

1 **Hypoxia is a dominant remodeler of the CD8⁺ T cell surface proteome relative to activation and**
2 **regulatory T cell-mediated suppression**

3

4 James R. Byrnes¹, Amy M. Weeks^{1,2}, Eric Shifrut^{3,4}, Julia Carnevale⁵, Lisa Kirkemo¹, Alan Ashworth^{5,9},
5 Alexander Marson³⁻⁹, and James A. Wells^{1,8,10#}

6

7 ¹Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA

8 ²Current Address: Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA

9 ³Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA

10 ⁴Gladstone Institutes, San Francisco, CA, USA

11 ⁵Department of Medicine, University of California, San Francisco, San Francisco, CA, USA

12 ⁶Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA

13 ⁷Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA

14 ⁸Chan Zuckerberg Biohub, San Francisco, CA, USA

15 ⁹The Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA

16 ¹⁰Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA

17

18 # To whom correspondence should be addressed:

19

20 James A. Wells, PhD

21 University of California, San Francisco

22 Byers Hall, Room 503A, Box 2552

23 1700 4th Street

24 San Francisco, CA 94158-2330

25 jim.wells@ucsf.edu

26

27

28

29

30 The authors have declared that no conflict of interest exists.

31 **ABSTRACT**

32 Immunosuppressive factors in the tumor microenvironment (TME) impair T cell function and limit
33 the anti-tumor immune response. T cell surface receptors that influence interactions and function in the
34 TME are already proven targets for cancer immunotherapy. However, surface proteome remodeling of
35 primary human T cells in response to suppressive forces in the TME has never been characterized
36 systematically. Using a reductionist cell culture approach with primary human T cells and SILAC-based
37 quantitative cell surface capture glycoproteomics, we examined how two immunosuppressive TME factors,
38 regulatory T cells (Tregs) and hypoxia, globally affect the activated CD8⁺ surface proteome (surfaceome).
39 Surprisingly, the CD8⁺/Treg co-culture only modestly affected the CD8⁺ surfaceome, but did reverse
40 several activation-induced surfaceomic changes. In contrast, hypoxia dramatically altered the CD8⁺
41 surfaceome in a manner consistent with both metabolic reprogramming and induction of an
42 immunosuppressed state. The CD4⁺ T cell surfaceome similarly responded to hypoxia, revealing a novel
43 hypoxia-induced surface receptor program. Our findings are consistent with the premise that hypoxic
44 environments create a metabolic challenge for T cell activation, which may underlie the difficulty
45 encountered in treating solid tumors with immunotherapies. Together, the data presented here provide
46 insight into how suppressive TME factors remodel the T cell surfaceome and represent a valuable resource
47 to inform future therapeutic efforts to enhance T cell function in the TME.

48

49

50

51

52

53

54

55

56 INTRODUCTION

57 Cytotoxic CD8⁺ T cells promote tumor cell killing, a function that is substantially modulated in the
58 tumor microenvironment (TME)¹. The TME is a complex mixture of tumor, somatic, and immune cells that
59 create a unique environment in and around the tumor. Tumor-infiltrating CD8⁺ T cells encounter many cell
60 types in the TME, including immunosuppressive regulatory T cells (Tregs).^{2,3} Tregs express immune
61 suppressors such as CTLA-4⁴ and produce immunosuppressive adenosine⁵ and cytokines such as TGFβ,
62 interleukin (IL)-10⁶, and IL-35⁷. Furthermore, Tregs and CD8⁺ cells compete for IL-2 for proliferation;
63 high expression of the high affinity IL-2 receptor on Tregs allows them to out-compete CD8⁺ T cells for
64 available IL-2.⁸ Tregs can also directly kill CD8⁺ T cells via the perforin pathway.⁹ Consistent with these
65 many immunosuppressive activities, increased Treg tumor infiltration is associated with poor prognosis in a
66 number of cancers, including non-small cell lung, hepatocellular, renal cell, breast, cervical, ovarian, and
67 gastric cancers, as well as melanoma.^{3,10,11}

68 Another hallmark of the TME is hypoxia due to poor and variable vascularization within the
69 tumor.^{1,12} Hypoxia is common in the core of tumors and induces dramatic transcriptional changes.^{1,12–17}
70 Tumor-associated hypoxia strongly influences the function of numerous immune cells from both the
71 myeloid¹⁸ and lymphoid lineages^{19–21}, with both stimulatory and inhibitory effects reported²². Hypoxia
72 induces expression of CD39 and CD73 that catalyze the production of immunosuppressive adenosine from
73 ATP.²³ Hypoxia also induces the Warburg effect, which leads to tumor acidification, decreased CD8⁺ T cell
74 proliferation, and reduced cytotoxic activity.²⁴ Hypoxia additionally promotes recruitment of Tregs to the
75 tumor²⁴, and CD8⁺ cells have been observed to be excluded from areas of tumor hypoxia²⁵. Recently,
76 hypoxia was also linked to T cell exhaustion²⁶. Inhospitable, hypoxic regions in solid tumors may also limit
77 the function of CAR-T cells²⁷, which could contribute to the limited success of targeting solid tumors with
78 CAR-T cells.

79 The cell surface proteome, or surfaceome, mediates T cell interactions with the external
80 environment, and the effect of external environmental factors on the T cell surfaceome has not yet been

81 studied globally. Not only does the surfaceome help T cells sense and respond to the environmental
82 conditions of the TME, but membrane proteins are useful surface markers and key regulators of the anti-
83 tumor function of CD8⁺ cells. For example, proteins such as PD1 play crucial roles in the suppression of
84 CD8⁺ cells.²⁸ Consequently, many current immunotherapies target and modulate T cells through blockade
85 or engagement of surface proteins (e.g. anti-PD1 or anti-CTLA-4 therapy, bispecific T cell engagers).²⁹
86 Therefore, profiling how the CD8⁺ surfaceome changes in response to TME factors, such as Treg-mediated
87 suppression or hypoxia, should expand our understanding of the basic biological response to these
88 modulators.

89 We have taken a reductionist cell culture approach to begin to understand how Tregs and hypoxia
90 modulate the cell surface proteome of primary CD8⁺ T cells. We first identified global and bi-directional
91 changes in the CD8⁺ T cell surfaceome following classic activation with agonistic antibodies to CD3 and
92 CD28 using quantitative cell surface capture mass spectrometry methods^{30,31}. We discovered that co-
93 culturing with Tregs, and especially hypoxic culture, significantly alter the activated CD8⁺ surfaceome in a
94 manner consistent with reduced CD8⁺ activation. Although our *in vitro* model conditions are much less
95 complex than what would be found in an *in vivo* TME, this approach allowed us to control and separately
96 assess the impact of T cell activation, Treg co-culture, and hypoxia on the CD8⁺ T cell surfaceome.
97 Collectively, these findings help illuminate how surfaceomic remodeling contributes to suppression of
98 CD8⁺ T cells in the presence of Tregs and hypoxia, and provides a resource to identify potential markers
99 for selective therapeutic targeting of suppressed CD8⁺ T cells in the TME or the design of new cellular
100 therapies to overcome TME-mediated suppression.

101

102 RESULTS

103 Activation dramatically alters the CD8⁺ T cell surfaceome in a bi-directional fashion

104 Our strategy to study how the CD8⁺ cell surfaceome responds to activation, and how this response
105 is altered by Treg suppression or hypoxia, is shown in Figure 1. Primary CD8⁺ cells were isolated from

106 healthy donors and expanded 10- to 100-fold with anti-CD3 and anti-CD28 stimulation in the presence of
107 IL-2. Cells were grown in medium containing light or heavy isotope-labeled lysine and arginine to
108 quantitatively compare stimulation conditions using SILAC (stable isotopic labeling with amino acids in
109 cell culture) coupled with a glycoprotein cell surface capture technique and LC-MS/MS³⁰⁻³² (Figure 1A).
110 This led to quantitative and uniform labeling as assessed by isotope distribution on four abundant and
111 constitutively-expressed proteins (Supplemental Figure 1). We first compared the activation-induced
112 changes in the CD8⁺ surfaceome before and after activation with anti-CD3/anti-CD28 for three days, and
113 then examined how the program was altered by the addition of primary Tregs or hypoxic culture (Figure
114 1B).

115 Surfaceomic analysis of unstimulated and anti-CD3/anti-CD28-stimulated CD8⁺ T cells from four
116 donors identified a total of 669 surface proteins (Figure 2A, Supplemental Table 1). Although there was
117 donor-to-donor variation (Supplemental Figure 2), assessment of a compiled dataset including fold-change
118 data from the four donors revealed about 16% of these proteins (106/669) consistently showed significant
119 ($P<0.05$) 1.5-fold up- or downregulation. These significantly-altered proteins showed strong correlation
120 between most donors (Supplemental Figure 2). We observed changes in classic markers of T-cell
121 activation, including upregulation of two classic T cell activation markers (CD69³³ and the transferrin
122 receptor [TFRC]³⁴), and downregulation of the IL-7 receptor (internalized upon activation) and VIPR1³⁵
123 (Figure 2B).

124 Large-scale network analysis of the significantly-altered proteins demonstrates the roughly
125 symmetrical, bi-directional response of the T cell surfaceome to activation, with 66 proteins upregulated
126 and 40 proteins downregulated (Figure 2C). In addition to CD69 and TFRC, numerous well-established T
127 cell activation markers were also upregulated, including CD63³³, CD83³³, CD97³⁶, and CD109³⁷.
128 Importantly, multiple solute carrier (SLC) transporters were also upregulated on activated CD8⁺ T cells,
129 including the amino acid transporters SLC1A5 and SLC7A5 that have been previously implicated in
130 supporting T cell activation.³⁸ Of note, comparison of our proteomics data with RNAseq data from

131 activated versus resting CD8⁺ cells in the DICE database revealed a loosely positive correlation ($R=0.25$,
132 $P<0.0001$, Supplemental Figure 3A).³⁹ It is well known that protein and RNA levels show only mild
133 correlations because of differences in stability and regulation. Assessment of only proteins that were
134 significantly changed in our proteomics data revealed a stronger correlation ($R=0.53$, $P<0.0001$,
135 Supplemental Figure 3B). However, several proteins that demonstrated significant change in our data
136 showed minimal or divergent change in the RNAseq data (e.g. CD70, 2.09 vs. -0.41; SLC5A6, 1.62 vs.
137 0.46; IL7R, -1.80 vs. 0.73 [\log_2 (enrichment ratio) for proteomics vs. RNAseq, respectively]). These
138 discrepancies could be due to differential activation conditions, but nonetheless underscore the importance
139 of protein-level profiling to capture surface protein remodeling in immune cells.

140 More globally, pathway analysis of up- and downregulated cell surface proteins revealed the most
141 significant enrichment for proteins implicated in immune function, with a slight trend towards upregulation
142 of these proteins (Figure 2D, proteins annotated for GO.0002376: immune system process are indicated
143 with green borders in Figure 2C). Collectively, these surfaceomic data identify classic (e.g. CD69) and
144 some newly-recognized (e.g. integrin αX [ITGAX], SLC39A14, BST2) markers for immune activation of
145 primary CD8⁺ T cells.

146

147 **Co-culture with Tregs modulates the activated CD8⁺ surfaceome**

148 We next analyzed the effect that primary Tregs have upon the surfaceome of activated primary
149 CD8⁺ T cells in a 1:1 ratio co-culture after three days (Figure 3A, Supplemental Table 2). Relative to
150 activation alone, Treg co-culture had a mild global impact on the surfaceome of activated CD8⁺ cells, with
151 significant ($P<0.05$) up- or downregulation (-/+ 1.5-fold change) of only 34 out of 675 proteins detected
152 (Figure 3A). Changes in these proteins were again largely consistent between donors (Supplemental Figure
153 4). Of note, upregulation of TFRC and the pro-inflammatory cytokine receptor IL18R1 on the cell surface
154 was blunted by the addition of Tregs (Figure 3B). In the presence of Tregs, IL7R showed variable
155 upregulation between donors, opposite of the trend seen with cell activation in monoculture (Figures 2B

156 and 3B). Similarly, L-selectin (SELL), a protein which is typically downregulated with T cell activation⁴⁰,
157 was slightly upregulated on CD8⁺ T cells, again consistent with a suppressive effect of Tregs (Figure 3B).
158 Due to the smaller number of significantly changed proteins in this dataset, network analysis was not as
159 striking as in the activation dataset (Figure 3C). However, in contrast to the monoculture CD8⁺ T cell
160 activation dataset, which demonstrated an upward trend in proteins implicated in immune processes, there
161 is a downward trend in immune-annotated proteins when CD8⁺ cells are activated in the presence of Tregs,
162 consistent with an immunosuppressive effect (Figure 3D). Furthermore, many proteins that were
163 upregulated on activated CD8⁺ T-cells in monoculture (Figure 2) were downregulated upon activation in
164 the presence of Tregs (11 of 23 downregulated proteins, Figure 3C). Among these proteins are several
165 SLCs, including SLC1A5 and SLC7A1. Collectively, these data suggest that the presence of Tregs reverses
166 at least part, but not all, of the activation-induced surfaceomic response in CD8⁺ T cells.

167

168 **Hypoxia triggers large-scale surfaceomic changes in activated CD8⁺ T cells consistent with**
169 **immunosuppression and anaerobic reprogramming**

170 We next wanted to test how hypoxia affects the surfaceome of activated CD8⁺ T cells. Interestingly,
171 over three days in culture, activated CD8⁺ T cells proliferated only ~1.3-fold faster in normoxia (20% O₂)
172 compared to hypoxia (1% O₂), and there were no substantial differences in cell viabilities (Supplemental
173 Figure 5). However, surface proteomics of CD8⁺ T cells activated in normoxic or hypoxic conditions
174 revealed substantial remodeling of the surface proteome. Of a total of 1064 proteins identified, 196 were
175 significantly ($P < 0.05$) up- or down-regulated (-/+ 1.5-fold change, Figure 4A, Supplemental Table 3) in
176 hypoxia relative to normoxia. The fold changes observed for these significantly-altered proteins showed
177 higher correlation among donors (Supplemental Figure 6) than seen in the activation (Supplemental Figure
178 2) and Treg co-culture (Supplemental Figure 4) datasets. The upregulation of the hypoxia-induced glucose
179 transporter SLC2A3 (GLUT3)⁴¹ we observed is consistent with a shift towards glycolysis. We also

180 observed downregulation of activin receptor type-1 (ACVR1), which is sequestered in endosomes under
181 hypoxic conditions⁴² (Figure 4B).

182 Network visualization of proteins significantly altered by hypoxia revealed multiple clusters of up-
183 and down-regulated proteins (Figure 4C). Interestingly, gene ontology analysis did not identify significant
184 enrichment for proteins involved in response to hypoxia (GO.0001666) or cellular response to hypoxia
185 (GO.0071456). However, four of these significantly-altered proteins are found in the “Hallmark Hypoxia”
186 gene set (SDC4, SLC6A6, B3GALT6, and SLC2A3).⁴³ We did observe marked upregulation of proteins
187 involved in protein glycosylation and glycoprotein metabolic processes (Figure 4C and D). Tumor hypoxia
188 is well established to cause glycan remodeling of tumor cell surface proteins⁴⁴, and our data suggest the
189 same may be true for hypoxic T cells. Among the 132 hypoxia-upregulated proteins were numerous
190 proteins involved in the unfolded protein response (e.g. ERMP1⁴⁵, FKBP11⁴⁶, MBTPS2⁴⁷) and regulation
191 of autophagy (ATG9A⁴⁸, ERGIC1, SEC22B⁴⁹). In contrast, proteins implicated in immune function were
192 strongly represented in the pool of 64 hypoxia-suppressed proteins (Figure 4C and D). In addition to the
193 late activation marker IL2RA (CD25), co-stimulatory receptors, such as CD80 and CD86, as well as
194 receptors for interleukins-3, -12, and -18 were significantly downregulated in hypoxic conditions (Figure
195 4B and C). Several SLCs implicated in T cell function, including SLC1A5³⁸, and the pro-proliferative
196 cytokines TNFSF4 (OX40 ligand) and TNFSF8 (CD30 ligand) were also downregulated. Of note, hypoxia
197 led to downregulation of some immunosuppressive proteins, including CD70⁵⁰ and TIGIT⁵¹, but consistent
198 upregulation of the checkpoint molecule VISTA (C10orf54)⁵² (Figure 4B and C). To validate these
199 observations, we performed flow cytometry for IL18R1 and CD70 on CD8⁺ cells from four different
200 donors activated in normoxia and hypoxia. Both proteins were upregulated on normoxic activated cells
201 relative to resting cells, although the degree of upregulation was variable (Supplemental Figure 7). Hypoxia
202 resulted in blunted cell surface induction of both proteins (Supplemental Figure 7), consistent with our
203 proteomics results. Collectively, these data reveal that hypoxia induces dramatic remodeling of the

204 activated CD8⁺ T cell surfaceome and markedly regulates numerous proteins important for T cell
205 activation.

206

207 **CD8⁺ and CD4⁺ T cells demonstrate similar hypoxia-induced surface remodeling**

208 Given the dramatic effect of hypoxic culture on the surface proteome of activated CD8⁺ T cells, we
209 next determined how hypoxia modulates surface protein expression on another cell subset important for the
210 anti-tumor immune response: CD4⁺CD25⁻ conventional T cells. Analysis of CD4⁺CD25⁻ T cells from the
211 same donors as in Figure 4 again revealed dramatic surfaceomic remodeling when these cells were
212 activated in hypoxic conditions (Figure 5A, Supplemental Table 4). Of the 1144 proteins identified, 992
213 were also identified in our CD8⁺ hypoxia dataset. The fold-change ratios of these commonly-identified
214 proteins showed significant correlation ($R=0.82$, $P<0.0001$) between CD8⁺ and CD4⁺CD25⁻ cells (Figure
215 5B). Interestingly, more proteins were significantly up- (306) or downregulated (204) in the CD4⁺CD25⁻
216 dataset, and the magnitude of these changes was larger than those observed for the CD8⁺ cells. However,
217 there was a large overlap in the sets of significantly-altered proteins (Figure 5C and D). Consequently,
218 functional enrichment for these overlapping proteins was similar to that observed when analyzing the CD8⁺
219 response alone, with significant downregulation of proteins involved in immune-related processes (e.g.
220 CD70 and IL18R1) and upregulation of proteins involved in solute transport (e.g. SLC2A3, SLC16A3) and
221 protein glycosylation. Taken together, these data show there is substantial similarity in the surfaceomic
222 response of CD8⁺ and CD4⁺ T cells to hypoxia.

223

224 **Analysis of all CD8⁺ datasets reveals a conserved response to immunosuppressive stimuli**

225 We next cross-referenced the observed surfaceomic changes associated with Treg co-culture and
226 hypoxia. Interestingly, gene set enrichment analysis comparing the expression level of all proteins
227 identified in our datasets revealed significant enrichment for a number of biological processes, namely
228 organic and amino acid transmembrane transport (Figure 6A). Consistent with this observation, analysis of

229 proteins significantly upregulated with CD8⁺ activation but blunted due to hypoxia or Tregs identified three
230 solute carriers (Figure 6B). Of these, SLC1A5 and SLC7A1 have been previously implicated in supporting
231 T cell function following activation. Furthermore, the pro-inflammatory cytokine receptor IL18R1 and
232 potentially inhibitory CD70⁵³ that were upregulated with CD8⁺ activation exhibited blunted surface
233 induction with hypoxia and Tregs. Strikingly, when examining proteins downregulated upon CD8⁺
234 activation in standard conditions but upregulated with hypoxia and Tregs, there are no commonly regulated
235 proteins (Figure 6C). This suggests that protein upregulation seen during activation in hypoxic conditions
236 may be primarily a general response to hypoxia. Together, the downregulation of a small but common set
237 of surface proteins by both Treg co-culture and hypoxia may represent a conserved response of the T cell
238 surface proteome to these two immunosuppressive stimuli.

239

240 **DISCUSSION**

241 A major obstacle encountered by CD8⁺ T cells when mounting an anti-tumor immune response is
242 the immunosuppressive TME. Although Tregs and hypoxia are known to be immunosuppressive, we have
243 little global understanding of how these affect the CD8⁺ T cell surface proteome. Our studies illuminate the
244 bi-directional surfaceomic changes on CD8⁺ T cells associated with cell activation and with
245 immunosuppression following co-culture with Tregs or hypoxic culture. The presence of Tregs partly
246 reversed activation-induced changes in CD8⁺ T cells, consistent with suppressed cell activation. Perhaps
247 surprisingly, the effect of hypoxia was much larger. Hypoxia triggered large-scale surfaceomic remodeling
248 consistent with a general cellular response to the new metabolic demands of a low oxygen environment.
249 Most importantly, cross-referencing of the effects of both Treg co-culture and hypoxia on the surface
250 proteome of activated CD8⁺ T cells exposed a small, but intriguing list of common changes in the
251 expression of proteins primarily involved in nutrient transport. This finding suggests that induced
252 downregulation of surface proteins important to support CD8⁺ activation may be one mechanism of
253 immunosuppression in the TME.

254 Global cell-surface capture proteomics not only provided a means of visualizing upregulation of
255 known activation markers to validate our experimental system, but also generated an unbiased list of
256 additional proteins demonstrating activation-associated changes. Importantly, our approach identified
257 significant cell surface upregulation of numerous well-established activation markers (e.g. CD69, TFRC,
258 CRTAM) that support T cell function. We also observed upregulation of TNFRSF18 (GITR), a molecule
259 vital for CD8⁺ anti-tumor function and agonism of which synergizes with anti-PD1 checkpoint therapy.⁵⁴
260 The exhaustion marker LAG3 was upregulated, as was ENTPD1 (CD39), which has been reported to
261 increase following T cell activation⁵⁵. Upregulation of CD39 is especially interesting because it facilitates
262 conversion of extracellular ATP to ADP, which is the first step to generating immunosuppressive
263 adenosine. Although this could represent a negative feedback loop to dampen T cell activation, we
264 observed that CD73 (NT5E), which converts ADP to adenosine, was downregulated following activation.
265 This is consistent with the recent observation that following activation human T cells strongly upregulate
266 CD39, whereas CD73 remains near baseline levels.⁵⁵

267 Another class of proteins that demonstrated divergent trends are cell adhesion molecules. Many
268 were significantly upregulated upon activation, including CD84⁵⁶, ALCAM, which stabilizes the
269 immunological synapse⁵⁷, and integrin α X, which is associated with improved migratory potential⁵⁸.
270 However, NRCAM, ICAM1, and ITGA4, the latter of which supports T cell migration⁵⁹, were
271 downregulated. The polarity of this response following activation may be representative of the complex
272 interactions an activated T cell must make with its environment to not only infiltrate an immunologically-
273 active zone, but also interact with target cells. Lastly, we observed significant upregulation of a number of
274 solute transporters involved in transporting amino acids, vitamins, and other nutrients. Of these, several
275 (SLC29A1, SLC2A1, SLC7A1) have previously been implicated in supporting T cell function, and are
276 crucial to help T cells respond to the metabolic demands following activation.^{60,61} However, the choline
277 transporter SLC44A2 and potassium-chloride cotransporter SLC12A7 were downregulated. Collectively,
278 these data not only validate our approach and provide a broad picture of the surfaceomic remodeling

279 following activation, but also serve as a benchmark for assessing the effects of hypoxia and Tregs on the
280 activated CD8⁺ surfaceome.

281 Activation of CD8⁺ T cells in the presence of Tregs did not induce dramatic surfaceomic shifts
282 relative to the hypoxia or activation datasets. However, co-culture showed several of the classic markers
283 up-regulated in activation, TFRC, SLC1A5, and SLC7A1³⁸, are downregulated upon addition of Tregs. Of
284 note, the exhaustion marker HAVRC2 (TIM-3) was also downregulated on CD8⁺ T cells activated in the
285 presence of Tregs. This may be a consequence of diminished CD8⁺ activation in the presence of Tregs. As
286 our experiments were limited to three days of co-culture, the trends we observe likely represent changes
287 that occur relatively early in an environment containing both CD8⁺ cells and Tregs. Longer-term culture
288 conditions may demonstrate even more dramatic changes associated with prolonged Treg-mediated
289 suppression of CD8⁺ cells.

290 Multiple studies have specifically examined the direct effect of hypoxia on CD8⁺ T cells, either by
291 modulating the activity of the canonical hypoxia-associated transcription factor hypoxia-inducible factor-1 α
292 (HIF-1 α) or using hypoxic cell culture. Doedens et al. showed that knockdown of the negative HIF
293 regulator VHF enhanced the cytotoxic signature of CD8⁺ cells and led to sustained effector function.⁶²
294 Similarly, Gropper et al. showed that CD8⁺ T cells cultured in 1% O₂ exhibited enhanced cytolytic
295 activity.⁶³ However, these cells proliferated only half as quickly as normoxic cells during the culture
296 period, which may counteract the enhanced effector function of these cells. Taken with the results of other
297 studies examining CD8⁺ function in hypoxia, low oxygen tension appears to exert a net immunosuppressive
298 effect on the antitumor response.²² Our data add to these focused functional studies and revealed that
299 hypoxia led to the most substantial surfaceomic changes of all conditions tested with respect to the number
300 of proteins demonstrating significant change. Additionally, the response of CD4⁺ T cells to hypoxia was
301 tightly correlated with that of CD8⁺ cells, suggesting hypoxia has similar impacts on both cell types.

302 Analysis of the altered surface proteins in hypoxic culture (e.g. GLUT3 upregulation), reveals
303 changes consistent with a metabolic change toward glycolysis. One protein that showed robust upregulation

304 in both CD8⁺ and CD4⁺CD25⁻ cells was SLC16A3, a hypoxia-induced lactate transporter that helps export
305 lactate produced from glycolysis which has previously been implicated in supporting tumor growth.⁶⁴
306 Interestingly, the related SLC16A1 was recently shown to help intratumoral Tregs metabolically cope with
307 high lactate levels in areas of tumor hypoxia.⁶⁵ The role of SLC16A3 upregulation on hypoxic CD8⁺ and
308 CD4⁺CD25⁻ cells remains unclear and further functional follow up is needed, but previous studies indicate
309 inhibition of this transporter can enhance effector function.⁶⁶ Intratumoral hypoxia is also known to
310 dramatically alter the glycoproteome of tumor cells, changes that in turn regulate cell migration and
311 metastasis. Our data suggest the same could be true for T cells, which may have similar consequences for T
312 cell migration within the tumor and could represent another feature that could be harnessed to selectively
313 target hypoxic T cells. Further studies are needed to profile the hypoxic T cell glycoproteome.

314 Intriguingly, proteins involved in hypoxia-induced autophagy (ATG9A⁴⁸, ERGIC1, SEC22B⁴⁹) and
315 the unfolded protein response (ERMP1⁴⁵, FKBP11⁴⁶, MBTPS2⁴⁷) were also upregulated. These two
316 pathways are associated with a survival response under hypoxic conditions.⁶⁷ However, activation of the
317 unfolded protein response pathway is usually observed only at very low levels of oxygen (<0.1%)⁶⁷, and is
318 often associated with cell death. Although we did not observe rampant cell death in our experiments
319 (performed at 1% oxygen), even lower oxygen levels within dividing T cell clusters or the compounded
320 metabolic demands of hypoxic conditions and activation may have triggered these pathways. Interestingly,
321 T cell activation has also been associated with induction of the endoplasmic reticulum stress response and
322 autophagy.^{68,69} Collectively, these observations suggest that hypoxia places additional stress on the
323 activation-associated metabolic shift, ER stress, and autophagic responses that are typically induced in T
324 cells following activation. This added stress may impair T cell function and the ability for T cells to cope
325 with sustained stimulation in the hypoxic TME.

326 Finally, one global observation from our hypoxic CD8⁺ data is that although a large number of
327 proteins show significant change, the magnitude of these changes is mild, with only 28/196 (14%) of
328 significantly-altered proteins showing a change of greater -/+ two-fold change. This may suggest that the T

329 cell response to hypoxia results in a distributed biology, where many small changes in protein abundance
330 collectively lead to a suppressed state. This complicates functional follow-up of proteins identified in this
331 study, but nonetheless this will be a focus of future efforts to provide greater resolution of the surface
332 protein changes that lead to hypoxia-induced T cell suppression.

333 Taken together, our data provide the opportunity to search for common surfaceomic changes in
334 response to both Treg co-culture and hypoxia. Gene set enrichment analysis comparing the three datasets
335 revealed very strong enrichment for transmembrane amino acid transport in the CD8⁺ monoculture
336 activation dataset. These transporters are vital for fueling macromolecule production needed for both
337 proliferation and effector function, with both the glutamate transporter SLC1A5 and amino acid transporter
338 SLC7A1 previously implicated in supporting T cell activation. Interestingly, SLC5A6 is a sodium-
339 dependent multivitamin transporter that has not been previously implicated in T cell function. Together,
340 these three transporters may represent a common set of proteins whose expression is modulated by
341 immunosuppressive factors. Downregulation of these transporters by the suppressive forces tested here
342 suggests these factors blunt the T cell activation response by limiting the increased metabolism required to
343 sustain proliferation and effector function (Figure 7). This premise is consistent with a recent study finding
344 that hypoxia-induced metabolic stress promotes T cell exhaustion.²⁶ It remains to be seen if these solute
345 transporters are also downregulated on infiltrating T cells *in vivo*, but our findings begin to illuminate how
346 TME-associated immunosuppression of CD8⁺ cells may result from effectively starving T cells as they
347 attempt to mount an anti-tumor response.

348 In conclusion, our cell surface proteomics data revealed upregulation of well-established activation
349 markers following CD8⁺ stimulation, but also revealed many additional upregulated proteins that may
350 augment T cell effector function and help T cells cope with the increased metabolic demands associated
351 with rapid proliferation. Both immunosuppressive factors tested caused significant changes to the CD8⁺
352 surfaceome consistent with diminished T cell function. Interestingly, however, these factors converged on
353 mediating downregulation of transporters crucial for linking the T cell activation response and the

354 metabolic shift that follows stimulation, uncovering a potential metabolic mechanism for
355 immunosuppression in the TME. Future work will aim to validate and screen these proteins for potential
356 strategies to support the function of T cells in hypoxic environments. Such strategies could either block the
357 function of inhibitory proteins upregulated in the TME, or could mediate selective delivery of beneficial
358 cytokines via antibody-cytokine fusions (Figure 7B). Furthermore, our results provide a starting point to
359 identify proteins that could be modulated in adoptive T cellular therapies (e.g. CAR-T) to enhance function
360 of these cells in the solid TME (Figure 7B). Collectively, our findings provide important insight into the
361 plasticity of the T cell surfaceome and lay the foundation for future efforts to not only further characterize,
362 but also potentially therapeutically engage, T cell surface proteins within the TME.

363

364 **ACKNOWLEDGEMENTS**

365 We thank Kevin Leung for valuable insight and discussions and the other members of the Wells Lab for
366 their support.

367

368 J.A.W. is grateful for funding from the Harry and Dianna Hind Endowed Professorship in Pharmaceutical
369 Sciences, NIH R35GM122451; J.A.W., A.A. and A.M. were supported on a common grant from the Parker
370 Institute for Cancer Immunology. Postdoctoral Fellowship support included a National Institutes of Health
371 National Cancer Institute F32 (5F32CA239417 to J.R.B.). A.M. holds a Career Award for Medical
372 Scientists from the Burroughs Wellcome Fund, is an investigator at the Chan Zuckerberg Biohub and is a
373 recipient of The Cancer Research Institute (CRI) Lloyd J. Old STAR grant. The Marson lab has received
374 funds from the Innovative Genomics Institute (IGI), the Simons Foundation and the Parker Institute for
375 Cancer Immunotherapy (PICI).

376

377

378

379 **AUTHOR CONTRIBUTIONS**

380 J.R.B. and A.M.W. designed the research, performed experiments, and analyzed data. E.S. and J.C.
381 performed experiments. L.K. provided valuable technical assistance and training. A.A., A.M., and J.A.W.
382 conceived and supervised the research. J.R.B. and J.A.W. co-wrote the manuscript, and all authors
383 provided edits and approved the final version.

384

385 **DISCLOSURES**

386 A.A. is a co-founder of Tango Therapeutics, Azkarra Therapeutics, Ovibio Corporation; a consultant for
387 SPARC, Bluestar, ProLynx, Earli, Cura, GenVivo and GSK; a member of the SAB of Genentech,
388 GLAdiator, Circle and Cambridge Science Corporation; receives grant/research support from SPARC and
389 AstraZeneca; holds patents on the use of PARP inhibitors held jointly with AstraZeneca which he has
390 benefitted financially (and may do so in the future). A.M. is cofounder, member of the Boards of Directors
391 and member of Scientific Advisory Boards of Spotlight Therapeutics and Arsenal Biosciences. A.M. has
392 served as an advisor to Juno Therapeutics, was a member of the scientific advisory board at PACT Pharma
393 and was an advisor to Trizell. A.M. has received honoraria from Merck and Vertex, a consulting fee from
394 AlphaSights, and is an investor in and informal advisor to Offline Ventures. A.M. owns stock in Arsenal
395 Biosciences, Spotlight Therapeutics and PACT Pharma. The Marson lab has received research support
396 from Juno Therapeutics, Epinomics, Sanofi, GlaxoSmithKline, Gilead and Anthem. J.A.W. is co-founder
397 of Soteria Therapeutics, is on the SAB of Jnana Therapeutics, Inception Therapeutics, IgGenix Inc, Red
398 Tree Capital, Spotlight Therapeutics, Inzen Therapeutics, and receives research support from Bristol-
399 Myers-Squibb, TRex Bio and Merck, Inc.

400

401

402

403

404 **METHODS**

405 **Cell isolation**

406 Primary human T cells were isolated from leukoreduction chamber residuals following Trima Apheresis
407 (Blood Centers of the Pacific, San Francisco, CA) using established protocols⁷⁰. Briefly, peripheral blood
408 mononuclear cells (PBMCs) were isolated using Ficoll separation in SepMate tubes (STEMCELL
409 Technologies, Vancouver, Canada) in accordance with the manufacturer's instructions. CD8⁺ T cells were
410 isolated from PBMCs using either the EasySep™ Human CD8⁺ T cell Isolation Kit or the RosetteSep™
411 Human CD8⁺ T Cell Enrichment Cocktail (STEMCELL), following the manufacturer's protocol.
412 CD4⁺CD25⁻ conventional T cells and CD4⁺CD127^{low}CD25⁺ Tregs were isolated from PBMCs with the
413 EasySep™ Human CD4⁺CD127^{low}CD25⁺ Regulatory T Cell Isolation Kit (STEMCELL). Isolated cell
414 populations were analyzed for purity by flow cytometry on a Beckman Coulter CytoFlex flow cytometer
415 using a panel of antibodies (anti-CD3 [UCHT1], anti-CD4 [OKT4], anti-CD8a [RPA-T8], anti-CD25 [M-
416 A251], anti-CD45RA [HI100], and anti-CD127 [A019D5], all from BioLegend, San Diego, CA). Pilot
417 experiments comparing FACS sorting and magnetic bead separation showed similar results with respect to
418 cell purity, so magnetic bead separation was used.

419

420 **Cell culture/SILAC labeling**

421 Following isolation, cells were adjusted to 1e6 cells/mL in RPMI 1640 Medium for SILAC (ThermoFisher)
422 supplemented with 1000 U/mL Penicillin/Streptomycin (Gemini Bio-Products), 10 mM HEPES (UCSF
423 Cell Culture Facility), 100 μM non-essential amino acids (Lonza), 1 mM sodium pyruvate (VWR), 55 μM
424 2-mercaptoethanol (Gibco), 10 mM N-acetyl-cysteine (Sigma), and 10% dialyzed FBS (Gemini). Media
425 was also supplemented with either light L-[12C6,14N2] lysine/L-[12C6,14N4] arginine (Sigma) or heavy
426 L-[13C6,15N2] lysine/L-[13C6,15N4] arginine (Cambridge Isotope Laboratories). CD8⁺ and CD4⁺ T
427 effectors were stimulated by addition to tissue culture flasks coated with anti-CD3 (produced in-house,
428 clone OKT3) and anti-CD28 ([D2Z4E], Cell Signaling) antibodies or with anti-CD3/anti-CD28 Dynabeads

429 (Thermo) at a 1:1 bead:cell ratio in the presence of 50 U/mL recombinant human IL-2 (Thermo). Following
430 two days of culture, the stimuli were removed and cells allowed to expand in heavy or light SILAC media
431 with 50 U/mL IL-2 for 12 additional days. Tregs were stimulated using anti-CD3/anti-CD28 Dynabeads
432 (Thermo) at a 1:1 bead:cell ratio and maintained in 300 U/mL IL-2. Following two days of culture, the
433 stimuli were removed and cells allowed to expand in heavy or light SILAC media with 300 U/mL IL-2 for
434 9 days and then restimulated with more beads at 1:1 bead:cell ratio. At day 14, Tregs were counted and put
435 into co-culture with CD8 T cells at a 1:1 Treg: CD8⁺ T cell ratio.

436

437 **Baseline CD8⁺ activation**

438 CD8⁺ T cells were stimulated using anti-CD3/anti-CD28 Dynabeads (Thermo) at a 1:1 bead:cell ratio and
439 maintained in 50 U/mL IL-2. Following two days of culture, the stimuli were removed and cells allowed to
440 expand in heavy or light SILAC media with 50 U/mL IL-2 for 12 additional days, at which point CD8⁺ T
441 cells were counted and were re-stimulated 1:1 with anti-CD3/anti-CD28 Dynabeads for three days.
442 Isotopically-labeled activated and resting cells were then combined 1:1 for downstream processing.

443

444 **Co-culture**

445 On day 14, isotopically-labeled CD8⁺ T cells were put into co-culture with Tregs at a 1:1 Treg:CD8⁺ T cell
446 ratio. In addition, at the time of initiation of co-culture, anti-CD3/anti-CD28 Dynabeads were added at a 1:1
447 bead:CD8⁺ T cell ratio. At the time of co-culture, the CD8⁺ T cells grown in heavy SILAC media were co-
448 cultured with Tregs, while CD8⁺ T cells were kept in monoculture and grown in light SILAC media. At the
449 end of three days of co-culture, CD8⁺ T cells were isolated from co-culture using STEMCELL CD8⁺
450 enrichment kits and then combined in equal numbers with the CD8 T cells grown in mono-culture in the
451 light SILAC media. This was done in the opposite combination of light/heavy SILAC media as well to
452 ensure there was no bias in the experiment in assigning light or heavy SILAC media to those T cells grown
453 in co- or mono-culture.

454 **Hypoxic T cell activation**

455 To model activation in hypoxic conditions, expanded, SILAC-labeled CD8⁺ or CD4⁺ cells were collected,
456 resuspended in fresh SILAC media, and stimulated using anti-CD3/anti-CD28 Dynabeads at a 1:10
457 bead:cell ratio. Cells were then either cultured at 37°C, 5% CO₂ in normoxic (20% O₂) or hypoxic (1% O₂)
458 conditions for three days. Hypoxic culture was performed in a Coy Laboratory Products hypoxic cabinet
459 using a nitrogen/5% CO₂ balance blend. Cells were then separated from the Dynabeads and heavy and light
460 cells mixed at a 1:1 ratio in both forward and reverse SILAC mode before surface protein capture. For flow
461 cytometry of IL-18R1 and CD70, cells were similarly isolated and activated but were cultured in
462 STEMCELL Immunocult-XF T cell expansion media. Cells were stained with GHOST viability dye from
463 Tonbo Biosciences and flow cytometry was performed using anti-IL18R1 [H44] and anti-CD70 [113-16]
464 antibodies, both from Biolegend. Flow cytometry data was analyzed using FlowJo (v10.7.1).

465

466 **Cell surface capture**

467 Cell surface glycoproteins were captured as previously described.³² Briefly, immediately after combining
468 isotopically-labeled cells, the cells were washed in PBS, pH 6.5 and glycoproteins oxidized with 1.6 mM
469 NaIO₄ (Sigma) in PBS, pH 6.5 for 20 minutes at 4°C. Oxidized vicinal diols were subsequently biotinylated
470 with 1 mM biocytin hydrazide (Biotium) in the presence of 10 mM aniline (Sigma) in PBS, pH 6.5 for 90
471 minutes at 4°C. Cells were then flash frozen and stored at -80°C before further preparation. To isolate
472 glycoproteins for mass spectrometry, cell pellets were lysed with commercial RIPA buffer (VWR)
473 supplemented with 1X Protease Inhibitor Cocktail (Sigma) and 1 mM EDTA (Sigma) for 30 minutes at
474 4°C. Cells were further disrupted with probe sonication and biotinylated glycoproteins pulled down with
475 NeutrAvidin coated agarose beads (Thermo) for one hour at 4°C. Beads were transferred to Poly-Prep
476 chromatography columns (Bio-Rad, Hercules, CA) and sequentially washed with RIPA (PBS pH 7.4 with
477 0.5% sodium deoxycholate [Thermo], 0.1% sodium dodecylsulfate [Fisher Scientific, Waltham, MA], 1%
478 Nonidet P-40 substitute [VWR]), high salt PBS (PBS pH 7.4, 2 M NaCl [Sigma]), and denaturing urea

479 buffer (50 mM ammonium bicarbonate, 2 M Urea). After washing, beads were collected and glycoproteins
480 reduced with 5 mM TCEP (Calbiochem) for 30 minutes at 37°C and alkylated with 11 mM iodoacetamide
481 (Sigma) for 30 minutes at room temperature. Beads were washed with urea buffer and trypsinized on-bead
482 overnight at room temperature with 20 µg trypsin (Promega). The next day, the tryptic fraction was
483 collected using Pierce Spin Columns before the beads were again transferred to PolyPrep columns and
484 washed with RIPA, high salt buffer, and urea buffer before a final wash with 50 mM ammonium
485 bicarbonate. Beads were transferred to a fresh tube and glycopeptides liberated with 5000 U/mL PNGaseF
486 for 3 hours at 37°C. This PNGaseF fraction was collected as above. Both tryptic and PNGaseF fractions
487 were then desalted with SOLA HRP SPE columns (Thermo) following standard protocols, dried, and
488 dissolved in 0.1% formic acid, 2% acetonitrile prior to LC-MS/MS analysis.

489

490 **Mass spectrometry**

491 Mass spectrometry was performed as previously described³², with some slight adjustments. All peptides
492 were separated using an UltiMate 3000 UHPLC system (Thermo) with pre-packed 0.75mm x 150mm
493 Acclaim Pepmap C18 reversed phase columns (2µm pore size, Thermo) and analyzed on a Q Exactive Plus
494 (Thermo Fisher Scientific) mass spectrometer. For tryptic fractions, 1 µg of resuspended peptides was
495 injected and separated using a linear gradient of 3-35% solvent B (solvent A: 0.1% formic acid, solvent B:
496 80% acetonitrile, 0.1% formic acid) over 230 mins at 300 µL/min. Due to the low peptide yield of the
497 PNGase fraction, the entire fraction was injected and subsequently separated using the same gradient over
498 170 mins. Data-dependent acquisition was performed using a top 20 method (dynamic exclusion 35
499 seconds; selection of peptides with a charge of 2, 3, or 4). Full spectra with a resolution of 140,000 (at 200
500 m/z) were gathered in MS1 using an AGC target of 3e6, maximum injection time of 120 ms, and scan
501 range of 400 - 1800 m/z. Centroided data from MS2 scans were collected at a resolution of 17,500 (at 200
502 m/z) with an AGC target of 5e4 and maximum injection time of 60 milliseconds. The normalized collision
503 energy was set at 27 and an isolation window of 1.5 m/z with an isolation offset of 0.5 m/z was used.

504 **Data analysis/Statistics**

505 SILAC proteomics data were analyzed as previously described³². Briefly, each individual dataset was
506 searched for peptides using ProteinProspector v5.13.2 against the human proteome (Swiss-prot database,
507 August 3, 2017 release). Enzyme specificity was set to trypsin with up to two missed cleavages. Cysteine
508 carbamidomethyl was set as the only fixed modification; methionine oxidation, N-terminal glutamate to
509 pyroglutamate, and lysine/arginine SILAC labels were set as variable modifications. Asparagine
510 deamidation was also listed as a variable modification for the PNGaseF fractions. During the search, the
511 peptide mass tolerance was 6 ppm, fragment ion mass tolerance was 0.4 Da, and peptide identification was
512 filtered by peptide score of 0.0005 in ProteinProspector, resulting in a false discovery rate (FDR) of <1%
513 calculated using the number of decoy peptides in the SwissProt database. Skyline (UWashington)⁷¹
514 software was used to perform quantitative analysis of SILAC ratios using an MS1 filtering function against
515 a curated list of extracellular proteins generated via searches for “membrane” but not “mitochondrial” or
516 “nuclear” using UniProt subcellular localization annotations, as previously described.³² For datasets
517 collected in forward and reverse SILAC mode, spectral libraries of experiments were analyzed
518 simultaneously to allow MS1 peaks without an explicit peptide ID to be quantified using an aligned peptide
519 retention time. The Skyline report was subsequently exported for ratiometric analysis using a previously
520 reported custom R script³². Briefly, low quality identifications (isotope dot product <0.8) were removed.
521 For the tryptic fraction, only proteins with two or more peptides were included in downstream analysis,
522 whereas for the PNGase fraction, only peptides with N to D deamidation were included. Ratios derived
523 from both fractions were then combined, centered on a mean of zero, and presented as median \log_2
524 enrichment values. Significance was determined using a Mann-Whitney test of peptide ratios for all
525 peptides for a given protein. Keratin 2, vimentin, and prothrombin showed dramatic enrichment in some
526 light-labeled SILAC samples, suggesting these were contaminants and were therefore removed from
527 downstream analysis. Heatmaps comparing expression levels between donors were generated using
528 heatmap.ca and other graphs were generated using GraphPad Prism (v8).

529 RNAseq data for naïve and activated CD8⁺ T cells was downloaded from the Database of Immune
530 Cell eQTLs, Expression, and Epigenomics (DICE)³⁹. Expression data was gathered for all overlapping
531 proteins found in the CD8⁺ activation surfaceomics dataset, and an average expression level was calculated
532 from all available donors in the DICE database. The expression ratio between activated and naïve was then
533 calculated and compared with enrichments observed in the surfaceomics data. STRING analysis was
534 performed using the online STRING Database (v11.0) and visualized using Cytoscape (v3.7.2). Gene-set
535 enrichment analysis was performed using GSEA (v4.0.1) and the compiled data for all detected proteins
536 within each dataset. The biological process annotated gene set (c5.bp.v7.0.entrez.gmt) used was obtained
537 from the MSigDB collection. The CD8⁺ monoculture activation dataset was compared with both the Treg
538 co-culture and hypoxia datasets to find pathways commonly regulated by the two immunosuppressive
539 stimuli tested.

540

541 **Data availability**

542 The raw proteomics data, peaklists, ProteinProspector results, and Skyline quantification results have been
543 deposited to the ProteomeXchange Consortium via the PRIDE⁷² partner repository with the dataset
544 identifier PXD024789. For the purposes of peer review, the data can be accessed using reviewer credentials
545 (login: reviewer_pxd024789@ebi.ac.uk; password: xz6yqlTq). Full outputs from SILAC analysis can be
546 found in Supplemental Tables 1-4. Flow cytometry data and all other data presented is available upon
547 reasonable request.

548

549

550

551

552

553

554 **REFERENCES**

555

556 1. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. *Nature Medicine* **19**, 1423–1437 (2013).

557 2. Zheng, Y. *et al.* Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. *Nature* **445**, 936–940 (2007).

560 3. Togashi, Y., Shitara, K. & Nishikawa, H. Regulatory T cells in cancer immunosuppression —
561 implications for anticancer therapy. *Nat Rev Clin Oncol* **16**, 356–371 (2019).

562 4. Wing, K. *et al.* CTLA-4 Control over Foxp3+ Regulatory T Cell Function. *Science* **322**, 271–275 (2008).

563 5. Deaglio, S. *et al.* Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells
564 mediates immune suppression. *J. Exp. Med.* **204**, 1257–1265 (2007).

565 6. Jarnicki, A. G., Lysaght, J., Todryk, S. & Mills, K. H. G. Suppression of antitumor immunity by IL-10
566 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the
567 induction of CD4+ and CD8+ regulatory T cells. *J. Immunol.* **177**, 896–904 (2006).

568 7. Collison, L. W. *et al.* The inhibitory cytokine IL-35 contributes to regulatory T-cell function. *Nature*
569 **450**, 566–569 (2007).

570 8. Thornton, A. M. & Shevach, E. M. CD4+CD25+ Immunoregulatory T Cells Suppress Polyclonal T Cell
571 Activation In Vitro by Inhibiting Interleukin 2 Production. *Journal of Experimental Medicine* **188**, 287–
572 296 (1998).

573 9. Grossman, W. J. *et al.* Human T regulatory cells can use the perforin pathway to cause autologous target
574 cell death. *Immunity* **21**, 589–601 (2004).

575 10. Sato, E. *et al.* Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T
576 cell ratio are associated with favorable prognosis in ovarian cancer. *PNAS* **102**, 18538–18543 (2005).

577 11. Togashi, Y. & Nishikawa, H. Regulatory T Cells: Molecular and Cellular Basis for
578 Immunoregulation. in *Emerging Concepts Targeting Immune Checkpoints in Cancer and Autoimmunity*
579 (ed. Yoshimura, A.) 3–27 (Springer International Publishing, 2017). doi:10.1007/82_2017_58.

580 12. Vaupel, P. & Mayer, A. Hypoxia in Tumors: Pathogenesis-Related Classification, Characterization
581 of Hypoxia Subtypes, and Associated Biological and Clinical Implications. in *Oxygen Transport to*
582 *Tissue XXXVI* (eds. Swartz, H. M., Harrison, D. K. & Bruley, D. F.) 19–24 (Springer, 2014).
583 doi:10.1007/978-1-4939-0620-8_3.

584 13. Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression,
585 angiogenesis, metastasis, and resistance to therapy. *Hypoxia (Auckl)* **3**, 83–92 (2015).

586 14. Madsen, C. D. *et al.* Hypoxia and loss of PHD2 inactivate stromal fibroblasts to decrease tumour
587 stiffness and metastasis. *EMBO Rep.* **16**, 1394–1408 (2015).

588 15. Branco-Price, C., Evans, C. E. & Johnson, R. S. Endothelial hypoxic metabolism in carcinogenesis
589 and dissemination: HIF-A isoforms are a NO metastatic phenomenon. *Oncotarget* **4**, 2567–2576 (2013).

590 16. Eales, K. L., Hollinshead, K. E. R. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer
591 cells. *Oncogenesis* **5**, e190–e190 (2016).

592 17. Hu, K. H. *et al.* ZipSeq: barcoding for real-time mapping of single cell transcriptomes. *Nat Methods*
593 **17**, 833–843 (2020).

594 18. Lewis, C. & Murdoch, C. Macrophage Responses to Hypoxia: Implications for Tumor Progression
595 and Anti-Cancer Therapies. *The American Journal of Pathology* **167**, 627–635 (2005).

596 19. Zhang, Y. & Ertl, H. C. J. Starved and Asphyxiated: How Can CD8(+) T Cells within a Tumor
597 Microenvironment Prevent Tumor Progression. *Front Immunol* **7**, 32 (2016).

598 20. Dang, E. V. *et al.* Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. *Cell* **146**, 772–
599 784 (2011).

600 21. Westendorf, A. M. *et al.* Hypoxia Enhances Immunosuppression by Inhibiting CD4+ Effector T
601 Cell Function and Promoting Treg Activity. *Cell. Physiol. Biochem.* **41**, 1271–1284 (2017).

602 22. Vuillefroy de Silly, R., Dietrich, P.-Y. & Walker, P. R. Hypoxia and antitumor CD8+ T cells: An
603 incompatible alliance? *Oncoimmunology* **5**, (2016).

604 23. Hatfield, S. M. *et al.* Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1α-
605 dependent and extracellular adenosine-mediated tumor protection. *J Mol Med* **92**, 1283–1292 (2014).

606 24. Fischer, K. *et al.* Inhibitory effect of tumor cell-derived lactic acid on human T cells. *Blood* **109**,
607 3812–3819 (2007).

608 25. Hatfield, S. M. *et al.* Immunological mechanisms of the antitumor effects of supplemental
609 oxygenation. *Science Translational Medicine* **7**, 277ra30-277ra30 (2015).

610 26. Scharping, N. E. *et al.* Mitochondrial stress induced by continuous stimulation under hypoxia
611 rapidly drives T cell exhaustion. *Nat Immunol* **22**, 205–215 (2021).

612 27. Rodriguez-Garcia, A., Palazon, A., Noguera-Ortega, E., Powell, D. J. J. & Guedan, S. CAR-T Cells
613 Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape. *Front. Immunol.* **11**, (2020).

614 28. Ahmadzadeh, M. *et al.* Tumor antigen-specific CD8 T cells infiltrating the tumor express high
615 levels of PD-1 and are functionally impaired. *Blood* **114**, 1537–1544 (2009).

616 29. Ribas, A. & Wolchok, J. D. Cancer immunotherapy using checkpoint blockade. *Science* **359**, 1350–
617 1355 (2018).

618 30. Wollscheid, B. *et al.* Mass-spectrometric identification and relative quantification of N-linked cell
619 surface glycoproteins. *Nature Biotechnology* **27**, 378–386 (2009).

620 31. Martinko, A. J. *et al.* Targeting RAS-driven human cancer cells with antibodies to upregulated and
621 essential cell-surface proteins. *eLife* **7**, e31098 (2018).

622 32. Leung, K. K. *et al.* Multiomics of azacitidine-treated AML cells reveals variable and convergent
623 targets that remodel the cell-surface proteome. *PNAS* **116**, 695–700 (2019).

624 33. Pfistershammer, K. *et al.* CD63 as an Activation-Linked T Cell Costimulatory Element. *The
625 Journal of Immunology* **173**, 6000–6008 (2004).

626 34. Bayer, A. L., Baliga, P. & Woodward, J. E. Transferrin receptor in T cell activation and
627 transplantation. *J. Leukoc. Biol.* **64**, 19–24 (1998).

628 35. Vomhof-DeKrey, E. E., Haring, J. S. & Dorsam, G. P. Vasoactive Intestinal Peptide Receptor 1 is
629 Downregulated During Expansion of Antigen-Specific CD8 T Cells Following Primary and Secondary
630 Listeria monocytogenes Infections. *J Neuroimmunol* **234**, 40–48 (2011).

631 36. Spendlove, I. & Sutavani, R. The role of CD97 in regulating adaptive T-cell responses. *Adv. Exp.
632 Med. Biol.* **706**, 138–148 (2010).

633 37. Lin, M. *et al.* Cell surface antigen CD109 is a novel member of the α 2 macroglobulin/C3, C4, C5
634 family of thioester-containing proteins. *Blood* **99**, 1683–1691 (2002).

635 38. Ren, W. *et al.* Amino-acid transporters in T-cell activation and differentiation. *Cell Death Dis* **8**,
636 e2655–e2655 (2017).

637 39. Schmiedel, B. J. *et al.* Impact of Genetic Polymorphisms on Human Immune Cell Gene Expression.
638 *Cell* **175**, 1701–1715.e16 (2018).

639 40. Ivetic, A., Hoskins Green, H. L. & Hart, S. J. L-selectin: A Major Regulator of Leukocyte
640 Adhesion, Migration and Signaling. *Front. Immunol.* **10**, (2019).

641 41. Lauer, V. *et al.* Hypoxia drives glucose transporter 3 expression through HIF-mediated induction of
642 the long non-coding RNA NICI. *J. Biol. Chem.* jbc.RA119.009827 (2019)
643 doi:10.1074/jbc.RA119.009827.

644 42. Wang, H. *et al.* Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP
645 Signaling. *J Bone Miner Res* **31**, 1652–1665 (2016).

646 43. Liberzon, A. *et al.* The Molecular Signatures Database Hallmark Gene Set Collection. *cels* **1**, 417–
647 425 (2015).

648 44. Munkley, J. & Elliott, D. J. Hallmarks of glycosylation in cancer. *Oncotarget* **7**, 35478–35489
649 (2016).

650 45. Grandi, A. *et al.* ERMP1, a novel potential oncogene involved in UPR and oxidative stress defense,
651 is highly expressed in human cancer. *Oncotarget* **7**, 63596–63610 (2016).

652 46. Bensellam, M. *et al.* Hypoxia reduces ER-to-Golgi protein trafficking and increases cell death by
653 inhibiting the adaptive unfolded protein response in mouse beta cells. *Diabetologia* **59**, 1492–1502
654 (2016).

655 47. Ye, J. *et al.* ER stress induces cleavage of membrane-bound ATF6 by the same proteases that
656 process SREBPs. *Mol. Cell* **6**, 1355–1364 (2000).

657 48. Abdul Rahim, S. A. *et al.* Regulation of hypoxia-induced autophagy in glioblastoma involves
658 ATG9A. *Br. J. Cancer* **117**, 813–825 (2017).

659 49. Renna, M. *et al.* Autophagic substrate clearance requires activity of the syntaxin-5 SNARE
660 complex. *J Cell Sci* **124**, 469–482 (2011).

661 50. O'Neill, R. E. *et al.* T Cell-Derived CD70 Delivers an Immune Checkpoint Function in
662 Inflammatory T Cell Responses. *J. Immunol.* **199**, 3700–3710 (2017).

663 51. Manieri, N. A., Chiang, E. Y. & Grogan, J. L. TIGIT: A Key Inhibitor of the Cancer Immunity
664 Cycle. *Trends in Immunology* **38**, 20–28 (2017).

665 52. Deng, J. *et al.* Hypoxia-induced VISTA promotes the suppressive function of myeloid- derived
666 suppressor cells in the tumor microenvironment. *Cancer Immunol Res* (2019) doi:10.1158/2326-
667 6066.CIR-18-0507.

668 53. O'Neill, R. E. *et al.* T Cell-Derived CD70 Delivers an Immune Checkpoint Function in
669 Inflammatory T Cell Responses. *The Journal of Immunology* **199**, 3700–3710 (2017).

670 54. Wang, B. *et al.* Combination cancer immunotherapy targeting PD-1 and GITR can rescue CD8+ T
671 cell dysfunction and maintain memory phenotype. *Science Immunology* **3**, (2018).

672 55. Raczkowski, F. *et al.* CD39 is upregulated during activation of mouse and human T cells and
673 attenuates the immune response to *Listeria monocytogenes*. *PLOS ONE* **13**, e0197151 (2018).

674 56. Martin, M. *et al.* CD84 Functions as a Homophilic Adhesion Molecule and Enhances IFN- γ
675 Secretion: Adhesion Is Mediated by Ig-Like Domain 1. *The Journal of Immunology* **167**, 3668–3676
676 (2001).

677 57. Kim, M. N. *et al.* Activated Leukocyte Cell Adhesion Molecule Stimulates the T-Cell Response in
678 Allergic Asthma. *Am. J. Respir. Crit. Care Med.* **197**, 994–1008 (2018).

679 58. Qualai, J. *et al.* Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets
680 with High Migratory Potential. *PLOS ONE* **11**, e0154253 (2016).

681 59. Bettelli, E. *et al.* Integrin alpha 4 differentially affect the migration of effector and regulatory T cells
682 (P4113). *The Journal of Immunology* **190**, 133.10-133.10 (2013).

683 60. Wei, C.-W. *et al.* Equilibrative Nucleoside Transporter 3 Regulates T Cell Homeostasis by
684 Coordinating Lysosomal Function with Nucleoside Availability. *Cell Reports* **23**, 2330–2341 (2018).

685 61. Macintyre, A. N. *et al.* The Glucose Transporter Glut1 is Selectively Essential for CD4 T Cell
686 Activation and Effector Function. *Cell Metab* **20**, 61–72 (2014).

687 62. Doedens, A. L. *et al.* Hypoxia-inducible factors enhance the effector responses of CD8 $^{+}$ T cells to
688 persistent antigen. *Nature Immunology* **14**, 1173–1182 (2013).

689 63. Gropper, Y. *et al.* Culturing CTLs under Hypoxic Conditions Enhances Their Cytolysis and
690 Improves Their Anti-tumor Function. *Cell Reports* **20**, 2547–2555 (2017).

691 64. Choi, S.-H. *et al.* Hypoxia-induced RelA/p65 derepresses SLC16A3 (MCT4) by downregulating
692 ZBTB7A. *Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms* **1862**, 771–785 (2019).

693 65. Watson, M. J. *et al.* Metabolic support of tumour-infiltrating regulatory T cells by lactic acid.
694 *Nature* 1–7 (2021) doi:10.1038/s41586-020-03045-2.

695 66. Renner, K. *et al.* Restricting Glycolysis Preserves T Cell Effector Functions and Augments
696 Checkpoint Therapy. *Cell Reports* **29**, 135-150.e9 (2019).

697 67. Mazure, N. M. & Pouysségur, J. Hypoxia-induced autophagy: cell death or cell survival? *Current
698 Opinion in Cell Biology* **22**, 177–180 (2010).

68. Pino, S. C. *et al.* Protein kinase C signaling during T cell activation induces the endoplasmic
reticulum stress response. *Cell Stress Chaperones* **13**, 421–434 (2008).

69. MacIver, N. J., Michalek, R. D. & Rathmell, J. C. Metabolic Regulation of T Lymphocytes. *Annual
Review of Immunology* **31**, 259–283 (2013).

70. Roth, T. L. *et al.* Reprogramming human T cell function and specificity with non-viral genome
targeting. *Nature* **559**, 405–409 (2018).

71. Pino, L. K. *et al.* The Skyline ecosystem: Informatics for quantitative mass spectrometry
proteomics. *Mass Spectrom Rev* **39**, 229–244 (2020).

72. Perez-Riverol, Y. *et al.* The PRIDE database and related tools and resources in 2019: improving
support for quantification data. *Nucleic Acids Res* **47**, D442–D450 (2019).

709

710

711

712

713

714

715

716

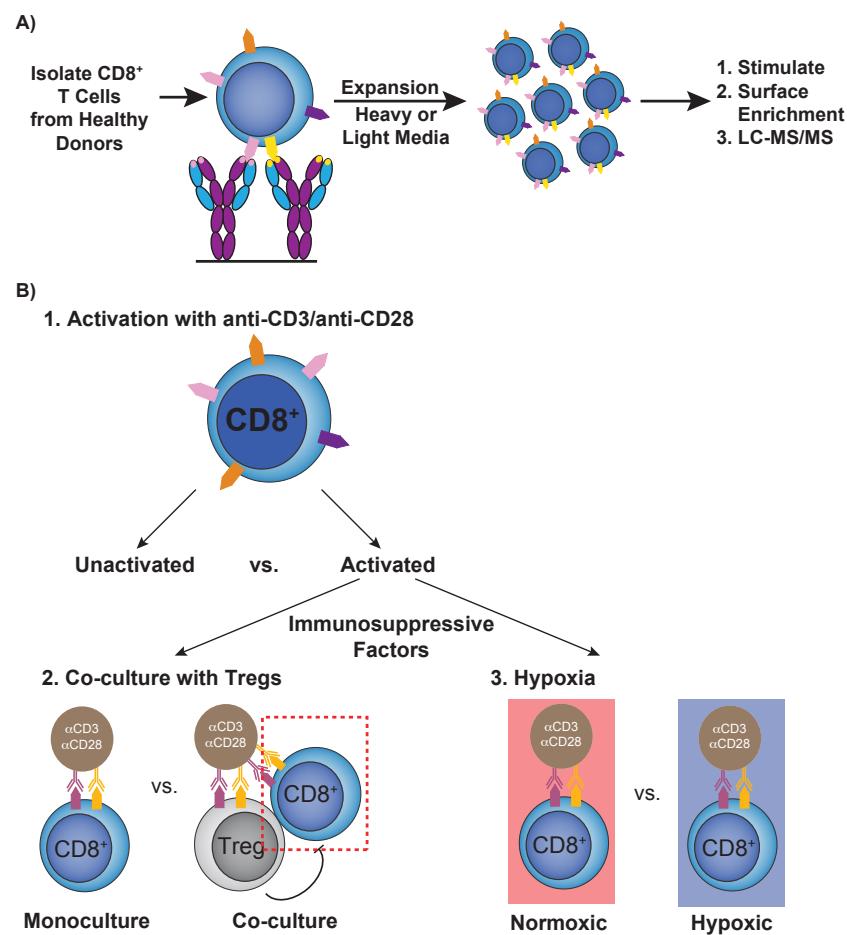
717

718

719

720

721


722

723

724

FIGURES

Figure 1. Overall strategy for cell surface glycoproteomic characterization of primary CD8⁺ T cells under various conditions.

726

Figure 1. Overall strategy for cell surface glycoproteomic characterization of primary CD8⁺ T cells

727

under various conditions. (A) Schematic depicting expansion and SILAC labeling workflow. Primary

728

human CD8⁺ T cells were isolated and expanded using anti-CD3/anti-CD28 stimulation in media

729

supplemented with IL-2 and either heavy or light arginine and lysine. After expansion, cells were

730

stimulated in varying conditions before surface protein enrichment and protein identification with LC-

731

MS/MS. (B) Strategy for assessing the effect of immunosuppressive stimuli on the activated CD8⁺ T-cell

732

surfaceome. First, the surfaceomic changes associated with CD8⁺ activation in monoculture under

733

normoxic conditions were analyzed. These changes then served as a baseline for later experiments


734

examining the surfaceomic consequences of activating CD8⁺ T cells in co-culture with primary Tregs or in

735

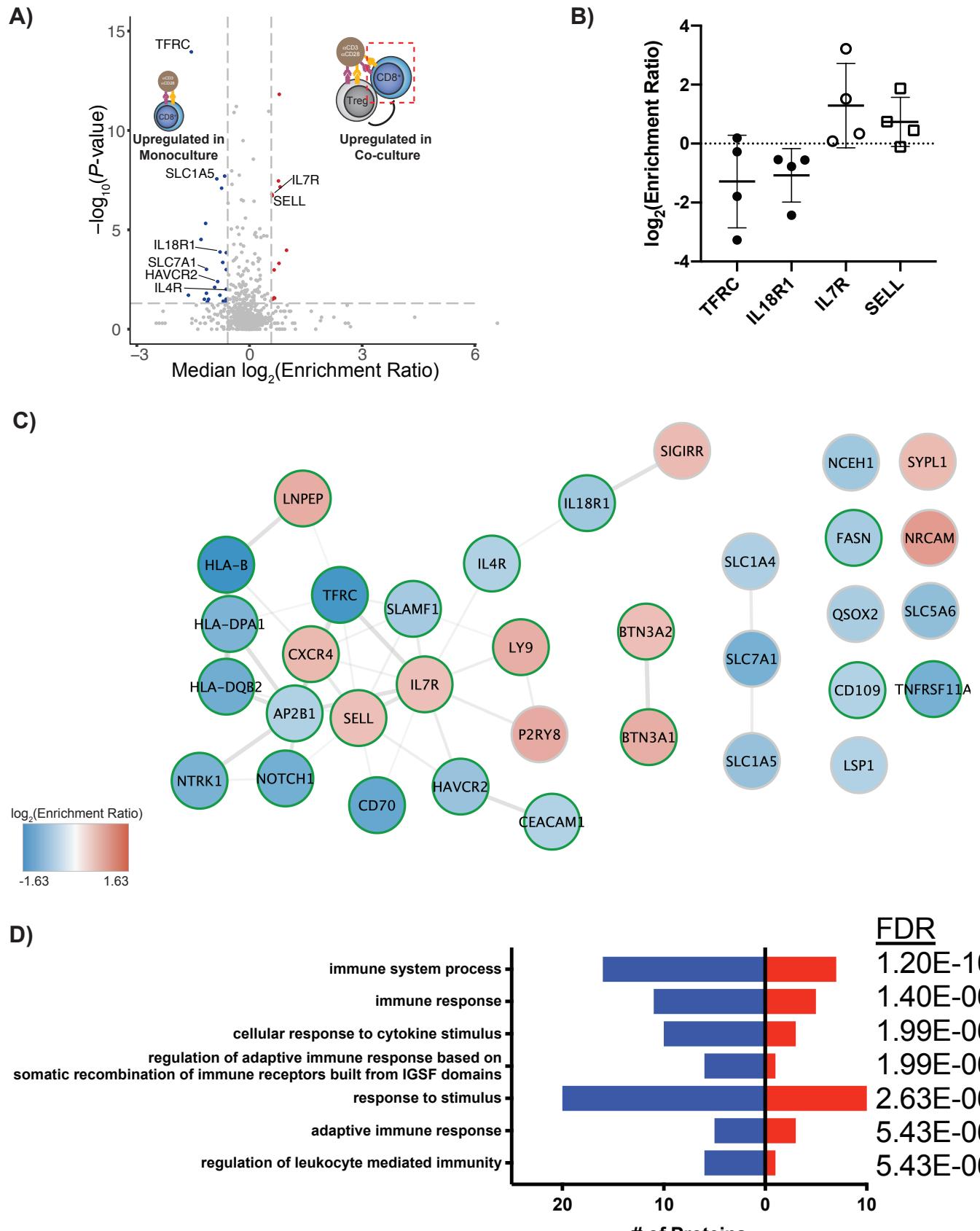

hypoxic culture.

Figure 2. Surface proteomics reveals both well-established and novel activation-induced changes in surface protein levels.

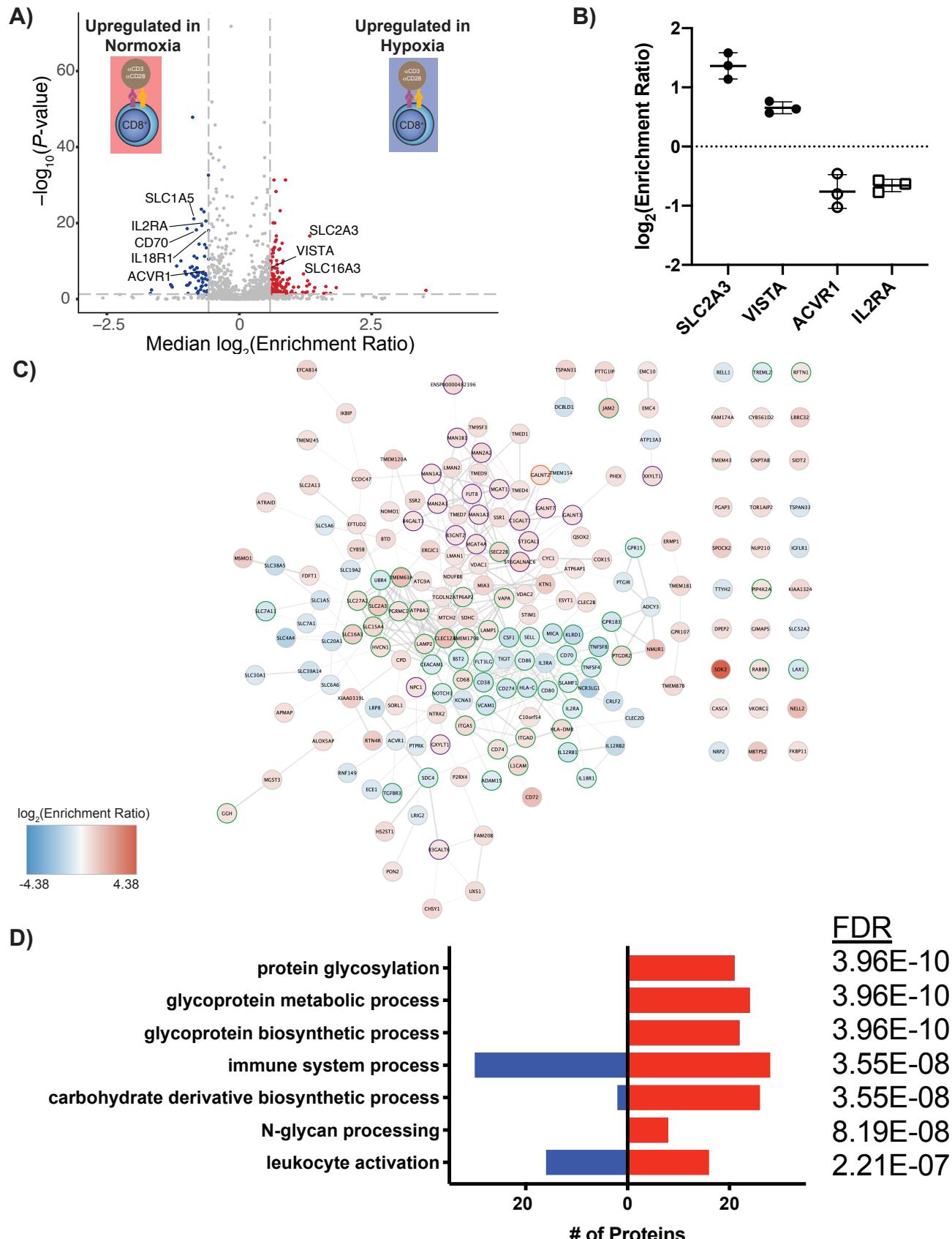

737 **Figure 2. Surface proteomics reveals both well-established and novel activation-induced changes in**
738 **surface protein levels.** (A) Volcano plot of surface protein changes following stimulation of CD8⁺ T cells
739 with anti-CD3/anti-CD28 beads. Data represent compiled results from N=4 donors. Proteins with a -/+1.5-
740 fold change and P<0.05 were included in downstream analysis. Proteins significantly down- (blue) or
741 upregulated (red) are indicated. (B) Log₂(Enrichment Ratio) of indicated proteins. Each dot represents data
742 from an individual donor. Line represents the mean and error bars are standard deviation. (C) STRING
743 analysis of all significantly-altered proteins in (A). Network is overlaid with a color gradient representing
744 log₂(Enrichment Ratio) for each individual protein. Proteins with a gene ontology (GO) biological process
745 annotation of “immune system process” are indicated with green borders. (D) Significantly-altered proteins
746 were subjected to GO biological process pathway analysis using the STRING database. The number of
747 proteins identified, the direction of regulation, and analysis FDR for each process are indicated.

Figure 3. Treg co-culture causes significant changes in the surfaceome of activated CD8⁺ T cells consistent with immunosuppression.

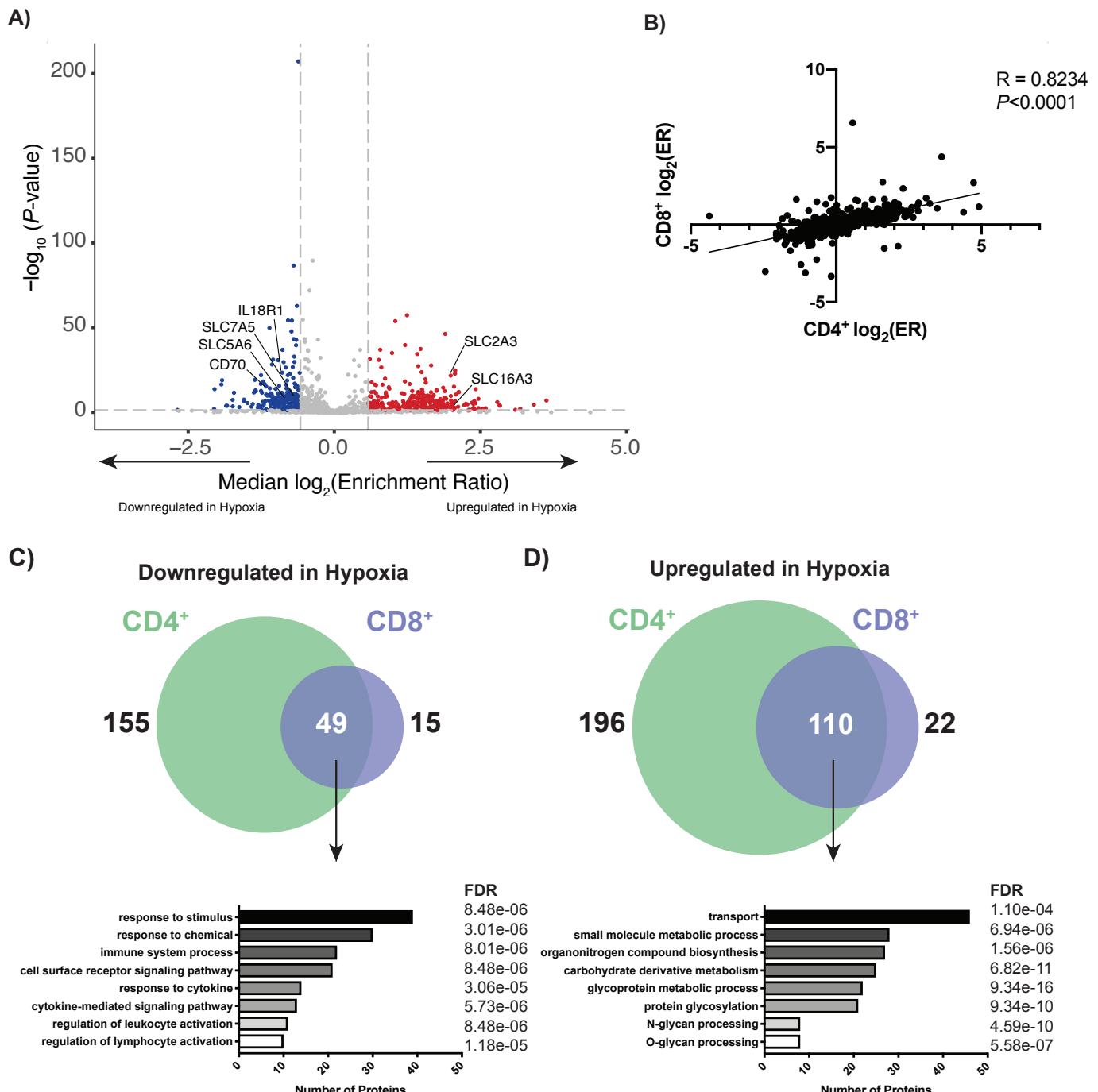
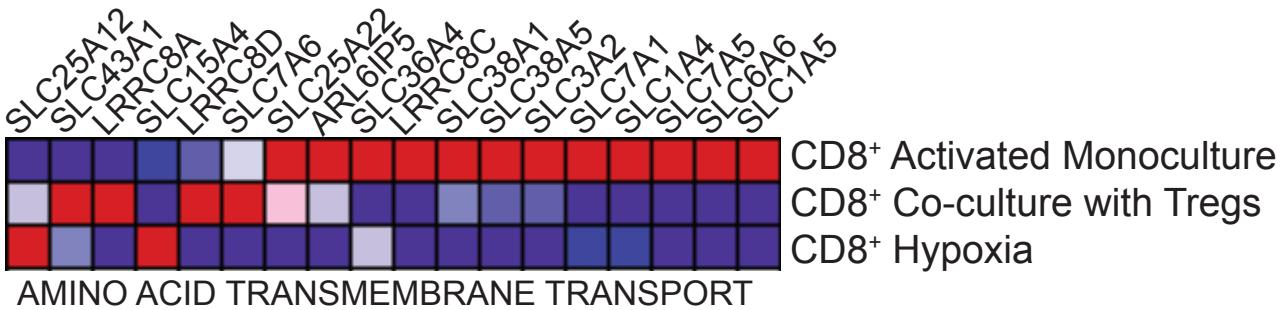

749 **Figure 3. Treg co-culture causes significant changes in the surfaceome of activated CD8⁺ T cells**
750 **consistent with immunosuppression.** (A) CD8⁺ T cells were stimulated with anti-CD3/anti-CD28 beads
751 either in the absence or presence of Tregs. Following culture, CD8⁺ cells were isolated for cell surface
752 proteomics. Volcano plot shows compiled results from N=4 donors. Proteins with a -/+1.5-fold change and
753 P<0.05 were included in downstream analysis. Proteins significantly down- (blue) or upregulated (red) are
754 indicated. (B) Log₂(Enrichment Ratio) of indicated proteins. Each dot represents data from an individual
755 donor. Line represents mean and error bars are standard deviation. (C) STRING analysis of all
756 significantly-altered proteins in (A). Network is overlaid with a color gradient representing
757 log₂(Enrichment Ratio) for each individual protein. Proteins with a gene ontology (GO) biological process
758 annotation of “immune system process” are indicated with green borders. (D) Significantly-altered proteins
759 were subjected to GO biological process pathway analysis using the STRING database. The number of
760 proteins identified, the direction of regulation, and analysis FDR for each process are indicated.

Figure 4. Hypoxia induces surfaceomic changes representative of both immunosuppression and a general response to hypoxia.

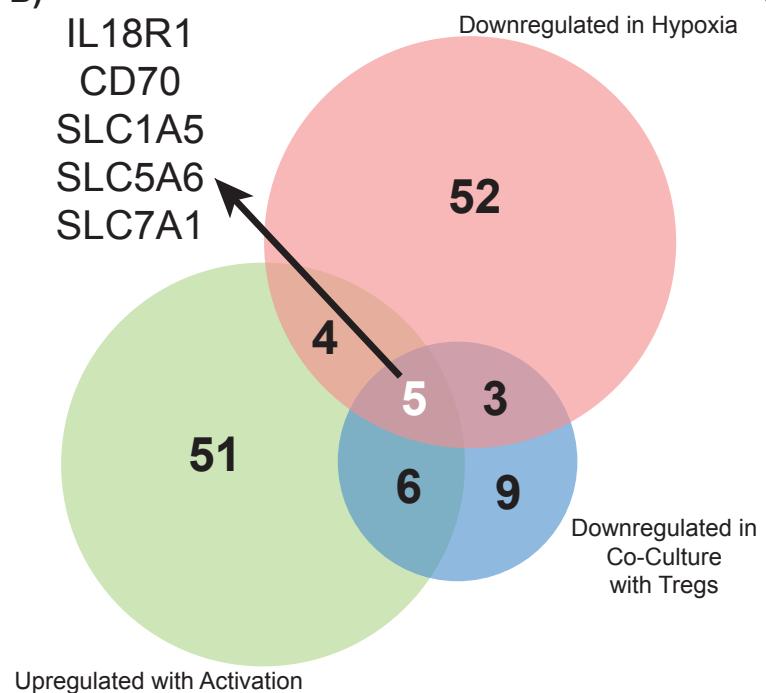
762 **Figure 4. Hypoxia induces surfaceomic changes representative of both immunosuppression and a**
763 **general response to hypoxia.** (A) CD8⁺ T cells were stimulated with anti-CD3/anti-CD28 beads either
764 normoxic (20% O₂) or hypoxic (1% O₂) for three days. Volcano plot shows compiled results from N=3
765 donors. Proteins with a -/+1.5-fold change and P<0.05 were included in downstream analysis. Proteins
766 significantly down- (blue) or upregulated (red) are indicated. (B) Log₂(Enrichment Ratio) of indicated
767 proteins. Each dot represents data from an individual donor. Line represents mean and error bars are
768 standard deviation. (C) STRING analysis of all significantly-altered proteins in (A). Network is overlaid
769 with a color gradient representing log₂(Enrichment Ratio) for each individual protein. Proteins with a gene
770 ontology (GO) biological process annotation of “immune system process” are indicated with green borders
771 and proteins with an annotation of “protein glycosylation” with purple borders. Proteins annotated for both
772 processes are indicated with an orange border. (D) Significantly-altered proteins were subjected to GO
773 biological process pathway analysis using the STRING database. The number of proteins identified, the
774 direction of regulation, and analysis FDR for each process are indicated.

Figure 5. CD8⁺ and CD4⁺ surface proteomes respond similarly to hypoxia.

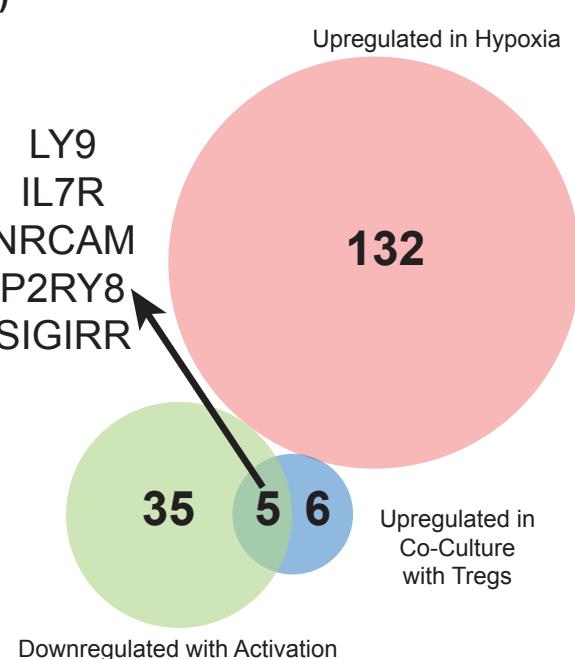
775


776 **Figure 5. CD8⁺ and CD4⁺ surface proteomes respond similarly to hypoxia.** (A) CD4⁺CD25⁻ T cells
777 were stimulated with anti-CD3/anti-CD28 beads either normoxic (20% O₂) or hypoxic (1% O₂) for three
778 days. Volcano plot shows compiled results from N=3 donors. Proteins with a -/+1.5-fold change and
779 P<0.05 were included in downstream analysis. Proteins significantly down- (blue) or upregulated (red) are
780 indicated. (B) Spearman correlation comparing the log₂(Enrichment Ratio [ER]) for both CD8⁺ and CD4⁺ T

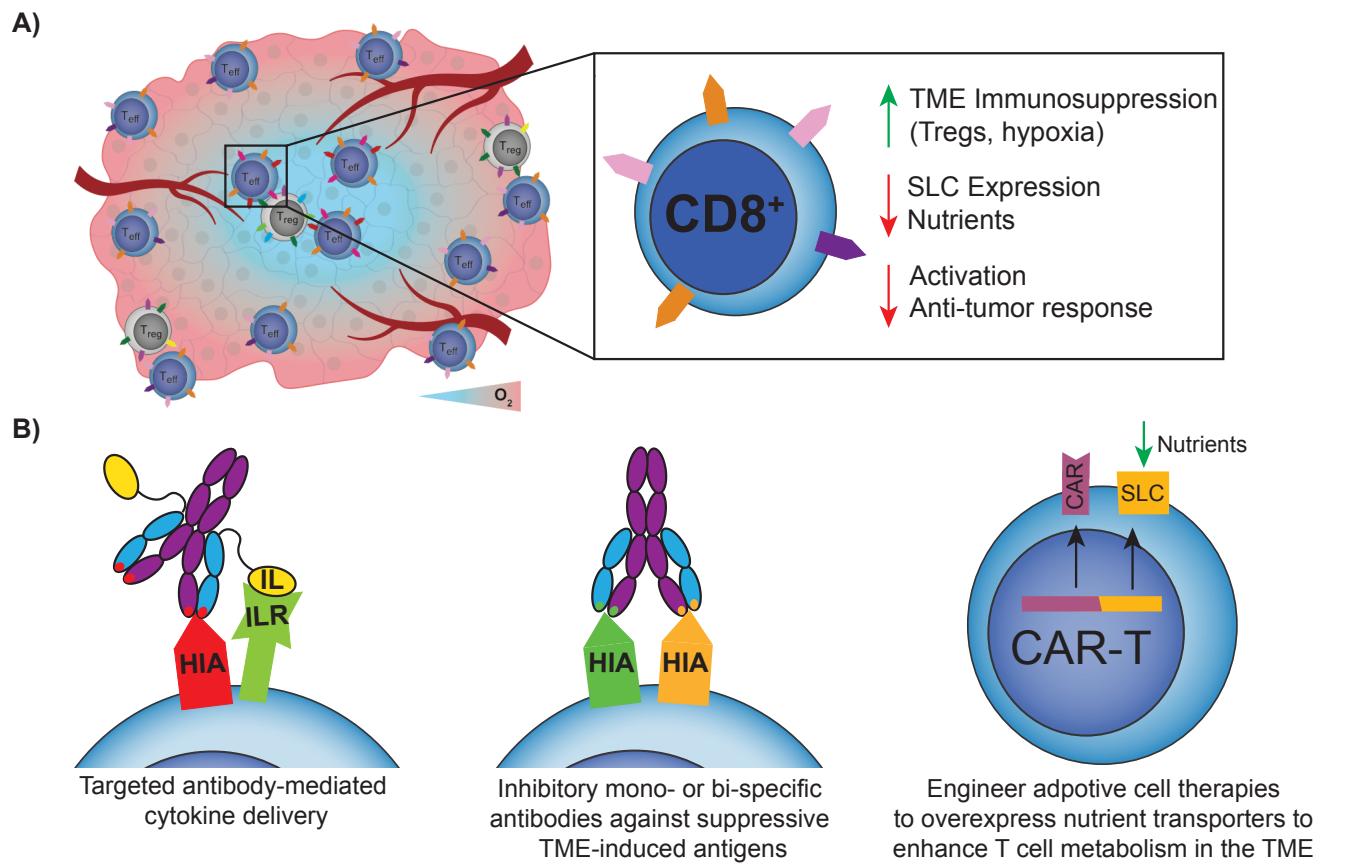
781 cells activated under hypoxic conditions. Venn diagrams showing proteins commonly down- (C) or
782 upregulated (D) in hypoxia on both CD8⁺ and CD4⁺ cells. Below each Venn diagram is are results from a
783 GO biological process pathway analysis for commonly regulated proteins using the STRING database. The
784 number of proteins identified and analysis FDR for each process are indicated.


Figure 6. Analysis of all datasets reveals commonalities in the effects of Tregs and hypoxia on the activated CD8⁺ T cell surfaceome.

A)


Biological Process	NES	FDR q-value
GO_ORGANIC_ACID_TRANSMEMBRANE_TRANSPORT	1.9260699	0.04943353
GO_AMINO_ACID_TRANSMEMBRANE_TRANSPORT	1.9154278	0.03038243
GO_AMINO_ACID_TRANSPORT	1.9074181	0.02404163
GO_ORGANIC_ACID_TRANSPORT	1.8743157	0.03023567
GO_INTERFERON_GAMMA_MEDIATED_SIGNALING_PATHWAY	1.8461763	0.03549043

B)



C)

786 **Figure 6. Analysis of all datasets reveals commonalities in the effects of Tregs and hypoxia on the**
787 **activated CD8⁺ T cell surfaceome. (A)** Gene set enrichment analysis (GSEA) output of all commonly-
788 detected proteins in all three datasets. The five biological processes with FDR q-values <0.05 are shown, as
789 are the normalized enrichment scores (NES) for each process. A heat map of proteins associated with
790 GO_AMINO_ACID_TRANSMEMBRANE_TRANSPORT is also shown with the three datasets indicated.
791 Red and blue indicate high and low enrichment, respectively. (B) Venn diagram showing intersection of
792 proteins that were upregulated upon CD8⁺ activation, but downregulated by Treg co-culture or hypoxia.
793 The five proteins at the intersection of all three datasets are indicated. (C) Venn diagram showing
794 intersection of proteins downregulated upon CD8⁺ activation, but upregulated by Treg co-culture or
795 hypoxia.
796
797

Figure 7. Metabolic model of CD8⁺ immunosuppression and potential therapeutic strategies.

798

799 **Figure 7. Metabolic model of CD8⁺ immunosuppression and potential therapeutic strategies. (A)**

800 Tregs and hypoxia suppress expression of nutrient transporters on CD8⁺ T cells, limiting T cell activation
801 and the anti-tumor response. (B) Proteins identified in our studies could be utilized for targeted antibody-
802 based therapies to enhance CD8⁺ function in the TME. Hypoxia-induced antigen (HIA) used as an
803 example. Antibody-cytokine fusion targeting an HIA could be used to deliver pro-proliferative cytokines to
804 CD8⁺ T cells (left). Alternatively, TME-induced antigens that inhibit T cell function could be blocked with
805 mono- or bi-specific antibodies. Lastly, adoptive cellular therapies could be reprogrammed to express
806 higher levels of SLCs to help cope with the metabolic stresses found within the TME, which may enhance
807 the efficacy of these therapies against solid tumors.

808

809