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Stratified Test Accurately Identifies Differentially
Expressed Genes Under Batch Effects in

Single-Cell Data
Shaoheng Liang, Qingnan Liang, Rui Chen, Ken Chen

Abstract—Analyzing single-cell sequencing data from large cohorts is challenging. Discrepancies across experiments and differences
among participants often lead to omissions and false discoveries in differentially expressed genes. We find that the Van Elteren test, a
stratified version of the widely used Wilcoxon rank-sum test, elegantly mitigates the problem. We also modified the common language
effect size to supplement this test, further improving its utility. On both simulated and real patient data we show the ability of Van Elteren
test to control for false positives and false negatives. A comprehensive assessment using receiver operating characteristic (ROC) curve
shows that Van Elteren test achieves higher sensitivity and specificity on simulated datasets, compared with nine state-of-the-art
differential expression analysis methods. The effect size also estimates the differences between cell types more accurately.

Index Terms—scRNA-seq analysis, differential expression analysis, batch effect, Wilcoxon rank-sum test, Van Elteren test.

F

1 INTRODUCTION

LARGE-SCALE studies such as the Human Cell Atlas [1]
involve hundreds of laboratories, thousands of patients,

and millions of cells, bringing about both opportunities
and challenges in analyses. When comparing cell types or
groups, discrepancies across experiments and differences
among participants lead to omissions and false discoveries
in differentially expressed genes. Even the trend (upregu-
lated or downregulated) can be reversed in a phenomenon
called Simpson’s paradox [2]. These phenomena are termed
“batch effects”. For differential expression analysis, batch
effects can be handled before performing statistical testing,
or factored into the test. Although multiple methods have
been proposed to tackle the batch effects, no such option for
the widely used Wilcoxon rank-sum test [3], [4] has been
applied to single-cell studies, to the best of our knowledge.
Here, we show that the stratified rank-sum test (known as
Van Elteren test [5]) and our modified common language
effect size may fill this gap and benefit single-cell studies.

We briefly review and conceptually compare related
works on correcting batch effect in section 1.1. Then, in
section 2, we revisit Wilcoxon rank-sum test, and introduce
the Van Elteren test supplemented by our direct extension
of the common language effect size [6], [7]. In section 3,
we use a few examples to illustrate the scenarios where
a stratified test is necessary. A comprehensive assessment
on simulated datasets shows that Van Elteren test identifies
differentially expressed genes with higher sensitivity and
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specificity, compared with nine state-of-the-art differential
expression analysis methods. We also show an application
to retinal data. The results show that controlling for batch
effects in the Wilcoxon test and its corresponding effect
size leads to more accurate biological discoveries, which is
the major contribution of this article. More discussions and
explanations are shown in section 4.

1.1 Related Works

Mainstream methods to mitigate batch effect fall into two
categories, batch correction methods and batch-aware sta-
tistical tests. The former includes methods reducing batch
effect in the data to facilitate downstream analysis, while
the latter includes analyses that control for the batch effect.

1.1.1 Batch Correction Methods
Batch correction methods eliminate the discrepancy among
batches to create an integrated dataset. The most con-
spicuous manifestation of batch effect is splitting one cell
type into multiple clusters. To solve this problem, many
methods match and combine clusters across samples based
on similarities. A commonly adopted one, Mutual nearest
neighbor (MNN) [8], uses similar cells across datasets as
anchors, and based on them correct the gene expression
of other cells. Scanorama [9] and the integration utility in
Seurat [10] are both based on the MNN methodology. An-
other method, Harmony [11], iteratively corrects the data by
clustering the cells and moving neighboring clusters toward
each other. These methods typically produce a unified data
matrix, which can be conveniently used in visualization
and downstream analysis. However, these empirical correc-
tions usually lack negative control and raise uncertainty in
the discovery [12]. Thus, while the corrected data help in
visualization and trajectory inference, raw data is recom-
mended for statistical testings [13]. Normalized (and log-
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transformed) data may also be used if necessary, but any
more correction is discouraged.

1.1.2 Batch-Aware Statistical Tests
Instead of manipulating the data directly, statistical methods
may handle batch effect by considering it as a covariate
in the model. Both classical statistical tests and models
specifically designed for single-cell data have been adopted
in scRNA-seq analyses. The most popular ones are inte-
grated into Seurat [10], a widely used scRNA-seq data
analysis platform. To date, it includes Wilcoxon rank-sum
test, likelihood ratio test [14], ROC (Receiver operating char-
acteristic) Analysis, Student’s t-test, negative binomial test,
Poisson test, logistic regression, MAST [15], and DESeq2
[16]. Among those methods, VanElteren, Linear Regression
test, Negative Binomial test, Poisson test, and MAST are
capable of accounting for covariates, which can be used to
model the batch effects. A more detailed description of these
methods is available in Section 2.3.

Notably, all these tests are parametric, meaning that a
distribution must be given in advance. However, the debate
of the true distribution of single-cell gene expression has
never ceased [17], which is a reason why the nonparametric
Wilcoxon rank-sum test is widely used. To allow modeling
covariates in nonparametric tests, one may use a generalized
version of rank-sum test, the proportional odds model [18].
However, modeling batches by using a covariate also makes
unnecessary assumptions upon them. Stratification, which
only combines statistics from batches, is the “as simple as
possible, but no simpler” way to handle batches. The Van
Elteren test we use, is the stratified version of Wilcoxon
rank-sum test.

It is worth noting that methods like scVI [19] have
combined statistical modeling with batch effect correction.
However, the effect of batches is modeled by a black-box
neural network, making it subject to the same problem of
batch correction methods.

2 METHODS

2.1 Wilcoxon Rank-Sum Test
We briefly revisit the Wilcoxon rank-sum test (also known as
Mann–Whitney U test) [3], [4]. The test statistics U is defined
as

U =
n1∑
i=1

n2∑
j=1

(
1ai>bj +

1

2
1ai=bj

)
, (1)

where A = {ai}n1
i=1 and B = {bj}n2

j=1 are the two samples to
be compared (e.g., two cell types in one experiment), with
sample sizes n1 and n2, respectively. Function “1” takes
value 1 when its condition holds true, and 0 otherwise.
When n1 and n2 are both at least 10, which is common
in single-cell studies, the distribution of U approximately
follows a normal distribution N (µ, σ2) where

µ =
n1n2

2
(2)

and

σ2 =
n1n2
12

(
(n+ 1)−

k∑
i=1

t3i − ti
n(n− 1)

)
, (3)

in which ti stands for ties (corresponding to the second term
in Equation 1).

2.2 Van Elteren Test
The Van Elteren test [5] is the stratified version of Wilcoxon
rank-sum test. For example, if there are m patients, they
maybe treated as strata. In that case, a U statistic may be
obtained from each patient g ∈ {1, · · · ,m}, denoted as
Ug ∼ N (µg, σ

2
g). A new statistics V is constructed by

V =

[∑m
g=1 wg(Ug − µg)

]2
∑m

g=1 w
2
gσ

2
g

∼ χ2
1, (4)

where wg is a weight for each sample to be discussed
later. When m = 1, the formula degenerates to V =
(Ug − µg)2/σ2

g ∼ χ2
1, which is consistent with the rank-sum

test.

2.2.1 Weights
As discussed by Van Elteren [5], the weights wg can be
assigned in different ways. It should be noted that the Ug

for a batch g ranges from 0 to ng1ng2, the product of two
sample sizes in the batch. Should the weights all be equal,
a patient with more cells available will dominate the test
results. It is proven in [5] that weight

wg =
1

ng1ng2
(5)

eliminates such effect, and a test utilizing such weight is
thus named as “design-free test”. However, given that a
batch with more instances available (e.g., a patient with
more cells sequenced) may be more convincing, another
weight

wg =
1

ng1 + ng2 + 1
(6)

is introduced, which gives more power to larger batches.
It also effectively assigns larger weights to batches whose
samples are more balanced, when the batch sizes are the
same. It is shown in [5] that this choice yields largest
statistical power against randomized alternatives, and is
thus named as “locally-best test”. The comparison of two
weights are shown in Fig. 1.
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Fig. 1. The weight (z-axis) for each batch when using the (a) design-
free test and (b) locally-best test. samples sizes for two batches are on
x- and y-axis. For design-free test all the batches have equal weights,
while for locally-best test higher weights are given to batches with higher
and balanced sample sizes.

2.2.2 Effect Sizes
For Wilcoxon rank-sum test, a simple definition of effect size
is

f =
U

n1n2
, (7)
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which is centered at 50%, meaning the probability P (a > b)
when a and b are randomly drawn from sample A and
sample B, respectively. An effect size greater than 50%
generally means that A is higher, and vice versa. It may be
easily extended for Van Elteren test by taking average using
desired weights. For the design-free test, the effect size is

f =
1

m

m∑
g=1

Ug

ng1ng2
, (8)

as all batches are treated equally regardless of the sample
sizes. It may be interpreted as the probability of P (ag >
bg) for ag and bg randomly drawn from Ag and Bg , after
randomly choosing a batch g. For the locally-best test, the
effect size becomes

f =
1∑m

g=1
ng1ng2

ng1+ng2+1

m∑
g=1

ng1ng2
ng1 + ng2 + 1

Ug

ng1ng2
(9)

=

∑m
g=1

Ug

ng1+ng2+1∑m
g=1

ng1ng2

ng1+ng2+1

, (10)

which changes the probability of choosing a group g to be in
proportion to ng1ng2

ng1+ng2+1 , giving higher weights to batches
with higher and balanced sample sizes (Fig. 1). Generally,
any wg may be used to define f , as in

f =

∑m
g=1 Ugwg∑m

g=1 ng1ng2wg
, (11)

the two previous options being its special cases.

2.3 Other Statistical Tests

We briefly introduce likelihood ratio test [14], ROC (Receiver
operating characteristic) Analysis, Student’s t-test, negative
binomial test, Poisson test, logistic regression, MAST [15],
and DESeq2 [16], which we compared Van Elteren test with
in Section 3.2.

2.3.1 Likelihood Ratio Test

The likelihood ratio test introduced by McDavid et al. [14]
checks if the probabilities (π1 and π2) of cells expressed a
gene and the mean expressions (µ1 and µ2) of the cells that
express the gene have changed between the two groups. For
each group k ∈ 0, 1 the likelihood is defined as

L(y1, y2) =
∏
k

π
n∗
k

k (1− πk)1−n
∗
k

∏
i∈Sk

logN (yik|µk, σ
2),

(12)
where yk is the expression profile for a specific gene, n∗k
is the number of cells expressed the gene, Sk is a set of the
cells expressing the gene, and σ2 is the second parameter for
the log normal distribution. The likelihood is maximized for
the condition H0 : π0 = π1 and µ0 = µ1 and its opposite.
The likelihood ratio Λ is then used as the criteria to identify
the differentially expressed genes. A p-value can be derived
using the fact that −2 log Λ asymptotically converges to a
χ2 distribution.

2.3.2 ROC Analysis
A classifier is built on each gene alone to classify two groups
of cells. The area under the curve (AUC) of the ROC for
the classifier is used as the metric. An AUC close to 0 or 1
suggests a perfect separation, while a value of 0.5 implies
a perfect mixture. The predicted “power” is defined as
2|AUC − 0.5| ∈ [0, 1], where higher is better. A p-value
is not available for this method.

2.3.3 Student’s t-Test
The distribution of the expression of a gene in both groups
are assumed to follow normal distributions with unknown
variances. Differentially expressed genes and their p-values
are identified by Student’s t-test.

2.3.4 Negative Binomial Test and Poisson Test
A negative binomial or Poisson generalized linear model
(GLM) is used to identify the differentially expressed genes.
Covariates may be added to account for the batches. The
distribution of the coefficient accounting for two groups
asymptotically converges to a t-distribution and a p-value
can be derived.

2.3.5 Logistic Regression
Similar to ROC analysis, a logistic regression classifier is
built on each gene. A likelihood ratio test is used to calculate
the p-values.

2.3.6 MAST
MAST [15] is a method specifically designed for scRNA-
seq data. It models the log-transformed expression. Similar
to the likelihood ratio test, MAST models the number of
expressed cells and the expression in the expressed cells
separately. A logistic regression model and a Gaussian linear
model are used, respectively. The cell detection ratio (CDR),
i.e., the proportion of genes expressed in a cell, is added as a
covariates to account for nuisance effects in single-cell data.
Other covariates may also be manually added.

2.3.7 DESeq2
DESeq2 is based on a negative binomial GLM, with more
detailed modeling to address large dynamic range, outliers,
etc. The p-value is derived using the Wald test.

2.3.8 SigEMD
SigEMD [20] combines a data imputation approach, a logis-
tic regression model, and a nonparametric method based on
the Earth Mover’s Distance. It can also use gene interaction
network information to reduce false positives.

2.3.9 DEsingle
To model single-cell data, DEsingle [21] uses a zero-inflated
negative binomial distribution to find genes with a sig-
nificant change in the proportion of drop outs, expression
levels, or both. Batch effect is not modeled.

2.3.10 Accounting for Batch Effects
Poisson test, negative binomial test, MAST, and DESeq2
can account for batch effects using covariates. For MAST,
we one-hot encode the categorical batches as multiple real-
valued covariates, each corresponding to a batch (i.e., a
patient or an experiment).
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3 RESULTS

We implemented the Van Elteren test with the effect size in
R, available at our GitHub repository (https://github.com/
KChen-lab/stratified-tests-for-seurat), based on Seurat 3.0
by utilizing its differential expression analysis part (but
irrelevant to the data integration) [10]. When there are two
groups of cells, A and B, denoted as type, and patient
identity, denoted as batch, the Van Elteren Test can be
called as follows.

FindMarkers(x, ident.1 = ’A’, ident.2 = ’B’,
group.by = ’type’, latent.vars = ’batch’,
test.use = ’VE’, genre = ’locally-best’)

The genre may be set to either locally-best or
design-free, as introduced in section 2, based on which
p-values and effect sizes are calculated. Typical results are
shown in Table 2 and 3. An effect size of larger than 0.5
indicates a higher expression in cell type A, and vice versa.
The avg_logFC, average logarithmic fold changes, are
calculated automatically by Seurat, where a positive value
indicates a higher expression. It may show different trends
compared with the effect sizes. Generally, the effect sizes are
more indicative after controlling for the batch effect.

3.1 Illustrations
To show the utilities of Van Elteren test, we simulated a
illustrative dataset. The parameters are specified in Table
1. Poisson distribution is used to model sequencing depth.
Visualization is available in Fig. 2 for illustration. We assume
that the library size of each sample is equalized by other
genes beyond the simulated ones. For illustrative purpose
only, we applied Van Elteren test and Wilcoxon rank-sum
test for an intuitive comparison, as the former is a stratified
version of the latter. A more comprehensive comparison of
all the state-of-the-art methods on a more realistic dataset
is available in Section 3.2. The results are shown in Table
2 and 3. Trend (A over B) are indicated by arrows. For
Van Elteren test, the locally-best version and the design-free
version return very similar results.

TABLE 1
Rates for Poisson Distribution in Illustrative datasets

Patient Number 1 Number 2

Cell type A B A B

Cell amount 101 30 31 100

Gene1 9 10 8 9
Gene2 8 6 15 14
Gene3 3 3 5 5
Gene4 5 6 5 6

3.1.1 Suppressing False Negatives
Batch effect may introduce false negatives, where a signif-
icantly differentially expressed gene is overshadowed. For
gene 1, on which cell type B always have higher expression
on both patients, the Wilcoxon rank-sum test did not pass
the threshold of 0.05 to reject the null hypothesis, while
Van Elteren test yields a significant p-value. The effect size,

smaller than 0.5, also correctly suggests that the expression
of gene 1 in cell type B is higher than that in cell type A,
compared with the average logarithmic fold change, which
wrongfully indicates otherwise.
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Fig. 2. The illustrative dataset. Two shades correspond to two cell types
(dark: cell type A; light: cell type B). For each gene, the left panel is
stratified by patients and the right panel shows aggregated distribution.

3.1.2 Suppressing Reversed Conclusions
Batch effect may also lead to reversed conclusion (i.e., which
cell type has higher expression). For gene 2, on which cell
type A always have higher expression value, both tests reject
the null hypothesis. However, the effect size of Van Elteren
test, larger than 0.5, correctly identifies that the expression
of gene 2 in cell type A is higher than that in cell type
B, while the average logarithmic fold change wrongfully
indicates otherwise.

TABLE 2
P-values on the Illustrative Dataset

Van Elteren

Wilcoxon locally-best design-free

Gene1 6.336E-02 3.119E-03 3.109E-03
Gene2 3.700E-08 8.469E-03 8.193E-03
Gene3 5.770E-05 7.831E-01 7.905E-01
Gene4 2.465E-03 2.245E-03 2.416E-03

TABLE 3
Effect Sizes on the Illustrative Dataset

Van Elteren

log fold locally-best design-free

Gene1 0.673 ↑ 0.375 ↓ 0.375 ↓
Gene2 -1.182 ↓ 0.611 ↑ 0.611 ↑
Gene3 -3.664 ↓ 0.488 ↓ 0.489 ↓
Gene4 -0.817 ↓ 0.373 ↓ 0.372 ↓

3.1.3 Suppressing False Positives
False discoveries are also possible outcome of batch effect.
As is shown in gene 3, the distribution of both cell types are
exactly the same in each patient. Nevertheless, Wilcoxon test
yields a very significant p-value. The average logarithmic
fold change also has a large magnitude. Van Elteren test
returns a p-value of 0.7831, together with a effect size close
to 0.5, suggesting that the difference is neither significant
nor large.
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3.1.4 Consistency
As a negative control, when the three issues above are not
present, p-value from Van Eleteren test is consistent with
Wilcoxon rank-sum test, as is shown by gene 4. The effect
size and the log fold change also both show that the cell
type B has higher expression in gene 4.

3.2 Simulation Study

To evaluate the performance of differential analysis meth-
ods, we simulated scRNA-seq datasets using Splatter [22].
The expression of each gene in each cell follows a Poisson–
gamma mixture (i.e., negative binomial distribution), whose
parameters follow a hierarchical model which characterizes
the library size for each cell using a log-normal distri-
bution, and the expression level of a gene using another
gamma distribution. In addition, outlier genes are chosen
by a Bernoulli distribution and scaled by a log-normal
distribution, and a mean-variance trend in the expression
is enforced by simulated Biological Coefficient of Variation.
Using the R package of Splatter, 1,000 genes were simulated
for six samples, each containing 100, 200, 300, 400, 500,
and 600 cells. The split of two cell types is 3:7. Genes are
randomly (p = 0.1) designated as differentially expressed
and multiplied by a factor following a log-normal distribu-
tion (σ = 0.4, µ as specified below). For other parameters,
we used default values except for batch.facLoc=2.0,
batch.facScale = 0.8, and bcv.common = 0.5. The
genes that are expected to be differentially expressed was
identified using the simulated parameters and served as the
ground truth for our assessment.

We compared Van Elteren test with all state-of-the-
art differential expression analysis methods that interface
with Seurat, i.e., Wilcoxon Rank Sum test, log likelihood
test, ROC Analysis, Student’s t-test, Negative Binomial test,
Poisson Test, Logistic Regression, MAST, and DESeq2. We
used raw data whenever possible, as suggested by Luecken
and Theis [13], except for MAST, which runs only on log-
transformed normalized data. Batch information were input
for Van Elteren test, Linear Regression test, Negative Bino-
mial test, Poisson test, and MAST, which have the ability to
account for batch effects.

We used the receiver operating curve (ROC) for each test
to compare the methods intuitively. Formally, the ROC is the
trace of false positive rate (FPR) and true positive rate (TPR)
for selecting different numbers of top genes ordered by their
p-values (or power for ROC Analysis). The area under curve
(AUC) of the ROC was used as a quantitative metric. A good
statistical test would achieve a high true positive ratio at a
low false positive ratio, and thus have a greater AUC.

One example (µ of the log-normal distribution for DEG
was set to 0.1) is shown in Fig. 3. Van Elteren test is clearly
better than all methods not accounting for the batch effect
(dashed lines). By a smaller margin, Van Elteren test also
achieves greater AUC (0.860) than MAST (0.841), negative
binomial (0.839), logistic regression test (0.833), and Poisson
test (0.763), where the batch effects are accounted for as
covariates. It is notable that tests uses covariates or strat-
ification generally performs better than those that do not,
showing the importance of accounting for such factors when
analyzing dataset with batch effects. An exception is Poisson
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Fig. 3. ROC curve of tested methods. Solid lines are for stratified tests or
test with covariates (labeled by “+” symbol in the legends), while dashed
lines are for the others. Methods are split into two panels for visual clarity.

test, because the dataset largely deviates from the Poisson
distribution. Nevertheless, Poisson test with covariates still
performs better than its counterpart without covariates.
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Fig. 4. AUC of tested methods in n = 10 randomly simulated datasets.
The median (center lines), interquartile range (hinges), 1.5 interquartile
range (whiskers), and corresponding data points (dots) are shown. “µ”
is the location parameter of the log-normal distribution for DEG.

To confirm the observation, we used µ = 0.1, 0.3, and
0.5 to repeat the experiment. Results summarized in Fig. 4
consolidate that tests uses covariates or stratification gener-
ally performs better. With the batch effects addressed, the
accuracy of Van Elteren test, linear regression test, negative
binomial test, and MAST are largely comparable. Van El-
teren test performs slightly better in terms of median/mean
AUC with a smaller variance. The performances of all
methods improve when the effect size (which corresponds
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to µ) is larger, while the contrasts of the methods remain
unchanged. It should be noted that gamma–Poisson mixture
is a major part of Splatter, which naturally favors negative
binomial test and MAST. In reality, patterns of gene expres-
sion are highly variable. The performance of parametric
methods will decrease significantly, like the Poisson test,
when the model does not fit. The nonparametric Van Elteren
test is more versatile to different distributions.

3.3 Retina Data
We have tested the Van Elteren test on real retina single-
cell RNA sequencing data gathered from three patients [23].
Two regions, macula (i.e., the center area) and peripheral,
are labeled in the data of 5,873 cells × 10,713 genes. Cell
types was annotated using unbiased clustering and marker
genes in the original publication. We question which genes
differentially express for the same cell type between two
regions. We ran Wilcoxon rank-sum test and Van Elteren
test on 2,295 rod cells and 203 cone cells. Original counts
(accessed by GEO series number GSE133707) were used
for both methods. We compare the results in Fig. 5, where
genes with large differences in p-values between two tests
are labeled with gene names.
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Fig. 5. Comparison of p-values returned from Wilcoxon rank-sum test
and Van Eletern test on (a) rod cells and (b) cone cells. Each dot is a
gene, whose p-value from Wilcoxon rank-sum test and Van Elteren test
are shown by its x-coordinate and y-coordinate, respectively. Genes with
largely changed p-values (102 for rod cells and 101 for cone cells) are
labeled with gene names.

3.3.1 Rod Cells
The results of two tests are largely comparable, showing a
diagonal pattern. Meanwhile, some exceptions are present
(see Table 4 for the p-values and effect sizes), among which
we observed that p-values for gene GNGT1 and SYNE2
change the most.

For GNGT1, the reversed conclusion effect is also ob-
served, as the Van Elteren f effect size suggests that the
peripheral region has a higher expression, while the log
fold change indicates otherwise. We further inspected the
distributions to validate and interpret the differences. In Fig.
6A, the left panel does show generally higher expression
of GNGT1 in each individual patient, while the aggregated
distribution on the right shows a reversed effect, which is
an instance of the aforementioned Simpson’s paradox. For
SYNE2 (Fig. 6B), conspicuous discrepancy among batches

TABLE 4
Gene with large p-value chagne in rod cells

P-value Effect size

Wilcoxon Van Elteren diff. log fold f

GNGT1 1.694E-10 1.229E-13 3.14 89.679 ↑ 0.390 ↓
SYNE2 1.451E-09 6.654E-12 2.34 -48.321 ↓ 0.400 ↓
TUBA1B 9.317E-17 5.521E-19 2.23 233.992 ↑ 0.631 ↑
UCHL1 9.044E-21 6.300E-23 2.16 243.679 ↑ 0.639 ↑
NTM 1.116E-07 8.324E-10 2.13 3.679 ↑ 0.410 ↓
AHNAK2 4.179E-24 3.140E-26 2.12 178.679 ↑ 0.644 ↑
SNAR-E 1.991E-04 1.664E-06 2.08 Inf ↑ 0.431 ↓
TJP2 3.650E-09 3.358E-11 2.04 75.678 ↑ 0.411 ↓

is also shown, which leads to a less precise rank-sum test
result. Indeed, these two genes were found playing roles in
macular degeneration diseases [24], [25].
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Fig. 6. Distribution of counts of (a)(b) GNGT1 and (c)(d) SYNE2 in
rod cells. Left panels are stratified by patients and right panels show
aggregated distributions.

3.3.2 Cone Cells
For cone cells, the results are similar. Some genes show
changes while most genes are consistent across the tests.
The p-values and effect sizes are shown in Table 5.

TABLE 5
Gene with large p-value change in cone cells

P-value Effect size

Wilcoxon Van Elteren diff. log fold f

PCBP4 1.734E-02 1.285E-03 1.13 5.397 ↑ 0.335 ↓

For gene PCBP4, Van Elteren test shows more significant
p-value, and an effect size indicating smaller expression
in macula, which is different from the log fold change.
Decrease in PCBP4 has also been linked with age-related
macular degeneration [26]. Fig. 7 shows that batch effect in
distribution of PCBP4 may have misled the rank-sum test
and the logarithmic fold change.

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2021. ; https://doi.org/10.1101/2021.06.08.447617doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.08.447617
http://creativecommons.org/licenses/by/4.0/


AUTHOR MANUSCRIPT 7

0

10

20

30

40

Patient 1 Patient 2 Patient 3
Patient

P
C

B
P

4 Region

Macula

Peripheral

0

10

20

30

40

Macula Peripheral
Region

P
C

B
P

4 Region

Macula

Peripheral

Fig. 7. Distribution of counts of PCBP4 in rod cells. The left panel is
stratified by patients and the right panel shows aggregated distributions.

4 DISCUSSION

The results have clearly shown that Van Elteren test benefits
biological studies in precisely identifying differentially ex-
pressed genes. Although the results we show do not include
multiple comparison correction, Seurat 3.0 will automati-
cally give corrected p-value based on the raw p-value using
Bonferroni correction. Generally, any correction based on p-
values will also apply.

Our simulation study shows that Van Elteren test is one
of the best performing methods among the most widely
used state-of-the-art methods. It should be noted that due
to no free lunch theorem, the performance of a method
depends on the degree of match of the data and the model.
Being a nonparametric test, Van Elteren test does not assume
a specific distribution and thus suits the exploratory analysis
of a dataset, where the distribution of the gene expression
varies. This is especially valuable for scRNA-seq data anal-
yses as it is cumbersome to check the distribution pattern of
thousands of genes.

The result also indicates that stratified test is a neat
way to handle batch effect. Although covariate has the
ability to control for explanatory variables, it is generally
more suitable for continuous variables. It also casts more
assumptions when modeling covariate. Stratified test, on
the other hand, does not infer the influence of the discrete
batches. Rather, it directly aggregates the statistical power
of multiple samples.

We also show that the weighted common language effect
size, a byproduct of Van Elteren test, reflects the difference
of gene expression more faithfully. It can be used with Van
Elteren test or other tests, to support a more comprehensive
understanding of the data.

Admittedly, for the rod cells in the retinal data, although
changes in p-values are observed, the significance threshold
was well passed by both. However, it should be noted
that the retina data are collected from relatively healthy
tissues and are considered clean, while Van Elteren test is
expected to make a more meaningful difference on noisy
pathological and tumor data. In addition, rod cell is the most
populous cell in retina. For rare cell types that take smaller
proportions, like the cone cells, the difference Van Elteren
test makes can be crucial.

Overall, Van Elteren test and our modified common lan-
guage effect size are direct extensions of the Wilcoxon rank-
sum test and common language effect size. As nonparamet-
ric methods, they perform well in various scenarios, with or
without obvious batch effect. A caveat of the stratified test
is that for it to work the strata shall not overlap with the
variable of interest. For instance, it may not find the differ-

ence, meanwhile also control for the batch effect, between
two patients. Nonetheless, neither is covariate applicable
to such cases. As the batch effect and biological effect are
convoluted, more prior knowledge is generally needed to
distinguish them. Another limitation is that it does not
detect interaction effects between variables, which may
need more complex nonparametric tests such as Aligned
Rank Transform [27]. Besides, when the distribution can be
reasonably assumed, such as a normal distribution where
the central limit theorem apply, a corresponding parametric
test may offer a higher power.

5 SUMMARY

We have adopted Van Elteren test, an underappreciated
statistical test, and our weighted common language effect
size to single-cell sequencing data. When batch effect is
severe, the test control for false positives and false negatives.
Otherwise, it is consistent with Wilcoxon rank-sum test.
Simulation study show that Van Elteren test achieves the
state of the art. The modified common language effect size
also faithfully depicts the trends. This work may increase the
precision of differential expression analysis to help identify
genes of interests.
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