

1 MCGA: a multi-strategy conditional gene-based association  
2 framework integrating with isoform-level expression profiles  
3 reveals new susceptible and druggable candidate genes of  
4 schizophrenia

5 Xiangyi Li<sup>1,3,4,#</sup>, Lin Jiang<sup>2,#</sup>, Chao Xue<sup>1,3,4</sup>, Mulin Jun Li<sup>5</sup>, Miaoxin Li<sup>1,3,4,\*</sup>

6 <sup>1</sup>Zhongshan School of Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;

7 <sup>2</sup>Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical

8 Sciences, Guangzhou, China; <sup>3</sup>Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of

9 Education; <sup>4</sup>Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China; <sup>5</sup>The Province and

10 Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University,

11 Tianjin 300070, China.

12

13 \* To whom correspondence should be addressed:

14 Miaoxin Li. Tel: +86-2087335080; Email: limiaoxin@mail.sysu.edu.cn; Add.: Medical Science and Technology  
15 Building, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.

16 # The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First  
17 Authors.

18

19 **Abstract**

20 Linkage disequilibrium and disease-associated variants in non-coding regions make it difficult to  
21 distinguish truly associated genes from redundantly associated genes for complex diseases. In this  
22 study, we proposed a new conditional gene-based framework called MCGA that leveraged an  
23 improved effective chi-squared statistic to control the type I error rates and remove the redundant  
24 associations. MCGA initially integrated two conventional strategies to map genetic variants to  
25 genes, i.e., mapping a variant to its physically nearby gene and mapping a variant to a gene if the  
26 variant is a gene-level expression quantitative trait locus (eQTL) of the gene. We further  
27 performed a simulation study and demonstrated that the isoform-level eQTL was more powerful

28 than the gene-level eQTL in the association analysis. Then the third strategy, i.e., mapping a  
29 variant to a gene if the variant is an isoform-level eQTL of the gene, was also integrated with  
30 MCGA. We applied MCGA to predict the potential susceptibility genes of schizophrenia and  
31 found that the potential susceptibility genes identified by MCGA were enriched with many  
32 neuronal or synaptic signaling-related terms in the Gene Ontology knowledgebase and  
33 antipsychotics-gene interaction terms in the drug-gene interaction database (DGIdb). More  
34 importantly, nine susceptibility genes were the target genes of multiple approved antipsychotics in  
35 DrugBank. Comparing the susceptibility genes identified by the above three strategies implied that  
36 strategy based on isoform-level eQTL could be an important supplement for the other two  
37 strategies and help predict more candidate susceptibility isoforms and genes for complex diseases  
38 in a multi-tissue context.

39

## 40 **Introduction**

41 Genome-wide association studies (GWASs) have been used to identify novel genotype-phenotype  
42 associations for more than a decade, and thousands of single-nucleotide polymorphisms (SNPs)  
43 have been revealed for their associations with hundreds if not thousands of complex human  
44 diseases<sup>1,2</sup>. Nevertheless, conventional GWAS analyses have limited power to produce a complete  
45 set of susceptibility variants of complex diseases<sup>3</sup>. Because most susceptibility SNPs only have  
46 small effects on a complex phenotype, conventional SNP-based association tests are generally  
47 underpowered to reveal susceptibility variants after multiple testing corrections. Moreover, the  
48 susceptibility variants scattering randomly throughout the genome are often in strong linkage

49 disequilibrium (LD) with numerous neutral SNPs, and makes the discrimination of truly causal  
50 variants from GWAS hits quite difficult<sup>3</sup>. Finally, more than 90% of the disease-associated  
51 variants are in non-coding regions of the genome, and many of them are far from the nearest  
52 known gene, and it remains a challenge to link genes and a complex phenotype through the  
53 non-coding variants<sup>4,5</sup>. Accordingly, corresponding methodological strategies have been proposed  
54 to make up, at least in part, for the issues mentioned above.

55

56 First, gene-based approaches can reduce the multiple testing burden by considering the association  
57 between a phenotype and all variants within a gene<sup>6</sup>. Assigning a variant to a gene according to the  
58 physical position of the variant from gene boundary is one of the most popular strategies for  
59 gene-based approaches. For example, MAGMA (Multi-marker Analysis of GenoMic Annotation),  
60 one of the most popular gene-based approaches, uses a multiple regression approach to  
61 incorporate LD between markers and detect multi-markers effects to perform gene-based analysis<sup>7</sup>.  
62 VEGAS, a versatile gene-based test for GWAS, incorporates information from a full set of  
63 markers (or a defined subset) within a gene and accounts for LD between markers by simulations  
64 from the multivariate normal distribution<sup>8</sup>. GATES, a rapid gene-based association test that uses  
65 an extended Simes procedure to assess the statistical significance of gene-level associations<sup>9</sup>.

66

67 Second, evaluating associations at one gene conditioning on other genes can isolate true  
68 susceptibility genes from non-susceptibility genes<sup>10</sup>. Yang et al. proposed an approximate  
69 conditional and joint association analysis based on linear regression analysis for estimating the  
70 individual causal variant with GWAS summary statistics<sup>11</sup>. Our previously proposed conditional

71 gene-based association approach based on effective chi-squared statistics (ECS) could remove  
72 redundantly associated genes based on the GWAS p-values of variants. The comparison of ECS  
73 with MAGMA and VEGAS suggested that ECS might be more powerful to predict biologically  
74 sensible susceptibility genes<sup>10</sup>.

75

76 Third, the observation that variants in the non-coding regions were enriched in the transcriptional  
77 regulatory regions implied that these variants might affect the disease risk by altering the genetic  
78 regulation of target genes<sup>2</sup>. Integration of expression quantitative trait loci (eQTL) studies and  
79 GWAS has been used to investigate the genetic regulatory effects on complex diseases. As many  
80 complex diseases manifested themselves in certain tissues, using the eQTLs of potentially  
81 phenotype-associated tissues might help identify the true susceptibility genes in tissue context<sup>12</sup>.

82 Based on MAGMA, a method called eMAGMA, which integrated genetic and transcriptomic  
83 information (e.g., eQTLs) in a tissue-specific analysis to identify risk genes, was proposed to  
84 identify novel genes underlying major depression disorder<sup>13</sup>. S-PrediXcan was developed for  
85 imputing the genetically regulated gene expression component based on GWAS summary  
86 statistics and transcriptome prediction models built from the eQTL/sQTL dataset of the Genotype  
87 Tissue Expression (GTEx) project<sup>14</sup>. Researchers have applied S-PrediXcan to study genetic  
88 mechanisms of multiple complex traits<sup>15-17</sup>. In contrast to the considerable research focusing on  
89 integrating gene-level eQTLs with GWAS summary statistics, little attention has been paid to  
90 integrating isoform-level expression QTLs (isoform-level eQTLs) with GWAS summary statistics.  
91 Michael J. Ganda et al. estimated the candidate risk genes of three psychiatric disorders based on  
92 GWAS summary statistics and isoform-level expression profiles. They emphasized the importance

93 of isoform-level gene regulatory mechanisms in defining cell type and disease specificity<sup>18</sup>, and  
94 similar analyses and conclusions were generated for Alzheimer's disease<sup>19</sup>.

95

96 Though much achievement has been attained, identifying independently phenotype-associated  
97 genes with high reliability remains challenging, especially for complex diseases. In the present  
98 study, we aimed to build a more powerful conditional gene-based framework based on a new ECS  
99 and investigate whether QTLs in phenotype-associated tissues, especially the isoform-level eQTLs,  
100 can predict more susceptibility genes or not. The main assumption of our study is that  
101 isoform-level eQTLs may reflect the more real variant-expression regulatory relationship than  
102 gene-level eQTLs, and using isoform-level eQTLs can help predict novel susceptibility genes and  
103 isoforms that cannot be found by the conventional gene-based approaches and gene-level eQTLs  
104 strategy. The formation procedure of the assumption is this: gene-level eQTLs are predicted based  
105 on gene-level expression profiles and corresponding genotype data. In contrast, isoform-level  
106 eQTLs are predicted based on isoform-level (or transcript-level) expression profiles and  
107 corresponding genotype data. The gene-level expression profiles are computed by averaging the  
108 expression of multiple isoforms belonging to the gene, which may omit the expression  
109 heterogeneity among these isoforms and neutralize the opposite effects and lower the power of  
110 gene-level eQTLs. Taken together, conventional gene-based approaches mainly focus on variants  
111 close to genes boundary (say +/-5kilo base pairs), thus omit remote but important association  
112 relationship between genes and variants. In the present study, we expanded the application scope  
113 of conventional gene-based approaches by using gene-level eQTLs and isoform-level eQTLs in  
114 the potentially phenotype-associated tissues to identify more candidate susceptibility genes and

115 isoforms.

116

117 **Results**

118 **Overview of the Multi-strategy Conditional Gene-based Association (MCGA) framework**

119 Our previously powerful and unified framework, DESE, proposed to estimate the potentially

120 phenotype-associated tissues of complex diseases, could iteratively run the conditional gene-based

121 association analysis with the selective expression score of genes among multiple tissues<sup>20</sup>. We had

122 demonstrated in DESE that the iterative operations with the selective expression analysis based on

123 expression profiles could strengthen the power of conditional gene-based analysis. In this study,

124 we proposed a new conditional gene-based framework, MCGA, which could also iteratively run

125 conditional gene-based association analysis with selective expression analysis, to systematically

126 explore the susceptibility genes associated with a complex phenotype using GWAS summary

127 statistics and eQTL summary statistics of SNPs. MCGA has two main advantages over DESE.

128 First, MCGA is based on a new effective chi-squared statistic (ECS), with which the type I error

129 could be controlled within a proper level. Second, MCGA can perform conditional gene-based

130 association analysis using different SNPs sets, i.e., physically nearby SNPs, gene-level eQTLs and

131 isoform-level eQTLs.

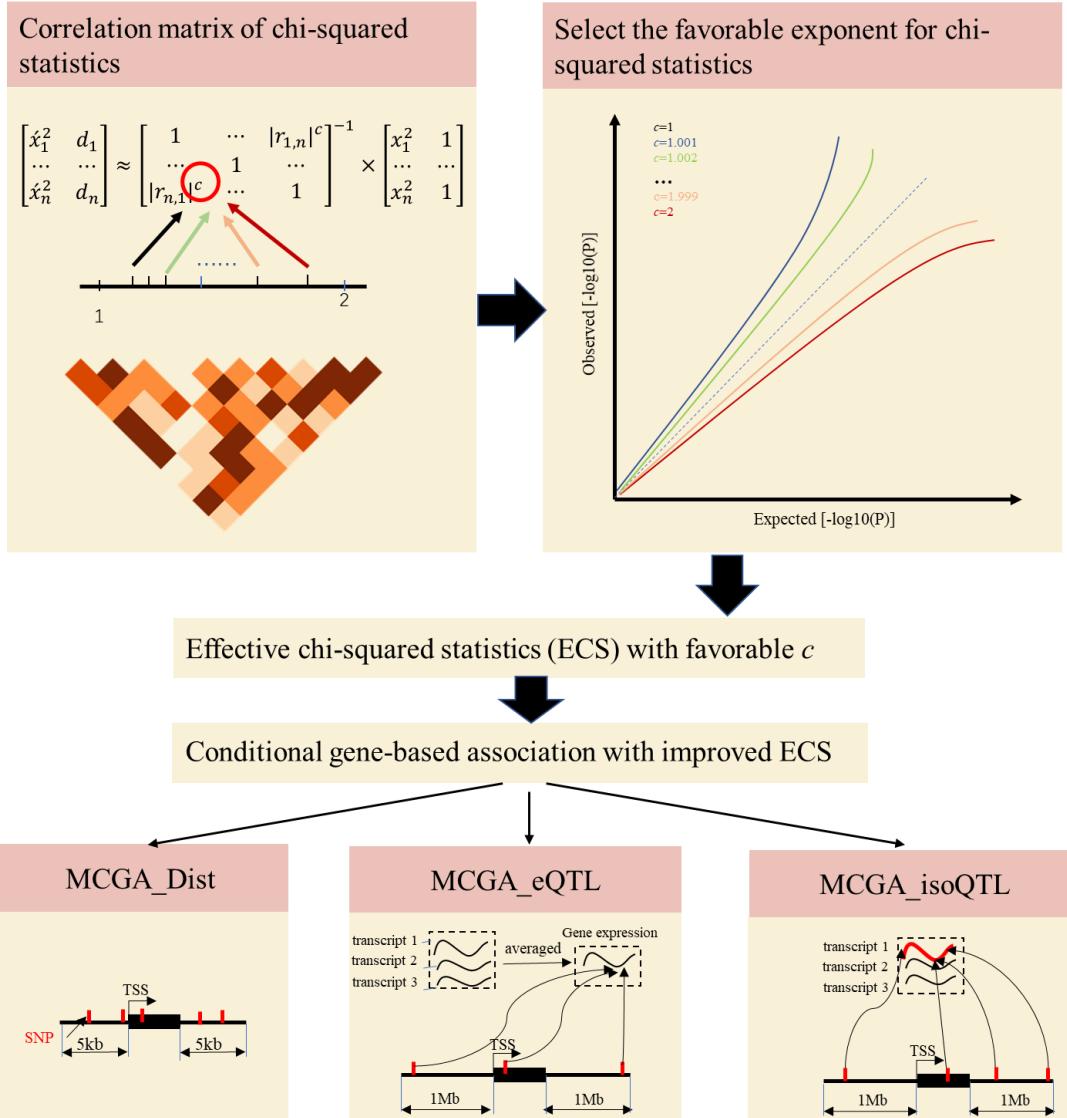
132

133 To evaluate the performance of MCGA, we performed extensive simulations and a real data

134 application to schizophrenia. Specifically, we organized the present study in four sequential parts

135 that cover the optimizing the exponent of chi-squared statistics to control type I error rates,

136 applying the improved chi-squared statistics to perform conditional gene-based association  
137 analysis in simulation data, applying the improved conditional gene-based association analysis to  
138 predict the potential susceptibility genes of schizophrenia, and finally extending the application by  
139 using gene-level eQTLs and isoform-level eQTLs. Three strategies were implemented in three  
140 conditional gene-based models, respectively. The model assigning a SNP to a gene according to  
141 the physical distance of the SNP from the gene boundary is named MCGA\_Dist. The model using  
142 gene-level eQTLs is named MCGA\_eQTL. The model using isoform-level eQTLs is named  
143 MCGA\_isoQTL (**Figure 1**). All three models of MCGA have been implemented in our integrative  
144 platform KGGSEE.



145 **Figure 1: The simplified principle of the present study.** First, choose the best exponent  $c$   
146 between 1 and 2. Each time we increased  $c$  by an interval of 0.01. The best  $c$  can control the type I  
147 error within a proper level. Then we implemented the best  $c$  to improve the previous ECS  
148 approach and got the improved conditional gene-based approach. Third, the mapping strategies  
149 used by three conditional gene-based association models of MCGA. 5kb: 5000 base pairs. 1Mb:  
150  $10^6$  base pairs. TSS: Transcription Start Site.

152

153 Our simulation results showed that the type I error rate was controlled within a reasonable level by  
154 using the new effective chi-squared statistics (ECS) with the favorable exponent. Another  
155 simulation study pointed out that association analysis based on isoform-level eQTLs was more  
156 powerful than gene-level eQTLs. As for predicting the potential susceptibility genes of

157 schizophrenia, MCGA\_Dist, MCGA\_eQTL and MCGA\_isoQTL all produced a set of potentially  
158 susceptible and druggable genes. Moreover, with the help of MCGA\_isoQTL, we also predicted  
159 the potential susceptibility isoforms (or transcripts) for schizophrenia. Our results also showed that  
160 the usage of isoform-level eQTLs could predict some important susceptible and druggable genes  
161 which cannot be found by MCGA\_Dist and MCGA\_eQTL.

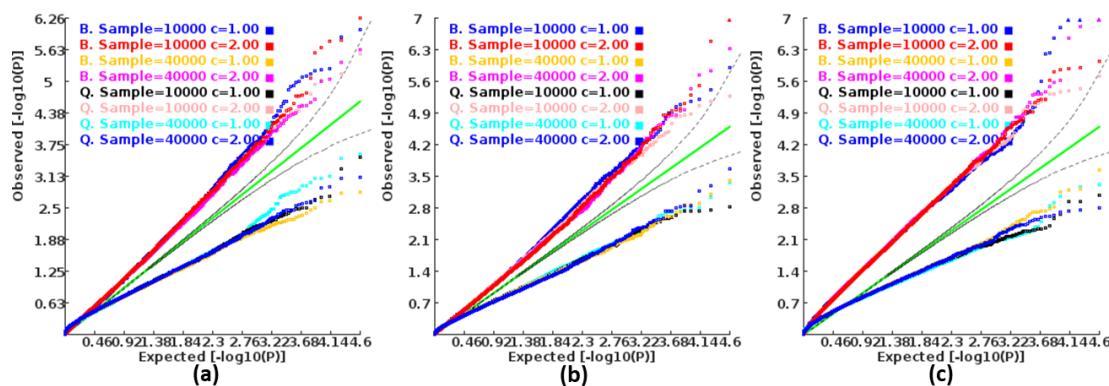
162

163 **The favorable exponent  $c$  in the correlation matrix of chi-squared statistics to control the**  
164 **type I error rates**

165 We found that the exponent  $c$  in the correlation matrix of chi-squared statistics could determine the  
166 divergence of the  $p$ -values of the ECS tests from the uniform distribution (see details in **Formula**  
167 **(1)** of Methods). Small  $c$  led to a  $p$ -value larger than expected, indicating the deflated type I error  
168 rate. Large  $c$  led to a  $p$ -value smaller than expected, indicating an inflated type I error rate. As  
169 shown in **Figure 2**, the  $c=1.0$  led to deflated  $p$ -values while the  $c=2.0$  led to inflated  $p$ -values in  
170 the upper tail of the Q-Q plot against the uniform distribution. This pattern was independent of  
171 sample sizes, variant sizes and phenotype distribution (binary or continuous) (**Figure 2**). The  
172 stable trend determined by the  $c$  value also implied that the favorable  $c$ , which could properly  
173 control the type I error rate, measured by the minimal mean log fold change (MLFC), must be  
174 within sections 1 and 2. Our theoretical derivation also demonstrated  $c$  value should be within  
175 section 1 and 2 (see details in the **Materials and Methods**). Moreover, it seemed given the  $c$  value,  
176 the distributions of  $p$ -values were similar at different sample sizes and phenotype distributions. As  
177 shown in the Q-Q plot (**Figure 3**), most majority  $p$ -values at the sample size 10,000 and 40,000 of

178 binary or continuous phenotypes were overlapped. **Figure 3** showed the favorable  $c$  obtained by  
179 the grid search algorithm at 84 different scenarios. Again, the favorable  $c$  values were  
180 approximately independent of trait types, sample sizes and variant sizes. For the sake of simplicity,  
181 we proposed to use the averaged favorable  $c$  values, 1.432, for all the analyses in the present  
182 study.

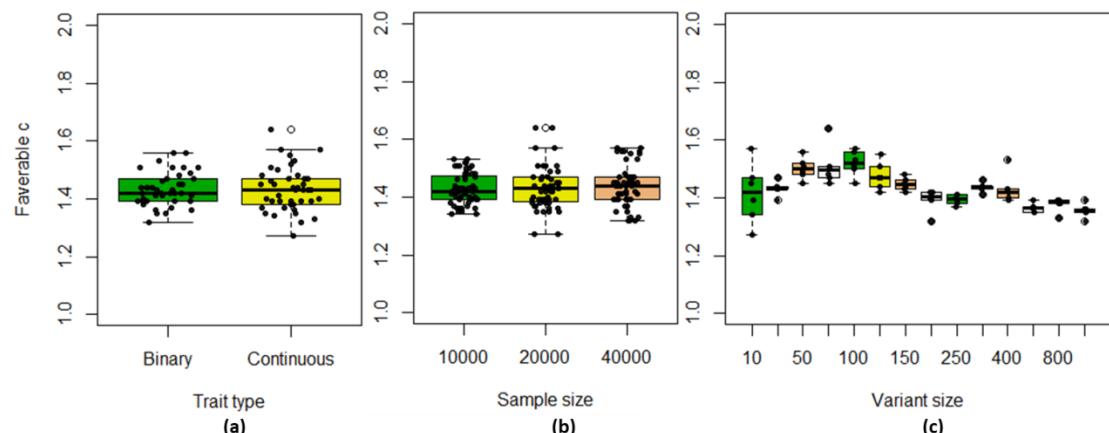
183



184

185 **Figure 2: Q-Q plots of the  $p$ -value of the ECS test under null hypothesis based on two**  
186 **extreme exponents (i.e., 1 and 2). a), b), and c) represent the variant size of 50, 100 and 500,**  
187 **respectively.**

188



189

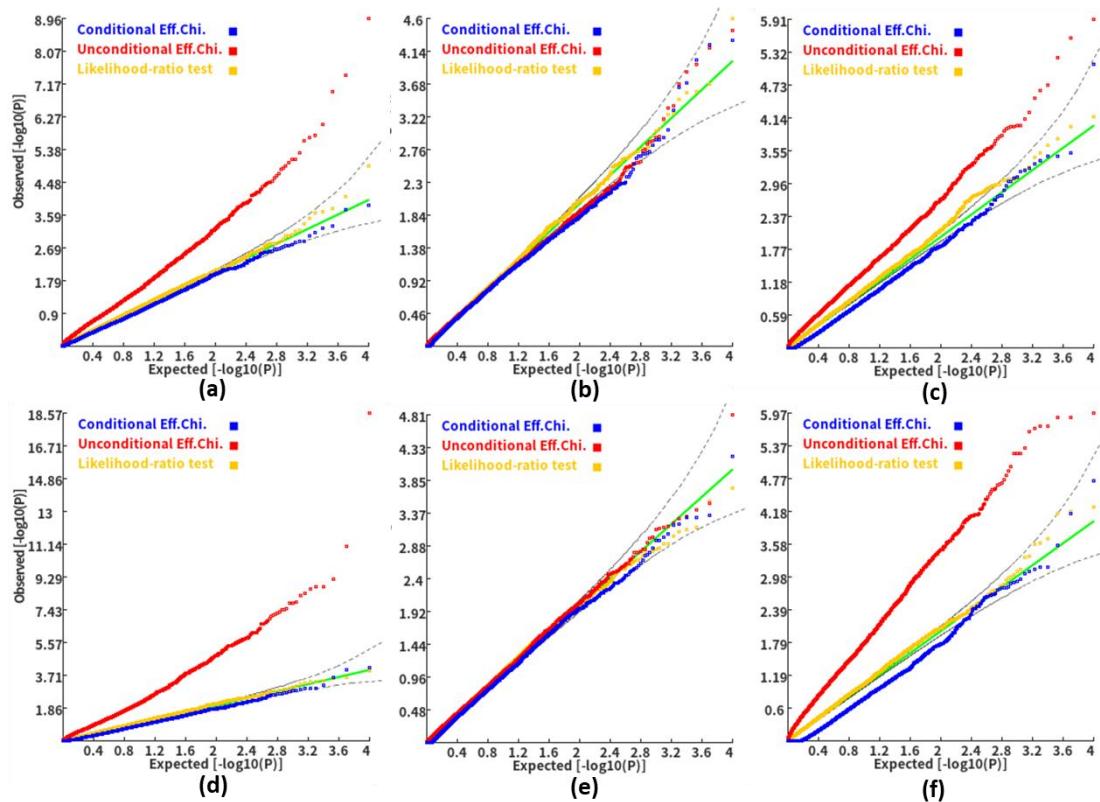
190 **Figure 3: The boxplot of favorable  $c$  values at different simulation scenarios. a) at binary and**  
191 **continuous phenotypes; b) at different sample sizes; c) at different variant sizes.**

192

193 **The type I error and power of the conditional gene-based association analysis based on the  
194 new chi-squared statistics**

195 Further, we investigated the type I error and power of the conditional gene-based association  
196 analysis based on the improved ECS with the above favorable exponent  $c$  value (i.e., 1.432). The  
197 basic function of the conditional gene-based test based on the improved ECS is to remove  
198 redundant associations among associated genes. As shown in **Figure 4**, in six different scenarios  
199 (see details in **Materials and Methods**), the conditional  $p$ -values of the genes without truly causal  
200 loci approximately followed the uniform distribution  $U[0,1]$  regardless of the variance explained  
201 by its nearby genes. The distribution of conditional  $p$ -value was similar to that produced by the  
202 conventional likelihood ratio test for nested linear regression models. These results suggested that  
203 the conditional gene-based association analysis based on the improved ECS could produce valid  
204  $p$ -values for statistical inference. In contrast, the unconditional association test produced an  
205 inflated  $p$ -value due to the indirect associations produced by nearby causal genes in the LD block.  
206 Concerning the statistical power, we found conditional gene-based association analysis based on  
207 the improved ECS produced smaller  $p$ -values than the likelihood ratio test (**Figure 5**), suggesting  
208 a higher statistical power of the former. Another advantage of conditional gene-based association  
209 analysis based on the improved ECS over the likelihood ratio test was that the former did not  
210 require individual genotypes. The reason might be that the degree of freedom in the latter was  
211 inflated by the LD among variants. Hereinafter we named the conditional gene-based association  
212 analysis based on the improved ECS with favorable exponent  $c$  value as MCGA.

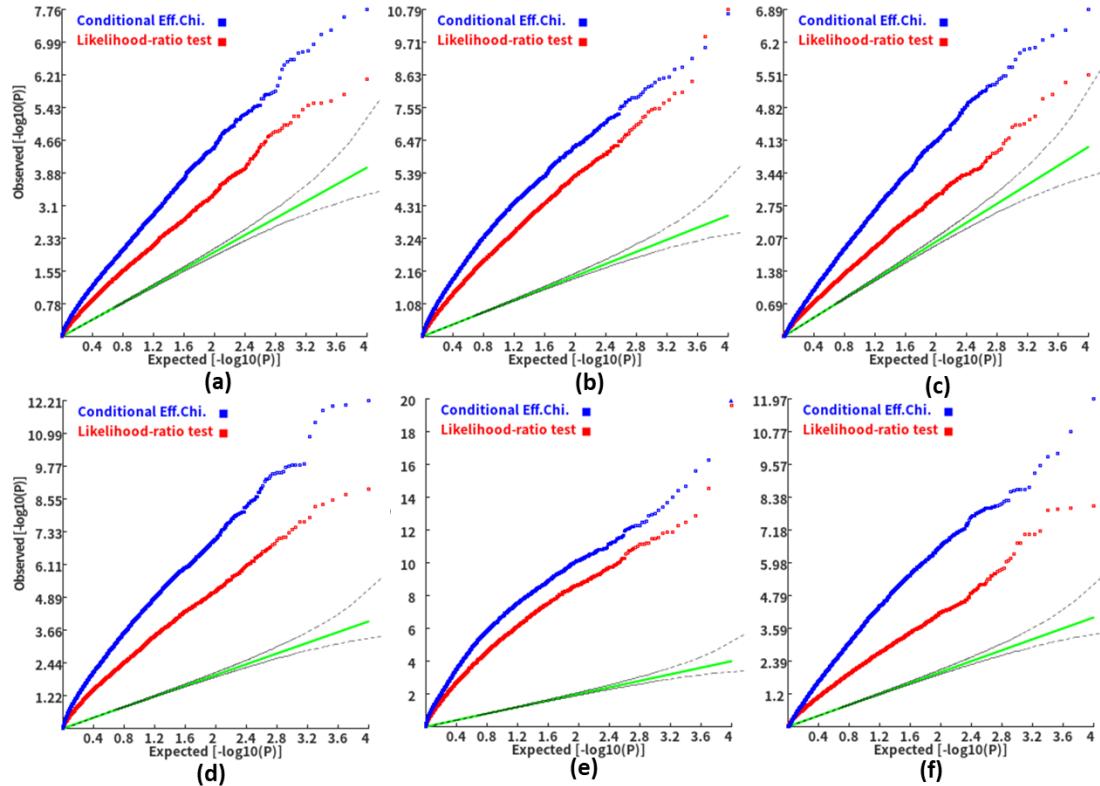
213



214

215 **Figure 4: Q-Q plot of the conditional, unconditional gene-based association test and**  
216 **likelihood-ratio test under the null hypothesis. a) and d): two gene-variant pairs with similar**  
217 **variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two**  
218 **gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1**  
219 **with 41 variants and RAVER2 with 8 variants). c) and f): two gene-variant pairs with different**  
220 **variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with**  
221 **48 variants). a), b) and c): the former gene has no QTL, and QTL in the latter gene explained 0.5%**  
222 **of heritability. d), e) and f): the former gene has no QTL, and QTL in the latter gene explained 1%**  
223 **of heritability. Ten thousand phenotype datasets were simulated for each scenario. Unconditional**  
224 **Eff. Chi. (the red) represents unconditional association analysis at the former gene by the**  
225 **improved ECS. Conditional Eff. Chi (the blue) represents conditional association analysis at the**  
226 **former gene conditioning on the latter gene by the improved ECS. The likelihood ratio test (the**  
227 **yellow) was conducted based on nested linear regression models.**

228



229

230 **Figure 5: Q-Q plot of the conditional gene-based association test and likelihood-ratio test at**  
 231 **different representative gene-variant pairs. a) and d): two gene-variant pairs with similar**  
 232 **variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two**  
 233 **gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1**  
 234 **with 41 variants and RAVER2 with 8 variants). c) and f): two gene-variant pairs with different**  
 235 **variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with**  
 236 **48 variants). a-c): the QTL in either gene explained 0.25% of heritability. d-f): the QTL in either**  
 237 **gene explained 0.5% of heritability. 1000 phenotype datasets were simulated for each scenario.**  
 238 **Conditional Eff. Chi.: conditional association analysis at the former gene conditioning on the latter**  
 239 **gene by the improved ECS. Likelihood Ratio Test: likelihood ratio test in which the full model**  
 240 **included QTLs of both genes and the nested model included QTL of the latter gene.**

241

242 **Application of MCGA to predict the potential susceptibility genes for schizophrenia**  
 243 **(MCGA\_Dist)**

244 In the above simulation study, we demonstrated that the conditional gene-based analysis based on  
 245 the improved ECS was more powerful than the likelihood ratio test in each simulation scenario.

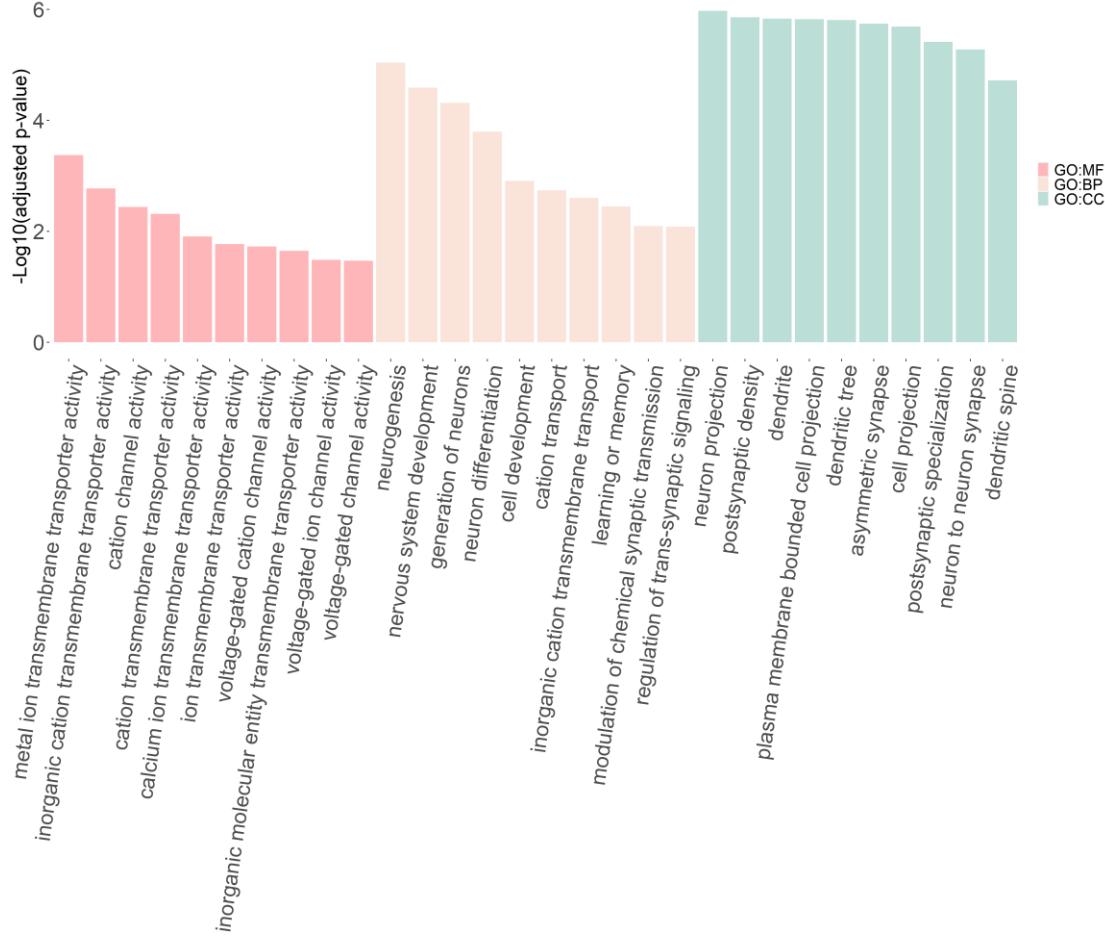
246 Here to further evaluate the performance of MCGA in the real-world data, we used a recent

247 large-scale GWAS summary statistics dataset<sup>20</sup> and gene expression profiles (GTEx v8) of ~ 50  
248 human tissues<sup>21</sup> to identify the susceptibility genes of schizophrenia. Here, MCGA\_Dist was first  
249 used, i.e., the variants were assigned to genes if the variants were in the window of +/-5kb around  
250 the gene boundary (see details in **Materials and Methods**). We found that 221 of 34,159 genes  
251 identified by MCGA\_Dist had significantly statistical *p*-values smaller than 2.5E-6 (see details in  
252 **Table S1**).

253

254 To further study the functional annotations of the 221 potential susceptibility genes, we performed  
255 Gene Ontology (GO) enrichment analysis. Interestingly, we found that most GO:BP and GO:CC  
256 enrichment terms were neuronal-, dendrite- or synaptic signaling-related terms. Besides, the  
257 GO:MF enrichment terms were all about cellular signaling transduction (see examples in **Figure 6**  
258 and see details in **Table S2**). Systematic text-mining method was used to search the PubMed  
259 database to find papers that had reported the potential susceptibility genes of schizophrenia. The  
260 results showed that 87 of the 221 (~ 39.4%) potential susceptibility genes had at least one search  
261 hit (see details in **Table S3**). The GO enrichment analysis and the text-mining results both implied  
262 the utility of MCGA\_Dist.

263



264

265 **Figure 6: GO Functional annotations of the potential susceptibility genes of schizophrenia**  
266 **identified by MCGA\_Dist.** MF: Molecular Function of GO. BP: Biological Process terms of GO.  
267 CC: Cellular Component terms of GO. The X-axis represents the top 10 significant GO  
268 enrichment terms (in MF, BP and CC). The Y-axis represents the negative log10 of the adjusted  
269 *p*-value.

270

271 **Evaluate the power of gene-level eQTLs and isoform-level eQTLs in association analysis by**  
272 **the simulation study**

273 A common assumption is that genes close to significant variants are more likely to be the  
274 susceptibility genes, but the reality is that some potentially associated genes are not closest to the  
275 significant variants<sup>16</sup>. Molecular Quantitative Trait Loci (molQTL) is a genetic variant associated  
276 with a molecular trait, such as a gene-level eQTL and isoform-level eQTL, and can associate a

277 variant with a gene or isoform. MCGA\_Dist mapped a variant to a gene if the variant was in the  
278 +/-5kb window around the gene boundary. Next, we assigned a variant to a gene (or isoform) if  
279 the variant is a gene-level or isoform-level eQTL to broaden the application of MCGA. Since the  
280 isoform-level and corresponding gene-level expression profiles were quantified based on the same  
281 RNA-sequencing data, we wanted to test whether the power of association analysis based on the  
282 gene-level eQTLs was higher than that based on isoform-level eQTLs or not. We first performed a  
283 simulation study to evaluate the power of association analysis based on gene-level eQTLs and  
284 isoform-level eQTLs, respectively.

285

286 We considered the simplest case for simplicity, i.e., variants affected phenotype only through  
287 regulating the gene expression. We simulated genotype data, isoform-level expression profiles and  
288 corresponding phenotype data (see details in **Materials and Methods**). Specifically, we simulated  
289 four scenarios, i.e., association analysis using all variants (phenotype-associated isoform-level  
290 eQTLs and the other isoform-level eQTLs, denoted as Allvar in **Table 1**), association analysis  
291 only using phenotype-associated isoform-level eQTLs (denoted as isoform eQTL in **Table 1**),  
292 association analysis using gene-level eQTLs which were computed by the gene expression profiles  
293 derived by the average value of multiple isoforms belonging to the gene. As for scenarios of genes  
294 with multiple isoforms, we specifically simulated two new scenarios (denoted as eQTL\_3isoform  
295 and eQTL\_6isoform in **Table 1**), i.e., a gene with three (eQTL\_3isoform) and six different  
296 isoforms (eQTL\_6isoform). The expression value of the gene with three isoforms was averaged by  
297 the following three isoforms, i.e., one isoform associated with phenotype and the other two  
298 random isoforms simulated by the standard normal distribution  $N(0,1)$ . The expression value of

299 the gene with six isoforms was averaged by the following six isoforms, i.e., one isoform  
300 associated with phenotype and the other five random isoforms simulated by the standard normal  
301 distribution  $N(0,1)$  (see details in **Materials and Methods**). Based on the four scenarios  
302 mentioned above, we used six different parameter combinations to simulate six different cases,  
303 and each parameter combination was simulated 100 times to evaluate the statistical power. As  
304 shown in **Table 1**, the power of the association test based on phenotype-associated isoform-level  
305 eQTLs was the highest of all cases. The simulation results implied that isoform-level eQTLs were  
306 more powerful than gene-level eQTLs in association analysis.

307

308 **Table 1:** Different simulation scenarios and corresponding power in association analysis.

| Parameter combination |     | Power  |              |               |               |
|-----------------------|-----|--------|--------------|---------------|---------------|
| Ev <sup>a</sup>       | Eg  | AllVar | isoform eQTL | eQTL_3isoform | eQTL_6isoform |
| 0                     | 0.1 | 0      | <b>0.01</b>  | 0             | 0.01          |
| 0.1                   | 0.1 | 0.03   | <b>0.05</b>  | 0.02          | 0.01          |
| 0.15                  | 0.1 | 0.03   | <b>0.25</b>  | 0.04          | 0.02          |
| 0.05                  | 0.2 | 0.26   | <b>0.39</b>  | 0.06          | 0.01          |
| 0.1                   | 0.2 | 0.13   | <b>0.22</b>  | 0.02          | 0.03          |
| 0.15                  | 0.2 | 0.68   | <b>0.96</b>  | 0.45          | 0.11          |

309 <sup>a</sup> Ev denotes the effect size of independent variants on gene expression. Eg denotes the effect size  
310 of gene expression on phenotype. More details can be seen in Methods.

311

312 **Broaden the application of MCGA by using gene-level eQTLs and isoform-level eQTLs**  
313 **(MCGA\_eQTL and MCGA\_isoQTL)**

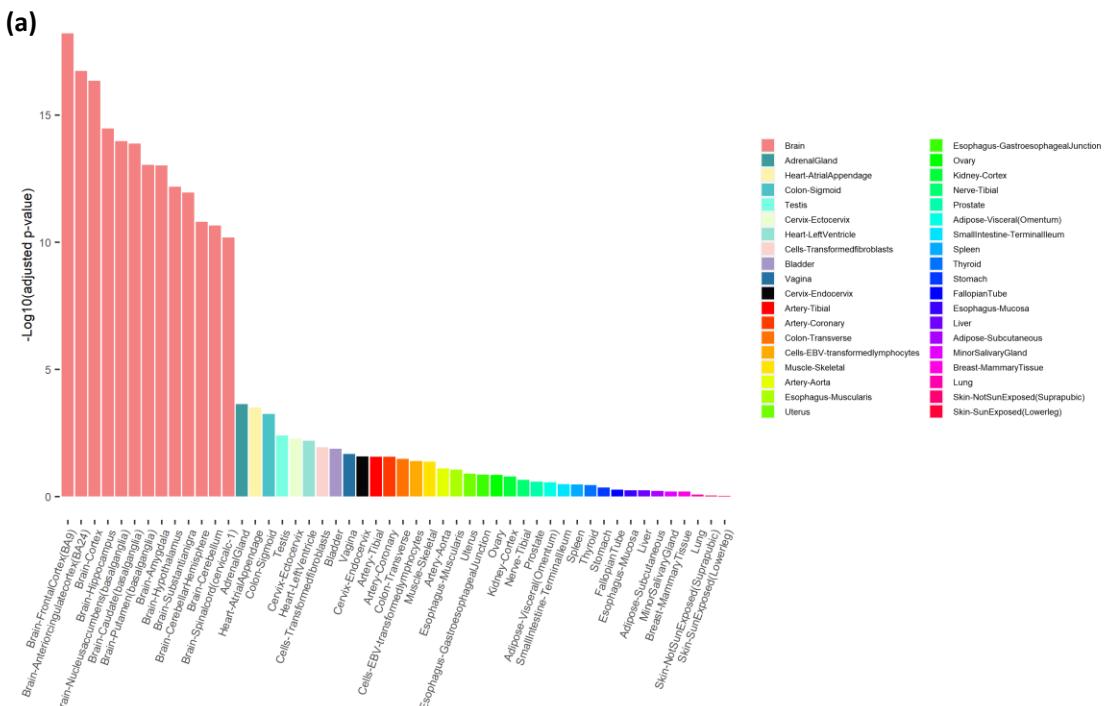
314 In the previous simulation study, we demonstrated that association analysis based on isoform-level  
315 eQTLs was more powerful than gene-level eQTLs in each simulation scenario. To further test this  
316 conclusion in real data and identify more potential susceptibility genes for schizophrenia, we first

317 adopted the prioritized phenotype-associated tissues of schizophrenia by DESE<sup>22</sup>, a model to  
318 predict potentially phenotype-associated tissues based on gene selective expression analysis. The  
319 DESE results showed that all thirteen brain tissues were significantly associated with  
320 schizophrenia and ranked the top (**Figure 7a**). For the sake of simplicity, we then computed  
321 gene-level eQTLs of the top-five tissues based on gene-level expression profiles and isoform-level  
322 eQTLs of the top-five tissues based on transcript-level expression profiles, respectively.  
323 Hereinafter, the gene whose expression is associated with at least one SNP was denoted as eGene,  
324 and the gene with an isoform whose expression is associated with at least one SNP was denoted as  
325 sGene. Then we performed the improved conditional gene-based association analysis based on  
326 gene-level eQTLs and isoform-level eQTLs resulted from the corresponding tissues. In each of the  
327 top-five tissues, we found the number of potential susceptibility sGenes identified by  
328 MCGA\_isoQTL was larger than that of potential susceptibility eGenes identified by  
329 MCGA\_eQTL under the same filter cutoff 2.5E-6 (**Figure 7b**, see details in **Table S4** and **S5**).  
330 Besides, we found a considerable number of common genes between the estimated eGenes set and  
331 sGenes set in each of the top-five tissues (**Figure 7b**).  
332

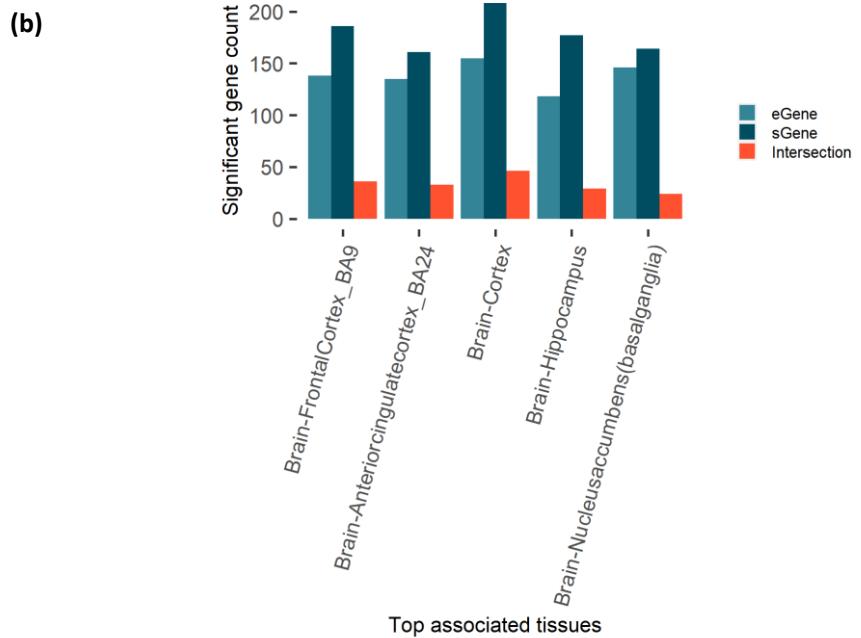
333 We also performed the GO enrichment analysis to further investigate the functional annotations of  
334 these potential susceptibility eGenes and sGenes. For the eGene set in each of the top-five  
335 associated tissues, we found only the eGenes identified based on the gene-level eQTLs of  
336 Brain-FrontalCortex (BA9) had GO enrichment terms (**Figure 7c**). For the sGene set in each of  
337 the top-five associated tissues, we found the potential susceptibility sGenes in  
338 Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus all

339 had different GO enrichment terms (**Figure 7d**). We further combined the potential susceptibility  
340 eGenes and sGenes of all top-five tissues, respectively. Then we performed GO enrichment  
341 analysis based on the combined eGene set and sGene set. We found that both the eGene set and  
342 sGene set were enriched with many neuronal-, dendrite- or synaptic signaling-related GO terms  
343 (see details in **Table S6**). Then we searched the PubMed database with the combined eGene set  
344 (578 unique genes) and sGene set (696 unique genes), and found 133 of the 578 (~ 23.0%) and  
345 168 of the 696 (~ 24.1%) potential susceptibility genes estimated by MCGA\_eQTL and  
346 MCGA\_isoQTL had at least one search hit, respectively (see details in **Table S7** and **S8**). The  
347 biologically sensible GO enrichment results and the PubMed search results both implied that the  
348 potential susceptibility sGenes and eGenes might have strong associations with schizophrenia.

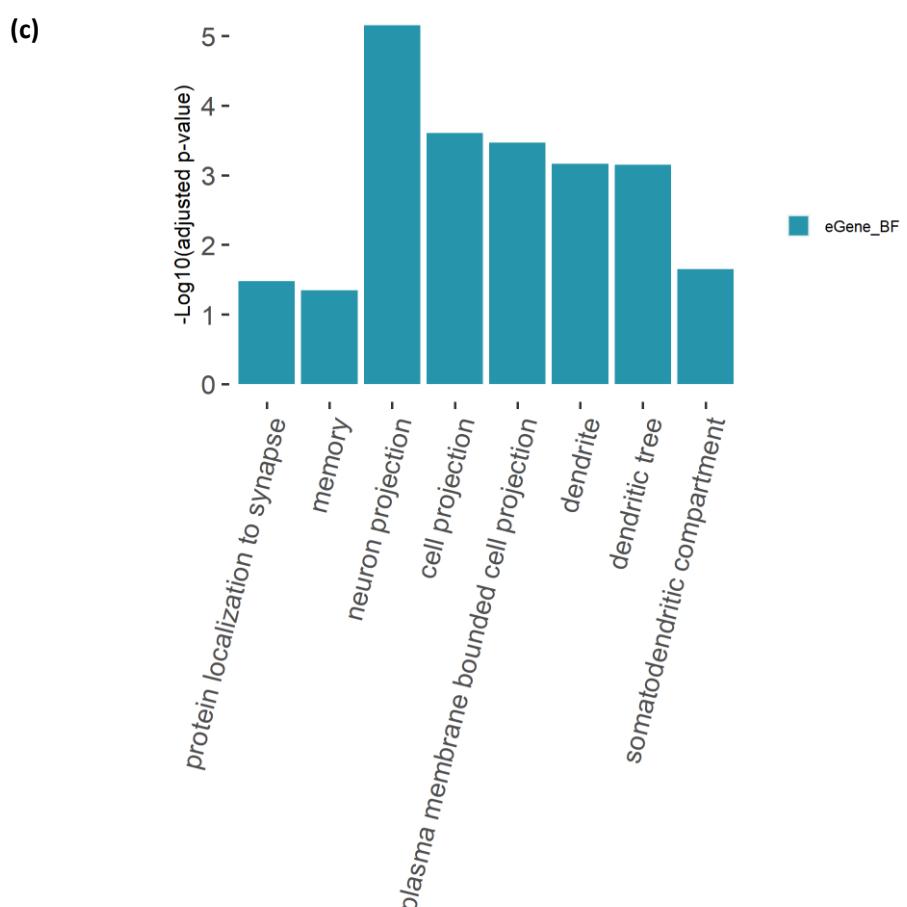
349



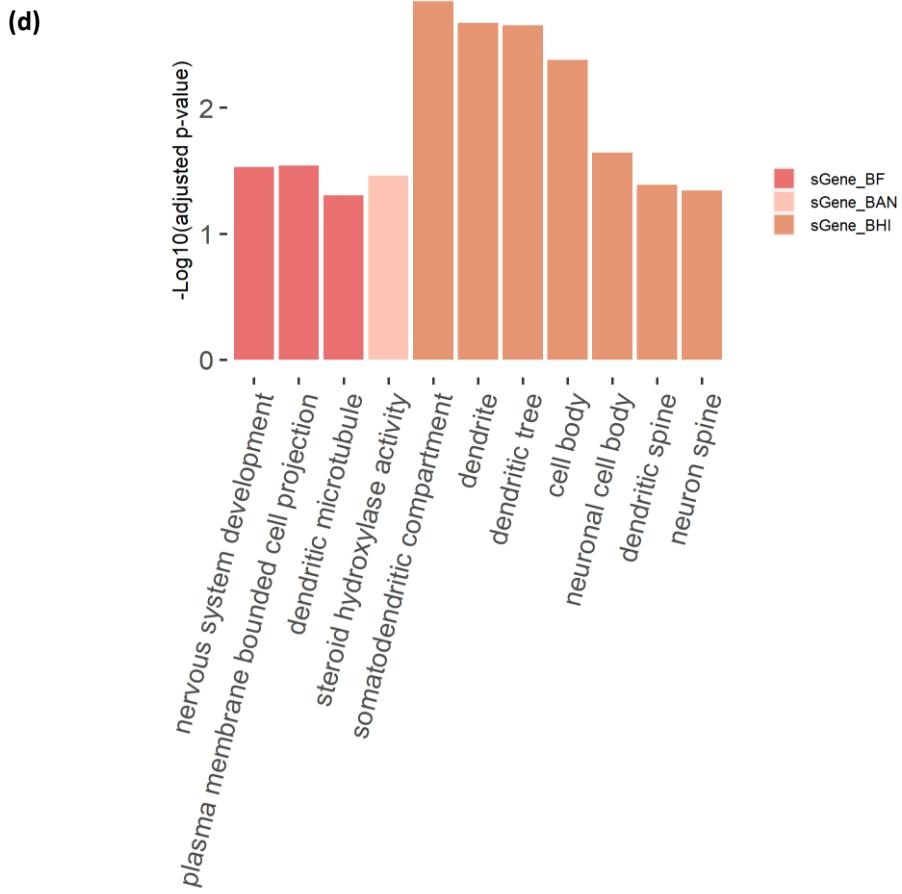
350



351



352



353

354 **Figure 7: Potentially associated tissues of schizophrenia and the characterization of potential**  
355 **susceptibility genes in corresponding tissues. a)** The statistical significance of tissues estimated  
356 to be associated with schizophrenia. The X-axis denotes the tissue names. The Y-axis means the  
357 negative  $\log_{10}(p\text{-value})$  of the Wilcoxon rank-sum test. **b)** The comparison of eGenes and sGenes  
358 in each of the top-five associated tissues. **c)** The GO enrichment terms of eGenes in Brain-  
359 FrontalCortex(BA9). BF: Brain-FrontalCortex(BA9). **d)** The GO enrichment terms of sGenes in  
360 Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus. BF:  
361 Brain-FrontalCortex(BA9). BAN: Brain-Anteriorcingulatecortex(BA24). BHI:  
362 Brain-Hippocampus.

363

364 **The advantages of MCGA\_isoQTL versus MCGA\_Dist and MCGA\_eQTL**

365 The connectivity score of a gene in the weighted co-expression network might imply its real  
366 association with other genes, and highly connected genes are often defined as hub genes. These  
367 hub genes are located in or near the center of corresponding co-expression modules and might

368 play important roles in trait development<sup>23</sup>. We built an unsigned weighted co-expression network  
369 for each top-five tissue and investigated the normalized intra-module connectivity of potential  
370 susceptibility genes in each co-expression module. We found that the normalized intra-module  
371 connectivity scores of potential susceptibility genes in Brain-FrontalCortex\_BA9 and  
372 Brain-Nucleusaccumbens(basal ganglia) identified by MCGA\_eQTL were significantly larger  
373 than that of non-susceptibility genes. Interestingly, the normalized intra-module connectivity  
374 scores of potential susceptibility genes identified by MCGA\_isoQTL were significantly larger  
375 than that of non-susceptibility genes in all the top-five schizophrenia-associated tissues (Wilcoxon  
376 rank-sum test p<0.05) (Table 2).

377

378 **Table 2:** Comparison of the normalized intra-module connectivity of potential susceptibility genes  
379 identified by MCGA\_eQTL and MCGA\_isoQTL.

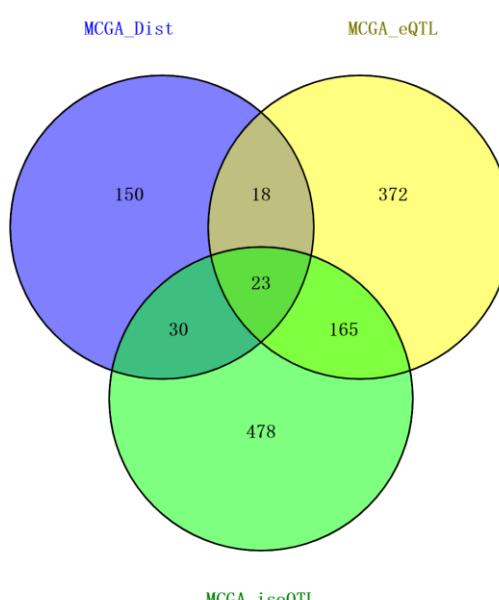
380

| Tissue Name                                  | Susceptibility non-susceptibility genes vs. by MCGA_eQTL |               | Susceptibility non-susceptibility genes vs. by MCGA_isoQTL |                  |
|----------------------------------------------|----------------------------------------------------------|---------------|------------------------------------------------------------|------------------|
|                                              | statistic                                                | p-value       | statistic                                                  | p-value          |
| Brain-FrontalCor<br>tex(BA9)                 | 2.4374                                                   | <b>0.0148</b> | 2.5426                                                     | <b>0.0110</b>    |
| Brain-Anteriorci<br>ngulatecortex(B<br>A24)  | 1.4303                                                   | 0.1526        | 4.0558                                                     | <b>5.0000E-5</b> |
| Brain-Cortex                                 | 1.4173                                                   | 0.1564        | 1.9946                                                     | <b>0.0461</b>    |
| Brain-Hippocam<br>pus                        | 1.8439                                                   | 0.0652        | 2.6019                                                     | <b>0.0093</b>    |
| Brain-Nucleusac<br>cumbens(basalga<br>nglia) | 2.2587                                                   | <b>0.0239</b> | 3.4861                                                     | <b>0.0005</b>    |

381

382 We next compared the potential susceptibility genes predicted by MCGA\_Dist, MCGA\_eQTL and  
383 MCGA\_isoQTL. As shown in **Figure 8**, twenty-three genes were collectively predicted to be  
384 susceptible to schizophrenia by the three models of MCGA. As MCGA\_isoQTL could output

385 susceptibility gene-isoform pairs of corresponding tissues, we further got the corresponding  
386 susceptibility isoforms of twenty-three genes in corresponding tissues (see details in **Table S9**).  
387 Interestingly, we found that susceptibility isoforms for a gene varied greatly in different tissues.  
388 For example, *ABCC8* and *LINC01415* both had one susceptibility isoform in the top-five tissues.  
389 *ENST00000529967* of *ABCC8* was significantly associated with schizophrenia only in  
390 Brain-Hippocampus, while *ENST00000587320* of *LINC01415* was significantly associated with  
391 schizophrenia in Brain-Cortex, Brain-FrontalCortex(BA9) and Brain-Nucleusaccumbens(basal  
392 ganglia). We also found that different isoforms of the same gene were predicted to be significantly  
393 associated with schizophrenia in different tissues, such as *ENST00000377600* of *BTN2A1*  
394 significantly associated with schizophrenia in Brain-Cortex and *ENST00000312541* of *BTN2A1*  
395 significantly associated with schizophrenia in Brain-FrontalCortex(BA9). MCGA\_isoQTL can  
396 help predict potential susceptibility genes and isoforms of corresponding phenotype-associated  
397 tissues at a more precise level.



398  
399 **Figure 8: Comparison of the potential susceptibility genes predicted by MCGA\_Dist,**  
400 **MCGA\_eQTL and MCGA\_isoQTL.** The venn plot was used to show the intersection genes and

401 unique genes among MCGA\_Dist, MCGA\_eQTL and MCGA\_isoQTL.

402

403 Except for the advantage of identifying the potential susceptibility isoforms, we found that some  
404 of the susceptibility genes exclusively predicted by MCGA\_isoQTL were also biologically  
405 sensible. We found 478 susceptibility genes exclusively predicted by MCGA\_isoQTL (**Figure 8**).

406 We searched the PubMed database with these exclusive genes. The search results showed that 101  
407 of the 478 (21.1%) genes each had at least one search hit which reported the associations of these  
408 exclusive genes with schizophrenia. Moreover, 15 of the 478 (3.1%) exclusive genes each had at  
409 least ten different supported papers in PubMed. Interestingly, transcription factor 4, i.e., *TCF4*,  
410 was reported by 100 papers in the PubMed database. *TCF4* is broadly expressed and may play an  
411 important role in nervous system development [provided by RefSeq, Jul 2016]. The important  
412 examples of biologically sensible genes exclusively identified by MCGA\_isoQTL were listed in

413 **Table 3.**

414

415 **Table 3:** The important examples of potential susceptibility genes exclusively predicted by  
416 MCGA\_isoQTL with at least ten search hits in PubMed.

| Unique sGene <sup>b</sup> | # of PubMed paper hits |
|---------------------------|------------------------|
| TCF4                      | 100                    |
| RANGAP1                   | 100                    |
| FUT2                      | 97                     |
| DRD1                      | 63                     |
| COPE                      | 36                     |
| NCAM1                     | 20                     |
| AS3MT                     | 19                     |
| FGFR1                     | 18                     |
| DPYSL2                    | 17                     |
| PCM1                      | 16                     |
| BRD1                      | 15                     |
| BDNF-AS                   | 13                     |
| GABRA2                    | 12                     |
| ADRA1A                    | 11                     |

417 <sup>b</sup>**Unique sGene** means potential susceptibility gene exclusively predicted by MCGA\_isoQTL.

418

419 Taken together, from the perspective of WGCNA, the statistical significance of the comparison  
420 between potential susceptibility genes and non-susceptibility genes implied that these  
421 susceptibility genes identified based on isoform-level eQTLs might play more important roles in  
422 the weighted gene co-expression network of corresponding tissues. Our results also suggested that  
423 incorporating with isoform-level eQTLs can help predict more potential susceptibility genes than  
424 gene-level eQTLs in each potentially phenotype-associated tissue. Our results pointed that  
425 MCGA\_isoQTL could help find some novel and important susceptibility genes which cannot be  
426 found by MCGA\_Dist and MCGA\_eQTL. Moreover, based on the isoform-level eQTLs of each  
427 phenotype-associated tissue, the MCGA\_isoQTL strategy can also predict the potential  
428 susceptibility isoforms in the corresponding tissues.

429

430 **The druggability of the potential susceptibility genes identified by MCGA**

431 Since drug target genes with genetic support are twice or as likely to be approved than target genes  
432 with no known genetic associations<sup>24,25</sup>, we searched the DrugBank 5.0 database<sup>26</sup> and found that  
433 nine potential susceptibility genes identified by MCGA were the target genes of multiple  
434 FDA-approved antipsychotics (**Table 4**). Several most popular target genes of approved  
435 antipsychotics, i.e., *DRD2*, *DRD1* and *ADRA1A*, were identified by different MCGA models and  
436 the results suggested that the three models could complement each other to identify more potential  
437 target genes.

438

439 **Table 4:** The potential susceptibility genes that are also the target genes of approved  
440 antipsychotics.

| Target gene | # of approved antipsychotics | Models                  |
|-------------|------------------------------|-------------------------|
| DRD2        | 32                           | MCGA_Dist & MCGA_eQTL   |
| DRD1        | 22                           | MCGA_isoQTL             |
| ADRA1A      | 21                           | MCGA_isoQTL             |
| CHRM3       | 10                           | MCGA_eQTL               |
| ADRA2B      | 10                           | MCGA_eQTL               |
| HTR3A       | 8                            | MCGA_eQTL               |
| OPRD1       | 1                            | MCGA_Dist               |
| GABRA2      | 1                            | MCGA_isoQTL             |
| CYP2D6      | 1                            | MCGA_eQTL & MCGA_isoQTL |

441

442 To further investigate the druggability of the potential susceptibility genes, we searched the Drug

443 Gene Interaction database (DGIdb v4.2.0)<sup>27</sup> and filtered the drug-gene interaction terms with at

444 least one supported PubMed paper. After the filtration, we kept 30,072 unique drug-gene

445 interaction terms and found 679 unique drug-gene interaction terms for 34 FDA-approved

446 antipsychotics (see details in **Table S10**). Then we put the full list of potential susceptibility genes

447 (by MCGA\_Dist, MCGA\_eQTL and MCGA\_isoQTL, respectively) into DGIdb to investigate if

448 the “antipsychotic”- “susceptibility gene” interactions were enriched in DGIdb. As shown in **Table**

449 **5**, we found that “antipsychotic” - “potential susceptibility genes” identified by the three models

450 of MCGA were all significantly enriched in DGIdb. Moreover, as shown in **Figure 8**, 372 out of

451 578 and 478 out of 696 potential susceptibility genes were exclusively identified by

452 MCGA\_eQTL and MCGA\_isoQTL, respectively. We found 253 unique drug-gene interaction

453 terms for susceptibility genes exclusively predicted MCGA\_eQTL (see details in **Table S11**), and

454 17 of 253 interaction terms were antipsychotics-gene interactions (hypergeometric distribution test

455  $p$ -value= 7.05E-5). We also found 291 unique drug-gene interaction terms for susceptibility genes

456 exclusively predicted MCGA\_isoQTL (see details in **Table S12**), and 28 of 291 interaction terms  
457 were antipsychotics-gene interactions (hypergeometric distribution test  $p$ -value = 1.48E-10). We  
458 also investigated the potential druggability of the susceptibility genes identified by MCGA.  
459 Among the 42 potentially druggable gene categories in DGIdb, we found the top three potentially  
460 druggable categories for the susceptibility genes identified by MCGA\_Dist, MCGA\_eQTL and  
461 MCGA\_isoQTL were all “DRUGGABLE GENOME” (63 vs. 129 vs. 137. The number denotes  
462 the gene set size belonging to this category, same as below), “ENZYME” (33 vs. 68 vs. 90) and  
463 “KINASE” (22 vs. 40 vs. 60) (see details in **Table S13**). Taken together, our results showed that  
464 some of the potential susceptibility genes identified by MCGA had the potential to be druggable,  
465 and the application of eQTLs (especially the isoform-level eQTLs) could aid MCGA to identify  
466 more potentially druggable genes.

467

468 **Table 5:** The enrichment of drug-gene interaction terms in DGIdb for susceptibility genes  
469 identified by MCGA.

| Models      | # of total drug-gene interaction terms | # of antipsychotics-gene interaction terms | Enrichment $p^c$ |
|-------------|----------------------------------------|--------------------------------------------|------------------|
| MCGA_Dist   | 332                                    | 33                                         | 1.37E-12         |
| MCGA_eQTL   | 831                                    | 64                                         | 1.39E-17         |
| MCGA_isoQTL | 792                                    | 46                                         | 6.66E-9          |

470 <sup>c</sup>Enrichment  $p$  denotes the  $p$ -value of hypergeometric distribution test.

471

## 472 Discussion

473 In this study, we proposed a multi-strategy conditional gene-based association framework, MCGA,  
474 based on a new correlation matrix of chi-squared statistics to identify the potential susceptibility

475 genes and isoforms for complex phenotypes. Comparing with the unconditional association test  
476 and likelihood ratio test, MCGA showed a lower type I error rate and higher statistical power.  
477 Since MCGA is a gene-based method, in this study, we adopted three strategies to map a variant to  
478 a gene, i.e., mapping based on physical position, gene-level eQTLs and isoform-level eQTLs. We  
479 implemented these three mapping strategies in corresponding three conditional gene-based  
480 association models, i.e., MCGA\_Dist, MCGA\_eQTL and MCGA\_isoQTL, to predict the potential  
481 susceptibility genes for schizophrenia.

482

483 MCGA\_Dist could output a list of genes, while MCGA\_isoQTL and MCGA\_eQTL could produce  
484 a list of genes for each potential phenotype-associated tissue because of the usage of gene-level  
485 eQTLs and isoform-level eQTLs of each tissue. Though MCGA\_Dist predicted a relatively small  
486 size of susceptibility genes, these genes were enriched with plenty of neuronal- or synaptic  
487 signaling-related GO terms. Similar results of other research were obtained by gene-set analyses,  
488 which demonstrated that genetic variants associated with schizophrenia were enriched with  
489 synaptic pathways<sup>28</sup>. Besides, considerable amounts of these genes had been reported by many  
490 research papers in the PubMed database to support their associations with schizophrenia.

491

492 Since MCGA\_Dist might omit some remote but important gene-variant associations, we improved  
493 MCGA\_Dist with MCGA\_eQTL and MCGA\_isoQTL. We performed a simulation study and  
494 demonstrated that isoform-level eQTLs were more powerful than gene-level eQTLs in association  
495 analysis. Moreover, we found in real data that the size of the susceptibility gene set for  
496 schizophrenia predicted by MCGA\_isoQTL was larger than MCGA\_eQTL in each

497 phenotype-associated tissue under the same threshold. Further, we found MCGA\_isoQTL had two  
498 advantages over MCGA\_eQTL and MCGA\_Dist. First, several important potential susceptibility  
499 genes were exclusively predicted by MCGA\_isoQTL. For example, fifteen potential susceptibility  
500 genes exclusively predicted by MCGA\_isoQTL each had at least ten search hits in PubMed, which  
501 implied these genes were popular in schizophrenia studies. Second, to our best knowledge,  
502 MCGA\_isoQTL was the first conditional gene-based association approach to produce a list of  
503 phenotype-associated isoforms (or transcripts).

504

505 In addition, we investigated the druggability of the susceptibility genes for schizophrenia  
506 identified by MCGA. Several susceptibility genes identified by MCGA were also the popular  
507 target genes of multiple FDA-approved antipsychotics. Besides, the “susceptibility gene”-  
508 “antipsychotics” interactions were enriched in DGIdb. The druggability of the important  
509 susceptibility genes, especially the sGenes identified based on isoform-level eQTLs, provided  
510 more credible supports for the utility of MCGA.

511

512 Our framework might have three potential applications. First, MCGA\_Dist can be used to predict  
513 potential susceptibility genes and isoforms for other complex phenotypes. Second, based on the  
514 assumption that the distribution of expression profiles of true susceptibility genes might change  
515 before and after therapeutic drug treatment, MCGA\_Dist can be used to perform drug  
516 repositioning analysis based on the drug perturbed expression profile. Third, since MCGA\_eQTL  
517 and MCGA\_isoQTL can help predict potential susceptibility genes in each potential  
518 phenotype-associated tissue, our framework can help perform synergistic drug combination

519 prediction to screen drugs that can simultaneously perturb the expression of potential  
520 susceptibility genes in each potential phenotype-associated tissue.

521

522 The present study was limited by several factors. First, the moderate sample size (ranging from  
523 129 ~ 205) and mixed populations in GTEx v8 might both reduce the accuracy of  
524 gene/isoform-level eQTLs. Future genetic studies based on increased sample sizes might alleviate  
525 this problem. Second, the size of the susceptibility genes identified by MCGA\_eQTL (578) and  
526 MCGA\_isoQTL (696) was a little larger than conventional studies. One of the reasons might be  
527 that five brain regions were involved in the present study, and each brain region might have very  
528 different dysfunctional genes associated with schizophrenia. We also used MAGMA to identify  
529 the susceptibility genes of schizophrenia with the same GWAS summary statistics and found that  
530 MAGMA also identified ~ 600 potential susceptibility genes with the basic parameter setup (see  
531 details in **Table S14**). Susceptibility genes identified by MCGA\_eQTL and MCGA\_isoQTL had  
532 many biologically meaningful annotations (such as neuronal- or synaptic signaling-related terms)  
533 in the GO databases, and some susceptibility genes were the target genes of multiple  
534 antipsychotics, and more than 20% of the susceptibility genes had been previously reported by  
535 other schizophrenia research in the PubMed database. Though these potential susceptibility genes  
536 were lack of systematically experimental validation, we shared the potential susceptibility genes in  
537 Table **S1**, **S4** and **S5** and encouraged follow-up studies to evaluate the function and roles of these  
538 susceptibility genes in the development of schizophrenia.

539

540 In conclusion, in this study, we proposed a new statistical framework to predict potential

541 susceptibility genes for complex phenotypes based on GWAS summary statistics and  
542 gene/isoform-level eQTLs in a multi-tissue context. The application of our framework to  
543 schizophrenia revealed many novel susceptible and druggable genes. Besides, the usage of  
544 isoform-level eQTLs can be an important supplement for the conventional gene-based approach.  
545 The framework was packaged and implemented in our integrative platform KGGSEE  
546 (<http://pmglab.top/kggsee/#/>). We hope our framework can facilitate researchers to gain more  
547 insights into the phenotype-associated genes and isoforms of complex phenotypes.

548

549 **Materials and Methods**

550 **The new effective chi-squared statistics (ECS) for conditional gene-based association  
551 analysis**

552 We improved our previously proposed effective chi-squared test<sup>10</sup> for a more efficient conditional  
553 gene-based association analysis based on a new correlation matrix of chi-squared statistics. The  
554 improved effective chi-squared statistics had two methodological advances to address the potential  
555 inflation issue, i.e., a type I error-controlled correlation matrix of the observed chi-squared  
556 statistics and a non-negative least square solution for the independent chi-squared statistics. The  
557 reasoning process was as follows. Suppose there were  $n$  loci in a set of genes. One wanted to  
558 calculate the association  $p$ -value of another physically nearby gene (containing  $m$  loci)  
559 conditioning on the set of genes ( $n$  loci). The first step of the conditional analysis was to produce  
560 effective chi-squared statistics for the set of genes ( $n$  loci) and all the genes ( $n+m$  loci in total).  
561 Each locus had a  $p$ -value for phenotype association in the GWAS. The  $p$ -values were converted to

562 corresponding chi-squared statistics with the degree of freedom 1. According to Li et al.<sup>10</sup>, each  
563 locus could be assumed to have a virtually independent chi-squared statistic. An observed  
564 marginal chi-squared statistic of a locus was equal to the summation of its virtually independent  
565 chi-squared statistic and the weighted virtually independent chi-squared statistic of nearby loci.  
566 The weight was related to the chi-squared statistics correlation, which was a key parameter of the  
567 analysis. The correlation of chi-squared statistics between two loci was approximated by the  
568 absolute value of genotypic correlation to the power of  $c$ , i.e.,  $|r|^c$ . Here, we derived that the key  
569 parameter, i.e., exponent  $c$ , ranged from 1 to 2, corresponding to different non-centrality  
570 parameters of a non-central chi-squared distribution (See the derivation in the next section).  
571 According to Li et al.<sup>10</sup>, the  $n$  virtually independent chi-squared statistics of the gene set could be  
572 approximated by a linear transformation of the  $n$  observed chi-squared statistics (**Formula (1)**),

573

$$\begin{bmatrix} \hat{x}_1^2 & d_1 \\ \dots & \dots \\ \hat{x}_n^2 & d_n \end{bmatrix} \approx \begin{bmatrix} 1 & \dots & |r_{1,n}|^c \\ \dots & 1 & \dots \\ |r_{n,1}|^c & \dots & 1 \end{bmatrix}^{-1} \times \begin{bmatrix} x_1^2 & 1 \\ \dots & \dots \\ x_n^2 & 1 \end{bmatrix} \quad (1)$$

574 ,

575

576 where  $\hat{x}_n^2 (\geq 0)$ ,  $d_n (>0)$ ,  $x_n^2$  and  $|r_{i,j}|$  denoted a virtually independent chi-squared statistic,  
577 degree of freedom of the virtually independent chi-squared statistic, an observed chi-squared  
578 statistic and the absolute value of the LD correlation coefficient (approximated by genotypic  
579 correlation), respectively. The effective chi-squared statistic  $\hat{S}_n$  with the degree of freedom  $\hat{d}_n$   
580 of the  $n$  loci was then obtained by **Formula (2)**:

581

582 
$$\begin{cases} \hat{S}_n = \sum_{i=1}^n \hat{x}_i^2 \\ \hat{d}_n = \sum_{i=1}^n d_i \end{cases} \quad (2)$$

583

584 The effective chi-squared statistics ( $\hat{S}_{n+m}$ ) and degree of freedom ( $\hat{d}_{n+m}$ ) of the  $n+m$  loci could be  
585 calculated in the same way.

586 The effective chi-squared statistics of the  $m$  loci conditioning on the  $n$  loci was then approximated  
587 by **Formula (3)**,

588

589 
$$\hat{S}_{m|n} = \hat{S}_{n+m} - \hat{S}_n \quad (3)$$

590

591 with the degree of freedom  $\hat{d}_{m|n} = \hat{d}_{n+m} - \hat{d}_n$ .

592 Because  $\hat{d}_{m|n}$  was no longer an integer, we used the Gamma distribution to calculate the  
593  $p$ -values. Given the above statistics and degree of freedom, the  $p$ -value was equal to  $F(x \geq$   
594  $\frac{\hat{S}_{m|n}}{2}, \frac{\hat{d}_{m|n}}{2}, 2)$ , where the  $F(x)$  function was the cumulative distribution function of a Gamma  
595 distribution.

596

597 Because the virtually independent chi-squared statistics and degrees of freedom were expected to  
598 be larger than 0, we adopted a sequential coordinate-wise algorithm to approximate them<sup>29</sup>. This  
599 algorithm avoided unstable solutions in the above linear **Formula (1)** due to stochastic errors in  
600 the correlation matrix and observed chi-squared statistics.

601

602 After the above multiple approximations, it was still difficult to obtain the analytic solution for the  
603 exponent  $c$  in **Formula (1)**. We proposed a grid search algorithm to find a favorable value of

604 exponent  $c$  to control type I error rates of the effective chi-squared tests. The error rate was  
605 examined by divergence from a uniform distribution between an obtained and theoretical top 1%  
606  $p$ -values given a  $c$  value, measured as mean log fold change (MLFC)<sup>30</sup>. In the grid search process,  
607 we increased  $c$  from 1.00 to 2.00 by an interval of 0.01 because it ranged from 1 to 2 (see the  
608 derivation in the **Materials and Methods**). The  $c$  value leading to the minimal MLFC was defined  
609 as the favorable  $c$  value. We considered in total 84 parameter settings, i.e. a combination of three  
610 different sample sizes (10,000, 20,000 and 40,000) and 14 different variant sizes (10, 30, 50, 80,  
611 100, 125, 150, 200, 250, 300, 400, 500, 800, and 1000) for both binary and continuous traits,  
612 respectively. For a parameter setting, 40,000 datasets were simulated and used to produce  $p$ -values  
613 to determine the favorable  $c$  value for the setting. A region on chromosome 2 [chr2:  
614 169428016-189671923] was randomly drawn for the simulation. The allele frequencies and LD  
615 structure of variants in the European panel of the 1000 Genomes Project were used as a reference  
616 to simulate genotype data by the HapSim algorithm<sup>31</sup>. According to either the Bernoulli  
617 distribution or Gaussian distribution, each subject was randomly assigned a phenotype value under  
618 the null hypothesis. The Wald test under either logistic regression or linear regression in which the  
619 major and minor allele was encoded as 0 and 1 was used to produce the association  $p$ -value at  
620 each variant. The  $p$ -values of the variants were then analyzed by the effective chi-squared test for  
621 the gene-based association analysis.

622

623 **Approximate the correlation of chi-square statistics under the alternative hypothesis**

624 Let two normal random variables  $\mathbf{X} \sim N(\boldsymbol{\mu}_1, \boldsymbol{\sigma}_1^2)$  and  $\mathbf{Y} \sim N(\boldsymbol{\mu}_2, \boldsymbol{\sigma}_2^2)$  have covariance  $\boldsymbol{c}$ . Note that

625 a squared normal random variable has non-central chi-square distribution and the squared mean of

626 the former is called noncentrality parameter. The two variables can also be factorized as

627  $= \mu_1 + \sigma_1 U, Y = \mu_2 + \sigma_2 (\rho U + \sqrt{1 - \rho^2} V)$  where  $U, V \stackrel{iid}{\sim} N(\mathbf{0}, \mathbf{1})$  and  $\rho = c/\sigma_1\sigma_2$ .

628

629 Then we can calculate the co-variances of the two non-central chi-square variables  $X^2$  and  $Y^2$  by

630 the factorized variables,  $\text{cov}(X^2, Y^2) = \frac{4\mu_1\mu_2c+2c^2}{\sqrt{4\mu_1^2\sigma_1^2+2\sigma_1^4}\sqrt{4\mu_2^2\sigma_2^2+2\sigma_2^4}}$ . Suppose  $X$  is the Z score of

631 the true causal variant and  $Y$  is the Z score of a non-functional variant in LD (coefficient  $r$ ) with

632 the causal variant. One can assume  $\mu_2 = r\mu_1, \sigma_1^2 = 1, \sigma_2^2 = 1$  and  $c = r$ . Therefore, the

633 correlation of  $X^2$  and  $Y^2$  can be simplified as,  $\text{cor}(X^2, Y^2) = \frac{4r^2\mu_1^2+2r^2}{\sqrt{4\mu_1^2+2}\sqrt{4\mu_1^2r^2+2}}$ .

634

635 Under the null hypothesis,  $\mu_1 = \mathbf{0}$  then  $\text{cor}(X^2, Y^2) = r^2$ . Under the alternative hypothesis of

636 large scaled sample, the  $\mu_1$  or the noncentrality parameter becomes very large, correlation of  $X^2$

637 and  $Y^2$  become close to  $r$ .  $\mu_1 \rightarrow \infty, \text{cor}(X^2, Y^2) = \frac{4r}{\sqrt{4+\frac{2}{\mu_1^2}}\sqrt{4+\frac{2}{\mu_1^2r^2}}} + \frac{2r^2}{\sqrt{4\mu_1^2+2}\sqrt{4\mu_1^2r^2+2}} \rightarrow r$ .

638 Overall, the correlation between the two (non-central) chi-square ranges from  $r^2$  to  $r$ .

639 **The conditional gene-based association analysis for genome-wide association study**

640 In a GWAS, all genes were firstly calculated with the  $p$ -values of unconditional gene-based

641 association test using the above effective chi-squared statistics. For a given  $p$ -value cutoff, the

642 significant genes were extracted and subjected to the conditional gene-based association analysis.

643 When there were multiple significant genes in an LD block, the genes were conditioned one by

644 one in a pre-defined order. In the present conditional analysis, the order of the gene was defined

645 according to the unconditional  $p$ -value of the gene. Here we assigned the genes within 5 Mb into

646 the same LD block. The conditional *p*-value of the first gene was defined as its unconditional  
647 *p*-value. The conditional *p*-value of the second gene was obtained by conditioning on the first gene,  
648 and that of the third gene was obtained by conditioning on the top two genes. The conditional  
649 *p*-values of subsequent genes were calculated according to the same procedure.

650

651 **Simulations for investigating type I error and power of the conditional gene-based  
652 association analysis**

653 Extensively independent computer simulations based on a different reference population (i.e.,  
654 EAS) in different genomic regions were performed to investigate type I error and the power of the  
655 conditional gene-based association test. To approach the association redundancy pattern in  
656 realistic scenarios, we used real genotypes and simulated phenotypes. The high-quality genotypes  
657 of 2,507 Chinese subjects from a GWAS were used<sup>32</sup>, and phenotypes of subjects were simulated  
658 according to the genotypes under an additive model. Given total variance explained by *n*  
659 independent variants,  $V_g$ , the effect of an allele at a bi-allelic variant was calculated by  $a =$   
660  $\sqrt{V_g / [\sum_{i=1}^n 2P_{A_i}(1 - P_{A_i})]}$ , where  $P_{A_i}$  was the frequency of alternative alleles. The total expected  
661 effect *A* of a subject was equal to  $a^*[\text{the number of alternative alleles of all the } n \text{ variants}]$ . Each  
662 subject's phenotype was simulated by  $P=A+e$ , where *e* was sampled from a normal distribution  
663  $N(0, 1-V_g)$ . We randomly sampled three pairs of genes, i.e., *SIPA1L2* vs. *LOC729336*, *CACHD1* vs.  
664 *RAVER2*, and *LOC647132* vs. *FAM5C*. The three pairs of genes represented three scenarios where  
665 the nearby gene (i.e., the first gene) had similar (*SIPA1L2* vs. *LOC729336*), larger (*CACHD1* vs.  
666 *RAVER2*) and smaller (*LOC647132* vs. *FAM5C*) variant size than the target gene (i.e., the second  
667 gene) in terms of SNP number, respectively. In the type I error investigation, the target gene had

668 no QTLs, while the nearby gene had one or two QTLs. In the investigation of the statistical power,  
669 both genes had QTLs.

670

671 For power comparison, the likelihood ratio test based on linear regression was adopted to perform  
672 the conditional gene-based association analysis with raw genotypes. In the full model, genotypes  
673 of all SNPs encoded as 0, 1, or 2 according to the number of alternative variants entered the  
674 regression model as explanatory variables. In the subset model, the SNPs of the nearby genes  
675 entered the regression model. The calculation of the likelihood ratio test was performed according  
676 to the conventional procedure. The R packaged “lmtest” (version 0.9.37) was adopted to perform  
677 the likelihood ratio test.

678

679 **Simulations for comparing the power of gene-level eQTLs and isoform-level eQTLs in  
680 gene-based association tests**

681 We compared the power of conventional gene-based association tests, gene-level eQTLs guided  
682 gene-based association tests and isoform-level eQTLs guided gene-based association tests by  
683 simulation studies. Assume some variants regulate gene expression, and the gene expression  
684 subsequently influences the phenotype. The same region on chromosome 2 [chr2:  
685 169428016-189671923] was considered for the simulation. In the EUR panel of 1000 Genomes  
686 Project<sup>33</sup>, this region contains 1600 common variants (MAF>0.05). Genotypes of the variants  
687 were simulated given allelic frequencies and LD correlation matrix according to the HapSim  
688 algorithm<sup>31</sup>. Phenotypes were simulated under a polygenic model of random effect<sup>34</sup>. According to  
689 severe LD pruning ( $r^2 < 0.01$ ), eighty-two independent variants were extracted from the 1600

690 variants. The SNPs' genotypes ( $s$ ) contributing to the phenotypes were then standardized as,

691  $g = (s - 2q)/\sqrt{2q(1 - q)}$ , where  $q$  was the allele frequency of alterative allele. Phenotypes were

692 simulated under a polygenic model of random effect<sup>34</sup>. We assumed 40% of the independent

693 causal variants ( $m_X$ ) regulated gene expression (total heritability  $h_X^2$ ). The expression of a gene (X)

694 was simulated according to **Formula (4)**:

695

696 
$$X = \sum_{i=1}^{m_X} g_i \beta_{X,i} + \epsilon_X, \quad (4)$$

697

698 where  $\beta_{1,i} \sim N(0, h_X^2/m_X)$  and  $\epsilon_X \sim N(0, 1 - h_X^2)$ .

699

700 The gene expression then contributed  $\delta$  to a phenotype (Y). The phenotype value was simulated

701 according to the **Formula (5)**:

702

703 
$$Y = \delta X + \epsilon_Y, \quad (5)$$

704

705 where  $\epsilon_Y \sim N(0, 1 - \delta^2)$ . Here Y was a continuous phenotype. For a binary phenotype, a cutoff  $t$

706 was set according to a given disease prevalence  $K$  under a standard normal distribution and the

707 liability threshold model<sup>35</sup>. Subjects with simulated Y values  $\geq t$  were set as patients, and others

708 were set as normal controls.

709

710 When a gene had multiple isoforms, we assumed one of the isoforms was associated with

711 phenotype and simulated expression values of the isoform according to the above regulation

712 model (**Formula (5)**). The expression values of the remaining isoforms were simulated by the  
713 standard normal distribution  $N(0,1)$ . The expression profile of a gene with multiple isoforms was  
714 averaged by the expression profiles of all the isoforms belonging to the gene. The gene-level  
715 eQTLs and isoform-level eQTLs were examined by the Wald test under the linear regression  
716 model. The variant-phenotype association analysis was performed based on the conventional  
717 association analysis procedure, and the statistical significance cutoff was set at  $p\text{-value}<0.001$ .  
718

#### 719 **Genome-wide association study of schizophrenia**

720 The GWAS summary statistics of schizophrenia included 53,386 cases and 77,258 controls of  
721 European ancestry (hg19 assembly). Genotypes in the CEU panel from the 1000 Genomes Project  
722 were used to correct for the relatedness of the summary statistics. To predict the potential  
723 susceptibility genes of schizophrenia, the variants in the major histocompatibility complex (MHC)  
724 region, i.e., chr6:27,477,797-34,448,354, were excluded because of high polymorphism in the  
725 present study. Detailed descriptions of population cohorts, quality control methods and association  
726 analysis methods can be found in reference<sup>20</sup>. The summary statistics can be accessed at the  
727 Psychiatric Genomics Consortium.  
728

#### 729 **The Genotype-Tissue Expression (GTEx) project**

730 The GTEx project (release v8) created a resource including whole-genome sequence data and  
731 RNA sequencing data from ~ 900 deceased adult donors<sup>21</sup>. Four tissues or cell types (i.e., whole  
732 blood, cells-Leukemiacellline\_CML, pancreas and pituitary) were filtered out and not included in  
39

733 the following analyses because of the small sample size or weak correlation of gene expression  
734 profiles with most of the other tissues.

735

736 **GO annotation of the potential susceptibility genes**

737 Functional enrichment analyses were performed by g:Profiler<sup>36</sup>. GO terms, i.e., biological  
738 processes (BP), molecular functions (MF) and cellular components (CC), were mainly concerned.  
739 g:Profiler is based on Fisher's one-tailed test, and the statistical *p*-value is multiple  
740 testing-corrected. Significant GO terms were filtered by the threshold of "Padj" <0.05. The bar  
741 plots of GO enrichment terms were drawn based on R-4.0.3.

742

743 **Construction of the weighted gene co-expression network in multi-brain tissues**

744 The fully processed, filtered and normalized gene-level expression profiles from GTEx v8 were  
745 used to construct the weighted gene co-expression networks for the top-five brain tissues by R  
746 package "WGCNA" (v1.69). WGCNA was performed to build an unsigned gene co-expression  
747 network following the standard procedure, and all the parameters were used as recommended, and  
748 the soft-threshold was set to 6 after testing a series of soft threshold powers (range 2 to 20). As for  
749 the construction of gene co-expression modules, the hierarchical cluster tree in the co-expression  
750 network was cut into gene modules using the dynamic tree cut algorithm with a minimum module  
751 size of 30 genes<sup>37</sup>. The normalized intra-module connectivity value was computed by setting the  
752 options "scaleByMax = T".

753

754 **Drug Gene Interaction (DGIdb) database**

755 DGIdb (v4.2.0) provides a resource of genes that have the potential to be druggable<sup>27</sup>. DGIdb  
756 contains two main classes of druggable genome. The first class includes genes with known drug  
757 interactions, and the other includes genes that are potentially druggable according to their  
758 membership in gene categories associated with druggability. DGIdb includes 42 potentially  
759 druggable categories and 49 interaction types (including inhibitors, activators, cofactors, ligands,  
760 vaccines and many interactions of unknown types). Only the drug-gene interaction terms with at  
761 least one supported PubMed paper were used in the present study.

762

763 **PubMed search**

764 To find supports from published research, we performed a text-mining analysis based on PubMed  
765 database on June 3rd, 2021. We searched the PubMed database with the items of  
766 “((schizophrenia[tiab]+OR+Schizophrenia[tiab]+OR+SCZ[tiab])+AND+(gene  
767 name[tiab])+AND+(gene[tiab]+OR+genes[tiab]+OR+mRNA[tiab]+OR+protein[tiab]+OR+protei  
768 ns[tiab]+OR+transcription[tiab]+OR+transcript[tiab]+OR+transcripts[tiab]+OR+expressed[tiab]+  
769 OR+expression[tiab]+OR+expressions[tiab]+OR+locus[tiab]+OR+loci[tiab]+OR+SNP[tiab]))&  
770 atetype=edat&retmax=100”. The java script output a file with the first column representing gene  
771 name, the second column representing the synonyms of the gene name, the last column  
772 representing the PubMed ids of hit papers.

773

774 **Identification of the potentially phenotype-associated tissues of schizophrenia**

775 To estimate the potentially phenotype-associated tissues, a framework called DESE (also  
776 implemented in KGGSEE) proposed by our lab in a recent work was used <sup>22</sup>. DESE needs three  
777 kinds of input datasets, i.e., the expression profiles of various tissues, reference genotype and  
778 GWAS summary statistics, and outputs the estimated phenotype-associated tissues.

779

780 Specifically, the isoform-level expression profiles of 50 tissues in GTEx v8 were used. The  
781 isoform-level expression profiles were preprocessed like this: the index column of the  
782 preprocessed expression file was isoform symbol name, and each of 50 tissues or cell types had  
783 one column representing the average expression value (i.e., mean value) of corresponding subjects  
784 with the tissue. The Genotypes in the EUR panel from the 1000 Genomes Project (phase 3) were  
785 downloaded from IGSR and used as reference genotype data. Three columns, i.e., chromosome  
786 identifier (CHR), base-pair position (BP) and *p*-value (P) in GWAS summary statistics, were used.  
787 SNPs with minor allele frequency (MAF) less than 0.05 were excluded. Only genes approved by  
788 HGNC were included in the following analyses. The multiple testing adjustment method was the  
789 standard Bonferroni correction, and the cutoff for the adjusted *p*-value was set as *p*<0.05. The  
790 detailed commands of DESE to estimate potential phenotype-associated tissues are described on  
791 the KGGSEE website. The bar plot of the rank of potential phenotype-associated tissues was  
792 drawn based on R-4.0.3.

793

794 **Computation of gene-level eQTLs and isoform-level eQTLs**

795 The present study focused on the cis-eQTLs. Specifically, two files were put into our integrative  
796 platform KGGSEE to produce gene/isoform-level eQTLs for each tissue, namely, expression  
797 profiles and corresponding genotype data file from GTEx v8. Two levels (gene-level and  
798 isoform-level) expression profiles of 50 tissues were downloaded from the GTEx v8 project, and  
799 the TMP value was used in the following analyses. Genes/isoforms were selected based on  
800 expression thresholds of  $> 0$  TPM in at least 20% of all samples. The genotype data used for eQTL  
801 analyses in GTEx release v8 was based on WGS from 838 donors, which all had RNA-seq data  
802 available. Only variants with  $MAF \geq 0.05$  across all 838 samples were included in the present  
803 study. GTEx v8 is based on the human reference genome GRCh38/hg38. Thus, to be consistent  
804 with the GWAS results of schizophrenia (hg19 assembly), we converted the GRCh38/hg38  
805 coordinates into hg19 by the UCSC LiftOver. All variants were filtered with Hardy-Weinberg  
806 disequilibrium (HWD) test  $p$ -value  $< 1.0E-3$ . The mapping window was defined as 1 Mb up- and  
807 downstream of the gene boundary. If the association test  $p$ -value of a variant and corresponding  
808 expression of gene/isoform was smaller than 0.01, the variant was regarded as a  
809 gene-level/isoform-level eQTL of the gene/isoform. It should be noted that the format of the eQTL  
810 file is similar to the fasta file. The eQTL data of a gene or isoform starts with the symbol ">". For  
811 the gene-level eQTLs file, the symbol ">" is followed by the gene name (e.g., "LINC00320"), its  
812 Ensembl ID ("ENSG00000224924") and chromosome identifier ("21"). For the isoform-level  
813 eQTLs file, the symbol ">" is followed by the gene name (e.g. "LINC00320"), transcript Ensembl  
814 ID ("ENST00000452561") and chromosome identifier ("21").

815

816 The gene/isoform-level eQTLs files of 50 tissues in GTEx v8 can be accessed on the KGGSEE  
817 website and freely used for research purposes. The detailed commands of KGGSEE to compute  
818 gene/isoform-level eQTLs of each tissue are described on the KGGSEE website.

819

820 **Estimation of the potential susceptibility genes and isoforms for schizophrenia**

821 The framework MCGA included three models, i.e., MCGA\_Dist, MCGA\_eQTL and  
822 MCGA\_isoQTL, which were all based on the improved ECS. The main difference among the  
823 three models was the strategy used to map variants to genes. For MCGA\_Dist, if a variant was  
824 within a small window, say +/-5 kb, around the gene boundary, then the variant will be assigned  
825 onto the gene according to a gene model, e.g., RefSeqGene. For MCGA\_eQTL, the variant will be  
826 assigned onto the gene if the variant is a gene-level eQTL of the gene. Similarly, for  
827 MCGA\_isoQTL, the variant will be assigned onto the isoform if the variant is an isoform-level  
828 eQTL of the isoform. Another difference between MCGA\_Dist and  
829 MCGA\_eQTL/MCGA\_isoQTL was that the latter two were based on the gene/isoform-level  
830 eQTLs of each tissue, thus can produce the potential susceptibility genes/isoforms in a multi-tissue  
831 context.

832

833 Like our previous model DESE, MCGA contained three iterative steps. In the first step, associated  
834 genes with smaller *p*-values of the ECS test were given higher priority to enter the following  
835 conditional gene-based association analysis. This step could generate a list of roughly associated  
836 genes by removing redundantly associated genes. It should be noted that we dealt with the

837 mentioned three models of MCGA in different ways. For MCGA\_Dist and MCGA\_eQTL, the  
838 order of a gene entering the conditional gene-based association analysis was determined by its  
839 *p*-value of the ECS test. For MCGA\_isoQTL, assume gene *A* has *m* isoforms. Each isoform could  
840 get a *p*-value based on the ECS test, representing the overall statistical significance of all  
841 isoform-level eQTLs (simultaneously variants) associated with this isoform. If the isoform with  
842 the smallest *p*-value was isoform *a*, with its *p*-value *p<sub>a</sub>*, among the *m* isoforms of gene *A*, we only  
843 kept isoform *a* of gene *A* for the following analyses. The adjustment *p*-value for “gene *A* : isoform  
844 *a*” pair was adjusted to *m*\* *p<sub>a</sub>* to enter the following conditional gene-based association analysis.

845

846 The second step was to compute the selective expression score of genes/isoforms in each tissue by  
847 taking all tissues as the background (see details in reference<sup>22</sup>). The Wilcoxon rank-sum test was  
848 then performed by using the selective expression score of the associated gene/isoform set and  
849 not-associated gene/isoform set (generated by the first step) in each tissue.

850

851 In the third step, all genes/isoforms, including the not-associated genes/isoforms, were ranked in  
852 descending order based on the tissue-selective expression score of each gene/isoform. The  
853 tissue-selective expression score of a gene/isoform was computed based on the rank of this  
854 gene/isoform-selective expression score and the *p*-value of the Wilcoxon rank-sum test between  
855 the associated gene/isoform set and not-associated gene/isoform set in each tissue.

856

857 In the following iteration, genes/isoforms with higher tissue-selective expression scores (in the  
858 third step) were given higher priority to enter the conditional gene-based association analysis (in

859 the first step). The above three steps were iterated until the *p*-values of the Wilcoxon rank-sum test  
860 did not change almost, and then corresponding associated genes/isoforms were deemed to be  
861 potentially associated with the phenotype. More details about the iterative procedure can be found  
862 in the original papers<sup>22</sup>.

863

864 MCGA is implemented in our integrative platform KGGSEE. To run MCGA\_Dist, three input  
865 files were needed, i.e., GWAS summary statistics file, gene-level expression profiles of 50 tissues  
866 in GTEx v8, genotypes in EUR panel from 1000 Genomes Project (phase 3). To run  
867 MCGA\_eQTL and MCGA\_isoQTL, four input files were needed, i.e., GWAS summary statistics  
868 file, gene-level or isoform-level expression profiles of 50 tissues in GTEx v8, genotypes in EUR  
869 panel from 1000 Genomes Project (phase 3) and gene/isoform-level eQTLs file of each estimated  
870 disease-associated tissue. Only genes with HGNC gene symbols were considered in the present  
871 study. The output result file was a text file that contained multiple information about the  
872 association measurement of genes (or “gene: isoform” pairs) with the corresponding phenotype.  
873 Multiple testing was corrected by using Bonferroni correction. Significant genes were filtered by  
874 the “CondiECSp” threshold cutoff 2.5E-6, where “CondiECSp” meant the *p*-values of conditional  
875 gene-based association test based on the improved ECS. The bar plot of the comparison of  
876 potential susceptibility genes was drawn based on R-4.0.3. The venn diagram was drawn based on  
877 a web app Venny 2.1.0.

878

879 **MAGMA**

880 MAGMA is a popular tool for gene and generalized gene-set analysis based on the GWAS

881 summary statistics. Here the parameters and options were used as the MAGMA (v 1.08) manual  
882 recommended. Annotation analysis was firstly performed based on the SNP location file and gene  
883 location file (hg19, build 37). The SNP location information was extracted from the same GWAS  
884 summary statistics file of schizophrenia. An SNP was mapped to a gene if the SNP was in the  
885 window of +/-5kb around the gene boundary (same as MCGA\_Dist). The gene analysis was  
886 performed based on the annotation results and reference data file which was created from Phase 3  
887 of 1000 Genomes of the European population in reference to human genome build 37. Both gene  
888 location file and reference data file were downloaded from the MAGMA website. Multiple testing  
889 was corrected by using Bonferroni correction. Significant genes were filtered by the threshold of  
890 “*p*-value” 2.5E-6.

891

## 892 **Declarations**

### 893 **Ethics approval and consent to participate**

894 Not applicable.  
895

### 896 **Consent for publication**

897 Not applicable.  
898

### 899 **Availability of data and materials**

900 The reference genotype data are publicly available in the 1000 Genomes Project<sup>33</sup> in  
901 <https://www.internationalgenome.org/>. The genotype data are publicly available by application  
902 from dbGap (study accession phg001219.v1) and corresponding gene/isoform-level expression

903 profiles are Genotype Tissue Expression (GTEx v8) project <sup>21</sup> in <https://gtexportal.org/home/>. The  
904 summary statistics of schizophrenia are publicly available in Psychiatric Genomics Consortium  
905 (PGC) in <https://www.med.unc.edu/pgc/>. The annotations of drug-gene interaction terms are  
906 publicly available in Drug Gene Interaction (DGIdb v4.2.0) database<sup>27</sup> in <https://www.dgidb.org/>.  
907 The information on FDA-approved antipsychotics can be publicly available in DrugBank 5.0<sup>26</sup> in  
908 <https://go.drugbank.com/>. The functional enrichment analyses were performed by g:Profiler<sup>36</sup> and  
909 can be publicly available in <https://biit.cs.ut.ee/gprofiler>. The tool used to draw the venn plot is  
910 Venny in <https://bioinfogp.cnb.csic.es/tools/venny/index.html>. The tool MAGMA<sup>7</sup> and  
911 corresponding reference data were downloaded from <https://ctg.cnrc.nl/software/magma>. The  
912 source code of MCGA (including MCGA\_Dist, MCGA\_eQTL and MCGA\_isoQTL) is  
913 implemented in our integrative software platform KGGSEE and publicly available in  
914 <http://pmglab.top/kggsee/#/>.  
915

## 916 **Competing interests**

917 The authors declare that they have no competing interests.  
918

## 919 **Funding**

920 This work was funded by the National Natural Science Foundation of China (31771401 and  
921 31970650), National Key R&D Program of China (2018YFC0910500 and 2016YFC0904300),  
922 Science and Technology Program of Guangzhou (201803010116), Guangdong project  
923 (2017GC010644).  
924

925 **Authors' contributions**

926 M.L. and L.J. conceived the study. M.L. oversaw all aspects of the study. X.L., L.J., C.X., and M.L.  
927 developed the models. X.L., L.J. and C.X. performed extensive simulations and real data analyses  
928 for performance comparison. X.L., L.J. and M.L. wrote the manuscript. M.L. revised the  
929 manuscript. M.J.L. provided useful raw data and did some analysis. All authors commented on  
930 and approved the final manuscript.

931

932 **Acknowledgments**

933 We thank the GTEx Consortium and 1000 Genomes Projects for providing access to expression  
934 and sequence variant data. We also appreciate the authors of the schizophrenia study and the  
935 Schizophrenia Working Group of the Psychiatric Genomics Consortium for sharing their GWAS  
936 summary statistics.

937

938 **Additional Information**

939 **Additional file: Supplemental tables**

940 Table S1: The susceptibility genes of schizophrenia identified by MCGA\_Dist.  
941 Table S2: The results of GO enrichment analysis based on the susceptibility genes of  
942 schizophrenia identified by MCGA\_Dist.

943 Table S3: The PubMed search hits of the susceptibility genes of schizophrenia identified by  
944 MCGA\_Dist.

945 Table S4: The susceptibility genes of schizophrenia identified by MCGA\_eQTL.

946 Table S5: The susceptibility genes of schizophrenia identified by MCGA\_isoQTL.

947 Table S6: The results of GO enrichment analysis based on combined eGene set and combined

948 sGene set of schizophrenia generated by MCGA\_eQTL and MCGA\_isoQTL.

949 Table S7: The PubMed search hits of the susceptibility genes of schizophrenia identified by

950 MCGA\_eQTL.

951 Table S8: The PubMed search hits of the susceptibility genes of schizophrenia identified by

952 MCGA\_isoQTL.

953 Table S9: The potential susceptibility isoforms of the twenty-three common genes in the top five

954 phenotype-associated tissues of schizophrenia.

955 Table S10: The FDA-approved antipsychotics in DGIdb.

956 Table S11: Drug-gene interaction terms in DGIdb for susceptible genes exclusively predicted

957 MCGA\_eQTL.

958 Table S12: Drug-gene interaction terms in DGIdb for susceptible genes exclusively predicted

959 MCGA\_isoQTL.

960 Table S13: The number of potentially druggable categories for the susceptibility genes of

961 schizophrenia identified by MCGA.

962 Table S14: The susceptibility genes of schizophrenia identified by MAGMA.

963

## 964 **References**

965

966 1. Visscher, P.M., Wray, N.R., Zhang, Q., Sklar, P., McCarthy, M.I., Brown, M.A., and Yang, J.

967 (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. *American journal*

968 *of human genetics* *101*, 5-22. DOI: 10.1016/j.ajhg.2017.06.005.

969 2. Gallagher, M.D., and Chen-Plotkin, A.S. (2018). The Post-GWAS Era: From Association to

970 Function. American journal of human genetics 102, 717-730. DOI:  
971 10.1016/j.ajhg.2018.04.002.

972 3. Tam, V., Patel, N., Turcotte, M., Bosse, Y., Pare, G., and Meyre, D. (2019). Benefits and  
973 limitations of genome-wide association studies. Nat Rev Genet 20, 467-484. DOI:  
974 10.1038/s41576-019-0127-1.

975 4. Schaub, M.A., Boyle, A.P., Kundaje, A., Batzoglou, S., and Snyder, M. (2012). Linking  
976 disease associations with regulatory information in the human genome. Genome Res 22,  
977 1748-1759. DOI: 10.1101/gr.136127.111.

978 5. Maurano, M.T., Humbert, R., Rynes, E., Thurman, R.E., Haugen, E., Wang, H., Reynolds, A.P.,  
979 Sandstrom, R., Qu, H., Brody, J., Shafer, A., Neri, F., Lee, K., Kutyavin, T., Stehling-Sun, S.,  
980 Johnson, A.K., Canfield, T.K., Giste, E., Diegel, M., Bates, D., Hansen, R.S., Neph, S., Sabo,  
981 P.J., Heimfeld, S., Raubitschek, A., Ziegler, S., Cotsapas, C., Sotoodehnia, N., Glass, I.,  
982 Sunyaev, S.R., Kaul, R., and Stamatoyannopoulos, J.A. (2012). Systematic localization of  
983 common disease-associated variation in regulatory DNA. Science 337, 1190-1195. DOI:  
984 10.1126/science.1222794.

985 6. Neale, B.M., and Sham, P.C. (2004). The future of association studies: gene-based analysis  
986 and replication. American journal of human genetics 75, 353-362. DOI: 10.1086/423901.

987 7. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized  
988 gene-set analysis of GWAS data. PLoS Comput Biol 11, e1004219. DOI:  
989 10.1371/journal.pcbi.1004219.

990 8. Liu, J.Z., McRae, A.F., Nyholt, D.R., Medland, S.E., Wray, N.R., Brown, K.M., Investigators,  
991 A., Hayward, N.K., Montgomery, G.W., Visscher, P.M., Martin, N.G., and Macgregor, S.  
992 (2010). A versatile gene-based test for genome-wide association studies. American journal of  
993 human genetics 87, 139-145. DOI: 10.1016/j.ajhg.2010.06.009.

994 9. Li, M.X., Gui, H.S., Kwan, J.S.H., and Sham, P.C. (2011). GATES: A Rapid and Powerful  
995 Gene-Based Association Test Using Extended Simes Procedure. American journal of human  
996 genetics 88, 283-293. DOI: 10.1016/j.ajhg.2011.01.019.

997 10. Li, M., Jiang, L., Mak, T.S.H., Kwan, J.S.H., Xue, C., Chen, P., Leung, H.C., Cui, L., Li, T.,  
998 and Sham, P.C. (2019). A powerful conditional gene-based association approach implicated  
999 functionally important genes for schizophrenia. Bioinformatics (Oxford, England) 35,  
1000 628-635. DOI: 10.1093/bioinformatics/bty682.

1001 11. Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A., Heath, A.C., Martin, N.G.,  
1002 Montgomery, G.W., Weedon, M.N., and Loos, R.J. (2012). Conditional and joint  
1003 multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing  
1004 complex traits. Nature genetics 44, 369-375. DOI: 10.1038/ng.2213.

1005 12. Hekselman, I., and Yeger-Lotem, E. (2020). Mechanisms of tissue and cell-type specificity in  
1006 heritable traits and diseases. Nat Rev Genet 21, 137-150. DOI: 10.1038/s41576-019-0200-9.

1007 13. Gerring, Z.F., Gamazon, E.R., Derk, E.M., and Major Depressive Disorder Working Group of  
1008 the Psychiatric Genomics, C. (2019). A gene co-expression network-based analysis of multiple  
1009 brain tissues reveals novel genes and molecular pathways underlying major depression. PLoS  
1010 Genet 15, e1008245. DOI: 10.1371/journal.pgen.1008245.

1011 14. Barbeira, A.N., Dickinson, S.P., Bonazzola, R., Zheng, J., Wheeler, H.E., Torres, J.M.,  
1012 Torstenson, E.S., Shah, K.P., Garcia, T., Edwards, T.L., Stahl, E.A., Huckins, L.M.,  
1013 Consortium, G.T., Nicolae, D.L., Cox, N.J., and Im, H.K. (2018). Exploring the phenotypic

1014 consequences of tissue specific gene expression variation inferred from GWAS summary  
1015 statistics. *Nature communications* 9, 1825. DOI: 10.1038/s41467-018-03621-1.

1016 15. Gamazon, E.R., Zwinderman, A.H., Cox, N.J., Denys, D., and Derkx, E.M. (2019).  
1017 Multi-tissue transcriptome analyses identify genetic mechanisms underlying neuropsychiatric  
1018 traits. *Nature genetics* 51, 933-940. DOI: 10.1038/s41588-019-0409-8.

1019 16. Gamazon, E.R., Segre, A.V., van de Bunt, M., Wen, X.Q., Xi, H.S., Hormozdiari, F., Ongen,  
1020 H., Konkashbaev, A., Derkx, E.M., Aguet, F., Quan, J., Nicolae, L., Eskin, E., Kellis, M., Getz,  
1021 G., McCarthy, M.I., Dermitzakis, E.T., Cox, N.J., Ardlie, K.G., and Consortium, G. (2018).  
1022 Using an atlas of gene regulation across 44 human tissues to inform complex disease- and  
1023 trait-associated variation. *Nature Genetics* 50, 956-967. DOI: 10.1038/s41588-018-0154-4.

1024 17. Huckins, L.M., Dobbyn, A., Ruderfer, D.M., Hoffman, G., Wang, W., Pardinas, A.F.,  
1025 Rajagopal, V.M., Als, T.D., Nguyen, H.T., and Girdhar, K. (2019). Gene expression imputation  
1026 across multiple brain regions provides insights into schizophrenia risk. *Nature genetics* 51,  
1027 659-674. DOI: 10.1038/s41588-019-0364-4.

1028 18. Gandal, M.J., Zhang, P., Hadjimichael, E., Walker, R.L., Chen, C., Liu, S., Won, H., van Bakel,  
1029 H., Varghese, M., Wang, Y., Shieh, A.W., Haney, J., Parhami, S., Belmont, J., Kim, M., Moran  
1030 Losada, P., Khan, Z., Mleczko, J., Xia, Y., Dai, R., Wang, D., Yang, Y.T., Xu, M., Fish, K., Hof,  
1031 P.R., Warrell, J., Fitzgerald, D., White, K., Jaffe, A.E., Psych, E.C., Peters, M.A., Gerstein, M.,  
1032 Liu, C., Iakoucheva, L.M., Pinto, D., and Geschwind, D.H. (2018). Transcriptome-wide  
1033 isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. *Science* 362. DOI:  
1034 10.1126/science.aat8127.

1035 19. Fan, C., Chen, K., Zhou, J., Wong, P.-p., He, D., Huang, Y., Wang, X., Ling, T., Yang, Y., and  
1036 Zhao, H. (2021). Systematic analysis to identify transcriptome-wide dysregulation of  
1037 Alzheimer's disease in genes and isoforms. *Human Genetics* 140, 609-623. DOI:  
1038 10.1007/s00439-020-02230-7.

1039 20. Ripke, S., Walters, J.T., O'Donovan, M.C., and Consortium, S.W.G.o.t.P.G. (2020). Mapping  
1040 genomic loci prioritises genes and implicates synaptic biology in schizophrenia. *MedRxiv*.  
1041 DOI: 10.1101/2020.09.12.20192922.

1042 21. Consortium, G. (2020). The GTEx Consortium atlas of genetic regulatory effects across  
1043 human tissues. *Science* 369, 1318-1330. DOI: 10.1126/science.aaz1776.

1044 22. Jiang, L., Xue, C., Dai, S., Chen, S., Chen, P., Sham, P.C., Wang, H., and Li, M. (2019). DESE:  
1045 estimating driver tissues by selective expression of genes associated with complex diseases or  
1046 traits. *Genome Biol* 20, 233. DOI: 10.1186/s13059-019-1801-5.

1047 23. Bakhtiarizadeh, M.R., Hosseinpour, B., Shahhoseini, M., Korte, A., and Gifani, P. (2018).  
1048 Weighted Gene Co-expression Network Analysis of Endometriosis and Identification of  
1049 Functional Modules Associated With Its Main Hallmarks. *Front Genet* 9, 453. DOI:  
1050 10.3389/fgene.2018.00453.

1051 24. King, E.A., Davis, J.W., and Degner, J.F. (2019). Are drug targets with genetic support twice  
1052 as likely to be approved? Revised estimates of the impact of genetic support for drug  
1053 mechanisms on the probability of drug approval. *PLoS genetics* 15, e1008489. DOI:  
1054 10.1371/journal.pgen.1008489.

1055 25. Nelson, M.R., Tipney, H., Painter, J.L., Shen, J., Nicoletti, P., Shen, Y., Floratos, A., Sham,  
1056 P.C., Li, M.J., Wang, J., Cardon, L.R., Whittaker, J.C., and Sanseau, P. (2015). The support of  
1057 human genetic evidence for approved drug indications. *Nat Genet* 47, 856-860. DOI:

1058 10.1038/ng.3314.

1059 26. Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., Assempour, N., Iynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings, R., Le, D., Pon, A., Knox, C., and Wilson, M. (2018). DrugBank 5.0: a major update to the DrugBank database for 2018. *Nucleic acids research* *46*, D1074-D1082. DOI: 10.1093/nar/gkx1037.

1060 27. Freshour, S.L., Kiwala, S., Cotto, K.C., Coffman, A.C., McMichael, J.F., Song, J.J., Griffith, M., Griffith, O.L., and Wagner, A.H. (2021). Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsourcing efforts. *Nucleic acids research* *49*, D1144-D1151. DOI: 10.1093/nar/gkaa1084.

1061 28. Legge, S.E., Santoro, M.L., Periyasamy, S., Okewole, A., Arsalan, A., and Kowalec, K. (2021). Genetic architecture of schizophrenia: a review of major advancements. *Psychological medicine*, 1-10. DOI: 10.1017/S0033291720005334.

1062 29. Franc, V., Hlaváč, V., and Navara, M. (2005). Sequential coordinate-wise algorithm for the non-negative least squares problem. (Springer), pp. 407-414.

1063 30. Tokheim, C.J., Papadopoulos, N., Kinzler, K.W., Vogelstein, B., and Karchin, R. (2016). Evaluating the evaluation of cancer driver genes. *Proceedings of the National Academy of Sciences of the United States of America* *113*, 14330-14335. DOI: 10.1073/pnas.1616440113.

1064 31. Montana, G. (2005). HapSim: a simulation tool for generating haplotype data with pre-specified allele frequencies and LD coefficients. *Bioinformatics* *21*, 4309-4311. DOI: 10.1093/bioinformatics/bti689.

1065 32. Kung, A.W., Xiao, S.M., Cherny, S., Li, G.H., Gao, Y., Tso, G., Lau, K.S., Luk, K.D., Liu, J.M., Cui, B., Zhang, M.J., Zhang, Z.L., He, J.W., Yue, H., Xia, W.B., Luo, L.M., He, S.L., Kiel, D.P., Karasik, D., Hsu, Y.H., Cupples, L.A., Demissie, S., Styrkarsdottir, U., Halldorsson, B.V., Sigurdsson, G., Thorsteinsdottir, U., Stefansson, K., Richards, J.B., Zhai, G., Soranzo, N., Valdes, A., Spector, T.D., and Sham, P.C. (2010). Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. *American journal of human genetics* *86*, 229-239. DOI: 10.1016/j.ajhg.2009.12.014.

1066 33. Consortium, G.P. (2015). A global reference for human genetic variation. *Nature* *526*, 68. DOI: 10.1038/nature15393.

1067 34. Bulik-Sullivan, B.K., Loh, P.R., Finucane, H.K., Ripke, S., Yang, J., Schizophrenia Working Group of the Psychiatric Genomics, C., Patterson, N., Daly, M.J., Price, A.L., and Neale, B.M. (2015). LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nat Genet* *47*, 291-295. DOI: 10.1038/ng.3211.

1068 35. Gillett, A.C., Vassos, E., and Lewis, C.M. (2018). Transforming Summary Statistics from Logistic Regression to the Liability Scale: Application to Genetic and Environmental Risk Scores. *Hum Hered* *83*, 210-224. DOI: 10.1159/000495697.

1069 36. Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., and Vilo, J. (2019). g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). *Nucleic acids research* *47*, W191-W198. DOI: 10.1093/nar/gkz369.

1070 37. Langfelder, P., Zhang, B., and Horvath, S. (2008). Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. *Bioinformatics (Oxford, England)* *24*, 719-720. DOI: 10.1093/bioinformatics/btm563.

1071 1101