

1 **Title Page**

2 **Full Title:** Expansive and diverse phenotypic landscape of field *Aedes aegypti* larvae with
3 differential susceptibility to temephos: beyond metabolic detoxification

4 **Short Title:** Gene expression in temephos resistant field populations of *Aedes aegypti*

5 **Authors:** Jasmine Morgan¹, J. Enrique Salcedo-Sora^{2*}, Omar Triana-Chavez³, Clare Strode^{1*}

6 **Author affiliations:** ¹Department of Biology, Edge Hill University, UK

7 ²Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK

8 ³Instituto de Biología, Facultad de Ciencias Exactas y Naturales (FCEN), University of
9 Antioquia, Medellín, Colombia

10 **Corresponding authors:** * cstrode@edgehill.ac.uk (CS) and J.Salcedo-Sora@liverpool.ac.uk (JES-S)

12 **Abstract**

13 Arboviruses including dengue, Zika and chikungunya are amongst the most significant public
14 health concerns worldwide and their control relies heavily on the use of insecticides to
15 control the vector mosquito *Aedes aegypti*. The success of controlling these vector-pathogen
16 systems is threatened by widespread insecticide resistance. The work presented here profiled
17 the gene expression of the larvae from two field populations of *Ae. aegypti* with differential
18 susceptibility to temephos. The contrasting phenotypes originated from two Colombian urban
19 locations, Bello and Cúcuta, that we have previously reported to have distinctive disease
20 incidence, socioeconomics, and climate. The closeness of the geographical origin of the study
21 populations was suspected to be highly influential in the profiling of the gene expression of
22 resistance since the mosquito's resistance levels themselves are highly dependent upon
23 environmental variables. We demonstrated that an exclusive field-to-lab (*Ae. aegypti*
24 reference strain New Orleans) comparison generates an over estimation of differential gene
25 expression (DGE) and that the inclusion of a geographically relevant field control, as used
26 here, yields a more discrete, and likely, more specific set of genes. The composition of the
27 obtained DGE profiles is varied, with commonly reported resistance associated genes such as
28 detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion
29 exchange homeostasis, an extensive number of long non-coding RNAs, and chromatin
30 modelling among the specifically and differentially expressed genes in field resistant *Ae.*
31 *aegypti* larvae. It was also shown that temephos resistant larvae undertake further gene
32 expression responses when temporarily exposed to this insecticide. The results from the
33 sampling triangulation approach undertaken here contributes a discrete DGE profiling with
34 reduced noise that permitted the observation of a greater gene diversity. This deeper gene
35 granularity significantly increases the number of potential targets for the control of

36 insecticide resistant mosquitoes and widens our knowledge base on the complex phenotypic
37 network of the *Ae. aegypti* mosquito responses to insecticides.

38 **Keywords:** Insecticide resistance; *Aedes aegypti*; RNA-seq; gene expression; cuticle; lectins;
39 long non-coding RNA; membrane transporters.

40 **Author Summary**

41 *Aedes aegypti* mosquitoes are vectors for several significant human viruses including dengue,
42 Zika and chikungunya. The lack of widely available vaccines and specific antiviral treatments
43 for these viruses means that the principal method for reducing disease burden is through
44 controlling the vector mosquitoes. Mosquito control relies heavily on the use of insecticides
45 and successful vector control is threatened by widespread insecticide resistance in *Ae.*
46 *aegypti*. Here, we examined changes in gene expression that occur in temephos resistant
47 populations of *Ae. aegypti* from two field populations in Colombia. We compare gene
48 expression in resistant larvae from Cúcuta with susceptible larvae from Bello and a
49 susceptible laboratory strain of *Ae. aegypti* (New Orleans). We also compare mosquitoes
50 from Cúcuta with and without temephos exposure. We report several differentially expressed
51 genes beyond those usually reported in resistant mosquitoes. We also demonstrate the over
52 estimation in differential gene expression that can occur when field resistant populations are
53 compared against lab susceptible populations only. The identification of new mechanisms
54 involved in the development of insecticide resistance is crucial to fully understanding how
55 resistance occurs and how best it can be reduced.

56 **Introduction**

57 Arboviral diseases including dengue, Zika and chikungunya are amongst the most significant
58 public health concerns worldwide. The geographical distribution and prevalence of these
59 arboviruses has been increasing rapidly in recent years with the number of dengue infections
60 reported to the WHO increasing 8-fold over the last 20 years [1]. The most significantly

61 affected world region is The Americas reporting 3,167,542 dengue cases, 181,477
62 chikungunya cases and 35,914 Zika cases in 2019 alone [2–5].

63 In the absence of effective vaccines for dengue, Zika and chikungunya, disease control still
64 relies on controlling mosquito vectors. Currently, this involves the use of insecticides
65 including DDT, pyrethroids and organophosphates such as temephos, an approach that has
66 not changed in over five decades of vector control programmes [6]. Temephos is one of the
67 most used larvicides worldwide due to its ease of use, cost efficacy and specificity towards
68 the larval stages of mosquitoes [7,8]. Its pharmacological activities are related to the
69 irreversible inhibition by phosphorylation of acetylcholinesterase (EC 3.1.1.7) [7], a
70 ubiquitous enzyme in Metazoan primarily expressed in the nerve endings and essential for
71 termination of acetylcholine-mediated neurotransmission [9].

72 Temephos was first used as a method of controlling *Ae. aegypti* larvae in the early 1970s [6]
73 with its continued use since leading to the development of resistance in *Ae. aegypti* in
74 multiple regions of the world [10–20]. The mechanisms conferring resistance to
75 organophosphates have been well studied in other important vector mosquitoes but are less
76 well understood in *Aedes* species despite their public health relevance. Mutations in the
77 acetylcholinesterase (AChE) gene (*ace-1*) have been reported in temephos resistant insects
78 [21] including the malaria vector *Anopheles gambiae* and the West Nile Virus vector *Culex*
79 *pipiens* [22–24]. However, mutational alleles of the AChE gene are a rare finding in *Ae.*
80 *aegypti* [25,26] due to genetic constraints [27].

81 A commonly reported insecticide resistance mechanism in mosquitoes is the increased
82 expression of genes encoding for enzymes capable of metabolic detoxification of insecticides
83 [28]. Three main enzyme families have been associated with insecticide detoxification in
84 mosquitoes: cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GST)

85 and carboxylesterases (CE). A total of 235 detoxification genes have previously been
86 identified in *Ae. aegypti* (26 GSTs, 160 cytochrome P450s and 49 CEs) [29]. Overexpression
87 of enzymes in all three of these groups has been associated with temephos resistance in *Ae.*
88 *aegypti* [13,17,30–32]. However, the genetic and phenotypic landscapes of insecticide
89 resistance is wider and more complex. Insecticide resistance has also been associated with
90 cuticular modification (through alteration of cuticular thickness or composition) [33–36] and
91 behavioural avoidance [37]. In those reports comprehensive gene expression profiling has
92 shown great discriminatory and quantitation power for identifying a wider range of potential
93 genes involved in insecticide resistance responses [34–36,38].

94 Next generation sequencing techniques, including RNA-Seq, provide a whole transcriptome
95 approach to the identification of resistance genes with high sensitivity and specificity. RNA-
96 Seq is now commonly used to investigate insecticide resistance in mosquitoes of medical
97 relevance (e.g. *An. gambiae* [39], *Ae. albopictus* [40]). In *Ae. aegypti* RNA-Seq has been
98 utilised to characterise the gene expression changes associated with insecticide resistance
99 developed through lab selection [41–43], however this approach has sparsely been used for
100 *Ae. aegypti* with field derived insecticide resistance [38].

101 This study aimed to profile mechanisms of resistance to the larvicide temephos in natural
102 populations of *Ae. aegypti*. The field samples originated from areas of differential arbovirus
103 burden and incidence in Colombia. In a previous study we stratified three regions in this
104 country with distinctive arboviral disease incidence, climatic variables and socio-economic
105 profiles through a recent time window of 11 years [44]. In the present work, *Ae. aegypti*
106 mosquito samples from two of those regions, Bello and Cúcuta, which had the lowest and
107 highest strata of disease burden, respectively were analysed. The differential gene expression
108 associated with the resistance to temephos was profiled in these two field populations of *Ae.*

109 *aegypti* (field-to-field comparison) with a data triangulation against the gene expression of
110 the lab-adapted *Ae. aegypti* reference strain New Orleans (NO).

111 The comparison of a field resistant population against a susceptible field population and a
112 susceptible lab population allowed us to select for gene expression specifically related to the
113 trait under study (resistance to temephos in circulating natural populations of *Ae. aegypti*)
114 while minimising the background noise from genotypic distance and phenotypic drifting of
115 field mosquito populations. The present work illustrates two angles of observations in
116 mosquito biology under selective pressure to the larvicide temephos: firstly, the potential
117 mechanisms of insecticide resistance itself and secondly, the further adjustments in
118 phenotype (extrapolated from gene expression profiles) that field insecticide resistant larvae
119 undergo when in transient exposure to the insecticide. The data presented significantly
120 expands the hitherto known composition of the gene expression responses of *Ae aegypti*
121 mosquitoes resistant to the larvicide temephos, with a granularity at the transcriptomic level
122 that goes beyond detoxification genes.

123 **Materials and methods**

124 ***Ae. aegypti* field collection and colonisation**

125 *Ae. aegypti* were collected from the Colombian municipalities of Bello and Cúcuta (Fig 1).
126 These municipalities were previously shown to be distinct in burden of *Ae. aegypti* borne
127 disease, socioeconomic status and climate [44]. Mosquito collections took place in 2016
128 (Bello) and 2017 (Cúcuta) with the assistance of personnel from biology and control of
129 infectious diseases research groups (University of Antioquia) and vector-borne disease
130 program staff within each municipality. Immature *Ae. aegypti* were collected from deployed
131 oviposition traps (ovitraps) and reared to adults under standard conditions at Universidad de
132 Antioquia, Colombia. Standard rearing conditions were 28 ± 1 °C, $80 \pm 5\%$ relative humidity

133 and a 12 h light: 12 h dark photoperiod. Reared adults were offered a blood meal and the eggs
134 collected for establishment of colonies. Upon establishment of colonies eggs were collected
135 and sent to Edge Hill University, UK for insecticide resistance profiling.

136 **Larval bioassays**

137 Larvae for use in insecticide bioassays were reared under standard conditions within Edge
138 Hill University Vector Research Group insectaries. Standard conditions were 27°C and 70%
139 RH with an 11-hour day/night cycle with 60-minute dawn/dusk simulation periods, using a
140 lighting system of 4× Osram Dulux 26W 840 lights. Eggs were submerged in a hatching
141 broth of 350 ml distilled H₂O (dH₂O), 0.125 g nutrient broth (Sigma-Aldrich, Darmstadt,
142 Germany) and 0.025 g brewer's yeast (Holland & Barrett, Ormskirk, UK) for 48 hours [45].
143 Larvae were fed ground fish food (AQUARIAN® advanced nutrition) and raised until third
144 to fourth instar. Larval bioassays were conducted following WHO standard test procedures
145 [46]. Preliminary testing was conducted to identify the activity range of temephos to larvae
146 from each of the study municipalities and a susceptible laboratory strain (New Orleans). The
147 activity ranges, yielding mortality of 10 - 95%, for each *Ae. aegypti* population as identified
148 by preliminary testing are displayed in Table 1. At least four replicates, each consisting of 20
149 third to fourth instar larvae, were conducted for each temephos concentration. Fresh
150 insecticide solutions were made for each replicate using temephos (93.7%; Pestanal®,
151 Sigma-Aldrich Darmstadt, Germany) and acetone (≥ 99.9%; Sigma-Aldrich, Darmstadt,
152 Germany). Bioassays were conducted inside the insectaries under standard conditions and
153 mortality recorded after a 24-hour exposure period. Following WHO guidelines, moribund
154 larvae were counted as dead. Controls were exposed to the acetone solvent only.

155 **Table 1. Temephos activity range yielding between 10-95% mortality to each mosquito**
156 **population.** Results of preliminary testing to identify the activity range of temephos to each
157 mosquito population. Activity ranges displayed in parts per million (ppm).

Population	Temephos Activity
	Range (ppm)
Bello	0.008-0.05
Cúcuta	0.02-0.10
New Orleans	0.004-0.008

158

159 **RNA extraction and cDNA synthesis**

160 ***Aedes aegypti* sample groups**

161 Following the larval bioassays, field samples were categorised as resistant (Cúcuta) or
162 susceptible (Bello). In the latter category were also samples from the lab adapted reference
163 strain New Orleans. The Cúcuta temephos resistant samples were further divided into two
164 groups: one exposed to temephos (for 24 hours) immediately before sampling for RNA
165 extraction, and a control group of no temephos exposure (unexposed) (Fig 2). For each group
166 (field susceptible (FS), lab susceptible (LS), field resistant exposed (FRE) and field resistant
167 unexposed (FRU)) RNA extractions were carried out from four different larvae batches
168 considered here as biological replicates.

169 **Standard rearing of *Aedes aegypti* for RNA extraction**

170 *Ae. aegypti* were reared to fourth instar larvae following a standard rearing protocol and
171 under standard conditions within Edge Hill University Vector Research Group insectaries.
172 Standard conditions were 27°C and 70% RH with an 11-hour day/night cycle with 60-minute
173 dawn/dusk simulation periods, using a lighting system of 4× Osram Dulux 26W 840 lights.
174 Eggs were submerged in a hatching broth of 350 ml dH₂O, 0.125 g nutrient broth (Sigma-
175 Aldrich, Dorset, UK) and 0.025 g brewer's yeast (Holland & Barrett, Ormskirk, UK) for 48

176 hours [45]. Once hatched, larvae were reared at a density of one larva/ml in dH₂O and fed
177 ground fish food (AQUARIAN® advanced nutrition) at increasing quantities per day (day 3
178 = 0.08 mg/larva, day 4 = 0.16 mg/larva, day 5 = 0.31 mg/larva) [47]. Six days after egg
179 submersion larvae were subjected to an insecticide bioassay in batches of 25 larvae in 100 ml
180 dH₂O, for 24 hours [46].

181 **Temephos exposure assays for resistant larvae**

182 Larvae in the resistant exposed group were exposed to temephos at the LC₅₀ of 0.06 ppm (Fig
183 2). Larvae in all unexposed groups were exposed to the equivalent volume of acetone (the
184 solvent used in temephos solutions). After the 24 h bioassay larvae were taken for RNA
185 extraction. For each experimental group there were four independent replicates, conducted
186 using eggs from different batches and rearing and extraction conducted on different days. Egg
187 submersion, feeding, bioassays and RNA extraction on all replicates were all conducted at the
188 same times of day.

189 **RNA extraction**

190 Larvae were homogenized using QIAshredders (Qiagen, Manchester, UK) then RNA
191 extracted using PicoPure® RNA Isolation Kit (Arcturus Bioscience, Mountain View, USA)
192 following the manufacturers' protocols. RNA was extracted from a total of 20 individual
193 larvae per biological replicate, with four larvae per column and the total RNA then pooled.
194 RNA quality and quantity were assessed using an Agilent 2100 bioanalyzer. The temephos
195 exposed population had 12-16 larvae per replicate due to mortality during bioassays.

196 **Library preparation and sequencing**

197 Library preparation and sequencing was conducted at Polo d'Innovazione di Genomica,
198 Genetica e Biologia, Italy. Libraries were prepared following the QIAseq™ Stranded mRNA
199 Select Kit Handbook (June 2019) for Illumina Paired-End Indexed Sequencing [48]. Libraries

200 were validated using the Fragment Analyzer High Sensitivity Small Fragment method to
201 assess size distribution and quantified using a Qubit® 3.0 Fluorometer. Indexed DNA
202 libraries were all normalized to 4 nM, pooled in equal volumes, and then loaded at a
203 concentration of 360 pM onto an Illumina Novaseq 6000 S1 flowcell, with 1% of Phix
204 control. The samples were sequenced using the Novaseq 6000 standard workflow with 2 x
205 150 bp pair end run. The experimental design for this study is outlined in Fig 2. The raw
206 reads obtained through RNA-Seq are deposited in NCBI's sequenced read archive (Accession
207 PRJNA730411).

208 **Data analysis**

209 **Bioassay data analysis**

210 Larval 50% and 95% lethal concentrations (LC₅₀ and LC₉₅) and their 95% confidence limits
211 (p < 0.05) were calculated using probit analysis according to Finney (1947) [49] using the
212 LC_probit function in the R ecotox package (version 1.4.0) [50]. Abbot's correction [51] was
213 not applied due to the control mortality never exceeding 10%. Resistance ratios (RR₅₀ and
214 RR₉₀) were calculated to assess temephos resistance by comparison of LC₅₀ and LC₉₀ for *Ae.*
215 *aegypti* from each field location to those of the susceptible laboratory strain (New Orleans).
216 Resistance ratios were defined as susceptible (<5-fold), moderate resistance (5 - 10-fold) and
217 high resistance (>10-fold) following WHO guidelines [46]. Statistical analyses of bioassay
218 data were conducted using R statistical software (version 3.6.1) [52].

219 **RNA-Seq data quality control, mapping and differential gene expression**

220 Analyses of RNA-Seq data were conducted using the Linux command line (Ubuntu 18.04)
221 and R statistical software (version 4.0.3) [52]. Sequence read quality was assessed using
222 FastQC (version 0.11.3). Reads with quality scores less than 30 and lengths less than 50 bp
223 were trimmed using cutadapt (version 2.10) with Python (version 3.8.3). Read quality was
224 then reassessed using FastQC to ensure only high-quality reads remained. Cleaned reads were

225 mapped to the *Ae. aegypti* LVP_AGWG reference genome (version AaegL5, GenBank:
226 NIGP00000000.1) using Rsubread (version 2.2.6) [53]. The resultant BAM files were sorted
227 and indexed using samtools (version 1.11). Alignment quality metrics from Rsubread were
228 visualized using R's plotting function. Gene count tables were generated using Rsubreads.
229 Read counts were normalized using the trimmed mean of M values method [54] in edgeR
230 (Version 3.30.3) which accounts for library size and expression bias in RNA-Seq datasets
231 [55]. Differential gene expression was then calculated using a Quasi-likelihood negative
232 binomial generalized log linear model (edgeR). Quasi-likelihood error family was selected
233 due to its ability to account for uncertainty in dispersion. Counts per million (CPM) were
234 calculated in edgeR and reads per kilobase million (RPKM) were calculated in edgeR using
235 transcript lengths obtained from Ensembl Metazoa (LVP AGWG (aalvpagwg_eg_gene)
236 dataset) using biomaRt (version 2.44.4). Transcripts with fold-change >2 and FDR < 0.05
237 were selected for gene ontology and KEGG pathway enrichment analyses.

238 **Gene ontology and KEGG pathway enrichment analyses**
239 Gene ontology (GO) category assignments were obtained from Ensembl Metazoa using
240 biomaRt (version 2.44.4) [56] and KEGG pathway assignments from Kyoto Encyclopedia of
241 Genes and Genomes using KEGGREST (1.28.0) [57]. GO and KEGG enrichment analyses
242 were conducted using GOseq (version 1.40.0), which allows for correction of biases arising
243 from the variable transcript lengths in RNA-Seq data [58]. Enrichment scores were calculated
244 using the Wallenius method within GOseq. P-values were then corrected for multiple testing
245 using the Benjamini–Hochberg method in the p.adjust function [52]. GO categories and
246 KEGG pathways with corrected p values <0.05 were considered significantly enriched.
247 Enrichment percentage was calculated as a ratio of the number of differentially expressed
248 genes within each category to the total number of genes within that category.

249 **Results**

250 **Temephos susceptibility of *Ae. aegypti* field isolates and the reference strain**

251 The lethal concentrations (LC₅₀) of temephos were 0.019 ppm (95% CI 0.016-0.029) and
252 0.060 ppm (CI 95% 0.052-0.070) for Bello and Cúcuta, respectively. This corresponded to
253 resistance ratios of 2.6 and 8.0 when compared to the New Orleans susceptible laboratory
254 strain (LC₅₀ = 0.008; CI 95% 0.006-0.012). The LC₉₅ for Bello was 0.055 (CI 95% 0.034-
255 0.292), 2.8-fold higher than New Orleans (LC₉₅ = 0.020; CI 95% 0.012-0.21). Cúcuta had a
256 LC₉₅ of 0.182, 9-fold higher than New Orleans (Table 2). Following the WHO guidelines [46]
257 larvae from Bello were considered susceptible to temephos and denoted as the field
258 susceptible (FS) population whilst the larvae from Cúcuta were resistant to this larvicide and
259 denoted as the field resistant (FR) population (Table 2). New Orleans is referred to as the lab
260 susceptible (LS) population.

261 **Table 2: LC₅₀ and LC₉₅ of Bello, Cúcuta and New Orleans *Ae. aegypti* larvae to**
262 **temephos.** Temephos bioassays showing LC₅₀, LC₉₅ and their 95% confidence limits,
263 calculated using probit analysis. Resistance ratios (RR) calculated as a ratio of the lethal
264 concentration (LC₅₀ and LC₉₅) of each population compared to the lab susceptible (New
265 Orleans) strain. Bello and New Orleans are both susceptible to temephos whilst larvae from
266 Cúcuta are resistant. SE = standard error.

Population	n ¹	LC50 (95% CI)	LC95 (95% CI)	Slope ± SE	RR50	RR95
Bello (Field susceptible)	580	0.0193 (0.0156- 0.0293)	0.0554 (0.0340- 0.2921)	3.5929 ± 0.3503	2.6	2.8
Cúcuta (Field resistant)	400	0.0599 (0.0516- 0.0698)	0.1818 (0.1357- 0.3081)	3.4115 ± 0.3465	8.0	9.0
New Orleans	400	0.0075 (0.0064- 0.0123)	0.0201 (0.0123- 0.0201)		1.0	1.0

(Lab	0.0123)	0.2075)
susceptible)		

267 ¹ n = the total number of larvae tested across all replicates

268 **RNA-Seq mapping summary**

269 Three different populations of *Ae. aegypti* larvae were profiled using RNA-Seq: temephos
270 field resistant (FR), field susceptible (FS) and the reference lab susceptible strain New
271 Orleans (LS). The FR population was also split in two further groups as either exposed or not
272 (unexposed) to temephos to determine further expression changes associated with insecticide
273 exposure in already resistant populations (Fig 2). Mosquito larvae from each of these four
274 populations were grown in four different batches, one to four weeks apart and were
275 considered here four biological replicas. This generated a total of 16 sequenced samples.

276 Extracted total RNA was used to generate the Illumina RNA-Seq libraries that produced 65.7
277 – 120 million reads per sample with quality scores >30 and lengths >50 bp and 84.4% and
278 85.6% of those reads in each sample were successfully aligned to the reference genome
279 (Table 3 and Materials and Methods). Using the most current gene model available for *Ae.*
280 *aegypti*, LVP_AGWG reference genome which contains 19,381 open reading frames (version
281 AaegL5, GenBank: NIGP00000000.1) the number of genes with successfully aligned reads
282 ranged from 15,704 and 16,607 genes across all samples, corresponding to 81 – 86% of the
283 total genes in the reference genome.

284 **Table 3: RNA-Seq sequencing data summary.** The total number of obtained reads after
285 quality control and the percentage of reads that mapped to the *Aedes aegypti* reference
286 genome. Quality control removed reads with quality <30 and lengths <50bp.

Group	Sample	Total Reads (Million)	Mapped to Genome (%)
Field	Bello 1	93.6	85.70
susceptible	Bello 2	107.9	85.50

	Bello 3	104.0	86.21
	Bello 4	87.7	85.37
	Bello Mean	98.3	85.70
	Cúcuta Exposed 1	95.3	84.42
	Cúcuta Exposed 2	120.0	84.67
	Cúcuta Exposed 3	65.7	84.77
	Cúcuta Exposed 4	84.5	85.93
Field	Cúcuta Exposed Mean	91.4	84.95
resistant	Cúcuta Unexposed 1	78.6	84.35
	Cúcuta Unexposed 2	98.4	85.45
	Cúcuta Unexposed 3	111.2	84.90
	Cúcuta Unexposed 4	93.4	85.14
	Cúcuta Unexposed Mean	95.4	84.96
	New Orleans 1	105.3	85.91
Lab	New Orleans 2	94.7	86.54
susceptible	New Orleans 3	93.3	86.59
	New Orleans 4	87.0	86.54
	New Orleans Mean	95.1	86.40

287

288 **Overview of differential gene expression**

289 Both field samples, susceptible and resistant (FS, FR) were equally and evidently distant, by
290 RPKM number, to the samples of the lab strain New Orleans (LS) (Fig 3). Crucially the
291 temephos susceptible samples did not cluster together nor did the two field samples (Fig 3).
292 Field and lab strain samples were similarly distant in terms of differentially expressed (DE)
293 transcripts: FS vs LS = 5324 DE transcripts (Fig 4D and 4E), FR vs LS = 5579 (Fig 4B and
294 4E). However, when comparing field samples (resistant and susceptible) the number of DE
295 transcripts visibly lowered by four-fold to 1,454 (Fig 4A and 4E). Therefore, the common
296 practice in gene expression studies of comparing mosquito field samples to lab strains (e.g.

297 [17,30,59,60]), would have generated an approximately 4-fold overestimation in the number
298 of DE transcripts detected in the field resistant samples.

299 We also sought to investigate the gene expression changes in insecticide resistant larvae
300 under transient exposure to insecticide. There were only 19 transcripts significantly
301 differentially expressed in larvae within the resistant population which were exposed to
302 temephos when compared to unexposed larvae from the same population (Fig 4E). All 19 of
303 those transcripts were overexpressed in the exposed group with no significant down regulated
304 gene expression detected (Fig 4C).

305 We addressed the issue of potential misrepresentation of gene expression metrics by
306 triangulating both, the differentially expressed gene (DEG) sets and the RPKM counts
307 between the field resistant (FR) samples against the field susceptible (FS) as well as the lab
308 susceptible (LS) samples. The DEG set obtained contained transcripts which were found to
309 be significantly differentially expressed with a fold change of >2 and a false-discovery rate
310 (adjusted P value) of <0.05 in both comparisons. Under this threshold, a total of 623 (down
311 from 1,454 transcripts in only the field-to-field comparison) transcripts covering 503 genes,
312 were found differentially expressed in the field resistant population when compared to both
313 the field and lab susceptible populations (Fig 4E). This set of 503 genes comprised 301
314 overexpressed genes and 202 under expressed genes (S1 Table). Of the 301 significantly
315 overexpressed genes 239 were found in the category of protein coding genes: 88 annotated
316 and 151 hypothetical genes. In the significantly under expressed gene set 166 were protein
317 coding with 75 annotated and 91 hypothetical genes (S1 Table). The significant differentially
318 expressed genes also included 55 overexpressed genes encoding for long non-coding RNA
319 (lncRNA) and 30 under expressed lncRNA genes in the temephos resistant larvae (S1 Table).

320 **Gene ontology and KEGG pathway enrichment**

321 All 623 transcripts with fold-change >2 and FDR < 0.05 were selected for gene ontology
322 (GO) and KEGG pathway enrichment analyses. GO categories and KEGG pathways with
323 corrected p values (FDR) < 0.05 were considered significantly enriched. Gene ontology and
324 KEGG enrichment analyses conducted on the 301 significantly over expressed genes
325 identified eight significantly enriched GO categories; one involved with biological processes,
326 oxidation-reduction processes (GO:0055114), and seven associated with molecular functions
327 (GO:0045735, GO:0016705, GO:0004100, GO:0004022, GO:0005506, GO:0016491,
328 GO:0047938) (Fig 5). KEGG enrichment analysis identified two significantly enriched
329 KEGG pathways in the over expressed genes; insect hormone biosynthesis (path:00981) and
330 ubiquinone and other terpenoid-quinone biosynthesis (path:00130) (Fig 5).

331 GO and KEGG enrichment analysis were also conducted on the 202 significantly under
332 expressed genes identifying 12 significantly enriched GO terms and one KEGG pathway
333 (path:00981) (Fig 5). The enriched GO terms include three terms involved in biological
334 processes (GO:0090150, GO:0046416, GO:0006470), one involved with cellular components
335 (GO:0005615) and seven associated with molecular functions (GO:0004866, GO:0004721,
336 GO:0003884, GO:0032977, GO:0047938, GO:0016641, GO:0071949) (Fig 5).

337 **The overexpressed transcriptome of field temephos resistant *Aedes aegypti* larvae**

338 The transcriptomic overview provided by the GO and KEGG enrichment models was
339 interrogated by quantifying the represented genes with CPM and RPKM metrics. The
340 expression profiles of the 88 annotated overexpressed protein coding genes in the resistant
341 population were visualised using heatmaps of gene expression as \log_2 values of counts per
342 million (CPM) (Fig 6) as well as bar plots of reads per kilobase million (RPKM) values of the
343 represented genes (Fig 7). The former allowed the visualisation of the data's granularity by
344 comparing gene expression across all 16 samples individually rather than just across groups

345 (Fig 6). Variation in expression between samples from the same experimental group can be
346 seen across all genes (Fig 6) highlighting the importance of biological replication in gene
347 expression experimentation. The heatmap also showed the importance of using field
348 susceptible populations in addition to lab susceptible comparator populations. Differences in
349 gene expression (e.g., CYP6B1 and PGRPLA) can be overrepresented when comparing
350 expression profiles between field and lab populations (here FR and LS) rather than between
351 field to field (e.g., FR and FS). Differences in gene expression were also visualised using
352 RPKM bar plots which enable ranking of genes specifically overexpressed in resistant
353 samples, the majority (151 of the 239 protein coding genes) of those did not have a functional
354 annotation in the current repository for VectorBase (Fig 7, S1 Table).

355 The over expressed annotated protein coding genes included detoxification enzymes; two
356 cytochrome P450s (*CYP12F6* - AAEL002005 and *CYP6BY1* - AAEL017539), a
357 carboxy/cholinesterase (*CCEAE4C* - AAEL003187), a glutathione S-transferase
358 (AAEL006818), two glucosyl/glucuronosyl transferases (AAEL002688 and AAEL003076)
359 and an aldehyde oxidase (AAEL014493). The cuticular biosynthesis enzyme chitin synthase
360 (AAEL002718) and the digestive enzymes, putative trypsin genes, AAEL007102,
361 AAEL014579, and AAEL003308, were also present.

362 Other over expressed genes included the hydrocarbon biosynthesis pathway enzyme acetyl-
363 CoA dehydrogenase (AAEL014452) [61], glutamate decarboxylase (AAEL010951) which
364 catalyses biosynthesis of GABA through glutamate decarboxylation [62], sarcosine
365 dehydrogenase (AAEL014936), a mitochondrial glycine synthesising enzyme [63], leucine
366 aminopeptidase (AAEL006975), a proteolytic enzyme that hydrolyses amino acids with roles
367 in toxin biosynthesis [64], a manganese-iron (Mn-Fe) superoxide dismutase (*MNSOD1* -
368 AAEL004823), a mitochondrial antioxidant associated with increased life span in insects
369 [65,66] and two mannose- binding C-Type Lectins (CTLs) AAEL011612 and AAEL000533,

370 ubiquitous proteins in multicellular organisms that provide the pattern recognition required
371 for the initial phase of an immune response [67,68].

372 **The under expressed transcriptome of field resistant *Aedes aegypti* larvae**

373 The transcript profiles of the 75 annotated protein coding genes significantly under expressed
374 genes in the resistant population were also visualised in heatmaps of gene expression (\log_2
375 values of CPM) (Fig 8) as well as bar plots of RPKMs (square root values) of the represented
376 genes (Fig 9). The former showing variation between the 16 samples and the latter displaying
377 variation between genes and between resistance status.

378 Genes encoding detoxification enzymes were also presented in this set of under expressed
379 genes. Those included the cytochrome P450 *CYP314A1* (AAEL010946) and a
380 glucosyl/glucuronosyl transferase (AAEL003098). A cytochrome oxidase biogenesis protein
381 (oxa1 mitochondrial - AAEL009183), essential for full expression of cytochrome c oxidase
382 was also under expressed. Other genes significantly under expressed in the resistant
383 population include a putative pupal cuticle protein (AAEL011444) and transferrin (*TfI* -
384 AAEL015458) a regulator of iron metabolism with roles in mosquito innate immunity [69].
385 The mdg4-binding protein ortholog gene in *Ae. aegypti* (AAEL010576: Modifier of mdg4
386 [Mod(mdg4)]), responsible for chromosome remodelling was also represented in this group
387 of under expressed genes.

388 The expression of several ion and solute membrane transporters were also down regulated.
389 These included the sodium-coupled cation-chloride cotransporter AAEL009886 (aeCC3), the
390 sodium/chloride dependent amino acid transporter AAEL000298, the sodium/solute
391 symporter AAEL001198, and the sugar transporter AAEL010348. In the group of under
392 expressed genes were also 30 lncRNA genes in the temephos resistant larvae (S1 Table).

393 **Gene expression profile of temephos exposed larvae from the resistant population**

394 Gene expression in the field resistant population following the controlled exposure to
395 temephos was compared with gene expression of samples from the same population without
396 insecticide exposure. The exposed samples showed 19 significantly (FC >2, p-value <0.05)
397 overexpressed transcripts (Fig 10A & S2 Table) in comparison to the non-exposed samples.
398 These 19 transcripts were mapped to 13 genes (Fig 10). The products of the over expressed
399 genes include a sodium/chloride dependent amino acid transporter (AAEL003619), an alkyl
400 dihydroxyacetone phosphate synthase (AAEL007793), cathepsin-1 (AAEL011167), trypsin -
401 1 (AAEL016975) and a serine protease stubble (AAEL020367). The remaining eight
402 overexpressed genes had uncharacterised products in *Ae. aegypti* (S2 Table).

403 **Discussion**

404 Management of arbovirus burden is threatened by insecticide resistance in mosquitoes which
405 reduces the effectiveness of vector control [70–72]. In this study we report resistance to
406 temephos in the field population of *Ae. aegypti* from Cúcuta whilst larvae from Bello were
407 susceptible. Bello is an area of relatively low arbovirus incidence [44] and has a lower
408 frequency of insecticide usage [73], whilst Cúcuta is an area of high arbovirus incidence
409 which has seen routine use of temephos for *Ae. aegypti* control over four decades [17]. The
410 reported resistance in Cúcuta is consistent with previous reports of temephos resistance in *Ae.*
411 *aegypti* from Cúcuta in 2010, seven years earlier than the mosquito collections took place for
412 this current study [17]. Whilst the resistance to temephos appears to have reduced in Cúcuta
413 from $RR_{50} = 11.85$ in 2010 [17] to $RR_{50} = 8.0$ in 2017 (current study) resistance to temephos
414 remains moderate demonstrating the long-term implications of insecticide resistance on
415 vector control programs. Management of arbovirus burden is threatened by insecticide
416 resistance in mosquitoes which reduces the effectiveness of vector control programs [71,74],
417 including alternatives such as biological control strategies [72].

418 The triangulation of differential gene expression against two unrelated susceptible
419 populations, one lab and one field, was selected to reduce confounding effects of phenotypic
420 differences between populations unrelated to insecticide resistance. Whilst this experimental
421 design does reduce these confounding effects it is not possible to mitigate this entirely and
422 therefore some of the differences in gene expression which are observed here may not be
423 related to temephos resistance but resistance to other insecticides and other phenotypic
424 differences between populations. The differential gene expression reported here could be the
425 reflection of the selective pressure under other larvical insecticides used in Cúcuta in a
426 similar time span and even selective pressure from adulticides, such as malathion,
427 fenitrothion, λ -cyhalothrin and deltamethrin [6,16], through vertical transfer. *Ae. aegypti*
428 larvae from Cúcuta have previously been reported to be highly resistant to the pyrethroid λ -
429 cyhalothrin whilst larvae from Bello were susceptible [75]. These findings from the same
430 study localities used in the current study demonstrate the effect adulticide resistance can have
431 on larvae. Cross resistance between organophosphates, such as temephos and pyrethroids has
432 also been reported in *Ae. aegypti* [76–78], including in Colombian *Ae. aegypti* populations
433 [16].

434 Differential gene expression associated with the resistant phenotype was identified by
435 selecting genes which were differentially expressed in the field resistant population compared
436 to both the field (Bello) and lab (New Orleans) susceptible populations. This reduced the
437 cofounding effects of location differences and enabled the analysis to focus on DGE
438 associated specifically with resistance. This comparison identified 503 significantly
439 differentially expressed genes which are potentially associated with the resistant phenotype,
440 301 of which were over expressed in the resistant population and 239 under expressed.

441 Genes which were found to be differentially expressed in the current study may also be the
442 result of epistatic interactions, genetic and biochemical, and therefore associated with other

443 biological processes aside from insecticide resistance, such as those which compensate for
444 resistance induced fitness cost [79–81] . Epistatic interactions between genes associated with
445 insecticide resistance are also known to influence different levels of resistance [82]. Under
446 such conceptual framework the following functional categories are highlighted.

447 **Metabolic detoxification genes**

448 Metabolic detoxification of insecticides is one of the most reported insecticide resistance
449 mechanisms in mosquitoes. Abundant overexpression of detoxification genes, most
450 commonly cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and
451 carboxylesterases (CE) has frequently been associated with insecticide resistance in
452 mosquitoes [83]. Here we reported the overexpression of only two P450s (*CYP12F6* -
453 *AAEL002005* and *CYP6BY1* -*AAEL017539*), one GST (*AAEL006818*) and one CE
454 (*CCEAE4C* (*AAEL003187*)), in the resistant population compared to both field and lab
455 susceptible populations. *CYP12F6* has previously been shown to be overexpressed in a
456 permethrin resistant population of adult *Ae. aegypti* from Mexico albeit compared with a lab
457 susceptible population only [41]. GO terms associated with insecticide detoxification
458 (oxidoreductase activity (GO:0016491) and oxidation-reduction process (GO:0055114)) were
459 also found to be enriched in the temephos resistant larvae. Thus, by cross examining the data
460 in field-to-field and field-to-lab population comparison, we observed genes representing these
461 three forms of insecticide deactivation in much reduced number compared to what is
462 commonly reported [17,30,59,60]. To illustrate the above, if the resistant population had been
463 compared with the lab susceptible population only a total of 49 cytochrome P450s, six GTSSs
464 and 11 CEs would have been reported as differentially expressed (S3 Table). This suggests
465 that large overexpression of detoxification genes may be partly related to differences between
466 field and lab mosquitoes rather than associated with the insecticide resistant phenotype. Large
467 overexpression of detoxification in mosquitoes may also only be observed in mosquitoes

468 when they have high levels of resistance rather than the moderate resistance reported here
469 [59,84].

470 **Chitin biosynthesis**

471 The thickness and composition of the cuticle has been identified as a critical determinant of
472 insecticide resistance due to its role in reducing insecticide penetration [33]. Over expression
473 of genes associated with formation and maintenance of the cuticle have been reported in
474 insecticide resistant populations of medically relevant species including *An. gambiae* [85–
475 87], *An. funestus* [88] and *Culex pipiens pallens* [89,90]. The cuticle has also been associated
476 with resistance in *Ae. aegypti* including in larvae [34,36]. The over expression of the chitin
477 biosynthesis enzyme AAEL002718 and the enrichment of chitin synthase activity
478 (GO:0004100) in temephos resistant *Ae. aegypti* larvae reported in this study further
479 highlights the potential role of the cuticle in the development of insecticide resistance in *Ae.*
480 *aegypti* larvae. Chitin, a biopolymer of N-acetylglucosamine, is a major constituent of the
481 mosquito cuticle (exoskeleton (epidermal cuticle), tracheal cuticle and eggshell) providing it
482 with both strength and rigidity and is also found in midgut peritrophic matrices [91]. The use
483 of chitin synthesis inhibitors (CSI), a type of insect growth regulators (IGRs) which interfere
484 with the synthesis and deposition of chitin on the exoskeleton [92], has been highlighted as a
485 potential approach to control *Ae. aegypti* with some promising findings in laboratory studies
486 [93,94].

487 **Pattern recognition and innate immunity**

488 Temephos resistant *Ae. aegypti* larvae were shown to express high levels of the mannose-
489 binding C-type lectins (CTLs) AAEL011612 and AAEL000533 which are predominantly
490 produced in the salivary glands of adult female *Ae. aegypti* [95,96]. Lectins are ubiquitous
491 proteins in multicellular organisms that provide the pattern recognition required for the initial
492 phase of an immune response [67,68]. C-type lectins are a group of calcium-dependant

493 carbohydrate binding proteins [97]. In mosquitoes CTLs are primarily involved in facilitating
494 viral infection (e.g., dengue, Rift Valley fever and Japanese encephalitis viruses [98,99])
495 through enhanced viral entry, acting as bridges between flaviviruses and host cell receptors
496 [99,100]. However, these proficient pattern recognition proteins seem to have evolved to
497 mediate multiple multicellular processes beyond mosquito immune response including
498 lifespan and reproductive capability [101] as well as maintenance of gut microbiome
499 homeostasis [102]. Transferrin (*TfI* - AAEL015458), found to be under expressed in
500 temephos resistant larvae in the current study, also has roles in the innate immune response to
501 arbovirus infection [98,103] and has previously been reported to be downregulated in CHIKV
502 and DENV infected mosquitoes which may favour viral replication [104]. Transferrin
503 expression has also been related to insecticide resistance in *Culex pipiens* with increased
504 expression reported in mosquitoes with target-site resistance to pyrethroids and
505 organophosphates, the biggest difference in transferrin expression was observed in adults
506 [105,106].

507 **Cell membrane transport**

508 The expression of several ion coupled solute membrane transporters was down regulated in
509 temephos resistant larvae: the sodium-coupled cation-chloride cotransporter AAEL009886
510 (aeCC3), the sodium/chloride dependent amino acid transporter AAEL000298, the
511 sodium/solute symporter AAEL001198, and the sugar transporter AAEL010348. aeCCC3 is
512 a larvae specific membrane transporter abundant in the anal papillae responsible for the
513 absorption of external ions [107] which belongs to a family of cation-coupled chloride
514 cotransporters (CCCs) which contribute to ion homeostasis by undertaking electroneutral
515 transport of Na^+ , K^+ and Cl^- [108]. A similar role is expected from the ion-coupled
516 transporters AAEL000298 and AAEL001198 in the homeostasis of ion content, particularly
517 in midgut and Malpighian tubes where they are most abundant [109].

518 The aquatic life of the *Ae. aegypti* larval stages demands an ion exchange homeostasis that
519 differs from that of the adult mosquitoes. Due to their freshwater habitat *Ae. aegypti* larvae
520 must excrete water gained by osmosis, reabsorb salt prior to excreting urine, and absorb salt
521 from their surroundings [110]. Whilst the opposite is true in adults where water retention is
522 needed due to constant loss through evaporation. A key process in this is Na⁺-dependent co-
523 transport which is typically down the large inward (extracellular to intracellular) Na⁺
524 gradient generated by the Na⁺/K⁺-ATPase [111]. We speculate that the ion homeostasis
525 changes caused by the reduced expression of the three CCCs transporters AAEL009886,
526 AAEL000298 and AAEL001198 could reduce the exposure of larvae to temephos by
527 reducing net uptake of the molecule, protecting the organs where they are commonly
528 expressed (e.g., midgut and Malpighian tubes). Transcriptome studies of insecticide resistant
529 mosquito populations tend to overlook the potential role of down regulated genes in favour of
530 overexpressed genes, but this finding demonstrates the importance of investigating reduced
531 expression when studying potential mechanisms of insecticide resistance. The potential role
532 of CCC transporters in reducing insecticide uptake and therefore facilitating resistance
533 warrants further investigation.

534 **Chromosomal remodelling**

535 The mdg4-binding protein ortholog gene (AAEL010576: modifier of mdg4 [Mod(mdg4)]),
536 responsible for chromosome remodelling was also significantly under expressed in the
537 resistant *Ae. aegypti* larvae. Originally described as a protein binding the transposon mdg4
538 [112], Mod(mdg4) gene encodes for a family of proteins due to at least 30 different
539 alternative splicing variants in Diptera and Lepidoptera [113–115]. Mod(mdg4) variants bind
540 a variety of insulators (DNA domains involved in nuclear organization and higher order
541 chromatin structures) [116–118] and have been involved in regulating numerous traits of the
542 insect embryonic progression such as synapsis structure [119], chromosome Y-linked testis

543 development [120], and mid-gut maturation [121]. Changes in expression of Mod(mdg4)
544 have been reported in *Drosophila* Kc cells treated with deltamethrin [122]. The identification
545 of under expression of the mdg4-binding protein in temephos resistant larvae suggests a
546 further role for this protein in mediating insecticide resistance.

547 **Long non-coding RNA**

548 There were 55 over expressed and 30 under expressed genes encoding for long non-coding
549 RNA (lncRNA) in the temephos resistant larvae (S1 Table). Non-coding RNAs (ncRNA) are
550 abundant cellular effectors of great prolific functionality [123] and long ncRNA are defined
551 as transcripts, more than 200 nucleotides long, that are produced by RNA polymerase II and
552 are not translated into proteins [124]. In *Aedes* lncRNAs, mainly involved in regulating gene
553 expression, are multifunction with roles including sex differentiation [125], embryogenesis
554 [126] and suppression of viral replication in DENV infected mosquitoes [127]. Long ncRNAs
555 have also been associated with insect's response to xenobiotics, with reports of differential
556 lncRNA expression in resistant populations of *Plutella xylostella* [128]. The findings of 85
557 differentially expressed lncRNAs reported here in resistant populations of *Ae. aegypti*
558 supports the potential roles that lncRNAs could have in the development of insecticide
559 resistance. Whilst gene expression studies have focussed primarily on differential expression
560 in protein coding genes, the development of next generation techniques have now provided
561 an opportunity to also study noncoding RNA. Whilst work has been conducted into
562 identifying lncRNAs in medically relevant mosquito species including *An. gambiae* [129] and
563 *Ae. aegypti* [126] there have been no studies that have aimed to investigate the role of
564 lncRNAs in insecticide resistance in mosquitoes. Previous RNA-Seq studies on insecticide
565 resistant populations of *Culex pipiens pallens* have also identified differential expression of
566 lncRNAs [130], however, an in-depth discussion of their role in insecticide resistance has
567 been neglected.

568 **Differential gene expression in resistant larvae following temephos exposure**

569 In the study we also tracked gene expression in insecticide resistant larvae following direct
570 response to temephos exposure. Thirteen genes were found to have a significantly increased
571 expression following a controlled exposure to temephos. Among those 13 genes were two
572 serine proteases: trypsin -1 (AAEL016975) and serine protease stubble (AAEL020367), a
573 cysteine protease: cathepsin-1 (AAEL011167), a sodium/chloride dependent amino acid
574 transporter (AAEL003619) and an alkyl dihydroxyacetone phosphate synthase
575 (AAEL007793). Serine proteases are a group of enzymes with a variety of known functions
576 including digestion, metamorphosis, oogenesis, blood coagulation and viral immune response
577 [98,131,132]. Cathepsin-1 (AAEL011167), a cysteine proteinase, is also a multifunctional
578 digestive enzyme [131,133]. Upregulation of serine proteases have been previously reported
579 in insecticide resistant mosquito populations [39,41,134,135], including temephos resistant
580 *Ae. aegypti* from Cúcuta [17]. Serine proteases have also been shown to degrade insecticides
581 through hydrolysis within the insect digestive tract, however so far evidence of this is limited
582 to pyrethroids such as deltamethrin [136–139]. Overexpressed proteases in this current study
583 support the findings of previous studies that proteases may have a role in the metabolism of
584 other insecticide classes besides pyrethroids. The changes responsible for resistance are often
585 associated with modification of physiological processes that can lead to decreased
586 performance and fitness disadvantage.

587 Deleterious effects of insecticide resistance can affect a wide range of life-history traits (e.g.
588 longevity, biting behaviour, and vector competence) [140,141]. Although the cost of
589 resistance genes is believed to gradually decrease due to subsequent modifier mutations
590 [142]. With the relatively limited diversity of insecticide targets [143], the gene expression
591 patterns that resistant mosquitoes further undergo when exposed to the insecticide could be a

592 source for novel assets for vector control. The study of such targets for insecticide
593 development is a strategy that, to our knowledge, has not yet been explored.

594 **Conclusion**

595 This study found differential insecticide responses from *Ae. aegypti* field samples of two
596 previously epidemiologically characterised sites in Colombia. Using these contrasting *Ae.*
597 *aegypti* field mosquito populations together with the New Orleans lab strain, we
598 demonstrated the risk of producing noise signal by overestimating by several fold the
599 differential gene expression if mosquito populations are compared only with laboratory
600 strains. The two overexpressed P450s in resistant *Ae. aegypti* larvae represent some ten-fold
601 lower levels in comparison to previous studies [59,84]. The role of the cuticle in insecticide
602 resistance suggested in previous studies is substantiated here. This study identified other
603 potential mechanisms not previously associated with insecticide resistance in mosquitoes.
604 These included changes in ion exchange homeostasis, chromatin remodelling, lectin-
605 mediated immune responses, and a plethora of lncRNAs. Evidently, there is a notorious gap
606 in our knowledge base of gene expression adaption in insecticide resistance. The work
607 presented here contributed to what seems to be an expansive and varied phenotypic landscape
608 in the *Ae. aegypti* responses to insecticides of current importance.

609 **Acknowledgements**

610 The work was funded by British Council Institutional Links Newton Fund and supported by
611 the project Research Infrastructures for the control of vector-borne diseases (Infravec2),
612 which has received funding from the European Union's Horizon 2020 research and
613 innovation program under grant agreement No 731060. The authors thank The University of
614 Liverpool for the support to J.E.S-S, Edge Hill University for support to JM and CS and Polo
615 d'Innovazione Genomica, Genetica e Biologia (poloGGB) for conducting the sequencing.

616 **Figure Legends**

617 **Fig 1. The location of the two study sites.** Mosquito collections took place in these two
618 locations, Bello and Cúcuta, within Colombia. Departments are the largest units of local
619 government. (A) Department of Antioquia governs Bello which is denoted as a small blue
620 area. (B) Department of Norte de Santander has as its capital Cúcuta, a city (red) to the East
621 of this department on the border with Venezuela. Map base layers were obtained from
622 <https://data.humdata.org/dataset/colombia-administrative-boundaries-levels-0-3> covered by a
623 Creative Commons Attribution 4.0 International (CC BY) License
624 (<https://creativecommons.org/licenses/by/4.0/legalcode>). Map base layers were modified by
625 the addition of colours.

626 **Fig 2. Block diagram of our experimental approach.** This study concerned the larval
627 stages of the mosquito *Ae. aegypti*. Field samples denoted as Resistant originated from the
628 Cúcuta, Colombia population. The Susceptible samples had dual origin: Field samples from
629 Bello, Colombia (Field Susceptible) and the New Orleans reference lab strain (Lab
630 Susceptible). The total RNA sequenced and mapped (Data analysis) originated from four
631 different experiments (biological replicates) from each population. The gene expression
632 levels of the Resistant samples compared against the Lab Susceptible and Field susceptible
633 had at least 503 differentially expressed genes (DEG). The Resistant samples of larvae
634 transiently exposed to temephos had 13 DEGs in comparison to the unexposed larvae. The
635 functional annotation for the DEG sets was carried with several different repositories:
636 VectorBase, Gene Ontology (GO) and KEGG Enrichment Analysis.

637 **Fig 3. Distribution of the transcriptomic profiles by sample groups.** The
638 multidimensionality of the RPKM values calculated for each mapped transcript per sample
639 was reduced by principal components analysis (PCA). The field samples were seen linearly
640 distant from each other across one component whilst the reference lab strain NO cluster (Lab

641 Susceptible) separated from both field samples. The orthogonal dispersion of these samples
642 allowed for the triangulation of the data as described in the main text.

643 **Fig 4. Differential gene expression in the samples from field susceptible, lab susceptible,**
644 **and field resistant populations.** (A-D) Differential expression of all transcripts including
645 those over expressed (red), under expressed (blue) and with no significant differential
646 expression (black) in the field resistant unexposed population compared to the field
647 susceptible population (A) and susceptible lab population (B), the resistant temephos exposed
648 population when compared to the resistant unexposed population (C) and in the field
649 susceptible population when compared to the lab susceptible population (D). (E) The number
650 of transcripts significantly differentially expressed (FC >2, FDR <0.05) between each of the
651 experimental groups. The number of differentially expressed transcripts shown here (E)
652 include both significantly over and under expressed transcripts. The comparison groups and
653 sample notation as detailed in Fig 2.

654 **Fig 5: GO terms and KEGG pathways enriched in the resistant population when**
655 **compared to both field and lab susceptible populations.** GO terms and KEGG pathways
656 found to be significantly enriched ($p < 0.05$) following Benjamini Hochberg correction in the
657 significantly over (A) and under (B) expressed transcripts. Enrichment percentage was
658 calculated as the number of differentially expressed transcripts in each category/pathway
659 divided by the total number of transcripts in the same category/pathway. Number in bars
660 indicate the number of differentially expressed transcripts in each category.

661 **Fig 6: Comparison of gene expression of significantly over expressed protein coding**
662 **annotated genes in the field resistant, field susceptible and laboratory susceptible**
663 **populations.** Comparison of the FR population to both FS and LS populations identified a
664 total of 88 protein coding VectorBase annotated genes with significant over expression (FC

665 >2, FDR <0.05). The expression levels were displayed as counts per million (CPM) which is
666 the number of counts per gene following normalisation. CPM values were calculated for each
667 gene by taking the mean CPM of each transcript within that gene. Gene expression was
668 displayed per sample, rather than per experimental group, allowing for visualisation of
669 granularity between samples. The gene expression was scaled by row to allow comparison
670 between samples rather than between genes. Variability in expression between samples from
671 the same experimental groups can be seen across all genes, highlighting the importance of
672 biological replication. There was a larger difference in expression between the FR and LS
673 than between the FR and FS for many genes including CYP6B1 and AAEL007102,
674 demonstrating the importance of using multiple susceptible comparator strains to reduce over
675 estimation of DGE.

676 **Fig 7: Differences in gene expression between resistant and susceptible populations of a**
677 **set of significantly over expressed, protein coding genes with VectorBase annotation.**

678 Comparison of the FR population to both FS and LS populations identified a total of 88
679 protein coding VectorBase annotated genes with significant over expression (FC >2, FDR
680 <0.05). Gene expression was displayed here as reads per kilobase million (RPKM) in the FR
681 population (red) and both susceptible populations (turquoise). RPKM values were calculated
682 for each gene by taking the mean RPKM of each transcript within that gene. The susceptible
683 RPKMs (max susceptible) represent the maximum RPKM for each gene in both FS and LS
684 populations. The RPKM values were square root transformed here to optimise the
685 visualisation of a vast range of values (0.02 to 39.11). Genes with average RPKM across
686 groups of below 0.02 (23 genes) were not included in the bar plot for visualisation purposes
687 but are included in S1 Table. Mean RPKM values per resistance status allow for comparison
688 of expression between genes as well as between groups.

689 **Fig 8: Comparison of gene expression of significantly under expressed protein coding**
690 **annotated genes in the field resistant, field susceptible and laboratory susceptible**
691 **populations.** Comparison of the FR population to both FS and LS populations identified a
692 total of 76 protein coding VectorBase annotated genes with significant under expression (FC
693 >2 , FDR <0.05). The expression was displayed here as counts per million (CPM) which is the
694 number of counts per gene following normalisation. CPM values were calculated for each
695 gene by taking the mean CPM of each transcript within that gene. Expression was displayed
696 per sample, rather than per experimental group, allowing for visualisation of granularity
697 between samples. The expression was scaled by row to allow comparison between samples
698 rather than between genes. Variability in expression between samples from the same
699 experimental groups can be seen across all genes, highlighting the importance of biological
700 replication. There was a larger difference in expression between the FR and LS than between
701 the FR and FS for many genes including CLIPB41 and RpL10, demonstrating the importance
702 of using multiple susceptible comparator strains to reduce over estimation of DGE.

703 **Fig 9: Differences in gene expression between resistant and susceptible populations of a**
704 **set of significantly under expressed, protein coding genes with VectorBase annotation.**
705 Comparison of the FR population to both FS and LS populations identified a total of 76
706 protein coding VectorBase annotated genes with significant under expression (FC >2 , FDR
707 <0.05). Gene expression was displayed here as reads per kilobase million (RPKM) in the FR
708 population (red) and both susceptible populations (turquoise). RPKM values were calculated
709 for each gene by taking the mean RPKM of each transcript within that gene. The susceptible
710 RPKMs (max susceptible) represent the maximum RPKM for each gene in both FS and LS
711 populations. The RPKM values were square root transformed here to optimise the
712 visualisation of a vast range of values (0.02 to 400). Genes with average RPKM across
713 groups of below 0.02 (14 genes) were not included in the bar plot for visualisation purposes

714 but are included in S1 Table. Mean RPKM values per resistance status allow for comparison
715 of expression between genes as well as between groups.

716 **Fig 10: Differential gene expression of temephos-resistant larvae under transient**
717 **exposure to temephos.** Comparison of the resistant temephos exposed population with the
718 resistant unexposed population identified 19 significantly over expressed transcripts and 13
719 significantly over expressed genes. The transcript expression was displayed here (A) as
720 counts per million (CPM) which is the number of counts per transcript following
721 normalisation. Expression was displayed per sample, rather than per experimental group,
722 allowing for visualisation of granularity between samples. The expression was scaled by row
723 to allow comparison between samples rather than between transcripts. Variability in
724 expression between samples from the same experimental groups can be seen across all genes,
725 highlighting the importance of biological replication. Gene expression was displayed here (B)
726 as reads per kilobase million (RPKM) in the resistant exposed population (darker red) and
727 resistant unexposed population (lighter red). RPKM values were calculated for each gene by
728 taking the mean RPKM of each transcript within that gene. The RPKM values were square
729 root transformed here to optimise the visualisation of a vast range of values (0.003 to 239).
730 Mean RPKM values per group allow for comparison of expression between genes as well as
731 between groups.

732 **References**

- 733 1. World Health Organization (WHO). Dengue and severe dengue. In: WHO Factsheets
734 [Internet]. 2020 [cited 31 Mar 2020]. Available:
735 <http://www.who.int/mediacentre/factsheets/fs117/en/>
- 736 2. Pan American Health Organization (PAHO), World Health Organization (WHO).
737 PLISA Health Information Platform for the Americas. In: Core indicators [Internet].
738 2019 [cited 1 Apr 2020]. Available: <https://www.paho.org/data/index.php/en/>
- 739 3. Villar LA, Rojas DP, Besada-Lombana S, Sarti E. Epidemiological Trends of Dengue

740 Disease in Colombia (2000-2011): A Systematic Review. *PLoS Negl Trop Dis.*
741 2015;9. doi:10.1371/journal.pntd.0003499

742 4. Bonilla-Aldana DK, Bonilla-Aldana JL, García-Bustos JJ, Lozada CO, Rodríguez-
743 Morales AJ. Geographical trends of chikungunya and Zika in the Colombian
744 Amazonian gateway department, Caquetá, 2015–2018 – Implications for public health
745 and travel medicine. *Travel Med Infect Dis.* 2020;35: 101481.
746 doi:10.1016/j.tmaid.2019.101481

747 5. Guagliardo SAJ, Ardila Roldan SC, Santacoloma L, Luna C, Cordovez Alvarez JM,
748 Rojas Gacha JD, et al. Enhanced vector surveillance to control arbovirus epidemics in
749 Colombia. *Rev Panam Salud Pública.* 2019;43: 1. doi:10.26633/rpsp.2019.50

750 6. Maestre-Serrano R, Gomez-Camargo D, Ponce-Garcia G, Flores AE. Susceptibility to
751 insecticides and resistance mechanisms in *Aedes aegypti* from the Colombian
752 Caribbean Region. *Pestic Biochem Physiol.* 2014;116: 63–73.
753 doi:10.1016/j.pestbp.2014.09.014

754 7. Fournier D, Bride JM, Hoffmann F, Karch F. Acetylcholinesterase. Two types of
755 modifications confer resistance to insecticide. *J Biol Chem.* 1992;267: 14270–14274.
756 doi:10.1016/s0021-9258(19)49708-1

757 8. Medicine NL of. Compound Summary for CID 5392, Temephos. In: PubChem
758 [Internet]. 2021 [cited 7 Apr 2021]. Available:
759 <https://pubchem.ncbi.nlm.nih.gov/compound/Temephos>

760 9. Silman I, Sussman JL. Acetylcholinesterase: “Classical” and “non-classical” functions
761 and pharmacology. *Curr Opin Pharmacol.* 2005;5: 293–302.
762 doi:10.1016/j.coph.2005.01.014

763 10. Albrieu Llinás G, Seccacini E, Gardenal CN, Licastro S. Current resistance status to
764 temephos in *Aedes aegypti* from different regions of Argentina. *Mem Inst Oswaldo
765 Cruz.* 2010;105: 113–116. doi:10.1590/s0074-02762010000100019

766 11. Polson KA, Brogdon WG, Rawlins SC, Chadee DD. Characterization of insecticide
767 resistance in Trinidadian strains of *Aedes aegypti* mosquitoes. *Acta Trop.* 2011;117:
768 31–38. doi:10.1016/j.actatropica.2010.09.005

769 12. Chediak M, Pimenta FG, Coelho GE, Braga IA, Lima JBP, Cavalcante KRLJ, et al.

770 Spatial and temporal country-wide survey of temephos resistance in Brazilian
771 populations of *aedes aegypti*. *Mem Inst Oswaldo Cruz*. 2016;111: 311–321.
772 doi:10.1590/0074-02760150409

773 13. Goindin D, Delannay C, Gelasse A, Ramdini C, Gaude T, Faucon F, et al. Levels of
774 insecticide resistance to deltamethrin, malathion, and temephos, and associated
775 mechanisms in *Aedes aegypti* mosquitoes from the Guadeloupe and Saint Martin
776 islands (French West Indies). *Infect Dis Poverty*. 2017;6: 1–15. doi:10.1186/s40249-
777 017-0254-x

778 14. Bharati M, Saha D. Assessment of insecticide resistance in primary dengue vector,
779 *Aedes aegypti* (Linn.) from Northern Districts of West Bengal, India. *Acta Trop*.
780 2018;187: 78–86. doi:10.1016/j.actatropica.2018.07.004

781 15. Saeung M, Ngoen-Klan R, Thanispong K, Muenworn V, Bangs MJ,
782 Chareonviriyaphap T. Susceptibility of *Aedes aegypti* and *Aedes albopictus* (Diptera:
783 Culicidae) to temephos in Thailand and surrounding countries. Florin D, editor. *J Med*
784 *Entomol*. 2020;57: 1207–1220. doi:10.1093/jme/tja035

785 16. Ocampo CB, Salazar-Terreros MJ, Mina NJ, McAllister J, Brogdon W. Insecticide
786 resistance status of *Aedes aegypti* in 10 localities in Colombia. *Acta Trop*. 2011;118:
787 37–44. doi:10.1016/j.actatropica.2011.01.007

788 17. Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A.
789 Temephos Resistance in *Aedes aegypti* in Colombia Compromises Dengue Vector
790 Control. Pimenta PF, editor. *PLoS Negl Trop Dis*. 2013;7: e2438.
791 doi:10.1371/journal.pntd.0002438

792 18. Conde M, Orjuela LI, Castellanos CA, Herrera-Varela M, Licastro S, Quiñones ML.
793 Evaluación de la sensibilidad a insecticidas en poblaciones de *Aedes aegypti* (Diptera:
794 Culicidae) del departamento de Caldas, Colombia, en 2007 y 2011. *Biomedica*.
795 2015;35: 43–52. doi:10.7705/biomedica.v35i1.2367

796 19. Aponte A, Penilla RP, Rodríguez AD, Ocampo CB. Mechanisms of pyrethroid
797 resistance in *Aedes (Stegomyia) aegypti* from Colombia. *Acta Trop*. 2019;191: 146–
798 154. doi:10.1016/J.ACTATROPICA.2018.12.021

799 20. Santacoloma L, Chaves B, Brochero HL. Estado de la susceptibilidad de poblaciones

800 naturales del vector del dengue a insecticidas en trece localidades de Colombia.
801 Biomedica. 2012;32: 333–343. doi:10.7705/biomedica.v32i3.680

802 21. Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in
803 insect populations. *Chem Biol Interact.* 2005;157–158: 257–261.
804 doi:10.1016/j.cbi.2005.10.040

805 22. Weill M, Malcolm C, Chandre F, Mogensen K, Berthomieu A, Marquine M, et al. The
806 unique mutation in ace-1 giving high insecticide resistance is easily detectable in
807 mosquito vectors. *Insect Mol Biol.* 2004;13: 1–7. doi:10.1111/j.1365-
808 2583.2004.00452.x

809 23. Tmimi FZ, Faraj C, Bkhache M, Mounaji K, Failloux AB, Sarih M. Insecticide
810 resistance and target site mutations (G119S ace-1 and L1014F kdr) of *Culex pipiens* in
811 Morocco. *Parasites and Vectors.* 2018;11: 51. doi:10.1186/s13071-018-2625-y

812 24. Djogbénou L, Dabiré R, Diabaté A, Kengne P, Akogbétó M, Hougard JM, et al.
813 Identification and geographic distribution of the ACE-1R mutation in the malaria
814 vector *Anopheles gambiae* in South-Western Burkina Faso, West Africa. *Am J Trop
815 Med Hyg.* 2008;78: 298–302. doi:10.4269/ajtmh.2008.78.298

816 25. Muthusamy R, Shivakumar MS. Susceptibility status of *Aedes aegypti* (L.) (Diptera:
817 Culicidae) to temephos from three districts of Tamil Nadu, India. *J Vector Borne Dis.*
818 2015;52: 159–165.

819 26. Hasmiwati, Rusjdi SR, Nofita E. Detection of ace-1 gene with insecticides resistance
820 in aedes aegypti populations from DHF-endemic areas in Padang, Indonesia.
821 *Biodiversitas.* 2018;19: 31–36. doi:10.13057/biodiv/d190105

822 27. Weill M, Berthomieu A, Berticat C, Lutfalla G, Nègre V, Pasteur N, et al. Insecticide
823 resistance: A silent base prediction. *Curr Biol.* 2004;14: 552.
824 doi:10.1016/j.cub.2004.07.008

825 28. Hemingway J, Hawkes NJ, McCarroll L, Ranson H. The molecular basis of insecticide
826 resistance in mosquitoes. *Insect Biochem Mol Biol.* 2004;34: 653–665.
827 doi:10.1016/j.ibmb.2004.03.018

828 29. Strode C, Wondji CS, David J-P, Lumjuan N, Hawkes NJ, Nelson DR, et al. Genomic
829 analysis of detoxification genes in the mosquito *Aedes aegypti* malERA: An updated

830 research agenda for malaria elimination and eradication View project The role of
831 cuticle modification in conferring insecticide resistance in *Aedes aegypti* View project
832 Genomic analysis of detoxification genes in the mosquito *Aedes aegypti*. *Artic Insect*
833 *Biochem Mol Biol.* 2008;38: 113–123. doi:10.1016/j.ibmb.2007.09.007

834 30. Marcombe S, Poupartin R, Darriet F, Reynaud S, Bonnet J, Strode C, et al. Exploring
835 the molecular basis of insecticide resistance in the dengue vector *Aedes aegypti*: A
836 case study in Martinique Island (French West Indies). *BMC Genomics.* 2009;10: 494.
837 doi:10.1186/1471-2164-10-494

838 31. Marcombe S, Fustec B, Cattel J, Chonephetsarath S, Thammavong P, Phommavanh N,
839 et al. Distribution of insecticide resistance and mechanisms involved in the arbovirus
840 vector *aedes aegypti* in laos and implication for vector control. *PLoS Negl Trop Dis.*
841 2019;13: 1–22. doi:10.1371/JOURNAL.PNTD.0007852

842 32. Poupartin R, Srisukontarat W, Yunta C, Ranson H. Identification of Carboxylesterase
843 Genes Implicated in Temephos Resistance in the Dengue Vector *Aedes aegypti*.
844 Benedict MQ, editor. *PLoS Negl Trop Dis.* 2014;8: e2743.
845 doi:10.1371/journal.pntd.0002743

846 33. Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of
847 insecticide resistance. *Curr Opin Insect Sci.* 2018;27: 68–74.
848 doi:10.1016/j.cois.2018.03.001

849 34. David JP, Coissac E, Melodelima C, Poupartin R, Riaz MA, Chandor-Proust A, et al.
850 Transcriptome response to pollutants and insecticides in the dengue vector *Aedes*
851 *aegypti* using next-generation sequencing technology. *BMC Genomics.* 2010;11: 216.
852 doi:10.1186/1471-2164-11-216

853 35. Seixas G, Grigoraki L, Weetman D, Vicente JL, Silva AC, Pinto J, et al. Insecticide
854 resistance is mediated by multiple mechanisms in recently introduced *Aedes aegypti*
855 from Madeira Island (Portugal). Lenhart A, editor. *PLoS Negl Trop Dis.* 2017;11:
856 e0005799. doi:10.1371/journal.pntd.0005799

857 36. Riaz AM, Chandor-Proust A, Dauphin-Villemant C, Poupartin R, Jones CM, Strode
858 C, et al. Molecular mechanisms associated with increased tolerance to the
859 neonicotinoid insecticide imidacloprid in the dengue vector *Aedes aegypti*. *Aquat*
860 *Toxicol.* 2013;126: 326–337. Available:

861 <http://www.sciencedirect.com/science/article/pii/S0166445X1200269X#fig0005>

862 37. Sukkanon C, Nararak J, Bangs MJ, Hii J, Chareonviriyaphap T. Behavioral responses
863 to transfluthrin by *Aedes aegypti*, *Anopheles minimus*, *Anopheles harrisoni*, and
864 *Anopheles dirus* (Diptera: Culicidae). Hwang J-S, editor. PLoS One. 2020;15:
865 e0237353. doi:10.1371/journal.pone.0237353

866 38. Faucon F, Gaude T, Dusfour I, Navratil V, Corbel V, Juntarajumnong W, et al. In the
867 hunt for genomic markers of metabolic resistance to pyrethroids in the mosquito *Aedes*
868 *aegypti*: An integrated next-generation sequencing approach. Reiner RC, editor. PLoS
869 Negl Trop Dis. 2017;11: e0005526. doi:10.1371/journal.pntd.0005526

870 39. Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, et al. Comparative
871 Transcriptome Analyses of Deltamethrin-Resistant and -Susceptible *Anopheles*
872 *gambiae* Mosquitoes from Kenya by RNA-Seq. Palli SR, editor. PLoS One. 2012;7:
873 e44607. doi:10.1371/journal.pone.0044607

874 40. Xu J, Su X, Bonizzoni M, Zhong D, Li Y, Zhou G, et al. Comparative transcriptome
875 analysis and RNA interference reveal CYP6A8 and SNPs related to pyrethroid
876 resistance in *Aedes albopictus*. Attardo GM, editor. PLoS Negl Trop Dis. 2018;12:
877 e0006828. doi:10.1371/journal.pntd.0006828

878 41. David J-P, Faucon F, Chandor-Proust A, Poupartin R, Riaz M, Bonin A, et al.
879 Comparative analysis of response to selection with three insecticides in the dengue
880 mosquito *Aedes aegypti* using mRNA sequencing. BMC Genomics. 2014;15: 174.
881 doi:10.1186/1471-2164-15-174

882 42. Després L, Stalinski R, Faucon F, Navratil V, Viari A, Paris M, et al. Chemical and
883 biological insecticides select distinct gene expression patterns in *Aedes aegypti*
884 mosquito. Biol Lett. 2014;10: 20140716. doi:10.1098/rsbl.2014.0716

885 43. Cattel J, Haberkorn C, Laporte F, Gaude T, Cumér T, Renaud J, et al. A genomic
886 amplification affecting a carboxylesterase gene cluster confers organophosphate
887 resistance in the mosquito *Aedes aegypti*: From genomic characterization to high-
888 throughput field detection. Evol Appl. 2021;14: 1009–1022. doi:10.1111/eva.13177

889 44. Morgan J, Strode C, Salcedo-Sora JE. Climatic and socio-economic factors supporting
890 the co-circulation of dengue, zika and chikungunya in three different ecosystems in

891 Colombia. PLoS Negl Trop Dis. 2021;15: e0009259.
892 doi:10.1371/journal.pntd.0009259

893 45. Zheng M-L, Zhang D-J, Damiens DD, Yamada H, Gilles JRL. Standard operating
894 procedures for standardized mass rearing of the dengue and chikungunya vectors
895 Aedes aegypti and Aedes albopictus (Diptera: Culicidae) - I - egg quantification.
896 Parasit Vectors. 2015;8. doi:10.1186/s13071-014-0631-2

897 46. World Health Organization (WHO). Monitoring and Managing Insecticide Resistance
898 in Aedes mosquito Populations. Who. 2016. Available:
899 http://apps.who.int/iris/bitstream/10665/204588/2/WHO_ZIKV_VC_16.1_eng.pdf?ua=1

900 47. Carvalho DO, Nimmo D, Naish N, McKemey AR, Gray P, Wilke ABB, et al. Mass
901 production of genetically modified Aedes aegypti for field releases in Brazil. J Vis
902 Exp. 2014; e3579. doi:10.3791/3579

903 48. Qiagen. QIAseq® Stranded mRNA Select Handbook. 2019. Available:
904 <https://www.qiagen.com/gb/resources/resourcedetail?id=06eff6bc-60eb-40ab-a018-8766e9ad5765&lang=en>

905 49. Ross GJS, Finney DJ. Probit Analysis. Stat. 1972;21: 222. doi:10.2307/2986688

906 50. Hlina BL. ecotox: Analysis of Ecotoxicology. R Package; 2019. Available:
907 <https://cran.r-project.org/web/packages/ecotox/index.html>

908 51. Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq
909 Control Assoc. 1987;3: 302–303. doi:10.1093/jee/18.2.265a

910 52. R Core Team. R: A Language and Environment for Statistical Computing. Viennna,
911 Austria: R Foundation for Statistical Computing; 2020. Available: www.R-project.org

912 53. Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and
913 better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res.
914 2019;47: e47.

915 54. Robinson MD, Oshlack A. A scaling normalization method for differential expression
916 analysis of RNA-seq data. Genome Biol. 2010;11: R25. doi:10.1186/gb-2010-11-3-r25

917 55. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
918

920 differential expression analysis of digital gene expression data. *Bioinformatics*.
921 2010;26: 139–140.

922 56. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration
923 of genomic datasets with the R/Bioconductor package biomaRt. *Nat Protoc*. 2009;4:
924 1184–1191.

925 57. Tenenbaum D. KEGGREST: Client-side REST access to KEGG. 2020.

926 58. Young MD, Wakefield MJ, Smyth GK. Gene ontology analysis for RNA-seq:
927 accounting for selection bias. *Genome Biol*. 2010;11: R14.

928 59. Dusfour I, Zorrilla P, Guidez A, Issaly J, Girod R, Guillaumot L, et al. Deltamethrin
929 Resistance Mechanisms in *Aedes aegypti* Populations from Three French Overseas
930 Territories Worldwide. Lenhart A, editor. *PLoS Negl Trop Dis*. 2015;9: e0004226.
931 doi:10.1371/journal.pntd.0004226

932 60. Ishak IH, Kamgang B, Ibrahim SS, Riveron JM, Irving H, Wondji CS. Pyrethroid
933 Resistance in Malaysian Populations of Dengue Vector *Aedes aegypti* Is Mediated by
934 CYP9 Family of Cytochrome P450 Genes. Apperson C, editor. *PLoS Negl Trop Dis*.
935 2017;11: e0005302. doi:10.1371/journal.pntd.0005302

936 61. Jones CM, Haji KA, Khatib BO, Bagi J, McHa J, Devine GJ, et al. The dynamics of
937 pyrethroid resistance in *Anopheles arabiensis* from Zanzibar and an assessment of the
938 underlying genetic basis. *Parasites and Vectors*. 2013;6. doi:10.1186/1756-3305-6-343

939 62. Richardson G, Ding H, Rocheleau T, Mayhew G, Reddy E, Han Q, et al. An
940 examination of aspartate decarboxylase and glutamate decarboxylase activity in
941 mosquitoes. *Mol Biol Rep*. 2010;37: 3199–3205. doi:10.1007/s11033-009-9902-y

942 63. Huang X, Poelchau MF, Armbruster PA. Global Transcriptional Dynamics of
943 Diapause Induction in Non-Blood-Fed and Blood-Fed *Aedes albopictus*. Olson KE,
944 editor. *PLoS Negl Trop Dis*. 2015;9: e0003724. doi:10.1371/journal.pntd.0003724

945 64. Matsui M, Fowler JH, Walling LL. Leucine aminopeptidases: Diversity in structure
946 and function. *Biol Chem*. 2006;387: 1535–1544. doi:10.1515/BC.2006.191

947 65. Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, et al. Extension of
948 life-span by loss of CHICO, a *Drosophila* insulin receptor substrate protein. *Science*
949 (80-). 2001;292: 104–106. doi:10.1126/science.1057991

950 66. Kang MA, Mott TM, Tapley EC, Lewis EE, Luckhart S. Insulin regulates aging and
951 oxidative stress in *Anopheles stephensi*. *J Exp Biol.* 2008;211: 741–748.
952 doi:10.1242/jeb.012955

953 67. Phillips DR, Clark KD. *Bombyx mori* and *Aedes aegypti* form multifunctional
954 immune Complexes that integrate Pattern recognition, melanization, coagulants, and
955 hemocyte recruitment. *PLoS One.* 2017;12. doi:10.1371/journal.pone.0171447

956 68. Ourth DD, Narra MB, Chung KT. Isolation of mannose-binding C-type lectin from
957 *Heliothis virescens* pupae. *Biochem Biophys Res Commun.* 2005;335: 1085–1089.
958 doi:10.1016/j.bbrc.2005.07.189

959 69. Yoshiga T, Hernandez VP, Fallon AM, Law JH. Mosquito transferrin, an acute-phase
960 protein that is up-regulated upon infection. *Proc Natl Acad Sci U S A.* 1997;94:
961 12337–12342. doi:10.1073/pnas.94.23.12337

962 70. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary
963 status of insecticide resistance in the major *Aedes* vectors of arboviruses infecting
964 humans. *PLoS Neglected Tropical Diseases.* 2017. doi:10.1371/journal.pntd.0005625

965 71. Maciel-de-Freitas R, Avendanho FC, Santos R, Sylvestre G, Araújo SC, Lima JBP, et
966 al. Undesirable consequences of insecticide resistance following *Aedes aegypti* control
967 activities due to a dengue outbreak. *PLoS One.* 2014;9.
968 doi:10.1371/journal.pone.0092424

969 72. Garcia GA, Hoffmann AA, Maciel-de-Freitas R, Villela DAM. *Aedes aegypti*
970 insecticide resistance underlies the success (and failure) of Wolbachia population
971 replacement. *Sci Rep.* 2020;10. doi:10.1038/s41598-019-56766-4

972 73. Granada Y, Mejía-Jaramillo AM, Strode C, Triana-Chavez O. A point mutation V419I
973 in the sodium channel gene from natural populations of *Aedes aegypti* is involved in
974 resistance to λ -cyhalothrin in Colombia. *Insects.* 2018;9: 23.
975 doi:10.3390/insects9010023

976 74. Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary
977 status of insecticide resistance in the major *Aedes* vectors of arboviruses infecting
978 humans. Sinnis P, editor. *PLoS Negl Trop Dis.* 2017;11: e0005625.
979 doi:10.1371/journal.pntd.0005625

980 75. Arévalo-Cortés A, Mejia-Jaramillo AM, Granada Y, Coatsworth H, Lowenberger C,
981 Triana-Chavez O. The midgut microbiota of colombian *aedes aegypti* populations with
982 different levels of resistance to the insecticide lambda-cyhalothrin. *Insects*. 2020;11:
983 1–19. doi:10.3390/insects11090584

984 76. Smith LB, Sears C, Sun H, Mertz RW, Kasai S, Scott JG. CYP-mediated resistance
985 and cross-resistance to pyrethroids and organophosphates in *Aedes aegypti* in the
986 presence and absence of kdr. *Pestic Biochem Physiol*. 2019;160: 119–126.
987 doi:10.1016/j.pestbp.2019.07.011

988 77. Rodríguez MM, Bisset J, Ruiz M, Soca A. Cross-resistance to pyrethroid and
989 organophosphorus insecticides induced by selection with temephos in *Aedes aegypti*
990 (Diptera: Culicidae) from Cuba. *J Med Entomol*. 2002;39: 882–888.
991 doi:10.1603/0022-2585-39.6.882

992 78. Wirth MC, Georghiou GP. Selection and characterization of temephos resistance in a
993 population of *Aedes aegypti* from Tortola, British Virgin Islands. *J Am Mosq Control
994 Assoc*. 1999;15: 315–320.

995 79. Smith DT, Hosken DJ, Rostant WG, Yeo M, Griffin RM, Bretman A, et al. DDT
996 resistance, epistasis and male fitness in flies. *J Evol Biol*. 2011;24: 1351–1362.
997 doi:10.1111/j.1420-9101.2011.02271.x

998 80. Raymond M, Heckel DG, Scott JG. Interactions between pesticide genes: model and
999 experiment. *Genetics*. 1989;123: 543–551. doi:10.1093/genetics/123.3.543

1000 81. Hawkins NJ, Bass C, Dixon A, Neve P. The evolutionary origins of pesticide
1001 resistance. *Biol Rev*. 2019;94: 135–155. doi:10.1111/brv.12440

1002 82. Hardstone MC, Scott JG. A review of the interactions between multiple insecticide
1003 resistance loci. *Pestic Biochem Physiol*. 2010;97: 123–128.
1004 doi:10.1016/j.pestbp.2009.07.010

1005 83. Vontas J, Katsavou E, Mavridis K. Cytochrome P450-based metabolic insecticide
1006 resistance in *Anopheles* and *Aedes* mosquito vectors: Muddying the waters. *Pestic
1007 Biochem Physiol*. 2020;170: 104666. doi:10.1016/j.pestbp.2020.104666

1008 84. Ishak IH, Jaal Z, Ranson H, Wondji CS. Contrasting patterns of insecticide resistance
1009 and knockdown resistance (kdr) in the dengue vectors *Aedes aegypti* and *Aedes*

1010 albopictus from Malaysia. *Parasites and Vectors*. 2015;8: 181. doi:10.1186/s13071-
1011 015-0797-2

1012 85. Balabanidou V, Kampouraki A, MacLean M, Blomquist GJ, Tittiger C, Juárez MP, et
1013 al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular
1014 hydrocarbon production in *Anopheles gambiae*. *Proc Natl Acad Sci*. 2016;113: 9268–
1015 9273. doi:10.1073/pnas.1608295113

1016 86. Yahouédo GA, Chandre F, Rossignol M, Ginibre C, Balabanidou V, Mendez NGA, et
1017 al. Contributions of cuticle permeability and enzyme detoxification to pyrethroid
1018 resistance in the major malaria vector *Anopheles gambiae*. *Sci Rep*. 2017;7: 11091.
1019 doi:10.1038/s41598-017-11357-z

1020 87. Awolola TSS, Oduola OAA, Strode C, Koekemoer LLL, Brooke B, Ranson H.
1021 Evidence of multiple pyrethroid resistance mechanisms in the malaria vector
1022 *Anopheles gambiae* sensu stricto from Nigeria. *Trans R Soc Trop Med Hyg*. 2009;103:
1023 1139–1145. doi:10.1016/j.trstmh.2008.08.021

1024 88. Gregory R, Darby AC, Irving H, Coulibaly MB, Hughes M, Koekemoer LL, et al. A
1025 De Novo Expression Profiling of *Anopheles funestus*, Malaria Vector in Africa, Using
1026 454 Pyrosequencing. Michalak P, editor. *PLoS One*. 2011;6: e17418.
1027 doi:10.1371/journal.pone.0017418

1028 89. Fang F, Wang W, Zhang D, Lv Y, Zhou D, Ma L, et al. The cuticle proteins: a putative
1029 role for deltamethrin resistance in *Culex pipiens pallens*. *Parasitol Res*. 2015;114:
1030 4421–4429. doi:10.1007/s00436-015-4683-9

1031 90. Pan C, Zhou Y, Mo J. The clone of laccase gene and its potential function in cuticular
1032 penetration resistance of *Culex pipiens pallens* to fenvalerate. 2008 [cited 12 Jul 2017].
1033 doi:10.1016/j.pestbp.2008.12.003

1034 91. Merzendorfer H, Zimoch L. Chitin metabolism in insects: Structure, function and
1035 regulation of chitin synthases and chitinases. *J Exp Biol*. 2003;206: 4393–4412.
1036 doi:10.1242/jeb.00709

1037 92. Tunaz H, Uygun N. Insect growth regulators for insect pest control. *Turkish J Agric
1038 For*. 2004;28: 377–387. doi:10.3906/tar-0309-5

1039 93. Martins AJ, Belinato TA, Lima JBP, Valle D. Chitin synthesis inhibitor effect on

1040 Aedes aegypti populations susceptible and resistant to organophosphate temephos. Pest
1041 Manag Sci. 2008;64: 676–680. doi:10.1002/ps.1547

1042 94. Fontoura NG, Bellinato DF, Valle D, Lima JBP. The efficacy of a chitin synthesis
1043 inhibitor against field populations of organophosphate-resistant Aedes Aegypti in
1044 Brazil. Mem Inst Oswaldo Cruz. 2012;107: 387–395. doi:10.1590/S0074-
1045 02762012000300014

1046 95. Adelman ZN, Myles KM. The C-type lectin domain gene family in Aedes aegypti and
1047 their role in arbovirus infection. Viruses. 2018;10. doi:10.3390/v10070367

1048 96. Ribeiro JMC, Martin-Martin I, Arcá B, Calvo E. A deep insight into the sialome of
1049 male and female aedes aegypti mosquitoes. PLoS One. 2016;11.
1050 doi:10.1371/journal.pone.0151400

1051 97. Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J.
1052 2005;272: 6179–6217. doi:10.1111/j.1742-4658.2005.05031.x

1053 98. Licciardi S, Loire E, Cardinale E, Gislard M, Dubois E, Cêtre-Sossah C. In vitro
1054 shared transcriptomic responses of Aedes aegypti to arboviral infections: Example of
1055 dengue and Rift Valley fever viruses. Parasites and Vectors. 2020;13.
1056 doi:10.1186/s13071-020-04253-5

1057 99. Liu K, Qian Y, Jung Y-S, Zhou B, Cao R, Shen T, et al. mosGCTL-7, a C-Type Lectin
1058 Protein, Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol.
1059 2017;91. doi:10.1128/jvi.01348-16

1060 100. Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, et al. A C-Type Lectin
1061 Collaborates with a CD45 Phosphatase Homolog to Facilitate West Nile Virus
1062 Infection of Mosquitoes. Cell. 2010;142: 714–725. doi:10.1016/j.cell.2010.07.038

1063 101. Li HH, Cai Y, Li JC, Su MP, Liu WL, Cheng L, et al. C-Type Lectins Link
1064 Immunological and Reproductive Processes in Aedes aegypti. iScience. 2020;23.
1065 doi:10.1016/j.isci.2020.101486

1066 102. Pang X, Xiao X, Liu Y, Zhang R, Liu J, Liu Q, et al. Mosquito C-type lectins maintain
1067 gut microbiome homeostasis. Nat Microbiol. 2016;1. doi:10.1038/nmicrobiol.2016.23

1068 103. Wessling-Resnick M. Crossing the iron gate: Why and how transferrin receptors
1069 mediate viral entry. Annu Rev Nutr. 2018;38: 431–458. doi:10.1146/annurev-nutr-

1070 082117-051749

1071 104. Tchankouo-Nguetcheu S, Khun H, Pincet L, Roux P, Bahut M, Huerre M, et al.
1072 Differential protein modulation in midguts of *Aedes aegypti* infected with
1073 chikungunya and dengue 2 viruses. *PLoS One*. 2010;5: e13149.
1074 doi:10.1371/journal.pone.0013149

1075 105. Tan W, Wang X, Cheng P, Liu L, Wang H, Gong M, et al. Cloning and overexpression
1076 of transferrin gene from cypermethrin-resistant *Culex pipiens pallens*. *Parasitol Res*.
1077 2012;110: 939–959. doi:10.1007/s00436-011-2580-4

1078 106. Vézilier J, Nicot A, De Lorgeril J, Gandon S, Rivero A. The impact of insecticide
1079 resistance on *Culex pipiens* immunity. *Evol Appl*. 2013;6: 497–509.
1080 doi:10.1111/eva.12037

1081 107. Piermarini PM, Akuma DC, Crow JC, Jamil TL, Kerkhoff WG, Viel KCMF, et al.
1082 Differential expression of putative sodium-dependent cation-chloride cotransporters in
1083 *Aedes aegypti*. *Comp Biochem Physiol -Part A Mol Integr Physiol*. 2017;214: 40–49.
1084 doi:10.1016/j.cbpa.2017.09.007

1085 108. Pullikuth AK, Filippov V, Gill SS. Phylogeny and cloning of ion transporters in
1086 mosquitoes. *J Exp Biol*. 2003;206: 3857–3868. doi:10.1242/jeb.00641

1087 109. Li Y, Piermarini PM, Esquivel CJ, Drumm HE, Schilkey FD, Hansen IA. RNA-Seq
1088 comparison of larval and adult malpighian tubules of the yellow fever mosquito *aedes*
1089 *aegypti* reveals life stage-specific changes in renal function. *Front Physiol*. 2017;8.
1090 doi:10.3389/fphys.2017.00283

1091 110. Ramasamy R, Thiruchenthooran V, Jayadas TTP, Eswaramohan T, Santhirasegaram S,
1092 Sivabalakrishnan K, et al. Transcriptomic, proteomic and ultrastructural studies on
1093 salinity-tolerant *Aedes aegypti* in the context of rising sea levels and arboviral disease
1094 epidemiology. *BMC Genomics*. 2021;22. doi:10.1186/s12864-021-07564-8

1095 111. Payne JA. Molecular Operation of the Cation Chloride Cotransporters: Ion Binding
1096 and Inhibitor Interaction. *Current Topics in Membranes*. Academic Press Inc.; 2012.
1097 pp. 215–237. doi:10.1016/B978-0-12-394316-3.00006-5

1098 112. Bayev AA, Lyubomirskaya N V., Dzhumagaliev EB, Ananiev E V., Amiantova IG,
1099 Ilyin Y V. Structural organization of transposable element mdg4 from *Drosophila*

1100 melanogaster and a nucleotide sequence of its long terminal repeats. *Nucleic Acids*
1101 *Res.* 1984;12: 3707–3723. doi:10.1093/nar/12.8.3707

1102 113. Tikhonov M, Utkina M, Maksimenko O, Georgiev P. Conserved sequences in the
1103 Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination
1104 and trans-splicing. *Nucleic Acids Res.* 2018;46: 10608–10618.
1105 doi:10.1093/nar/gky716

1106 114. Gabler M, Volkmar M, Weinlich S, Herbst A, Dobberthien P, Sklarss S, et al. Trans-
1107 splicing of the mod(mdg4) complex locus is conserved between the distantly related
1108 species *Drosophila melanogaster* and *D. virilis*. *Genetics*. 2005;169: 723–736.
1109 doi:10.1534/genetics.103.020842

1110 115. Krauss V, Dorn R. Evolution of the trans-splicing *Drosophila* locus mod(mdg4) in
1111 several species of Diptera and Lepidoptera. *Gene*. 2004;331: 165–176.
1112 doi:10.1016/j.gene.2004.02.019

1113 116. Golovnin A, Mazur A, Kopantseva M, Kurshakova M, Gulak P V., Gilmore B, et al.
1114 Integrity of the Mod(mdg4)-67.2 BTB Domain Is Critical to Insulator Function in
1115 *Drosophila melanogaster*. *Mol Cell Biol*. 2007;27: 963–974. doi:10.1128/mcb.00795-
1116 06

1117 117. Melnikova L, Juge F, Gruzdeva N, Mazur A, Cavalli G, Georgiev P. Interaction
1118 between the GAGA factor and Mod(mdg4) proteins promotes insulator bypass in
1119 *Drosophila*. *Proc Natl Acad Sci U S A*. 2004;101: 14806–14811.
1120 doi:10.1073/pnas.0403959101

1121 118. Ghosh D, Gerasimova TI, Corces VG. Interactions between the Su(Hw) and
1122 Mod(mdg4) proteins required for gypsy insulator function. *EMBO J*. 2001;20: 2518–
1123 2527. doi:10.1093/emboj/20.10.2518

1124 119. Gorczyca M, Popova E, Jia XX, Budnik V. The gene mod(mdg4) affects synapse
1125 specificity and structure in *Drosophila*. *J Neurobiol*. 1999;39: 447–460.
1126 doi:10.1002/(SICI)1097-4695(19990605)39:3<447::AID-NEU10>3.0.CO;2-Q

1127 120. Branco AT, Hart DL, Lemos B. Chromatin-associated proteins HP1 and mod(mdg4)
1128 modify Y-linked regulatory variation in the *Drosophila* testis. *Genetics*. 2013;194:
1129 609–618. doi:10.1534/genetics.113.150805

1130 121. Cai MJ, Liu W, He HJ, Wang JX, Zhao XF. Mod(mdg4) participates in hormonally
1131 regulated midgut programmed cell death during metamorphosis. *Apoptosis*. 2012;17:
1132 1327–1339. doi:10.1007/s10495-012-0761-y

1133 122. Liu Y, Ge M, Zhang T, Chen L, Xing Y, Liu L, et al. Exploring the correlation
1134 between deltamethrin stress and Keap1-Nrf2-ARE pathway from *Drosophila*
1135 *melanogaster* RNASeq data. *Genomics*. 2020;112: 1300–1308.
1136 doi:10.1016/j.ygeno.2019.07.019

1137 123. Eddy SR. Non-coding RNA genes and the modern RNA world. *Nat Rev Genet*.
1138 2001;2: 919–929. doi:10.1038/35103511

1139 124. Bonasio R, Shiekhattar R. Regulation of transcription by long noncoding RNAs. *Annu
1140 Rev Genet*. 2014;48: 433–455. doi:10.1146/annurev-genet-120213-092323

1141 125. Xu Y, Dong Y, Xu Y, Lai Z, Jin B, Hao Y, et al. Differentiation of Long Non-Coding
1142 RNA and mRNA Expression Profiles in Male and Female *Aedes albopictus*. *Front
1143 Genet*. 2019;10. doi:10.3389/fgene.2019.00975

1144 126. Azlan A, Obeidat SM, Yunus MA, Azzam G. Systematic identification and
1145 characterization of *Aedes aegypti* long noncoding RNAs (lncRNAs). *Sci Rep*. 2019;9:
1146 1–9. doi:10.1038/s41598-019-47506-9

1147 127. Etebari K, Asad S, Zhang G, Asgari S. Identification of *Aedes aegypti* Long Intergenic
1148 Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection.
1149 Olson KE, editor. *PLoS Negl Trop Dis*. 2016;10: e0005069.
1150 doi:10.1371/journal.pntd.0005069

1151 128. Etebari K, Furlong MJ, Asgari S. Genome wide discovery of long intergenic non-
1152 coding RNAs in Diamondback moth (*Plutella xylostella*) and their expression in
1153 insecticide resistant strains. *Sci Rep*. 2015;5: 1–14. doi:10.1038/srep14642

1154 129. Jenkins AM, Waterhouse RM, Muskavitch MAT. Long non-coding RNA discovery
1155 across the genus *Anopheles* reveals conserved secondary structures within and beyond
1156 the *Gambiae* complex. *BMC Genomics*. 2015;16: 1–14. doi:10.1186/s12864-015-
1157 1507-3

1158 130. Shi Q, Cheng P, Zhang C, Liu L, Song X, Guo X, et al. RNA-seq screening of cuticle
1159 protein genes in *Culex pipiens pallens* among cypermethrin-resistant populations. *Res*

1160 Sq [Preprint]. 2020 [cited 15 Apr 2021]. doi:10.21203/rs.2.21778/v1

1161 131. Terra WR, Ferreira C. Insect digestive enzymes: properties, compartmentalization and
1162 function. *Comp Biochem Physiol -- Part B Biochem*. 1994;109: 1–62.
1163 doi:10.1016/0305-0491(94)90141-4

1164 132. Mesquita-Rodrigues C, Saboia-Vahia L, Cuervo P, Masini d'Avila Levy C, Alves
1165 Honorio N, Domont GB, et al. Expression of trypsin-like serine peptidases in pre-
1166 imaginal stages of *Aedes aegypti* (Diptera: Culicidae). *Arch Insect Biochem Physiol*.
1167 2011;76: 223–235. doi:10.1002/arch.20412

1168 133. Liu J, Shi GP, Zhang WQ, Zhang GR, Xu WH. Cathepsin L function in insect
1169 moulting: Molecular cloning and functional analysis in cotton bollworm, *Helicoverpa*
1170 *armigera*. *Insect Mol Biol*. 2006;15: 823–834. doi:10.1111/j.1365-2583.2006.00686.x

1171 134. Reid WR, Zhang L, Liu F, Liu N. The Transcriptome Profile of the Mosquito *Culex*
1172 *quinquefasciatus* following Permethrin Selection. Palli SR, editor. *PLoS One*. 2012;7:
1173 e47163. doi:10.1371/journal.pone.0047163

1174 135. Zou F, Guo Q, Sun Y, Zhou D, Hu M, Hu H, et al. Identification of protease m1 zinc
1175 metalloprotease conferring resistance to deltamethrin by characterization of an AFLP
1176 marker in *Culex pipiens pallens*. *Parasites and Vectors*. 2016;9: 1–10.
1177 doi:10.1186/s13071-016-1450-4

1178 136. Xiong C, Fang F, Chen L, Yang Q, He J, Zhou D, et al. Trypsin-catalyzed deltamethrin
1179 degradation. *PLoS One*. 2014;9: 89517. doi:10.1371/journal.pone.0089517

1180 137. Yang M, Qian J, Sun J, Xu Y, Zhang D, Ma L, et al. Cloning and characterization of
1181 myosin regulatory light chain (MRLC) gene from *Culex pipiens pallens*. *Comp*
1182 *Biochem Physiol - B Biochem Mol Biol*. 2008;151: 230–235.
1183 doi:10.1016/j.cbpb.2008.07.008

1184 138. Yang Q, Sun L, Zhang D, Qian J, Sun Y, Ma L, et al. Partial characterization of
1185 deltamethrin metabolism catalyzed by chymotrypsin. *Toxicol Vitr*. 2008;22: 1528–
1186 1533. doi:10.1016/j.tiv.2008.05.007

1187 139. Wilkins RM. Insecticide resistance and intracellular proteases. *Pest Manag Sci*.
1188 2017;73: 2403–2412. doi:10.1002/ps.4646

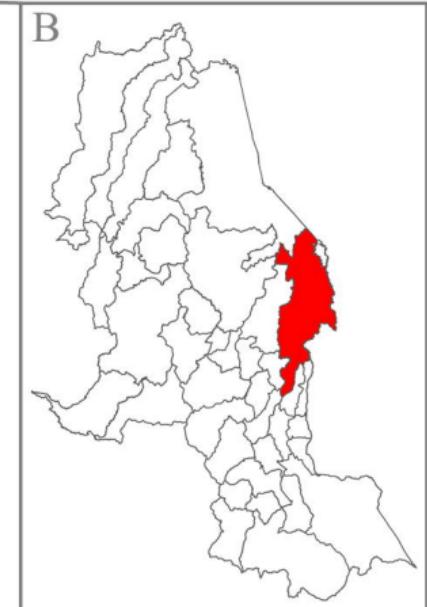
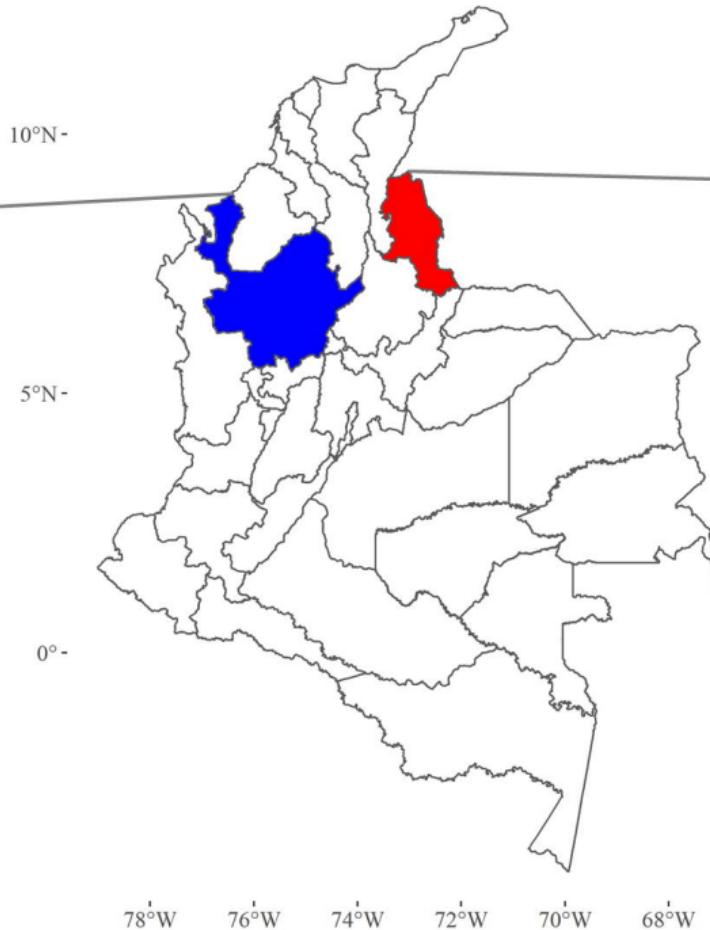
1189 140. Alout H, Roche B, Dabiré RK, Cohuet A. Consequences of insecticide resistance on

1190 malaria transmission. PLoS Pathog. 2017;13. doi:10.1371/journal.ppat.1006499

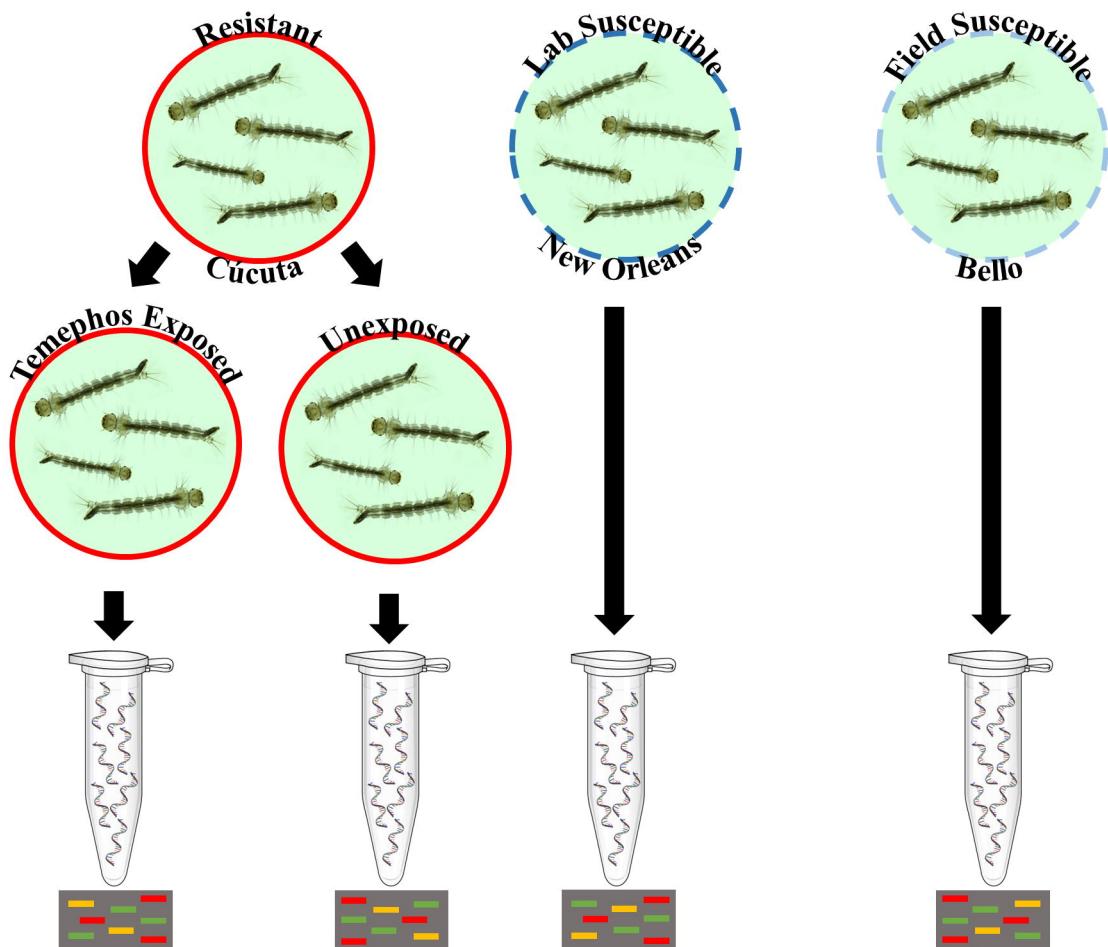
1191 141. Alout H, Krajacich BJ, Meyers JI, Grubaugh ND, Brackney DE, Kobylinski KC, et al.
1192 Evaluation of ivermectin mass drug administration for malaria transmission control
1193 across different West African environments. Malar J. 2014;13. doi:10.1186/1475-
1194 2875-13-417

1195 142. Raymond M, Berticat C, Weill M, Pasteur N, Chevillon C. Insecticide resistance in the
1196 mosquito *Culex pipiens*: What have we learned about adaptation? Springer, Dordrecht;
1197 2001. pp. 287–296. doi:10.1007/978-94-010-0585-2_18

1198 143. Swale DR. Perspectives on new strategies for the identification and development of
1199 insecticide targets. Pestic Biochem Physiol. 2019;161: 23–32.
1200 doi:10.1016/j.pestbp.2019.07.001



1201 **Supporting Information Captions**

1202 **S1 Table: Significantly differentially expressed genes and transcripts in FR samples**
1203 **when compared to FS and LS samples.** A total of 379 transcripts covering 301 genes were
1204 significantly over expressed and 244 transcripts covering 202 genes were significantly under
1205 expressed in the resistant population when compared to both susceptible populations.
1206 Genomic location, product description, gene type and gene name/symbol obtained from
1207 VectorBase annotations. Reads per kilobase million (RPKM) for each population, fold
1208 change (logFC), counts per million (logCPM), F-test statistic (F), p value and false discovery
1209 rate (FDR) calculated using edgeR.


1210 **S2 Table: Significantly differentially expressed genes and transcripts in the resistant**
1211 **population following temephos exposure.** A total of 19 transcripts covering 13 genes were
1212 significantly over expressed in the temephos exposed resistant population when compared to
1213 unexposed resistant larvae. Genomic location, product description, gene type and gene
1214 name/symbol obtained from VectorBase annotations. Reads per kilobase million (RPKM) for
1215 each population, fold change (logFC), counts per million (logCPM), F-test statistic (F), p
1216 value and false discovery rate (FDR) calculated using edgeR. Uncharacterised genes were

1217 searched for homologs in other species using NCBI nucleotide blast
1218 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) but no characterised homologs were identified.

1219 **S3 Table: Significantly differentially expressed genes and transcripts in FR samples**
1220 **when compared to FS samples only.** A total of 3328 transcripts covering 2322 genes were
1221 significantly over expressed and 2250 transcripts covering 1555 genes were significantly
1222 under expressed in the resistant population when compared to the lab susceptible population.
1223 Genomic location, product description, gene type and gene name/symbol obtained from
1224 VectorBase annotations. Reads per kilobase million (RPKM) for each population, fold
1225 change (logFC), counts per million (logCPM), F-test statistic (F), p value and false discovery
1226 rate (FDR) calculated using edgeR.

Mosquito
Populations
and
Temephos
Bioassays

Read Quality Control (Fastqc)

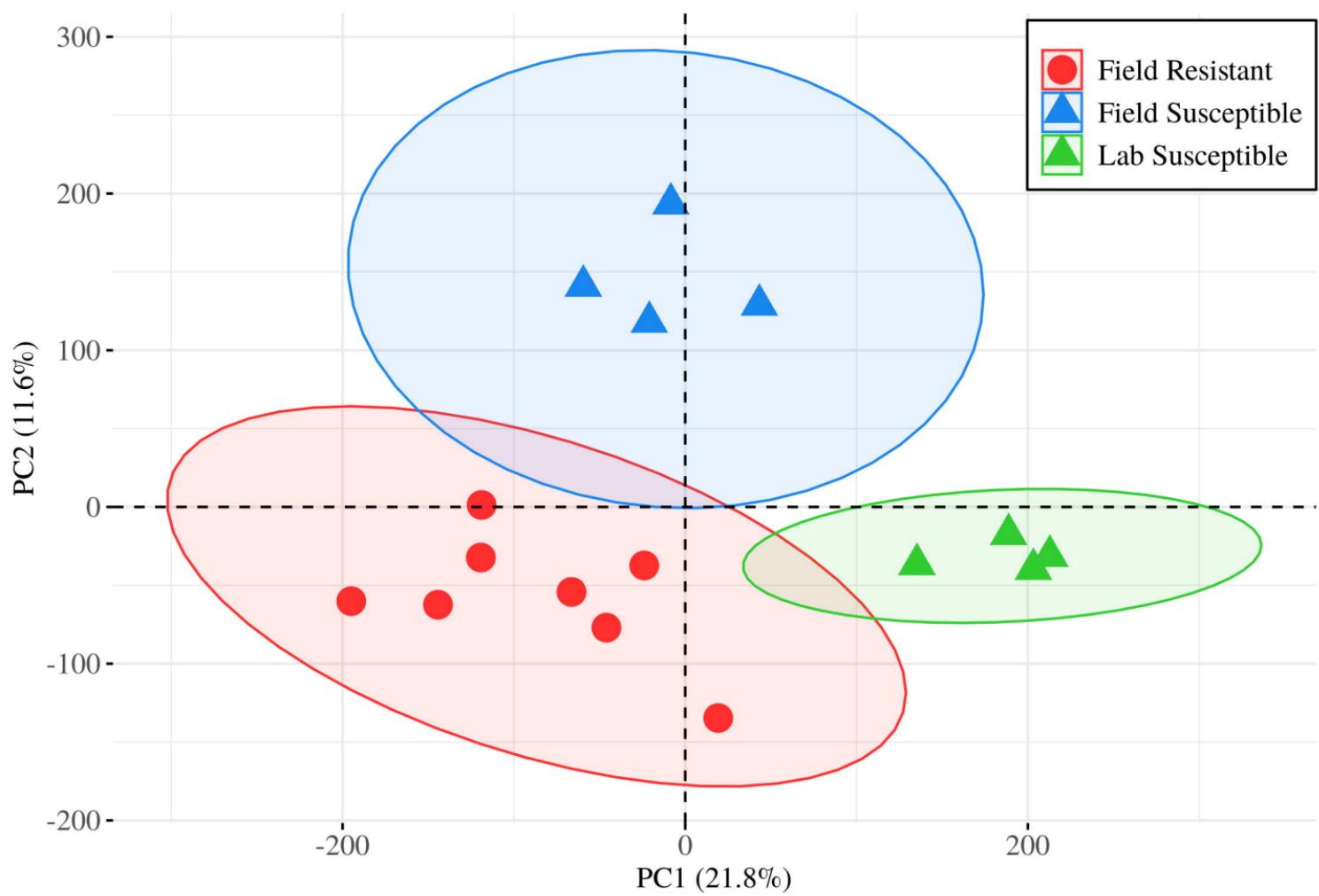
Align to Reference Genome (Rsubread)

Gene Counts (FeatureCounts)

Differential Expression Analysis (edgeR)

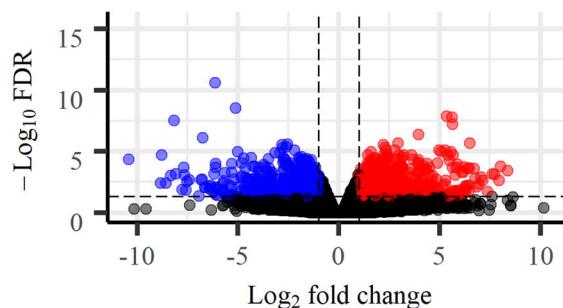
Resistant Exposed
vs Unexposed

13
DEG

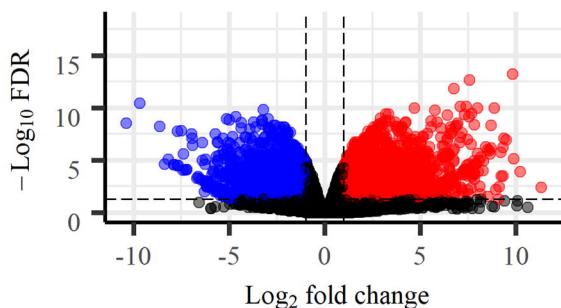

Resistant Unexposed
vs Field Susceptible
& Lab Susceptible

503
DEG

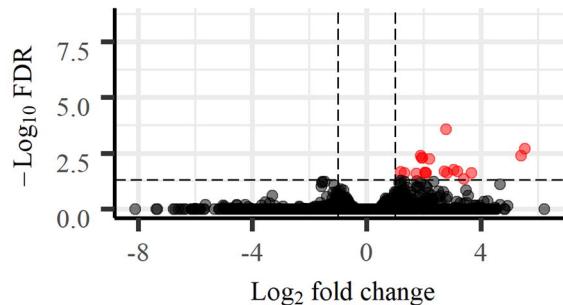
VectorBase
Gene
Annotation

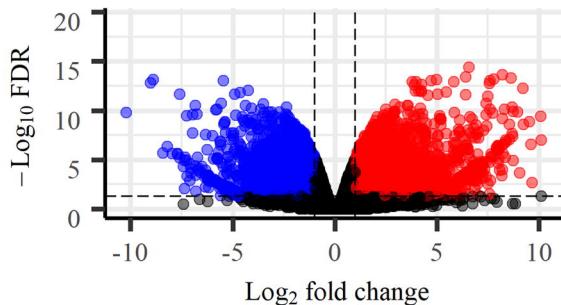

GO
Enrichment
Analysis

KEGG
Enrichment
Analysis

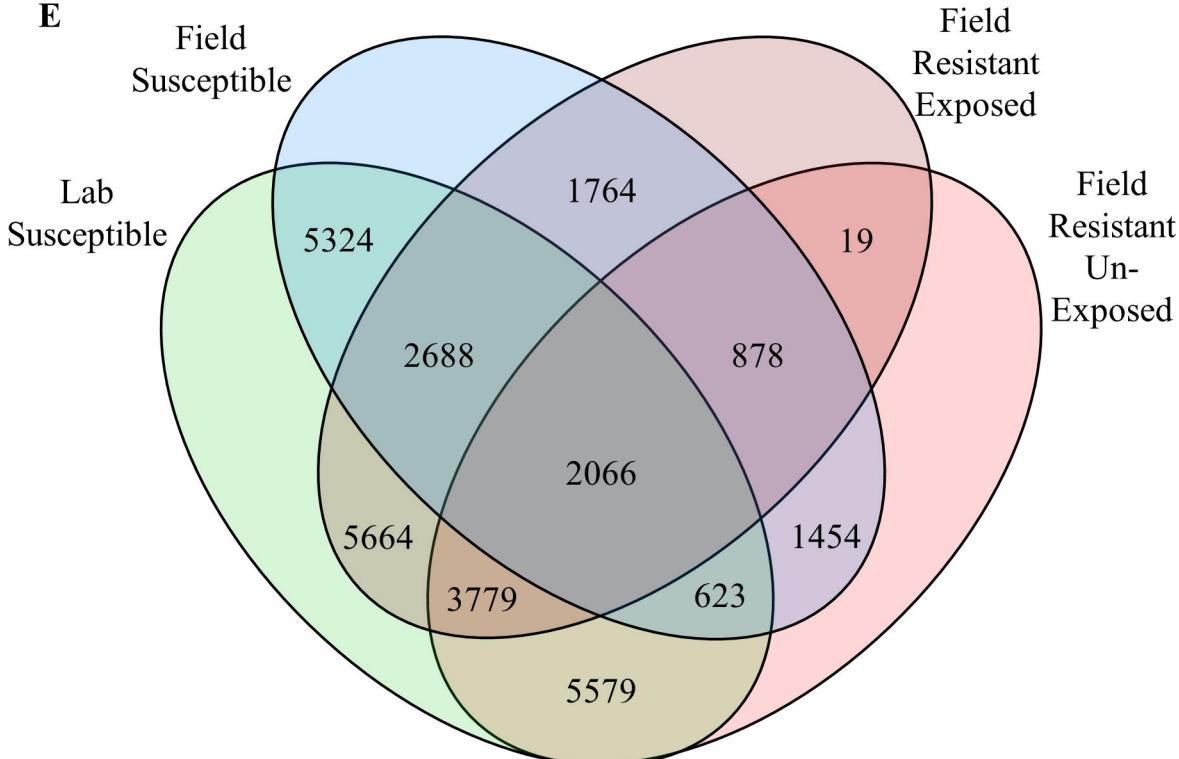


Differential Expression


A Field Resistant vs. Field Susceptible

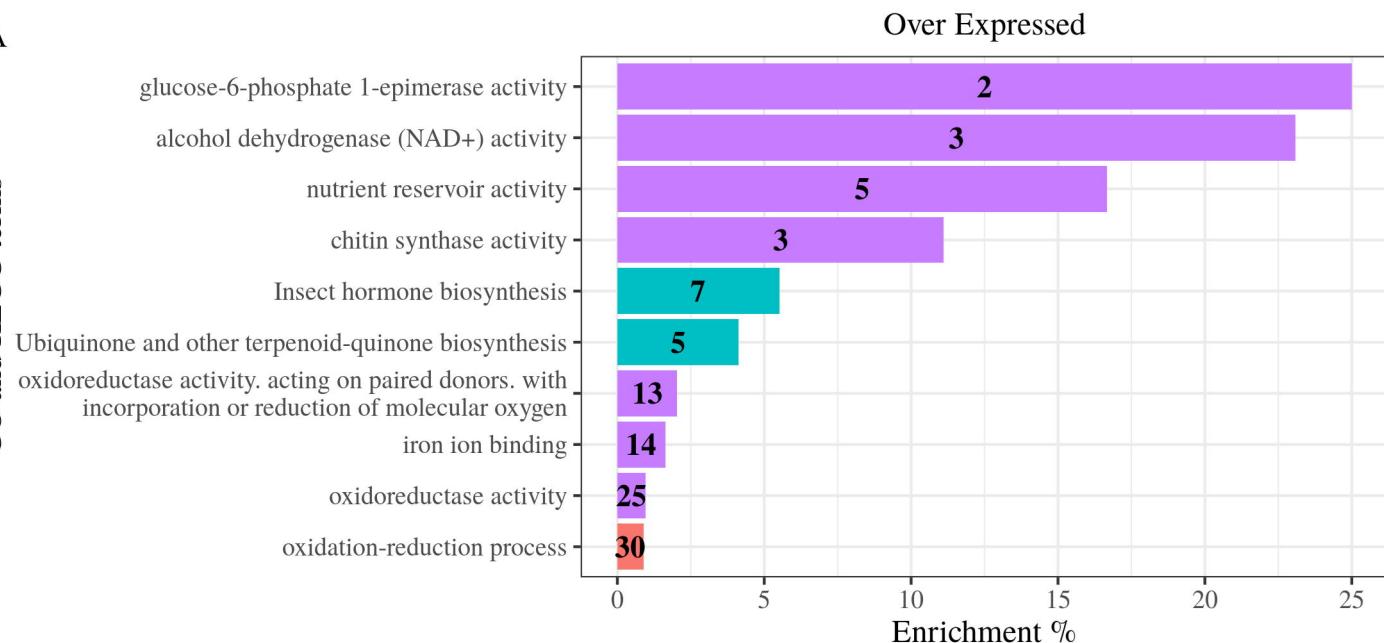

B Field Resistant vs. Lab Susceptible

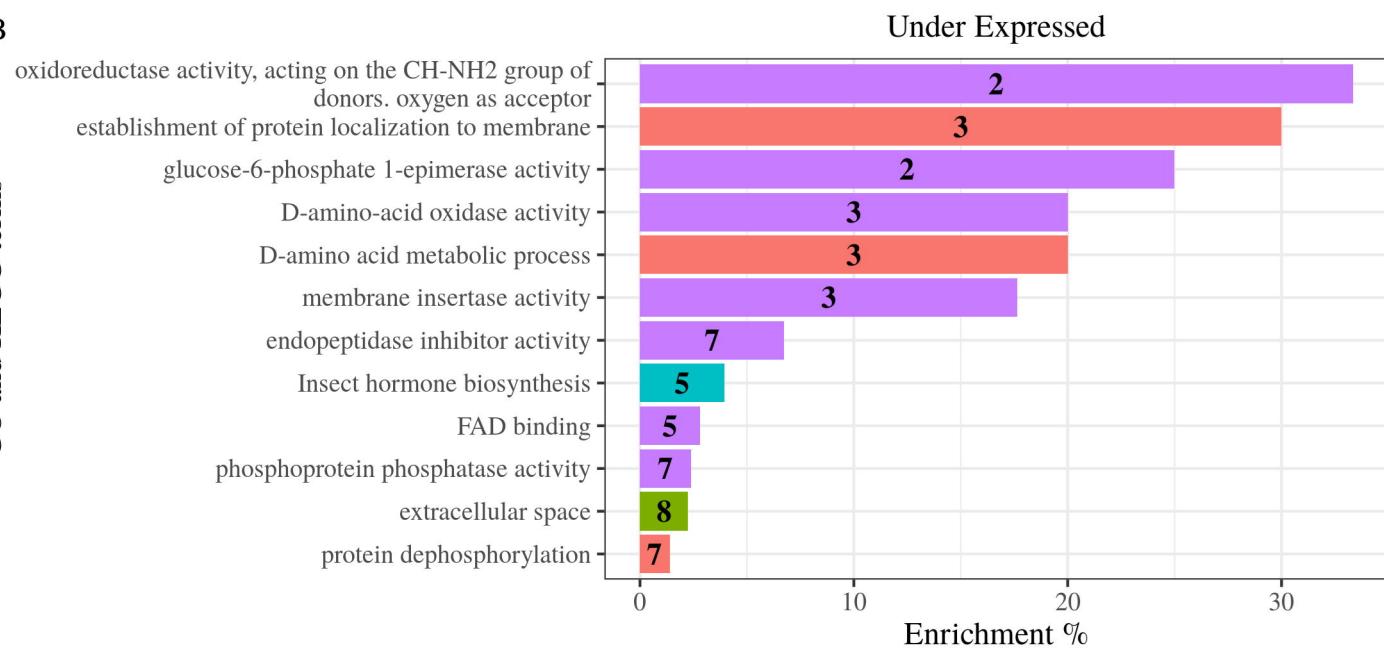
C Resistant Exposed vs. Resistant Unexposed



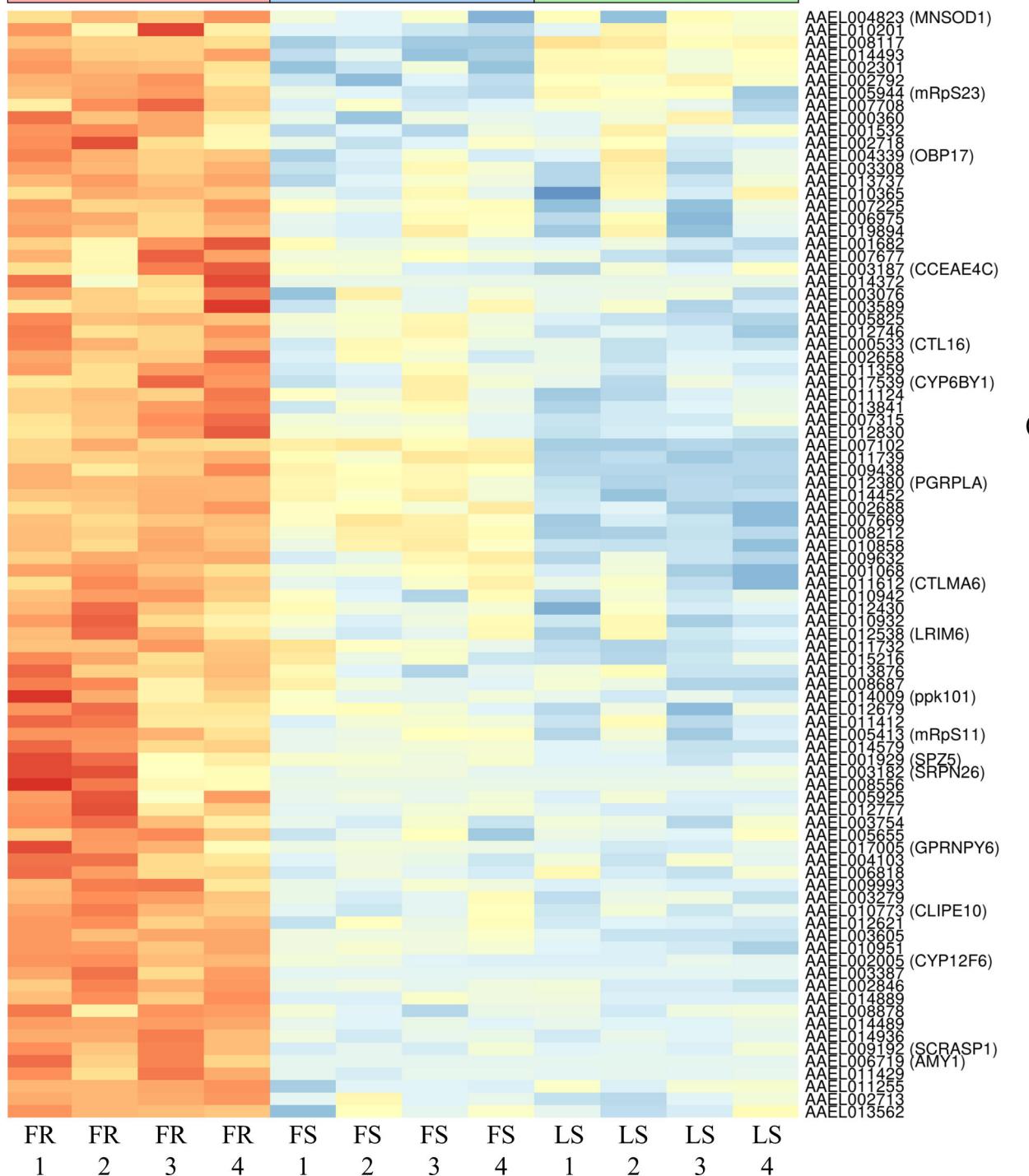
D Field Susceptible vs. Lab Susceptible

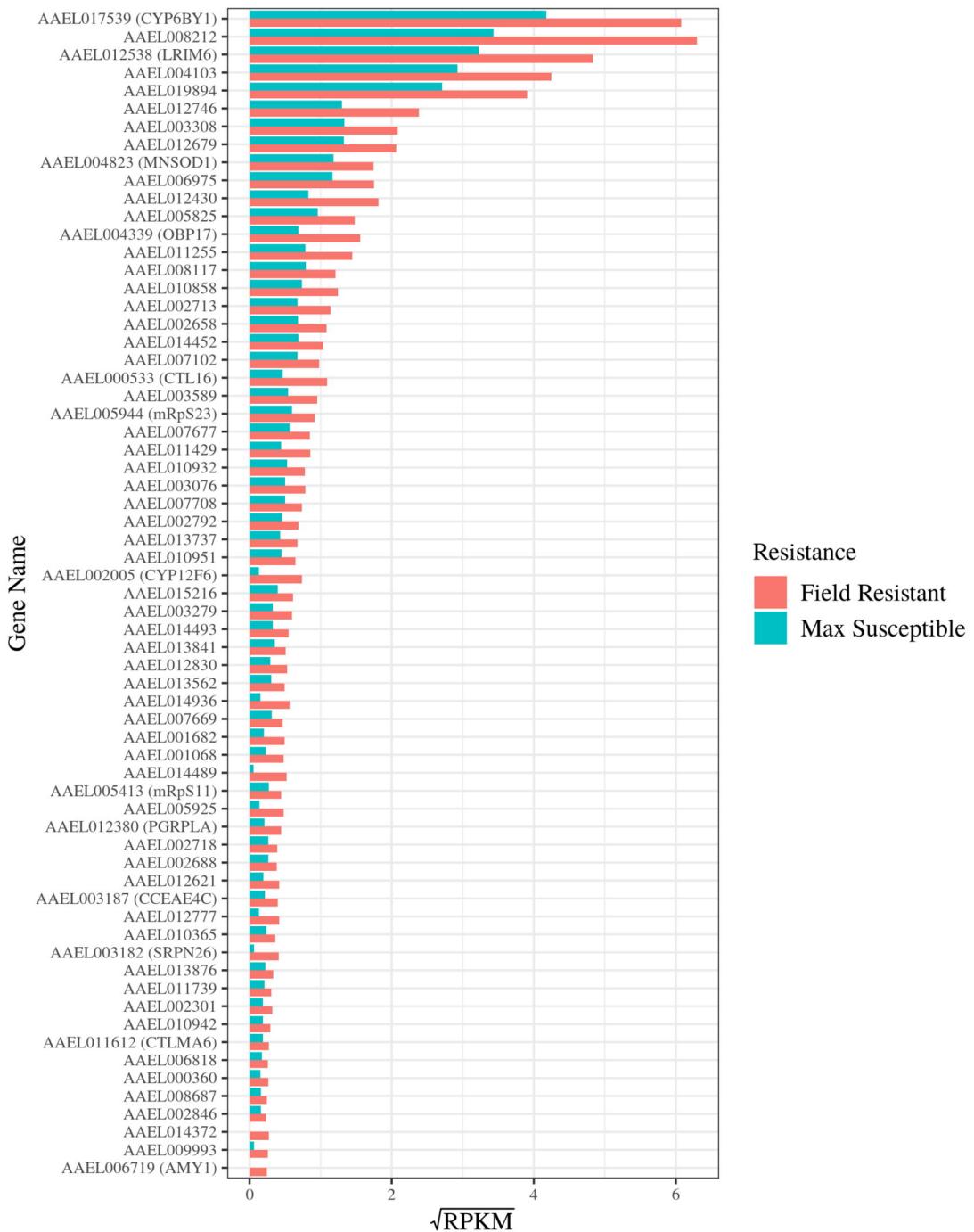
● Down ● Not significant ● Up

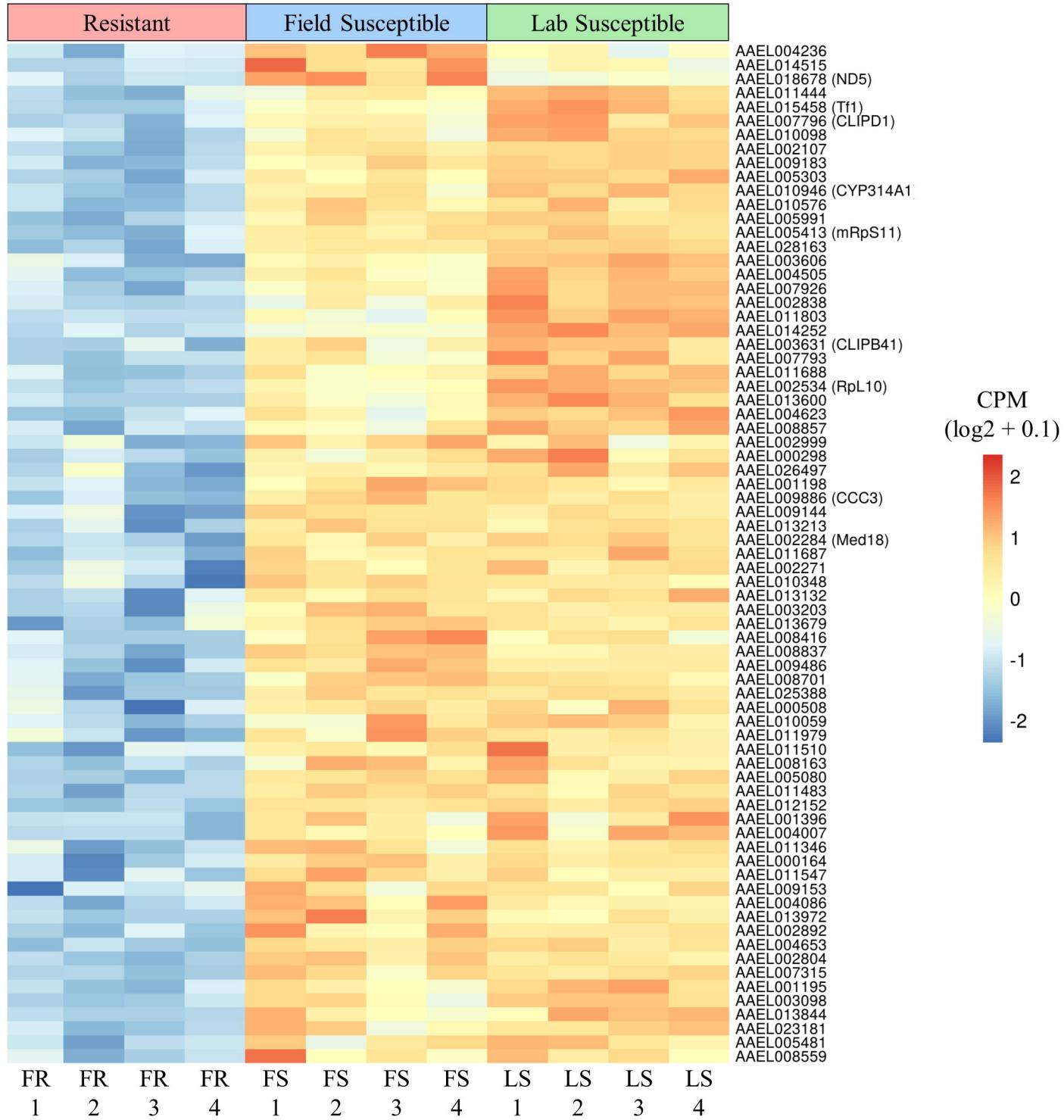

E

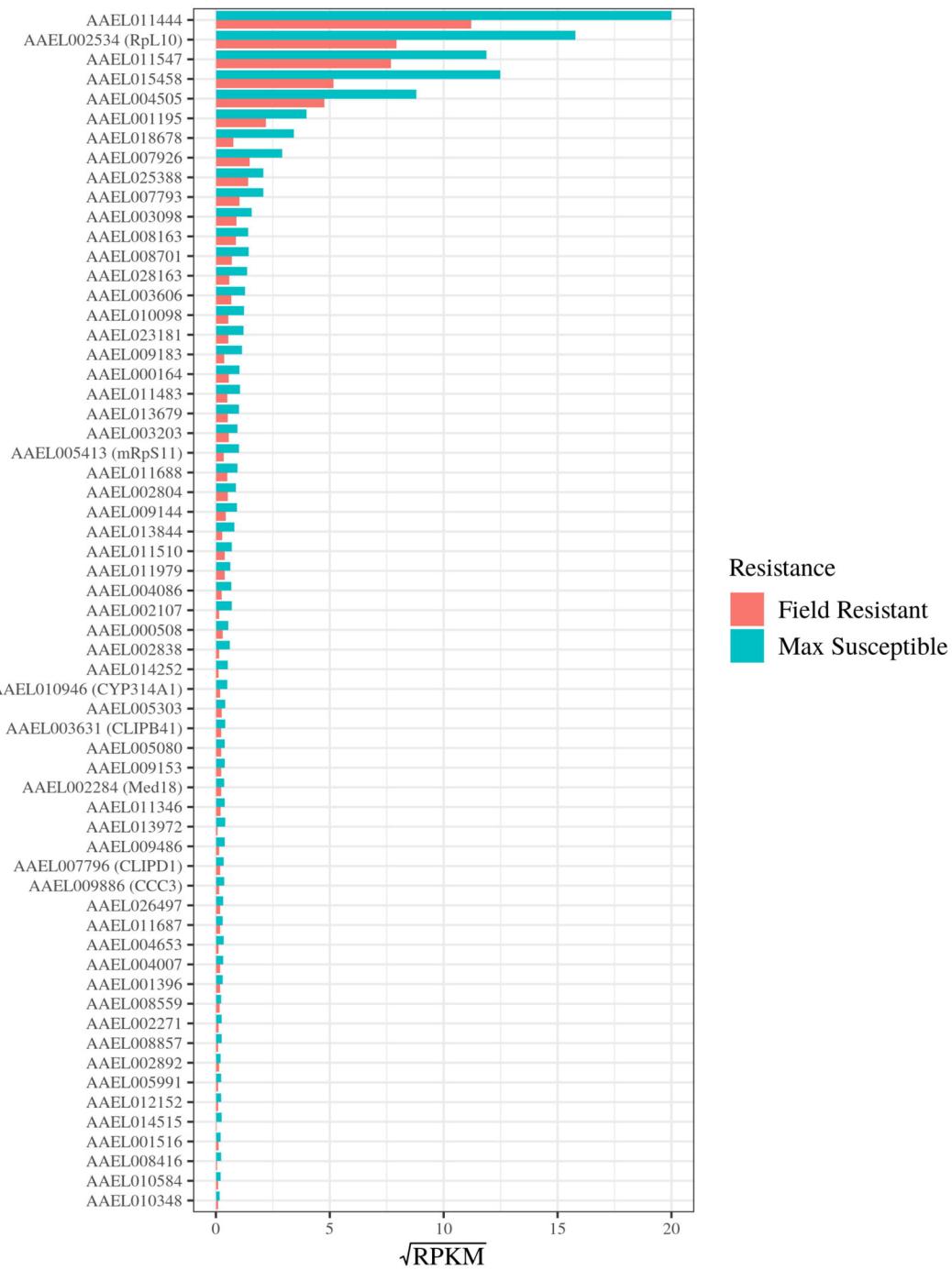

GO and KEGG Enrichment Resistant Unexposed vs Field & Lab Susceptible

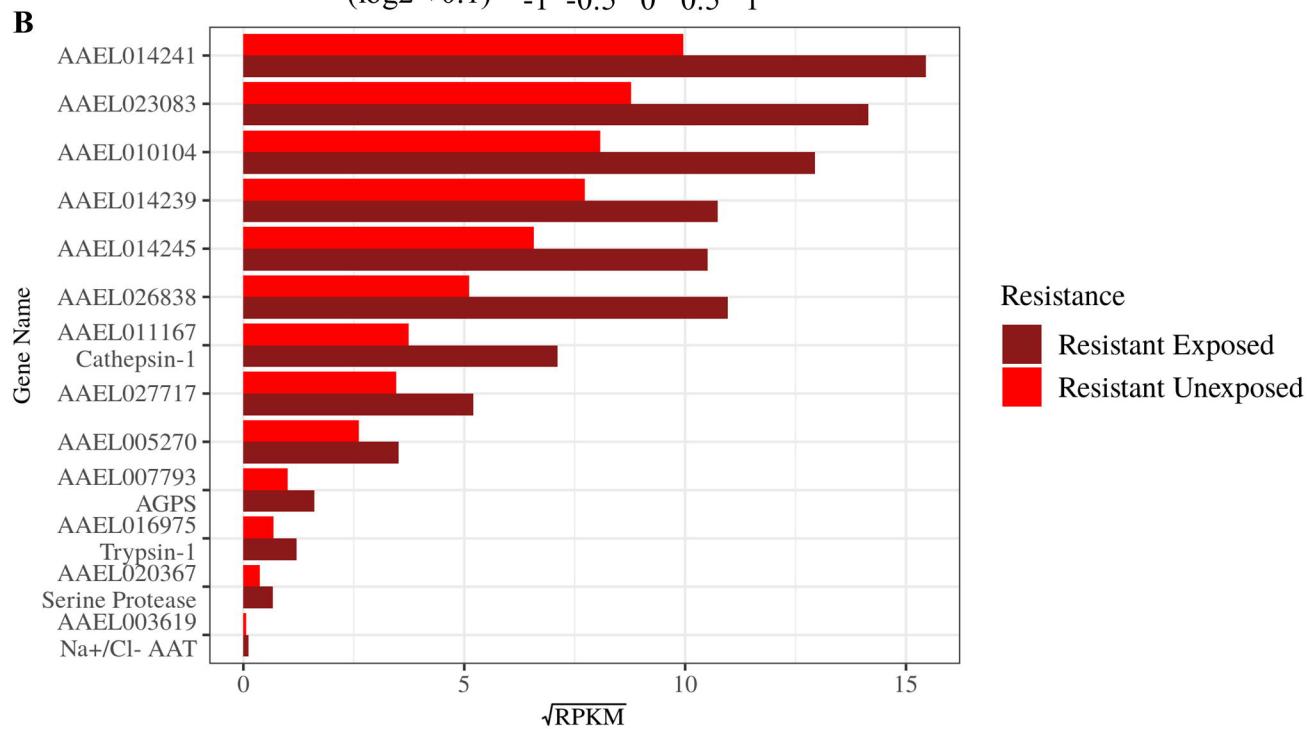
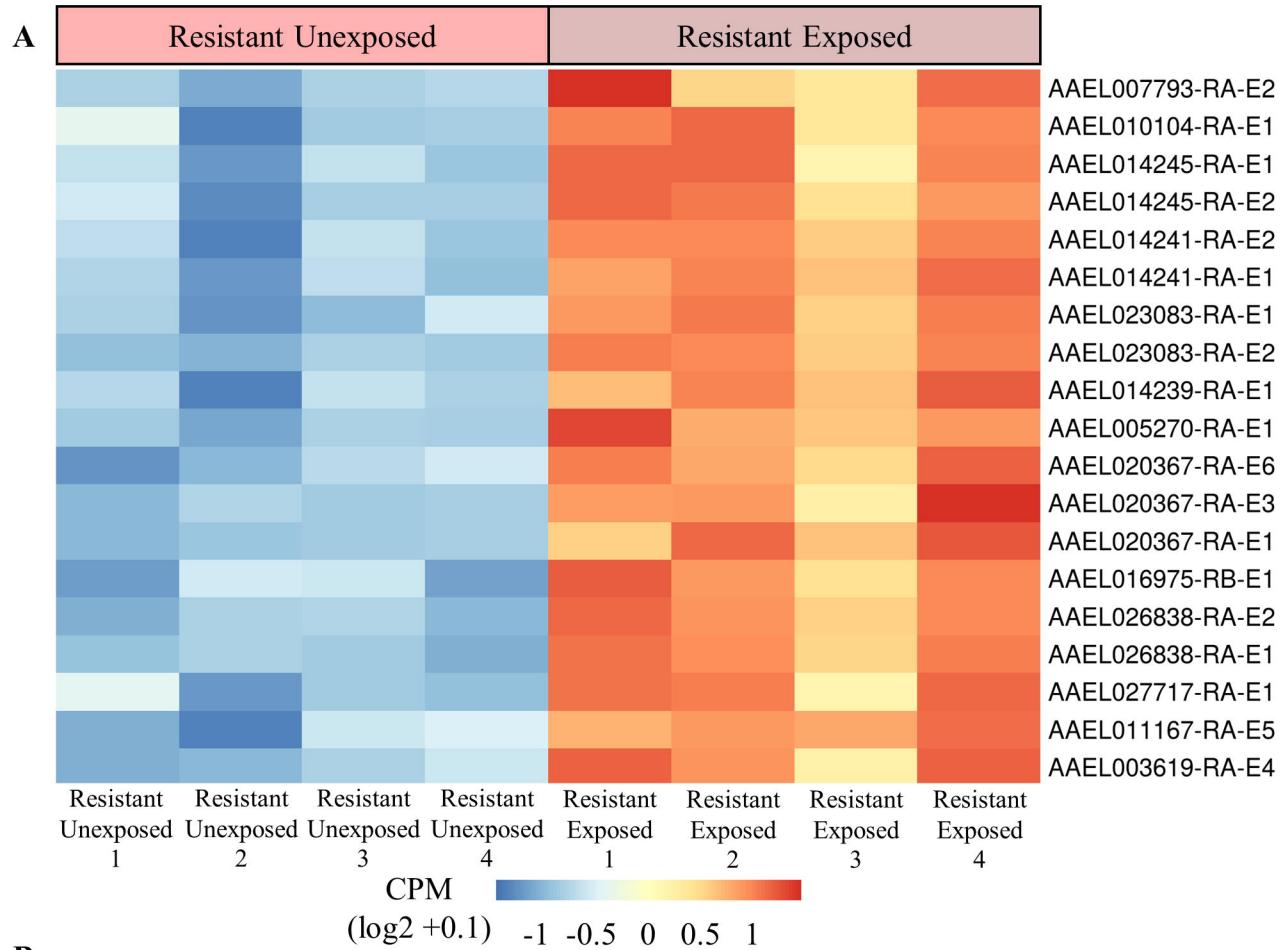
Category █ Biological Process █ Cellular Component █ KEGG █ Molecular Function


A




B


Resistant	Field Susceptible				Lab Susceptible			
-----------	-------------------	--	--	--	-----------------	--	--	--

Gene Name

