 0.22 μ m syringe filter. Set up
119 HiTrap SP HP column as shown in Figure 1A. Equilibrated column with 25 mL ddH₂O, 25 mL
120 solution D (20 mM HEPES; pH 7.5, 1 M KCl, 10 mM MgCl₂, 0.5 mM DTT), and 50 mL solution C
121 at the rate of 4 mL/min sequentially. Applied filtered sample to the HisTrap column at the rate of
122 2 mL/min. Washed column with 30 mL washing buffer (24 mL solution C + 6 mL solution D, 20%
123 solution D). Eluted His₈-TEV-SaCas9 proteins in 20 mL elution buffer (14 mL buffer C + 6 mL
124 buffer D, 30% solution D). Ran 40 μ L eluted proteins on a SDS-PAGE gel for protein
125 visualization.

126

127 **Buffer exchange and His₈-TEV-SaCas9 protein concentration.**

128 Concentrated eluted His₈-TEV-SaCas9 proteins via a centrifugal filter unit (100 kDa cutoff,
129 Millipore) at 1,000 xg for 5 minutes. Performed buffer exchange with 1 mL SaCas9 storage
130 buffer (10 mM Tris-HCl; pH 7.4, 300 mM NaCl, 0.1 mM EDTA, 1 mM DTT, and 50% Glycerol) in
131 the centrifugal filter. Repeat this process 5 times. Transferred SaCas9 proteins into a 1 mL
132 Eppendorf tube and determine protein concentration via Bradford assays. Ran 40 μ L eluted
133 proteins on a SDS-PAGE gel for protein visualization.

134

135 **Determine SaCas9 enzymatic activity.**

136 gRNA and template DNA are prepared as the following. Double stranded DNA (dsDNA)
137 encoding for a sgRNA targeting intron 55 (in55) of the mouse *Dmd* gene (ATG AAA CCA TGG
138 CAA GTA AG) was cloned using Bsal directional cloning into pX601 vector. Briefly, pX601 was
139 digested with Bsal and dephosphorylated with shrimp alkaline phosphatase (New England
140 Biolabs, M0371L). dsDNA in55 guide oligos were designed with 5'overhangs complimentary to
141 the sticky ends produced by Bsal digestion, phosphorylated with T4 polynucleotide kinase (New
142 England Biolabs, M0201L) and ligated into digested pX601. Accurate cloning of the guide was
143 confirmed by Sanger sequencing. In55 guide encoding DNA was amplified from the cloned
144 pX601-in55 vector with Q5 high-fidelity polymerase (New England Biolabs, M0494L), using
145 primers which introduced the minimal T7 promoter sequence upstream of the guide sequence
146 (Fwd: TAA TAC GAC TCA CTA TAG GGA TGA AAC CAT GGC AAG TAA G; Rvs: AAA ATC
147 TCG CCA ACA AGT TG). The amplicon was purified using the QIAquick PCR purification kit
148 (Qiagen, 28104), and sgRNA was *in vitro* transcribed from the amplicon using the
149 MEGAshortscript T7 transcription kit (Thermo Fisher Scientific, AM1354). The sgRNA was
150 purified with the RNEasy Mini Kit (Qiagen, 74104) following the manufacturer's protocol for RNA
151 cleanup.

152 SaCas9 was diluted to the final concentration of 500 ng/µL in SaCas9 working buffer (20
153 mM HEPES, pH 7.4, 150 mM KCl, 10% glycerol, 1 mM DTT), 300 ng/µL gRNA in
154 DNase/RNase-free water, and 60 ng/µL template DNA in DNase/RNase-free water. Mixed
155 together all components as depicted in **Table 2**, vortex, spin down, and incubate at 37°C water
156 bath for 1 hour. Inactivate SaCas9 enzyme at 65°C for 10 minutes. Assessed digestion results
157 on a 1% agarose gel.

158

159 **Results**

160 Protein purification is completed by a semi-automated system (**Figure 1A**) and consists of 3
161 simple steps – (1) an enrichment of His-tagged SaCas9 proteins via a Ni²⁺-NTA column, (2) an
162 intermediate purification via a cation exchange chromatography (CIEX), and (3) and a final
163 buffer exchange via a centrifugal filtration (**Figure 1B**). For the chromatography setup, a 50-mL
164 syringe containing buffer or protein samples is mounted on a syringe pump, which controls the
165 solution flow rate applied to prepacked columns (**Figure 1A**). Eluted protein fractions are
166 monitored by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) with 2,
167 2, 2-trichloroethanol (TCE) staining. Fractions containing enriched SaCas9 proteins are
168 combined for subsequent fractionations.

169 Protein purification from bacterial lysates begins with cell lysis ¹²⁻¹⁴. This initial isolation
170 step is commonly achieved using mechanical ^{3,4} or chemical methods ¹⁵, each with their own
171 limitations. For example, mechanical disruption is efficient in lysing cells, but devices such as a
172 French press or high-frequency sonicator may not be readily available to all laboratories.
173 Chemical lysis of cell walls has a tendency to denature target proteins ^{16,17}, further complicating
174 the downstream purification. To overcome these issues, XJb autolysis *E. coli* cells that express
175 λ phage-endolysin for disrupting cell walls were selected as host cells for protein expression.
176 Lysis of *E. coli* containing SaCas9 proteins was achieved by a single freeze-and-thaw process.
177 Successful lysis was accompanied with an increased solution viscosity, which was reduced by a
178 ribonuclease treatment. Next, soluble protein lysate is prepared by centrifugation and degassed
179 by filtration before protein chromatography.

180 Ni²⁺-NTA chromatography is performed to enrich His₈-SaCas9. Analyses of SDS-PAGE
181 gels reveals that the majority of His₈-SaCas9 proteins were eluted in a stepwise fashion
182 between 40% (125 mM) and 100% (275 mM) imidazole solution (**Figure 2A**, asterisk, SaCas9).
183 These fractions are combined and subjected to CIEX chromatography. **Figure 2B** shows that
184 SaCas9 proteins are further fractionated by CIEX chromatography. Specifically, most SaCas9

185 proteins are eluted stepwise in the presence of 30-40% (500-600 mM KCl) solution D. Keeping
186 K⁺ ion concentrations below 600 mM reduces protein contaminants. Finally, protein
187 concentration and buffer exchange are completed in a centrifugal filtration unit. **Figure 2C**
188 shows that sequentially purified SaCas9 proteins have an average purity of > 90%, based on
189 multiple rounds of protein fractionation. The protein yield from this protocol ranges between 1
190 mg per liter of bacterial culture. The estimated cost for 10 mg of purified Cas9 proteins is 86.36
191 USD (**Table 1**).

192 Next, we sought to benchmark the purity, production cost, and enzymatic activity of our
193 SaCas9 by comparing it to commercially available sources. **Figure 3A** shows that the purity of
194 this protein is comparable to two commercial suppliers. The production cost associated with this
195 protocol is the lowest - 86.36 USD per 10 mg of proteins (**Table 1**). For determining an activity
196 of purified SaCas9 nucleases, enzymes were mixed with template DNA and gRNA. Digested
197 DNA was visualized on a 1% agarose gel. **Figure 3B** shows that template DNA was completely
198 digested by the *de novo* generated SaCas9 (**Figure 3B**, lane 4) and is comparable to
199 commercially supplied enzymes (**Figure 3B**, lane 3). Together, our results show that purified
200 SaCas9 remains fully active for downstream applications.

201

202 **Discussion**

203 In this study, we have demonstrated a modified procedure for purifying SaCas9 from bacterial
204 lysates. The advantages of this method include simplicity and cost-effectiveness. The procedure
205 can be completed within a day by trained personnel and requires only common lab equipment.
206 This process will enable the acceleration of CRISPR/Cas research by providing an easier
207 access to lower cost and highly pure SaCas9 proteins. In addition, different Cas proteins have
208 been purified via Ni^{2+} -NTA and CIEX chromatography²⁻⁴, thus the reported method can facilitate
209 Cas protein research by further refining the elution buffer concentration for CIEX
210 chromatography. There are, however, two major disclosures associated with this method when
211 compared with fast protein liquid chromatography (FPLC)-based purification. First, the system
212 lacks real-time monitoring for protein elution from chromatography. In modern FPLC, optical
213 density at 280 nm wavelength (O.D.₂₈₀) is usually used for keeping track of protein elution.
214 Although such an optical setup is not included in the reported method, SaCas9 can be directly
215 visualized in the TCE-stained SDS-PAGE gels within 30 minutes of chromatography¹⁸⁻²⁰. The
216 second limitation is the absence of a pressure monitor for prepacked columns. Nevertheless,
217 changes of column pressure can be indirectly reflected by the reduced flow rate of solution
218 output. During chromatography, a 20% reduction in flow rate should serve as a sign of
219 increasing column pressure, and the need for an intervention step. Column cleaning and
220 maintenance should be performed as per manufacturer's manual after three rounds of
221 chromatography, in order to ensure maximal column performance.

222

223 **Acknowledgement**

224 This study was supported by a Medicine by Design New Ideas Fund (MBDNI-201) and a
225 Jesse's Journey-The Foundation for Gene and Cell Therapy (#507052), and the Translational
226 Biology and Engineering Program (University of Toronto) seed grant.

227

228 **References**

229 1 Jinek, M. *et al.* (2012). A programmable dual-RNA-guided DNA endonuclease in
230 adaptive bacterial immunity. *Science* **337**, 816-821, doi:10.1126/science.1225829.

231 2 Kemaladewi, D. U. *et al.* (2017). Correction of a splicing defect in a mouse model of
232 congenital muscular dystrophy type 1A using a homology-directed-repair-independent
233 mechanism. *Nature medicine* **23**, 984-989, doi:10.1038/nm.4367.

234 3 Abudayyeh, O. O. *et al.* (2017). RNA targeting with CRISPR-Cas13. *Nature* **550**, 280-
235 284, doi:10.1038/nature24049.

236 4 Harrington, L. B. *et al.* (2018). Programmed DNA destruction by miniature CRISPR-
237 Cas14 enzymes. *Science* **362**, 839-842, doi:10.1126/science.aav4294.

238 5 Garcia-Doval, C. *et al.* (2020). Activation and self-inactivation mechanisms of the cyclic
239 oligoadenylate-dependent CRISPR ribonuclease Csm6. *Nature communications* **11**,
240 1596, doi:10.1038/s41467-020-15334-5.

241 6 Swarts, D. C. & Jinek, M. (2019). Mechanistic Insights into the cis- and trans-Acting
242 DNase Activities of Cas12a. *Molecular cell* **73**, 589-600 e584,
243 doi:10.1016/j.molcel.2018.11.021.

244 7 Lu, B. *et al.* (2019). Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for
245 transient expression and efficient genome editing. *Nucleic acids research* **47**, e44,
246 doi:10.1093/nar/gkz093.

247 8 Xie, H. *et al.* (2020). High-fidelity SaCas9 identified by directional screening in human
248 cells. *PLoS biology* **18**, e3000747, doi:10.1371/journal.pbio.3000747.

249 9 Kemaladewi, D. U. *et al.* (2019). A mutation-independent approach for muscular
250 dystrophy via upregulation of a modifier gene. *Nature* **572**, 125-130,
251 doi:10.1038/s41586-019-1430-x.

252 10 Nishimasu, H. *et al.* (2015). Crystal Structure of *Staphylococcus aureus* Cas9. *Cell* **162**,
253 1113-1126, doi:10.1016/j.cell.2015.08.007.

254 11 Rajagopalan, N., Kagale, S., Bhowmik, P. & Song, H. (2018). A Two-Step Method for
255 Obtaining Highly Pure Cas9 Nuclease for Genome Editing, Biophysical, and Structural
256 Studies. *Methods and protocols* **1**, doi:10.3390/mps1020017.

257 12 Ma, J. *et al.* (2021). Nanoparticle-Mediated Assembly of Peptoid Nanosheets
258 Functionalized with Solid-Binding Proteins: Designing Heterostructures for Hierarchy.
259 *Nano letters* **21**, 1636-1642, doi:10.1021/acs.nanolett.0c04285.

260 13 Xu, M., Bailey, M. J., Look, J. & Baneyx, F. (2020). Affinity purification of Car9-tagged
261 proteins on silica-derivatized spin columns and 96-well plates. *Protein expression and*
262 *purification* **170**, 105608, doi:10.1016/j.pep.2020.105608.

263 14 Hellner, B., Stegmann, A. E., Pushpavanam, K., Bailey, M. J. & Baneyx, F. (2020).
264 Phase Control of Nanocrystalline Inclusions in Bioprecipitated Titania with a Panel of
265 Mutant Silica-Binding Proteins. *Langmuir : the ACS journal of surfaces and colloids* **36**,
266 8503-8510, doi:10.1021/acs.langmuir.0c01108.

267 15 Lu, Z. *et al.* (2020). Targeting Cancer Gene Dependencies with Anthrax-Mediated
268 Delivery of Peptide Nucleic Acids. *ACS chemical biology* **15**, 1358-1369,
269 doi:10.1021/acschembio.9b01027.

270 16 Hartrampf, N. *et al.* (2020). Synthesis of proteins by automated flow chemistry. *Science*
271 **368**, 980-987, doi:10.1126/science.abb2491.

272 17 Vorobieva, A. A. *et al.* (2021). De novo design of transmembrane β barrels. *Science* **371**,
273 doi:10.1126/science.abc8182.

274 18 Ladner, C. L., Edwards, R. A., Schriemer, D. C. & Turner, R. J. (2006). Identification of
275 trichloroethanol visualized proteins from two-dimensional polyacrylamide gels by mass
276 spectrometry. *Analytical chemistry* **78**, 2388-2396, doi:10.1021/ac051851y.

277 19 Ladner, C. L., Yang, J., Turner, R. J. & Edwards, R. A. (2004). Visible fluorescent
278 detection of proteins in polyacrylamide gels without staining. *Analytical biochemistry* **326**,
279 13-20, doi:10.1016/j.ab.2003.10.047.

280 20 Chopra, A., Willmore, W. G. & Biggar, K. K. (2019). Protein quantification and
281 visualization via ultraviolet-dependent labeling with 2,2,2-trichloroethanol. *Scientific
282 reports* **9**, 13923, doi:10.1038/s41598-019-50385-9.

283

284 **Tables**

285 **Table 1**

	unit price in USD
HisTrap column (GE, 17524802)	185.00
HiTrap column (GE, 17115401)	82.40
Amicon Ultra Centrifugal Filter Unit (Sigma, UFC901024)	332.50
LB broth (Bioshop Canada, LBL405)	68.76
LJB autolysis cells (Zymo Research Corporation, 50-444-646)	21.90
PES Bottle Top Filters (Fisher Scientifics, FB12566511)	73.00
Miscellaneous (Salt, glass bottles, carbenicilline, arabinose, etc)	100.00
Total cost for 100 mg of SaCas9 proteins	863.56
Cost per 10 mg of SaCas9 proteins	86.36

286

287

288 **Table 2**

	SaCas9 (500ng/μl)	gRNA (300 ng)	Template DNA (60 ng)	10X reaction buffer	ddH2O
Template DNA only			1	2	17
gRNA only		1		2	17
Mock digestion		1	1	2	16
Digestion	1	1	1	2	15

289

290

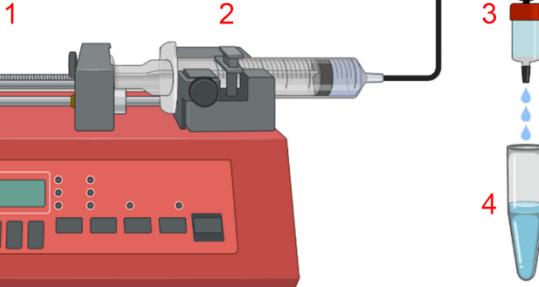
291 **Figure captions**

292 **Figure 1. Methodology illustration for His₈-TEV-SaCas9 purification.** (A) Apparatus setup
293 for protein purification. A 50-mL syringe (2) mounted on a syringe pump (1) is connected to a
294 pre-packed column (3). Loading of protein samples and buffer application can be swiftly
295 adapted by changing different syringes. Eluted samples can be collected in tubes (4). (B) The
296 summary of SaCas9 purification procedure introduced in this study. SaCas9 expression is
297 induced overnight in XJb cells. Protein purification is performed by Ni²⁺-NTA and CIEX
298 chromatography as illustrated in **Fig. 1A**. Final protein is concentrated and buffer exchanged in
299 a centrifugal filter unit. Confirmation of protein purity is monitored by TCE staining of SDS-PAGE
300 gels.

301

302 **Figure 2. Analyses of Coomassie brilliant blue and TCE stained SDS-PAGE gels for**
303 **purified His₈-SaCas9 proteins.** (A) Affinity purification of His₈-SaCas9. Soluble His₈-SaCas9
304 from bacterial lysates were enriched in a Ni²⁺-NTA column and were eluted in increasing
305 concentration (10-100%) of solution B. Majority of impurity was washed off with 30% solution B
306 and His₈-SaCas9 proteins were eluted in 15 mL of 100% buffer B. Top panel, CBB staining;
307 Bottom panel, TCE staining. (B) Intermediate purification of His₈-SaCas9 with CIEX. His₈-
308 SaCas9 proteins from Ni²⁺-NTA-based affinity purification were further fractionated CIEX and
309 proteins were eluted in increasing concentration (10-100%) of buffer D in a stepwise fashion.
310 Majority of SaCas9 proteins were eluted in 30 and 40% fractions and were combined and buffer
311 exchanged in centrifugal filter unit. Top panel, CBB staining; Bottom panel, TCE staining. (C) A
312 representative image of sequentially purified His₈-SaCas9 proteins. Total proteins from cell-free
313 lysate, Ni²⁺-NTA elution, and centrifugal filtration were visualized on a coomassie brilliant blue-
314 stained SDS-PAGE gel. Top panel, CBB staining; Bottom panel, TCE staining. CFL, cell-free
315 lysate; FT, flow through; *, His₈-SaCas9.

316


317 **Figure 3. Comparison of homemade SaCas9 to commercial sources. (A)** Homemade
318 SaCas9 purification procedure achieves 90% purity, which is comparable to commercial
319 suppliers. The purity of *de novo* SaCas9 proteins (1) was visualized side-by-side with 2 other
320 commercial sources (2 & 3) on either CBB or TCE-stained SDS-PAGE gels. The average cost
321 of SaCas9 proteins purified according to the reported method is 8.64 USD/mg. **(B)** Purified
322 SaCas9 efficiently digested double stranded DNA. SaCas9-mediated DNA digestion was
323 analyzed on a 1% agarose gel. A full-length (undigested) template DNA and gRNA were
324 detected in lanes 1 and 2, respectively. A complete digestion of template DNA with
325 commercially supplied SaCas9 was included as a positive control and showed 2 separate
326 fragments (2 and 1 kilobase pairs) in lane 3. A complete digestion of template DNA with
327 homemade SaCas9 was also observed as 2 fragments in lane 4.

328

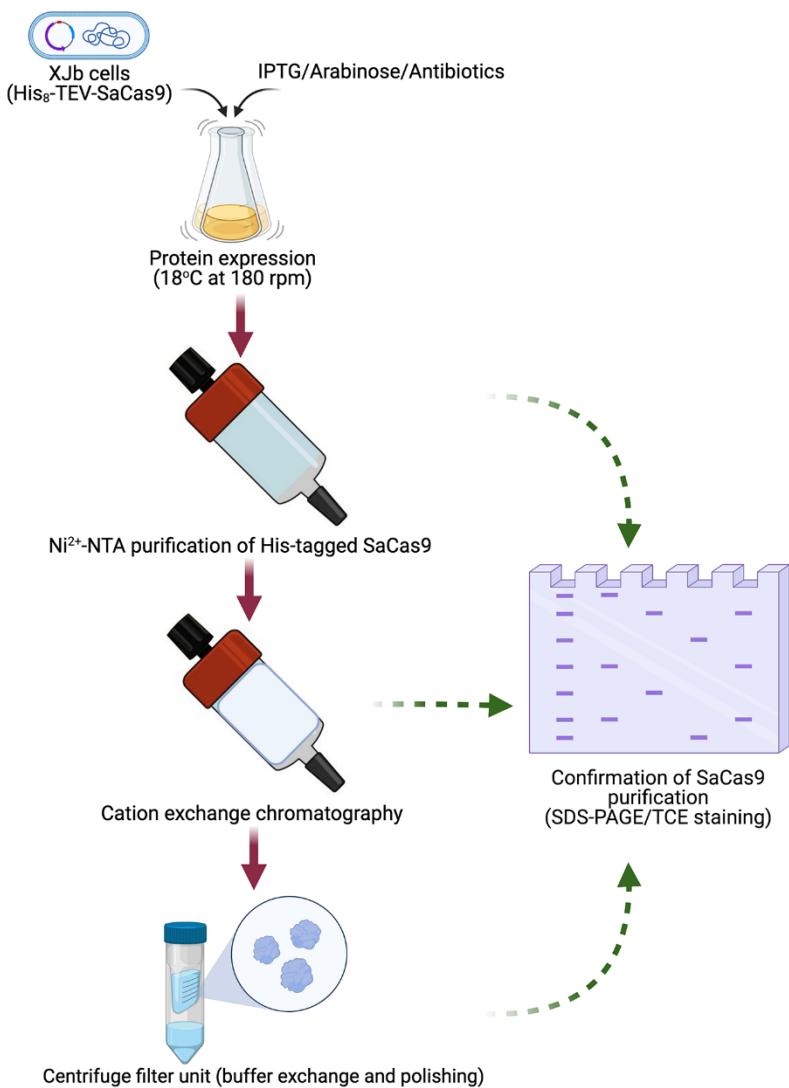
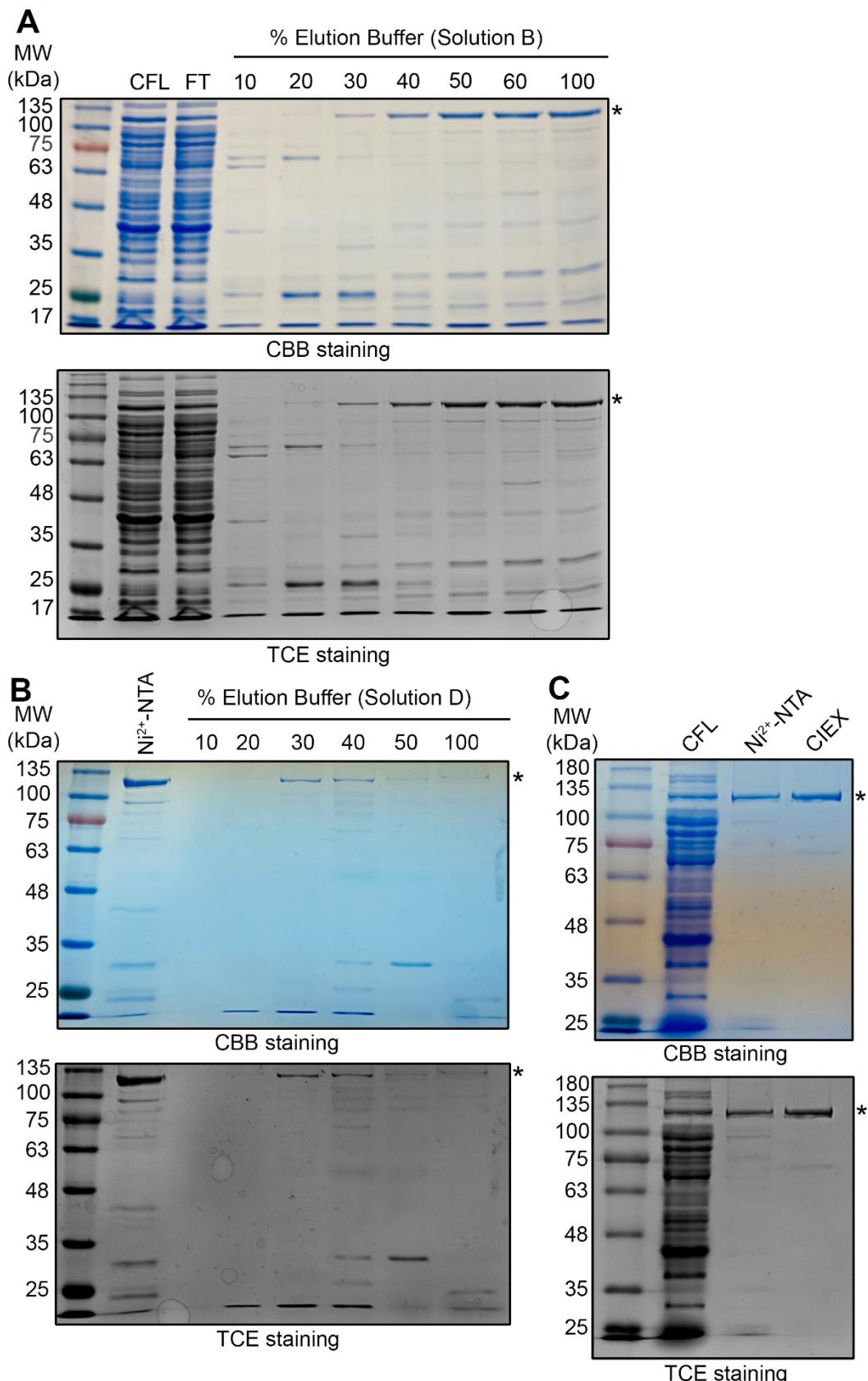

329 **Figures**

Figure 1


A

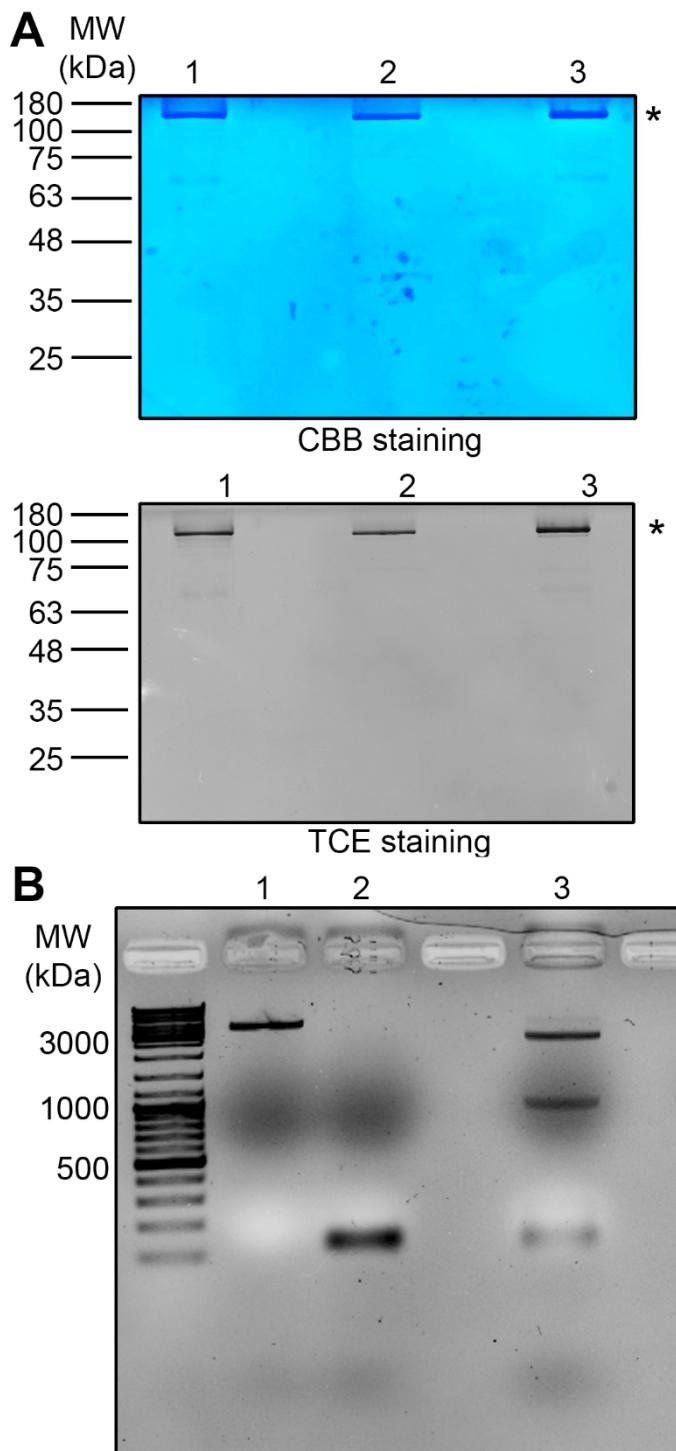

B

Figure 2

Figure 3

