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Abstract 19 

Linkage disequilibrium and disease-associated variants in non-coding regions make it difficult to 20 

distinguish truly associated genes from redundantly associated genes for complex diseases. In this 21 

study, we proposed a new conditional gene-based framework called MCGA that leveraged an 22 

improved effective chi-squared statistic to control the type I error rates and remove the redundant 23 

associations. MCGA initially integrated two conventional strategies to map genetic variants to 24 

genes, i.e., mapping a variant to its physically nearby gene and mapping a variant to a gene if the 25 

variant is a gene-level expression quantitative trait locus (eQTL) of the gene. We further 26 

performed a simulation study and demonstrated that the isoform-level eQTL was more powerful 27 
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than the gene-level eQTL in the association analysis. Then the third strategy, i.e., mapping a 28 

variant to a gene if the variant is an isoform-level eQTL of the gene, was also integrated with 29 

MCGA. We applied MCGA to predict the potential susceptibility genes of schizophrenia and 30 

found that the potential susceptibility genes identified by MCGA were enriched with many 31 

neuronal or synaptic signaling-related terms in the Gene Ontology knowledgebase and 32 

antipsychotics-gene interaction terms in the drug-gene interaction database (DGIdb). More 33 

importantly, nine susceptibility genes were the target genes of multiple approved antipsychotics in 34 

DrugBank. Comparing the susceptibility genes identified by the above three strategies implied that 35 

strategy based on isoform-level eQTL could be an important supplement for the other two 36 

strategies and help predict more candidate susceptibility isoforms and genes for complex diseases 37 

in a multi-tissue context. 38 

 39 

Introduction 40 

Genome-wide association studies (GWASs) have been used to identify novel genotype-phenotype 41 

associations for more than a decade, and thousands of single-nucleotide polymorphisms (SNPs) 42 

have been revealed for their associations with hundreds if not thousands of complex human 43 

diseases
1,2

. Nevertheless, conventional GWAS analyses have limited power to produce a complete 44 

set of susceptibility variants of complex diseases
3
. Because most susceptibility SNPs only have 45 

small effects on a complex phenotype, conventional SNP-based association tests are generally 46 

underpowered to reveal susceptibility variants after multiple testing corrections. Moreover, the 47 

susceptibility variants scattering randomly throughout the genome are often in strong linkage 48 
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disequilibrium (LD) with numerous neutral SNPs, and makes the discrimination of truly causal 49 

variants from GWAS hits quite difficult
3
. Finally, more than 90% of the disease-associated 50 

variants are in non-coding regions of the genome, and many of them are far from the nearest 51 

known gene, and it remains a challenge to link genes and a complex phenotype through the 52 

non-coding variants 
4,5

. Accordingly, corresponding methodological strategies have been proposed 53 

to make up, at least in part, for the issues mentioned above. 54 

 55 

First, gene-based approaches can reduce the multiple testing burden by considering the association 56 

between a phenotype and all variants within a gene
6
. Assigning a variant to a gene according to the 57 

physical position of the variant from gene boundary is one of the most popular strategies for 58 

gene-based approaches. For example, MAGMA (Multi-marker Analysis of GenoMic Annotation), 59 

one of the most popular gene-based approaches, uses a multiple regression approach to 60 

incorporate LD between markers and detect multi-markers effects to perform gene-based analysis
7
. 61 

VEGAS, a versatile gene-based test for GWAS, incorporates information from a full set of 62 

markers (or a defined subset) within a gene and accounts for LD between markers by simulations 63 

from the multivariate normal distribution
8
. GATES, a rapid gene-based association test that uses 64 

an extended Simes procedure to assess the statistical significance of gene-level associations 
9
. 65 

 66 

Second, evaluating associations at one gene conditioning on other genes can isolate true 67 

susceptibility genes from non-susceptibility genes
10. Yang et al. proposed an approximate 68 

conditional and joint association analysis based on linear regression analysis for estimating the 69 

individual causal variant with GWAS summary statistics
11

. Our previously proposed conditional 70 
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gene-based association approach based on effective chi-squared statistics (ECS) could remove 71 

redundantly associated genes based on the GWAS p-values of variants. The comparison of ECS 72 

with MAGMA and VEGAS suggested that ECS might be more powerful to predict biologically 73 

sensible susceptibility genes 
10

. 74 

 75 

Third, the observation that variants in the non-coding regions were enriched in the transcriptional 76 

regulatory regions implied that these variants might affect the disease risk by altering the genetic 77 

regulation of target genes
2
. Integration of expression quantitative trait loci (eQTL) studies and 78 

GWAS has been used to investigate the genetic regulatory effects on complex diseases. As many 79 

complex diseases manifested themselves in certain tissues, using the eQTLs of potentially 80 

phenotype-associated tissues might help identify the true susceptibility genes in tissue context
12

. 81 

Based on MAGMA, a method called eMAGMA, which integrated genetic and transcriptomic 82 

information (e.g., eQTLs) in a tissue-specific analysis to identify risk genes, was proposed to 83 

identify novel genes underlying major depression disorder
13

. S-PrediXcan was developed for 84 

imputing the genetically regulated gene expression component based on GWAS summary 85 

statistics and transcriptome prediction models built from the eQTL/sQTL dataset of the Genotype 86 

Tissue Expression (GTEx) project
14

. Researchers have applied S-PrediXcan to study genetic 87 

mechanisms of multiple complex traits 
15-17

. In contrast to the considerable research focusing on 88 

integrating gene-level eQTLs with GWAS summary statistics, little attention has been paid to 89 

integrating isoform-level expression QTLs (isoform-level eQTLs) with GWAS summary statistics. 90 

Michael J. Ganda et al. estimated the candidate risk genes of three psychiatric disorders based on 91 

GWAS summary statistics and isoform-level expression profiles. They emphasized the importance 92 
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of isoform-level gene regulatory mechanisms in defining cell type and disease specificity
18

, and 93 

similar analyses and conclusions were generated for Alzheimer’s disease
19

. 94 

 95 

Though much achievement has been attained, identifying independently phenotype-associated 96 

genes with high reliability remains challenging, especially for complex diseases. In the present 97 

study, we aimed to build a more powerful conditional gene-based framework based on a new ECS 98 

and investigate whether QTLs in phenotype-associated tissues, especially the isoform-level eQTLs, 99 

can predict more susceptibility genes or not. The main assumption of our study is that 100 

isoform-level eQTLs may reflect the more real variant-expression regulatory relationship than 101 

gene-level eQTLs, and using isoform-level eQTLs can help predict novel susceptibility genes and 102 

isoforms that cannot be found by the conventional gene-based approaches and gene-level eQTLs 103 

strategy. The formation procedure of the assumption is this: gene-level eQTLs are predicted based 104 

on gene-level expression profiles and corresponding genotype data. In contrast, isoform-level 105 

eQTLs are predicted based on isoform-level (or transcript-level) expression profiles and 106 

corresponding genotype data. The gene-level expression profiles are computed by averaging the 107 

expression of multiple isoforms belonging to the gene, which may omit the expression 108 

heterogeneity among these isoforms and neutralize the opposite effects and lower the power of 109 

gene-level eQTLs. Taken together, conventional gene-based approaches mainly focus on variants 110 

close to genes boundary (say +/-5kilo base pairs), thus omit remote but important association 111 

relationship between genes and variants. In the present study, we expanded the application scope 112 

of conventional gene-based approaches by using gene-level eQTLs and isoform-level eQTLs in 113 

the potentially phenotype-associated tissues to identify more candidate susceptibility genes and 114 
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isoforms. 115 

 116 

Results 117 

Overview of the Multi-strategy Conditional Gene-based Association (MCGA) framework 118 

Our previously powerful and unified framework, DESE, proposed to estimate the potentially 119 

phenotype-associated tissues of complex diseases, could iteratively run the conditional gene-based 120 

association analysis with the selective expression score of genes among multiple tissues
20

. We had 121 

demonstrated in DESE that the iterative operations with the selective expression analysis based on 122 

expression profiles could strengthen the power of conditional gene-based analysis. In this study, 123 

we proposed a new conditional gene-based framework, MCGA, which could also iteratively run 124 

conditional gene-based association analysis with selective expression analysis, to systematically 125 

explore the susceptibility genes associated with a complex phenotype using GWAS summary 126 

statistics and eQTL summary statistics of SNPs. MCGA has two main advantages over DESE. 127 

First, MCGA is based on a new effective chi-squared statistic (ECS), with which the type I error 128 

could be controlled within a proper level. Second, MCGA can perform conditional gene-based 129 

association analysis using different SNPs sets, i.e., physically nearby SNPs, gene-level eQTLs and 130 

isoform-level eQTLs. 131 

 132 

To evaluate the performance of MCGA, we performed extensive simulations and a real data 133 

application to schizophrenia. Specifically, we organized the present study in four sequential parts 134 

that cover the optimizing the exponent of chi-squared statistics to control type I error rates, 135 
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applying the improved chi-squared statistics to perform conditional gene-based association 136 

analysis in simulation data, applying the improved conditional gene-based association analysis to 137 

predict the potential susceptibility genes of schizophrenia, and finally extending the application by 138 

using gene-level eQTLs and isoform-level eQTLs. Three strategies were implemented in three 139 

conditional gene-based models, respectively. The model assigning a SNP to a gene according to 140 

the physical distance of the SNP from the gene boundary is named MCGA_Dist. The model using 141 

gene-level eQTLs is named MCGA_eQTL. The model using isoform-level eQTLs is named 142 

MCGA_isoQTL (Figure 1). All three models of MCGA have been implemented in our integrative 143 

platform KGGSEE. 144 
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 145 

Figure 1: The simplified principle of the present study. First, choose the best exponent c 146 

between 1 and 2. Each time we increased c by an interval of 0.01. The best c can control the type I 147 

error within a proper level. Then we implemented the best c to improve the previous ECS 148 

approach and got the improved conditional gene-based approach. Third, the mapping strategies 149 

used by three conditional gene-based association models of MCGA. 5kb: 5000 base pairs. 1Mb: 150 

10
6
 base pairs. TSS: Transcription Start Site. 151 

 152 

Our simulation results showed that the type I error rate was controlled within a reasonable level by 153 

using the new effective chi-squared statistics (ECS) with the favorable exponent. Another 154 

simulation study pointed out that association analysis based on isoform-level eQTLs was more 155 

powerful than gene-level eQTLs. As for predicting the potential susceptibility genes of 156 
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schizophrenia, MCGA_Dist, MCGA_eQTL and MCGA_isoQTL all produced a set of potentially 157 

susceptible and druggable genes. Moreover, with the help of MCGA_isoQTL, we also predicted 158 

the potential susceptibility isoforms (or transcripts) for schizophrenia. Our results also showed that 159 

the usage of isoform-level eQTLs could predict some important susceptible and druggable genes 160 

which cannot be found by MCGA_Dist and MCGA_eQTL. 161 

 162 

The favorable exponent c in the correlation matrix of chi-squared statistics to control the 163 

type I error rates 164 

We found that the exponent c in the correlation matrix of chi-squared statistics could determine the 165 

divergence of the p-values of the ECS tests from the uniform distribution (see details in Formula 166 

(1) of Methods). Small c led to a p-value larger than expected, indicating the deflated type I error 167 

rate. Large c led to a p-value smaller than expected, indicating an inflated type I error rate. As 168 

shown in Figure 2, the c=1.0 led to deflated p-values while the c=2.0 led to inflated p-values in 169 

the upper tail of the Q-Q plot against the uniform distribution. This pattern was independent of 170 

sample sizes, variant sizes and phenotype distribution (binary or continuous) (Figure 2). The 171 

stable trend determined by the c value also implied that the favorable c, which could properly 172 

control the type I error rate, measured by the minimal mean log fold change (MLFC), must be 173 

within sections 1 and 2. Our theoretical derivation also demonstrated c value should be within 174 

section 1 and 2 (see details in the Materials and Methods). Moreover, it seemed given the c value, 175 

the distributions of p-values were similar at different sample sizes and phenotype distributions. As 176 

shown in the Q-Q plot (Figure 3), most majority p-values at the sample size 10,000 and 40,000 of 177 
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binary or continuous phenotypes were overlapped. Figure 3 showed the favorable c obtained by 178 

the grid search algorithm at 84 different scenarios. Again, the favorable c values were 179 

approximately independent of trait types, sample sizes and variant sizes. For the sake of simplicity, 180 

we proposed to use the averaged favorable c values, 1.432, for all the analyses in the present 181 

study. 182 

 183 

 184 

Figure 2: Q-Q plots of the p-value of the ECS test under null hypothesis based on two 185 

extreme exponents (i.e., 1 and 2). a), b), and c) represent the variant size of 50, 100 and 500, 186 

respectively. 187 

 188 

 189 

Figure 3: The boxplot of favorable c values at different simulation scenarios. a) at binary and 190 

continuous phenotypes; b) at different sample sizes; c) at different variant sizes. 191 

 192 
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The type I error and power of the conditional gene-based association analysis based on the 193 

new chi-squared statistics 194 

Further, we investigated the type I error and power of the conditional gene-based association 195 

analysis based on the improved ECS with the above favorable exponent c value (i.e., 1.432). The 196 

basic function of the conditional gene-based test based on the improved ECS is to remove 197 

redundant associations among associated genes. As shown in Figure 4, in six different scenarios 198 

(see details in Materials and Methods), the conditional p-values of the genes without truly casual 199 

loci approximately followed the uniform distribution U[0,1] regardless of the variance explained 200 

by its nearby genes. The distribution of conditional p-value was similar to that produced by the 201 

conventional likelihood ratio test for nested linear regression models. These results suggested that 202 

the conditional gene-based association analysis based on the improved ECS could produce valid 203 

p-values for statistical inference. In contrast, the unconditional association test produced an 204 

inflated p-value due to the indirect associations produced by nearby causal genes in the LD block. 205 

Concerning the statistical power, we found conditional gene-based association analysis based on 206 

the improved ECS produced smaller p-values than the likelihood ratio test (Figure 5), suggesting 207 

a higher statistical power of the former. Another advantage of conditional gene-based association 208 

analysis based on the improved ECS over the likelihood ratio test was that the former did not 209 

require individual genotypes. The reason might be that the degree of freedom in the latter was 210 

inflated by the LD among variants. Hereinafter we named the conditional gene-based association 211 

analysis based on the improved ECS with favorable exponent c value as MCGA. 212 

 213 
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 214 

Figure 4: Q-Q plot of the conditional, unconditional gene-based association test and 215 

likelihood-ratio test under the null hypothesis. a) and d): two gene-variant pairs with similar 216 

variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two 217 

gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1 218 

with 41 variants and RAVER2 with 8 variants). c) and f): two gene-variant pairs with different 219 

variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with 220 

48 variants). a), b) and c): the former gene has no QTL, and QTL in the latter gene explained 0.5% 221 

of heritability. d), e) and f): the former gene has no QTL, and QTL in the latter gene explained 1% 222 

of heritability. Ten thousand phenotype datasets were simulated for each scenario. Unconditional 223 

Eff. Chi. (the red) represents unconditional association analysis at the former gene by the 224 

improved ECS. Conditional Eff. Chi (the blue) represents conditional association analysis at the 225 

former gene conditioning on the latter gene by the improved ECS. The likelihood ratio test (the 226 

yellow) was conducted based on nested linear regression models. 227 

 228 
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 229 

Figure 5: Q-Q plot of the conditional gene-based association test and likelihood-ratio test at 230 

different representative gene-variant pairs. a) and d): two gene-variant pairs with similar 231 

variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two 232 

gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1 233 

with 41 variants and RAVER2 with 8 variants). c) and f): two gene-variant pairs with different 234 

variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with 235 

48 variants). a)-c): the QTL in either gene explained 0.25% of heritability. d)-f): the QTL in either 236 

gene explained 0.5% of heritability. 1000 phenotype datasets were simulated for each scenario. 237 

Conditional Eff. Chi.: conditional association analysis at the former gene conditioning on the latter 238 

gene by the improved ECS. Likelihood Ratio Test: likelihood ratio test in which the full model 239 

included QTLs of both genes and the nested model included QTL of the latter gene. 240 

 241 

Application of MCGA to predict the potential susceptibility genes for schizophrenia 242 

(MCGA_Dist)  243 

In the above simulation study, we demonstrated that the conditional gene-based analysis based on 244 

the improved ECS was more powerful than the likelihood ratio test in each simulation scenario. 245 

Here to further evaluate the performance of MCGA in the real-world data, we used a recent 246 
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large-scale GWAS summary statistics dataset
20

 and gene expression profiles (GTEx v8) of ~ 50 247 

human tissues
21

 to identify the susceptibility genes of schizophrenia. Here, MCGA_Dist was first 248 

used, i.e., the variants were assigned to genes if the variants were in the window of +/-5kb around 249 

the gene boundary (see details in Materials and Methods). We found that 221 of 34,159 genes 250 

identified by MCGA_Dist had significantly statistical p-values smaller than 2.5E-6 (see details in 251 

Table S1). 252 

 253 

To further study the functional annotations of the 221 potential susceptibility genes, we performed 254 

Gene Ontology (GO) enrichment analysis. Interestingly, we found that most GO:BP and GO:CC 255 

enrichment terms were neuronal-, dendrite- or synaptic signaling-related terms. Besides, the 256 

GO:MF enrichment terms were all about cellular signaling transduction (see examples in Figure 6 257 

and see details in Table S2). Systematic text-mining method was used to search the PubMed 258 

database to find papers that had reported the potential susceptibility genes of schizophrenia. The 259 

results showed that 87 of the 221 (~ 39.4%) potential susceptibility genes had at least one search 260 

hit (see details in Table S3). The GO enrichment analysis and the text-mining results both implied 261 

the utility of MCGA_Dist. 262 

 263 
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 264 

Figure 6: GO Functional annotations of the potential susceptibility genes of schizophrenia 265 

identified by MCGA_Dist. MF: Molecular Function of GO. BP: Biological Process terms of GO. 266 

CC: Cellular Component terms of GO. The X-axis represents the top 10 significant GO 267 

enrichment terms (in MF, BP and CC). The Y-axis represents the negative log10 of the adjusted 268 

p-value.  269 

 270 

Evaluate the power of gene-level eQTLs and isoform-level eQTLs in association analysis by 271 

the simulation study 272 

A common assumption is that genes close to significant variants are more likely to be the 273 

susceptibility genes, but the reality is that some potentially associated genes are not closest to the 274 

significant variants
16

. Molecular Quantitative Trait Loci (molQTL) is a genetic variant associated 275 

with a molecular trait, such as a gene-level eQTL and isoform-level eQTL, and can associate a 276 
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variant with a gene or isoform. MCGA_Dist mapped a variant to a gene if the variant was in the 277 

+/-5kb window around the gene boundary. Next, we assigned a variant to a gene (or isoform) if 278 

the variant is a gene-level or isoform-level eQTL to broaden the application of MCGA. Since the 279 

isoform-level and corresponding gene-level expression profiles were quantified based on the same 280 

RNA-sequencing data, we wanted to test whether the power of association analysis based on the 281 

gene-level eQTLs was higher than that based on isoform-level eQTLs or not. We first performed a 282 

simulation study to evaluate the power of association analysis based on gene-level eQTLs and 283 

isoform-level eQTLs, respectively. 284 

 285 

We considered the simplest case for simplicity, i.e., variants affected phenotype only through 286 

regulating the gene expression. We simulated genotype data, isoform-level expression profiles and 287 

corresponding phenotype data (see details in Materials and Methods). Specifically, we simulated 288 

four scenarios, i.e., association analysis using all variants (phenotype-associated isoform-level 289 

eQTLs and the other isoform-level eQTLs, denoted as Allvar in Table 1), association analysis 290 

only using phenotype-associated isoform-level eQTLs (denoted as isoform eQTL in Table 1), 291 

association analysis using gene-level eQTLs which were computed by the gene expression profiles 292 

derived by the average value of multiple isoforms belonging to the gene. As for scenarios of genes 293 

with multiple isoforms, we specifically simulated two new scenarios (denoted as eQTL_3isoform 294 

and eQTL_6isoform in Table 1), i.e., a gene with three (eQTL_3isoform) and six different 295 

isoforms (eQTL_6isoform). The expression value of the gene with three isoforms was averaged by 296 

the following three isoforms, i.e., one isoform associated with phenotype and the other two 297 

random isoforms simulated by the standard normal distribution N(0,1). The expression value of 298 
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the gene with six isoforms was averaged by the following six isoforms, i.e., one isoform 299 

associated with phenotype and the other five random isoforms simulated by the standard normal 300 

distribution N(0,1) (see details in Materials and Methods). Based on the four scenarios 301 

mentioned above, we used six different parameter combinations to simulate six different cases, 302 

and each parameter combination was simulated 100 times to evaluate the statistical power. As 303 

shown in Table 1, the power of the association test based on phenotype-associated isoform-level 304 

eQTLs was the highest of all cases. The simulation results implied that isoform-level eQTLs were 305 

more powerful than gene-level eQTLs in association analysis. 306 

 307 

Table 1: Different simulation scenarios and corresponding power in association analysis. 308 

Parameter combination Power 

Ev
a
 Eg AllVar isoform eQTL eQTL_3isoform eQTL_6isoform 

0 0.1 0 0.01 0 0.01 

0.1 0.1 0.03 0.05 0.02 0.01 

0.15 0.1 0.03 0.25 0.04 0.02 

0.05 0.2 0.26 0.39 0.06 0.01 

0.1 0.2 0.13 0.22 0.02 0.03 

0.15 0.2 0.68 0.96 0.45 0.11 

a
 Ev denotes the effect size of independent variants on gene expression. Eg denotes the effect size 309 

of gene expression on phenotype. More details can be seen in Methods. 310 

 311 

Broaden the application of MCGA by using gene-level eQTLs and isoform-level eQTLs 312 

(MCGA_eQTL and MCGA_isoQTL) 313 

In the previous simulation study, we demonstrated that association analysis based on isoform-level 314 

eQTLs was more powerful than gene-level eQTLs in each simulation scenario. To further test this 315 

conclusion in real data and identify more potential susceptibility genes for schizophrenia, we first 316 
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adopted the prioritized phenotype-associated tissues of schizophrenia by DESE
22

 , a model to 317 

predict potentially phenotype-associated tissues based on gene selective expression analysis. The 318 

DESE results showed that all thirteen brain tissues were significantly associated with 319 

schizophrenia and ranked the top (Figure 7a). For the sake of simplicity, we then computed 320 

gene-level eQTLs of the top-five tissues based on gene-level expression profiles and isoform-level 321 

eQTLs of the top-five tissues based on transcript-level expression profiles, respectively. 322 

Hereinafter, the gene whose expression is associated with at least one SNP was denoted as eGene, 323 

and the gene with an isoform whose expression is associated with at least one SNP was denoted as 324 

sGene. Then we performed the improved conditional gene-based association analysis based on 325 

gene-level eQTLs and isoform-level eQTLs resulted from the corresponding tissues. In each of the 326 

top-five tissues, we found the number of potential susceptibility sGenes identified by 327 

MCGA_isoQTL was larger than that of potential susceptibility eGenes identified by 328 

MCGA_eQTL under the same filter cutoff 2.5E-6 (Figure 7b, see details in Table S4 and S5). 329 

Besides, we found a considerable number of common genes between the estimated eGenes set and 330 

sGenes set in each of the top-five tissues (Figure 7b). 331 

 332 

We also performed the GO enrichment analysis to further investigate the functional annotations of 333 

these potential susceptibility eGenes and sGenes. For the eGene set in each of the top-five 334 

associated tissues, we found only the eGenes identified based on the gene-level eQTLs of 335 

Brain-FrontalCortex (BA9) had GO enrichment terms (Figure 7c). For the sGene set in each of 336 

the top-five associated tissues, we found the potential susceptibility sGenes in 337 

Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus all 338 
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had different GO enrichment terms (Figure 7d). We further combined the potential susceptibility 339 

eGenes and sGenes of all top-five tissues, respectively. Then we performed GO enrichment 340 

analysis based on the combined eGene set and sGene set. We found that both the eGene set and 341 

sGene set were enriched with many neuronal-, dendrite- or synaptic signaling-related GO terms 342 

(see details in Table S6). Then we searched the PubMed database with the combined eGene set 343 

(578 unique genes) and sGene set (696 unique genes), and found 133 of the 578 (~ 23.0%) and 344 

168 of the 696 (~ 24.1%) potential susceptibility genes estimated by MCGA_eQTL and 345 

MCGA_isoQTL had at least one search hit, respectively (see details in Table S7 and S8). The 346 

biologically sensible GO enrichment results and the PubMed search results both implied that the 347 

potential susceptibility sGenes and eGenes might have strong associations with schizophrenia. 348 

 349 

 350 

(a) 
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 351 

 352 

(b) 

(c) 
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 353 

Figure 7: Potentially associated tissues of schizophrenia and the characterization of potential 354 

susceptibility genes in corresponding tissues. a) The statistical significance of tissues estimated 355 

to be associated with schizophrenia. The X-axis denotes the tissue names. The Y-axis means the 356 

negative log10(p-value) of the Wilcoxon rank-sum test. b) The comparison of eGenes and sGenes 357 

in each of the top-five associated tissues. c) The GO enrichment terms of eGenes in Brain- 358 

FrontalCortex(BA9). BF: Brain-FrontalCortex(BA9). d) The GO enrichment terms of sGenes in 359 

Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus. BF: 360 

Brain-FrontalCortex(BA9). BAN: Brain-Anteriorcingulatecortex(BA24). BHI: 361 

Brain-Hippocampus. 362 

 363 

The advantages of MCGA_isoQTL versus MCGA_Dist and MCGA_eQTL 364 

The connectivity score of a gene in the weighted co-expression network might imply its real 365 

association with other genes, and highly connected genes are often defined as hub genes. These 366 

hub genes are located in or near the center of corresponding co-expression modules and might 367 

(d) 
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play important roles in trait development
23

. We built an unsigned weighted co-expression network 368 

for each top-five tissue and investigated the normalized intra-module connectivity of potential 369 

susceptibility genes in each co-expression module. We found that the normalized intra-module 370 

connectivity scores of potential susceptibility genes in Brain-FrontalCortex_BA9 and 371 

Brain-Nucleusaccumbens(basal ganglia) identified by MCGA_eQTL were significantly larger 372 

than that of non-susceptibility genes. Interestingly, the normalized intra-module connectivity 373 

scores of potential susceptibility genes identified by MCGA_isoQTL were significantly larger 374 

than that of non-susceptibility genes in all the top-five schizophrenia-associated tissues (Wilcoxon 375 

rank-sum test p<0.05) (Table 2).  376 

 377 

Table 2: Comparison of the normalized intra-module connectivity of potential susceptibility genes 378 

identified by MCGA_eQTL and MCGA_isoQTL. 379 

 380 

 

Tissue Name 

Susceptibility vs. 

non-susceptibility genes by 

MCGA_eQTL 

Susceptibility vs. 

non-susceptibility genes by 

MCGA_isoQTL 

 statistic p-value statistic p-value 

Brain-FrontalCor

tex(BA9) 

2.4374  0.0148  2.5426  0.0110  

Brain-Anteriorci

ngulatecortex(B

A24) 

1.4303  0.1526  4.0558  5.0000E-5  

Brain-Cortex 1.4173  0.1564  1.9946  0.0461  

Brain-Hippocam

pus 

1.8439  0.0652  2.6019  0.0093  

Brain-Nucleusac

cumbens(basalga

nglia) 

2.2587  0.0239  3.4861  0.0005  

 381 

We next compared the potential susceptibility genes predicted by MCGA_Dist, MCGA_eQTL and 382 

MCGA_isoQTL. As shown in Figure 8, twenty-three genes were collectively predicted to be 383 

susceptible to schizophrenia by the three models of MCGA. As MCGA_isoQTL could output 384 
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susceptibility gene-isoform pairs of corresponding tissues, we further got the corresponding 385 

susceptibility isoforms of twenty-three genes in corresponding tissues (see details in Table S9). 386 

Interestingly, we found that susceptibility isoforms for a gene varied greatly in different tissues. 387 

For example, ABCC8 and LINC01415 both had one susceptibility isoform in the top-five tissues. 388 

ENST00000529967 of ABCC8 was significantly associated with schizophrenia only in 389 

Brain-Hippocampus, while ENST00000587320 of LINC01415 was significantly associated with 390 

schizophrenia in Brain-Cortex, Brain-FrontalCortex(BA9) and Brain-Nucleusaccumbens(basal 391 

ganglia). We also found that different isoforms of the same gene were predicted to be significantly 392 

associated with schizophrenia in different tissues, such as ENST00000377600 of BTN2A1 393 

significantly associated with schizophrenia in Brain-Cortex and ENST00000312541 of BTN2A1 394 

significantly associated with schizophrenia in Brain-FrontalCortex(BA9). MCGA_isoQTL can 395 

help predict potential susceptibility genes and isoforms of corresponding phenotype-associated 396 

tissues at a more precise level. 397 

  398 
Figure 8: Comparison of the potential susceptibility genes predicted by MCGA_Dist, 399 

MCGA_eQTL and MCGA_isoQT. The venn plot was used to show the intersection genes and 400 
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unique genes among MCGA_Dist, MCGA_eQTL and MCGA_isoQTL. 401 

 402 

Except for the advantage of identifying the potential susceptibility isoforms, we found that some 403 

of the susceptibility genes exclusively predicted by MCGA_isoQTL were also biologically 404 

sensible. We found 478 susceptibility genes exclusively predicted by MCGA_isoQTL (Figure 8). 405 

We searched the PubMed database with these exclusive genes. The search results showed that 101 406 

of the 478 (21.1%) genes each had a least one search hit which reported the associations of these 407 

exclusive genes with schizophrenia. Moreover, 15 of the 478 (3.1%) exclusive genes each had at 408 

least ten different supported papers in PubMed. Interestingly, transcription factor 4, i.e., TCF4, 409 

was reported by 100 papers in the PubMed database. TCF4 is broadly expressed and may play an 410 

important role in nervous system development [provided by RefSeq, Jul 2016]. The important 411 

examples of biologically sensible genes exclusively identified by MCGA_isoQTL were listed in 412 

Table 3. 413 

 414 

Table 3: The important examples of potential susceptibility genes exclusively predicted by 415 

MCGA_isoQTL with at least ten search hits in PubMed. 416 

Unique sGene
b
 # of PubMed paper hits  

TCF4 100 

RANGAP1 100 

FUT2 97 

DRD1 63 

COPE 36 

NCAM1 20 

AS3MT 19 

FGFR1 18 

DPYSL2 17 

PCM1 16 

BRD1 15 

BDNF-AS 13 

GABRA2 

ADRA1A 

12 

11 
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PBRM1 10 

b
Unique sGene means potential susceptibility gene exclusively predicted by MCGA_isoQTL. 417 

 418 

Taken together, from the perspective of WGCNA, the statistical significance of the comparison 419 

between potential susceptibility genes and non-susceptibility genes implied that these 420 

susceptibility genes identified based on isoform-level eQTLs might play more important roles in 421 

the weighted gene co-expression network of corresponding tissues. Our results also suggested that 422 

incorporating with isoform-level eQTLs can help predict more potential susceptibility genes than 423 

gene-level eQTLs in each potentially phenotype-associated tissue. Our results pointed that 424 

MCGA_isoQTL could help find some novel and important susceptibility genes which cannot be 425 

found by MCGA_Dist and MCGA_eQTL. Moreover, based on the isoform-level eQTLs of each 426 

phenotype-associated tissue, the MCGA_isoQTL strategy can also predict the potential 427 

susceptibility isoforms in the corresponding tissues. 428 

 429 

The druggability of the potential susceptibility genes identified by MCGA 430 

Since drug target genes with genetic support are twice or as likely to be approved than target genes 431 

with no known genetic associations
24,25

, we searched the DrugBank 5.0 database
26

 and found that 432 

nine potential susceptibility genes identified by MCGA were the target genes of multiple 433 

FDA-approved antipsychotics (Table 4). Several most popular target genes of approved 434 

antipsychotics, i.e., DRD2, DRD1 and ADRA1A, were identified by different MCGA models and 435 

the results suggested that the three models could complement each other to identify more potential 436 

target genes. 437 
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 438 

Table 4: The potential susceptibility genes that are also the target genes of approved 439 

antipsychotics. 440 

Target gene # of approved antipsychotics Models 

DRD2 32 MCGA_Dist & MCGA_eQTL 

DRD1 22 MCGA_isoQTL 

ADRA1A 21 MCGA_isoQTL 

CHRM3 10 MCGA_eQTL 

ADRA2B 10 MCGA_eQTL 

HTR3A 8 MCGA_eQTL 

OPRD1 1 MCGA_Dist 

GABRA2 1 MCGA_isoQTL 

CYP2D6 1 MCGA_eQTL & MCGA_isoQTL 

 441 

To further investigate the druggability of the potential susceptibility genes, we searched the Drug 442 

Gene Interaction database (DGIdb v4.2.0) 
27

 and filtered the drug-gene interaction terms with at 443 

least one supported PubMed paper. After the filtration, we kept 30,072 unique drug-gene 444 

interaction terms and found 679 unique drug-gene interaction terms for 34 FDA-approved 445 

antipsychotics (see details in Table S10). Then we put the full list of potential susceptibility genes 446 

(by MCGA_Dist, MCGA_eQTL and MCGA_isoQTL, respectively) into DGIdb to investigate if 447 

the “antipsychotic”- “susceptibility gene” interactions were enriched in DGIdb. As shown in Table 448 

5, we found that “antipsychotic” - “potential susceptibility genes” identified by the three models 449 

of MCGA were all significantly enriched in DGIdb. Moreover, as shown in Figure 8, 372 out of 450 

578 and 478 out of 696 potential susceptibility genes were exclusively identified by 451 

MCGA_eQTL and MCGA_isoQTL, respectively. We found 253 unique drug-gene interaction 452 

terms for susceptibility genes exclusively predicted MCGA_eQTL (see details in Table S11), and 453 

17 of 253 interaction terms were antipsychotics-gene interactions (hypergeometric distribution test 454 

p-value= 7.05E-5). We also found 291 unique drug-gene interaction terms for susceptibility genes 455 
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exclusively predicted MCGA_isoQTL (see details in Table S12), and 28 of 291 interaction terms 456 

were antipsychotics-gene interactions (hypergeometric distribution test p-value = 1.48E-10). We 457 

also investigated the potential druggability of the susceptibility genes identified by MCGA. 458 

Among the 42 potentially druggable gene categories in DGIdb, we found the top three potentially 459 

druggable categories for the susceptibility genes identified by MCGA_Dist, MCGA_eQTL and 460 

MCGA_isoQTL were all “DRUGGABLE GENOME” (63 vs. 129 vs. 137. The number denotes 461 

the gene set size belonging to this category, same as below), “ENZYME” (33 vs. 68 vs. 90) and 462 

“KINASE” (22 vs. 40 vs. 60) (see details in Table S13). Taken together, our results showed that 463 

some of the potential susceptibility genes identified by MCGA had the potential to be druggable, 464 

and the application of eQTLs (especially the isoform-level eQTLs) could aid MCGA to identify 465 

more potentially druggable genes. 466 

 467 

Table 5: The enrichment of drug-gene interaction terms in DGIdb for susceptibility genes 468 

identified by MCGA. 469 

Models # of total drug-gene interaction 

terms 

# of antipsychotics-gene interaction 

terms 

Enrichment 

p
c
 

MCGA_Dist 332 33 1.37E-12 

MCGA_eQTL 831 64 1.39E-17 

MCGA_isoQTL 792 46 6.66E-9 

c
Enrichment p denotes the p-value of hypergeometric distribution test. 470 

 471 

Discussion 472 

In this study, we proposed a multi-strategy conditional gene-based association framework, MCGA, 473 

based on a new correlation matrix of chi-squared statistics to identify the potential susceptibility 474 
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genes and isoforms for complex phenotypes. Comparing with the unconditional association test 475 

and likelihood ratio test, MCGA showed a lower type I error rate and higher statistical power. 476 

Since MCGA is a gene-based method, in this study, we adopted three strategies to map a variant to 477 

a gene, i.e., mapping based on physical position, gene-level eQTLs and isoform-level eQTLs. We 478 

implemented these three mapping strategies in corresponding three conditional gene-based 479 

association models, i.e., MCGA_Dist, MCGA_eQTL and MCGA_isoQTL, to predict the potential 480 

susceptibility genes for schizophrenia. 481 

 482 

MCGA_Dist could output a list of genes, while MCGA_isoQTL and MCGA_eQTL could produce 483 

a list of genes for each potential phenotype-associated tissue because of the usage of gene-level 484 

eQTLs and isoform-level eQTLs of each tissue. Though MCGA_Dist predicted a relatively small 485 

size of susceptibility genes, these genes were enriched with plenty of neuronal- or synaptic 486 

signaling-related GO terms. Similar results of other research were obtained by gene-set analyses, 487 

which demonstrated that genetic variants associated with schizophrenia were enriched with 488 

synaptic pathways
28

. Besides, considerable amounts of these genes had been reported by many 489 

research papers in the PubMed database to support their associations with schizophrenia. 490 

 491 

Since MCGA_Dist might omit some remote but important gene-variant associations, we improved 492 

MCGA_Dist with MCGA_eQTL and MCGA_isoQTL. We performed a simulation study and 493 

demonstrated that isoform-level eQTLs were more powerful than gene-level eQTLs in association 494 

analysis. Moreover, we found in real data that the size of the susceptibility gene set for 495 

schizophrenia predicted by MCGA_isoQTL was larger than MCGA_eQTL in each 496 
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phenotype-associated tissue under the same threshold. Further, we found MCGA_isoQTL had two 497 

advantages over MCGA_eQTL and MCGA_Dist. First, several important potential susceptibility 498 

genes were exclusively predicted by MCGA_isoQTL. For example, fifteen potential susceptibility 499 

genes exclusively predicted by MCGA_isoQTL each had at least ten search hits in PubMed, which 500 

implied these genes were popular in schizophrenia studies. Second, to our best knowledge, 501 

MCGA_isoQTL was the first conditional gene-based association approach to produce a list of 502 

phenotype-associated isoforms (or transcripts).  503 

 504 

In addition, we investigated the druggability of the susceptibility genes for schizophrenia 505 

identified by MCGA. Several susceptibility genes identified by MCGA were also the popular 506 

target genes of multiple FDA-approved antipsychotics. Besides, the “susceptibility gene”- 507 

“antipsychotics” interactions were enriched in DGIdb. The druggablilty of the important 508 

susceptibility genes, especially the sGenes identified based on isoform-level eQTLs, provided 509 

more credible supports for the utility of MCGA. 510 

 511 

Our framework might have three potential applications. First, MCGA_Dist can be used to predict 512 

potential susceptibility genes and isoforms for other complex phenotypes. Second, based on the 513 

assumption that the distribution of expression profiles of true susceptibility genes might change 514 

before and after therapeutic drug treatment, MCGA_Dist can be used to perform drug 515 

repositioning analysis based on the drug perturbed expression profile. Third, since MCGA_eQTL 516 

and MCGA_isoQTL can help predict potential susceptibility genes in each potential 517 

phenotype-associated tissue, our framework can help perform synergistic drug combination 518 
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prediction to screen drugs that can simultaneously perturb the expression of potential 519 

susceptibility genes in each potential phenotype-associated tissue. 520 

 521 

The present study was limited by several factors. First, the moderate sample size (ranging from 522 

129 ~ 205) and mixed populations in GTEx v8 might both reduce the accuracy of 523 

gene/isoform-level eQTLs. Future genetic studies based on increased sample sizes might alleviate 524 

this problem. Second, the size of the susceptibility genes identified by MCGA_eQTL (578) and 525 

MCGA_isoQTL (696) was a little larger than conventional studies. One of the reasons might be 526 

that five brain regions were involved in the present study, and each brain region might have very 527 

different dysfunctional genes associated with schizophrenia. We also used MAGMA to identify 528 

the susceptibility genes of schizophrenia with the same GWAS summary statistics and found that 529 

MAGMA also identified ~ 600 potential susceptibility genes with the basic parameter setup (see 530 

details in Table S14). Susceptibility genes identified by MCGA_eQTL and MCGA_isoQTL had 531 

many biologically meaningful annotations (such as neuronal- or synaptic signaling-related terms) 532 

in the GO databases, and some susceptibility genes were the target genes of multiple 533 

antipsychotics, and more than 20% of the susceptibility genes had been previously reported by 534 

other schizophrenia research in the PubMed database. Though these potential susceptibility genes 535 

were lack of systematically experimental validation, we shared the potential susceptibility genes in 536 

Table S1, S4 and S5 and encouraged follow-up studies to evaluate the function and roles of these 537 

susceptibility genes in the development of schizophrenia. 538 

 539 

In conclusion, in this study, we proposed a new statistical framework to predict potential 540 
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susceptibility genes for complex phenotypes based on GWAS summary statistics and 541 

gene/isoform-level eQTLs in a multi-tissue context. The application of our framework to 542 

schizophrenia revealed many novel susceptible and druggable genes. Besides, the usage of 543 

isoform-level eQTLs can be an important supplement for the conventional gene-based approach. 544 

The framework was packaged and implemented in our integrative platform KGGSEE 545 

(http://pmglab.top/kggsee/#/). We hope our framework can facilitate researchers to gain more 546 

insights into the phenotype-associated genes and isoforms of complex phenotypes. 547 

 548 

Materials and Methods 549 

The new effective chi-squared statistics (ECS) for conditional gene-based association 550 

analysis 551 

We improved our previously proposed effective chi-squared test
10

 for a more efficient conditional 552 

gene-based association analysis based on a new correlation matrix of chi-squared statistics. The 553 

improved effective chi-squared statistics had two methodological advances to address the potential 554 

inflation issue, i.e., a type I error-controlled correlation matrix of the observed chi-squared 555 

statistics and a non-negative least square solution for the independent chi-squared statistics. The 556 

reasoning process was as follows. Suppose there were n loci in a set of genes. One wanted to 557 

calculate the association p-value of another physically nearby gene (containing m loci) 558 

conditioning on the set of genes (n loci). The first step of the conditional analysis was to produce 559 

effective chi-squared statistics for the set of genes (n loci) and all the genes (n+m loci in total). 560 

Each locus had a p-value for phenotype association in the GWAS. The p-values were converted to 561 
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corresponding chi-squared statistics with the degree of freedom 1. According to Li et al.
10

, each 562 

locus could be assumed to have a virtually independent chi-squared statistic. An observed 563 

marginal chi-squared statistic of a locus was equal to the summation of its virtually independent 564 

chi-squared statistic and the weighted virtually independent chi-squared statistic of nearby loci. 565 

The weight was related to the chi-squared statistics correlation, which was a key parameter of the 566 

analysis. The correlation of chi-squared statistics between two loci was approximated by the 567 

absolute value of genotypic correlation to the power of c, i.e., |r|
c
. Here, we derived that the key 568 

parameter, i.e., exponent c, ranged from 1 to 2, corresponding to different non-centrality 569 

parameters of a non-central chi-squared distribution (See the derivation in the next section). 570 

According to Li et al.
10

, the n virtually independent chi-squared statistics of the gene set could be 571 

approximated by a linear transformation of the n observed chi-squared statistics (Formula (1)), 572 

 573 

, 574 

 575 

where 𝑥́𝑛
2(≥ 0), 𝑑𝑛(>0),  𝑥𝑛

2  and |𝑟𝑖,𝑗| denoted a virtually independent chi-squared statistic, 576 

degree of freedom of the virtually independent chi-squared statistic, an observed chi-squared 577 

statistic and the absolute value of the LD correlation coefficient (approximated by genotypic 578 

correlation), respectively. The effective chi-squared statistic  𝑆́𝑛 with the degree of freedom 𝑑́𝑛 579 

of the n loci was then obtained by Formula (2): 580 

 581 

[
𝑥́1

2 𝑑1

⋯ ⋯
𝑥́𝑛

2 𝑑𝑛

] ≈ [

1 ⋯ |𝑟1,𝑛|𝑐

⋯ 1 ⋯
|𝑟𝑛,1|𝑐 ⋯ 1

]

−1

× [
𝑥1

2 1
⋯ ⋯
𝑥𝑛

2 1
]        (1) 
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. 582 

 583 

The effective chi-squared statistics (𝑆́𝑛+𝑚) and degree of freedom (𝑑́𝑛+𝑚) of the n+m loci could be 584 

calculated in the same way. 585 

The effective chi-squared statistics of the m loci conditioning on the n loci was then approximated 586 

by Formula (3), 587 

 588 

                                                                          𝑆́𝑚|𝑛 = 𝑆́𝑛+𝑚 − 𝑆́𝑛            (3) 589 

 590 

with the degree of freedom 𝑑́𝑚|𝑛 = 𝑑́𝑛+𝑚 − 𝑑́𝑛. 591 

Because 𝑑́𝑚|𝑛  was no longer an integer, we used the Gamma distribution to calculate the 592 

p-values. Given the above statistics and degree of freedom, the p-value was equal to 𝐹(𝑥 ≥593 

𝑆́𝑚|𝑛

2
;

𝑑́𝑚|𝑛

2
, 2), where the F(x) function was the cumulative distribution function of a Gamma 594 

distribution. 595 

 596 

Because the virtually independent chi-squared statistics and degrees of freedom were expected to 597 

be larger than 0, we adopted a sequential coordinate-wise algorithm to approximate them
29

. This 598 

algorithm avoided unstable solutions in the above linear Formula (1) due to stochastic errors in 599 

the correlation matrix and observed chi-squared statistics. 600 

 601 

After the above multiple approximations, it was still difficult to obtain the analytic solution for the 602 

exponent c in Formula (1). We proposed a grid search algorithm to find a favorable value of 603 

{
𝑆́𝑛 = ∑ 𝑥́𝑖

2𝑛
𝑖=1

𝑑́𝑛 = ∑ 𝑑𝑖
𝑛
𝑖=1

                                    (2) 
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exponent c to control type I error rates of the effective chi-squared tests. The error rate was 604 

examined by divergence from a uniform distribution between an obtained and theoretical top 1% 605 

p-values given a c value, measured as mean log fold change (MLFC) 
30

. In the grid search process, 606 

we increased c from 1.00 to 2.00 by an interval of 0.01 because it ranged from 1 to 2 (see the 607 

derivation in the Materials and Methods). The c value leading to the minimal MLFC was defined 608 

as the favorable c value. We considered in total 84 parameter settings, i.e. a combination of three 609 

different sample sizes (10,000, 20,000 and 40,000) and 14 different variant sizes (10, 30, 50, 80, 610 

100, 125, 150, 200, 250, 300, 400, 500, 800, and 1000) for both binary and continuous traits, 611 

respectively. For a parameter setting, 40,000 datasets were simulated and used to produce p-values 612 

to determine the favorable c value for the setting. A region on chromosome 2 [chr2: 613 

169428016-189671923] was randomly drawn for the simulation. The allele frequencies and LD 614 

structure of variants in the European panel of the 1000 Genomes Project were used as a reference 615 

to simulate genotype data by the HapSim algorithm 
31

. According to either the Bernoulli 616 

distribution or Gaussian distribution, each subject was randomly assigned a phenotype value under 617 

the null hypothesis. The Wald test under either logistic regression or linear regression in which the 618 

major and minor allele was encoded as 0 and 1 was used to produce the association p-value at 619 

each variant. The p-values of the variants were then analyzed by the effective chi-squared test for 620 

the gene-based association analysis. 621 

 622 

Approximate the correlation of chi-square statistics under the alternative hypothesis 623 

Let two normal random variables 𝑿~𝑵(𝝁𝟏, 𝝈𝟏
𝟐) and 𝒀~𝑵(𝝁𝟐, 𝝈𝟐

𝟐) have covariance c. Note that 624 
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a squared normal random variable has non-central chi-square distribution and the squared mean of 625 

the former is called noncentrality parameter. The two variables can also be factorized as 626 

= 𝝁𝟏 + 𝝈𝟏𝑼 ,  𝒀 = 𝝁𝟐 + 𝝈𝟐 (𝝆𝑼 + √𝟏 − 𝝆𝟐𝑽) where 𝑼, 𝑽  𝑵(𝟎, 𝟏)~ 
 𝒊𝒊𝒅  and 𝝆 = 𝒄/𝝈𝟏𝝈𝟐.  627 

 628 

Then we can calculate the co-variances of the two non-central chi-square variables X
2
 and Y

2
 by 629 

the factorized variables, 𝒄𝒐𝒗(𝑿𝟐, 𝒀𝟐) =
𝟒𝝁𝟏𝝁𝟐𝒄+𝟐𝒄𝟐

√𝟒𝝁𝟏
𝟐𝝈𝟏

𝟐+𝟐𝝈𝟏
𝟒√𝟒𝝁𝟐

𝟐𝝈𝟐
𝟐+𝟐𝝈𝟐

𝟒
. Suppose X is the Z score of 630 

the true casual variant and Y is the Z score of a non-functional variant in LD (coefficient r) with 631 

the causal variant. One can assume 𝝁𝟐 = 𝒓𝝁𝟏, 𝝈𝟏
𝟐 = 𝟏, 𝝈𝟐

𝟐 = 𝟏 and c = r. Therefore, the 632 

correlation of X
2
 and Y

2
 can be simplified as, 𝒄𝒐𝒓(𝑿𝟐, 𝒀𝟐) =

𝟒𝒓𝟐𝝁𝟏
𝟐+𝟐𝒓𝟐

√𝟒𝝁𝟏
𝟐+𝟐√𝟒𝝁𝟏

𝟐𝒓𝟐+𝟐
. 633 

 634 

Under the null hypothesis, 𝝁𝟏 = 𝟎  then 𝒄𝒐𝒓(𝑿𝟐, 𝒀𝟐) =𝒓𝟐. Under the alternative hypothesis of 635 

large scaled sample, the 𝝁𝟏 or the noncentrality parameter becomes very large, correlation of X
2
 636 

and Y
2
 become close to r. 𝝁𝟏 → ∞, 𝒄𝒐𝒓(𝑿𝟐, 𝒀𝟐) =

𝟒𝒓

√𝟒+
𝟐

𝝁𝟏
𝟐√𝟒+

𝟐

𝝁𝟏
𝟐𝒓𝟐

+
𝟐𝒓𝟐

√𝟒𝝁𝟏
𝟐+𝟐√𝟒𝝁𝟏

𝟐𝒓𝟐+𝟐
→ 𝒓. 637 

Overall, the correlation between the two (non-central) chi-square ranges from r
2
 to r. 638 

The conditional gene-based association analysis for genome-wide association study 639 

In a GWAS, all genes were firstly calculated with the p-values of unconditional gene-based 640 

association test using the above effective chi-squared statistics. For a given p-value cutoff, the 641 

significant genes were extracted and subjected to the conditional gene-based association analysis. 642 

When there were multiple significant genes in an LD block, the genes were conditioned one by 643 

one in a pre-defined order. In the present conditional analysis, the order of the gene was defined 644 

according to the unconditional p-value of the gene. Here we assigned the genes within 5 Mb into 645 
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the same LD block. The conditional p-value of the first gene was defined as its unconditional 646 

p-value. The conditional p-value of the second gene was obtained by conditioning on the first gene, 647 

and that of the third gene was obtained by conditioning on the top two genes. The conditional 648 

p-values of subsequent genes were calculated according to the same procedure. 649 

 650 

Simulations for investigating type I error and power of the conditional gene-based 651 

association analysis 652 

Extensively independent computer simulations based on a different reference population (i.e., 653 

EAS) in different genomic regions were performed to investigate type I error and the power of the 654 

conditional gene-based association test. To approach the association redundancy pattern in 655 

realistic scenarios, we used real genotypes and simulated phenotypes. The high-quality genotypes 656 

of 2,507 Chinese subjects from a GWAS were used 
32

, and phenotypes of subjects were simulated 657 

according to the genotypes under an additive model. Given total variance explained by n 658 

independent variants, Vg, the effect of an allele at a bi-allelic variant was calculated by 𝑎 =659 

√V𝑔 [∑ 2𝑃𝐴𝑖
(1 − 𝑃𝐴𝑖

)𝑛
𝑖=1⁄ ], where 𝑃𝐴𝑖

 was the frequency of alternative alleles. The total expected 660 

effect A of a subject was equal to a*[the number of alternative alleles of all the n variants]. Each 661 

subject's phenotype was simulated by P=A+e, where e was sampled from a normal distribution 662 

N(0, 1-Vg). We randomly sampled three pairs of genes, i.e., SIPA1L2 vs. LOC729336, CACHD1 vs. 663 

RAVER2, and LOC647132 vs. FAM5C. The three pairs of genes represented three scenarios where 664 

the nearby gene (i.e., the first gene) had similar (SIPA1L2 vs. LOC729336), larger (CACHD1 vs. 665 

RAVER2) and smaller (LOC647132 vs. FAM5C) variant size than the target gene (i.e., the second 666 

gene) in terms of SNP number, respectively. In the type I error investigation, the target gene had 667 
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no QTLs, while the nearby gene had one or two QTLs. In the investigation of the statistical power, 668 

both genes had QTLs. 669 

 670 

For power comparison, the likelihood ratio test based on linear regression was adopted to perform 671 

the conditional gene-based association analysis with raw genotypes. In the full model, genotypes 672 

of all SNPs encoded as 0, 1, or 2 according to the number of alternative variants entered the 673 

regression model as explanatory variables. In the subset model, the SNPs of the nearby genes 674 

entered the regression model. The calculation of the likelihood ratio test was performed according 675 

to the conventional procedure. The R packaged “lmtest” (version 0.9.37) was adopted to perform 676 

the likelihood ratio test. 677 

 678 

Simulations for comparing the power of gene-level eQTLs and isoform-level eQTLs in 679 

gene-based association tests 680 

We compared the power of conventional gene-based association tests, gene-level eQTLs guided 681 

gene-based association tests and isoform-level eQTLs guided gene-based association tests by 682 

simulation studies. Assume some variants regulate gene expression, and the gene expression 683 

subsequently influences the phenotype. The same region on chromosome 2 [chr2: 684 

169428016-189671923] was considered for the simulation. In the EUR panel of 1000 Genomes 685 

Project
33

, this region contains 1600 common variants (MAF>0.05). Genotypes of the variants 686 

were simulated given allelic frequencies and LD correlation matrix according to the HapSim 687 

algorithm
31

. Phenotypes were simulated under a polygenic model of random effect
34

. According to 688 

severe LD pruning (r
2
<0.01), eighty-two independent variants were extracted from the 1600 689 
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variants. The SNPs' genotypes (s) contributing to the phenotypes were then standardized as, 690 

𝑔 = (𝑠 − 2𝑞) √2𝑞(1 − 𝑞)⁄ , where q was the allele frequency of alterative allele. Phenotypes were 691 

simulated under a polygenic model of random effect
34

. We assumed 40% of the independent 692 

causal variants (mX) regulated gene expression (total heritability ℎ𝑋
2 ). The expression of a gene (X) 693 

was simulated according to Formula (4): 694 

 695 

X = ∑ 𝑔𝑖𝛽𝑋,𝑖
𝑚𝑋
𝑖=1 + 𝜖𝑋，           (4) 696 

 697 

where 𝛽1,𝑖~𝑁(0, ℎ𝑋
2 /𝑚𝑋) and 𝜖𝑋~𝑁(0, 1 − ℎ𝑋

2 ). 698 

 699 

The gene expression then contributed 𝛿 to a phenotype (Y). The phenotype value was simulated 700 

according to the Formula (5): 701 

 702 

Y = 𝛿X + 𝜖𝑌，                (5) 703 

 704 

where 𝜖𝑌~𝑁(0, 1 − 𝛿2). Here Y was a continuous phenotype. For a binary phenotype, a cutoff t 705 

was set according to a given disease prevalence K under a standard normal distribution and the 706 

liability threshold model 
35

. Subjects with simulated Y values ≥t were set as patients, and others 707 

were set as normal controls. 708 

 709 

When a gene had multiple isoforms, we assumed one of the isoforms was associated with 710 

phenotype and simulated expression values of the isoform according to the above regulation 711 
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model (Formula (5)). The expression values of the remaining isoforms were simulated by the 712 

standard normal distribution N(0,1). The expression profile of a gene with multiple isoforms was 713 

averaged by the expression profiles of all the isoforms belonging to the gene. The gene-level 714 

eQTLs and isoform-level eQTLs were examined by the Wald test under the linear regression 715 

model. The variant-phenotype association analysis was performed based on the conventional 716 

association analysis procedure, and the statistical significance cutoff was set at p-value<0.001.  717 

 718 

Genome-wide association study of schizophrenia 719 

The GWAS summary statistics of schizophrenia included 53,386 cases and 77,258 controls of 720 

European ancestry (hg19 assembly). Genotypes in the CEU panel from the 1000 Genomes Project 721 

were used to correct for the relatedness of the summary statistics. To predict the potential 722 

susceptibility genes of schizophrenia, the variants in the major histocompatibility complex (MHC) 723 

region, i.e., chr6:27,477,797-34,448,354, were excluded because of high polymorphism in the 724 

present study. Detailed descriptions of population cohorts, quality control methods and association 725 

analysis methods can be found in reference
20

. The summary statistics can be accessed at the 726 

Psychiatric Genomics Consortium. 727 

 728 

The Genotype-Tissue Expression (GTEx) project 729 

The GTEx project (release v8) created a resource including whole-genome sequence data and 730 

RNA sequencing data from ~ 900 deceased adult donors
21

. Four tissues or cell types (i.e., whole 731 

blood, cells-Leukemiacellline_CML, pancreas and pituitary) were filtered out and not included in 732 
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the following analyses because of the small sample size or weak correlation of gene expression 733 

profiles with most of the other tissues. 734 

 735 

GO annotation of the potential susceptibility genes 736 

Functional enrichment analyses were performed by g:Profiler
36

. GO terms, i.e., biological 737 

processes (BP), molecular functions (MF) and cellular components (CC), were mainly concerned. 738 

g:Profiler is based on Fisher’s one-tailed test, and the statistical p-value is multiple 739 

testing-corrected. Significant GO terms were filtered by the threshold of “Padj” <0.05. The bar 740 

plots of GO enrichment terms were drawn based on R-4.0.3. 741 

 742 

Construction of the weighted gene co-expression network in multi-brain tissues 743 

The fully processed, filtered and normalized gene-level expression profiles from GTEx v8 were 744 

used to construct the weighted gene co-expression networks for the top-five brain tissues by R 745 

package “WGCNA” (v1.69). WGCNA was performed to build an unsigned gene co-expression 746 

network following the standard procedure, and all the parameters were used as recommended, and 747 

the soft-threshold was set to 6 after testing a series of soft threshold powers (range 2 to 20). As for 748 

the construction of gene co-expression modules, the hierarchical cluster tree in the co-expression 749 

network was cut into gene modules using the dynamic tree cut algorithm with a minimum module 750 

size of 30 genes
37

. The normalized intra-module connectivity value was computed by setting the 751 

options “scaleByMax = T”. 752 

 753 
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Drug Gene Interaction (DGIdb) database 754 

DGIdb (v4.2.0) provides a resource of genes that have the potential to be druggable
27

. DGIdb 755 

contains two main classes of druggable genome. The first class includes genes with known drug 756 

interactions, and the other includes genes that are potentially druggable according to their 757 

membership in gene categories associated with druggability. DGIdb includes 42 potentially 758 

druggable categories and 49 interaction types (including inhibitors, activators, cofactors, ligands, 759 

vaccines and many interactions of unknown types). Only the drug-gene interaction terms with at 760 

least one supported PubMed paper were used in the present study. 761 

 762 

PubMed search 763 

To find supports from published research, we performed a text-mining analysis based on PubMed 764 

database on June 3rd, 2021. We searched the PubMed database with the items of 765 

“((schizophrenia[tiab]+OR+Schizophrenia[tiab]+OR+SCZ[tiab])+AND+(gene 766 

name[tiab])+AND+(gene[tiab]+OR+genes[tiab]+OR+mRNA[tiab]+OR+protein[tiab]+OR+protei767 

ns[tiab]+OR+transcription[tiab]+OR+transcript[tiab]+OR+transcripts[tiab]+OR+expressed[tiab]+768 

OR+expression[tiab]+OR+expressions[tiab]+OR+locus[tiab]+OR+loci[tiab]+OR+SNP[tiab]))&d769 

atetype=edat&retmax=100”. The java script output a file with the first column representing gene 770 

name, the second column representing the synonyms of the gene name, the last column 771 

representing the PubMed ids of hit papers. 772 

 773 
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Identification of the potentially phenotype-associated tissues of schizophrenia 774 

To estimate the potentially phenotype-associated tissues, a framework called DESE (also 775 

implemented in KGGSEE) proposed by our lab in a recent work was used 
22

. DESE needs three 776 

kinds of input datasets, i.e., the expression profiles of various tissues, reference genotype and 777 

GWAS summary statistics, and outputs the estimated phenotype-associated tissues. 778 

 779 

Specifically, the isoform-level expression profiles of 50 tissues in GTEx v8 were used. The 780 

isoform-level expression profiles were preprocessed like this: the index column of the 781 

preprocessed expression file was isoform symbol name, and each of 50 tissues or cell types had 782 

one column representing the average expression value (i.e., mean value) of corresponding subjects 783 

with the tissue. The Genotypes in the EUR panel from the 1000 Genomes Project (phase 3) were 784 

downloaded from IGSR and used as reference genotype data. Three columns, i.e., chromosome 785 

identifier (CHR), base-pair position (BP) and p-value (P) in GWAS summary statistics, were used. 786 

SNPs with minor allele frequency (MAF) less than 0.05 were excluded. Only genes approved by 787 

HGNC were included in the following analyses. The multiple testing adjustment method was the 788 

standard Bonferroni correction, and the cutoff for the adjusted p-value was set as p<0.05. The 789 

detailed commands of DESE to estimate potential phenotype-associated tissues are described on 790 

the KGGSEE website. The bar plot of the rank of potential phenotype-associated tissues was 791 

drawn based on R-4.0.3. 792 

 793 
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Computation of gene-level eQTLs and isoform-level eQTLs 794 

The present study focused on the cis-eQTLs. Specifically, two files were put into our integrative 795 

platform KGGSEE to produce gene/isoform-level eQTLs for each tissue, namely, expression 796 

profiles and corresponding genotype data file from GTEx v8. Two levels (gene-level and 797 

isoform-level) expression profiles of 50 tissues were downloaded from the GTEx v8 project, and 798 

the TMP value was used in the following analyses. Genes/isoforms were selected based on 799 

expression thresholds of > 0 TPM in at least 20% of all samples. The genotype data used for eQTL 800 

analyses in GTEx release v8 was based on WGS from 838 donors, which all had RNA-seq data 801 

available. Only variants with MAF ≥ 0.05 across all 838 samples were included in the present 802 

study. GTEx v8 is based on the human reference genome GRCh38/hg38. Thus, to be consistent 803 

with the GWAS results of schizophrenia (hg19 assembly), we converted the GRCh38/hg38 804 

coordinates into hg19 by the UCSC LiftOver. All variants were filtered with Hardy–Weinberg 805 

disequilibrium (HWD) test p-value <1.0E-3. The mapping window was defined as 1 Mb up- and 806 

downstream of the gene boundary. If the association test p-value of a variant and corresponding 807 

expression of gene/isoform was smaller than 0.01, the variant was regarded as a 808 

gene-level/isoform-level eQTL of the gene/isoform. It should be noted that the format of the eQTL 809 

file is similar to the fasta file. The eQTL data of a gene or isoform starts with the symbol “>”. For 810 

the gene-level eQTLs file, the symbol “>” is followed by the gene name (e.g., “LINC00320”), its 811 

Ensembl ID (“ENSG00000224924”) and chromosome identifier (“21”). For the isoform-level 812 

eQTLs file, the symbol “>” is followed by the gene name (e.g. “LINC00320”), transcript Ensembl 813 

ID (“ENST00000452561”) and chromosome identifier (“21”). 814 

 815 
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The gene/isoform-level eQTLs files of 50 tissues in GTEx v8 can be accessed on the KGGSEE 816 

website and freely used for research purposes. The detailed commands of KGGSEE to compute 817 

gene/isoform-level eQTLs of each tissue are described on the KGGSEE website. 818 

 819 

Estimation of the potential susceptibility genes and isoforms for schizophrenia 820 

The framework MCGA included three models, i.e., MCGA_Dist, MCGA_eQTL and 821 

MCGA_isoQTL, which were all based on the improved ECS. The main difference among the 822 

three models was the strategy used to map variants to genes. For MCGA_Dist, if a variant was 823 

within a small window, say +/-5 kb, around the gene boundary, then the variant will be assigned 824 

onto the gene according to a gene model, e.g., RefSeqGene. For MCGA_eQTL, the variant will be 825 

assigned onto the gene if the variant is a gene-level eQTL of the gene. Similarly, for 826 

MCGA_isoQTL, the variant will be assigned onto the isoform if the variant is an isoform-level 827 

eQTL of the isoform. Another difference between MCGA_Dist and 828 

MCGA_eQTL/MCGA_isoQTL was that the latter two were based on the gene/isoform-level 829 

eQTLs of each tissue, thus can produce the potential susceptibility genes/isoforms in a multi-tissue 830 

context. 831 

 832 

Like our previous model DESE, MCGA contained three iterative steps. In the first step, associated 833 

genes with smaller p-values of the ECS test were given higher priority to enter the following 834 

conditional gene-based association analysis. This step could generate a list of roughly associated 835 

genes by removing redundantly associated genes. It should be noted that we dealt with the 836 
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mentioned three models of MCGA in different ways. For MCGA_Dist and MCGA_eQTL, the 837 

order of a gene entering the conditional gene-based association analysis was determined by its 838 

p-value of the ECS test. For MCGA_isoQTL, assume gene A has m isoforms. Each isoform could 839 

get a p-value based on the ECS test, representing the overall statistical significance of all 840 

isoform-level eQTLs (simultaneously variants) associated with this isoform. If the isoform with 841 

the smallest p-value was isoform a, with its p-value pa, among the m isoforms of gene A, we only 842 

kept isoform a of gene A for the following analyses. The adjustment p-value for “gene A : isoform 843 

a” pair was adjusted to m* pa to enter the following conditional gene-based association analysis. 844 

 845 

The second step was to compute the selective expression score of genes/isoforms in each tissue by 846 

taking all tissues as the background (see details in reference
22

). The Wilcoxon rank-sum test was 847 

then performed by using the selective expression score of the associated gene/isoform set and 848 

not-associated gene/isoform set (generated by the first step) in each tissue. 849 

 850 

In the third step, all genes/isoforms, including the not-associated genes/isoforms, were ranked in 851 

descending order based on the tissue-selective expression score of each gene/isoform. The 852 

tissue-selective expression score of a gene/isoform was computed based on the rank of this 853 

gene/isoform-selective expression score and the p-value of the Wilcoxon rank-sum test between 854 

the associated gene/isoform set and not-associated gene/isoform set in each tissue.  855 

 856 

In the following iteration, genes/isoforms with higher tissue-selective expression scores (in the 857 

third step) were given higher priority to enter the conditional gene-based association analysis (in 858 
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the first step). The above three steps were iterated until the p-values of the Wilcoxon rank-sum test 859 

did not change almost, and then corresponding associated genes/isoforms were deemed to be 860 

potentially associated with the phenotype. More details about the iterative procedure can be found 861 

in the original papers
22

. 862 

 863 

MCGA is implemented in our integrative platform KGGSEE. To run MCGA_Dist, three input 864 

files were needed, i.e., GWAS summary statistics file, gene-level expression profiles of 50 tissues 865 

in GTEx v8, genotypes in EUR panel from 1000 Genomes Project (phase 3). To run 866 

MCGA_eQTL and MCGA_isoQTL, four input files were needed, i.e., GWAS summary statistics 867 

file, gene-level or isoform-level expression profiles of 50 tissues in GTEx v8, genotypes in EUR 868 

panel from 1000 Genomes Project (phase 3) and gene/isoform-level eQTLs file of each estimated 869 

disease-associated tissue. Only genes with HGNC gene symbols were considered in the present 870 

study. The output result file was a text file that contained multiple information about the 871 

association measurement of genes (or “gene: isoform” pairs) with the corresponding phenotype. 872 

Multiple testing was corrected by using Bonferroni correction. Significant genes were filtered by 873 

the “CondiECSp” threshold cutoff 2.5E-6, where “CondiECSp” meant the p-values of conditional 874 

gene-based association test based on the improved ECS. The bar plot of the comparison of 875 

potential susceptibility genes was drawn based on R-4.0.3. The venn diagram was drawn based on 876 

a web app Venny 2.1.0. 877 

 878 

MAGMA 879 

MAGMA is a popular tool for gene and generalized gene-set analysis based on the GWAS 880 
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summary statistics. Here the parameters and options were used as the MAGMA (v 1.08) manual 881 

recommended. Annotation analysis was firstly performed based on the SNP location file and gene 882 

location file (hg19, build 37). The SNP location information was extracted from the same GWAS 883 

summary statistics file of schizophrenia. An SNP was mapped to a gene if the SNP was in the 884 

window of +/-5kb around the gene boundary (same as MCGA_Dist). The gene analysis was 885 

performed based on the annotation results and reference data file which was created from Phase 3 886 

of 1000 Genomes of the European population in reference to human genome build 37. Both gene 887 

location file and reference data file were downloaded from the MAGMA website. Multiple testing 888 

was corrected by using Bonferroni correction. Significant genes were filtered by the threshold of 889 

“p-value” 2.5E-6. 890 
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profiles are Genotype Tissue Expression (GTEx v8) project 
21

 in https://gtexportal.org/home/. The 903 

summary statistics of schizophrenia are publicly available in Psychiatric Genomics Consortium 904 

(PGC) in https://www.med.unc.edu/pgc/. The annotations of drug-gene interaction terms are 905 

publicly available in Drug Gene Interaction (DGIdb v4.2.0) database
27

 in https://www.dgidb.org/. 906 

The information on FDA-approved antipsychotics can be publicly available in DrugBank 5.0
26

 in 907 

https://go.drugbank.com/. The functional enrichment analyses were performed by g:Profiler
36

 and 908 

can be publicly available in https://biit.cs.ut.ee/gprofiler. The tool used to draw the venn plot is 909 

Venny in https://bioinfogp.cnb.csic.es/tools/venny/index.html. The tool MAGMA
7
 and 910 

corresponding reference data were downloaded from https://ctg.cncr.nl/software/magma. The 911 

source code of MCGA (including MCGA_Dist, MCGA_eQTL and MCGA_isoQTL) is 912 

implemented in our integrative software platform KGGSEE and publicly available in 913 

http://pmglab.top/kggsee/#/. 914 
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