

1 **Genomics analysis of hexanoic acid exposure in *Drosophila* species**

2

3 Drum, Z.A. Lanno, S.M., Gregory, S.M., Shimshak, S.J., Ahamed, M., Barr, W., Bekele, B.,
4 Biester, A., Castro, C., Connolly, L., DelGaudio, N., Humphrey, W., Karimi, H., Karolczak, S.,
5 Lawrence, T., McCracken, A., Miller-Medzon, N., Murphy, L., Park, C., Park, S., Qiu, C., Serra,
6 K., Snyder, G., Strauss, A., Tang, S., Vyzas, C., and Joseph D. Coolon*.

7

8 ¹Department of Biology, Wesleyan University, Middletown, CT 06457

9

10

11 * Corresponding Author:

12 Joseph D. Coolon

13 Wesleyan University

14 123 Hall-Atwater

15 Middletown, CT 06459

16 860-685-2552

17 Email: jcoolon@wesleyan.edu

18

19

20

21

22

23

24

25

26

27

28

29

30 *Keywords:* toxin resistance, host specialization, RNA-seq

31 **Abstract**

32 *Drosophila sechellia* is a dietary specialist endemic to the Seychelles islands that has evolved to
33 consume the fruit of *Morinda citrifolia*. When ripe, the fruit of *M. citrifolia* contains octanoic
34 acid and hexanoic acid, two medium chain fatty acid volatiles that deter and are toxic to
35 generalist insects. *D. sechellia* has evolved resistance to these volatiles allowing it to feed almost
36 exclusively on this host plant. The genetic basis of octanoic acid resistance has been the focus of
37 multiple recent studies, but the mechanisms that govern hexanoic acid resistance in *D. sechellia*
38 remain unknown. To understand how *D. sechellia* has evolved to specialize on *M. citrifolia* fruit
39 and avoid the toxic effects of hexanoic acid, we exposed adult *D. sechellia*, *D. melanogaster* and
40 *D. simulans* to hexanoic acid and performed RNA sequencing comparing their transcriptional
41 responses to identify *D. sechellia* specific responses. Our analysis identified many more genes
42 responding transcriptionally to hexanoic acid in the susceptible generalist species than in the
43 specialist *D. sechellia*. Interrogation of the sets of differentially expressed genes showed that
44 generalists regulated the expression of many genes involved in metabolism and detoxification
45 whereas the specialist primarily downregulated genes involved in the innate immunity. Using
46 these data we have identified interesting candidate genes that may be critically important in
47 aspects of adaptation to their food source that contains high concentrations of HA.
48 Understanding how gene expression evolves during dietary specialization is crucial for our
49 understanding of how ecological communities are built and how evolution shapes trophic
50 interactions.

51 **Introduction**

52 Insects have long been recognized as one of the most abundant and diverse groups of organisms
53 on the planet, with a large fraction of them feeding on plants (Jaenike *et al.* 1990, Stork 2018).
54 Many of these phytophagous insects have evolved to be highly host plant specific. The evolution
55 of such specialized interactions is often guided by specific plant chemistry, with most plants
56 responding to increased insect herbivory by the production of toxic secondary metabolites
57 (Jaenike *et al.* 1990, Petschenka and Agrawal 2016). This leads to an evolutionary arms race as
58 insects evolve resistance to these toxins (Heidel-Fischer and Vogel 2015). While host plant-
59 insect adaptions are well studied in the literature, less is known about the underlying genetic
60 mechanisms that contribute to the evolution of these complex ecological interactions (Ungerer *et*
61 *al.* 2007).

62 *Drosophila sechellia* feeds and oviposits primarily on *Morinda citrifolia*, a fruit highly
63 toxic to other *Drosophila* species (Legal *et al.* 1992). The plant produces ripe fruit year-round in
64 the Seychelles island archipelago, the sole location where *D. sechellia* are found (Legal *et al.*
65 1992) providing abundant and consistent resources. Upon exposure to the ripe fruit, other
66 *Drosophila* species display frantic behavior and wing movements, reduction in locomotor
67 activity, and death (Legal *et al.* 1994). *Drosophila sechellia* eggs are able to hatch and develop
68 on *M. citrifolia* fruit but the embryos of other *Drosophila* species die (Amlou *et al.* 1998). Unlike
69 its generalist sister species, *D. sechellia* prefer *M. citrifolia* to other hosts and are drawn to the
70 fruit from a long distance (R'Kha *et al.* 1991). *Drosophila sechellia* evolved resistance to the
71 toxins in *M. citrifolia* from an ancestral sensitive state (R'Kha *et al.* 1997) and this tolerance
72 provides *D. sechellia* a temporal advantage over other fruit fly species that can only lay eggs in
73 the fruit once it has rotten and the toxic volatiles are reduced.

74 The toxic properties of *Morinda* are attributed to the carboxylic acids present in the pulp
75 of the ripe fruit (Legal *et al.* 1994). This pulp is largely characterized by carboxylic acids,
76 primarily the fatty acids octanoic (OA) and hexanoic acid, (HA) which comprise 58% and 19%
77 of the volatile compounds found the ripe fruit respectively (Farine *et al.* 1996). While the genetic
78 basis of *D. sechellia* resistance to the most abundant and toxic compound in *M. citrifolia* fruit,
79 OA, has been characterized in previous studies (Dworkin and Jones 2009, Andrade Lopez *et al.*
80 2017, Lanno *et al.* 2017, Peyser *et al.* 2017, Lanno and Coolon 2019, Lanno *et al.* 2019a, Lanno
81 *et al.* 2019b), much less is known about the genes involved in HA resistance. In a study using
82 fatty acid concentrations equivalent to 1.5g of ripe *M. citrifolia* fruit, OA treatment alone killed
83 all fruit fly species assayed except *D. sechellia*, while HA alone caused reversible knock-down in
84 other Drosophilids (Farine *et al.* 1996). In a more recent study using higher concentrations of
85 HA, mortality was observed in response to exposure to HA in *D. melanogaster* and *D. simulans*
86 and *D. sechellia* is significantly more resistant to HA induced mortality than sister species
87 (Peyser *et al* 2017, Lanno and Coolon 2019). Surprisingly, tests of the three major detoxification
88 gene families, cytochrome P450s (cyps), glutathione-S-transferases (GSTs) and esterases (Ests)
89 found that none was involved in derived HA resistance in *D. sechellia* suggesting an alternative
90 genetic mechanism must be involved in resistance. Studies have suggested that HA may be a
91 more efficient *D. sechellia* attractant than OA, while OA is a more potent repellent of generalist
92 species (Amlou *et al.* 1998). In a test using laboratory food medium supplemented with 0.5% of
93 either OA or HA, *D. sechellia* exhibited oviposition preference for media supplemented with HA
94 over OA (Amlou *et al.* 1998).

95 From a study analyzing the transcriptomic response of *D. sechellia* on OA, 104 genes
96 were found to be differentially expressed in response to OA (Lanno *et al.* 2017). This study

97 showed that several *Osiris* genes, including *Osi6* are upregulated in *D. sechellia* in response to
98 OA. Another study showed that RNAi mediated knockdown of *Osi6* expression drastically
99 decreased survival in response to OA (Andrade Lopez et al 2017). Given that HA makes up
100 about of fifth of the volatile compounds found in *M. citrifolia* and produces unique effects on
101 behavior (Farine *et al.* 1996) and has an unknown and less common basis for toxin resistance
102 (Lanno and Coolon 2019, Peyser et al 2017), identifying the genes responding to HA is
103 necessary to understand how *D. sechellia* has specialized on *M. citrifolia* fruit, and may help
104 pinpoint genes that are involved in resistance to HA. By also analyzing the genes responding to
105 HA exposure in generalist *Drosophila* species *D. melanogaster* and *D. simulans* we can identify
106 derived gene expression responses specific to *D. sechellia* that may be critical for HA associated
107 traits (Coolon et al 2009). In this study, adult female *D. sechellia*, *D. melanogaster*, and *D.*
108 *simulans* flies were fed either control food or food supplemented with 0.23% HA and
109 significantly differentially expressed genes (DEGs) were identified using RNA-seq. Comparison
110 of the identified genes with those found to respond to OA (Lanno *et al.* 2017) and L-DOPA
111 (Lanno et al 2019), another highly abundant compound found in *M. citrifolia* fruit, identified
112 several genes common in response to OA, HA, and L-DOPA as well as genes unique to HA
113 suggesting these genes may play an important role in the evolved resistance and specialization of
114 *D. sechellia* to *M. citrifolia*.

115

116 **Methods**

117 ***Fly strains and culture***

118 *Drosophila sechellia* (14021-0428.25), *D. simulans* (14021-0251.195), and *D. melanogaster*
119 (14021-0231.36) flies were reared on standard cornmeal medium under a 16:8 light:dark cycle
120 maintained at 20°C.

121

122 ***RNA extraction, library preparation, and sequencing***

123 Zero to three day post eclosion adult female flies were fed control food (0.75g Drosophila instant
124 medium Formula 4-24, Carolina Biological Supply Company) or identical food containing
125 0.23% hexanoic acid (HA). After 24 hours, three replicates of ten whole flies per species and per
126 treatment were homogenized and total RNA was extracted with a modified protocol of the
127 Promega SV extraction system (Coolon *et al.* 2013, **Figure 1**). RNA quality and quantity was
128 assessed using agarose gel electrophoresis and Nanodrop spectrophotometry. RNA was sent to
129 the University of Michigan Sequencing Core Facility for poly-A selection, cDNA synthesis, bar-
130 coded library preparation with TruSeq library preparation kits and sequencing on an Illumina
131 Hiseq 4000, generating 405,166,795 single-end 65 nt sequencing reads for *D. sechellia* and 51nt
132 sequencing reads for *D. melanogaster* and *D. simulans*. (**Table 1**).

133

134 ***BIOL310 Genomics Analysis***

135 The genomics analysis of RNA-seq data presented in this manuscript was performed by 20
136 undergraduate and 6 graduate students as part of a semester-long course at Wesleyan University
137 called Genomics Analysis (BIOL310). This is the third such manuscript (see Lanno *et al.* 2017
138 and Lanno *et al.* 2019a) made from this course where the aim is to provide undergraduate
139 students an early opportunity with a course-based research experience with active participation in
140 scientific discovery. Students in the course learn through engaging with never-before analyzed

141 data using cutting edge genomics analysis techniques and bioinformatics tools through a
142 discovery-based independent study. Every student in the course contributed to the quality
143 control, analyses, write-up and interpretation of the findings, providing their own unique
144 perspective of the results and text written by each and every student was combined into this
145 manuscript with very little modification.

146 After sequencing output files were obtained from the University of Michigan Sequencing
147 Core (**Table 1**), fastq files containing raw sequencing reads were uploaded to the Galaxy
148 platform (Afgan *et al.* 2016) and an RNA-seq analysis pipeline was performed (**Figure 1**) as
149 previously described (Lanno *et al.* 2017 and Lanno *et al.* 2019a). Briefly, reads were assessed for
150 quality using FASTQC (Andrews 2010) and any overrepresented sequences were analyzed using
151 NCBI Blast (Altschul *et al.* 1990). Bowtie2 was used for mapping reads to the appropriate
152 reference genome for each species with default parameters (Langmead and Salzberg 2012), with
153 the most recent genomes for each species available at the time of analysis acquired from
154 Ensembl (www.ensembl.org, Yates *et al.* 2016) (*D. sechellia*:
155 [Drosophila_sechellia.dsec_caf1.dna.toplevel.fa](http://www.ensembl.org/Drosophila_sechellia/dsec_caf1.dna.toplevel.fa), *D. simulans*:
156 [Drosophila_simulans.ASM75419v3.dna.toplevel.fa](http://www.ensembl.org/Drosophila_simulans/ASM75419v3.dna.toplevel.fa) and *D. melanogaster*:
157 [Drosophila_melanogaster.BDGP6.dna.toplevel.fa](http://www.ensembl.org/Drosophila_melanogaster.BDGP6.dna.toplevel.fa)). The Bowtie2 output files were analyzed
158 using Cuffdiff (Trapnell *et al.* 2010), which performs gene expression quantification and
159 differential gene expression analysis using the aforementioned genome file along with the most
160 recent annotated .gff3 file for each genome available at the time of analysis acquired from
161 Ensembl (*D. sechellia*: *Drosophila_sechellia.dsec_caf1.42.gff3*, *D. simulans*:
162 *Drosophila_simulans.ASM75419v3.42.gff3* and *D. melanogaster*:
163 *Drosophila_melanogaster.BDGP6.95.gff3*). In Cuffdiff, geometric normalization and library size

164 correction was performed, along with bias correction using the reference genome, giving an
165 output of DEGs for each species following false discovery rate multiple testing correction
166 (Benjamini & Hochberg 1995, $q < 0.05$). Data was visualized using R (R Core Team, 2013). In
167 order to compare gene expression results across species, we obtained all 1:1:1 orthologs from *D.*
168 *sechellia*, *D. simulans* and *D. melanogaster* from Flybase (Thurmond *et al.* 2019). DEGs
169 following *D. sechellia* exposure to OA or L-DOPA were downloaded from online databases
170 (Lanno *et al.* 2017, Lanno *et al.* 2019a). GO term enrichment was performed on *D. melanogaster*
171 orthologs for each species using GeneOntology.org (www.geneontology.org, Ashburner *et al.*
172 2000, Carbon *et al.* 2021, Mi *et al.* 2019). KEGG pathway analysis was performed using the *D.*
173 *melanogaster* ortholog for each DEG from each species
174 (https://www.kegg.jp/kegg/tool/map_pathway1.html, Kanehisa and Sato 2020).
175

176 *Data accessibility*
177 All RNA-seq data generated in this manuscript have been submitted to the NCBI Gene
178 Expression Omnibus under accession number XXXXX (to be available at time of publishing).
179 Supplemental Tables for this manuscript have been uploaded to GSA figshare.
180

181 **Results**

182 ***Differential gene expression in response to HA treatment***

183 In order to identify candidate genes that are important in *D. sechellia* host specialization and
184 evolved resistance to HA we sought genes that have altered expression levels in response to HA
185 exposure. Previous studies have shown that such environmentally plastic gene regulation can
186 indicate importance of that gene's function in that environment making identified genes good

187 candidates for *D. sechellia* HA associated traits (Coolon et al 2009, Lanno et al 2017, Lanno et al
188 2019). To quantify gene expression response to HA we performed RNA-sequencing (RNA-seq)
189 on adult female flies after exposure to control food and compared this to flies fed food containing
190 0.23% HA. Because many of the transcriptional responses to HA might be non-specific, we
191 measured gene expression responses in *D. sechellia*, *D. melanogaster*, and *D. simulans* to
192 identify those responses (or loss of response) that are restricted to *D. sechellia* representing
193 changes that might contribute to its unique phenotypes.

194 Using this approach we identified 841 genes differentially expressed by *D. melanogaster*
195 (**Figure 2A,D; Table S1**), 743 genes were differentially expressed by *D. simulans* (**Figure**
196 **2B,E; Table S2**) and only 93 genes were differentially expressed in *D. sechellia* (**Figure 2 C,F;**
197 **Table S3**) in response to HA. No significant difference in the number of upregulated genes
198 (50/93) vs downregulated genes (43/93) was observed in *D. sechellia* in response to HA
199 (Binomial Exact Test, $p = 0.1066$). In *D. simulans*, there was a significant difference in the
200 number of upregulated genes (69/743) compared to the number of downregulated genes
201 (674/743) in response to HA (Binomial Exact Test, $p = 2.2\text{e-}16$, **Figure 2B,E**). In *D.*
202 *melanogaster*, there was also a significant difference in the number of upregulated genes
203 (171/841) compared to the number of downregulated genes (670/841) in response to HA
204 (Binomial Exact Test, $p = 2.2\text{e-}16$, **Figure 2A,D**). In *D. sechellia*, there were 39 DEGs identified
205 that responded to HA that do not have annotated *D. melanogaster* orthologs 27 of these genes
206 were 5.8S rRNAs, two snoRNAs, and 7 genes of unknown function. Of the 27 5.8S rRNAs, all
207 27 were upregulated (Binomial Exact Test, $p = 7.451\text{e-}09$). In *D. simulans*, of the 743 DEGs
208 there were annotated *D. melanogaster* orthologs for 673 genes. For the remainder of the analysis,
209 only genes with known *D. melanogaster* orthologs are considered to allow functional

210 interpretations of DEGs, and for all subsequent analyses the *D. melanogaster* ortholog name was
211 used. This filtering resulted in 673 differentially genes in *D. simulans*, 841 in *D. melanogaster*
212 and 54 in *D. sechellia* used in subsequent analyses.

213

214 ***Identifying functional enrichment in DEGs***

215 To identify the biological pathways that are involved in responses to HA in *D. sechellia*,
216 *D. melanogaster*, and *D. simulans* KEGG analyses of the upregulated and downregulated genes
217 in each species were performed. These analyses show that many different metabolic and
218 detoxification pathways along with proteins that localize to the lysosome are changing in
219 response to HA exposure in *D. melanogaster* and *D. simulans*, whereas very few genes in these
220 pathways are responding in *D. sechellia* (**Figures 4A-B**). In *D. sechellia*, many of the of the
221 genes downregulated in response to HA are involved in Toll and Imd immune signaling whereas
222 this was much less prominent in *D. melanogaster* and *D. simulans* DEGs (**Figure 4C**).

223 To understand which biological and cellular processes are being altered in *D. sechellia*,
224 *D. melanogaster*, and *D. simulans* in response to HA, Gene Ontology (GO) term enrichment
225 analysis was performed (**Table S16-S18**). In *D. sechellia*, GO term enrichment analysis of DEGs
226 for cellular component showed a significant enrichment for extracellular region genes ($p = 4.83e-05$),
227 suggesting that several of the genes responding to HA exposure have proteins that are
228 secreted. For biological process GO term enrichment analysis, processes involved in the
229 antibacterial humoral response were significantly enriched ($p = 1.75e-08$). In *D. sechellia*, no
230 molecular function processes were significantly enriched. In *D. melanogaster*, there was also
231 significant enrichment for GO terms for extracellular region genes ($p = 4.42e-04$), along with
232 genes found inside the nucleolus ($p = 8.40e-04$). For biological process, GO terms associated

233 with genes involved in the antibacterial humoral response were significantly enriched as in *D.*
234 *sechellia* (p = 3.02e-02), as were other processes involved in the *Drosophila* immune response.
235 The *D. melanogaster* HA response also was enriched for genes involved in ribosome biogenesis
236 (p = 3.66e-02). In *D. simulans*, genes found inside the nucleolus were significantly enriched in
237 the set of HA responsive genes (p = 2.65e-02). In an analysis of DEGs in *D. simulans* that are
238 upregulated, genes involved in Notch signaling were significantly enriched (p = 4.11e-04)
239 alongside genes involved in vitelline membrane and chorion formation (p = 2.56e-02). In *D.*
240 *sechellia*, upregulated genes were significantly enriched for the larval serum protein complex (p
241 = 1.96e-02). Downregulated genes were significantly enriched with antibacterial humoral
242 response GO terms (p = 3.24e-10) along with the response to hyperoxia (p = 1.52e-03). These
243 downregulated genes were also enriched for the extracellular region (p = 4.17e-05). In *D.*
244 *melanogaster*, upregulated genes were significantly enriched to be involved in the larval serum
245 protein complex (p = 1.23e-03) and were enriched intracellularly (p = 4.02e-16) and within
246 intracellular organelles (1.32e-13). These upregulated genes were significantly enriched in many
247 biological processes, including chromatin silencing (p = 3.25e-03), ecdysone receptor-mediated
248 signaling (p = 1.89e-02), and chorion assembly (p = 2.25e-02). In *D. melanogaster*,
249 downregulated genes were significantly enriched for the antibacterial humoral response (p =
250 4.52e-03) and for the defense response to Gram-positive bacteria (p = 5.07e-04). These
251 downregulated genes were significantly enriched to be localized to the extracellular region (p =
252 1.25e-04).
253
254 ***Comparing DEGs identified in response to HA in *D. melanogaster*, *D. simulans*, and *D.****
255 ***sechellia***

256 In order to identify genes with *D. sechellia* specific responses to HA, we compared the
257 DEGs from the three species when exposed to HA (**Figure 3A**). We identified 32 genes that
258 were differentially expressed by *D. sechellia* flies exposed to HA that were not responsive to HA
259 exposure in both *D. melanogaster* and *D. simulans* flies (**Figure 3A, Table S13**). In order to
260 identify those genes where *D. sechellia* specific loss of response to HA was observed we selected
261 those genes with significant changes in response to HA in both *D. melanogaster* and *D. simulans*
262 that were not significantly differentially expressed by *D. sechellia* in response to HA. This
263 analysis yielding a total of 213 genes with this expression pattern in our data (**Table S10**).
264 Interestingly, only 2 genes were identified, *CG13114* and *Fbp1*, that had significant response to
265 HA in all three species, with the expression of both increasing in *D. simulans* and decreasing in
266 *D. sechellia* and *D. melanogaster* (**Figure 3A, Table S9**).
267

268 ***Common transcriptional responses of D. sechellia exposed to HA, OA and L-DOPA suggests***
269 ***overlapping regulatory mechanisms***

270 To assess the overlap in transcriptional responses of *D. sechellia* to both OA and HA, the
271 predominant fatty acid volatiles in *M. citrifolia*, along with 3,4-dihydroxyphenylalanine (L-
272 DOPA), which is found in *M. citrifolia* fruit and is important for the specialization of *D.*
273 *sechellia* to this fruit (Lanno *et al.* 2019a, Lavista-Llanos *et al.* 2014), we compared DEGs
274 between our HA treatment, DEGs identified in a previous study using a 0.7% OA treatment
275 (Lanno *et al.* 2017), and DEGs identified in a previous study of responses to 10mg/mL of L-
276 DOPA added to the fly food (Lanno *et al.* 2019a). Treatment with OA treatment yielded 103 *D.*
277 *sechellia* genes with *D. melanogaster* orthologs that were significantly differentially expressed.
278 Treatment with L-DOPA yielded 643 *D. sechellia* genes with *D. melanogaster* orthologs that

279 were significantly differentially expressed. Comparison of genes responsive to HA, OA, and L-
280 DOPA identified 12 DEGs that respond to HA, OA, and L-DOPA treatment in *D. sechellia*
281 (**Figure 3B, Table S6**). Interestingly, of the 19 shared DEGs with *D. melanogaster* orthologs
282 between OA and HA treatments, all genes are downregulated except for E(spl)mgamma-HLH,
283 which is upregulated upon both OA and HA treatment (**Table S4**). To compare metabolic and
284 cellular pathways involved in the conserved response between OA and HA treatment in *D.*
285 *sechellia*, GO term enrichment analysis was performed on shared DEGs. Genes involved with
286 biological processes related to the humoral immune response were overrepresented ($p = 2.95e-08$,
287 **Table S22**). No significantly enriched processes were found for molecular function or
288 cellular component. A KEGG pathway analysis of DEGs in *D. sechellia* similarly found that
289 upon OA, *D. sechellia* downregulated genes involved in both the Toll and Imd signaling
290 pathways as well as genes involved in metabolic processes (**Table S21, Figure S1**).
291 Interestingly, in response to OA and HA, *D. sechellia* downregulated genes involved the humoral
292 immune response (*AttC*, *CecA2*, *Def*, *DptB*, *Dro*, *edin*, and *PGRP-SB1* **Table S4**).
293

294 **Discussion**

295 Understanding the genetic basis of how organisms evolve to occupy different ecological niches
296 and adapt to their environments is crucial to understanding the evolution of plant and animal
297 interactions. Insect-host plant specialization is an excellent example of the evolution of such
298 interactions and has been the subject of numerous ecological studies. While the phenomenon is
299 well documented, the genetic basis of evolved host specialization is still not widely understood.
300 Here we focus on the specialization of *D. sechellia* to feed almost exclusively on one host plant,
301 *M. citrifolia* because it is an excellent model to understand the genetic basis of dietary

302 specialization. This is in part because it is has evolved recently and very closely related to the
303 genetic model generalist species *D. melanogaster*. Fortuitously, we can take advantage of the
304 wealth of genetic tools and information about *D. melanogaster* and sister species to understand
305 the evolution of dietary specialization in this group (Groen and Whiteman 2016).

306 *Drosophila sechellia* upregulates a single cytochrome P450 (*Cyp4e1*) in response to HA
307 whereas *D. simulans* downregulates this same gene (**Table S2**), but previous work has shown
308 that cytochrome P450s are not the evolved mechanism by which *D. sechellia* is able to survive
309 OA or HA exposure (Peyser *et al.* 2017). Previous work has shown that HA induces a
310 “reversible coma” in generalist *D. melanogaster*, *D. simulans*, and *D. mauritiana* flies (Farine *et*
311 *al.* 1996), and *D. sechellia* prefers to oviposit on HA compared to OA and control food sources
312 (Amlou *et al* 1998). *Drosophila sechellia* has a premature stop codon in *Obp56e* as well as
313 *Obp57d* and *Obp57e* alleles that reduce their avoidance to noni volatiles (Dworkin and Jones
314 2009, Matsuo *et al.* 2007). The mechanisms that drive this attraction may be through changes in
315 gene expression and may be reflected in these predicted regulatory networks. *Drosophila*
316 *sechellia* downregulates many genes involved in the Imd and Toll immune pathways when
317 exposed to both HA and OA, suggesting that somehow these two medium chain fatty acids are
318 interacting with negative effectors of Imd signaling. As these two immune pathways have similar
319 and overlapping target genes, further analysis is needed to determine if both pathways are
320 involved in these interactions (Hanson and Lemaitre 2020). This interaction between *D. sechellia*
321 and the volatiles from *M. citrifolia* reduces the immune humoral response, which could cause
322 alterations in gut microbiota composition that aids in the detoxification of relevant plant
323 secondary metabolites. E(spl)mgamma-HLH is a Notch responsive Myc-like transcription factor
324 that has been shown to interact with Relish, the main regulator of Imd immune signaling

325 (Dushay, Åsling, and Hultmark 1996) through recent yeast two-hybrid assays (Shokri *et al.*
326 2019) and is upregulated in *D. sechellia* in response to both OA and HA exposure (**3B Table**
327 **S4**). The plastic response of insect immune systems allows them to fend off pathogens when
328 needed, but also allow for the management of endosymbionts (Wilcinskas 2013, Login *et al.*
329 2011). Unlike its generalist sister species, *Drosophila sechellia* was previously shown to lack an
330 immune response when confronted with parasitic wasps, hinting that immune system responses
331 in this species may be unlike its generalist sister species (Salazar-Jaramillo *et al.* 2017).
332 Additionally, prior work showed that free fatty acids are involved in regulating immune
333 responses in mammals (Alvarez-Curto and Milligan 2016), and hexanoic acid priming of plants
334 can activate the jasmonic acid pathway to increase plant resistance to fungal pathogens
335 (Aranega-Bou *et al.* 2014; García-Robles *et al.* 2013). Further study comparing the microbiomes
336 between *D. sechellia* and *D. simulans* and how they may change from feeding on *M. citrifolia*
337 fruit as well as how each responds to pathogen challenge in this context would help to
338 understand why *D. sechellia* is downregulating its immune response when there could be a
339 serious fitness cost of this action.

340 Recent studies have shown that *D. melanogaster* uses sweet tasting gustatory receptor
341 neurons to sense OA and HA (Masek and Keene 2013; Tauber *et al.* 2017; Chen and Amrein
342 2017). Our data shows that upon exposure to HA, only *D. sechellia* significantly upregulates
343 another odorant binding protein, *Obp56a*. In contrast to HA treatment, in response to OA *D.*
344 *sechellia* adults do not change expression of any odorant binding proteins (Lanno *et al.* 2017).
345 Both *D. simulans* and *D. melanogaster* both downregulate the expression of *Obp57a* in response
346 to HA (**Table S10**). Recently, studies examining the gustatory and behavioral basis of the
347 attraction of *D. sechellia* to noni have shown that *Or22a* neurons in the fly brain are involved in

348 the attraction to noni (Auer *et al.* 2020), as are *Or85b/c* and *Ir75b* neurons (Prieto-Godino *et al.*
349 2017). *Orco* mutant *D. sechellia* flies lose olfactory responses to both 2-heptanone and 1-
350 hexanol, two compounds found in ripe noni fruit (Auer *et al.* 2020). Further work on the role of
351 these genes in *D. sechellia* and the regulatory mechanisms responsible for the change of odorant
352 binding protein expression in response to HA may help to elucidate how *D. sechellia* has evolved
353 to specialize on *M. citrifolia*

354 *Drosophila sechellia* is altering the expression of far fewer genes in response to HA than
355 in the generalist species *D. melanogaster* and *D. simulans* (**Tables S1-3**). *Drosophila sechellia*
356 appears to be downregulating many genes involved in the humoral immune response whereas *D.*
357 *melanogaster* and *D. simulans* alter the expression of genes involved in many different metabolic
358 pathways (**Figures 4A-4C**). As generalist insects feed on many different plants which produce
359 different secondary metabolites to defend themselves from predators, perhaps generalist species
360 have a more plastic regulatory response to subvert toxicity whereas the specialist *D. sechellia* is
361 resistant to the toxicity of its host through a specific constitutive mechanism. A recent study
362 comparing the fitness of *D. melanogaster* to *D. sechellia* larvae fed different food sources
363 showed a loss of carbohydrate metabolic responses in *D. sechellia*, as they have specialized on a
364 fruit with a relatively low sugar content, *M. citrifolia* (Watanabe *et al.* 2019). Of the many
365 significant genes differentially expressed in *D. melanogaster* and *D. simulans*, most DEGs are
366 not drastically differentially expressed in HA treatment compared to controls (**Figures 2D and**
367 **2E**). *Drosophila sechellia* conversely alters the expression of relatively far fewer genes, but
368 many of the DEGs in response to HA are drastically differentially expressed (**Figure 2F**).
369 Similarly, another study found that when adapted to a grass diet, *Spodoptera littoralis* had a
370 smaller transcriptional response when fed maize compared to more generalist *S. littoralis* (Roy *et*

371 *al.* 2016). Determining the scale of these responsive regulatory effects and their role in toxin
372 resistance will help elucidate how *D. sechellia* has evolved to avoid the toxicity of *M. citrifolia*.

373 In response to OA, *D. sechellia* increases its expression of several *Osiris* genes (Lanno *et*
374 *al.* 2017). Previous work using RNAi in *D. melanogaster* to knock-down the expression of
375 individual genes and examine survival in these flies when exposed to OA showed that the
376 reduction of *Osi6*, *Osi7*, and *Osi8* expression decreased survival (Andrade Lopez *et al.* 2017). In
377 response to HA, neither *D. sechellia* nor *D. melanogaster* significantly alter the expression of
378 any *Osiris* genes, but *D. simulans* downregulates the expression of *Osi6*, *Osi7*, and *Osi15* (**Table**
379 **S2**). The cellular and physiological function of these genes is unknown, so understanding what
380 these genes are doing and how they may be helping to shape the interactions between these
381 insects and their toxic hosts may be useful to understand how these interactions evolve (Coolon
382 *et al.* 2019).

383 Examining and comparing the changes in transcriptional output of insects when exposed
384 to these different plant chemicals in specialized versus generalist species provides a framework
385 to understand how these interactions have evolved. Pathway analyses of these genes is useful in
386 determining the physiological function of altered expression in response to these chemicals, but
387 analyses of transcription factors that alter expression of these genes is necessary to better
388 understand the regulatory mechanisms involved in dietary specialization. Comparing
389 transcription factors responding to plant chemicals may help elucidate regulatory mechanisms
390 involved in these responses and shed light on how insects use changes in the transcription of
391 target genes in order to compete against plants in this evolutionary arms race to adapt to toxic
392 food sources.

393

394 **Table 1:** Sequencing results and mapping percentage.

Sample	ID	# of Reads	# Mapped Reads	% Mapped	Read length (nt)
sim-C-1	105545	28056123	26210691	93.42%	51
sim-C-2	105546	26058213	24449785	93.82%	51
sim-C-3	105547	24095284	22589715	93.75%	51
sim-HA-1	105557	16844466	15844735	96.06%	51
sim-HA-2	105558	27002538	25521057	94.51%	51
sim-HA-3	105559	23222911	21786539	93.81%	51
mel-C-1	105542	21999530	20633866	93.79%	51
mel-C-2	105543	20950464	19779953	94.41%	51
mel-C-3	105544	22157160	20919514	94.41%	51
mel-HA-1	105554	19811200	18745553	94.62%	51
mel-HA-2	105555	23577339	22322344	94.68%	51
mel-HA-3	105556	18208025	17257250	94.78%	51
sec-C-1	76332	19222060	18496450	96.23%	65
sec-C-2	76333	20704811	19440620	93.89%	65
sec-C-3	76334	17696868	17123579	96.76%	65
sec-HA-1	76338	30612710	29079271	94.99%	65
sec-HA-2	76339	25873039	25202396	97.41%	65
sec-HA-3	76340	19074054	18031453	94.53%	65

395

396 **Figure Legends**

397 **Figure 1:** Experimental design and RNA-sequencing pipeline analysis. (A) 0-4 day old adult
398 female *D. sechellia*, *D. simulans*, and *D. melanogaster* flies were treated for 24 hours on either
399 control food or food supplemented with 0.23% hexanoic acid (HA). Flies were frozen in liquid
400 nitrogen, RNA was extracted, library prep was performed using poly-A selection, and libraries
401 were sequenced. (B) Raw sequencing reads were analyzed using FASTQC for quality control,
402 and then aligned to the respective reference genome using Bowtie2. Differential expression was
403 quantified using Cuffdiff using available respective genome annotation. Data was visualized
404 using R, and significantly differentially expressed genes (GRNs) were used for downstream
405 analysis.

406

407 **Figure 2:** DEGs in adult *D. melanogaster*, *D. simulans*, and *D. sechellia* in response to HA. (A-
408 C) Plots showing DEG expression in control vs expression in HA treatment in (A) *D.*
409 *melanogaster*, (B) *D. simulans*, and (C) *D. sechellia*. Statistically significant genes are shown in
410 red. (D-F) Plots showing log₂(control/HA) fold change in (D) *D. melanogaster*, (E) *D. simulans*,
411 and (F) *D. sechellia*. Statistically significant genes are shown in red.

412

413 **Figure 3:** DEGs in *D. melanogaster*, *D. simulans*, and *D. sechellia* in response to HA. (A) The
414 number of differentially expressed genes in response to HA after RNA-seq are shown for each
415 species, *D. sechellia*, *D. simulans* and *D. melanogaster*. Overlap and species-specific number of
416 DEGs are indicated. (B) The number of differentially expressed genes in *D. sechellia* when it is
417 exposed to OA, HA, or L-DOPA treatment as well as the number of specific and overlapping
418 genes are shown.

419

420 **Figure 4.** (A) Significantly upregulated genes with *D. melanogaster* orthologs for each species
421 are shown by the percentage of genes of the total number upregulated genes that fall into each
422 KEGG pathway. (B) Significantly downregulated genes with *D. melanogaster* orthologs for each
423 species are shown by the percentage of genes out of the total number of downregulated genes
424 that fall into each KEGG pathway. The KEGG pathways Metabolic pathways and Toll and Imd
425 signaling were excluded. (C) Significantly downregulated genes with *D. melanogaster* orthologs
426 for each species are shown by the percentage of genes out of the total number of downregulated
427 genes that fall into the Metabolic pathways and Toll and Imd signaling pathway KEGG
428 pathways.

429 **Acknowledgments**

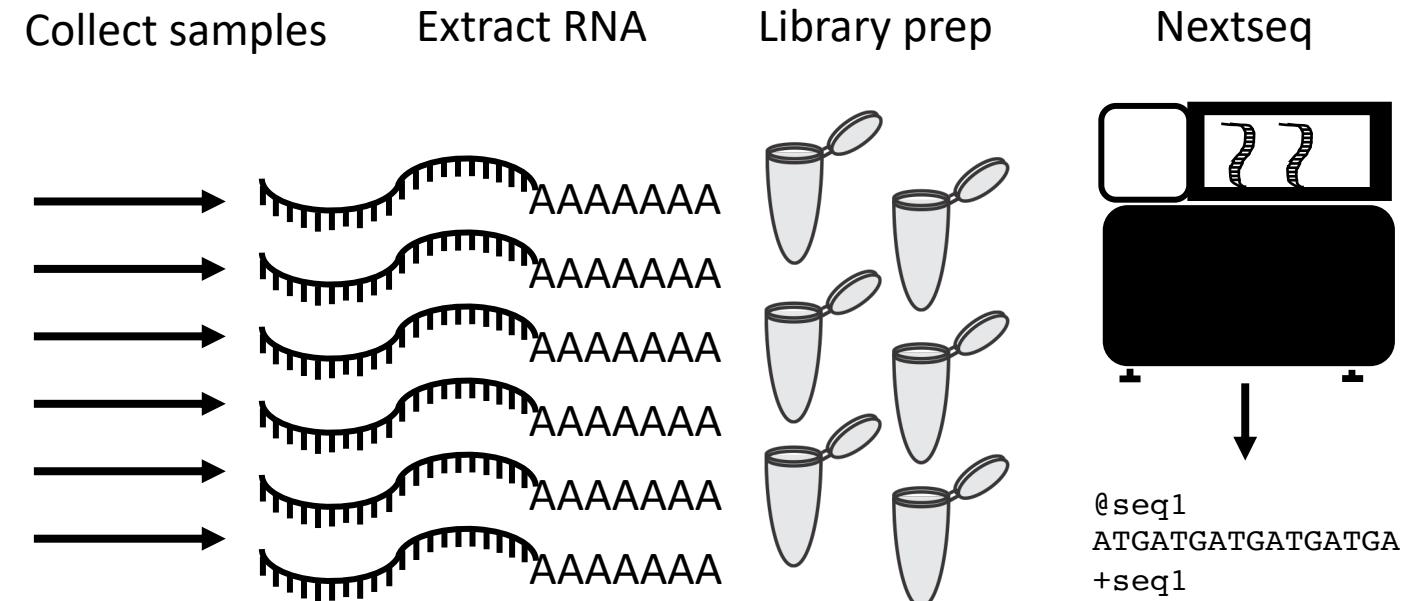
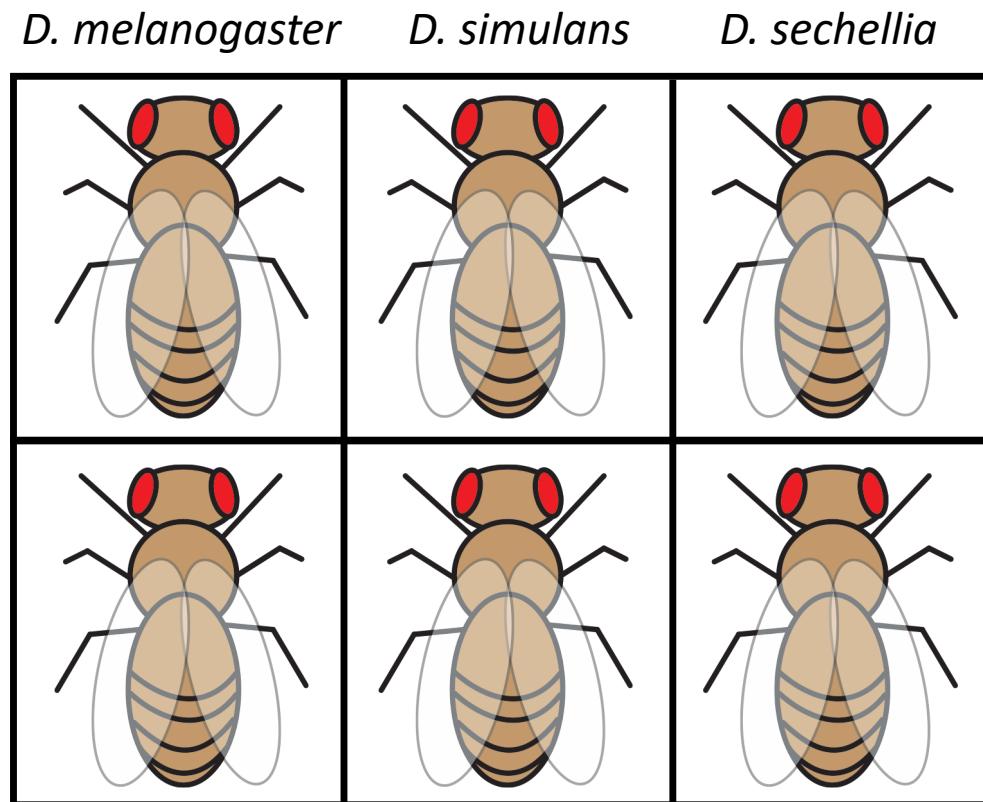
430 Research reported in this publication was supported by Wesleyan University (Startup to JDC,
431 Department of Biology funds to JDC, College of the Environment funds to JDC), and the
432 National Institute Of General Medical Sciences of the National Institutes of Health under Award
433 Number R15GM135901 (award to JDC). The content is solely the responsibility of the authors
434 and does not necessarily represent the official views of the National Institutes of Health.

435

436

437 **References**

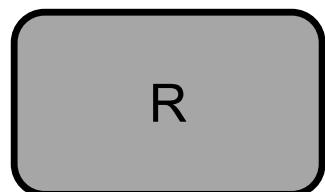
- 438 Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Čech, M., ... Goecks, J.
439 (2016). The Galaxy platform for accessible, reproducible and collaborative biomedical
440 analyses: 2016 update. *Nucleic Acids Research*, 44(W1), W3–W10.
441 <https://doi.org/10.1093/nar/gkw343>
- 442 Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). BLAST_article.pdf.
443 *Journal of Molecular Biology*, Vol. 215, pp. 403–410. Retrieved from
444 [https://doi.org/10.1016/S0022-2836\(05\)80360-2](https://doi.org/10.1016/S0022-2836(05)80360-2)
- 445 Alvarez-Curto, E., & Milligan, G. (2016). Metabolism meets immunity: The role of free fatty
446 acid receptors in the immune system. *Biochemical Pharmacology*, 114, 3–13.
447 <https://doi.org/10.1016/j.bcp.2016.03.017>
- 448 Amlou, M., Moreteau, B., & David, J. R. (1998). Genetic analysis of *Drosophila sechellia*
449 specialization: Oviposition behavior toward the major aliphatic acids of its host plant.
450 *Behavior Genetics*, 28(6), 455–464. <https://doi.org/10.1023/A:1021689312582>
- 451 Andrade Lopez, J. M., Lanno, S. M., Auerbach, J. M., Moskowitz, E. C., Sligar, L. A., Wittkopp,
452 P. J., & Coolon, J. D. (2017). Genetic basis of octanoic acid resistance in *Drosophila*
453 *sechellia* : functional analysis of a fine-mapped region. *Molecular Ecology*, 1148–1160.
454 <https://doi.org/10.1111/mec.14001>
- 455 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available
456 at: <Http://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc>.
- 457 Aranega-Bou, P., de la O Leyva, M., Finiti, I., Garcfa-Agustfn, P., & Gonzalez-Bosch, C.
458 (2014). Priming of plant resistance by natural compounds. Hexanoic acid as a model.
459 *Frontiers in Plant Science*, 5(OCT), 1–12. <https://doi.org/10.3389/fpls.2014.00488>
- 460 Ashburner, M., Ball, C. A., Blake, J., Botstein, D., Butler, H., Cherry, J. M., ... Sherlock, G.
461 (2000). Gene Ontology : tool for the. *Gene Expression*, 25(may), 25–29.
462 <https://doi.org/10.1038/75556>
- 463 Auer, T. O., Khallaf, M. A., Silbering, A. F., Zappia, G., Ellis, K., Álvarez-Ocaña, R., ...
464 Benton, R. (2020). Olfactory receptor and circuit evolution promote host specialization.
465 *Nature*, 579(7799), 402–408. <https://doi.org/10.1038/s41586-020-2073-7>
- 466 Carbon, S., Douglass, E., Good, B. M., Unni, D. R., Harris, N. L., Mungall, C. J., Basu, S.,
467 Chisholm, R. L., Dodson, R. J., Hartline, E., Fey, P., Thomas, P. D., Albou, L. P., Ebert, D.,
468 Kesling, M. J., Mi, H., Muruganujan, A., Huang, X., Mushayahama, T., ... Elser, J. (2021).
469 The Gene Ontology resource: Enriching a GOld mine. *Nucleic Acids Research*, 49(D1),
470 D325–D334. <https://doi.org/10.1093/nar/gkaa1113>



- 471 Chen, Y., & Amrein, H. (2017). Ionotropic Receptors Mediate Drosophila Oviposition
472 Preference through Sour Gustatory Receptor Neurons. *Current Biology*, 27(18), 2741-
473 2750.e4. <https://doi.org/10.1016/j.cub.2017.08.003>
- 474 Coolon, J. D., Jones, K. L., Todd, T. C., Carr, B. C., & Herman, M. A. (2009). *Caenorhabditis*
475 *elegans* genomic response to soil bacteria predicts environment-specific genetic effects on
476 life history traits. *PLoS Genetics*, 5(6). <https://doi.org/10.1371/journal.pgen.1000503>
- 477 Coolon, J. D., Webb, W., & Wittkopp, P. J. (2013). Sex-specific effects of cis-regulatory variants
478 in *Drosophila melanogaster*. *Genetics*, 195(4), 1419–1422.
479 <https://doi.org/10.1534/genetics.113.156331>
- 480 Coolon, J. D., Drum, Z., Lanno, S. M., & Smith, C. R. (2019). Osiris Genes and Insect Adaptive
481 Evolution. *ELS*, (October). <https://doi.org/10.1002/9780470015902.a0028763>
- 482 Dushay, M. S., Åsling, B., & Hultmark, D. (1996). Origins of immunity: Relish, a compound rel-
483 like gene in the antibacterial defense of *Drosophila*. *Proceedings of the National Academy of
484 Sciences of the United States of America*, 93(19), 10343–10347.
485 <https://doi.org/10.1073/pnas.93.19.10343>
- 486 Dworkin, I., & Jones, C. D. (2009). Genetic changes accompanying the evolution of host
487 specialization in *Drosophila sechellia*. *Genetics*, 181(2), 721–736.
488 <https://doi.org/10.1534/genetics.108.093419>
- 489 Farine, J., Legal, L. U. C., Moreteau, B., I, J. L. E. Q., Laboratoire, I., Recherches, D., Sully, R.,
490 De, L. M., Sud, U. P., Cedex, O., Populations, L., Yvette, G., Recherches, L. De,
491 Bourgogne, U. De, De, L., & F-, G. (1996). Volatile Components of Ripe Fruits of *Morinda*
492 *Citrifolia* and their Effects on *Drosophila*. *Phytochemistry*, 4(2), 433–438.
493 [https://doi.org/10.1016/0031-9422\(95\)00455-6](https://doi.org/10.1016/0031-9422(95)00455-6)
- 494 García-Robles, I., Ochoa-Campuzano, C., Fernández-Crespo, E., Camañes, G., Martínez-
495 Ramírez, A. C., González-Bosch, C., ... Real, M. D. (2013). Combining hexanoic acid plant
496 priming with *bacillus thuringiensis* insecticidal activity against colorado potato beetle.
497 *International Journal of Molecular Sciences*, 14(6), 12138–12156.
498 <https://doi.org/10.3390/ijms140612138>
- 499 Groen, S. C., & Whiteman, N. K. (2016). Using *Drosophila* to study the evolution of herbivory
500 and diet specialization. *Current Opinion in Insect Science*, 14, 66–72.
501 <https://doi.org/10.1016/j.cois.2016.01.004>
- 502 Hanson, M. A., & Lemaitre, B. (2020). New insights on *Drosophila* antimicrobial peptide
503 function in host defense and beyond. *Current Opinion in Immunology*, 62, 22–30.
504 <https://doi.org/10.1016/j.coi.2019.11.008>

- 505 Heidel-Fischer, H. M., & Vogel, H. (2015). Molecular mechanisms of insect adaptation to plant
506 secondary compounds. *Current Opinion in Insect Science*, 8, 8–14.
507 <https://doi.org/10.1016/j.cois.2015.02.004>
- 508 Jaenike, J. (1990). Host specialization in phytophagous insects. *Annual Review of Ecology and
509 Systematics*, 21(1), 243–273. <https://doi.org/10.1146/annurev.es.21.110190.001331>
- 510 Kanehisa, M., & Sato, Y. (2020). KEGG Mapper for inferring cellular functions from protein
511 sequences. *Protein Science*, 29(1), 28–35. <https://doi.org/10.1002/pro.3711>
- 512 Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature
513 Methods*, 9(4), 357–359. <https://doi.org/10.1038/nmeth.1923>
- 514 Lavista-Llanos, S., Svatoš, A., Kai, M., Riemensperger, T., Birman, S., Stensmyr, M. C., &
515 Hansson, B. S. (2014). Dopamine drives *Drosophila sechellia* adaptation to its toxic host.
516 *ELife*, 3, 1–17. <https://doi.org/10.7554/eLife.03785>
- 517 Lanno, S. M., Gregory, S. M., Shimshak, S. J., Alverson, M. K., Chiu, K., Feil, A. L., ... Coolon,
518 J. D. (2017). Transcriptomic Analysis of Octanoic Acid Response in *Drosophila
519 sechellia* Using RNA-Sequencing. *G3: Genes|Genomes|Genetics*, 7(December),
520 g3.300297.2017. <https://doi.org/10.1534/g3.117.300297>
- 521 Lanno, S. M., Linde, S. C., Peyser, R. D., Shimshak, S. J., & Coolon, J. D. (2019). Investigating
522 the role of Osiris genes in *Drosophila sechellia* larval resistance to a host plant toxin.
523 *Ecology and Evolution*, (December 2018), 1922–1933. <https://doi.org/10.1002/ece3.4885>
- 524 Lanno, S. M., & Coolon, J. D. (2019). Derived esterase activity in *Drosophila sechellia*
525 contributes to evolved octanoic acid resistance. *Insect Molecular Biology*, 28(6), 798–806.
526 <https://doi.org/10.1111/imb.12587>
- 527 Legal, L., David, J. R., & Jallon, J. M. (1992). Toxicity and attraction effects produced by
528 *Morinda citrifolia* fruits on the *Drosophila melanogaster* complex of species.
529 *Chemoecology*, 3, 125–129.
- 530 Legal, L., Chappe, B., & Jallon, J. M. (1994). Molecular basis of *Morinda citrifolia* (L.): Toxicity
531 on drosophila. *Journal of Chemical Ecology*, 20(8).
- 532 Login, F. H., Login, F. H., Balmand, S., Balmand, S., Vallier, A., Vallier, A., ... Heddi, A.
533 (2011). Antimicrobial Peptides Keep Insect Endosymbionts Under Control. *Science*,
534 334(6054), 362–365. Retrieved from
535 [http://www.sciencemag.org/cgi/doi/10.1126/science.1209728%5Cnpapers2://publication/do
i/10.1126/science.1209728](http://www.sciencemag.org/cgi/doi/10.1126/science.1209728%5Cnpapers2://publication/do
536 i/10.1126/science.1209728)
- 537 Masek, P., & Keene, A. C. (2013). Drosophila Fatty Acid Taste Signals through the PLC
538 Pathway in Sugar-Sensing Neurons. *PLoS Genetics*, 9(9).
539 <https://doi.org/10.1371/journal.pgen.1003710>

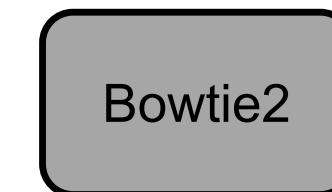
- 540 Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T., & Fuyama, Y. (2007). Odorant-binding
541 proteins OBP57d and OBP57e affect taste perception and host-plant preference in
542 *Drosophila sechellia*. *PLoS Biology*, 5(5), 0985–0996.
543 <https://doi.org/10.1371/journal.pbio.0050118>
- 544 Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. (2019). PANTHER version 14:
545 More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools.
546 *Nucleic Acids Research*, 47(D1), D419–D426. <https://doi.org/10.1093/nar/gky1038>
- 547 Petschenka, G., & Agrawal, A. A. (2016). How herbivores coopt plant defenses: Natural
548 selection, specialization, and sequestration. *Current Opinion in Insect Science*, 14, 17–24.
549 <https://doi.org/10.1016/j.cois.2015.12.004>
- 550 Peyser, R. D., Lanno, S. M., & Shimshak, S. J. (2017). *Analysis of cytochrome P450*
551 *contribution to evolved plant toxin resistance in Drosophila sechellia*. 26, 715–720.
552 <https://doi.org/10.1111/imb.12329>
- 553 R Core Development Team 2010 R: a language and environment for statistical computing
554 (RDC Team, Ed). R Foundation for Statistical Computing, Vienna, Austria, ISBN:3-
555 900051-07-0.
- 556 R'Kha, S., Capy, P., & David, J. R. (1991). Host-plant specialization in the *Drosophila*
557 *melanogaster* species complex: A physiological, behavioral, and genetical analysis.
558 *Proceedings of the National Academy of Sciences of the United States of America*, 88(5),
559 1835–1839. <https://doi.org/10.1073/pnas.88.5.1835>
- 560 Roy, A., Walker, W. B., Vogel, H., Chattington, S., Larsson, M. C., Anderson, P., ... Schlyter, F.
561 (2016). Diet dependent metabolic responses in three generalist insect herbivores *Spodoptera*
562 spp. *Insect Biochemistry and Molecular Biology*, 71, 91–105.
563 <https://doi.org/10.1016/j.ibmb.2016.02.006>
- 564 Salazar-Jaramillo, L., Jalvingh, K. M., de Haan, A., Kraaijeveld, K., Buermans, H., & Wertheim,
565 B. (2017). Inter- and intra-species variation in genome-wide gene expression of *Drosophila*
566 in response to parasitoid wasp attack. *BMC Genomics*, 18(1), 1–14.
567 <https://doi.org/10.1186/s12864-017-3697-3>
- 568 Shokri, L., Inukai, S., Hafner, A., Weinand, K., Hens, K., Vedenko, A., ... Bulyk, M. L. (2019).
569 A Comprehensive *Drosophila melanogaster* Transcription Factor Interactome. *Cell Reports*,
570 27(3), 955-970.e7. <https://doi.org/10.1016/j.celrep.2019.03.071>
- 571 Stork, N. E. (2018). How Many Species of Insects and Other Terrestrial Arthropods Are There
572 on Earth? *Annual Review of Entomology*, 63(1), 31–45. [https://doi.org/10.1146/annurev-ento-020117-043348](https://doi.org/10.1146/annurev-
573 ento-020117-043348)

- 574 Tauber, J. M., Brown, E. B., Li, Y., Yurgel, M. E., Masek, P., & Keene, A. C. (2017). A subset
575 of sweet-sensing neurons identified by IR56d are necessary and sufficient for fatty acid
576 taste. *PLoS Genetics*, 13(11), 1–18. <https://doi.org/10.1371/journal.pgen.1007059>
- 577 Thurmond, J., Goodman, J. L., Strelets, V. B., Attrill, H., Gramates, L. S., Marygold, S. J., ...
578 Baker, P. (2019). FlyBase 2.0: The next generation. *Nucleic Acids Research*, 47(D1),
579 D759–D765. <https://doi.org/10.1093/nar/gky1003>
- 580 Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M. J., ... Pachter,
581 L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated
582 transcripts and isoform switching during cell differentiation. *Nature Biotechnology*, 28(5),
583 511–515. <https://doi.org/10.1038/nbt.1621>
- 584 Ungerer, M. C., Johnson, L. C., & Herman, M. A. (2008). Ecological genomics: Understanding
585 gene and genome function in the natural environment. *Heredity*, 100(2), 178–183.
586 <https://doi.org/10.1038/sj.hdy.6800992>
- 587 Vilcinskas, A. (2013). Evolutionary plasticity of insect immunity. *Journal of Insect Physiology*,
588 59(2), 123–129. <https://doi.org/10.1016/j.jinsphys.2012.08.018>
- 589 Watanabe, K., Kanaoka, Y., Mizutani, S., Uchiyama, H., Yajima, S., Watada, M., ... Hattori, Y.
590 (2019). Interspecies Comparative Analyses Reveal Distinct Carbohydrate-Responsive
591 Systems among *Drosophila* Species. *Cell Reports*, 28(10), 2594–2607.e7.
592 <https://doi.org/10.1016/j.celrep.2019.08.030>
- 593

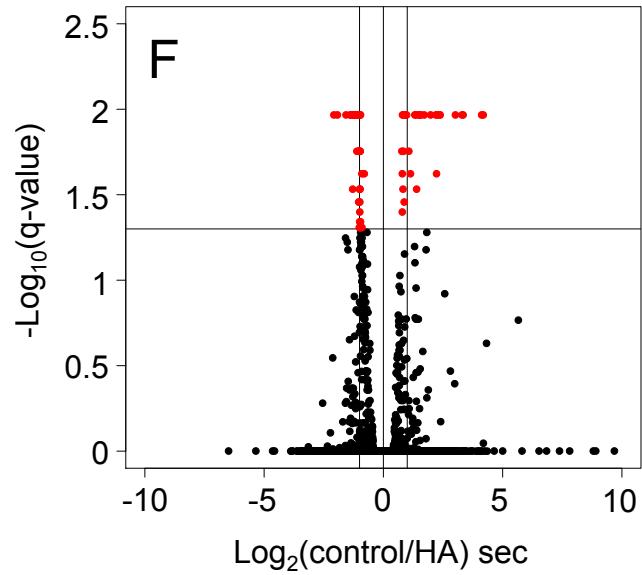
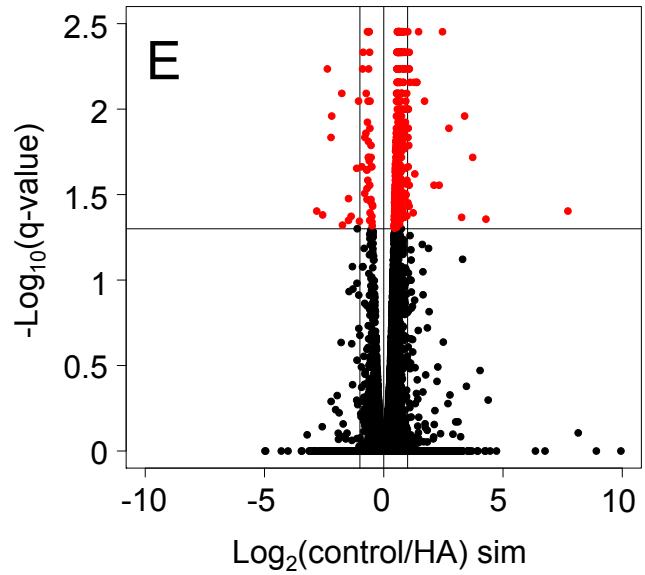
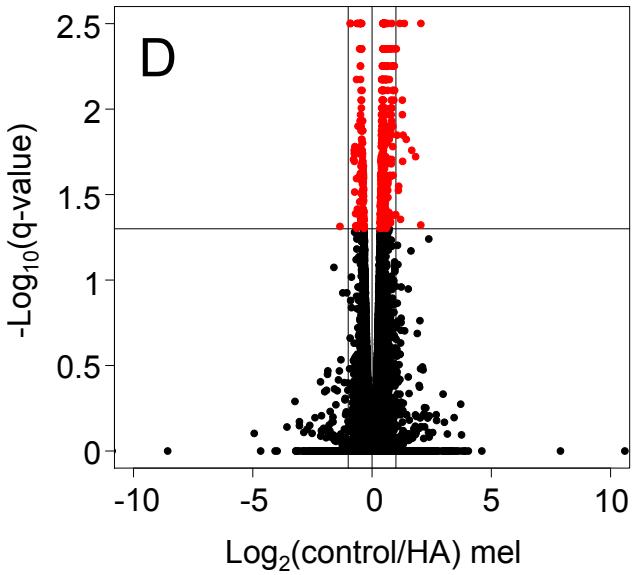
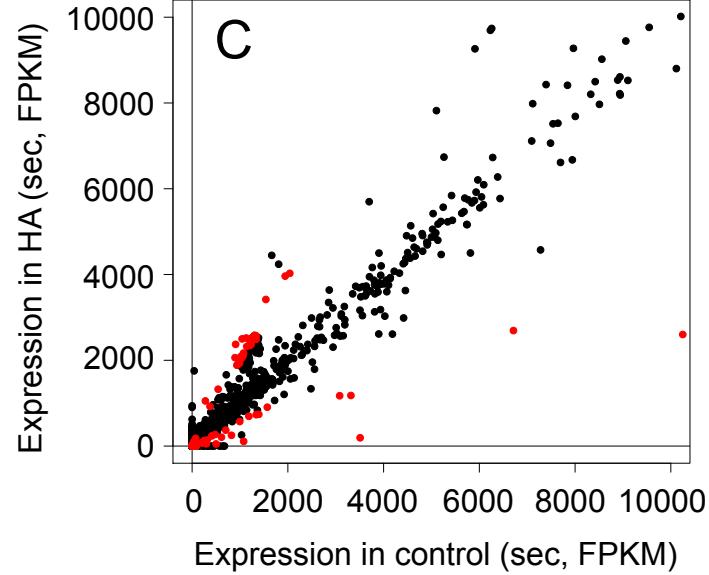
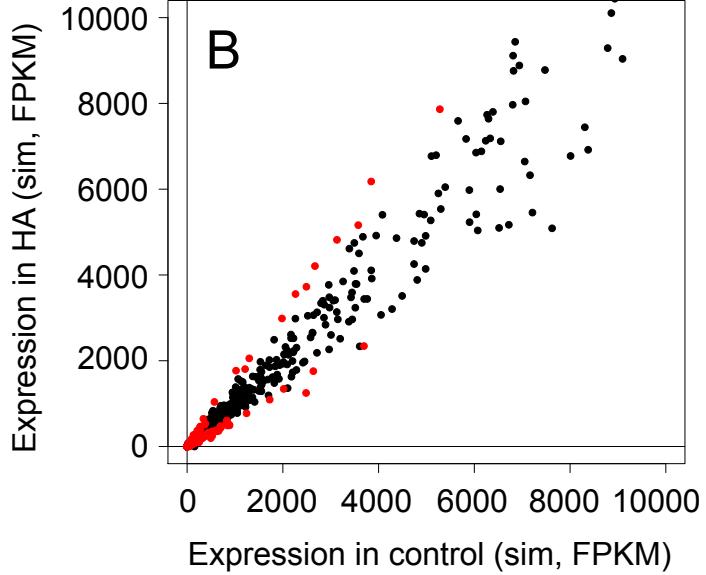
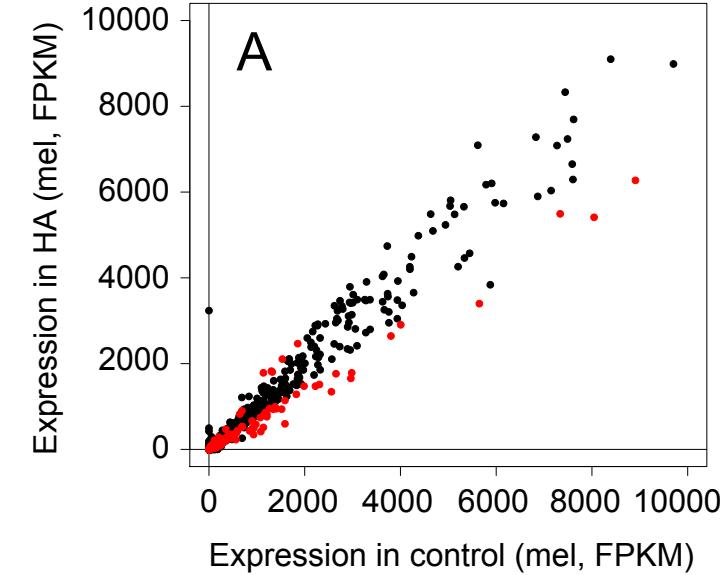

Experimental Design

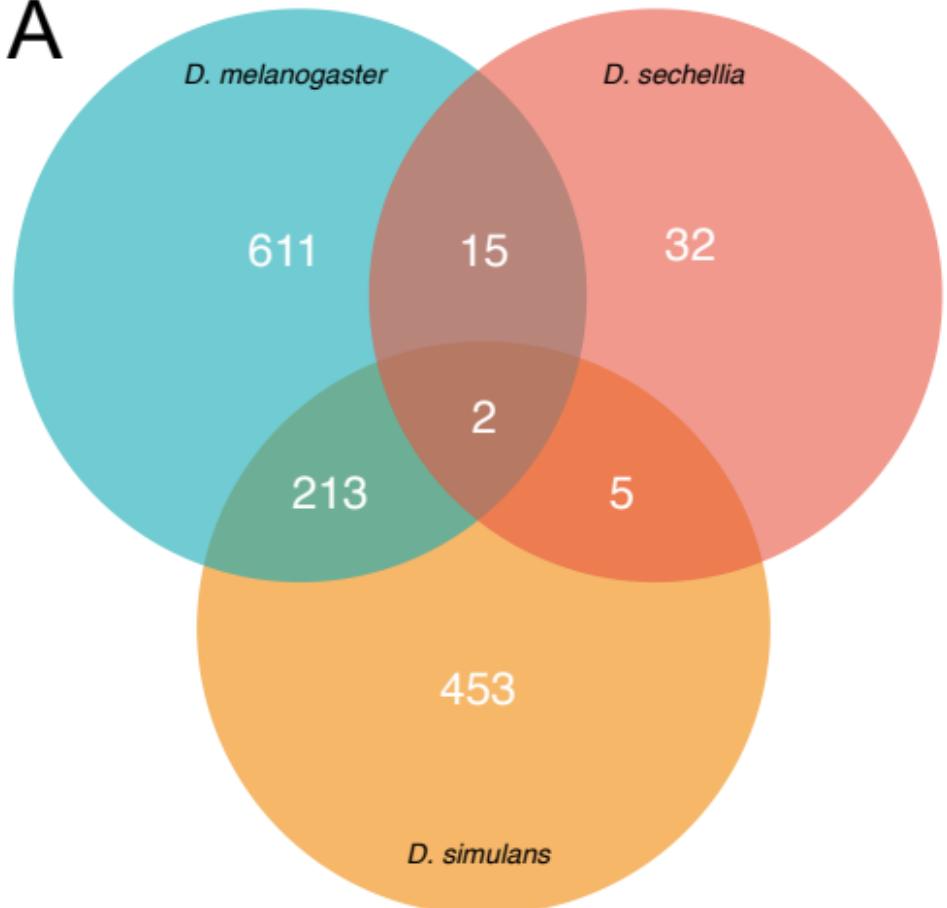
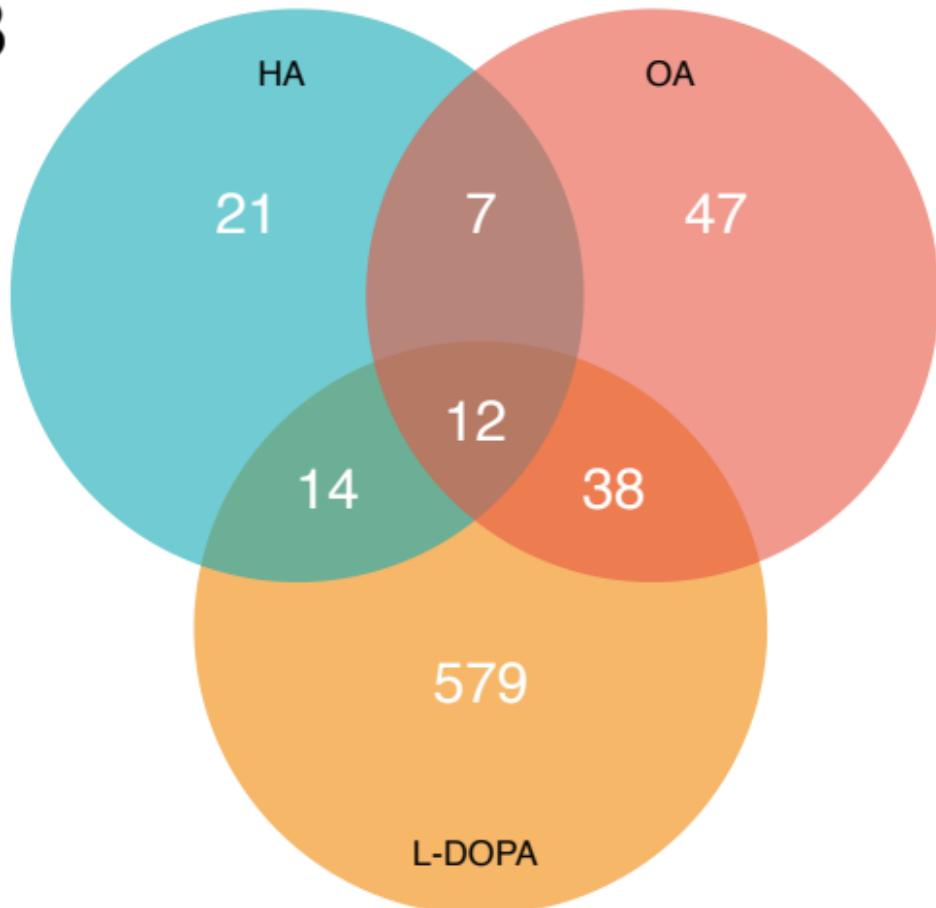

```
@seq1  
ATGATGATGATGATGA  
+seq1  
FGGGHHFGHFGHFGFH
```

Data Analysis

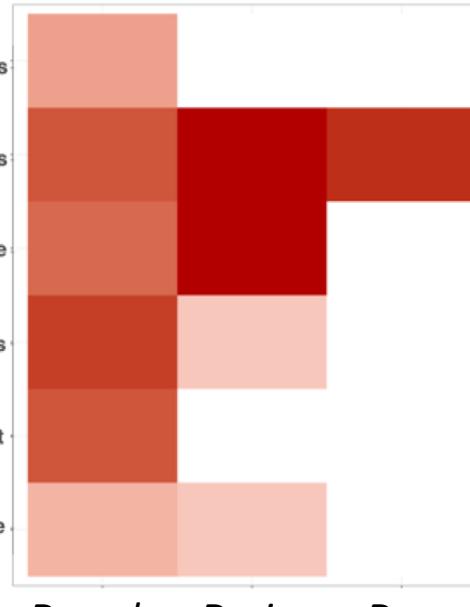

Data Interpretation

Statistical Analysis



Sequence Alignment

Quality Control



A**B**

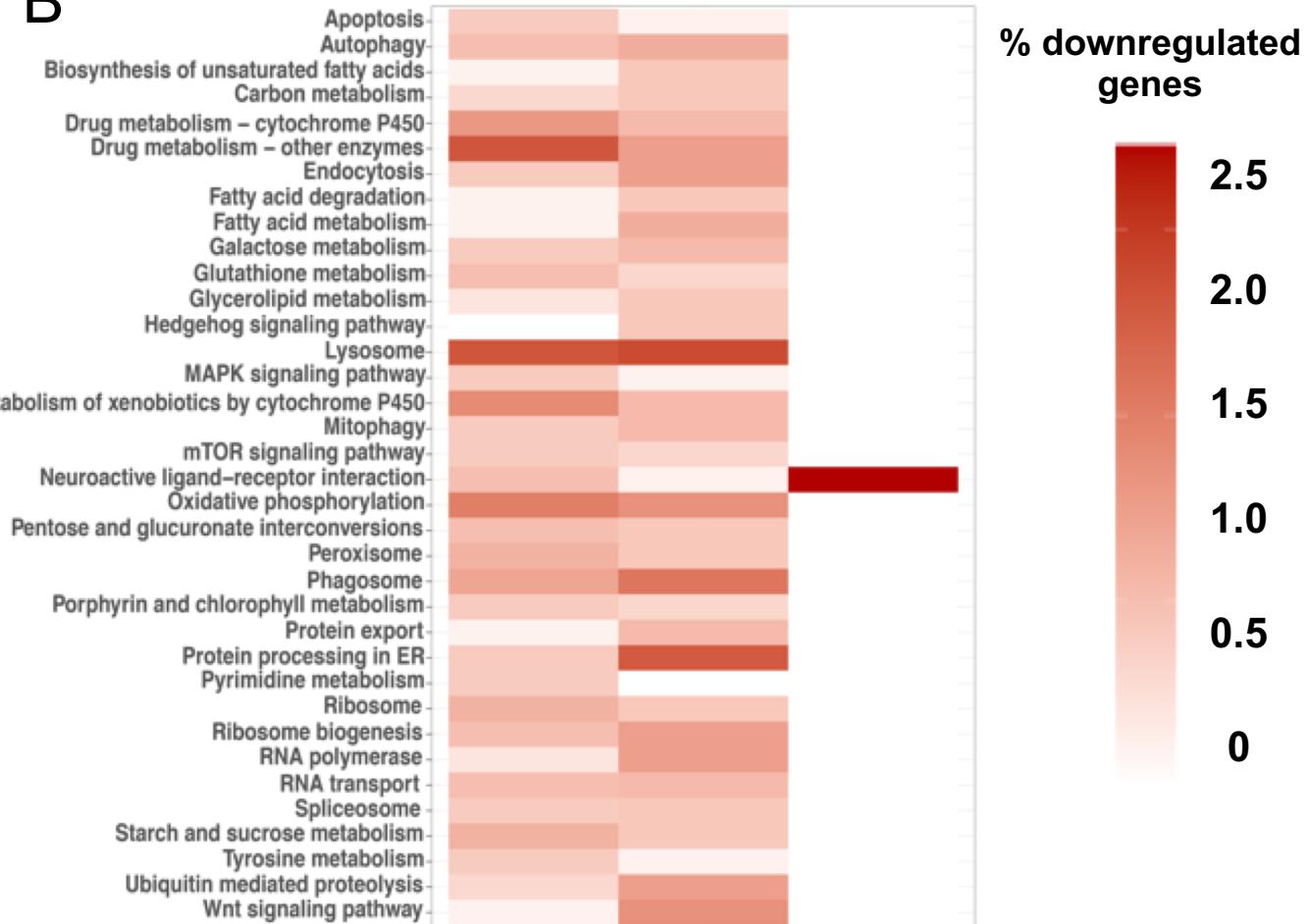
A

Aminoacyl-tRNA biosynthesis

% upregulated
genes

6

4


2

0

D. mel *D. sim* *D. sec*

B

Apoptosis

% downregulated
genes

2.5

2.0

1.5

1.0

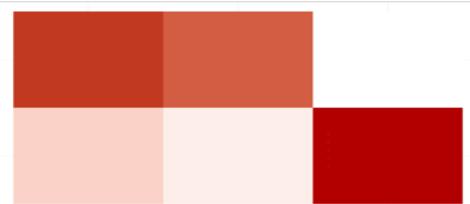
0.5

0

D. mel *D. sim* *D. sec*

% downregulated
genes

10


5

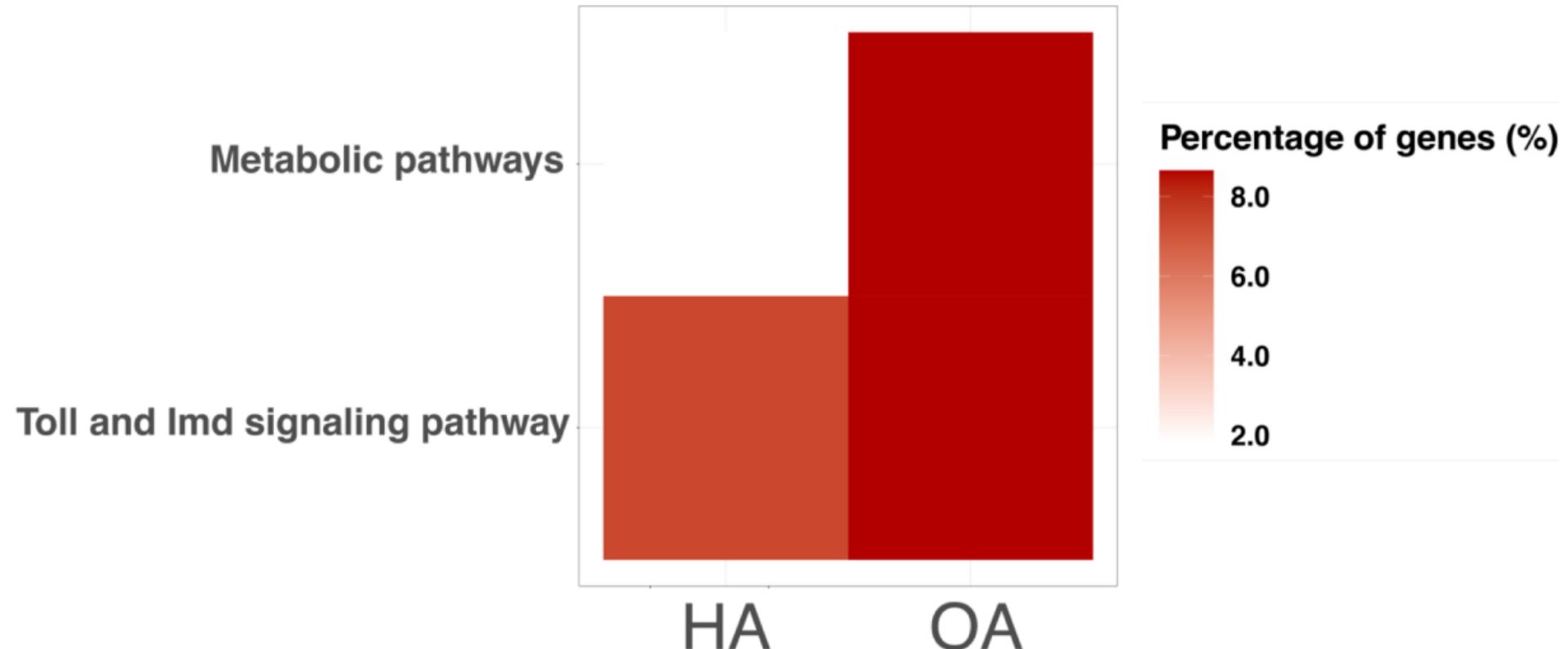
0

D. mel *D. sim* *D. sec*

C

Metabolic pathways

% downregulated
genes


10

5

0

D. mel *D. sim* *D. sec*

OA and HA KEGG Pathways

