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19  Abstract

20  Linkage disequilibrium and disease-associated variants in non-coding regions make it difficult to

21 distinguish truly associated genes from redundantly associated genes for complex diseases. In this

22 study, we proposed a new conditional gene-based framework called MCGA that leveraged an

23 improved effective chi-squared statistic to control the type | error rates and remove the redundant

24 associations. MCGA initially integrated two conventional strategies to map genetic variants to

25  genes, i.e., mapping a variant to its physically nearby gene and mapping a variant to a gene if the

26  variant is a gene-level expression quantitative trait locus (eQTL) of the gene. We further

27  performed a simulation study and demonstrated that the isoform-level eQTL was more powerful
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28  than the gene-level eQTL in the association analysis. Then the third strategy, i.e., mapping a
29  variant to a gene if the variant is an isoform-level eQTL of the gene, was also integrated with
30 MCGA. We applied MCGA to predict the potential susceptibility genes of schizophrenia and
31  found that the potential susceptibility genes identified by MCGA were enriched with many
32 neuronal or synaptic signaling-related terms in the Gene Ontology knowledgebase and
33  antipsychotics-gene interaction terms in the drug-gene interaction database (DGldb). More
34  importantly, nine susceptibility genes were the target genes of multiple approved antipsychotics in
35  DrugBank. Comparing the susceptibility genes identified by the above three strategies implied that
36  strategy based on isoform-level eQTL could be an important supplement for the other two
37  strategies and help predict more candidate susceptibility isoforms and genes for complex diseases
38  inamulti-tissue context.

39

40 Introduction

41  Genome-wide association studies (GWASs) have been used to identify novel genotype-phenotype
42  associations for more than a decade, and thousands of single-nucleotide polymorphisms (SNPs)
43  have been revealed for their associations with hundreds if not thousands of complex human
44 diseases™. Nevertheless, conventional GWAS analyses have limited power to produce a complete
45  set of susceptibility variants of complex diseases®. Because most susceptibility SNPs only have
46  small effects on a complex phenotype, conventional SNP-based association tests are generally
47  underpowered to reveal susceptibility variants after multiple testing corrections. Moreover, the

48  susceptibility variants scattering randomly throughout the genome are often in strong linkage
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49  disequilibrium (LD) with numerous neutral SNPs, and makes the discrimination of truly causal
50 variants from GWAS hits quite difficult’. Finally, more than 90% of the disease-associated
51  variants are in non-coding regions of the genome, and many of them are far from the nearest
52 known gene, and it remains a challenge to link genes and a complex phenotype through the
53  non-coding variants *°. Accordingly, corresponding methodological strategies have been proposed
54  to make up, at least in part, for the issues mentioned above.

55

56  First, gene-based approaches can reduce the multiple testing burden by considering the association
57  between a phenotype and all variants within a gene®. Assigning a variant to a gene according to the
58  physical position of the variant from gene boundary is one of the most popular strategies for
59  gene-based approaches. For example, MAGMA (Multi-marker Analysis of GenoMic Annotation),
60 one of the most popular gene-based approaches, uses a multiple regression approach to
61  incorporate LD between markers and detect multi-markers effects to perform gene-based analysis’.
62  VEGAS, a versatile gene-based test for GWAS, incorporates information from a full set of
63  markers (or a defined subset) within a gene and accounts for LD between markers by simulations
64  from the multivariate normal distribution®. GATES, a rapid gene-based association test that uses
65  an extended Simes procedure to assess the statistical significance of gene-level associations °.

66

67  Second, evaluating associations at one gene conditioning on other genes can isolate true
68  susceptibility genes from non-susceptibility genes'®. Yang et al. proposed an approximate
69  conditional and joint association analysis based on linear regression analysis for estimating the

70  individual causal variant with GWAS summary statistics™>. Our previously proposed conditional
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71  gene-based association approach based on effective chi-squared statistics (ECS) could remove
72 redundantly associated genes based on the GWAS p-values of variants. The comparison of ECS
73  with MAGMA and VEGAS suggested that ECS might be more powerful to predict biologically
74 sensible susceptibility genes *°.

75

76  Third, the observation that variants in the non-coding regions were enriched in the transcriptional
77  regulatory regions implied that these variants might affect the disease risk by altering the genetic
78  regulation of target genes’. Integration of expression quantitative trait loci (eQTL) studies and
79  GWAS has been used to investigate the genetic regulatory effects on complex diseases. As many
80  complex diseases manifested themselves in certain tissues, using the eQTLs of potentially
81  phenotype-associated tissues might help identify the true susceptibility genes in tissue context™.
82  Based on MAGMA, a method called eMAGMA, which integrated genetic and transcriptomic
83  information (e.g., eQTLS) in a tissue-specific analysis to identify risk genes, was proposed to
84  identify novel genes underlying major depression disorder*®. S-PrediXcan was developed for
85  imputing the genetically regulated gene expression component based on GWAS summary
86 statistics and transcriptome prediction models built from the eQTL/sQTL dataset of the Genotype
87  Tissue Expression (GTEX) project'. Researchers have applied S-PrediXcan to study genetic

88  mechanisms of multiple complex traits >’

. In contrast to the considerable research focusing on
89  integrating gene-level eQTLs with GWAS summary statistics, little attention has been paid to
90 integrating isoform-level expression QTLs (isoform-level eQTLs) with GWAS summary statistics.

91  Michael J. Ganda et al. estimated the candidate risk genes of three psychiatric disorders based on

92  GWAS summary statistics and isoform-level expression profiles. They emphasized the importance
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93 of isoform-level gene regulatory mechanisms in defining cell type and disease specificity’®, and
94 similar analyses and conclusions were generated for Alzheimer’s disease’®.

95

96  Though much achievement has been attained, identifying independently phenotype-associated
97  genes with high reliability remains challenging, especially for complex diseases. In the present
98  study, we aimed to build a more powerful conditional gene-based framework based on a new ECS
99  and investigate whether QTLs in phenotype-associated tissues, especially the isoform-level eQTLs,
100 can predict more susceptibility genes or not. The main assumption of our study is that
101  isoform-level eQTLs may reflect the more real variant-expression regulatory relationship than
102  gene-level eQTLs, and using isoform-level eQTLs can help predict novel susceptibility genes and
103  isoforms that cannot be found by the conventional gene-based approaches and gene-level eQTLs
104  strategy. The formation procedure of the assumption is this: gene-level eQTLs are predicted based
105  on gene-level expression profiles and corresponding genotype data. In contrast, isoform-level
106  eQTLs are predicted based on isoform-level (or transcript-level) expression profiles and
107  corresponding genotype data. The gene-level expression profiles are computed by averaging the
108  expression of multiple isoforms belonging to the gene, which may omit the expression
109  heterogeneity among these isoforms and neutralize the opposite effects and lower the power of
110  gene-level eQTLs. Taken together, conventional gene-based approaches mainly focus on variants
111 close to genes boundary (say +/-5kilo base pairs), thus omit remote but important association
112 relationship between genes and variants. In the present study, we expanded the application scope

113 of conventional gene-based approaches by using gene-level eQTLs and isoform-level eQTLs in

114  the potentially phenotype-associated tissues to identify more candidate susceptibility genes and
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115 isoforms.

116

117  Results

118  Overview of the Multi-strategy Conditional Gene-based Association (MCGA) framework

119  Our previously powerful and unified framework, DESE, proposed to estimate the potentially
120  phenotype-associated tissues of complex diseases, could iteratively run the conditional gene-based
121  association analysis with the selective expression score of genes among multiple tissues?®. We had
122 demonstrated in DESE that the iterative operations with the selective expression analysis based on
123 expression profiles could strengthen the power of conditional gene-based analysis. In this study,
124  we proposed a new conditional gene-based framework, MCGA, which could also iteratively run
125  conditional gene-based association analysis with selective expression analysis, to systematically
126 explore the susceptibility genes associated with a complex phenotype using GWAS summary
127  statistics and eQTL summary statistics of SNPs. MCGA has two main advantages over DESE.
128  First, MCGA is based on a new effective chi-squared statistic (ECS), with which the type | error
129  could be controlled within a proper level. Second, MCGA can perform conditional gene-based
130  association analysis using different SNPs sets, i.e., physically nearby SNPs, gene-level eQTLs and
131 isoform-level eQTLs.

132

133 To evaluate the performance of MCGA, we performed extensive simulations and a real data
134  application to schizophrenia. Specifically, we organized the present study in four sequential parts

135  that cover the optimizing the exponent of chi-squared statistics to control type | error rates,

6
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136  applying the improved chi-squared statistics to perform conditional gene-based association

137  analysis in simulation data, applying the improved conditional gene-based association analysis to

138  predict the potential susceptibility genes of schizophrenia, and finally extending the application by

139  using gene-level eQTLs and isoform-level eQTLs. Three strategies were implemented in three

140  conditional gene-based models, respectively. The model assigning a SNP to a gene according to

141  the physical distance of the SNP from the gene boundary is named MCGA_Dist. The model using

142 gene-level eQTLs is named MCGA_eQTL. The model using isoform-level eQTLs is named

143  MCGA _isoQTL (Figure 1). All three models of MCGA have been implemented in our integrative

144  platform KGGSEE.
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146 Figure 1: The simplified principle of the present study. First, choose the best exponent ¢
147  between 1 and 2. Each time we increased ¢ by an interval of 0.01. The best ¢ can control the type |
148  error within a proper level. Then we implemented the best ¢ to improve the previous ECS
149  approach and got the improved conditional gene-based approach. Third, the mapping strategies
150  used by three conditional gene-based association models of MCGA. 5kb: 5000 base pairs. 1Mb:
151  10° base pairs. TSS: Transcription Start Site.

152

153  Our simulation results showed that the type I error rate was controlled within a reasonable level by
154  using the new effective chi-squared statistics (ECS) with the favorable exponent. Another
155  simulation study pointed out that association analysis based on isoform-level eQTLs was more

156  powerful than gene-level eQTLs. As for predicting the potential susceptibility genes of
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157  schizophrenia, MCGA_Dist, MCGA_eQTL and MCGA _isoQTL all produced a set of potentially

158  susceptible and druggable genes. Moreover, with the help of MCGA _isoQTL, we also predicted

159  the potential susceptibility isoforms (or transcripts) for schizophrenia. Our results also showed that

160  the usage of isoform-level eQTLs could predict some important susceptible and druggable genes

161  which cannot be found by MCGA_Dist and MCGA_eQTL.

162

163  The favorable exponent c in the correlation matrix of chi-squared statistics to control the

164  type | error rates

165  We found that the exponent c in the correlation matrix of chi-squared statistics could determine the

166  divergence of the p-values of the ECS tests from the uniform distribution (see details in Formula

167 (1) of Methods). Small c led to a p-value larger than expected, indicating the deflated type | error

168  rate. Large c led to a p-value smaller than expected, indicating an inflated type | error rate. As

169  shown in Figure 2, the ¢=1.0 led to deflated p-values while the ¢=2.0 led to inflated p-values in

170  the upper tail of the Q-Q plot against the uniform distribution. This pattern was independent of

171  sample sizes, variant sizes and phenotype distribution (binary or continuous) (Figure 2). The

172  stable trend determined by the ¢ value also implied that the favorable c, which could properly

173 control the type | error rate, measured by the minimal mean log fold change (MLFC), must be

174 within sections 1 and 2. Our theoretical derivation also demonstrated ¢ value should be within

175  section 1 and 2 (see details in the Materials and Methods). Moreover, it seemed given the ¢ value,

176  the distributions of p-values were similar at different sample sizes and phenotype distributions. As

177  shown in the Q-Q plot (Figure 3), most majority p-values at the sample size 10,000 and 40,000 of
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178  binary or continuous phenotypes were overlapped. Figure 3 showed the favorable ¢ obtained by
179  the grid search algorithm at 84 different scenarios. Again, the favorable ¢ values were
180  approximately independent of trait types, sample sizes and variant sizes. For the sake of simplicity,

181  we proposed to use the averaged favorable c values, 1.432, for all the analyses in the present

182  study.
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185  Figure 2: Q-Q plots of the p-value of the ECS test under null hypothesis based on two
186  extreme exponents (i.e., 1 and 2). a), b), and c) represent the variant size of 50, 100 and 500,
187  respectively.
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190  Figure 3: The boxplot of favorable c values at different simulation scenarios. a) at binary and
191  continuous phenotypes; b) at different sample sizes; c) at different variant sizes.

192
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193  The type I error and power of the conditional gene-based association analysis based on the

194  new chi-squared statistics

195  Further, we investigated the type | error and power of the conditional gene-based association

196  analysis based on the improved ECS with the above favorable exponent c value (i.e., 1.432). The

197  basic function of the conditional gene-based test based on the improved ECS is to remove

198  redundant associations among associated genes. As shown in Figure 4, in six different scenarios

199  (see details in Materials and Methods), the conditional p-values of the genes without truly casual

200 loci approximately followed the uniform distribution U[0,1] regardless of the variance explained

201 by its nearby genes. The distribution of conditional p-value was similar to that produced by the

202  conventional likelihood ratio test for nested linear regression models. These results suggested that

203  the conditional gene-based association analysis based on the improved ECS could produce valid

204  p-values for statistical inference. In contrast, the unconditional association test produced an

205 inflated p-value due to the indirect associations produced by nearby causal genes in the LD block.

206  Concerning the statistical power, we found conditional gene-based association analysis based on

207  the improved ECS produced smaller p-values than the likelihood ratio test (Figure 5), suggesting

208  a higher statistical power of the former. Another advantage of conditional gene-based association

209  analysis based on the improved ECS over the likelihood ratio test was that the former did not

210  require individual genotypes. The reason might be that the degree of freedom in the latter was

211  inflated by the LD among variants. Hereinafter we named the conditional gene-based association

212 analysis based on the improved ECS with favorable exponent ¢ value as MCGA.

213

11
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215  Figure 4: Q-Q plot of the conditional, unconditional gene-based association test and
216  likelihood-ratio test under the null hypothesis. a) and d): two gene-variant pairs with similar
217  variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two
218  gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1
219  with 41 variants and RAVER2 with 8 variants). ¢) and f): two gene-variant pairs with different
220  variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with
221 48 variants). a), b) and c): the former gene has no QTL, and QTL in the latter gene explained 0.5%
222 of heritability. d), e) and f): the former gene has no QTL, and QTL in the latter gene explained 1%
223 of heritability. Ten thousand phenotype datasets were simulated for each scenario. Unconditional
224  Eff. Chi. (the red) represents unconditional association analysis at the former gene by the
225  improved ECS. Conditional Eff. Chi (the blue) represents conditional association analysis at the
226 former gene conditioning on the latter gene by the improved ECS. The likelihood ratio test (the
227  yellow) was conducted based on nested linear regression models.

228
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230  Figure 5: Q-Q plot of the conditional gene-based association test and likelihood-ratio test at
231  different representative gene-variant pairs. a) and d): two gene-variant pairs with similar
232 variant sizes (SIPA1L2 with 29 variants and LOC729336 with 30 variants). b) and e): two
233 gene-variant pairs with different variant sizes, and the first is larger than the second (CACHD1
234 with 41 variants and RAVER2 with 8 variants). ¢) and f): two gene-variant pairs with different
235  variant sizes, and the second is larger than the first (LOC647132 with 5 variants and FAM5C with
236 48 variants). a)-c): the QTL in either gene explained 0.25% of heritability. d)-f): the QTL in either
237  gene explained 0.5% of heritability. 1000 phenotype datasets were simulated for each scenario.
238  Conditional Eff. Chi.: conditional association analysis at the former gene conditioning on the latter
239  gene by the improved ECS. Likelihood Ratio Test: likelihood ratio test in which the full model
240  included QTLs of both genes and the nested model included QTL of the latter gene.

241

242 Application of MCGA to predict the potential susceptibility genes for schizophrenia

243 (MCGA Dist)

244 In the above simulation study, we demonstrated that the conditional gene-based analysis based on

245  the improved ECS was more powerful than the likelihood ratio test in each simulation scenario.

246 Here to further evaluate the performance of MCGA in the real-world data, we used a recent
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247  large-scale GWAS summary statistics dataset®® and gene expression profiles (GTEx v8) of ~ 50
248  human tissues® to identify the susceptibility genes of schizophrenia. Here, MCGA_Dist was first
249  used, i.e., the variants were assigned to genes if the variants were in the window of +/-5kb around
250  the gene boundary (see details in Materials and Methods). We found that 221 of 34,159 genes
251  identified by MCGA_Dist had significantly statistical p-values smaller than 2.5E-6 (see details in
252  Table S1).

253

254 To further study the functional annotations of the 221 potential susceptibility genes, we performed
255  Gene Ontology (GO) enrichment analysis. Interestingly, we found that most GO:BP and GO:CC
256  enrichment terms were neuronal-, dendrite- or synaptic signaling-related terms. Besides, the
257  GO:MF enrichment terms were all about cellular signaling transduction (see examples in Figure 6
258  and see details in Table S2). Systematic text-mining method was used to search the PubMed
259  database to find papers that had reported the potential susceptibility genes of schizophrenia. The
260  results showed that 87 of the 221 (~ 39.4%) potential susceptibility genes had at least one search
261  hit (see details in Table S3). The GO enrichment analysis and the text-mining results both implied
262 the utility of MCGA_Dist.

263
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264
265  Figure 6: GO Functional annotations of the potential susceptibility genes of schizophrenia
266  identified by MCGA_Dist. MF: Molecular Function of GO. BP: Biological Process terms of GO.
267  CC: Cellular Component terms of GO. The X-axis represents the top 10 significant GO
268  enrichment terms (in MF, BP and CC). The Y-axis represents the negative log10 of the adjusted
269  p-value.
270
271  Evaluate the power of gene-level eQTLs and isoform-level eQTLs in association analysis by
272 the simulation study
273 A common assumption is that genes close to significant variants are more likely to be the
susceptibility genes, but the reality is that some potentially associated genes are not closest to the

274
significant variants™. Molecular Quantitative Trait Loci (molQTL) is a genetic variant associated

275

with a molecular trait, such as a gene-level eQTL and isoform-level eQTL, and can associate a
15
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277  variant with a gene or isoform. MCGA_Dist mapped a variant to a gene if the variant was in the

278  +/-5kb window around the gene boundary. Next, we assigned a variant to a gene (or isoform) if

279  the variant is a gene-level or isoform-level eQTL to broaden the application of MCGA. Since the

280  isoform-level and corresponding gene-level expression profiles were quantified based on the same

281  RNA-sequencing data, we wanted to test whether the power of association analysis based on the

282  gene-level eQTLs was higher than that based on isoform-level eQTLs or not. We first performed a

283  simulation study to evaluate the power of association analysis based on gene-level eQTLs and

284  isoform-level eQTLs, respectively.

285

286  We considered the simplest case for simplicity, i.e., variants affected phenotype only through

287  regulating the gene expression. We simulated genotype data, isoform-level expression profiles and

288  corresponding phenotype data (see details in Materials and Methods). Specifically, we simulated

289  four scenarios, i.e., association analysis using all variants (phenotype-associated isoform-level

290 eQTLs and the other isoform-level eQTLs, denoted as Allvar in Table 1), association analysis

291  only using phenotype-associated isoform-level eQTLs (denoted as isoform eQTL in Table 1),

292  association analysis using gene-level eQTLs which were computed by the gene expression profiles

293  derived by the average value of multiple isoforms belonging to the gene. As for scenarios of genes

294  with multiple isoforms, we specifically simulated two new scenarios (denoted as eQTL_3isoform

295 and eQTL_6isoform in Table 1), i.e., a gene with three (eQTL_3isoform) and six different

296  isoforms (eQTL_6isoform). The expression value of the gene with three isoforms was averaged by

297  the following three isoforms, i.e., one isoform associated with phenotype and the other two

298  random isoforms simulated by the standard normal distribution N(0,1). The expression value of

16
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299  the gene with six isoforms was averaged by the following six isoforms, i.e., one isoform

300  associated with phenotype and the other five random isoforms simulated by the standard normal

301  distribution N(0,1) (see details in Materials and Methods). Based on the four scenarios

302  mentioned above, we used six different parameter combinations to simulate six different cases,

303  and each parameter combination was simulated 100 times to evaluate the statistical power. As

304  shown in Table 1, the power of the association test based on phenotype-associated isoform-level

305  eQTLs was the highest of all cases. The simulation results implied that isoform-level eQTLs were

306  more powerful than gene-level eQTLs in association analysis.

307

308  Table 1: Different simulation scenarios and corresponding power in association analysis.

Parameter combination Power
Ev? Eg AllVar isoform eQTL eQTL_3isoform eQTL_6isoform
0 0.1 0 0.01 0 0.01
0.1 0.1 0.03 0.05 0.02 0.01
0.15 0.1 0.03 0.25 0.04 0.02
0.05 0.2 0.26 0.39 0.06 0.01
0.1 0.2 0.13 0.22 0.02 0.03
0.15 0.2 0.68 0.96 0.45 0.11

309  ?Ev denotes the effect size of independent variants on gene expression. Eg denotes the effect size
310  of gene expression on phenotype. More details can be seen in Methods.

311

312  Broaden the application of MCGA by using gene-level eQTLs and isoform-level eQTLs

313 (MCGA_eQTL and MCGA _isoQTL)

314  In the previous simulation study, we demonstrated that association analysis based on isoform-level
315  eQTLs was more powerful than gene-level eQTLs in each simulation scenario. To further test this

316  conclusion in real data and identify more potential susceptibility genes for schizophrenia, we first

17
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317  adopted the prioritized phenotype-associated tissues of schizophrenia by DESE? , a model to
318  predict potentially phenotype-associated tissues based on gene selective expression analysis. The
319 DESE results showed that all thirteen brain tissues were significantly associated with
320  schizophrenia and ranked the top (Figure 7a). For the sake of simplicity, we then computed
321  gene-level eQTLs of the top-five tissues based on gene-level expression profiles and isoform-level
322 eQTLs of the top-five tissues based on transcript-level expression profiles, respectively.
323  Hereinafter, the gene whose expression is associated with at least one SNP was denoted as eGene,
324  and the gene with an isoform whose expression is associated with at least one SNP was denoted as
325  sGene. Then we performed the improved conditional gene-based association analysis based on
326  gene-level eQTLs and isoform-level eQTLs resulted from the corresponding tissues. In each of the
327  top-five tissues, we found the number of potential susceptibility sGenes identified by
328 MCGA _isoQTL was larger than that of potential susceptibility eGenes identified by
329  MCGA eQTL under the same filter cutoff 2.5E-6 (Figure 7b, see details in Table S4 and S5).
330  Besides, we found a considerable number of common genes between the estimated eGenes set and
331  sGenes set in each of the top-five tissues (Figure 7b).

332

333  We also performed the GO enrichment analysis to further investigate the functional annotations of
334  these potential susceptibility eGenes and sGenes. For the eGene set in each of the top-five
335  associated tissues, we found only the eGenes identified based on the gene-level eQTLs of
336  Brain-FrontalCortex (BA9) had GO enrichment terms (Figure 7c). For the sGene set in each of
337 the top-five associated tissues, we found the potential susceptibility sGenes in
338  Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus all
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339  had different GO enrichment terms (Figure 7d). We further combined the potential susceptibility

340 eGenes and sGenes of all top-five tissues, respectively. Then we performed GO enrichment

341  analysis based on the combined eGene set and sGene set. We found that both the eGene set and

342  sGene set were enriched with many neuronal-, dendrite- or synaptic signaling-related GO terms

343  (see details in Table S6). Then we searched the PubMed database with the combined eGene set

344 (578 unique genes) and sGene set (696 unique genes), and found 133 of the 578 (~ 23.0%) and

345 168 of the 696 (~ 24.1%) potential susceptibility genes estimated by MCGA_eQTL and

346 MCGA isoQTL had at least one search hit, respectively (see details in Table S7 and S8). The

347  biologically sensible GO enrichment results and the PubMed search results both implied that the

348  potential susceptibility sGenes and eGenes might have strong associations with schizophrenia.

349
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Figure 7: Potentially associated tissues of schizophrenia and the characterization of potential
susceptibility genes in corresponding tissues. a) The statistical significance of tissues estimated

353
354
355
356  to be associated with schizophrenia. The X-axis denotes the tissue names. The Y-axis means the
357  negative logo(p-value) of the Wilcoxon rank-sum test. b) The comparison of eGenes and sGenes
358 in each of the top-five associated tissues. ¢) The GO enrichment terms of eGenes in Brain-
359  FrontalCortex(BA9). BF: Brain-FrontalCortex(BA9). d) The GO enrichment terms of sGenes in
360  Brain-FrontalCortex(BA9), Brain-Anteriorcingulatecortex (BA24) and Brain-Hippocampus. BF:
361  Brain-FrontalCortex(BAD9). BAN: Brain-Anteriorcingulatecortex(BA24). BHI:
362  Brain-Hippocampus.
363

The advantages of MCGA _isoQTL versus MCGA_Dist and MCGA_eQTL

The connectivity score of a gene in the weighted co-expression network might imply its real

21

364
365
366  association with other genes, and highly connected genes are often defined as hub genes. These
hub genes are located in or near the center of corresponding co-expression modules and might

367
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368  play important roles in trait development®. We built an unsigned weighted co-expression network
369  for each top-five tissue and investigated the normalized intra-module connectivity of potential
370  susceptibility genes in each co-expression module. We found that the normalized intra-module
371  connectivity scores of potential susceptibility genes in Brain-FrontalCortex_ BA9 and
372 Brain-Nucleusaccumbens(basal ganglia) identified by MCGA_eQTL were significantly larger
373  than that of non-susceptibility genes. Interestingly, the normalized intra-module connectivity
374  scores of potential susceptibility genes identified by MCGA _isoQTL were significantly larger
375  than that of non-susceptibility genes in all the top-five schizophrenia-associated tissues (Wilcoxon
376  rank-sum test p<0.05) (Table 2).

377

378  Table 2: Comparison of the normalized intra-module connectivity of potential susceptibility genes
379  identified by MCGA eQTL and MCGA _isoQTL.

380
Susceptibility vs. | Susceptibility Vs,
Tissue Name non-susceptibility genes by | non-susceptibility genes by
MCGA _eQTL MCGA_isoQTL
statistic p-value statistic p-value
Brain-FrontalCor | 2.4374 0.0148 2.5426 0.0110
tex(BA9)
Brain-Anteriorci | 1.4303 0.1526 4.0558 5.0000E-5
ngulatecortex(B
A24)
Brain-Cortex 1.4173 0.1564 1.9946 0.0461
Brain-Hippocam | 1.8439 0.0652 2.6019 0.0093
pus
Brain-Nucleusac | 2.2587 0.0239 3.4861 0.0005
cumbens(basalga
nglia)
381

382  We next compared the potential susceptibility genes predicted by MCGA_Dist, MCGA_eQTL and

383  MCGA isoQTL. As shown in Figure 8, twenty-three genes were collectively predicted to be

384  susceptible to schizophrenia by the three models of MCGA. As MCGA isoQTL could output
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385  susceptibility gene-isoform pairs of corresponding tissues, we further got the corresponding
386  susceptibility isoforms of twenty-three genes in corresponding tissues (see details in Table S9).
387 Interestingly, we found that susceptibility isoforms for a gene varied greatly in different tissues.
388  For example, ABCC8 and LINC01415 both had one susceptibility isoform in the top-five tissues.
389  ENST00000529967 of ABCC8 was significantly associated with schizophrenia only in
390  Brain-Hippocampus, while ENST00000587320 of LINC01415 was significantly associated with
391  schizophrenia in Brain-Cortex, Brain-FrontalCortex(BA9) and Brain-Nucleusaccumbens(basal
392 ganglia). We also found that different isoforms of the same gene were predicted to be significantly
393  associated with schizophrenia in different tissues, such as ENST00000377600 of BTN2Al
394  significantly associated with schizophrenia in Brain-Cortex and ENST00000312541 of BTN2A1
395  significantly associated with schizophrenia in Brain-FrontalCortex(BA9). MCGA _isoQTL can
396  help predict potential susceptibility genes and isoforms of corresponding phenotype-associated
397  tissues at a more precise level.

MCGA Dist MCGA_eQTL

\»/

MCGA _isoQTL
398
399  Figure 8: Comparison of the potential susceptibility genes predicted by MCGA_Dist,

400 MCGA_eQTL and MCGA _isoQT. The venn plot was used to show the intersection genes and
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401  unique genes among MCGA _Dist, MCGA_eQTL and MCGA isoQTL.

402

403  Except for the advantage of identifying the potential susceptibility isoforms, we found that some

404  of the susceptibility genes exclusively predicted by MCGA_isoQTL were also biologically

405  sensible. We found 478 susceptibility genes exclusively predicted by MCGA _isoQTL (Figure 8).

406  We searched the PubMed database with these exclusive genes. The search results showed that 101

407  of the 478 (21.1%) genes each had a least one search hit which reported the associations of these

408  exclusive genes with schizophrenia. Moreover, 15 of the 478 (3.1%) exclusive genes each had at

409  least ten different supported papers in PubMed. Interestingly, transcription factor 4, i.e., TCF4,

410  was reported by 100 papers in the PubMed database. TCF4 is broadly expressed and may play an

411  important role in nervous system development [provided by RefSeq, Jul 2016]. The important

412  examples of biologically sensible genes exclusively identified by MCGA _isoQTL were listed in

413 Table 3.

414

415  Table 3: The important examples of potential susceptibility genes exclusively predicted by
416  MCGA _isoQTL with at least ten search hits in PubMed.

Unique sGene® # of PubMed paper hits
TCF4 100
RANGAP1 100
FUT?2 97
DRD1 63
COPE 36
NCAM1 20
AS3MT 19
FGFR1 18
DPYSL2 17
PCM1 16
BRD1 15
BDNF-AS 13
GABRAZ2 12
ADRA1A 11
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PBRM1 10

417 bUnique sGene means potential susceptibility gene exclusively predicted by MCGA_isoQTL.

418

419  Taken together, from the perspective of WGCNA, the statistical significance of the comparison
420  between potential susceptibility genes and non-susceptibility genes implied that these
421  susceptibility genes identified based on isoform-level eQTLs might play more important roles in
422  the weighted gene co-expression network of corresponding tissues. Our results also suggested that
423  incorporating with isoform-level eQTLs can help predict more potential susceptibility genes than
424  gene-level eQTLs in each potentially phenotype-associated tissue. Our results pointed that
425  MCGA _isoQTL could help find some novel and important susceptibility genes which cannot be
426  found by MCGA Dist and MCGA _eQTL. Moreover, based on the isoform-level eQTLs of each
427  phenotype-associated tissue, the MCGA isoQTL strategy can also predict the potential
428  susceptibility isoforms in the corresponding tissues.

429

430  The druggability of the potential susceptibility genes identified by MCGA

431  Since drug target genes with genetic support are twice or as likely to be approved than target genes

2 \we searched the DrugBank 5.0 database? and found that

432  with no known genetic associations
433  nine potential susceptibility genes identified by MCGA were the target genes of multiple
434  FDA-approved antipsychotics (Table 4). Several most popular target genes of approved
435  antipsychotics, i.e., DRD2, DRD1 and ADRA1A, were identified by different MCGA models and

436  the results suggested that the three models could complement each other to identify more potential

437  target genes.
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438

439  Table 4: The potential susceptibility genes that are also the target genes of approved
440  antipsychotics.

Target gene # of approved antipsychotics Models

DRD2 32 MCGA_Dist & MCGA_eQTL
DRD1 22 MCGA_isoQTL

ADRAILA 21 MCGA_isoQTL

CHRM3 10 MCGA_eQTL

ADRA2B 10 MCGA_eQTL

HTR3A 8 MCGA_eQTL

OPRD1 1 MCGA_Dist

GABRA2 1 MCGA_isoQTL

CYP2D6 1 MCGA eQTL & MCGA isoQTL

441

442  To further investigate the druggability of the potential susceptibility genes, we searched the Drug
443 Gene Interaction database (DGIdb v4.2.0) ' and filtered the drug-gene interaction terms with at
444  least one supported PubMed paper. After the filtration, we kept 30,072 unique drug-gene
445  interaction terms and found 679 unique drug-gene interaction terms for 34 FDA-approved
446  antipsychotics (see details in Table S10). Then we put the full list of potential susceptibility genes
447  (by MCGA Dist, MCGA _eQTL and MCGA isoQTL, respectively) into DGIdb to investigate if
448  the “antipsychotic”- “susceptibility gene” interactions were enriched in DGIldb. As shown in Table
449 5, we found that “antipsychotic” - “potential susceptibility genes” identified by the three models
450  of MCGA were all significantly enriched in DGldb. Moreover, as shown in Figure 8, 372 out of
451 578 and 478 out of 696 potential susceptibility genes were exclusively identified by
452  MCGA eQTL and MCGA isoQTL, respectively. We found 253 unique drug-gene interaction
453  terms for susceptibility genes exclusively predicted MCGA_eQTL (see details in Table S11), and
454 17 of 253 interaction terms were antipsychotics-gene interactions (hypergeometric distribution test

455  p-value= 7.05E-5). We also found 291 unique drug-gene interaction terms for susceptibility genes
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456  exclusively predicted MCGA _isoQTL (see details in Table S12), and 28 of 291 interaction terms

457  were antipsychotics-gene interactions (hypergeometric distribution test p-value = 1.48E-10). We

458  also investigated the potential druggability of the susceptibility genes identified by MCGA.

459  Among the 42 potentially druggable gene categories in DGIldb, we found the top three potentially

460  druggable categories for the susceptibility genes identified by MCGA_Dist, MCGA_eQTL and

461 MCGA_isoQTL were all “DRUGGABLE GENOME” (63 vs. 129 vs. 137. The number denotes

462  the gene set size belonging to this category, same as below), “ENZYME” (33 vs. 68 vs. 90) and

463  “KINASE” (22 vs. 40 vs. 60) (see details in Table S13). Taken together, our results showed that

464  some of the potential susceptibility genes identified by MCGA had the potential to be druggable,

465  and the application of eQTLs (especially the isoform-level eQTLS) could aid MCGA to identify

466  more potentially druggable genes.

467

468  Table 5: The enrichment of drug-gene interaction terms in DGldb for susceptibility genes
469  identified by MCGA.

Models # of total drug-gene interaction | # of antipsychotics-gene interaction | Enrichment
terms terms p°
MCGA_Dist 332 33 1.37E-12
MCGA_eQTL 831 64 1.39E-17
MCGA_isoQTL | 792 46 6.66E-9

470  “Enrichment p denotes the p-value of hypergeometric distribution test.

471

472  Discussion

473 In this study, we proposed a multi-strategy conditional gene-based association framework, MCGA,

474  based on a new correlation matrix of chi-squared statistics to identify the potential susceptibility
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475  genes and isoforms for complex phenotypes. Comparing with the unconditional association test
476  and likelihood ratio test, MCGA showed a lower type | error rate and higher statistical power.
477  Since MCGA is a gene-based method, in this study, we adopted three strategies to map a variant to
478  agene, i.e., mapping based on physical position, gene-level eQTLs and isoform-level eQTLs. We
479  implemented these three mapping strategies in corresponding three conditional gene-based
480  association models, i.e., MCGA_Dist, MCGA_eQTL and MCGA _isoQTL, to predict the potential
481  susceptibility genes for schizophrenia.

482

483 MCGA_Dist could output a list of genes, while MCGA_isoQTL and MCGA_eQTL could produce
484  a list of genes for each potential phenotype-associated tissue because of the usage of gene-level
485  eQTLs and isoform-level eQTLs of each tissue. Though MCGA_Dist predicted a relatively small
486  size of susceptibility genes, these genes were enriched with plenty of neuronal- or synaptic
487  signaling-related GO terms. Similar results of other research were obtained by gene-set analyses,
488  which demonstrated that genetic variants associated with schizophrenia were enriched with
489  synaptic pathways?. Besides, considerable amounts of these genes had been reported by many
490  research papers in the PubMed database to support their associations with schizophrenia.

491

492  Since MCGA_Dist might omit some remote but important gene-variant associations, we improved
493  MCGA Dist with MCGA_eQTL and MCGA _isoQTL. We performed a simulation study and
494  demonstrated that isoform-level eQTLs were more powerful than gene-level eQTLs in association
495  analysis. Moreover, we found in real data that the size of the susceptibility gene set for
496  schizophrenia predicted by MCGA isoQTL was larger than MCGA_eQTL in each
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497  phenotype-associated tissue under the same threshold. Further, we found MCGA _isoQTL had two

498  advantages over MCGA_eQTL and MCGA_Dist. First, several important potential susceptibility

499  genes were exclusively predicted by MCGA _isoQTL. For example, fifteen potential susceptibility

500  genes exclusively predicted by MCGA _isoQTL each had at least ten search hits in PubMed, which

501 implied these genes were popular in schizophrenia studies. Second, to our best knowledge,

502  MCGA_isoQTL was the first conditional gene-based association approach to produce a list of

503  phenotype-associated isoforms (or transcripts).

504

505 In addition, we investigated the druggability of the susceptibility genes for schizophrenia

506 identified by MCGA. Several susceptibility genes identified by MCGA were also the popular

507  target genes of multiple FDA-approved antipsychotics. Besides, the “susceptibility gene”-

508  “antipsychotics” interactions were enriched in DGIdb. The druggablilty of the important

509  susceptibility genes, especially the sGenes identified based on isoform-level eQTLs, provided

510  more credible supports for the utility of MCGA.

511

512 Our framework might have three potential applications. First, MCGA_Dist can be used to predict

513  potential susceptibility genes and isoforms for other complex phenotypes. Second, based on the

514  assumption that the distribution of expression profiles of true susceptibility genes might change

515  before and after therapeutic drug treatment, MCGA _Dist can be used to perform drug

516  repositioning analysis based on the drug perturbed expression profile. Third, since MCGA _eQTL

517 and MCGA _isoQTL can help predict potential susceptibility genes in each potential

518  phenotype-associated tissue, our framework can help perform synergistic drug combination
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519  prediction to screen drugs that can simultaneously perturb the expression of potential

520  susceptibility genes in each potential phenotype-associated tissue.

521

522 The present study was limited by several factors. First, the moderate sample size (ranging from

523 129 ~ 205) and mixed populations in GTEx v8 might both reduce the accuracy of

524  genef/isoform-level eQTLs. Future genetic studies based on increased sample sizes might alleviate

525  this problem. Second, the size of the susceptibility genes identified by MCGA_eQTL (578) and

526  MCGA_isoQTL (696) was a little larger than conventional studies. One of the reasons might be

527  that five brain regions were involved in the present study, and each brain region might have very

528  different dysfunctional genes associated with schizophrenia. We also used MAGMA to identify

529  the susceptibility genes of schizophrenia with the same GWAS summary statistics and found that

530 MAGMA also identified ~ 600 potential susceptibility genes with the basic parameter setup (see

531  details in Table S14). Susceptibility genes identified by MCGA_eQTL and MCGA isoQTL had

532  many biologically meaningful annotations (such as neuronal- or synaptic signaling-related terms)

533 in the GO databases, and some susceptibility genes were the target genes of multiple

534  antipsychotics, and more than 20% of the susceptibility genes had been previously reported by

535  other schizophrenia research in the PubMed database. Though these potential susceptibility genes

536  were lack of systematically experimental validation, we shared the potential susceptibility genes in

537  Table S1, S4 and S5 and encouraged follow-up studies to evaluate the function and roles of these

538  susceptibility genes in the development of schizophrenia.

539

540 In conclusion, in this study, we proposed a new statistical framework to predict potential

30


https://doi.org/10.1101/2021.06.08.447608
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447608; this version posted June 9, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

541  susceptibility genes for complex phenotypes based on GWAS summary statistics and
542  genef/isoform-level eQTLs in a multi-tissue context. The application of our framework to
543  schizophrenia revealed many novel susceptible and druggable genes. Besides, the usage of
544  isoform-level eQTLs can be an important supplement for the conventional gene-based approach.
545  The framework was packaged and implemented in our integrative platform KGGSEE
546  (http://pmglab.top/kggsee/#/). We hope our framework can facilitate researchers to gain more
547  insights into the phenotype-associated genes and isoforms of complex phenotypes.

548

549  Materials and Methods

550 The new effective chi-squared statistics (ECS) for conditional gene-based association

551  analysis

552 We improved our previously proposed effective chi-squared test'® for a more efficient conditional
553  gene-based association analysis based on a new correlation matrix of chi-squared statistics. The
554  improved effective chi-squared statistics had two methodological advances to address the potential
555 inflation issue, i.e., a type | error-controlled correlation matrix of the observed chi-squared
556  statistics and a non-negative least square solution for the independent chi-squared statistics. The
557  reasoning process was as follows. Suppose there were n loci in a set of genes. One wanted to
558 calculate the association p-value of another physically nearby gene (containing m loci)
559  conditioning on the set of genes (n loci). The first step of the conditional analysis was to produce
560  effective chi-squared statistics for the set of genes (n loci) and all the genes (n+m loci in total).

561  Each locus had a p-value for phenotype association in the GWAS. The p-values were converted to
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562  corresponding chi-squared statistics with the degree of freedom 1. According to Li et al.*

, each
563  locus could be assumed to have a virtually independent chi-squared statistic. An observed
564  marginal chi-squared statistic of a locus was equal to the summation of its virtually independent
565  chi-squared statistic and the weighted virtually independent chi-squared statistic of nearby loci.
566  The weight was related to the chi-squared statistics correlation, which was a key parameter of the
567  analysis. The correlation of chi-squared statistics between two loci was approximated by the
568  absolute value of genotypic correlation to the power of c, i.e., |r|°. Here, we derived that the key
569  parameter, i.e., exponent ¢, ranged from 1 to 2, corresponding to different non-centrality
570  parameters of a non-central chi-squared distribution (See the derivation in the next section).

571 According to Li et al.’°, the n virtually independent chi-squared statistics of the gene set could be

572  approximated by a linear transformation of the n observed chi-squared statistics (Formula (1)),

573

2 4 1 el 2

X1 1 1,n xi 1

~ “ee 1 X |- (l)

X dn|  [Imal® o1 xp 1
574 ,
575

576  where %3(=0), d,(>0), x; and |r;;| denoted a virtually independent chi-squared statistic,
577  degree of freedom of the virtually independent chi-squared statistic, an observed chi-squared
578  statistic and the absolute value of the LD correlation coefficient (approximated by genotypic

579  correlation), respectively. The effective chi-squared statistic S, with the degree of freedom d,,
580  of the n loci was then obtained by Formula (2):

581
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{S:n = Zi:l xlz (2)
582 dn = 2iz1 di

583

584  The effective chi-squared statistics (S,..,) and degree of freedom (d,,.,,) of the n+m loci could be
585  calculated in the same way.

586  The effective chi-squared statistics of the m loci conditioning on the n loci was then approximated

587 by Formula (3),

588
589 §m|n = ’n+m - Sn (3)
590

591  with the degree of freedom dpp = dpym — di.
592  Because dm|n was no longer an integer, we used the Gamma distribution to calculate the
593  p-values. Given the above statistics and degree of freedom, the p-value was equal to F(x >

594  Smn. dmin 2), where the F(x) function was the cumulative distribution function of a Gamma

2’ 27

595  distribution.

596

597  Because the virtually independent chi-squared statistics and degrees of freedom were expected to
598  be larger than 0, we adopted a sequential coordinate-wise algorithm to approximate them?. This
599  algorithm avoided unstable solutions in the above linear Formula (1) due to stochastic errors in
600  the correlation matrix and observed chi-squared statistics.

601

602  After the above multiple approximations, it was still difficult to obtain the analytic solution for the

603  exponent ¢ in Formula (1). We proposed a grid search algorithm to find a favorable value of
33
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604  exponent c¢ to control type | error rates of the effective chi-squared tests. The error rate was
605  examined by divergence from a uniform distribution between an obtained and theoretical top 1%
606  p-values given a c value, measured as mean log fold change (MLFC) *. In the grid search process,
607  we increased ¢ from 1.00 to 2.00 by an interval of 0.01 because it ranged from 1 to 2 (see the
608  derivation in the Materials and Methods). The ¢ value leading to the minimal MLFC was defined
609  as the favorable c value. We considered in total 84 parameter settings, i.e. a combination of three
610  different sample sizes (10,000, 20,000 and 40,000) and 14 different variant sizes (10, 30, 50, 80,
611 100, 125, 150, 200, 250, 300, 400, 500, 800, and 1000) for both binary and continuous traits,
612  respectively. For a parameter setting, 40,000 datasets were simulated and used to produce p-values
613  to determine the favorable c¢ value for the setting. A region on chromosome 2 [chr2:
614  169428016-189671923] was randomly drawn for the simulation. The allele frequencies and LD
615  structure of variants in the European panel of the 1000 Genomes Project were used as a reference

616  to simulate genotype data by the HapSim algorithm

. According to either the Bernoulli
617  distribution or Gaussian distribution, each subject was randomly assigned a phenotype value under
618  the null hypothesis. The Wald test under either logistic regression or linear regression in which the
619  major and minor allele was encoded as 0 and 1 was used to produce the association p-value at
620  each variant. The p-values of the variants were then analyzed by the effective chi-squared test for

621  the gene-based association analysis.

622

623  Approximate the correlation of chi-square statistics under the alternative hypothesis

624  Let two normal random variables X~N(pq,6%) and Y~N(u,, 63) have covariance c. Note that
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a squared normal random variable has non-central chi-square distribution and the squared mean of

the former is called noncentrality parameter. The two variables can also be factorized as

=u,+0o,.U, Y=p,+0o,(pU++1—p2V) where U,Vi4N(0,1) and p = c/0,0,.

Then we can calculate the co-variances of the two non-central chi-square variables X? and Y? by

4pqpyc+2c?
Vau o 2 +201 4 /4pr2 0,2 +20,*

the factorized variables, cov(X?,Y?) = Suppose X is the Z score of

the true casual variant and Y is the Z score of a non-functional variant in LD (coefficient r) with

the causal variant. One can assume u, = rp,, 64% = 1, 6,2 = 1 and ¢ = r. Therefore, the

4-r2u12 +212

VauZ+2./4p2r2+2°

correlation of X? and Y can be simplified as, cor(X2,Y2) =

Under the null hypothesis, g, = 0 then cor(X? Y?) =r?. Under the alternative hypothesis of

large scaled sample, the g, or the noncentrality parameter becomes very large, correlation of X

4r 2r?

+ -
\[4+L2 ar—2  VamZr2an %2
1 nr

T.

and Y? become close to r. p; — o, cor(X2,Y?) =

Overall, the correlation between the two (non-central) chi-square ranges from r to r.

The conditional gene-based association analysis for genome-wide association study

In a GWAS, all genes were firstly calculated with the p-values of unconditional gene-based
association test using the above effective chi-squared statistics. For a given p-value cutoff, the
significant genes were extracted and subjected to the conditional gene-based association analysis.
When there were multiple significant genes in an LD block, the genes were conditioned one by
one in a pre-defined order. In the present conditional analysis, the order of the gene was defined

according to the unconditional p-value of the gene. Here we assigned the genes within 5 Mb into
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646  the same LD block. The conditional p-value of the first gene was defined as its unconditional
647  p-value. The conditional p-value of the second gene was obtained by conditioning on the first gene,
648  and that of the third gene was obtained by conditioning on the top two genes. The conditional
649  p-values of subsequent genes were calculated according to the same procedure.

650

651  Simulations for investigating type I error and power of the conditional gene-based

652  association analysis

653  Extensively independent computer simulations based on a different reference population (i.e.,
654  EAS) in different genomic regions were performed to investigate type | error and the power of the
655  conditional gene-based association test. To approach the association redundancy pattern in
656  realistic scenarios, we used real genotypes and simulated phenotypes. The high-quality genotypes
657  of 2,507 Chinese subjects from a GWAS were used *2, and phenotypes of subjects were simulated
658  according to the genotypes under an additive model. Given total variance explained by n

659 independent variants, Vg, the effect of an allele at a bi-allelic variant was calculated by a =

660 \/Vg /[Xi=12P,,(1 — Py,)], where P, was the frequency of alternative alleles. The total expected
661  effect A of a subject was equal to a*[the number of alternative alleles of all the n variants]. Each
662  subject's phenotype was simulated by P=A+e, where e was sampled from a normal distribution
663  N(0, 1-Vg). We randomly sampled three pairs of genes, i.e., SIPA1L2 vs. LOC729336, CACHD1 vs.
664  RAVERZ2, and LOC647132 vs. FAM5C. The three pairs of genes represented three scenarios where
665  the nearby gene (i.e., the first gene) had similar (SIPA1L2 vs. LOC729336), larger (CACHD1 vs.
666  RAVER2) and smaller (LOC647132 vs. FAMS5C) variant size than the target gene (i.e., the second

667  gene) in terms of SNP number, respectively. In the type | error investigation, the target gene had
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668  no QTLs, while the nearby gene had one or two QTLSs. In the investigation of the statistical power,
669  both genes had QTLs.

670

671  For power comparison, the likelihood ratio test based on linear regression was adopted to perform
672  the conditional gene-based association analysis with raw genotypes. In the full model, genotypes
673  of all SNPs encoded as 0, 1, or 2 according to the number of alternative variants entered the
674  regression model as explanatory variables. In the subset model, the SNPs of the nearby genes
675  entered the regression model. The calculation of the likelihood ratio test was performed according
676  to the conventional procedure. The R packaged “Imtest” (version 0.9.37) was adopted to perform
677  the likelihood ratio test.

678

679  Simulations for comparing the power of gene-level eQTLs and isoform-level eQTLs in

680  gene-based association tests

681  We compared the power of conventional gene-based association tests, gene-level eQTLs guided
682  gene-based association tests and isoform-level eQTLs guided gene-based association tests by
683  simulation studies. Assume some variants regulate gene expression, and the gene expression
684  subsequently influences the phenotype. The same region on chromosome 2 [chr2:
685  169428016-189671923] was considered for the simulation. In the EUR panel of 1000 Genomes
686  Project®, this region contains 1600 common variants (MAF>0.05). Genotypes of the variants
687  were simulated given allelic frequencies and LD correlation matrix according to the HapSim
688 algorithm®. Phenotypes were simulated under a polygenic model of random effect*. According to

689  severe LD pruning (r’<0.01), eighty-two independent variants were extracted from the 1600
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690  variants. The SNPs' genotypes (s) contributing to the phenotypes were then standardized as,
691 g = (s —2q)/y/2q(1 — q), where q was the allele frequency of alterative allele. Phenotypes were
692  simulated under a polygenic model of random effect®. We assumed 40% of the independent
693  causal variants (mx) regulated gene expression (total heritability h2). The expression of a gene (X)
694  was simulated according to Formula (4):

695

696 X =X 9iBxi + €x> 4)

697

698  where By;~N(0,hg/my) and ex~N(0,1 — h%).

699

700  The gene expression then contributed 6 to a phenotype (). The phenotype value was simulated
701  according to the Formula (5):

702

703 Y = 6X + €y, (5)

704

705  where €,~N (0,1 — §%). Here Y was a continuous phenotype. For a binary phenotype, a cutoff t
706  was set according to a given disease prevalence K under a standard normal distribution and the
707 liability threshold model *. Subjects with simulated Y values >t were set as patients, and others
708  were set as normal controls.

709

710  When a gene had multiple isoforms, we assumed one of the isoforms was associated with
711  phenotype and simulated expression values of the isoform according to the above regulation
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712 model (Formula (5)). The expression values of the remaining isoforms were simulated by the
713 standard normal distribution N(0,1). The expression profile of a gene with multiple isoforms was
714  averaged by the expression profiles of all the isoforms belonging to the gene. The gene-level
715  eQTLs and isoform-level eQTLs were examined by the Wald test under the linear regression
716  model. The variant-phenotype association analysis was performed based on the conventional
717  association analysis procedure, and the statistical significance cutoff was set at p-value<0.001.

718

719  Genome-wide association study of schizophrenia

720 The GWAS summary statistics of schizophrenia included 53,386 cases and 77,258 controls of
721  European ancestry (hgl19 assembly). Genotypes in the CEU panel from the 1000 Genomes Project
722 were used to correct for the relatedness of the summary statistics. To predict the potential
723 susceptibility genes of schizophrenia, the variants in the major histocompatibility complex (MHC)
724 region, i.e., chr6:27,477,797-34,448,354, were excluded because of high polymorphism in the
725  present study. Detailed descriptions of population cohorts, quality control methods and association
726  analysis methods can be found in reference?®. The summary statistics can be accessed at the
727  Psychiatric Genomics Consortium.

728

729  The Genotype-Tissue Expression (GTEX) project

730 The GTEX project (release v8) created a resource including whole-genome sequence data and
731  RNA sequencing data from ~ 900 deceased adult donors®*. Four tissues or cell types (i.e., whole

732 blood, cells-Leukemiacellline_CML, pancreas and pituitary) were filtered out and not included in
39
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the following analyses because of the small sample size or weak correlation of gene expression

profiles with most of the other tissues.

GO annotation of the potential susceptibility genes

Functional enrichment analyses were performed by g:Profiler®®. GO terms, i.e., biological
processes (BP), molecular functions (MF) and cellular components (CC), were mainly concerned.
g:Profiler is based on Fisher’s one-tailed test, and the statistical p-value is multiple
testing-corrected. Significant GO terms were filtered by the threshold of “Padj” <0.05. The bar

plots of GO enrichment terms were drawn based on R-4.0.3.

Construction of the weighted gene co-expression network in multi-brain tissues

The fully processed, filtered and normalized gene-level expression profiles from GTEx v8 were
used to construct the weighted gene co-expression networks for the top-five brain tissues by R
package “WGCNA” (v1.69). WGCNA was performed to build an unsigned gene co-expression
network following the standard procedure, and all the parameters were used as recommended, and
the soft-threshold was set to 6 after testing a series of soft threshold powers (range 2 to 20). As for
the construction of gene co-expression modules, the hierarchical cluster tree in the co-expression
network was cut into gene modules using the dynamic tree cut algorithm with a minimum module
size of 30 genes®”. The normalized intra-module connectivity value was computed by setting the

options “scaleByMax = T”.
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Drug Gene Interaction (DGldb) database

DGIdb (v4.2.0) provides a resource of genes that have the potential to be druggable?’. DGIdb
contains two main classes of druggable genome. The first class includes genes with known drug
interactions, and the other includes genes that are potentially druggable according to their
membership in gene categories associated with druggability. DGIdb includes 42 potentially
druggable categories and 49 interaction types (including inhibitors, activators, cofactors, ligands,
vaccines and many interactions of unknown types). Only the drug-gene interaction terms with at

least one supported PubMed paper were used in the present study.

PubMed search

To find supports from published research, we performed a text-mining analysis based on PubMed
database on June 3rd, 2021. We searched the PubMed database with the items of
“((schizophrenia[tiab]+OR+Schizophrenia[tiab] +OR+SCZ[tiab])+AND+(gene

name[tiab])+AND+(gene[tiab]+OR+genes[tiab]+OR+mRNA[tiab]+OR+protein[tiab]+OR+protei
ns[tiab]+OR-+transcription[tiab]+OR-+transcript[tiab] +OR+transcripts[tiab] +OR+expressed[tiab]+
OR+expression[tiab]+OR+expressions[tiab]+OR+locus[tiab]+OR-+loci[tiab]+OR+SNP[tiab]))&d
atetype=edat&retmax=100". The java script output a file with the first column representing gene
name, the second column representing the synonyms of the gene name, the last column

representing the PubMed ids of hit papers.
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774  ldentification of the potentially phenotype-associated tissues of schizophrenia

775  To estimate the potentially phenotype-associated tissues, a framework called DESE (also
776  implemented in KGGSEE) proposed by our lab in a recent work was used ?2. DESE needs three
777  kinds of input datasets, i.e., the expression profiles of various tissues, reference genotype and
778  GWAS summary statistics, and outputs the estimated phenotype-associated tissues.

779

780  Specifically, the isoform-level expression profiles of 50 tissues in GTEx v8 were used. The
781  isoform-level expression profiles were preprocessed like this: the index column of the
782  preprocessed expression file was isoform symbol name, and each of 50 tissues or cell types had
783  one column representing the average expression value (i.e., mean value) of corresponding subjects
784  with the tissue. The Genotypes in the EUR panel from the 1000 Genomes Project (phase 3) were
785  downloaded from IGSR and used as reference genotype data. Three columns, i.e., chromosome
786 identifier (CHR), base-pair position (BP) and p-value (P) in GWAS summary statistics, were used.
787  SNPs with minor allele frequency (MAF) less than 0.05 were excluded. Only genes approved by
788  HGNC were included in the following analyses. The multiple testing adjustment method was the
789  standard Bonferroni correction, and the cutoff for the adjusted p-value was set as p<0.05. The
790  detailed commands of DESE to estimate potential phenotype-associated tissues are described on
791  the KGGSEE website. The bar plot of the rank of potential phenotype-associated tissues was
792  drawn based on R-4.0.3.

793
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794  Computation of gene-level eQTLs and isoform-level eQTLs

795  The present study focused on the cis-eQTLs. Specifically, two files were put into our integrative

796  platform KGGSEE to produce genef/isoform-level eQTLs for each tissue, namely, expression

797  profiles and corresponding genotype data file from GTEx v8. Two levels (gene-level and

798  isoform-level) expression profiles of 50 tissues were downloaded from the GTEx v8 project, and

799  the TMP value was used in the following analyses. Genes/isoforms were selected based on

800  expression thresholds of > 0 TPM in at least 20% of all samples. The genotype data used for eQTL

801  analyses in GTEX release v8 was based on WGS from 838 donors, which all had RNA-seq data

802  available. Only variants with MAF > 0.05 across all 838 samples were included in the present

803  study. GTEX v8 is based on the human reference genome GRCh38/hg38. Thus, to be consistent

804  with the GWAS results of schizophrenia (hgl9 assembly), we converted the GRCh38/hg38

805  coordinates into hgl9 by the UCSC LiftOver. All variants were filtered with Hardy—\Weinberg

806  disequilibrium (HWD) test p-value <1.0E-3. The mapping window was defined as 1 Mb up- and

807  downstream of the gene boundary. If the association test p-value of a variant and corresponding

808  expression of gene/isoform was smaller than 0.01, the variant was regarded as a

809  gene-level/isoform-level eQTL of the gene/isoform. It should be noted that the format of the eQTL

810 file is similar to the fasta file. The eQTL data of a gene or isoform starts with the symbol “>. For

811  the gene-level eQTLs file, the symbol “> is followed by the gene name (e.g., “LINC00320”), its

812  Ensembl ID (“ENSG00000224924”) and chromosome identifier (“217). For the isoform-level

813  eQTLs file, the symbol “>" is followed by the gene name (e.g. “LINC00320”), transcript Ensembl

814  ID (“ENST00000452561”) and chromosome identifier (“217).

815
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816  The gene/isoform-level eQTLs files of 50 tissues in GTEX v8 can be accessed on the KGGSEE

817  website and freely used for research purposes. The detailed commands of KGGSEE to compute

818  gene/isoform-level eQTLs of each tissue are described on the KGGSEE website.

819

820 Estimation of the potential susceptibility genes and isoforms for schizophrenia

821  The framework MCGA included three models, i.e., MCGA_Dist, MCGA eQTL and

822  MCGA isoQTL, which were all based on the improved ECS. The main difference among the

823  three models was the strategy used to map variants to genes. For MCGA_Dist, if a variant was

824  within a small window, say +/-5 kb, around the gene boundary, then the variant will be assigned

825  onto the gene according to a gene model, e.g., RefSeqGene. For MCGA _eQTL, the variant will be

826  assigned onto the gene if the variant is a gene-level eQTL of the gene. Similarly, for

827  MCGA isoQTL, the variant will be assigned onto the isoform if the variant is an isoform-level

828 eQTL  of  the isoform. Another  difference between MCGA Dist  and

829 MCGA eQTL/MCGA isoQTL was that the latter two were based on the gene/isoform-level

830  eQTLs of each tissue, thus can produce the potential susceptibility genes/isoforms in a multi-tissue

831 context.

832

833  Like our previous model DESE, MCGA contained three iterative steps. In the first step, associated

834  genes with smaller p-values of the ECS test were given higher priority to enter the following

835  conditional gene-based association analysis. This step could generate a list of roughly associated

836  genes by removing redundantly associated genes. It should be noted that we dealt with the
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837  mentioned three models of MCGA in different ways. For MCGA_Dist and MCGA_eQTL, the
838  order of a gene entering the conditional gene-based association analysis was determined by its
839  p-value of the ECS test. For MCGA _isoQTL, assume gene A has m isoforms. Each isoform could
840  get a p-value based on the ECS test, representing the overall statistical significance of all
841  isoform-level eQTLs (simultaneously variants) associated with this isoform. If the isoform with
842  the smallest p-value was isoform a, with its p-value p, among the m isoforms of gene A, we only
843  kept isoform a of gene A for the following analyses. The adjustment p-value for “gene A : isoform
844  a” pair was adjusted to m* p, to enter the following conditional gene-based association analysis.
845

846  The second step was to compute the selective expression score of genes/isoforms in each tissue by
847  taking all tissues as the background (see details in reference®®). The Wilcoxon rank-sum test was
848  then performed by using the selective expression score of the associated gene/isoform set and
849  not-associated gene/isoform set (generated by the first step) in each tissue.

850

851 In the third step, all genes/isoforms, including the not-associated genes/isoforms, were ranked in
852  descending order based on the tissue-selective expression score of each gene/isoform. The
853  tissue-selective expression score of a gene/isoform was computed based on the rank of this
854  gene/isoform-selective expression score and the p-value of the Wilcoxon rank-sum test between
855 the associated gene/isoform set and not-associated gene/isoform set in each tissue.

856

857 In the following iteration, genes/isoforms with higher tissue-selective expression scores (in the
858 third step) were given higher priority to enter the conditional gene-based association analysis (in
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859 the first step). The above three steps were iterated until the p-values of the Wilcoxon rank-sum test
860  did not change almost, and then corresponding associated genes/isoforms were deemed to be
861  potentially associated with the phenotype. More details about the iterative procedure can be found
862 in the original papers®.

863

864  MCGA is implemented in our integrative platform KGGSEE. To run MCGA_Dist, three input
865  files were needed, i.e., GWAS summary statistics file, gene-level expression profiles of 50 tissues
866 in GTEx v8, genotypes in EUR panel from 1000 Genomes Project (phase 3). To run
867 MCGA_eQTL and MCGA _isoQTL, four input files were needed, i.e., GWAS summary statistics
868 file, gene-level or isoform-level expression profiles of 50 tissues in GTEX v8, genotypes in EUR
869  panel from 1000 Genomes Project (phase 3) and gene/isoform-level eQTLs file of each estimated
870  disease-associated tissue. Only genes with HGNC gene symbols were considered in the present
871  study. The output result file was a text file that contained multiple information about the
872  association measurement of genes (or “gene: isoform” pairs) with the corresponding phenotype.
873  Multiple testing was corrected by using Bonferroni correction. Significant genes were filtered by
874  the “CondiECSp” threshold cutoff 2.5E-6, where “CondiECSp” meant the p-values of conditional
875  gene-based association test based on the improved ECS. The bar plot of the comparison of
876  potential susceptibility genes was drawn based on R-4.0.3. The venn diagram was drawn based on
877  aweb app Venny 2.1.0.

878

879 MAGMA

880 MAGMA is a popular tool for gene and generalized gene-set analysis based on the GWAS
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881  summary statistics. Here the parameters and options were used as the MAGMA (v 1.08) manual
882  recommended. Annotation analysis was firstly performed based on the SNP location file and gene
883  location file (hgl9, build 37). The SNP location information was extracted from the same GWAS
884  summary statistics file of schizophrenia. An SNP was mapped to a gene if the SNP was in the
885  window of +/-5kb around the gene boundary (same as MCGA_Dist). The gene analysis was
886  performed based on the annotation results and reference data file which was created from Phase 3
887  of 1000 Genomes of the European population in reference to human genome build 37. Both gene
888 location file and reference data file were downloaded from the MAGMA website. Multiple testing
889  was corrected by using Bonferroni correction. Significant genes were filtered by the threshold of
890  “p-value” 2.5E-6.

891
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