

---

# CONTEXT-AWARE GENOMIC SURVEILLANCE REVEALS HIDDEN TRANSMISSION OF A CARBAPENEMASE-PRODUCING *Klebsiella pneumoniae*

---

PREPRINT

1 Adrian Viehweger <sup>1</sup>, Christian Blumenscheit <sup>2</sup>, Norman Lippmann <sup>1</sup>, Kelly L. Wyres <sup>3</sup>, Christian Brandt <sup>4</sup>, Jörg B.  
2 Hans <sup>5</sup>, Martin Hölzer <sup>6</sup>, Luiz Irber <sup>7</sup>, Sören Gatermann <sup>5</sup>, Christoph Lübbert <sup>8</sup>, Mathias Pletz <sup>4</sup>, Kathryn E. Holt <sup>3 9</sup>,  
3 Brigitte König <sup>1</sup>

4 <sup>1</sup> Institute of Medical Microbiology and Virology, University Hospital Leipzig, Leipzig, Germany <sup>2</sup> ZBS 6: Proteomics  
5 and Spectroscopy, Robert Koch Institute, Berlin, Germany <sup>3</sup> Department of Infectious Diseases, Central Clinical  
6 School, Monash University, Melbourne, Australia <sup>4</sup> Institute for Infectious Diseases and Infection Control, Jena  
7 University Hospital, Jena, Germany <sup>5</sup> National Reference Center for multidrug-resistant Gram-negative bacteria,  
8 Department for Medical Microbiology, Ruhr-University Bochum, Germany <sup>6</sup> Methodology and Research Infrastructure,  
9 MF1 Bioinformatics, Robert Koch Institute, Berlin, Germany <sup>7</sup> Department of Population Health and Reproduction,  
10 University of California, Davis, Davis, USA <sup>8</sup> Division of Infectious Diseases and Tropical Medicine, University  
11 Hospital Leipzig, Leipzig, Germany <sup>9</sup> London School of Hygiene & Tropical Medicine, London, UK

## 12 Abstract

13 Genomic surveillance can inform effective public health responses to pathogen outbreaks. However, integration of  
14 non-local data is rarely done. We investigate two large hospital outbreaks of a carbapenemase-carrying *Klebsiella*  
15 *pneumoniae* strain in Germany and show the value of contextual data. By screening more than ten thousand genomes,  
16 500 thousand metagenomes, and two culture collections using *in silico* and *in vitro* methods, we identify a total of  
17 415 closely related genomes reported in 28 studies. We identify the relationship between the two outbreaks through  
18 time-dated phylogeny, including their respective origin. One of the outbreaks presents extensive hidden transmission,  
19 with descendant isolates only identified in other studies. We then leverage the genome collection from this meta-analysis  
20 to identify genes under positive selection. We thereby identify an inner membrane transporter (*ynjC*) with a putative  
21 role in colistin resistance. Contextual data from other sources can thus enhance local genomic surveillance at multiple  
22 levels and should be integrated by default when available.

23 **Keywords** Genomic surveillance · Meta-analysis · Antimicrobial Resistance · KPC · Plasmids · Colistin

## 25 **Introduction**

26 Multiresistant strains of *Klebsiella pneumoniae* (Kp) are a global health threat.<sup>1</sup> Among all known resistance mecha-  
27 nisms, carbapenemases are the most concerning, as they render most clinically relevant antibiotics ineffective.<sup>2</sup> These  
28 enzymes are typically encoded on mobile genetic elements such as the Tn4401 transposon,<sup>3</sup> which mediates transfer  
29 between plasmids<sup>4</sup> and bacterial species.<sup>5</sup> Furthermore, the prevalence of carbapenemase-producing Kp has increased  
30 in recent years.<sup>6</sup> Such pathogen spread can be prevented by molecular surveillance and derived public health measures:  
31 Isolate genomes reveal transmission routes by accumulating characteristic mutations, from which ancestry can be  
32 inferred through time-dated phylogeny.<sup>7</sup>

33 While it has become standard practice to reconstruct such phylogenies of within-hospital outbreaks,<sup>6,8</sup> few studies  
34 assess "contextual" information, i.e., genome sequences from isolates that were not part of the local outbreak but closely  
35 related. From a public health perspective, this is suboptimal. While many larger hospitals run screening programs to  
36 detect the carriage of resistant strains on admission,<sup>9,10</sup> peripheral institutions rarely do. However, there is a significant  
37 transfer of patients, e.g., from operation theater to rehabilitation center or from one country to another. For an outbreak  
38 investigation with only local scope, these boundary-crossing transmission events remain hidden.

39 We here reanalyze a large outbreak at the University Hospital Leipzig (UHL) from 2010-2013<sup>11</sup> in light of new data  
40 from a nearby institution, which experienced an outbreak with a closely related, albeit non-descending, strain. We  
41 performed a genomic meta-analysis to link both outbreaks, discovering hundreds of related genomes distributed across  
42 28 different studies. We identify the likely sources of both outbreaks and illustrate hidden transmission across study  
43 boundaries. Only the integration of data from several sources provided a "complete picture". However, we highlight  
44 several obstacles that need to be addressed before cross-boundary genomic surveillance can work in practice.

45 Beyond epidemiology, we show how outbreak meta-analyses can generate new hypotheses about host adaptation and  
46 antimicrobial resistance: The genomes under study underly similar selective pressures, such as treatment with colistin,  
47 an antibiotic of last resort. Thus, recurring mutations in the same gene(s) but across different genomes can signal  
48 putative causes for an observed phenotype, such as colistin resistance.<sup>12</sup> For colistin, several such inducible genomic  
49 changes have been described that mediate resistance.<sup>13</sup> Nevertheless, the exact mechanisms remain incompletely  
50 understood and seem to be multifactorial.<sup>14</sup> We show how contextual data can be leveraged to generate hypotheses  
51 about putative factors contributing to colistin resistance.

## 52 **Results**

### 53 ***In silico* and PCR-based screening identifies hundreds of outbreak-related, contextual genomes**

54 Usually, hospital outbreaks are analyzed in isolation. However, it can be valuable to place local data in a larger  
55 genomic context. Such a context can inform about the origin and distribution of the outbreak-causing strain and  
56 reveal transmission routes. This knowledge then enables an effective public health response. From 2010 to 2013,  
57 UHL experienced a large outbreak of a multiresistant, *bla*<sub>KPC-2</sub> -carrying Kp strain (hereafter referred to as "Kp-1") of  
58 sequence type ST258, characterized by capsule type KL106 and O antigen (lipopolysaccharide, LPS) serotype O2v2.  
59 105 patients were affected, and it took a multidisciplinary team many months to contain it<sup>11</sup> (Figure S1). When we

60 obtained 13 isolates from a 2018 outbreak of a *bla*<sub>KPC-2</sub> Kp strain in a hospital nearby ("Kp-2"), we hypothesized that  
61 this strain was related to the previous outbreak at UHL due to its proximity in space and time.

62 A comparison of two genome sequences from Kp-1 and Kp-2, isolated from the respective index cases, showed that  
63 they were closely related, differing in only 69 single nucleotide variants (SNVs). While within-hospital Kp outbreaks  
64 have been estimated to differ at fewer than 21 SNVs,<sup>6</sup> we are unaware of recommendations for isolates further apart in  
65 space and time. Therefore, more "contextual" genomes were needed to populate the genomic distance between Kp-1  
66 and 2 and to fill the genomic "gap". We, therefore, performed a comprehensive, multi-modal screening, consisting of  
67 (1) a comprehensive literature search including manual extraction of genomes and metadata, (2) an *in vitro* screening of  
68 two culture collections, and (3) an *in silico* screening of publicly available genomic and metagenomic datasets.

69 In total, we obtained 9,409 Kp genomes. Of those, 142 were collected during the Kp-1 outbreak from 105 patients,<sup>11</sup>  
70 and 28 resequenced in parallel using long reads (Nanopore) to obtain accurate plasmid reconstructions. A further  
71 ten isolates were identified in two culture collections through PCR-based screening using strain-specific primers (see  
72 methods). Sequencing of the ten isolates confirmed that all were closely related to Kp-1. The primers were designed  
73 using a proprietary algorithm (nanozoo GmbH) to recognize Kp-1 and close relatives but not other Kp strain genomes,  
74 e.g., different sequence types. Interestingly, the algorithm selected a putative intact prophage region as the most specific  
75 PCR template, and all but two of the 415 total analyzed genomes contained the target (see methods). While phages are  
76 often considered mobile elements, they can be remarkably stable across decades.<sup>15</sup>

77 The remaining 9,257 genomes were collected from public sources. The majority was retrieved from NCBI *RefSeq*.<sup>16</sup>  
78 However, 80 datasets were only identified through a literature survey, as they did not have an associated genome  
79 assembly deposited. In total, 28 studies were identified spanning 16 countries (Figure 1A and B, Table S1). In addition,  
80 extensive metadata were extracted where available. Furthermore, we searched the index Kp-1 isolate in a k-mer  
81 database of over 400,000 datasets of unassembled short reads (SRA, NCBI). We identified a single sample from an  
82 unpublished study of ICU patient colonization (SRA, project ID PRJNA561398) where we could recover a closely  
83 related, metagenome-assembled Kp genome.

84 Of the collected 9,409 genomes, 415 genomes (4.4 %) passed a tiered quality control protocol (see methods), resulting  
85 in a collection of high-quality genomes (ANI > 99.98 %, alignment to Kp-1 index isolate > 90 %) for further analyses.

## 86 Time-dated phylogeny resolves outbreak origin and reveals hidden transmission

87 We observed 69 SNVs between the genomes of Kp-1 and Kp-2. Given the interval of seven years between the two  
88 respective isolation dates and a genome size of 5.3 Mb, this would correspond to a mutation rate of 1.85 per Mb per  
89 year, were Kp-2 a descendant of Kp-1. Because mutation rates of up to 1.42 per Mb per year have been reported in the  
90 literature,<sup>17-19</sup> a direct relationship between both outbreaks seemed possible. We, therefore, constructed a time-dated  
91 phylogeny based on an alignment of 3,720 core SNV sites (total alignment length 5,384,856 sites) from the 415  
92 genomes in our filtered collection to investigate these claims (Figure 1C). With it, we estimate the mutation rate of  
93 the corresponding Kp strain (ST258) to be 0.68 mutations per Mb per year (root-to-tip regression,  $R^2 = 0.34$ ). At  
94 this mutation rate, we expect each genome to experience one mutation about every 101 days (mean waiting time  $\bar{t}$ )<sup>20</sup>  
95 corresponding to 25 SNVs between Kp-1 and Kp-2 were they directly related, which is less than half of the distance  
96 observed. We, therefore, conclude that Kp-2 is not a direct descendant of Kp-1, which is supported by the reconstructed

97 phylogeny (Figure 1C). The tree topology did not change when we used the mutation rates from the literature as fixed  
98 parameters in its construction.

99 The index patient's travel history and symptom onset led to the hypothesis that the origin of the Kp-1 outbreak was  
100 a Kp strain imported from Rhodes, an island in southern Greece and a popular tourist location for German travelers.  
101 After being acutely hospitalized there, the patient was transferred to UHL, where *bla*<sub>KPC-2</sub> was detected for the first  
102 time in the patient's medical history. However, while a Greek origin seemed plausible, given the high prevalence of  
103 carbapenemase-carrying strains in this country,<sup>21</sup> it could not be substantiated with data.<sup>11</sup> In support of this view, we  
104 identified several closely related genomes from Crete,<sup>22</sup> a neighboring island of Rhodes (see detailed map in Figure 1A),  
105 which populate the timetree around the time of the start of the Kp-1 outbreak (Figure 1C, lower arrow). With frequent  
106 travel by boat between these islands, it is plausible that an ancestor of Kp-1 was circulating in this region. Interestingly,  
107 the originating strain for the Kp-2 outbreak also seems to have come from Greece, albeit from northern provinces.  
108 Here, we could identify closely related genomes from two studies<sup>6,23</sup> (Figure 1C, upper arrow). We even identified a  
109 third transmission from Greece to mainland Europe, with a strain from northern Greece causing an outbreak in the  
110 Netherlands<sup>24</sup> (Figure 1C, grey leaves). The authors of the corresponding study did not identify this origin because they  
111 limited their investigation to local cases, supporting our argument for an integrative approach across study borders. All  
112 nodes in the tree where these transmissions out of Greece appeared had over 95 % bootstrap support. However, it is  
113 important to consider potential sampling bias when inferring origins. While we identified many samples from Greece  
114 (Figure 1B), the screening methods were blind towards genome origin and considered an exhaustive set of Kp genomes.  
115 Furthermore, several studies have described the high prevalence of carbapenemase-carrying Kp in southern Europe.<sup>21</sup>  
116 Therefore, we conclude that the large number of Greek samples likely represents the true distribution of *bla*<sub>KPC-2</sub> Kp  
117 and is not an artifact of sampling bias.

118 As the Kp-1 outbreak unfolded, local health authorities assumed that the outbreak was likely not limited to one hospital.  
119 They based their assessment on the long duration and the large number of patients involved in the outbreak, with  
120 frequent transfers to and from the hospital as a tertiary care center. While these factors make non-local transmission  
121 more likely, no evidence was available to support this hypothesis. Surprisingly, we identified 13 isolates that were  
122 collected outside of UHL, but are part of the Kp-1 outbreak (Figure 1C, Table S2). Most of them come from the  
123 same federal state that UHL is in, but several were isolated in other states hundreds of kilometers away. No other  
124 countries were affected by the Kp-1 outbreak. The Kp-2 outbreak seems to have been contained within the affected  
125 hospital, as no published genomes were found in other places. On an international level, the data supports repeated  
126 introduction of KPC-carrying Kp strains from Greece, likely due to it being a popular travel site. In fact, travel-related  
127 carbapenemase-producing Enterobacterales have been recognized as an important source of resistance transmission.<sup>26</sup>  
128 The above described hidden transmission events would not have been observed without integration of data across study  
129 borders, and illustrate the value of our approach.

### 130 **Carbapenemase preservation under frequent plasmid changes**

131 Plasmids serve many functions, but a central one is as a gene delivery platform.<sup>27</sup> Their payload is manifold, and  
132 here includes the *bla*<sub>KPC-2</sub> carbapenemase. However, to the host genome, plasmids come at a considerable fitness cost,  
133 which creates pressure to remove them unless they provide a selection advantage.<sup>27</sup> At the same time, plasmids resist

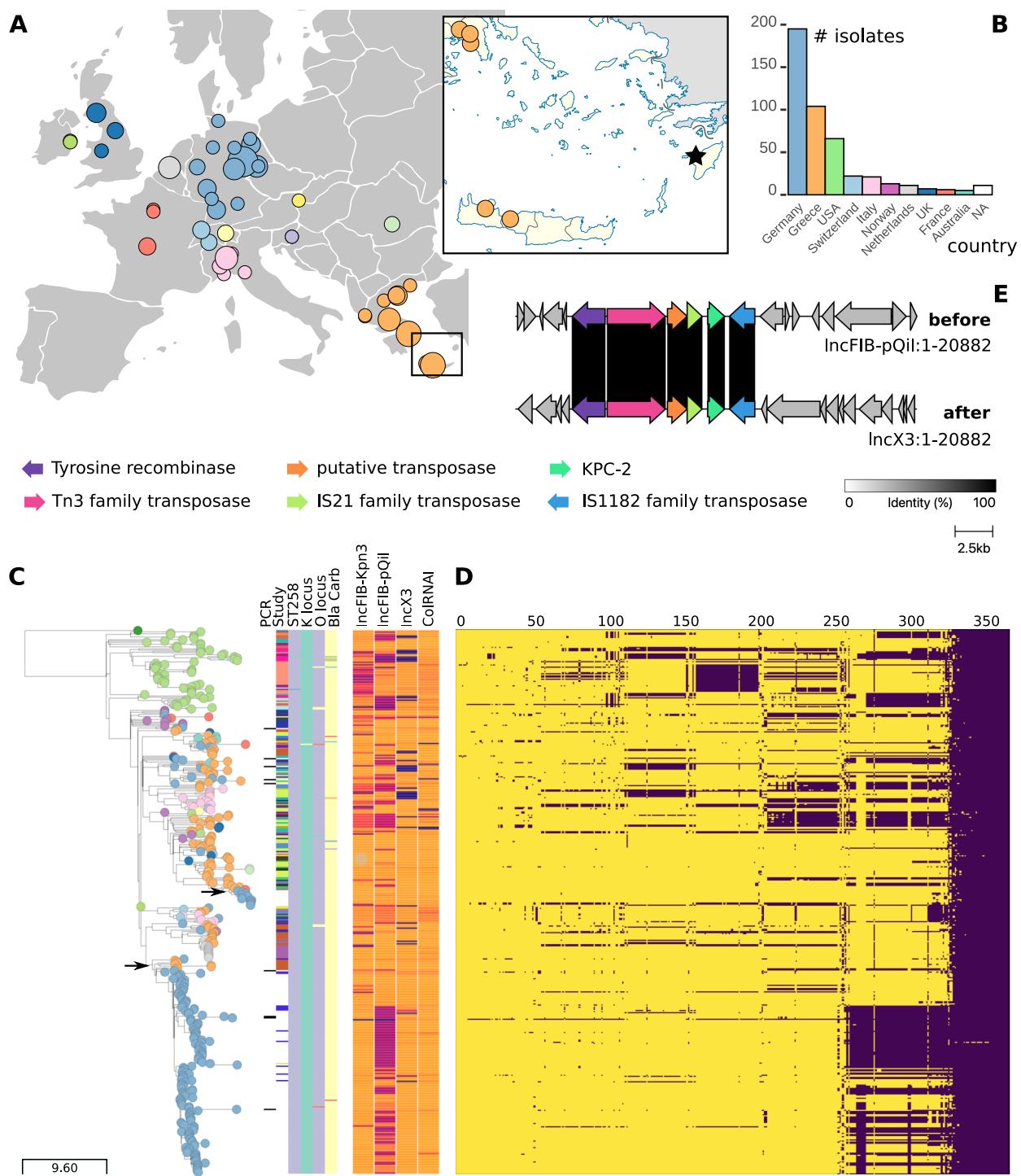



Figure 1: Time-dated phylogeny of 415 *bla*<sub>KPC-2</sub> carrying Kp genomes and associated metadata blocks. Leaves colored by country code: Germany blue, Greece orange; for interactive exploration see visualization in [microreact<sup>25</sup>](https://microreact.org) ([microreact.org](https://microreact.org)) under project ID 6bBfAYXswvY691LfbVytLT. (A) Geographic distribution of the genomes under study. Circle size is proportional to the number of genomes collected from this location. In the detailed map to the right, genomes found in Crete are shown (bottom). Our index patient was hospitalized in nearby Rhodes (star), and endemic transmission across these islands, which are connected by boat, is plausible. (B) Distribution of countries from which isolates were collected.

Figure 1: (Continued from previous page.) **(C)** A timetree reveals how both outbreak strains, Kp-1 (lower arrow) and Kp-2 (upper arrow), most likely originated from southern and northern Greece, respectively (orange leaves above the arrows). In the leftmost metadata block columns, read from left to right, genomes are marked that have been identified using our strain-specific screening PCR. The 2nd column indicates which study they were recruited from (white is our study, all other 28 colors are study-specific, see Table S1). The next four columns show the sequence type (purple is ST258), capsule type (turquoise is KL106), O antigen (LPS) type (purple is O2v2), and carbapenemase variant (yellow is *bla*<sub>KPC-2</sub>). Note how the majority of genomes that pass our tiered filtering approach are homogenous in these features. The following metadata block shows plasmid containment as a fraction between 0 (blue) and 1 (orange) for four plasmids found in the index patient of Kp-1. **(D)** Matrix indicates presence (yellow) or absence (purple) of genes (columns) for each genome (row) in the phylogenetic tree. **(E)** Alignment of genes around the *bla*<sub>KPC-2</sub> locus between the two plasmids IncFIB(pQil) (top) and IncX3 (bottom) shows a recombination event that allows shedding of IncFIB(pQil) while maintaining *bla*<sub>KPC-2</sub> on the IncX3 plasmid, likely increasing host fitness.

removal through, e.g., toxin-antitoxin systems and compete with rivaling plasmids.<sup>27</sup> In search of persistence in the host, frequent changes to the genetic material of plasmids can be observed.<sup>28</sup> In the Kp-1 outbreak, we found four types of circular plasmid using Nanopore-based hybrid assembly: IncFIB(Kpn3), IncFIB(pQil), IncX3, and ColRNA1. We first quantified which fraction of each plasmid type from the Kp-1 index isolate was contained in all other genomes in our collection (Figure 1C). To complement this data, we aggregated the plasmid-encoded gene content ("pangenome") across 28 Nanopore-sequenced isolates (Figure 1D). Note that the same gene can be carried by more than one plasmid in the same isolate. We find that genes on plasmids of type IncFIB(pQil) and less so IncX3 are frequently lost across our collection, illustrating the evolutionary forces described above.

Short read-based plasmid assemblies are often fragmented and incomplete and could mislead analyses. However, the Kp-1 outbreak allows for a more detailed study of plasmid dynamics, as we sampled 142 isolates and, more importantly, were able to reconstruct complete circular plasmids using long-read sequencing for 28 of them. We observed the complete loss of IncFIB(pQil) during the outbreak. This was initially confusing because this plasmid carried the *bla*<sub>KPC-2</sub> carbapenemase, which was detected using culture on screening agar followed by qPCR in all isolates. We then found one isolate with two *bla*<sub>KPC-2</sub> copies, one on IncFIB(pQil) and IncX3, respectively. Because *bla*<sub>KPC-2</sub> is surrounded by transposases (Figure 1E), it readily recombines, and *bla*<sub>KPC-2</sub> was copied from IncFIB(pQil) to IncX3. Thereafter, the host could discard the IncFIB(pQil) plasmid but retain the selective advantage of *bla*<sub>KPC-2</sub>. As indicated by the contextual genomes, IncFIB(pQil) loss is frequent and likely confers a fitness advantage. In line with this argument, all descendants of the isolate with two *bla*<sub>KPC-2</sub> copies have discarded the IncFIB(pQil) plasmid and carry *bla*<sub>KPC-2</sub> on IncX3 (Figure 1C).

### 153 **Contextual genomes reveal positive selection of virulence and resistance genes**

Comparative genomics can reveal adaptations to specific stimuli under selective pressure, such as antibiotic treatment.<sup>29</sup> The pathogens in our curated dataset can be assumed to be under similar selective pressures. For example, all but one were isolated from patients in hospitals (one isolate found in the literature was sourced from a wastewater plant<sup>30</sup>). Furthermore, since all included Kp isolates carry a carbapenemase, few antibiotics remain as a rational treatment option. One of them is colistin, sometimes combined with rifampicin for synergy.<sup>31</sup> Additionally, the Kp isolates will likely evolve to facilitate, e.g., long-term carriage and virulence. Such adaptations can be detected when aggregating mutations for each gene across all genomes:<sup>32</sup> If the rate of non-synonymous substitutions (*dN*) is higher than the

161 rate of synonymous substitutions ( $dS$ ), positive selection of the affected gene is plausible.<sup>33</sup> This signal can, in turn,  
162 generate new hypotheses about the gene's function.

163 Modified lipopolysaccharides often cause colistin and, more generally, polymyxin resistance (PR). They result in a  
164 positive charge to the bacterial membrane that repels polymyxins.<sup>13</sup> Several proteins are involved, though "*the exact*  
165 *mode of action of polymyxins still remains unclear.*"<sup>13</sup> For 171 of the 415 genomes in our collection (39.7 %), we  
166 were able to assess from the original publications whether the isolate was colistin-resistant or not (Table S2). Where  
167 minimum inhibitory concentration (MIC) measurements were available, breakpoints by the EUCAST committee (v11)  
168 were used to classify isolates into colistin sensitive and resistant. To identify genomic regions associated with PR, we  
169 first performed a genome-wide association study (GWAS) based on SNVs, including small insertions and deletions.  
170 This analysis did not return a significant result after correcting for population structure ( $p > 0.05$ ), neither when  
171 considering each SNV individually nor when aggregating SNVs over genes in a so-called *burden test*.<sup>34</sup>

172 This failure might be due to technical limitations of GWAS, especially in light of few genomes<sup>35</sup> or strong population  
173 structure.<sup>36,37</sup> Furthermore, while single SNVs can induce colistin resistance,<sup>38</sup> PR is generally assumed to be a  
174 polygenic phenomenon.<sup>13</sup> To test which genes were mutated more than expected, we first aggregated unique haplotypes  
175 for each gene across all genomes, similar to a *burden test*.<sup>34</sup> To conservatively correct for population structure, we  
176 counted mutations only once per position in the reference genome. Recombinant sites, putative phages, and sites within  
177 repetitive sequences were excluded. This procedure would not detect convergent evolution where mutations arise in the  
178 same position in two different clades. However, we did not detect any homoplastic mutations outside of recombinant  
179 regions. At a mutation rate of 0.68 per Mb per year, over the study period of our meta-analysis of about ten years,  
180 and assuming 4,000 genes per genome, we expect the number of mutations per gene to follow a Poisson distribution  
181 with a mean of 0.01 mutations per gene. This estimate is supported by the data where most genes remain unchanged  
182 (Figure 2B).

183 We ranked genes by the number of unique mutations (UM) per gene. We define unique mutations as specific to a  
184 single genome and position, and we used the number of UMs per gene as a heuristic to rank and prioritize genes for  
185 further analyses. A gene set enrichment of all genes with  $\geq 10$  UMs (n=15) showed two overrepresented biological  
186 processes. For one, the phosphorelay signal transduction system was enriched (19.8-fold,  $p \leq 0.001$ ),<sup>39</sup> which is known  
187 to be implicated in PR.<sup>13</sup> Furthermore, genes associated with nitrate assimilation were enriched (41.8-fold,  $p \leq 0.001$ ),  
188 which to our knowledge has neither been described nor could we assess the biological significance of this finding.

189 We tested the top-ranking genes with the highest number of unique mutations for gene-wide evidence of episodic  
190 positive selection. For each candidate gene, we used a random-effects framework to pool evidence across multiple  
191 sites and thereby increase statistical power.<sup>32</sup> All genes discussed hereafter exhibited significant positive selection  
192 ( $dN/dS > 1$ , likelihood-ratio test,  $p \leq 0.05$ ). We found two positively selected genes that affect virulence: The  
193 transcriptional activator *cadC* (18 UM) has been linked to increased Kp colonisation<sup>40</sup> and *fimH* (16 UM) is a critical  
194 virulence factor in urinary tract infection, a common complication of Kp colonisation.<sup>41</sup>

195 It is plausible to assume that most isolates in our study are subject to similar treatment-associated adaptive pressure:  
196 Since most beta-lactam antibiotics fail to treat these isolates, colistin will have been used in many patients. We found  
197 several known genes involved in PR to be mutated. In 47 out of 171 isolates with an available phenotype (27.5 %)  
198 we found a truncated or missing *mgrB* gene product, a negative regulator of the *PhoPQ* signalling system.<sup>42</sup> 39 of

199 these 47 (83 %) were resistant to colistin. This adaptation can occur rapidly: In the single Kp-1 outbreak, we identified  
200 three different *mgrB* loss-of-function mutations (Figure S2). Furthermore, we found frequent truncations in *pmrB*  
201 and non-synonymous mutations in *phoQ* (17 UM), both regulatory proteins involved in LPS modification.<sup>43</sup> These  
202 "canonical genes"<sup>42</sup> cause PR by acting on the outer membrane. We did not detect the plasmid-encoded *mgr-1* gene,  
203 which encodes a transferase that modifies lipid A and thereby causes PR.<sup>13</sup>

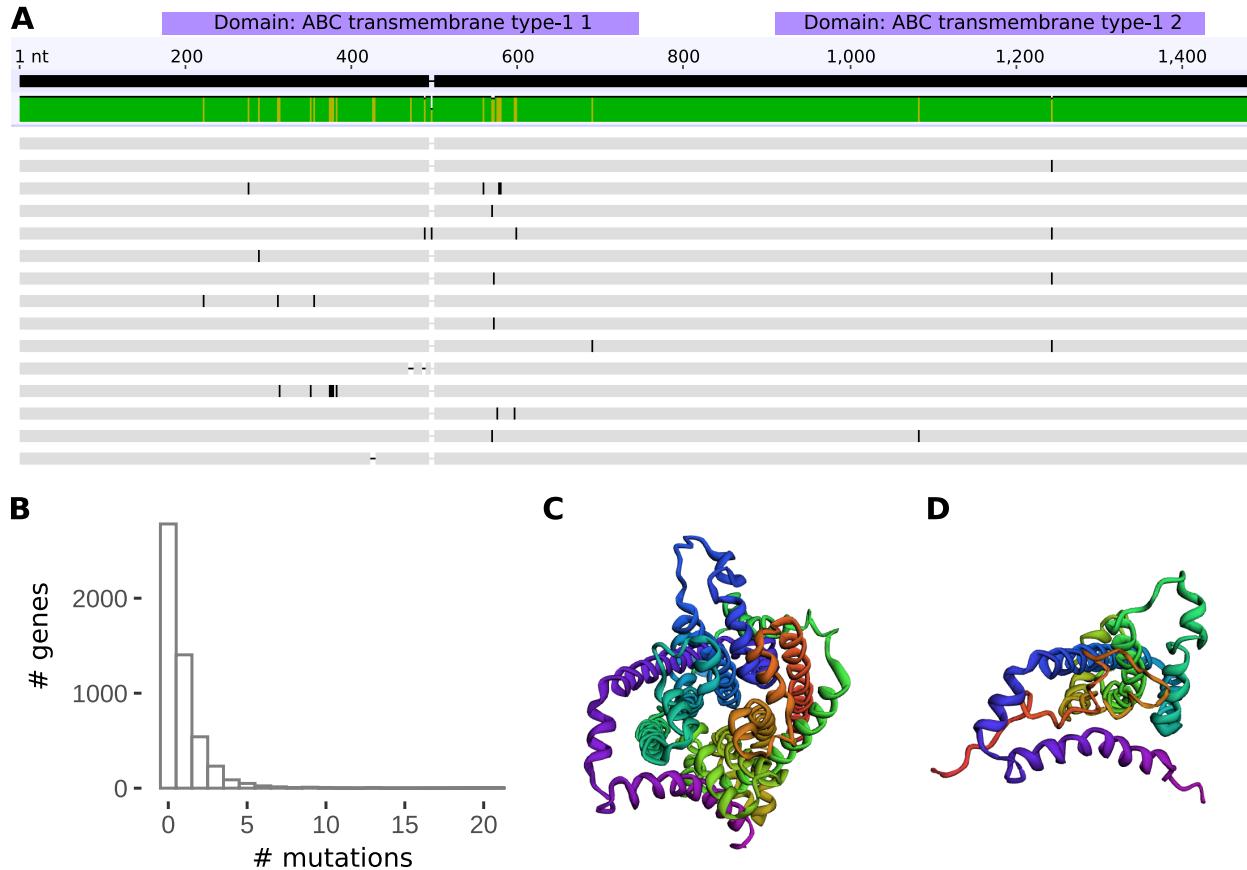



Figure 2: Positive selection of the inner membrane ABC transporter permease *ynjC*. (A) Multiple sequence alignment of representative haplotypes of the nucleotide sequence of *ynjC*. Most mutations occur between positions 200 to 700, which includes both transmembrane and interacting domains. Three of those haplotypes lead to premature stop codons. (B) Distribution of unique mutations observed in all genes. As expected by the estimated mutation rate of 0.68 mutations per Mb per year, most genes remain unchanged over the ten years which our study covers. Several genes, however, accrue over 20 unique mutations across 415 genomes. (C) 3D protein structure of the *ynjC* permease. In the center is the pore through which small molecules are shuttled. (D) 3D protein structure of a truncated form of the protein (same orientation as C), created through a premature stop codon. Clearly, the channel structure is lost, and the protein is likely dysfunctional.

204 Recently, colistin has also been found to target the inner cytoplasmic membrane.<sup>44</sup> Interestingly, we identified a  
205 highly mutated inner membrane ABC transporter permease<sup>45</sup> under strong positive selection (all detected mutations  
206 non-synonymous), named *ynjC* (21 UM, Uniprot, P76224). Proteins of this group utilize ATP to import many small  
207 molecules such as nutrients and antibiotics.<sup>46-48</sup> Mutations in permeases have been shown to "lock" the transporter  
208 in one of its two states,<sup>49,50</sup> such as inward-facing,<sup>51</sup> disrupting the shuttle function.<sup>52</sup> Additionally, we found three  
209 mutations that caused premature stop codons and subsequent dysfunctional proteins (Figure 2C and D). Most mutations

210 accumulate in a region between residues 75-230, spanning both transmembrane and topological domains (Figure 2A).  
211 In 12 isolates with *ynjC* mutations, 7 (58.3 %) were resistant to colistin; however, for none of the haplotypes with  
212 premature stop codons, phenotype data could be obtained, and future functional validation is needed. However, ABC  
213 family transporters have been proposed to transport nascent core-lipid A molecules across the inner membrane,<sup>53</sup> with a  
214 putative effect on colistin resistance. They have also been proposed as an antibiotic target.<sup>54</sup> We thus argue that the  
215 *ynjC* permease could have a role in PR.

## 216 Discussion

217 Genomic surveillance is a powerful public health tool to reduce the spread of resistant bacteria. We show that genomic  
218 meta-analysis of outbreak genomes can provide important contextual information when interpreting local outbreaks. To  
219 construct the context, we employed both *in vitro* and *in silico* search methods to aggregate more than 400 genomes  
220 to supplement the local outbreak under investigation, screening more than ten thousand genomes and half a million  
221 metagenomes in the process. As a result, we discovered critical epidemiologic details that would have been missed  
222 in a traditional outbreak study focusing on local data only. For example, we determined the likely source of the Kp-1  
223 outbreak, its relation to an outbreak at a nearby institution, and it being an instance of the repeated introduction of  
224 *bla*<sub>KPC-2</sub> Kp isolates into mainland Europe from Greece. We also identified isolates from other studies that are direct  
225 descendants of Kp-1.

226 We then illustrated the plasmid dynamics across our genome collection. We found frequent loss of genetic material  
227 associated with IncFIB(pQil)-type plasmids, even though they often carry the *bla*<sub>KPC-2</sub> gene. We resolved this paradox  
228 by showing how *bla*<sub>KPC-2</sub> can still be preserved in the host: The carrier transposon is first transferred to another plasmid  
229 before IncFIB(pQil) removal from the host.

230 Besides phylogenomic insights, our context-enriched genome collection informs about adaptation to selective pressure.  
231 For one, we found several positively selected genes that are known to mediate, e.g., colistin resistance. We also  
232 discovered positive selection of the inner membrane transporter *ynjC* together with an overrepresentation of mutated  
233 gene copies in colistin resistant isolates. However, future experiments will have to validate if an effect on colistin  
234 resistance can indeed be shown, e.g., by introducing loss-of-function mutations using CRISPR.<sup>42</sup>

235 Several components are still missing until we can analyse putative outbreak genomes in a real-time, integrated surveillance  
236 system. The main bottleneck, counter-intuitively, is not sequencing but data management and bioinformatics.<sup>55</sup>  
237 For example, there is no common repository for bacterial outbreak metadata in active use by the community. We  
238 manually aggregated metadata from 28 studies, which frequently involved squinting at low-resolution images to extract,  
239 e.g., data on colistin resistance. For most genomes, important information besides the year and country of isolation was  
240 missing. Without this metadata, the sequenced genomes cannot easily be integrated into any analysis other than the  
241 one they were originally sequenced for. This could be aided in the short term if authors published supplementary data  
242 giving genome accessions alongside all relevant isolate data, genotypes and phenotypes explored in the study.

243 Also, more sophisticated tools for outbreak genome sharing are needed:<sup>56</sup> Most outbreak studies appear one to two  
244 years after the outbreak took place (personal observation). However, by then, the value of the results is primarily  
245 academic. Only prospective data analysis<sup>57</sup> in real-time would enable a practical outbreak response. A recent example

246 of this is *nextstrain*, where the virus genomics community converged on a set of protocols and databases,<sup>58</sup> which  
247 allowed a data-driven public health response. When combined with real-time sequencing of bacterial genomes,<sup>59</sup> this  
248 set of technologies could substantially improve outbreak response.

## 249 Methods

### 250 Culture and Sequencing

251 142 Kp-1 isolates were collected from 105 patients in a previous investigation<sup>11</sup> and complemented in the present  
252 study with an additional ten isolates discovered using PCR screening of two culture collections (see below).<sup>11</sup> 13  
253 samples were collected from Kp-2. All of the isolates were sequenced using short reads (Illumina). 28 Kp-1 samples  
254 were additionally sequenced using long reads (Nanopore) to enable hybrid assembly (see below). All samples were  
255 streaked on CHROMagar KPC chromogenic agar plates (CHROMagar, Paris, France), and KPC carriage was confirmed  
256 using PCR. DNA extraction for Nanopore sequencing and quality control was done as reported elsewhere.<sup>60</sup> Care  
257 must be taken, especially for Nanopore sequencing, not to damage the extracted DNA to achieve a sizeable median  
258 fragment length (target 8 kb) for sequencing to be effective. Nanopore sequencing was performed using the MinION  
259 sequencer and the 1D ligation library kit (LSK109) on an R9.4 flow cell (all Oxford Nanopore Technologies, ONT).  
260 Illumina sequencing for isolates from other studies is described in the respective publications (Table S1). For genomes  
261 resequenced for the current study, a read length of 150 bases (paired-end) was used on an Illumina MiSeq sequencer.  
262 The libraries were constructed using a previously established protocol.<sup>61</sup>

### 263 In silico screening of isolate and metagenomes

264 In screening, our aim was to collect as many genomes as possible with a putative relation to the outbreak clone Kp-1,  
265 yielding a total of 9,409 genomes. From NCBI *RefSeq*, we retrieved all 9,177 genomes that were labelled as *Klebsiella*  
266 *pneumoniae* (Taxonomy ID: 573, last access 2020-08-01).<sup>16</sup> In a comprehensive literature search using the search terms  
267 "KPC, Klebsiella pneumoniae, outbreak" we identified 80 genomes from various studies that had only deposited reads  
268 with NCBI SRA, and which we reassembled for this study (see below).

269 For metagenomic search, we screened about 500,000 metagenomic read sets in a reduced representation known as  
270 *MinHash* signature<sup>62</sup> using *wort* (no version, unpublished, [github.com/dib-lab/wort](https://github.com/dib-lab/wort)). Hashing was performed using  
271 *sourmash* (v3.5).<sup>63</sup> As query we used the Kp-1 index genome (k=51, sampling rate 0.001) and manually reviewed all  
272 15 hits reported with a threshold  $\geq 0.01$  Jaccard similarity, a measure that approximates average nucleotide identity  
273 (ANI).<sup>62</sup>

### 274 Strain-specific screening PCR

275 We then screened two culture collections (National Reference Center for multidrug-resistant Gram-negative bacteria,  
276 Bochum, and Medical Microbiology and Virology, Leipzig) for related isolates using a strain-specific marker PCR,  
277 designed using a proprietary, pangenome-based algorithm (nanozoo GmbH). Each 50  $\mu$ L PCR reaction contained  
278 10  $\mu$ L template DNA, 2  $\mu$ L 10 nM primer mix for each primer (primer 1: ATGCGTCCACGAAGAATTAT, primer 2:  
279 CATCGCCAAGATACTGTACA), 25  $\mu$ L 2x polymerase master mix (Superfi II, Invitrogen) and 11  $\mu$ L ultra-pure water.

280 Thermal cycling consisted of initial denaturation at 98 °C for 1 minute followed by 35 cycles of denaturation at 98 °C  
281 for 20 s, annealing at 55 °C for 20 s, extension at 72 °C for 1 min, followed by final extension at 72 °C for 5 min.

## 282 Data processing

283 Unless otherwise stated, default parameters were used. Of the 9,413 collected genomes, 1,461 passed a minimum  
284 Jaccard similarity of 0.97 (15.5 %, parameters: k-mer size 51 nt, scale 0.001). Jaccard similarity was computed using  
285 sourmash (see above). In a subsequent filtering step, 415 (4.4 %) were included for tree construction based on a  
286 minimum *in silico* DNA-DNA-hybridization threshold of 99.98 % computed using FastANI (v1.32)<sup>64</sup> as well as a  
287 minimum genome length of 5 Mb and an alignment of 90 % of the query genome to the Kp-1 index isolate (completed,  
288 circular), excluding all extra-chromosomal sequences. This sequential approach allows for laxer but computationally  
289 efficient methods with fewer constraints to screen many genomes in the beginning. Subsequently, the selection is refined  
290 using more computationally expensive methods. We conservatively removed 16 samples from the timetree because they  
291 did not fit the estimated molecular clock model, likely due to unidentified recombination.

292 Isolates where only short reads could be obtained were assembled using shovill (v1.1.0, unpublished,  
293 [github.com/tseemann/shovill](https://github.com/tseemann/shovill)). Metagenomic reads were preprocessed using fastp (v0.20.1)<sup>65</sup> and assembled using  
294 megahit (v1.2.9).<sup>66</sup> All contigs with a minimum length of 2 kb were then mapped to the reference genome (Kp-1  
295 index patient, VA13414, Table S1) using minimap2 (v2.17-r941)<sup>67</sup> with the asm5 option for an expected sequence  
296 divergence of  $\leq 0.1\%$ . The Nanopore sequencing data were basecalled using Albacore (v2.3.2, available from Oxford  
297 Nanopore Technologies) and adapters removed using Porechop (v0.2.3, unpublished, [github.com/rrwick/Porechop](https://github.com/rrwick/Porechop)).  
298 Genome hybrid assembly using long and short reads was performed using Unicycler (v0.4.6).<sup>68</sup>

299 Genome annotation was performed using prokka (v1.14.6).<sup>69</sup> Annotation of Klebsiella-specific features  
300 was done using kleborate (v0.4.0-beta).<sup>70</sup> Plasmids were annotated using abricate (v1.0.1, unpublished,  
301 [github.com/tseemann/abricate](https://github.com/tseemann/abricate)) using the plasmidfinder database (version 2021-01-13).<sup>71</sup> Antimicrobial resis-  
302 tance genes were annotated using the same program with the *Comprehensive Antibiotic Resistance Database* (CARD,  
303 v3.1.2).<sup>72</sup> Phages were annotated using uv (v0.1, unpublished, [github.com/phiweger/uv](https://github.com/phiweger/uv)). Recombinant regions were  
304 annotated using gubbins (v2.4.1).<sup>73</sup> SNV calling was performed using the snippy workflow (v4.6.0, unpublished,  
305 [github.com/tseemann/snippy](https://github.com/tseemann/snippy)) which proved the most accurate program in a recent benchmark study.<sup>8</sup> In short, snippy  
306 simulates reads from input genomes and maps them to the provided reference using bwa (v0.7.17-r1188),<sup>74</sup> before call-  
307 ing variants with freebayes (v1.3.2, unpublished, [github.com/freebayes/freebayes](https://github.com/freebayes/freebayes)). Putative recombinant, repetitive  
308 and prophage regions were masked before SNV calling. Sites with SNVs were extacted using snp-sites (v2.5.1).<sup>75</sup>

## 309 Reconstruction of time-dated phylogeny

310 A time-dated phylogeny was calculated using timetree (v0.7.6),<sup>76</sup> a maximum likelihood-based approach starting  
311 from a core genome SNV alignment. The derived mutation rate was scaled by the total genome size. Homoplasy  
312 was assessed using the same approach. The final tree and associated metadata were visualized using the microreact  
313 webservice.<sup>25</sup> Bootstrap support values were extracted from the guide tree, a prerequisite of the timetree, and calculated  
314 with raxml-ng (v0.9.0).<sup>77</sup>

315 **Analysis of genomic variants**

316 A genome-wide association study was performed using *pyseer* (v1.3.7)<sup>78</sup> and included the aggregation of mutations  
317 across genes in a *burden test*.<sup>34</sup> Gene set enrichment was performed using the Gene Ontology webservice (last accessed  
318 2021-04-01).<sup>79,80</sup> Positive selection was assessed by first aligning all sequences for a particular gene using *nextalign*  
319 (no version, unpublished, [github.com/nextstrain/nextclade](https://github.com/nextstrain/nextclade)). The multiple sequence alignment was then analyzed  
320 using the BUSTED algorithm<sup>32</sup> as part of the HyPhy suite (v2.5.31).<sup>81</sup> *In silico* folding of proteins was done using the  
321 *trRosetta* model (no version).<sup>82</sup>

322 **Appendix**

323 **Ethical approval**

324 This retrospective study was performed in accordance with the ethical guidelines of the 1964 Declaration of Helsinki  
325 and its later amendments and was approved by the local ethics committee (University of Leipzig, register no. 411-12-  
326 11032013). The need for informed consent was waived according to the ethics approval.

327 **Data availability**

328 All data and metadata used in the analyses have been deposited with the *Open Science Foundation* (OSF) under project  
329 ID n78q3. Extensive metadata on all samples used in this study is available there and in the supplement (Table S1),  
330 including curated phenotype data on colistin resistance (Table S2). In addition, raw sequencing data generated under  
331 this study has been deposited with the *European Nucleotide Archive* (ENA) under project ID PRJEB45529. For all  
332 remaining raw data, please refer to the corresponding studies (Table S1).

333 **Funding**

334 This work is funded in part by the Gordon and Betty Moore Foundation's Data-Driven Discovery Initiative through  
335 Grants GBMF4551 to C. Titus Brown.

336 **Author contributions**

337 AV designed the study. AV, CBl and NL performed all laboratory work. AV and JH screened isolates using PCR. AV  
338 and CBl implemented Nanopore sequencing. AV, CBl and NL collected metadata. AV, CB, NL, KLW, CBr, LI and MH  
339 conducted data analysis. BG supervised the work. All authors interpreted the results, wrote the text, created the figures,  
340 and approved the submitted paper.

341 **Acknowledgments**

342 The authors would like to thank Prof. A. C. Rodloff for extensive discussion of the manuscript. The authors would also  
343 like to thank T. Kaiser (Institute of Laboratory Medicine, Clinical Chemistry und Molecular Diagnostics, University  
344 Hospital Leipzig) and K. Finstermeier (Max Planck Unit for the Science of Pathogens, Berlin) for access to and guidance  
345 through the collected Kp-1 outbreak metadata.

346 **Competing interest**

347 AV has received travel expenses to speak at Oxford Nanopore meetings. AV, CBr and MH are co-founders of nanozoo  
348 GmbH and hold shares in the company.

349 **Corresponding authors**

350 Correspondence to A. Viehweger or C. Brandt.

351 **References**

- 352 <sup>1</sup> Holt, K. E. *et al.* Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in  
353 klebsiella pneumoniae, an urgent threat to public health. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E3574–81 (2015).
- 354 <sup>2</sup> Du, H., Chen, L., Tang, Y.-W. & Kreiswirth, B. N. Emergence of the mcr-1 colistin resistance gene in carbapenem-  
355 resistant enterobacteriaceae. *Lancet Infect. Dis.* **16**, 287–288 (2016).
- 356 <sup>3</sup> Munoz-Price, L. S. & Quinn, J. P. The spread of klebsiella pneumoniae carbapenemases: a tale of strains, plasmids,  
357 and transposons. *Clin. Infect. Dis.* **49**, 1739–1741 (2009).
- 358 <sup>4</sup> Brandt, C. *et al.* Assessing genetic diversity and similarity of 435 KPC-carrying plasmids. *Sci. Rep.* **9**, 11223 (2019).
- 359 <sup>5</sup> Sidjabat, H. E. *et al.* Interspecies spread of klebsiella pneumoniae carbapenemase gene in a single patient. *Clin.*  
360 *Infect. Dis.* **49**, 1736–1738 (2009).
- 361 <sup>6</sup> David, S. *et al.* Epidemic of carbapenem-resistant klebsiella pneumoniae in europe is driven by nosocomial spread.  
362 *Nature Microbiology* **4**, 1919–1929 (2019).
- 363 <sup>7</sup> Lam, M. M. C. *et al.* Genomic surveillance framework and global population structure for klebsiella pneumoniae  
364 (2021).
- 365 <sup>8</sup> Bush, S. J. *et al.* Genomic diversity affects the accuracy of bacterial single-nucleotide polymorphism-calling pipelines.  
366 *Gigascience* **9** (2020).
- 367 <sup>9</sup> Ducombe, T. *et al.* Large hospital outbreak of KPC-2-producing klebsiella pneumoniae: investigating mortality and  
368 the impact of screening for KPC-2 with polymerase chain reaction. *J. Hosp. Infect.* **89**, 179–185 (2015).
- 369 <sup>10</sup> Ambretti, S. *et al.* Screening for carriage of carbapenem-resistant enterobacteriaceae in settings of high endemicity:  
370 a position paper from an italian working group on CRE infections. *Antimicrob. Resist. Infect. Control* **8**, 136 (2019).
- 371 <sup>11</sup> Kaiser, T. *et al.* Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling  
372 a major hospital outbreak of carbapenem-resistant klebsiella pneumoniae. *Am. J. Infect. Control* (2017).
- 373 <sup>12</sup> Lübbert, C. *et al.* Rapid emergence of secondary resistance to gentamicin and colistin following selective digestive  
374 decontamination in patients with KPC-2-producing klebsiella pneumoniae: a single-centre experience. *Int. J.*  
375 *Antimicrob. Agents* **42**, 565–570 (2013).
- 376 <sup>13</sup> Poirel, L., Jayol, A. & Nordmann, P. Polymyxins: Antibacterial activity, susceptibility testing, and resistance  
377 mechanisms encoded by plasmids or chromosomes. *Clin. Microbiol. Rev.* **30**, 557–596 (2017).
- 378 <sup>14</sup> Pitt, M. E. *et al.* Multifactorial chromosomal variants regulate polymyxin resistance in extensively drug-resistant  
379 klebsiella pneumoniae. *Microb Genom* **4** (2018).
- 380 <sup>15</sup> Rezaei Javan, R., Ramos-Sevillano, E., Akter, A., Brown, J. & Brueggemann, A. B. Prophages and satellite prophages  
381 are widespread in streptococcus and may play a role in pneumococcal pathogenesis. *Nat. Commun.* **10**, 4852 (2019).
- 382 <sup>16</sup> Li, W. *et al.* RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation.  
383 *Nucleic Acids Res.* **49**, D1020–D1028 (2020).
- 384 <sup>17</sup> Duchêne, S. *et al.* Genome-scale rates of evolutionary change in bacteria. *Microb Genom* **2**, e000094 (2016).

- 385 <sup>18</sup> Jousset, A. B. *et al.* A 4.5-year Within-Patient evolution of a Colistin-Resistant klebsiella pneumoniae Carbapenemase-  
386 Producing k. pneumoniae sequence type 258. *Clin. Infect. Dis.* **67**, 1388–1394 (2018).
- 387 <sup>19</sup> Gibson, B. & Eyre-Walker, A. Investigating evolutionary rate variation in bacteria. *J. Mol. Evol.* **87**, 317–326 (2019).
- 388 <sup>20</sup> Dudas, G. & Bedford, T. The ability of single genes vs full genomes to resolve time and space in outbreak analysis.  
389 *BMC Evol. Biol.* **19**, 1–17 (2019).
- 390 <sup>21</sup> Munoz-Price, L. S. *et al.* Clinical epidemiology of the global expansion of klebsiella pneumoniae carbapenemases.  
391 *Lancet Infect. Dis.* **13**, 785–796 (2013).
- 392 <sup>22</sup> Bathoorn, E. *et al.* Emergence of pan-resistance in KPC-2 carbapenemase-producing klebsiella pneumoniae in crete,  
393 greece: a close call. *J. Antimicrob. Chemother.* **71**, 1207–1212 (2016).
- 394 <sup>23</sup> Meletis, G. *et al.* Whole-genome sequencing study of KPC-encoding klebsiella pneumoniae isolated in greek private  
395 laboratories from non-hospitalised patients. *Journal of Global Antimicrobial Resistance* **20**, 78–81 (2020).
- 396 <sup>24</sup> Zhou, K. *et al.* Use of whole-genome sequencing to trace, control and characterize the regional expansion of  
397 extended-spectrum  $\beta$ -lactamase producing ST15 klebsiella pneumoniae. *Sci. Rep.* **6**, 20840 (2016).
- 398 <sup>25</sup> Argimón, S. *et al.* Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. *Microb  
399 Genom* **2**, e000093 (2016).
- 400 <sup>26</sup> Lübbert, C. *et al.* Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing  
401 enterobacteriaceae in international travelers returning to germany. *Int. J. Med. Microbiol.* **305**, 148–156 (2015).
- 402 <sup>27</sup> Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., Craig MacLean, R. & Millán, Á. S. Beyond horizontal  
403 gene transfer: the role of plasmids in bacterial evolution. *Nat. Rev. Microbiol.* **19**, 347–359 (2021).
- 404 <sup>28</sup> Stohr, J. J. J. M., Verweij, J. J., Buiting, A. G. M., Rossen, J. W. A. & Kluytmans, J. A. J. W. Within-patient plasmid  
405 dynamics in klebsiella pneumoniae during an outbreak of a carbapenemase-producing klebsiella pneumoniae. *PLoS  
406 One* **15**, e0233313 (2020).
- 407 <sup>29</sup> Giulieri, S. G. *et al.* Comprehensive genomic investigation of adaptive mutations driving the Low-Level oxacillin  
408 resistance phenotype in staphylococcus aureus. *MBio* **11** (2020).
- 409 <sup>30</sup> Surleac, M. *et al.* Whole genome sequencing snapshot of multi-drug resistant klebsiella pneumoniae strains from  
410 hospitals and receiving wastewater treatment plants in southern romania. *PLoS One* **15**, e0228079 (2020).
- 411 <sup>31</sup> Tascini, C. *et al.* Synergistic activity of colistin plus rifampin against colistin-resistant KPC-producing klebsiella  
412 pneumoniae. *Antimicrob. Agents Chemother.* **57**, 3990–3993 (2013).
- 413 <sup>32</sup> Murrell, B. *et al.* Gene-wide identification of episodic selection. *Mol. Biol. Evol.* **32**, 1365–1371 (2015).
- 414 <sup>33</sup> Kryazhimskiy, S. & Plotkin, J. B. The population genetics of dN/dS. *PLoS Genet.* **4**, e1000304 (2008).
- 415 <sup>34</sup> Lee, S., Abecasis, G. R., Boehnke, M. & Lin, X. Rare-variant association analysis: study designs and statistical tests.  
416 *Am. J. Hum. Genet.* **95**, 5–23 (2014).
- 417 <sup>35</sup> Saber, M. M. & Shapiro, B. J. Benchmarking bacterial genome-wide association study methods using simulated  
418 genomes and phenotypes. *Microb Genom* **6** (2020).
- 419 <sup>36</sup> Barton, N., Hermisson, J. & Nordborg, M. Why structure matters. *Elife* **8** (2019).

- 420 <sup>37</sup> Sul, J. H., Martin, L. S. & Eskin, E. Population structure in genetic studies: Confounding factors and mixed models.  
421 *PLoS Genet.* **14**, e1007309 (2018).
- 422 <sup>38</sup> Jayol, A. *et al.* Resistance to colistin associated with a single amino acid change in protein PmrB among klebsiella  
423 pneumoniae isolates of worldwide origin. *Antimicrob. Agents Chemother.* **58**, 4762–4766 (2014).
- 424 <sup>39</sup> Hoch, J. A. & Varughese, K. I. Keeping signals straight in phosphorelay signal transduction. *J. Bacteriol.* **183**,  
425 4941–4949 (2001).
- 426 <sup>40</sup> Hsieh, P.-F., Lin, H.-H., Lin, T.-L. & Wang, J.-T. CadC regulates cad and tdc operons in response to gastrointestinal  
427 stresses and enhances intestinal colonization of klebsiella pneumoniae. *J. Infect. Dis.* **202**, 52–64 (2010).
- 428 <sup>41</sup> Stahlhut, S. G. *et al.* Population variability of the FimH type 1 fimbrial adhesin in klebsiella pneumoniae. *J. Bacteriol.*  
429 **191**, 1941–1950 (2009).
- 430 <sup>42</sup> McConville, T. H. *et al.* CrrB positively regulates High-Level polymyxin resistance and virulence in klebsiella  
431 pneumoniae. *Cell Rep.* **33**, 108313 (2020).
- 432 <sup>43</sup> Jayol, A., Nordmann, P., Brink, A. & Poirel, L. Heteroresistance to colistin in klebsiella pneumoniae associated with  
433 alterations in the PhoPQ regulatory system. *Antimicrob. Agents Chemother.* **59**, 2780–2784 (2015).
- 434 <sup>44</sup> Sabnis, A. *et al.* Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. *Elife* **10** (2021).
- 435 <sup>45</sup> Schneider, E. & Hunke, S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the  
436 ATP-hydrolyzing subunits/domains. *FEMS Microbiol. Rev.* **22**, 1–20 (1998).
- 437 <sup>46</sup> McDaniel, C. *et al.* A putative ABC transporter permease is necessary for resistance to acidified nitrite and EDTA in  
438 pseudomonas aeruginosa under aerobic and anaerobic planktonic and biofilm conditions. *Front. Microbiol.* **7**, 291  
439 (2016).
- 440 <sup>47</sup> Greene, N. P., Kaplan, E., Crow, A. & Koronakis, V. Antibiotic resistance mediated by the MacB ABC transporter  
441 family: A structural and functional perspective. *Front. Microbiol.* **9**, 950 (2018).
- 442 <sup>48</sup> Karalewitz, A. P.-A. & Miller, S. I. Multidrug-Resistant acinetobacter baumannii chloramphenicol resistance requires  
443 an inner membrane permease. *Antimicrob. Agents Chemother.* **62** (2018).
- 444 <sup>49</sup> Abramson, J. *et al.* The lactose permease of escherichia coli: overall structure, the sugar-binding site and the  
445 alternating access model for transport. *FEBS Lett.* **555**, 96–101 (2003).
- 446 <sup>50</sup> Guan, L., Mirza, O., Verner, G., Iwata, S. & Kaback, H. R. Structural determination of wild-type lactose permease.  
447 *Proc. Natl. Acad. Sci. U. S. A.* **104**, 15294–15298 (2007).
- 448 <sup>51</sup> Zhan, H.-Q. *et al.* A proton-coupled folate transporter mutation causing hereditary folate malabsorption locks the  
449 protein in an inward-open conformation. *J. Biol. Chem.* **295**, 15650–15661 (2020).
- 450 <sup>52</sup> Sahin-Tóth, M., Frillingos, S., Lawrence, M. C. & Kaback, H. R. The sucrose permease of escherichia coli: functional  
451 significance of cysteine residues and properties of a cysteine-less transporter. *Biochemistry* **39**, 6164–6169 (2000).
- 452 <sup>53</sup> Zhou, Z., White, K. A., Polissi, A., Georgopoulos, C. & Raetz, C. R. Function of escherichia coli MsbA, an essential  
453 ABC family transporter, in lipid a and phospholipid biosynthesis. *J. Biol. Chem.* **273**, 12466–12475 (1998).
- 454 <sup>54</sup> Garmory, H. S. & Titball, R. W. ATP-binding cassette transporters are targets for the development of antibacterial  
455 vaccines and therapies. *Infect. Immun.* **72**, 6757–6763 (2004).

- 456 <sup>55</sup> Hodcroft, E. B. *et al.* Want to track pandemic variants faster? fix the bioinformatics bottleneck. *Nature* **591**, 30–33  
457 (2021).
- 458 <sup>56</sup> Viehweger, A., Brandt, C. & Hölzer, M. DarkQ: Continuous genomic monitoring using message queues (2020).
- 459 <sup>57</sup> Kwong, J. C. *et al.* Prospective Whole-Genome sequencing enhances national surveillance of listeria monocytogenes.  
460 *J. Clin. Microbiol.* **54**, 333–342 (2016).
- 461 <sup>58</sup> Hadfield, J. *et al.* Nextstrain: real-time tracking of pathogen evolution. *Bioinformatics* **34**, 4121–4123 (2018).
- 462 <sup>59</sup> Steinig, E. *et al.* Phylodynamic modelling of bacterial outbreaks using nanopore sequencing (2021).
- 463 <sup>60</sup> Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Completing bacterial genome assemblies with multiplex  
464 MinION sequencing. *Microb Genom* **3**, e000132 (2017).
- 465 <sup>61</sup> Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing.  
466 *Cold Spring Harb. Protoc.* **2010**, db.prot5448 (2010).
- 467 <sup>62</sup> Ondov, B. D. *et al.* Mash: fast genome and metagenome distance estimation using MinHash. *Genome Biol.* **17**, 132  
468 (2016).
- 469 <sup>63</sup> Pierce, N. T., Irber, L., Reiter, T., Brooks, P. & Brown, C. T. Large-scale sequence comparisons with *sourmash*.  
470 *F1000Res.* **8**, 1006 (2019).
- 471 <sup>64</sup> Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of  
472 90K prokaryotic genomes reveals clear species boundaries. *Nat. Commun.* **9**, 5114 (2018).
- 473 <sup>65</sup> Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* **34**,  
474 i884–i890 (2018).
- 475 <sup>66</sup> Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and  
476 complex metagenomics assembly via succinct de bruijn graph. *Bioinformatics* **31**, 1674–1676 (2015).
- 477 <sup>67</sup> Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094–3100 (2018).
- 478 <sup>68</sup> Wick, R. R., Judd, L. M., Gorrie, C. L. & Holt, K. E. Unicycler: Resolving bacterial genome assemblies from short  
479 and long sequencing reads. *PLoS Comput. Biol.* **13**, e1005595 (2017).
- 480 <sup>69</sup> Seemann, T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* **30**, 2068–2069 (2014).
- 481 <sup>70</sup> Lam, M. M. C., Wick, R. R., Wyres, K. L. & Holt, K. E. Genomic surveillance framework and global population  
482 structure for klebsiella pneumoniae (2020).
- 483 <sup>71</sup> Carattoli, A. *et al.* In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence  
484 typing. *Antimicrob. Agents Chemother.* **58**, 3895–3903 (2014).
- 485 <sup>72</sup> Jia, B. *et al.* CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database.  
486 *Nucleic Acids Res.* **45**, D566–D573 (2017).
- 487 <sup>73</sup> Croucher, N. J. *et al.* Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences  
488 using gubbins. *Nucleic Acids Res.* **43**, e15–e15 (2014).
- 489 <sup>74</sup> Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics* **25**,  
490 1754–1760 (2009).

- 491 <sup>75</sup> Page, A. J. *et al.* SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. *Microb Genom* **2**,  
492 e000056 (2016).
- 493 <sup>76</sup> Sagulenko, P., Puller, V. & Neher, R. A. TreeTime: Maximum-likelihood phylodynamic analysis. *Virus Evol* **4**,  
494 vex042 (2018).
- 495 <sup>77</sup> Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly  
496 tool for maximum likelihood phylogenetic inference. *Bioinformatics* **35**, 4453–4455 (2019).
- 497 <sup>78</sup> Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: a comprehensive tool for microbial  
498 pangenome-wide association studies. *Bioinformatics* **34**, 4310–4312 (2018).
- 499 <sup>79</sup> Gene Ontology Consortium. The gene ontology resource: enriching a GOld mine. *Nucleic Acids Res.* **49**, D325–D334  
500 (2021).
- 501 <sup>80</sup> Mi, H., Muruganujan, A., Ebert, D., Huang, X. & Thomas, P. D. PANTHER version 14: more genomes, a new  
502 PANTHER GO-slim and improvements in enrichment analysis tools. *Nucleic Acids Res.* **47**, D419–D426 (2019).
- 503 <sup>81</sup> Spielman, S. J. *et al.* Evolution of viral genomes: Interplay between selection, recombination, and other forces. In  
504 Anisimova, M. (ed.) *Evolutionary Genomics: Statistical and Computational Methods*, 427–468 (Springer New York,  
505 New York, NY, 2019).
- 506 <sup>82</sup> Yang, J. *et al.* Improved protein structure prediction using predicted interresidue orientations. *Proc. Natl. Acad. Sci.*  
507 *U. S. A.* **117**, 1496–1503 (2020).

508 **Supplement**

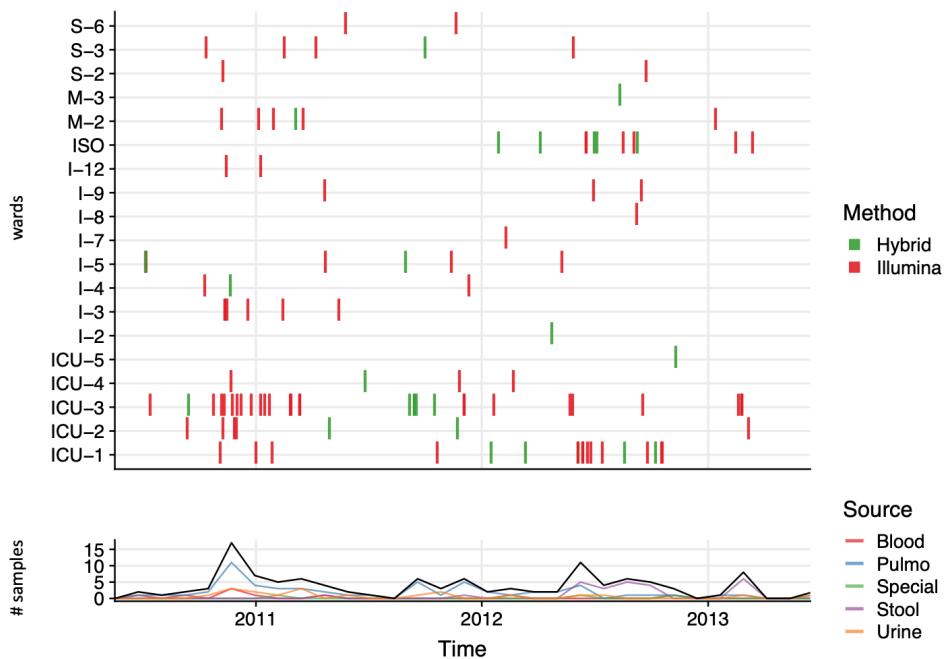



Figure S1: *bla*<sub>KPC-2</sub> Kp-1 case distribution. All isolates were sequenced using short reads. For long-read sequencing, 28 representative samples were selected, uniformly distributed across time and space.

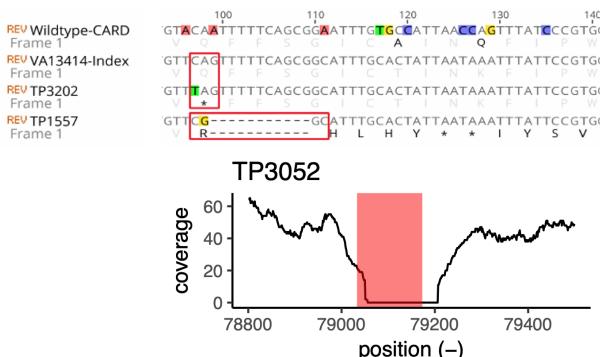



Figure S2: **(Top)** Detail from a multiple sequence alignment of representative *mgrB* sequences. Three different variants caused *mgrB* truncation in the Kp-1 outbreak, two of which are illustrated here. From top to bottom: Reference *mgrB* sequence from the CARD database, gene sequence from the Kp-1 index isolate, *mgrB* where a SNV causes a premature stop codon, gene sequence with an 11 bp deletion and subsequent frame-shift. **(Bottom)** One isolate presented a complete loss of *mgrB*, as could be validated by mapping the short reads from this isolate to the *mgrB* locus in the Kp-1 index genome.