

1 **Mutualistic interactions between *B. subtilis* and seeds dictate plant development**

2

3 **Authors:** Berlanga-Clavero, M.V. ¹, Molina-Santiago, C. ¹, Caraballo-Rodríguez, A.M. ^{2,3}, Petras, D. ^{2,4}, Díaz-Martínez, L. ¹, Pérez-García, A. ¹, de Vicente, A. ¹, Dorrestein, P. C. ^{2,3} & Romero, D¹,
5 *.

6 **Affiliations:**

7 1 Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga-
8 Consejo Superior de Investigaciones Científicas (IHSN-UMA-CSIC), Departamento de
9 Microbiología, Universidad de Málaga, Bulevar Louis Pasteur 31 (Campus Universitario de
10 Teatinos), 29071, Málaga, Spain

11 2 Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and
12 Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA

13 3 Center for Microbiome Innovation, University of California at San Diego, La Jolla, CA, USA

14 4 CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of
15 Tuebingen, Germany

16

17 *Corresponding author:

18 Diego Romero

19 diego_romero@uma.es

20 +34-952132187

21

22 **Abstract**

23 A tightly coordinated developmental program controls precise genetic and metabolic
24 reprogramming that dictates efficient transition of the seeds from dormancy to metabolically active
25 seedlings. Beneficial microbes are known to stimulate the germination of the seeds or adaptation
26 of the seedlings; however, investigations of exact mechanisms mediating these interactions and
27 the resulting physiological responses of the plants are only beginning. *Bacillus subtilis* is
28 commonly detected in the plant holobiont and belongs to the group of microbes that provide
29 multifaceted contribution to the health of the plants. The present study demonstrated that *B.*
30 *subtilis* triggered genetic and physiological responses in the seeds that determined subsequent
31 metabolic and developmental status of adult plants. Chemically diverse extracellular matrix of
32 *Bacillus* was demonstrated to structurally cooperate in bacterial colonization of the seed storage
33 tissues. Additionally, an amyloid protein and fengycin, which are two components of the
34 extracellular matrix, targeted the oil bodies of the seed endosperm, provoking changes in lipid
35 metabolism or accumulation of glutathione-related molecules that stimulated two different plant
36 growth programs: the development of seed radicles or overgrowth and immunization of adult
37 plants. We propose this mutualistic interaction is conserved in Bacilli and plant seeds containing
38 storage oil bodies.

39

40 **Introduction**

41 In a scenario of constantly increasing demand for sustainable agriculture, the success of seed
42 germination and seedling development of crops determine boosted productivity and avoid
43 economy- and resource-related problems^{1,2}. Seed germination is a highly complex biological
44 process tightly controlled by interconnected hormone-related pathways that ensure efficient
45 mobilization of the nutrients leading to radicle emergence and subsequent proliferation of adult
46 plants³. Improvement of these early stages of plant development is an important challenge for the
47 success of environmentally friendly strategies based on the use of beneficial microbes. Seed
48 inoculation with plant growth-promoting rhizobacteria (PGPR) is a common procedure to ensure
49 bacterial colonization of the plants and beneficial effects of PGPR after germination⁴. Better
50 understanding of the exact mechanisms that direct these specific host-microbe interactions and
51 consequences at the growth-promoting level are important to ensure feasible and robust
52 treatments.

53 *Bacillus subtilis* and closely related species mutualistically coexist with the plants, providing a
54 plethora of beneficial actions, such as biofertilization or protection against biotic and abiotic
55 stresses⁵. Ecological traits contributing to bacterial fitness and bioactivity in the plants are due to
56 polyvalent secondary metabolites, sporulation, or biofilm formation⁶. Biofilms are formed by the
57 cells embedded in a self-secreted extracellular matrix (ECM), which is a chemically complex
58 megastructure consisting of proteins, exopolysaccharides, nucleic acids, and secondary
59 metabolites⁷⁻⁹. The ECM is known to be essential for efficient colonization of the plant organs^{10,11},
60 and some secondary metabolites mediate bacterial communication with the plants by triggering
61 physiological responses associated with defense or growth^{12,13}. The present study investigated
62 the mechanism by which seeds respond to stimulatory activity of *Bacillus* and exact functionality
63 of the ECM in this mutualistic microbe-host interaction. The results demonstrated that the ECM
64 components cooperatively contributed to colonization of the seeds; however, only lipopeptide

65 fengycin and amyloid protein TasA mediated chemical dialogue resulting in two different plant
66 responses: i) promotion of radicle growth after seed germination or ii) overgrowth of adult plants
67 and protection against the aerial necrotrophic fungus *Botrytis cinerea*. Both molecules targeted
68 the lipid storage oil bodies of the seed endosperm, leading to specific metabolic reprogramming
69 early after seed germination responsible for one of these two responses. Thus, the mechanism
70 by which seeds respond to the presence of *Bacillus* cells was influenced by the nutrient storage
71 of the seeds and internal anatomy.

72

73 **Results and discussion**

74

75 **Bacterization of the seeds with *B. subtilis* dictates metabolic reprogramming and**
76 **overgrowth of adult plants**

77 Beneficial rhizobacteria can promote seed germination that involves two different and genetically
78 controlled stages to ensure further growth of adult plants in a supportive environment: germination
79 *sensu stricto* and growth of the emergent radicle¹. The phenotype derived from the seeds
80 bacterized with *B. subtilis* resulted in larger radicles compared with those grown from untreated
81 seeds (Fig. 1A). In contrast, the germination rates (initial emergence of the radicle) of melon seeds
82 bacterized with the cells of *B. subtilis* NCIB3610 did not change compared with that of untreated
83 seeds; consistently, the expression levels of *GA20ox1* and *CYP07A1*, which are the two genes
84 involved in the modulation of the determinant ratio of abscisic acid and gibberellins¹⁴, were
85 statistically similar in the treatment groups (Extended Data Fig. 1a, b). Thus, complete
86 transcriptomic analysis of the seeds 16 hours after the treatment with the bacterial inoculum did
87 not detect any changes in the expression levels of the genes involved in the germination-related
88 hormone signaling pathway. The presence of 141 differentially expressed genes (DEGs)
89 suggested a very specific response of the plants to bacterial treatment. Accelerated activation of
90 seed metabolism was sustained by the induction of the genes involved in carbon metabolism and
91 photosynthesis and strong repression of heat shock proteins and structural proteins of lipid
92 storage vesicles (oleosin and caleosin), which may reflect a faster decline in these transcripts
93 during germination¹⁵⁻¹⁷ (Fig. 1B, Extended Data Fig. 1c, d). This optimized metabolic activity
94 reasonably explained an increase in the total area of the radicles produced by bacterized melon
95 seeds (Fig. 1A). Notably, this post-germinative stimulatory activity was long-lasting considering
96 that adult plants emerged from bacterized seeds developed a higher number of the roots and
97 more vigorous canopies than those developed by the untreated plants (Fig. 1C).

98 Interactions of PGPR with adult plants lead to the accumulation of certain plant metabolites
99 associated with the promotion of plant growth, adaptation to abiotic stress, or defense against
100 microbial diseases¹⁸. Thus, we analyzed the metabolome of adult plants that emerged from
101 bacterized seeds to define putative major metabolic changes correlated with the long-lasting
102 growth-promoting effect. Adult plants derived from treated or untreated seeds were sectioned into
103 the roots, stems, and leaves and analyzed by LC/MS/MS and Feature Based Molecular
104 Networking analyses (FBMN) using the GNPS platform¹⁹. Statistical analyses of the data obtained
105 using all regions indicated that carboxylic acids, lipids, and lipid-like molecules were predominant
106 chemical classes of metabolites differentially detected in aerial regions of the plants (Fig. 1D and
107 Extended Data Fig. 2), and metabolomic composition of the roots was not significantly different
108 between the groups. Changes in fatty acyls, glycerophospholipids, steroids, and prenol lipids were
109 considered the major metabolic signature referring to lipids of the plants grown after bacterial
110 treatment of the seeds (Fig. 1E, Extended Data Fig. 3a, b). Induction of certain secondary
111 metabolites produced by the plants as a result of their interaction with PGPR have attracted the
112 most interest because of versatile functionalities and biotechnological applications of these
113 compounds^{20,21}. However, other molecules, such as the organic acid malate, key amino acids
114 related to nitrogen assimilation, fatty acids, and hydroxycinnamic acid derivatives, have been
115 detected in various cases of plant-PGPR interactions and considered biomarkers of PGPR
116 priming^{21,22}. Tryptophan-derived secondary metabolites have been recently shown to be related
117 to the key genes involved in general nonself response to bacterial pathogens²³. The results of
118 metabolomic analysis of adult plants revealed differential accumulation of L-tryptophan and
119 cinnamic acid, both belonging to the top 50 metabolites more abundant in the leaves of the plants
120 grown from the treated seeds (Extended Data Fig. 3c).

121

122 **Complementary contribution of the ECM to *Bacillus* ecology and the promotion of seed
123 radicle growth**

124 Our previous findings suggested that bacterization of the seeds with *B. subtilis* cells potentiates
125 metabolomic changes with relevant implications for the development of adult plants. Initially, we
126 investigated the dynamics of the bacterial population of *B. subtilis* five days after seed
127 bacterization in two different regions, including the seed and emergent radicle (Fig 1F). In the
128 radicles, the size of the bacterial population (gray bars) remained unchanged, and the bacteria
129 remained entirely sporulated (discontinuous lines) from the very first moment of radicle
130 emergence (2 days after inoculation). However, the bacterial population was significantly
131 increased in the seeds (green bars) over five days of the experiment and became almost entirely
132 sporulated (continuous lines) four days after bacterization. These results suggested that *B. subtilis*
133 cells, mostly spores, were passively dragged by the emergent radicle; instead, these cells could
134 have colonized and proliferated inside the seeds. The results of scanning electron microscopy
135 analysis (SEM) of bacterized seeds confirmed bacterial colonization of the inner regions of the
136 seeds. The results of confocal laser scanning microscopy (CLSM) analysis of transversely
137 sectioned seeds previously bacterized with fluorescently labeled *B. subtilis* (CellTracker™ cm-
138 DII) indicated the accumulation of bacterial cells in the storage tissues near the seed micropyle,
139 which is the natural entry point of bacteria into the seeds²⁴ (Extended Data Fig. 4a, c). The cell
140 density of the WT strain and Δhag (flagellum), Δeps , or Δsrf mutant strains, which are known to
141 have altered swimming, sliding, or swarming motility, respectively²⁵⁻²⁷, was essentially similar in
142 the whole seeds or in two differentiated parts inside the seeds, including the micropylar and
143 opposite chalazal regions, four hours after the treatment (Extended Data Fig. 4b). Overall, these
144 findings indicated that the growth-promoting activity may be triggered by bacterial cells that
145 entered and colonized the seed storage tissues, which is a process that did not appear to rely on
146 a specific type of bacterial motility.

147 Biofilms are a known stage of bacterial life cycle; the cells in a biofilm are embedded in a
148 chemically complex and functionally versatile extracellular matrix (ECM) whose components
149 complementarily participate to benefit the community^{7,28,29}. A number of studies described
150 multifaceted contributions of biofilms to ecology of bacterial cells in their interactions with the hosts
151 (adhesion, colonization, persistence, or protection)^{11,30-32} or to protection against pathogens either
152 in the rhizosphere or in the phyllosphere^{10,33,34}. Thus, we hypothesized that the ECM provides a
153 relevant contribution to the beneficial *Bacillus*-seed interactions. As suggested by the structural
154 functions, the cell density of single mutants Δ tasA, Δ tapA, Δ eps, or Δ bslA was significantly
155 decreased compared with that of the wild type bacteria (assumed to be 100%) five days after
156 seed bacterization (Fig. 1G). However, this result was not associated with the attachment of
157 bacterial cells to the seeds a few hours after the treatments (Extended Data Fig. 5a). A similar
158 bacterial population pattern was monitored in the emergent radicles, which, as described above
159 in the case of WT, may reflect dragging of bacterial cells, which have initially entered the seeds,
160 by the growing radicles (Extended Data Fig. 5b). The Δ srf, Δ pkS, or Δ pps strains manifested
161 arrested production of secondary metabolites surfactin, bacillaene, or fengycin, respectively (also
162 belonging to the ECM); however, these strains did not deviate from the population dynamics
163 observed in the case of the WT strain (Fig. 1G and Extended Data Fig. 5). A decrease in the
164 bacterial cell population suggested that the majority of ECM mutations led to a significant
165 decrease in the percentage of an increase in radicle growth compared to that detected after the
166 treatment with the wild-type strain (Fig. 2A). However, the Δ srf strain retained radicle growth-
167 promoting activity similar to that of the WT strain; this finding along with similarities in the levels
168 of persistence with those of the WT strain indicated that surfactin was not implicated in the growth-
169 promoting activity. In contrast to a correlation between bacterial cell density with plant growth
170 promotion, the poorly persisting Δ tasA strain retained the promoting activity, and the Δ pkS and
171 Δ pps strains failed to promote radicle growth despite considerable persistence on the seeds (Fig.
172 2A).

173 Recently, the absence of the amyloid protein TasA, in addition to influencing biofilm formation,
174 has been reported to provoke important alterations in cellular physiology, including overproduction
175 of fengycins¹¹, which appears to be implicated in the promotion of radicle growth (Fig. 2A). Thus,
176 to clarify the contribution of TasA as a structural ECM component to the growth-promoting activity,
177 we tested the JC81 strain, which expresses a version of TasA that fails to fully restore the biofilm
178 formation phenotype and reverts the physiological status of the cells to the levels comparable to
179 that of the WT strain¹¹. JC81 failed to promote seed radicle growth but persisted on the seeds at
180 a level comparable to that of the WT, Δ pks, or Δ pps strains (Fig. 1G and 2A). These results
181 demonstrated two distinctive and complementary contributions of the ECM components to the
182 promotion of seed radicle growth: i) EPS, BslA, and TapA ensured the persistence of bacterial
183 cells in the seeds; ii) bacillaene (*pks*) and fengycin (*pps*) mediated the chemical dialogue of
184 *Bacillus* with the seeds; and iii) amyloid TasA was involved in both activities.

185

186 **Different integrity states of the bacterial ECM induce distinct metabolic changes in
187 emerged radicles**

188 To establish a connection between the chemical dialogue of *Bacillus* with the seeds and the
189 overgrowth phenotype of adult plants, we characterized the metabolic signatures defining the
190 stimulatory effects on radicle growth at the initial stages after seed germination. We analyzed and
191 compared the metabolic statuses of radicles five days after the treatment with the cells of the WT
192 or various ECM mutant strains by LC/MS/MS and FBMN analyses³⁵. Hierarchical clustering using
193 Metaboanalyst was used to visualize the top 50 features impacted by the treatment that
194 distinguish the samples treated with bacteria from untreated samples or WT, Δ eps, or ECM
195 mutant strain-treated samples from other samples (Fig. 2B). The results of principal component
196 analysis (PCA) emphasized a similarity of the distributions of the treatments with ECM mutant
197 strains, and the samples treated with the WT strain and untreated samples formed independent

198 groups (Fig. 2C). Previous classification was combined with FBMN analysis and *in silico* chemical
199 class analyses (Classyfire³⁶ and MolNetEnhancer³⁷) identified specific molecular families
200 belonging to these groups according to the abundance patterns and associations of the patterns
201 with specific chemical classes (Fig. 2D). The changes associated with the treatment with bacteria
202 included a decrease in organooxygen compound analogs of sphinganines and an increase in
203 reduced abundance of the prenol lipid and stilbene molecular families. The presence of a
204 functional ECM in the WT strain triggered the accumulation of fatty acyls belonging to two different
205 clusters, and treatments with ECM mutants induced a clear decrease in organooxygen
206 compounds and accumulation of specific prenol lipids. These results demonstrated a specific
207 metabolic response of the plants to chemical features of the ECM of *B. subtilis*.

208

209 **Lysophospholipids and glutathione are key metabolites involved in different growth-
210 promoting effects of TasA and fengycin**

211 All previous experiments suggested that TasA and fengycin are the most relevant molecules of
212 the ECM mediating the interkingdom chemical dialogue of *Bacillus* cells with the seeds. TasA is
213 a polymorphic protein able to adopt a variety of structural conformations, from monomers to
214 aggregates or insoluble fibers, in response to physicochemical variations of the environment.
215 These morphotypes are biochemically different, and studies on this protein and other amyloids
216 have revealed that they perform distinct biological functions^{11,38,39}. Polymerization of purified
217 homogenous TasA monomers was triggered and its ability to promote seed radicle growth was
218 tested at various stages of aggregation (Extended Data Fig. 6a). The results confirmed that
219 purified TasA was able to promote seed radicle growth, and this effect relied on large aggregates
220 of the protein. Moreover, fresh apoplast fluid extracted from the melon seeds promoted the
221 polymerization of TasA to form aggregates (Extended Data Fig. 6b), indicating that this largely
222 active polymerized form of TasA was predominant inside the seeds. Evaluation of the stimulatory

223 activity showed that 3 μ M solution of the most active form of TasA or 10 μ M solution of purified
224 fengycin significantly increased the area of the radicles compared with that in untreated seeds
225 (Fig. 3A). The lack of stimulatory activity of purified BslA or surfactin confirmed our previous
226 finding obtained using single mutants arrested in the production of all these molecules (Fig. 2A)
227 and demonstrated that additions of exogenous protein or secondary metabolites did not
228 necessarily manifest growth-promoting effects (Fig. 3A). Iturin is not produced by *B. subtilis*;
229 however, purified commercially available iturin failed to promote radicle growth after seed
230 treatment, indicating that lipopeptides do not have a universal promoting effect (Extended Data
231 Fig. 7).

232 The total metabolome of radicles emerged from the seeds treated with fengycin or TasA was
233 analyzed to define the contribution to the metabolic signatures associated with the promotion of
234 radicle growth. The results of PCA and heatmap analyses clearly indicated sample clustering in
235 three groups based on metabolomic signatures (Extended Data Fig. 8a, b). Statistical analysis by
236 partial least-squares discriminant analysis (PLS-DA) indicated that glycerophospholipids, fatty
237 acyls, organooxygen compounds, or carboxylic acids were discriminating metabolites in the case
238 of TasA or fengycin treatments, and FBMN of these features showed integration into molecular
239 families composed of other metabolites that generally followed the same abundance patterns
240 (Extended Data Fig. 8c, d, e). Further refinement of this analysis identified two molecular families
241 of interest: i) containing lysophosphatidylethanolamines (LysoPE) and mainly associated with
242 TasA treatment and ii) containing an analog of reduced glutathione (GSH) that accumulated in
243 the radicles grown from the seeds treated with fengycin (Fig. 3B).

244 Glycerophospholipids play both structural and signaling roles in the plants, and this bifunctionality
245 is in part due to continuous synthesis and turnover of endogenous pools⁴⁰. Accumulating evidence
246 suggests an expanding role of lysophospholipid derivatives in signaling processes in the plant
247 cells and in a variety of response mechanisms. LysoPE treatment has been reported to delay fruit

248 softening when used postharvest, mitigate defoliation effects of ethephon, and delay leaf and fruit
249 senescence in tomato and potato^{41,42} and is used commercially as a plant bioregulator to improve
250 plant product quality^{40,43}. On the other hand, GSH is an essential metabolite that has antioxidant
251 functions, which is the principal biological property of GSH; GSH is involved in cellular redox
252 homeostasis and plays essential roles in the development, growth, and environmental response
253 of the plants⁴⁴. Thus, the analysis of metabolomic features of the radicles suggested certain roles
254 for glutathione and *lysophospholipids* in all signaling events triggered in the seeds after the
255 treatment with *Bacillus* and mediated by the action of fengycin and TasA, respectively. To confirm
256 hypothetical involvement of both molecules in the growth-promoting activity, the seeds were
257 treated with commercially available LysoPE or GSH (Fig. 3C). Both treatments enhanced radicle
258 growth similar to the effect observed after seed treatments with fengycin or TasA.

259 Enhanced area of the radicles developed from the seeds treated with *B. subtilis* cells and a
260 resulting increase in efficiency of absorption of the nutrients is the easiest interpretation explaining
261 the overgrowth of adult plants from the treated seeds. If this hypothesis is true, we anticipated to
262 detect a long-term promoting effect on adult plants developed from the seeds treated with TasA
263 or fengycin. Only plants emerged from the seeds treated with fengycin were notoriously larger
264 and more vigorous than plants grown from untreated or TasA-treated seeds from the initial stages
265 to the end of the experiment (Fig. 3D). Adult plants grown from the seeds treated with LPE or
266 GSH did not show a significant increase in the growth over time compared to the growth of plants
267 from untreated seeds (Fig. 3C). These findings suggested differences between enhanced growth
268 of adult plants and major growth of the seed radicles observed after the promoting treatments,
269 indicating the presence of different signaling events that triggered i) short term radicle growth
270 mediated by TasA, fengycin, or associated LysoPE and GSH molecules and ii) long term
271 overgrowth of adult plants specifically associated with fengycin. GSH associated to treatments to
272 the seed with fengycin did not produce sustained long-term growth-promoting effect, suggesting

273 that constant endogenous trigger of the events is required and can only be achieved by fengycin
274 treatment.

275 Previous studies have shown that application of fengycin elicits plant defense responses in adult
276 plants^{12,45}. Therefore, we investigated whether, in addition to the long-term growth-promoting
277 effect, treatment of the seeds with fengycin immunizes adult plants against aboveground
278 pathogens. The third leaves of adult plants were inoculated with a spore suspension of the
279 necrotrophic fungal pathogen *Botrytis cinerea*. The size of necrotic lesions induced by the fungus
280 in the plants grown from fengycin-treated seeds was significantly smaller than that of the control
281 plants and plants grown from TasA-treated seeds (Fig. 3E). The results of transcriptomic analysis
282 of the leaves indicated that the treatment of the seeds with fengycin induced higher expression of
283 the genes related to glutathione metabolism, specifically including glutathione S-transferases
284 (GSTs), 48 hours after the challenge with *B. cinerea* (Fig. 1F, Extended Data Fig. 9a).
285 Participation of GSTs in antioxidant reactions together with the important cellular antioxidant GSH
286 was clearly shown to mitigate oxidative stress caused by this necrotrophic fungus in infected
287 tissues⁴⁶. Interestingly, metabolomic data obtained from the radicles from fengycin-treated seeds
288 demonstrated an increase in the levels of certain molecules of the same cluster that included
289 GSH (Fig. 3B), and adult plants grown from bacterized seeds accumulated certain molecules
290 belonging to the GSH cluster, especially in the aerial region (Extended Data Fig. 9b). Overall,
291 these results suggested that initial seed treatment with fengycin triggered the accumulation of
292 GSH in the seedlings, which conferred enhanced antioxidant capacity able to mitigate an
293 imbalance in the redox status in adult plants imposed by infection with *B. cinerea*.

294

295 **Different promoting activities of TasA and fengycin rely on specific interactions with**
296 **seed oil bodies**

297 The perisperm-endosperm of the melon seeds is enriched in oil bodies (OBs), which are nutrient
298 reservoir organelles distributed in various plant organs and mainly composed of triacylglycerides
299 (TAGs) and other neutral lipids. During germination, the monolayers of these covered vesicles
300 are degraded during interaction with glyoxysomes, and released contents become available to
301 catabolic routes that feed the embryo^{47,48}. Accumulation of bacterial cells in the micropylar
302 endosperm and major changes in the lipid composition of the radicles and adult plants after the
303 treatments suggested that the oil bodies are the target of the growth-promoting molecules
304 fengycin and TasA. The results of confocal laser scanning microscopy (CLSM) of thin sections of
305 the seeds using a neutral lipid stain 16 hours after seed treatment indicated abundant presence
306 of the oil bodies in the endosperm of untreated seeds. In agreement with our hypothesis, we
307 detected certain regions of the endosperm with high levels of disaggregated oil bodies that were
308 always surrounded by bacterial aggregates (Extended Data Fig. 10a).

309 Treatments with purified TasA or fengycin promoted disaggregation of OBs similar to the effect of
310 the treatments with *Bacillus* cells (Fig. 4A, top). The results of transmission electron microscopy
311 analysis (TEM) of thin sections of negatively stained seeds did not detect significant anatomical
312 differences between the treatments in addition to OB disaggregation except for the localization of
313 OB-surrounding glyoxysomes in samples treated with TasA, indicating the presence of interacting
314 organelles where oil bodies are degraded to release stored energy^{48,49} (Extended Data Fig. 10b,
315 c). OBs purified from melon leaves were treated with TasA or fengycin and double stained with
316 Fast Green FCF to stain the proteins and with Nile red (Fig. 4A, bottom). The results of CLSM
317 analysis indicated certain differences in the size and pattern of aggregation of OBs in various
318 treatment groups; fengycin induced disaggregation of OBs observed *in vivo*, and TasA
319 preferentially induced a higher level of aggregation of individual OBs than that observed *in vivo*
320 (Extended Data Fig. 10d). Higher intensity of the green fluorescence signal near OB aggregates
321 in the samples treated with TasA suggested nonspecific staining of the amyloid protein and its

322 localization around the vesicles. The results of TEM analysis of purified OBs and immunogold
323 labeling with anti-TasA antibodies indicated the presence of gold particles decorating the
324 perimeter of the OBs and interconnecting TasA fibers (Extended Data Fig. 10e). Thus, we
325 hypothesized that the effect of TasA involves interactions with structural proteins present on the
326 surface of the OBs, which enhances association of OBs with glyoxysomes and/or other
327 degradative processes that eventually lead to specific release of the lipids. For example,
328 accumulation of lysophospholipids correlated with growth promotion of seed radicles but did not
329 correlate with long-term effects in adult plants. The monolayer of OBs mainly contains oleosins,
330 which are structural proteins that modulate the stability and size of OBs, regulate lipid metabolism,
331 and play an important role in OB degradation^{50–52}. The results of the pulldown assays of whole
332 protein extracts of the seeds indicated coelution of purified TasA with oleosin (Fig. 4B and Table
333 S5). Interaction of the two proteins was confirmed by far-western blot analysis of purified TasA
334 and purified oleosin 1 from *Arabidopsis thaliana* (Fig. 4C). These results suggested that the TasA-
335 oleosin interaction was responsible for the aggregation of OBs *in vitro* and most likely accounted
336 for the accumulation of lysophospholipids, which are the signaling molecules related to short-term
337 growth promotion of the radicles. Modulation of activity of oleosin as a regulator of lipid catabolism
338 or the level of the degradation of the lipids are alternative but not exclusive explanations for this
339 process mediated by TasA.

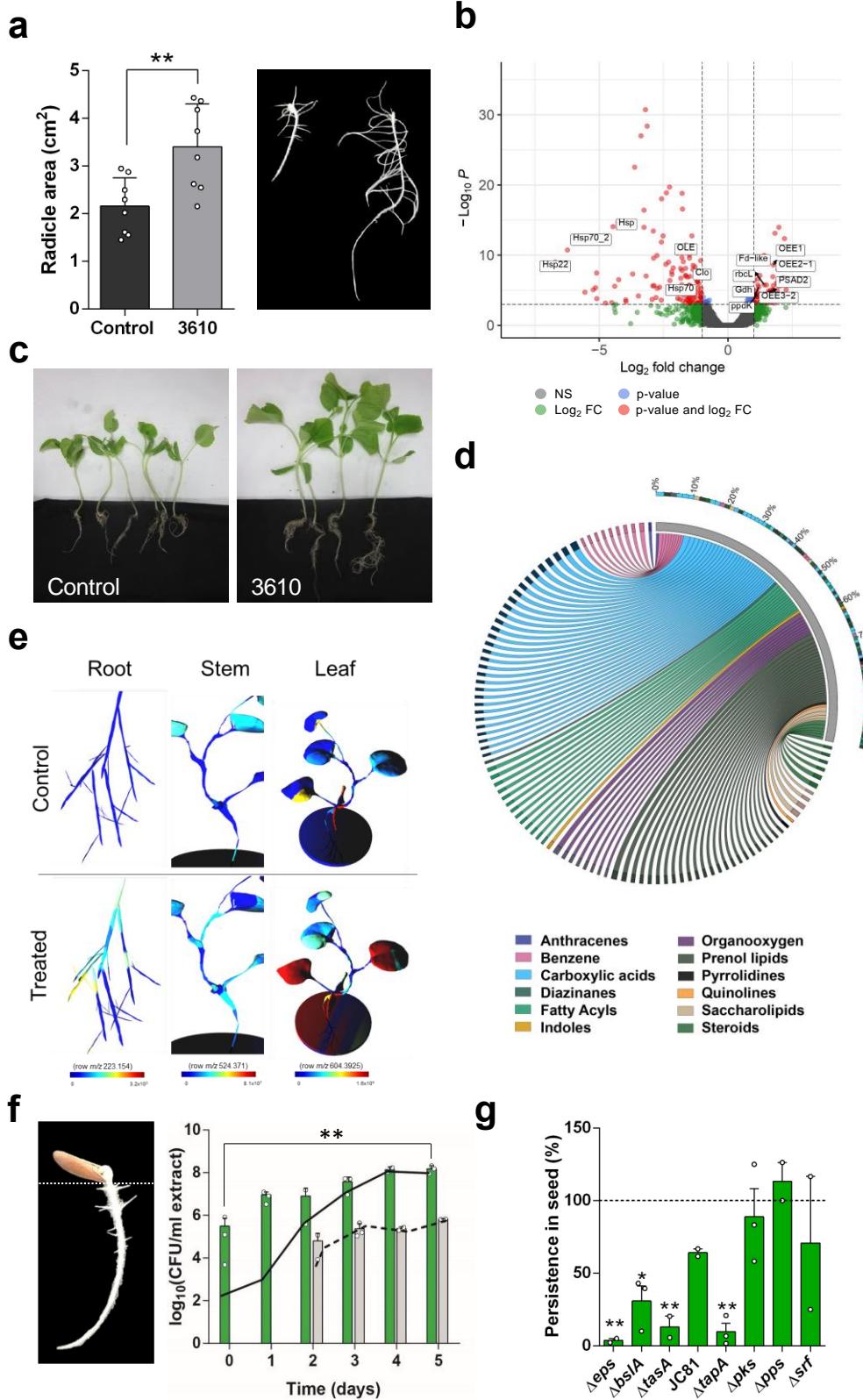
340 Fengycin has been described to efficiently interact and disrupt artificial lipid monolayers or bilayer
341 membranes in a concentration-dependent manner, which also modulates the level of aggregation
342 of the lipopeptide^{53–55}. Depending on the fengycin concentration, two mechanisms of action have
343 been proposed: i) low concentrations promote the formation of the aggregates that induce the
344 formation of the pores and subsequent changes in membrane permeability; and ii) high
345 concentrations cause solubilization of the membranes similar to the effect of detergents^{53,54}. In
346 addition to micellar concentrations of fengycin, specific disruption of the membranes relies on the

347 lipid composition of the target^{56–58}. Exact chemical composition of phospholipids of the
348 membranes of OBs in the seeds is not known and varies between the species⁵⁹; however, we
349 propose that high affinity of fengycin for lipid membranes explains disaggregation and a reduction
350 in the size of OBs. As a consequence of alterations in the OB membranes, endosperm cells may
351 overproduce GSH, leading to an increase in the basal level of this molecule detected by
352 metabolomic analyses in the present study, and may account for long-term effects of fengycin
353 treatment of the seeds.

354 These findings indicated that beneficial effect of seed treatment with *B. subtilis* on the melon
355 plants was associated with changes in the contents and specific pools of metabolites released
356 from the storage tissues, which were mediated by at least two molecules, fengycin and TasA. We
357 propose that specific interaction of TasA or fengycin with OBs defines two different physiological
358 responses: i) the promotion of radicle growth mediated at least by the accumulation of
359 lysophospholipids and ii) overgrowth of adult plants and immunization against aerial pathogens
360 mediated by the accumulation of various molecules, such as GSH, specifically elicited by fengycin
361 (Fig. 4D). Thus, the proposed mechanism of action of these two molecules depends on the
362 internal structure of the seeds, which directly influences the accessibility of the molecules in the
363 storage tissues, which contain abundant OBs, and initial lipid composition of the seeds, which
364 modulates specific release of the signaling molecules. We propose that only seeds containing
365 abundant OBs and characterized by specific morphology of the primordial tissues respond to the
366 beneficial interaction with *Bacillus* mediated at least by fengycin and TasA. According to this
367 model, wheat or maize, which are monocotyledonous plants whose seeds are composed of
368 starchy endosperm surrounded by a layer of living cells, did not react to the presence of fengycin,
369 and the treatment of *Cucumis sativus* or soybean seeds, which are anatomically different but
370 contain OBs, induced a growth-promoting phenotype (Table S6).

371

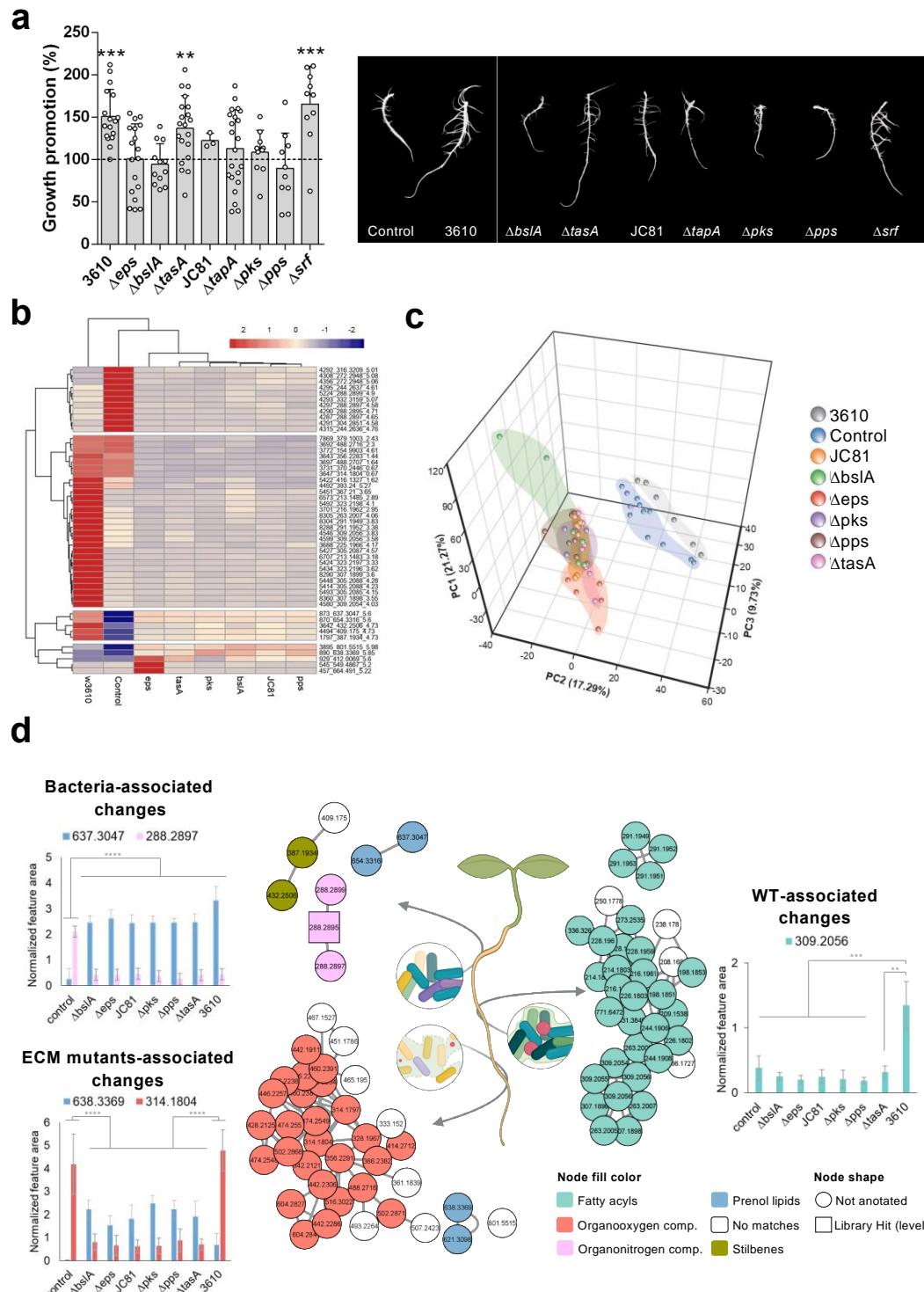
373 **Acknowledgements**


374 We thank Saray Morales Rojas for technical support, Josefa Gómez Maldonado from the
375 Ultrasequencing Unit of the SCBI-UMA for RNA sequencing, Casimiro Cárdenas for protein
376 analysis (Proteomic Unit, SCAI-UMA), Juan Félix López Téllez for technical support in the
377 transmission electron microscopy analysis and John Pearson for his technical support in the
378 confocal laser scanning microscopy analysis (Bionand). This work was supported by grants from
379 ERC Starting Grant (BacBio 637971) Plan Nacional de I+D+i of Ministerio de Economía y
380 Competitividad and Ministerio de Ciencia e Innovación (AGL2016-78662-R and PID2019-
381 107724GB-I00) and Proyectos I+D+I en el marco del Programa Operativo FEDER Andalucía
382 (UMA18-FEDERJA-055). M.V.B. is the recipient of an FPU contract (FPU17/03874) from the
383 Ministerio de Ciencia, Innovación y Universidades. C.M.S is funded by the program Juan de la
384 Cierva Incorporación (IJC2018-036923-I). D.P. was supported by the German Research
385 Foundation (DFG) with Grant PE 2600/1. AMCR and PCD were supported by the National
386 Institutes of Health (NIH) grant DP2GM137413. PCD was supported by the Gordon and Betty
387 Moore Foundation through Grant GBMF7622, the U.S. National Institutes of Health for the Center
388 (P41 GM103484, R03 CA211211, R01 GM107550).

389

390 **Author Contributions**

391 **DR**, conceived, designed the work, drafted and edited the text; **MVB**, collected most of
392 experimental data, and drafted the manuscript; **CMS**, designed, collected and analyzed MS data,
393 and edited the manuscript; **AMC**; collected and analyzed MS data, and edited the text; **DP**,
394 collected MS data, and edited the text; **LD**; informatically analyzed data and drafted figures; **AdV**,
395 substantially revised and edited the text; **AP**; substantially revised and edited the text; **PCD**,
396 substantially revised and edited the text.


Figure 1

398 **Figure 1. Interaction of *B. subtilis* with the seeds stimulates radicle development and**
399 **results in overgrowth of adult plants. A** Left: Average radicle areas after seed treatments with
400 *B. subtilis*. Error bars represent SD. Statistical significance was assessed by a t test (n= at least
401 7). Right: representative radicles from a *B. subtilis*-treated seed (right) and untreated seed (left)
402 five days after the treatments. **B** Volcano plot of DEGs identified by RNA-seq in bacterized seeds
403 and untreated seeds 16 hours after the treatment. Tags label the genes related to seed
404 germination progress: OEE1 (oxygen-evolving enhancer protein 1), OEE3-2 (oxygen-evolving
405 enhancer protein 3-2, chloroplastic), OEE2-1 (oxygen-evolving enhancer 2-1, chloroplastic), Fd-
406 like (ferredoxin-like), PSAD2 (photosystem I reaction center subunit II, chloroplastic), Gdh
407 (glutamate dehydrogenase), rbcL (ribulose bisphosphate carboxylase small chain), ppdK
408 (pyruvate, phosphate dikinase), pckG (phosphoenolpyruvate carboxykinase), Clo (caleosin);
409 Hsp70 (heat shock 70 kDa protein), Hsp (class I heat shock protein), Hsp70 (heat shock 70 kDa
410 protein_1), and Hsp22 (22.0 kDa class IV heat shock protein). **C** Adult plants grown from the
411 seeds treated with *B. subtilis* (3610, right) or from untreated seeds (control, left). **D** Circos plot of
412 100 metabolites more abundant in the leaves of the plants grown from bacterized seeds than in
413 the leaves of the control plants. **E** Distribution of three representative features classified as lipids
414 with significant differential abundance between the regions of the plants emerged from untreated
415 seeds (control) and *B. subtilis*-treated seeds. **F** *B. subtilis* dynamics (CFU counts) in the seed and
416 radicle extracts during the first five days after seed treatment. Bars represent average values with
417 error bars (SEM) of total CFU in the seeds (green bars) and radicles (gray bars), and continuous
418 and discontinued lines represent CFU corresponding to the number of spores in the seeds and
419 radicles, respectively. Statistical significance was assessed by two-tailed independent t-tests
420 between initial and final time points (n= at least 2). **G** Bacterial persistence of the ECM mutants
421 relative to that of the WT mutant (assumed to be 100%) in the seed extracts five days after seed
422 treatment. Average values and error (SEM) are shown. Statistical significance was assessed by

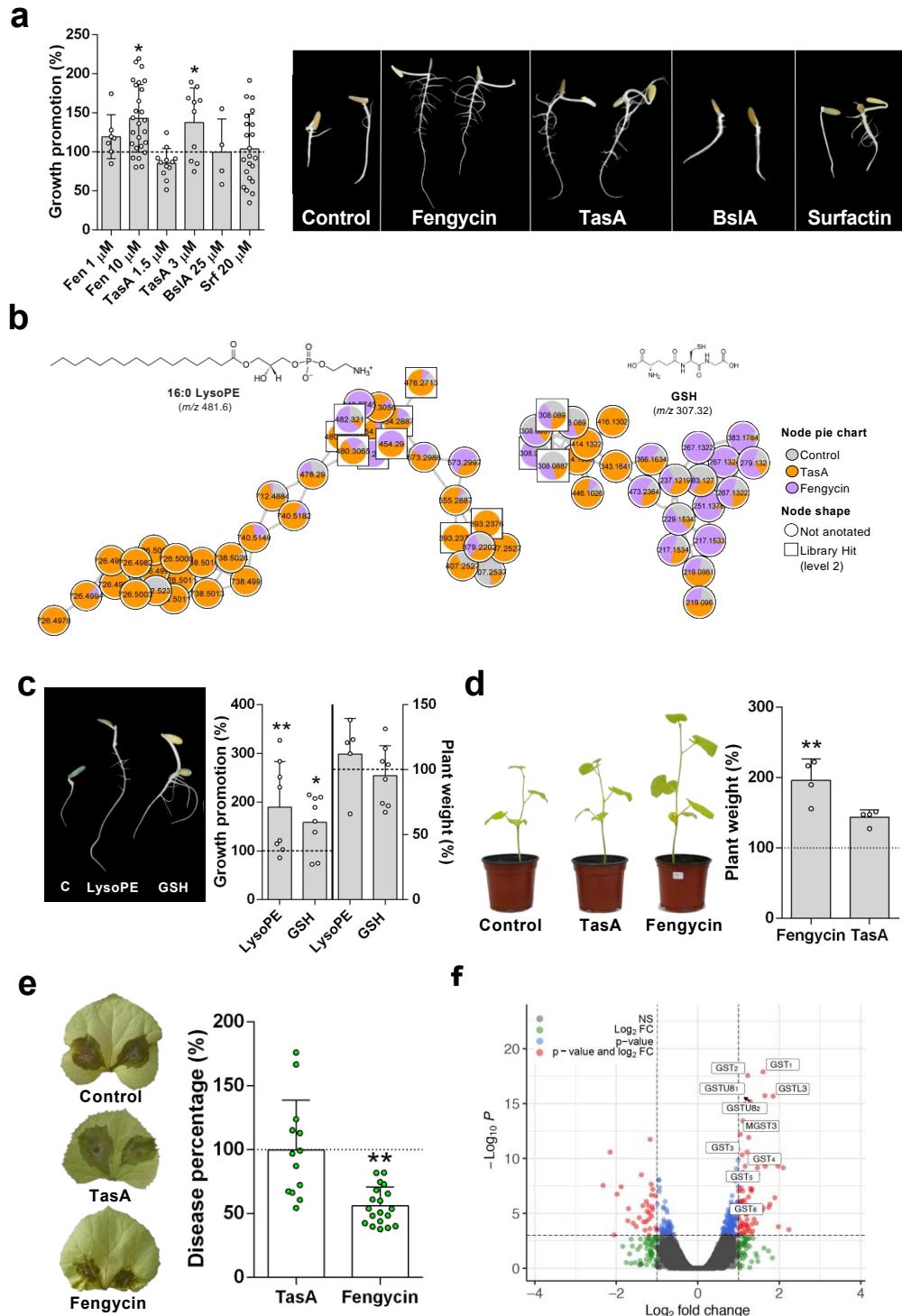
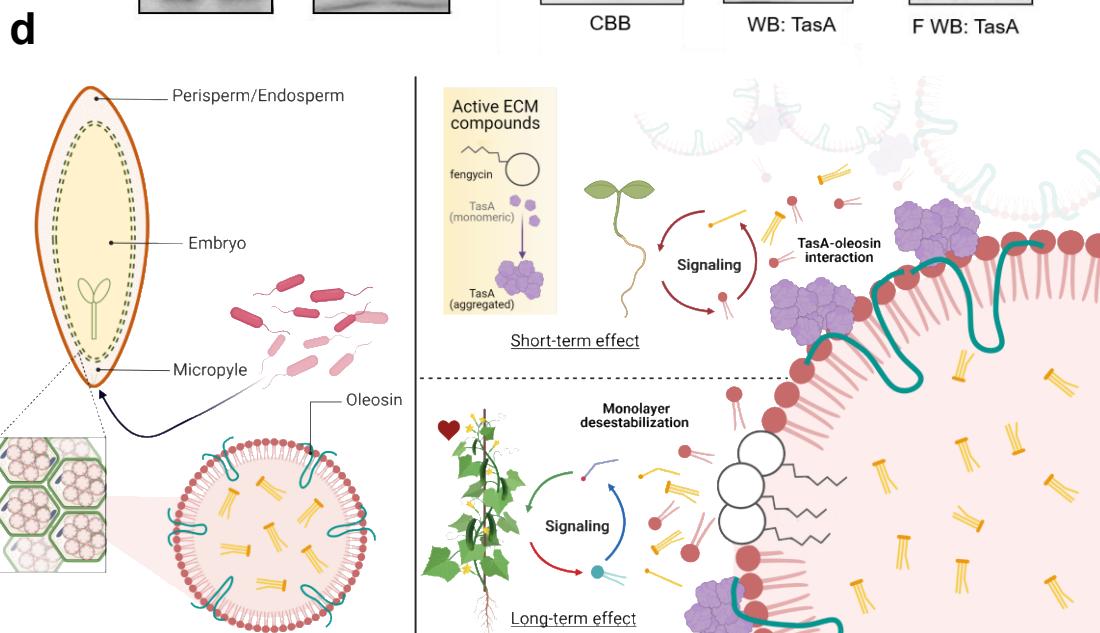
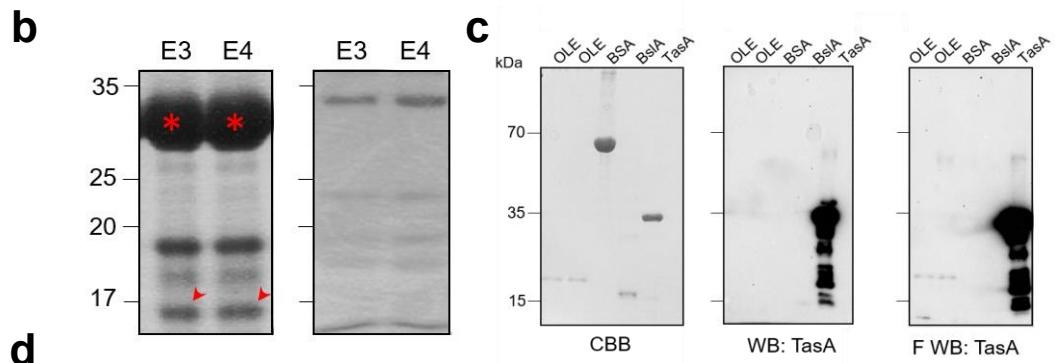
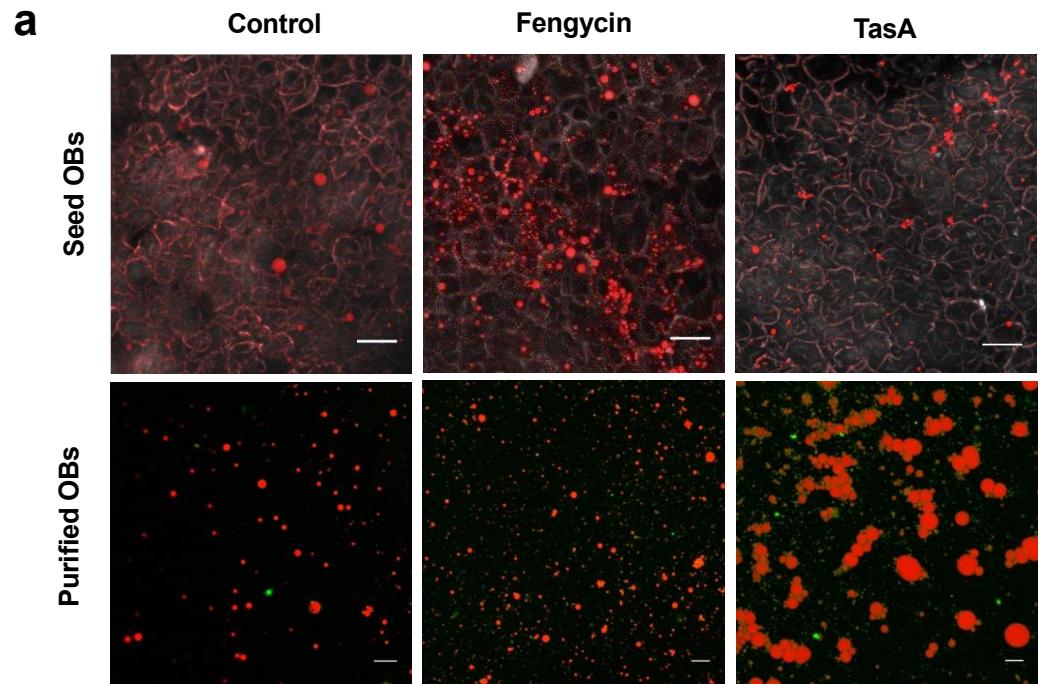

423 after one-way ANOVA with 1 Dunnett's multiple comparisons test (each treatment vs. WT
424 treatment) (n= at least 2).

Figure 2

427 **Figure 2. Components of the extracellular matrix of *B. subtilis* trigger metabolic**
428 **reprogramming of the seed radicles related to plant growth stimulation. A** Left: percentage
429 of radicle growth increase in the seeds treated with wild-type or ECM mutant cells (five days after
430 seed treatment) normalized to the average radicle area of untreated seeds (100%, discontinued
431 line). Average values are shown, and error bars represent SD. Statistical significance was
432 assessed by one-way ANOVA with *post hoc* Dunnett's multiple comparisons test (each treatment
433 vs. control treatment) (n= at least 10 except JC81 with n=3). Right: Representative radicles from
434 untreated seeds and seeds treated with wild-type or ECM mutant cells five days after the
435 treatment. **B** Heatmap of the hierarchical clustering of the top 50 features of impacted molecular
436 families in the radicles from bacterized seeds. **C** PCA 3D score plot of the metabolome of radicles
437 clusters the samples based on the presence, absence, or alteration of the ECM after bacterial
438 treatments. The percentage of variation explained by each principal component is indicated on
439 the axes. **D** Network analysis of representative features related to the presence of bacteria or
440 ECM. Normalized abundances in the radicles in seeds subjected to various treatments are
441 represented in features of all groups. Average values are shown with error bars representing SD.
442 Statistical significance was assessed by one-way ANOVA with *post hoc* Dunnett's multiple
443 comparisons test (n=3).




Figure 3

446 **Figure 3. Amyloid TasA and fengycin stimulate radicle development or the growth and**
447 **immunization of adult plants against aerial necrotrophic fungal pathogens. A** Left:
448 percentage of an increase in radicle growth of the seed treated with water or purified ECM
449 components normalized to the average radicle area of untreated seeds (100%, discontinued line)
450 five days after the treatments (n= at least 8 except for bsIA treatment with n=4). Right:
451 Representative radicles of untreated seeds or seeds treated with purified ECM five days after the
452 treatment. **B** Molecular families corresponding to LysoPE and GSH related to the promoting
453 activity of purified TasA and fengycin based on metabolomic or transcriptomic approaches. The
454 chemical structures of annotated features based on spectral matches to GNPS libraries are also
455 presented for each molecular family. **C** Left: Representative radicles from untreated seeds or
456 seeds treated with LysoPE and GSH five days after the treatment. Right: Left Y axis, percentage
457 of an increase in radicle growth of the seeds treated with water or purified LysoPE and GSH
458 normalized to the average of untreated radicle area (100%, discontinued line) five days after the
459 treatment (n= at least 8); right Y axis, the percentage of weight of adult plants grown from the
460 seeds treated with LysoPE and GSH normalized to the weight of the plants grown from untreated
461 seeds (100%, discontinued line) (n= at least 5). **D** Left: Representative adult plants grown from
462 seeds treated with water (control), 10 μ M fengycin, or 3 μ M TasA. Right: The percentage of the
463 height of the plants grown from the seeds treated with vehicle control, 10 μ M fengycin, or 3 μ M
464 TasA normalized to the average height of the plants grown from the control seeds (100%,
465 discontinued line) (n=4). **E** Left: Development of necrotic symptoms in the leaves of adult plants
466 grown from the seeds treated with water (Control), 10 μ M fengycin, or 3 μ M TasA 72 hours after
467 the treatment with *Botrytis cinerea* spores. Right: Percentage of disease symptoms calculated by
468 measuring the lesion areas normalized to the average lesion area of the control samples (100%,
469 discontinued line) (n= at least 13). **F** Volcano plot representation of DEGs identified by total
470 transcriptome analysis in the leaves of the plants grown from control seeds or seeds treated with
471 fengycin 48 hours after the treatment. Tags label the genes related to glutathione metabolism:

472 GST₁ (glutathione S-transferase), GST₂ (glutathione S-transferase), GSTL3 (glutathione S-
473 transferase L3-like), GSTU8₁ (glutathione S-transferase U8-like), GSTU8₂ (glutathione S-
474 transferase U8-like), MGST3 (microsomal glutathione S-transferase 3), GST₃ (glutathione S-
475 transferase), GST₄ (glutathione S-transferase), GST₅ (glutathione S-transferase), and GST₆
476 (glutathione S-transferase). Average values are shown, and error bars represent SD. Statistical
477 significance was assessed by one-way ANOVA with *post hoc* Dunnett's multiple comparisons test
478 (each treatment vs. control treatment) in panels **A**, **C**, **D**, and **E**.

Figure 4

480 **Figure 4. Differential interactions of amyloid TasA and fengycin with oil bodies are related**
481 **to specific stimulation of plant growth.** A CLSM images of transversally cut seeds 16 hours
482 after the treatment with 10 μ M fengycin or 3 μ M TasA (top; scale bar: 20 μ m) and purified oil body
483 suspension 16 hours after the addition of 10 μ M fengycin or 3 μ M TasA (bottom; scale bar: 5 μ m).
484 Oil bodies were stained with Nile red, and membrane proteins were stained with Fast Green FCF.
485 B Coomassie brilliant blue (CBB)-stained SDS-PAGE gel of elution fractions of pulldown assay
486 of TasA with proteins in the extracts from melon seeds. The coeluting band is marked with red
487 arrows and identified as an oleosin by HPLC-ESI-MS/MS analysis. C Far-Western blotting: left, a
488 CBB-stained SDS-PAGE gel of fractions of oleosin obtained during purification; BSA was used
489 as a control, and fractions of BsIA and TasA were obtained during purification; middle, immunoblot
490 of purified proteins using an anti-TasA antibody (1:20,000); right, far-western blot using an anti-
491 TasA antibody (1:20,000) after renaturing of the proteins and incubation with TasA protein as a
492 bait (right). D Overall scheme of the proposed mechanism of growth-promoting effects of TasA
493 and fengycin. Left: Structure of melon seeds and oil bodies (OB). The perisperm/endosperm of
494 the seeds is enriched in storage cells containing abundant OBs. OBs are composed of a
495 monolayer of phospholipids and structural proteins, mainly oleosins, and contain neutral lipids,
496 such as triacylglycerides. After the treatment, *B. subtilis* cells passively enter the inner tissues of
497 the seeds. Right: Inside the seeds, aggregates of TasA interact with oleosins of OBs, triggering
498 the accumulation of lysophospholipids involved in signaling related to a short-term effect (radicle
499 growth). Fengycin destabilizes the OB membrane, and the perturbation triggers the accumulation
500 of specific molecules, such as GSH, increasing the initial pool of this antioxidant molecule
501 implicated in long-term stimulation of adult plant growth and immunization.

502

503 **References**

- 504 1. Rajjou, L. *et al.* Seed germination and vigor. *Annu. Rev. Plant Biol.* **63**, 507–533 (2012).
- 505 2. Bailey-Serres, J., Parker, J. E., Ainsworth, E. A., Oldroyd, G. E. D. & Schroeder, J. I.
506 Genetic strategies for improving crop yields. *Nature* **575**, 109–118 (2019).
- 507 3. Finch-Savage, W. E. & Leubner-Metzger, G. Seed dormancy and the control of
508 germination. *New Phytol.* **171**, 501–523 (2006).
- 509 4. O'Callaghan, M. Microbial inoculation of seed for improved crop performance: issues and
510 opportunities. *Appl. Microbiol. Biotechnol.* **100**, 5729–5746 (2016).
- 511 5. Blake, C., Christensen, M. N. & Kovacs, A. T. Molecular aspects of plant growth
512 promotion and protection by bacillus subtilis. *Mol. Plant-Microbe Interact.* **34**, 15–25
513 (2021).
- 514 6. Kovács, Á. T. *Bacillus subtilis*. *Trends in Microbiology* **27**, 724–725 (2019).
- 515 7. Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. & Kovács, Á. T. *Bacillus subtilis* biofilm
516 formation and social interactions. *Nat. Rev. Microbiol.* **0123456789**, (2021).
- 517 8. Vlamakis, H., Chai, Y., Beauregard, P., Losick, R. & Kolter, R. Sticking together: Building
518 a biofilm the *Bacillus subtilis* way. *Nat. Rev. Microbiol.* **11**, 157–168 (2013).
- 519 9. Raaijmakers, J. M., de Bruijn, I., Nybroe, O. & Ongena, M. Natural functions of
520 lipopeptides from *Bacillus* and *Pseudomonas*: More than surfactants and antibiotics.
521 *FEMS Microbiol. Rev.* **34**, 1037–1062 (2010).
- 522 10. Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R. & Kolter, R. *Bacillus subtilis* biofilm
523 induction by plant polysaccharides. *Proc. Natl. Acad. Sci.* **110**, E1621–E1630 (2013).
- 524 11. Cámara-Almirón, J. *et al.* Dual functionality of the amyloid protein TasA in *Bacillus*
525 physiology and fitness on the phylloplane. *Nat. Commun.* **11**, 1–21 (2020).
- 526 12. Ongena, M. *et al.* Surfactin and fengycin lipopeptides of *Bacillus subtilis* as elicitors of
527 induced systemic resistance in plants. *Environ. Microbiol.* **9**, 1084–1090 (2007).
- 528 13. García-Gutiérrez, L. *et al.* The antagonistic strain *Bacillus subtilis*UMAF6639 also confers
529 protection to melon plants against cucurbit powdery mildew by activation of jasmonate-
530 and salicylic acid-dependent defence responses. *Microb. Biotechnol.* **6**, 264–274 (2013).
- 531 14. Finkelstein, R., Reeves, W., Ariizumi, T. & Steber, C. Molecular aspects of seed
532 dormancy. *Annu. Rev. Plant Biol.* **59**, 387–415 (2008).
- 533 15. Dong Yul Sung, Vierling, E. & Guy, C. L. Comprehensive expression profile analysis of
534 the *Arabidopsis* hsp70 gene family. *Plant Physiol.* **126**, 789–800 (2001).
- 535 16. Soeda, Y. *et al.* Gene expression programs during *Brassica oleracea* seed maturation,
536 osmopriming, and germination are indicators of progression of the germination process
537 and the stress tolerance level. *Plant Physiol.* **137**, 354–368 (2005).
- 538 17. Rosental, L., Nonogaki, H. & Fait, A. Activation and regulation of primary metabolism
539 during seed germination. *Seed Sci. Res.* **24**, 1–15 (2014).
- 540 18. Vacheron, J. *et al.* Plant growth-promoting rhizobacteria and root system functioning.

541 19. Wang, M. *et al.* Sharing and community curation of mass spectrometry data with Global
542 Natural Products Social Molecular Networking. *Nat. Biotechnol.* **34**, 828–837 (2016).

543 20. Walker, V. *et al.* Host plant secondary metabolite profiling shows a complex, strain-
544 dependent response of maize to plant growth-promoting rhizobacteria of the genus
545 *Azospirillum*. *New Phytol.* **189**, 494–506 (2011).

546 21. Mhlongo, M. I., Piater, L. A., Steenkamp, P. A., Labuschagne, N. & Dubery, I. A.
547 Metabolic profiling of PGPR-treated tomato plants reveal priming-related adaptations of
548 secondary metabolites and aromatic amino acids. *Metabolites* **10**, (2020).

549 22. Curzi, M. J., Ribaudo, C. M., Trinchero, G. D., Curá, J. A. & Pagano, E. A. Changes in the
550 content of organic and amino acids and ethylene production of rice plants in response to
551 the inoculation with *Herbaspirillum seropedicae*. *J. Plant Interact.* **3**, 163–173 (2008).

552 23. Maier, B. A. *et al.* A general non-self response as part of plant immunity. *Nat. Plants* **7**,
553 696–705 (2021).

554 24. Rodríguez, C. E., Mitter, B., Barret, M., Sessitsch, A. & Compant, S. Commentary: seed
555 bacterial inhabitants and their routes of colonization. *Plant Soil* **422**, 129–134 (2018).

556 25. Kinsinger, R. F., Shirk, M. C. & Fall, R. Rapid surface motility in *Bacillus subtilis* is
557 dependent on extracellular surfactin and potassium ion. *J. Bacteriol.* **185**, 5627–31
558 (2003).

559 26. Calvio, C. *et al.* Swarming differentiation and swimming motility in *Bacillus subtilis* are
560 controlled by *swrA*, a newly identified dicistronic operon. *J. Bacteriol.* **187**, 5356–5366
561 (2005).

562 27. Grau, R. R. *et al.* A duo of potassium-responsive histidine kinases govern the
563 multicellular destiny of *Bacillus subtilis*. *MBio* **6**, 1–16 (2015).

564 28. Branda, S. S., Vik, Å., Friedman, L. & Kolter, R. Biofilms: The matrix revisited. *Trends in
565 Microbiology* **13**, 20–26 (2005).

566 29. Romero, D. Bacterial determinants of the social behavior of *Bacillus subtilis*. *Res.
567 Microbiol.* **164**, 788–798 (2013).

568 30. Danhorn, T. & Fuqua, C. Biofilm formation by plant-associated bacteria. *Annu. Rev.
569 Microbiol.* **61**, 401–422 (2007).

570 31. Molina-Santiago, C. *et al.* The extracellular matrix protects *Bacillus subtilis* colonies from
571 *Pseudomonas* invasion and modulates plant co-colonization. *Nat. Commun.* **10**, (2019).

572 32. Bais, H. P., Fall, R. & Vivanco, J. M. Biocontrol of *Bacillus subtilis* against Infection of
573 *Arabidopsis* Roots by *Pseudomonas syringae* Is Facilitated by Biofilm Formation and
574 Surfactin Production. *PLANT Physiol.* **134**, 307–319 (2004).

575 33. Chen, Y. *et al.* Biocontrol of tomato wilt disease by *Bacillus subtilis* isolates from natural
576 environments depends on conserved genes mediating biofilm formation. *Environ.
577 Microbiol.* **15**, 848–864 (2013).

578 34. Zeriouh, H., de Vicente, A., Pérez-García, A. & Romero, D. Surfactin triggers biofilm
579 formation of *Bacillus subtilis* in melon phylloplane and contributes to the biocontrol
580 activity. *Environ. Microbiol.* **16**, 2196–2211 (2014).

581

582 35. Nothias, L. F. *et al.* Feature-based molecular networking in the GNPS analysis
583 environment. *Nat. Methods* **17**, 905–908 (2020).

584 36. Djoumbou Feunang, Y. *et al.* ClassyFire: automated chemical classification with a
585 comprehensive, computable taxonomy. *J. Cheminform.* **8**, 1–20 (2016).

586 37. Ernst, M. *et al.* Molnetenhancer: Enhanced molecular networks by integrating
587 metabolome mining and annotation tools. *Metabolites* **9**, 144 (2019).

588 38. Romero, D., Aguilar, C., Losick, R. & Kolter, R. Amyloid fibers provide structural integrity
589 to *Bacillus subtilis* biofilms. *Proc. Natl. Acad. Sci.* **107**, 2230–2234 (2010).

590 39. Steinberg, N. *et al.* The extracellular matrix protein TasA is a developmental cue that
591 maintains a motile subpopulation within *Bacillus subtilis* biofilms. *Sci. Signal.* **13**, (2020).

592 40. Cowan, A. K. Phospholipids as plant growth regulators. *Plant Growth Regul.* **48**, 97–109
593 (2006).

594 41. Farag, K. M. & Palta, J. P. Use of lysophosphatidylethanolamine, a natural lipid, to retard
595 tomato leaf and fruit senescence. *Physiol. Plant.* **87**, 515–521 (1993).

596 42. Özgen, M., Park, S. & Palta, J. P. Mitigation of ethylene-promoted leaf senescence by a
597 natural lipid, lysophosphatidylethanolamine. *HortScience* **40**, 1166–1167 (2005).

598 43. Cowan, A. K. Plant growth promotion by 18:0-lyso-phosphatidylethanolamine involves
599 senescence delay. *Plant Signal. Behav.* **4**, 324–327 (2009).

600 44. Noctor, G. *et al.* Glutathione in plants: An integrated overview. *Plant, Cell Environ.* **35**,
601 454–484 (2012).

602 45. Ongena, M. & Jacques, P. *Bacillus* lipopeptides: versatile weapons for plant disease
603 biocontrol. *Trends Microbiol.* **16**, 115–125 (2008).

604 46. Gullner, G., Komives, T., Király, L. & Schröder, P. Glutathione S-transferase enzymes in
605 plant-pathogen interactions. *Front. Plant Sci.* **871**, 1–19 (2018).

606 47. Huang, A. H. C. Oil bodies and oleosins in seeds. *Annu. Rev. Plant Physiol. Plant Mol.*
607 *Biol.* **43**, 177–200 (1992).

608 48. Shimada, T. L., Hayashi, M. & Hara-Nishimura, I. Membrane dynamics and multiple
609 functions of oil bodies in seeds and leaves. *Plant Physiol.* **176**, 199–207 (2018).

610 49. Graham, I. A. Seed storage oil mobilization. *Annu. Rev. Plant Biol.* **59**, 115–142 (2008).

611 50. Miquel, M. *et al.* Specialization of oleosins in oil body dynamics during seed development
612 in *arabidopsis* seeds. *Plant Physiol.* **164**, 1866–1878 (2014).

613 51. Deruyffelaere, C. *et al.* Ubiquitin-mediated proteasomal degradation of oleosins is
614 involved in oil body mobilization during post-germinative seedling growth in *Arabidopsis*.
615 *Plant Cell Physiol.* **56**, 1374–1387 (2015).

616 52. Shao, Q., Liu, X., Su, T., Ma, C. & Wang, P. New Insights Into the Role of Seed Oil Body
617 Proteins in Metabolism and Plant Development. *Front. Plant Sci.* **10**, 1–14 (2019).

618 53. Deleu, M., Paquot, M. & Nylander, T. Fengycin interaction with lipid monolayers at the
619 air–aqueous interface—implications for the effect of fengycin on biological membranes. *J.*
620 *Colloid Interface Sci.* **283**, 358–365 (2005).

621 54. Deleu, M., Paquot, M. & Nylander, T. Effect of fengycin, a lipopeptide produced by
622 *Bacillus subtilis*, on model biomembranes. *Biophys. J.* **94**, 2667–2679 (2008).

623 55. Patel, H., Tscheka, C., Edwards, K., Karlsson, G. & Heerklotz, H. All-or-none membrane
624 permeabilization by fengycin-type lipopeptides from *Bacillus subtilis* QST713. *Biochim.
625 Biophys. Acta - Biomembr.* **1808**, 2000–2008 (2011).

626 56. Fiedler, S. & Heerklotz, H. Vesicle Leakage Reflects the Target Selectivity of
627 Antimicrobial Lipopeptides from *Bacillus subtilis*. *Biophys. J.* **109**, 2079–2089 (2015).

628 57. Sur, S., Romo, T. D. & Grossfield, A. Selectivity and Mechanism of Fengycin, an
629 Antimicrobial Lipopeptide, from Molecular Dynamics. *J. Phys. Chem. B* **122**, 2219–2226
630 (2018).

631 58. Zakharova, A. A., Efimova, S. S., Malev, V. V. & Ostroumova, O. S. Fengycin induces ion
632 channels in lipid bilayers mimicking target fungal cell membranes. *Sci. Rep.* **9**, 1–10
633 (2019).

634 59. Tzen, J. T. C., Cao, Y. Z., Laurent, P., Ratnayake, C. & Huang, A. H. C. Lipids, proteins,
635 and structure of seed oil bodies from diverse species. *Plant Physiol.* **101**, 267–276
636 (1993).

637