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Abstract

Arboviruses including dengue, Zika and chikungunya are amongst the most significant public
health concerns worldwide and their control relies heavily on the use of insecticides to
control the vector mosquito Aedes aegypti. The success of controlling these vector-pathogen
systems is threatened by widespread insecticide resistance. The work presented here profiled
the gene expression of the larvae from two field populations of Ae. aegypti with differential
susceptibility to temephos. The contrasting phenotypes originated from two Colombian urban
locations, Bello and Cucuta, that we have previously reported to have distinctive disease
incidence, socioeconomics, and climate. The closeness of the geographical origin of the study
populations was suspected to be highly influential in the profiling of the gene expression of
resistance since the mosquito’s resistance levels themselves are highly dependent upon
environmental variables. We demonstrated that an exclusive field-to-lab (Ae. aegypti
reference strain New Orleans) comparison generates an over estimation of differential gene
expression (DGE) and that the inclusion of a geographically relevant field control, as used
here, yields a more discrete, and likely, more specific set of genes. The composition of the
obtained DGE profiles is varied, with commonly reported resistance associated genes such as
detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion
exchange homeostasis, an extensive number of long non-coding RNASs, and chromatin
modelling among the specifically and differentially expressed genesin field resistant Ae.
aegypti larvae. It was aso shown that temephos resistant larvae undertake further gene
expression responses when temporarily exposed to thisinsecticide. The results from the
sampling triangulation approach undertaken here contributes a discrete DGE profiling with
reduced noise that permitted the observation of a greater gene diversity. This deeper gene

granularity significantly increases the number of potential targets for the control of
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insecticide resistant mosquitoes and widens our knowledge base on the complex phenotypic

network of the Ae. aegypti mosquito responses to insecticides.

Keywor ds: Insecticide resistance; Aedes aegypti; RNA-seq; gene expression; cuticle; lectins;
long non-coding RNA; membrane transporters.

Author Summary

Aedes aegypti mosquitoes are vectors for several significant human viruses including dengue,
Zika and chikungunya. The lack of widely available vaccines and specific antiviral treatments
for these viruses means that the principal method for reducing disease burden is through
controlling the vector mosquitoes. Mosquito control relies heavily on the use of insecticides
and successful vector control is threatened by widespread insecticide resistance in Ae.
aegypti. Here, we examined changes in gene expression that occur in temephos resistant
populations of Ae. aegypti from two field populations in Colombia. We compare gene
expression in resistant larvae from Cucuta with susceptible larvae from Bello and a
susceptible laboratory strain of Ae. aegypti (New Orleans). We also compare mosquitoes
from Cuacuta with and without temephos exposure. We report several differentially expressed
genes beyond those usually reported in resistant mosquitoes. We also demonstrate the over
estimation in differential gene expression that can occur when field resistant populations are
compared against lab susceptible populations only. The identification of new mechanisms
involved in the development of insecticide resistanceis crucial to fully understanding how

resistance occurs and how best it can be reduced.

I ntroduction

Arboviral diseases including dengue, Zika and chikungunya are amongst the most significant
public health concerns worldwide. The geographical distribution and prevalence of these
arboviruses has been increasing rapidly in recent years with the number of dengue infections

reported to the WHO increasing 8-fold over the last 20 years [1]. The most significantly
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affected world region is The Americas reporting 3,167,542 dengue cases, 181,477

chikungunya cases and 35,914 Zika cases in 2019 alone [2-5].

In the absence of effective vaccines for dengue, Zika and chikungunya, disease control still
relies on controlling mosquito vectors. Currently, this involves the use of insecticides
including DDT, pyrethroids and organophosphates such as temephos, an approach that has
not changed in over five decades of vector control programmes [6]. Temephosis one of the
most used larvicides worldwide dueto its ease of use, cost efficacy and specificity towards
the larval stages of mosquitoes [7,8]. Its pharmacological activities are related to the
irreversible inhibition by phosphorylation of acetylcholinesterase (EC 3.1.1.7) [7], a
ubiquitous enzyme in Metazoan primarily expressed in the nerve endings and essential for

termination of acetylcholine-mediated neurotransmission [9].

Temephos was first used as a method of controlling Ae. aegypti larvae in the early 1970s [6]
with its continued use since leading to the devel opment of resistance in Ae. aegypti in
multiple regions of the world [10-20]. The mechanisms conferring resistance to
organophosphates have been well studied in other important vector mosquitoes but are less
well understood in Aedes species despite their public health relevance. Mutationsin the
acetylcholinesterase (AChE) gene (ace-1) have been reported in temephos resistant insects
[21] including the malaria vector Anopheles gambiae and the West Nile Virus vector Culex
pipiens [22—24]. However, mutational aleles of the AChE gene areararefindingin Ae.

aegypti [25,26] due to genetic constraints [27].

A commonly reported insecticide resistance mechanism in mosquitoes is the increased
expression of genes encoding for enzymes capable of metabolic detoxification of insecticides
[28]. Three main enzyme families have been associated with insecticide detoxification in

mosquitoes: cytochrome P450 monooxygenases (P450s), glutathione S-transferases (GST)
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85  and carboxylesterases (CE). A total of 235 detoxification genes have previously been

86 identified in Ae. aegypti (26 GSTs, 160 cytochrome P450s and 49 CEs) [29]. Overexpression
87  of enzymesin all three of these groups has been associated with temephos resistance in Ae.
88  aegypti [13,17,30-32]. However, the genetic and phenotypic landscapes of insecticide

89  resistanceis wider and more complex. Insecticide resistance has also been associated with

90 cuticular modification (through alteration of cuticular thickness or compasition) [33-36] and
91  behavioural avoidance [37]. In those reports comprehensive gene expression profiling has

92  shown great discriminatory and quantitation power for identifying a wider range of potential

93  genesinvolved in insecticide resistance responses [34—36,38].

94  Next generation sequencing techniques, including RNA-Seq, provide awhole transcriptome
95  approach to the identification of resistance genes with high sensitivity and specificity. RNA-
96  Seqisnow commonly used to investigate insecticide resistance in mosguitoes of medical

97 relevance (e.g. An. gambiae [39], Ae. albopictus [40]). In Ae. aegypti RNA-Seq has been

98 utilised to characterise the gene expression changes associated with insecticide resistance

99  developed through lab selection [41-43], however this approach has sparsely been used for

100  Ae. aegypti with field derived insecticide resistance [38].

101  Thisstudy aimed to profile mechanisms of resistance to the larvicide temephos in natural

102 populations of Ae. aegypti. The field samples originated from areas of differential arbovirus
103 burden and incidence in Colombia. In a previous study we stratified three regions in this

104  country with distinctive arboviral disease incidence, climatic variables and socio-economic
105  profiles through a recent time window of 11 years[44]. In the present work, Ae. aegypti

106  mosguito samples from two of those regions, Bello and Cucuta, which had the lowest and
107  highest strata of disease burden, respectively were analysed. The differential gene expression

108  associated with the resistance to temephos was profiled in these two field populations of Ae.
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109  aegypti (field-to-field comparison) with a data triangulation against the gene expression of

110  thelab-adapted Ae. aegypti reference strain New Orleans (NO).

111  The comparison of afield resistant population against a susceptible field population and a
112 susceptible lab population allowed usto select for gene expression specificaly related to the
113 trait under study (resistance to temephos in circulating natural populations of Ae. aegypti)
114  while minimising the background noise from genotypic distance and phenotypic drifting of
115  field mosquito populations. The present work illustrates two angles of observationsin

116  mosquito biology under selective pressure to the larvicide temephos: firstly, the potential
117  mechanisms of insecticide resistance itself and secondly, the further adjustments in

118  phenotype (extrapolated from gene expression profiles) that field insecticide resistant larvae
119  undergo when in transient exposure to the insecticide. The data presented significantly

120  expands the hitherto known composition of the gene expression responses of Ae aegypti

121  mosguitoes resistant to the larvicide temephos, with a granularity at the transcriptomic level

122 that goes beyond detoxification genes.

123  Materials and methods

124  Ae. aegypti field collection and colonisation

125  Ae. aegypti were collected from the Colombian municipalities of Bello and Cucuta (Fig 1).
126  These municipalities were previously shown to be distinct in burden of Ae. aegypti borne
127  disease, socioeconomic status and climate [44]. M osquito collections took place in 2016

128  (Bello) and 2017 (Cucuta) with the assistance of personnel from biology and control of

129  infectious diseases research groups (University of Antioquia) and vector-borne disease

130  program staff within each municipality. Immature Ae. aegypti were collected from deployed
131  oviposition traps (ovitraps) and reared to adults under standard conditions at Universidad de

132 Antioquia, Colombia Standard rearing conditions were 28 + 1 °C, 80 + 5% relative humidity
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133 and al2hlight: 12 h dark photoperiod. Reared adults were offered a blood meal and the eggs
134  collected for establishment of colonies. Upon establishment of colonies eggs were collected
135  and sent to Edge Hill University, UK for insecticide resistance profiling.

136  Larval bioassays

137  Larvaefor usein insecticide bioassays were reared under standard conditions within Edge
138  Hill University Vector Research Group insectaries. Standard conditions were 27°C and 70%
139  RH with an 11-hour day/night cycle with 60-minute dawn/dusk simulation periods, using a
140 lighting system of 4x Osram Dulux 26W 840 lights. Eggs were submerged in a hatching

141 broth of 350 ml distilled H,O (dH>0), 0.125 g nutrient broth (Sigma-Aldrich, Darmstadt,
142  Germany) and 0.025 g brewer’ s yeast (Holland & Barrett, Ormskirk, UK) for 48 hours [45].
143 Larvae were fed ground fish food (AQUARIAN® advanced nutrition) and raised until third
144  tofourth instar. Larval bioassays were conducted following WHO standard test procedures
145  [46]. Preliminary testing was conducted to identify the activity range of temephos to larvae
146 from each of the study municipalities and a susceptible laboratory strain (New Orleans). The
147  activity ranges, yielding mortality of 10 - 95%, for each Ae. aegypti population asidentified
148 by preliminary testing are displayed in Table 1. At least four replicates, each consisting of 20
149  third to fourth instar larvae, were conducted for each temephos concentration. Fresh

150  insecticide solutions were made for each replicate using temephos (93.7%; Pestanal®,

151  Sigma-Aldrich Darmstadt, Germany) and acetone (71> 99.9%; Sigma-Aldrich, Darmstadit,
152  Germany). Bioassays were conducted inside the insectaries under standard conditions and
153  mortality recorded after a 24-hour exposure period. Following WHO guidelines, moribund

154  larvae were counted as dead. Controls were exposed to the acetone solvent only.


https://doi.org/10.1101/2021.06.07.447310
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.07.447310; this version posted June 7, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

155
156
157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

available under aCC-BY 4.0 International license.

Table 1. Temephos activity range yielding between 10-95% mortality to each mosquito
population. Results of preliminary testing to identify the activity range of temephos to each

mosquito population. Activity ranges displayed in parts per million (ppm).

Population Temephos Activity
Range (ppm)
Bello 0.008-0.05
Cdcuta 0.02-0.10

New Orleans 0.004-0.008

RNA extraction and cDNA synthesis

Aedes aegypti sample groups

Following the larval bioassays, field samples were categorised as resistant (Cucuta) or
susceptible (Bello). In the latter category were also samples from the lab adapted reference
strain New Orleans. The Culcuta temephos resistant samples were further divided into two
groups: one exposed to temephos (for 24 hours) immediately before sampling for RNA
extraction, and a control group of no temephos exposure (unexposed) (Fig 2). For each group
(field susceptible (FS), lab susceptible (LS), field resistant exposed (FRE) and field resistant
unexposed (FRU)) RNA extractions were carried out from four different larvae batches

considered here as biological replicates.

Standard rearing of Aedes aegypti for RNA extraction

Ae. aegypti were reared to fourth instar larvae following a standard rearing protocol and
under standard conditions within Edge Hill University Vector Research Group insectaries.
Standard conditions were 27°C and 70% RH with an 11-hour day/night cycle with 60-minute
dawn/dusk simulation periods, using a lighting system of 4x Osram Dulux 26W 840 lights.
Eggs were submerged in a hatching broth of 350 ml dH20, 0.125 g nutrient broth (Sigma-

Aldrich, Dorset, UK) and 0.025 g brewer’ s yeast (Holland & Barrett, Ormskirk, UK) for 48
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176  hours [45]. Once hatched, larvae were reared at a density of one larva/ml in dH,O and fed
177 ground fish food (AQUARIAN® advanced nutrition) at increasing quantities per day (day 3
178  =0.08 mg/larva, day 4 = 0.16 mg/larva, day 5 = 0.31 mg/larva) [47]. Six days after egg

179  submersion larvae were subjected to an insecticide bioassay in batches of 25 larvae in 200 ml

180  dHO, for 24 hours [46].
181  Temephos exposure assaysfor resistant larvae

182  Larvaein theresistant exposed group were exposed to temephos at the L Csp of 0.06 ppm (Fig
183  2). Larvaein all unexposed groups were exposed to the equivalent volume of acetone (the

184  solvent used in temephos solutions). After the 24 h bioassay larvae were taken for RNA

185  extraction. For each experimental group there were four independent replicates, conducted
186  using eggs from different batches and rearing and extraction conducted on different days. Egg
187  submersion, feeding, bioassays and RNA extraction on all replicates were all conducted at the

188  sametimes of day.

189  RNA extraction

190 Larvae were homogenized using QIAshredders (Qiagen, Manchester, UK) then RNA

191  extracted using PicoPure® RNA Isolation Kit (Arcturus Bioscience, Mountain View, USA)
192  following the manufacturers’ protocols. RNA was extracted from atotal of 20 individual
193  larvae per biological replicate, with four larvae per column and the total RNA then pooled.
194  RNA quality and quantity were assessed using an Agilent 2100 bioanalyzer. The temephos

195  exposed population had 12-16 larvae per replicate due to mortality during bioassays.

196  Library preparation and sequencing

197  Library preparation and sequencing was conducted at Polo d’ Innovazione di Genomica,

198  Geneticae Biologia, Italy. Libraries were prepared following the QIAseq™ Stranded mRNA
199  Select Kit Handbook (June 2019) for Illumina Paired-End Indexed Sequencing [48]. Libraries

1
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were validated using the Fragment Analyzer High Sensitivity Small Fragment method to
assess size distribution and quantified using a Qubit® 3.0 Fluorometer. Indexed DNA
libraries were al normalized to 4 nM, pooled in equal volumes, and then loaded at a
concentration of 360 pM onto an Illumina Novaseg 6000 S1 flowcell, with 1% of Phix
control. The samples were sequenced using the Novaseq 6000 standard workflow with 2 x
150 bp pair end run. The experimental design for this study isoutlined in Fig 2. The raw
reads obtained through RNA-Seq are deposited in NCBI’ s sequenced read archive (Accession

PRINA730411).

Data analysis

Bioassay data analysis

Larval 50% and 95% lethal concentrations (LCsy and LCgs) and their 95% confidence limits
(p < 0.05) were calculated using probit analysis according to Finney (1947) [49] using the
LC_probit function in the R ecotox package (version 1.4.0) [50]. Abbot’s correction [51] was
not applied due to the control mortality never exceeding 10%. Resistance ratios (RRso and
RRy) were calculated to assess temephos resistance by comparison of LCsy and LCy for Ae.
aegypti from each field location to those of the susceptible laboratory strain (New Orleans).
Resistance ratios were defined as susceptible (<5-fold), moderate resistance (5 - 10-fold) and
high resistance (>10-fold) following WHO guidelines [46]. Statistical analyses of bioassay

data were conducted using R statistical software (version 3.6.1) [52].

RNA-Seq data quality control, mapping and differential gene expression
Analyses of RNA-Seq data were conducted using the Linux command line (Ubuntu 18.04)
and R statistical software (version 4.0.3) [52]. Sequence read quality was assessed using
FastQC (version 0.11.3). Reads with quality scores less than 30 and lengths less than 50 bp
were trimmed using cutadapt (version 2.10) with Python (version 3.8.3). Read quality was
then reassessed using FastQC to ensure only high-quality reads remained. Cleaned reads were

1
10
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225  mapped to the Ae. aegypti LVP_AGWG reference genome (version AaegL 5, GenBank:

226 NIGP00000000.1) using Rsubread (version 2.2.6) [53]. The resultant BAM files were sorted
227  and indexed using samtools (version 1.11). Alignment quality metrics from Rsubread were
228  visualized using R’ s plotting function. Gene count tables were generated using Rsubreads.
229  Read counts were normalized using the trimmed mean of M values method [54] in edgeR
230  (Version 3.30.3) which accounts for library size and expression bias in RNA-Seq datasets
231 [55]. Differential gene expression was then calculated using a Quasi-likelihood negative
232 binomial generalized log linear model (edgeR). Quasi-likelihood error family was selected
233 duetoits ability to account for uncertainty in dispersion. Counts per million (CPM) were
234  calculated in edgeR and reads per kilobase million (RPKM) were calculated in edgeR using
235  transcript lengths obtained from Enseml Metazoa (LVP AGWG (aalvpagwg_eg_gene)

236  dataset) using biomaRt (version 2.44.4). Transcripts with fold-change >2 and FDR < 0.05

237  were selected for gene ontology and KEGG pathway enrichment analyses.

238  Geneontology and KEGG pathway enrichment analyses

239  Geneontology (GO) category ass gnments were obtained from Ensembl M etazoa using

240  biomaRt (version 2.44.4) [56] and KEGG pathway assignments from Kyoto Encyclopedia of
241 Genes and Genomes using KEGGREST (1.28.0) [57]. GO and KEGG enrichment analyses
242  were conducted using GOseq (version 1.40.0), which allows for correction of biases arising
243  from the variable transcript lengths in RNA-Seq data [58]. Enrichment scores were calcul ated
244 using the Wallenius method within GOseq. P-values were then corrected for multiple testing
245  using the Benjamini—-Hochberg method in the p.adjust function [52]. GO categories and

246  KEGG pathways with corrected p values <0.05 were considered significantly enriched.

247  Enrichment percentage was calculated as aratio of the number of differentially expressed

248  geneswithin each category to the total number of genes within that category.

11
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249  Results

250  Temephos susceptibility of Ae. aegypti field isolates and the reference strain

251 Thelethal concentrations (LCsp) of temephos were 0.019 ppm (95% Cl 0.016-0.029) and

252 0.060 ppm (Cl 95% 0.052-0.070) for Bello and Cucuta, respectively. This corresponded to
253  resistanceratios of 2.6 and 8.0 when compared to the New Orleans susceptible laboratory
254  dtrain (LCs = 0.008; Cl 95% 0.006-0.012). The LCqs for Bello was 0.055 (Cl 95% 0.034-
255  0.292), 2.8-fold higher than New Orleans (LCgys = 0.020; Cl 95% 0.012-0.21). Cucutahad a
256  LCgso0f 0.182, 9-fold higher than New Orleans (Table 2). Following the WHO guidelines [46]
257  larvae from Bello were considered susceptible to temephos and denoted as the field

258  susceptible (FS) population whist the larvae from Culcuta were resistant to this larvicide and
259  denoted asthefield resistant (FR) population (Table 2). New Orleansis referred to as the lab
260  susceptible (LS) population.

261 Table2: LCspand L Cgsof Bello, Cucuta and New Orleans Ae. aegypti larvaeto

262 temephos. Temephos bioassays showing LC50, LC95 and their 95% confidence limits,

263  calculated using probit analysis. Resistance ratios (RR) calculated as aratio of the lethal

264  concentration (LC50 and LC95) of each population compared to the lab susceptible (New

265  Orleans) strain. Bello and New Orleans are both susceptible to temephos whilst larvae from

266  Culcuta are resistant. SE = standard error.

L C50 (95% LC95

Population n' Slope+ SE RR50 RR95
Cl) (95% CI)
Bello 0.0193 0.0554
_ 35929 +
(Fidld 580  (0.0156- (0.0340- 26 28
, 0.3503
susceptible) 0.0293) 0.2921)
Clcuta 0.0599 0.1818
_ 34115+
(Fidld 400  (0.0516- (0.1357- 80 90
_ 0.3465
resistant) 0.0698) 0.3081)
New 0.0075 0.0201
400 1.0 10
Orleans (0.0064- (0.0123-
1

12
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(Lab 0.0123) 0.2075)
susceptible)
267 1 = the total number of larvae tested across all replicates

268 RNA-Seq mapping summary

269  Three different populations of Ae. aegypti larvae were profiled using RNA-Seq: temephos
270 field resistant (FR), field susceptible (FS) and the reference lab susceptible strain New

271 Orleans (LS). The FR population was also split in two further groups as either exposed or not
272 (unexposed) to temephos to determine further expression changes associated with insecticide
273 exposure in already resistant populations (Fig 2). Mosquito larvae from each of these four
274  populations were grown in four different batches, one to four weeks apart and were

275  considered here four biological replicas. This generated atotal of 16 sequenced samples.

276  Extracted total RNA was used to generate the Illumina RNA-Seq libraries that produced 65.7
277  —120 million reads per sample with quality scores>30 and lengths >50 bp and 84.4% and
278  85.6% of those reads in each sample were successfully aligned to the reference genome

279  (Table 3 and Materials and Methods). Using the most current gene model available for Ae.
280 aegypti, LVP_AGWG reference genome which contains 19,381 open reading frames (version
281  AaegL5b, GenBank: NIGP00000000.1) the number of genes with successfully aligned reads
282 ranged from 15,704 and 16,607 genes across all samples, corresponding to 81 — 86% of the
283  total genesin the reference genome.

284  Table 3: RNA-Seq sequencing data summary. The total number of obtained reads after

285  quality control and the percentage of reads that mapped to the Aedes aegypti reference
286  genome. Quality control removed reads with quality <30 and lengths <50bp.

Total Reads Mapped to

Group Sample .
(Million) Genome (%)
Field Bello 1 93.6 85.70

susceptible Bello 2 107.9 85.50
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Bello 3 104.0 86.21

Bello4 87.7 85.37

Bello Mean 98.3 85.70

Cucuta Exposed 1 95.3 84.42

Cucuta Exposed 2 120.0 84.67

Cucuta Exposed 3 65.7 84.77

Cucuta Exposed 4 84.5 85.93

Field Cucuta Exposed Mean 91.4 84.95
resistant Cucuta Unexposed 1 78.6 84.35
Cucuta Unexposed 2 98.4 85.45

Cucuta Unexposed 3 111.2 84.90

Cucuta Unexposed 4 934 85.14

Cucuta Unexposed M ean 95.4 84.96

New Orleans 1 105.3 85.91

New Orleans 2 94.7 86.54

wsl_eztt)i Hle New Orleans 3 933 86.59
New Orleans 4 87.0 86.54

New Orleans Mean 95.1 86.40

287

288  Overview of differential gene expression

289  Both field samples, susceptible and resistant (FS, FR) were equally and evidently distant, by
290 RPKM number, to the samples of the lab strain New Orleans (LS) (Fig 3). Crucially the

291  temephos susceptible samples did not cluster together nor did the two field samples (Fig 3).
292  Field and lab strain samples were similarly distant in terms of differentially expressed (DE)
293 transcripts: FSvs LS = 5324 DE transcripts (Fig 4D and 4E), FR vs LS = 5579 (Fig 4B and
294  4E). However, when comparing field samples (resistant and susceptible) the number of DE
295  transcripts visibly lowered by four-fold to 1,454 (Fig 4A and 4E). Therefore, the common

296  practice in gene expression studies of comparing mosqguito field samplesto lab strains (e.g.
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[17,30,59,60]), would have generated an approximately 4-fold overestimation in the number

of DE transcripts detected in the field resistant samples.

We also sought to investigate the gene expression changes in insecticide resistant larvae
under transient exposure to insecticide. There were only 19 transcripts significantly
differentially expressed in larvae within the resistant population which were exposed to
temephos when compared to unexposed larvae from the same population (Fig 4E). All 19 of
those transcripts were overexpressed in the exposed group with no significant down regulated

gene expression detected (Fig 4C).

We addressed the issue of potential misrepresentation of gene expression metrics by
triangulating both, the differentially expressed gene (DEG) sets and the RPKM counts
between the field resistant (FR) samples against the field susceptible (FS) as well asthe lab
susceptible (LS) samples. The DEG set obtained contained transcripts which were found to
be significantly differentially expressed with a fold change of >2 and a false-discovery rate
(adjusted P value) of <0.05 in both comparisons. Under this threshold, atotal of 623 (down
from 1,454 transcripts in only the field-to-field comparison) transcripts covering 503 genes,
were found differentially expressed in the field resistant population when compared to both
the field and lab susceptible populations (Fig 4E). This set of 503 genes comprised 301
overexpressed genes and 202 under expressed genes (S1 Table). Of the 301 significantly
overexpressed genes 239 were found in the category of protein coding genes: 88 annotated
and 151 hypothetical genes. In the significantly under expressed gene set 166 were protein
coding with 75 annotated and 91 hypothetical genes (S1 Table). The significant differentially
expressed genes also included 55 overexpressed genes encoding for long non-coding RNA

(IncRNA) and 30 under expressed INcRNA genes in the temephos resistant larvae (S1 Table).
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Gene ontology and KEGG pathway enrichment

All 623 transcripts with fold-change >2 and FDR < 0.05 were selected for gene ontology
(GO) and KEGG pathway enrichment analyses. GO categories and KEGG pathways with
corrected p values (FDR) < 0.05 were considered significantly enriched. Gene ontology and
KEGG enrichment analyses conducted on the 301 significantly over expressed genes
identified eight significantly enriched GO categories; one involved with biological processes,
oxidation-reduction processes (G0O:0055114), and seven associated with molecular functions
(G0:0045735, GO:0016705, GO:0004100, GO:0004022, GO:0005506, GO:0016491,
GO0:0047938) (Fig 5). KEGG enrichment analysis identified two significantly enriched
KEGG pathways in the over expressed genes; insect hormone biosynthesis (path:00981) and

ubiquinone and other terpenoid-quinone biosynthesis (path:00130) (Fig 5).

GO and KEGG enrichment analysis were also conducted on the 202 significantly under
expressed genes identifying 12 significantly enriched GO terms and one KEGG pathway
(path:00981) (Fig 5). The enriched GO terms include three termsinvolved in biological
processes (GO:0090150, GO:0046416, GO:0006470), one involved with cellular components
(GO:0005615) and seven associated with molecular functions (GO:0004866, GO:0004721,

G0:0003884, GO:0032977, GO:0047938, GO:0016641, GO:0071949) (Fig 5).

The overexpressed transcriptome of field temephos resistant Aedes aegypti larvae

The transcriptomic overview provided by the GO and KEGG enrichment models was
interrogated by quantifying the represented genes with CPM and RPKM metrics. The
expression profiles of the 88 annotated overexpressed protein coding genes in the resistant
population were visualised using heatmaps of gene expression as log, values of counts per
million (CPM) (Fig 6) as well as bar plots of reads per kilobase million (RPKM) values of the
represented genes (Fig 7). The former allowed the visualisation of the data’ s granularity by
comparing gene expression across all 16 samplesindividually rather than just across groups

1
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(Fig 6). Variation in expression between samples from the same experimental group can be
seen across all genes (Fig 6) highlighting the importance of biological replication in gene
expressi on experimentation. The heatmap also showed the importance of using field
susceptible populations in addition to lab susceptible comparator populations. Differencesin
gene expression (e.g., CYP6B1 and PGRPLA) can be overrepresented when comparing
expression profiles between field and lab populations (here FR and LS) rather than between
field tofield (e.g., FR and FS). Differencesin gene expression were also visualised using
RPKM bar plots which enable ranking of genes specifically overexpressed in resistant
samples, the mgjority (151 of the 239 protein coding genes) of those did not have afunctional

annotation in the current repository for VectorBase (Fig 7, S1 Table).

The over expressed annotated protein coding genes included detoxification enzymes; two
cytochrome P450s (CYP12F6 - AAEL002005 and CYP6BY1 - AAEL017539), a
carboxy/cholinesterase (CCEAE4AC - AAEL003187), a glutathione S-transferase
(AAEL006818), two glucosyl/glucuronosyl transferases (AAEL002688 and AAEL003076)
and an aldehyde oxidase (AAEL014493). The cuticular biosynthesis enzyme chitin synthase
(AAEL002718) and the digestive enzymes, putative trypsin genes, AAEL007102,

AAEL014579, and AAEL003308, were also present.

Other over expressed genes included the hydrocarbon biosynthesis pathway enzyme acetyl-
CoA dehydrogenase (AAEL014452) [61], glutamate decarboxylase (AAEL010951) which
catalyses biosynthesis of GABA through glutamate decarboxylation [62], sarcosine
dehydrogenase (AAEL014936), a mitochondrial glycine synthesising enzyme [63], leucine
aminopeptidase (AAEL006975), a proteolytic enzyme that hydrolyses amino acids with roles
in toxin biosynthesis [64], a manganese-iron (Mn-Fe) superoxide dismutase (MNSOD1 -
AAEL004823), amitochondrial antioxidant associated with increased life span in insects
[65,66] and two mannose- binding C-Type Lectins (CTLs) AAEL011612 and AAEL000533,

1
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ubiquitous proteins in multicellular organisms that provide the pattern recognition required

for theinitial phase of an immune response [67,68].

The under expressed transcriptome of field resistant Aedes aegypti larvae

The transcript profiles of the 75 annotated protein coding genes significantly under expressed
genes in the resistant population were also visualised in heatmaps of gene expression (log,
values of CPM) (Fig 8) as well as bar plots of RPKMs (square root values) of the represented
genes (Fig 9). The former showing variation between the 16 samples and the latter displaying

variation between genes and between resistance status.

Genes encoding detoxification enzymes were also presented in this set of under expressed
genes. Those included the cytochrome P450 CYP314A1 (AAEL010946) and a
glucosyl/glucuronosyl transferase (AAEL003098). A cytochrome oxidase biogenesis protein
(oxal mitochondrial - AAEL009183), essential for full expression of cytochrome c oxidase
was also under expressed. Other genes significantly under expressed in the resistant
population include a putative pupal cuticle protein (AAEL011444) and transferrin (Tf1 -
AAEL015458) aregulator of iron metabolism with roles in mosqguito innate immunity [69].
The mdg4-binding protein ortholog gene in Ae. aegypti (AAEL010576: Modifier of mdg4
[Mod(mdg4)]), responsible for chromosome remodelling was also represented in this group

of under expressed genes.

The expression of several ion and solute membrane transporters were also down regul ated.
These included the sodium-coupled cation-chloride cotransporter AAEL 009886 (aeCC3), the
sodium/chloride dependent amino acid transporter AAEL 000298, the sodium/solute
symporter AAEL001198, and the sugar transporter AAEL010348. In the group of under

expressed genes were also 30 INcRNA genes in the temephos resistant larvae (S1 Table).
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393  Geneexpression profile of temephos exposed lar vae from the resistant population

394  Gene expression in the field resistant population following the controlled exposure to

395 temephos was compared with gene expression of samples from the same population without
396  insecticide exposure. The exposed samples showed 19 significantly (FC >2, p-value <0.05)
397  overexpressed transcripts (Fig 10A & S2 Table) in comparison to the non-exposed samples.
398  These 19 transcripts were mapped to 13 genes (Fig 10). The products of the over expressed
399  genesinclude a sodium/chloride dependent amino acid transporter (AAEL003619), an akyl
400  dihydroxyacetone phosphate synthase (AAEL007793), cathepsin-1 (AAEL011167), trypsin -
401 1 (AAEL016975) and a serine protease stubble (AAEL020367). The remaining eight

402  overexpressed genes had uncharacterised productsin Ae. aegypti (S2 Table).

403  Discussion
404  Management of arbovirus burden is threatened by insecticide resistance in mosquitoes which

405  reduces the effectivity of vector control [70—-72]. In this study we report resistance to

406  temephos in the field population of Ae. aegypti from Cucuta whilst larvae from Bello were
407  susceptible. Bello is an area of relatively low arbovirus incidence [44]and has alower

408  frequency of insecticide usage [73], whilst Clcutais an area of high arbovirus incidence

409  which has seen routine use of temephos for Ae. aegypti control over four decades [17]. The
410  reported resistance in Clcutais consistent with previous reports of temephos resistance in Ae.
411  aegypti from Cucutain 2010, seven years earlier than the mosquito collections took place for
412  thiscurrent study [17]. Whilst the resistance to temephos appears to have reduced in Clcuta
413  from RRsp = 11.85in 2010 [17] to RRsp= 8.0 in 2017 (current study) resistance to temephos
414  remains moderate demonstrating the long-term implications of insecticide resistance on

415  vector control programs. Management of arbovirus burden is threatened by insecticide

416  resistance in mosguitoes which reduces the effectivity of vector control programs [71,74],

417  including alternatives such as biological control strategies [72].

1
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The triangulation of differential gene expression against two unrelated susceptible
populations, one lab and one field, was selected to reduce confounding effects of phenotypic
differences between populations unrelated to insecticide resistance. Whilst this experimental
design does reduce these confounding effects it is not possible to mitigate this entirely and
therefore some of the differencesin gene expression which are observed here may not be
related to temephos resistance but resistance to other insecticides and other phenotypic
differences between populations. The differential gene expression reported here could be the
reflection of the selective pressure under other larvicidal insecticides used in Cucutain a
similar time span and even selective pressure from adulticides, such as malathion,
fenitrothion, A-cyhalothrin and deltamethrin [6,16], through vertical transfer. Ae. aegypti
larvae from Culcuta have previously been reported to be highly resistant to the pyrethroid A-
cyhalothrin whilst larvae from Bello were susceptible [75]. These findings from the same
study localities used in the current study demonstrate the effect adulticide resistance can have
on larvae. Cross resistance between organophosphates, such as temephos and pyrethroids has
also been reported in Ae. aegypti [76—78], including in Colombian Ae. aegypti populations

[16].

Differential gene expression associated with the resistant phenotype was identified by

sel ecting genes which were differentially expressed in the field resistant population compared
to both the field (Bello) and lab (New Orleans) susceptible populations. This reduced the
cofounding effects of location differences and enabled the analysis to focus on DGE
associated specifically with resistance. This comparison identified 503 significantly
differentially expressed genes which are potentially associated with the resistant phenotype,

301 of which were over expressed in the resistant population and 239 under expressed.

Genes which were found to be differentially expressed in the current study may also be the

result of epistatic interactions, genetic and biochemical, and therefore associated with other

1
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443  biological processes aside from insecticide resistance, such as those which compensate for
444  resistance induced fitness cost [79-81] . Epistatic interactions between genes associated with
445  insecticide resistance are also known to influence different levels of resistance [82]. Under

446  such conceptua framework the following functional categories are highlighted.

447  Metabolic detoxification genes

448  Metabolic detoxification of insecticides is one of the most reported insecticide resistance

449  mechanisms in mosguitoes. Abundant overexpression of detoxification genes, most

450  commonly cytochrome P450 monooxygenases (P450), glutathione S-transferases (GST) and
451  carboxylesterases (CE) has frequently been associated with insecticide resistance in

452  mosquitoes [83]. Here we reported the overexpression of only two P450s (CYP12F6 -

453  AAEL002005 and CYP6BY1 -AAEL017539), one GST (AAEL006818) and one CE

454  (CCEAEAC (AAEL003187)), in the resistant population compared to both field and lab

455  susceptible populations. CY P12F6 has previously been shown to be overexpressed in a

456  permethrin resistant population of adult Ae. aegypti from Mexico albeit compared with alab
457  susceptible population only [41]. GO terms associated with insecticide detoxification

458  (oxidoreductase activity (GO:0016491) and oxidation-reduction process (GO:0055114)) were
459  also found to be enriched in the temephos resistant larvae. Thus, by cross examining the data
460 infield-to-field and field-to-lab population comparison, we observed genes representing these
461  three forms of insecticide deactivation in much reduced number compared to what is

462  commonly reported [17,30,59,60]. To illustrate the above, if the resistant population had been
463  compared with the lab susceptible population only atotal of 49 cytochrome P450s, six GTSs
464  and 11 CEs would have been reported as differentially expressed (S3 Table). This suggests
465  that large overexpression of detoxification genes may be partly related to differences between
466  field and lab mosquitoes rather than associated with the insecticide resistant phenotype. Large

467  overexpression of detoxification in mosguitoes may also only be observed in mosquitoes

1
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when they have high levels of resistance rather than the moderate resistance reported here

[59,84].

Chitin biosynthesis

The thickness and composition of the cuticle has been identified as a critical determinant of
insecticide resistance due to its role in reducing insecticide penetration [33]. Over expression
of genes associated with formation and maintenance of the cuticle have been reported in
insecticide resistant populations of medically relevant species including An. gambiae [85—
87], An. funestus [88] and Culex pipiens pallens [89,90]. The cuticle has also been associated
with resistance in Ae. aegypti including in larvae [34,36]. The over expression of the chitin
biosynthesis enzyme AAEL 002718 and the enrichment of chitin synthase activity
(GO:0004100) in temephos resistant Ae. aegypti larvae reported in this study further
highlights the potential role of the cuticle in the development of insecticide resistancein Ae.
aegypti larvae. Chitin, a biopolymer of N-acetylglucosamine, isamajor constituent of the
mosquito cuticle (exoskeleton (epidermal cuticle), tracheal cuticle and eggshell) providing it
with both strength and rigidity and is also found in midgut peritrophic matrices [91]. The use
of chitin synthesisinhibitors (CSl), atype of insect growth regulators (IGRs) which interfere
with the synthesis and deposition of chitin on the exoskeleton [92], has been highlighted as a
potential approach to control Ae. aegypti with some promising findingsin laboratory studies

[93,94].

Patter n recognition and innate immunity

Temephos resistant Ae. aegypti larvae were shown to express high levels of the mannose-
binding C-type lectins (CTLs) AAEL011612 and AAEL 000533 which are predominantly
produced in the salivary glands of adult female Ae. aegypti [95,96]. Lectins are ubiquitous
proteinsin multicellular organisms that provide the pattern recognition required for the initial
phase of an immune response [67,68]. C-type lectins are a group of calcium-dependant

1
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carbohydrate binding proteins [97]. In mosguitoes CTLs are primarily involved in facilitating
viral infection (e.g., dengue, Rift Valley fever and Japanese encephalitis viruses [98,99])
through enhanced viral entry, acting as bridges between flaviviruses and host cell receptors
[99,100]. However, these proficient pattern recognition proteins seem to have evolved to
mediate multiple multicellular processes beyond mosquito immune response including
lifespan and reproductive capability [101] as well as maintenance of gut microbiome
homeostasis [102]. Transferrin (Tf1 - AAEL015458), found to be under expressed in
temephos resistant larvae in the current study, also has roles in the innate immune response to
arbovirus infection [98,103] and has previously been reported to be downregulated in CHIKV
and DENV infected mosquitoes which may favour vira replication [104]. Transferrin
expression has also been related to insecticide resistance in Culex pipiens with increased
expression reported in mosquitoes with target-site resistance to pyrethroids and
organophosphates, the biggest difference in transferrin expression was observed in adults

[105,106].

Cell membrane transport

The expression of several ion coupled solute membrane transporters was down regulated in
temephos resistant larvae: the sodium-coupled cation-chloride cotransporter AAEL009886
(aeCC3), the sodium/chloride dependent amino acid transporter AAEL 000298, the
sodium/solute symporter AAEL001198, and the sugar transporter AAEL010348. aeCCC3is
a larvae specific membrane transporter abundant in the anal papillae responsible for the
absorption of external ions [107] which belongs to afamily of cation-coupled chloride
cotransporters (CCCs) which contribute to ion homeostasis by undertaking electroneutral
transport of Na', K+ and Cl" [108]. A similar role is expected from the ion-coupled
transporters AAEL000298 and AAEL 001198 in the homeostasis of ion content, particularly

in midgut and Malpighian tubes where they are most abundant [109].
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518 Theaquatic life of the Ae. aegypti larval stages demands an ion exchange homeostasis that
519 differs from that of the adult mosquitoes. Due to their freshwater habitat Ae. aegypti larvae
520  must excrete water gained by osmosis, reabsorb salt prior to excreting urine, and absorb salt
521  from their surroundings [110]. Whilst the opposite is true in adults where water retention is
522  needed due to constant |loss through evaporation. A key processin this is Na+-dependent co-
523  transport which istypically down the large inward (extracellular to intracellular) Na+

524  gradient generated by the Nat+/K+-ATPase [111]. We specul ate that the ion homeostasis

525  changes caused by the reduced expression of the three CCCs transporters AAEL009886,

526 AAEL000298 and AAEL001198 could reduce the exposure of larvae to temephos by

527  reducing net uptake of the molecule, protecting the organs where they are commonly

528  expressed (e.g., midgut and Malpighian tubes). Transcriptome studies of insecticide resistant
529  mosquito populations tend to overlook the potential role of down regulated genesin favour of
530 overexpressed genes, but this finding demonstrates the importance of investigating reduced
531  expression when studying potential mechanisms of insecticide resistance. The potential role
532 of CCC transporters in reducing insecticide uptake and therefore facilitating resistance

533  warrants further investigation.

534  Chromosomal remodelling

535  The mdg4-binding protein ortholog gene (AAEL010576: modifier of mdg4 [Mod(mdg4)]),
536  responsible for chromosome remodelling was also significantly under expressed in the

537  resistant Ae. aegypti larvae. Originally described as a protein binding the transposon mdg4
538 [112], Mod(mdg4) gene encodes for afamily of proteins dueto at least 30 different

539  dlternative splicing variants in Diptera and Lepidoptera [113-115]. Mod(mdg4) variants bind
540 avariety of insulators (DNA domains involved in nuclear organization and higher order

541  chromatin structures) [116-118] and have been involved in regulating numerous traits of the

542  insect embryonic progression such as synapsis structure [119], chromosome Y -linked testis

1
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development [120], and mid-gut maturation [121]. Changes in expression of Mod(mdg4)
have been reported in Drosophila Kc cells treated with deltamethrin [122]. The identification
of under expression of the mdg4-binding protein in temephos resistant larvae suggests a

further role for this protein in mediating insecticide resistance.

L ong non-coding RNA

There were 55 over expressed and 30 under expressed genes encoding for long non-coding
RNA (IncRNA) in the temephos resistant larvae (S1 Table). Non-coding RNAs (ncRNA) are
abundant cellular effectors of great prolific functionality [123] and long ncRNA are defined
as transcripts, more than 200 nucleotides long, that are produced by RNA polymerase I and
are not translated into proteins [124]. In Aedes IncRNASs, mainly involved in regulating gene
expression, are multifunction with roles including sex differentiation [125], embryogenesis
[126] and suppression of viral replication in DENV infected mosquitoes [127]. Long ncRNAS
have also been associated with insect’s response to xenobiotics, with reports of differential
INcCRNA expression in resistant populations of Plutella xylostella [128]. The findings of 85
differentialy expressed INCRNAS reported here in resistant populations of Ae. aegypti
supports the potential roles that INCRNAs could have in the development of insecticide
resistance. Whilst gene expression studies have focussed primarily on differential expression
in protein coding genes, the development of next generation techniques have now provided
an opportunity to also study noncoding RNA. Whilst work has been conducted into
identifying INcRNAs in medically relevant mosquito speciesincluding An. gambaie [129] and
Ae. aegypti [126] there have been no studies that have aimed to investigate the role of
IncRNAs in insecticide resistance in mosquitoes. Previous RNA-Seq studies on insecticide
resistant populations of Culex pipiens pallens have also identified differential expression of
IncRNAs [130], however, an in-depth discussion of their role in insecticide resistance has

been neglected.
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Differential gene expression in resistant lar vae following temephos exposur e

In the study we also tracked gene expression in insecticide resistant larvae following direct
response to temephos exposure. Thirteen genes were found to have a significantly increased
expression following a controlled exposure to temephos. Among those 13 genes were two
serine proteases: trypsin -1 (AAEL016975) and serine protease stubble (AAEL020367), a
cysteine protease: cathepsin-1 (AAEL011167), a sodium/chloride dependent amino acid
transporter (AAEL003619) and an alky! dihydroxyacetone phosphate synthase
(AAEL007793). Serine proteases are a group of enzymes with a variety of known functions
including digestion, metamorphosis, oogenesis, blood coagulation and viral immune response
[98,131,132]. Cathepsin-1 (AAEL011167), acysteine proteinase, is also a multifunctional
digestive enzyme [131,133]. Upregulation of serine proteases have been previously reported
in insecticide resistant mosquito populations [39,41,134,135], including temephos resistant
Ae. aegypti from Clcuta[17]. Serine proteases have also been shown to degrade insecticides
through hydrolysis within the insect digestive tract, however so far evidence of thisislimited
to pyrethroids such as deltamethrin [136—139]. Overexpressed proteases in this current study
support the findings of previous studies that proteases may have arole in the metabolism of
other insecticide classes besides pyrethroids. The changes responsible for resistance are often
associated with modification of physiological processes that can lead to decreased

performance and fitness disadvantage.

Deleterious effects of insecticide resistance can affect awide range of life-history traits (e.g.
longevity, biting behaviour, and vector competence) [140,141]. Although the cost of
resistance genes is believed to gradually decrease due to subsequent modifier mutations
[142]. With the relatively limited diversity of insecticide targets [143], the gene expression

patterns that resistant mosquitoes further undergo when exposed to the insecticide could be a
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source for novel assets for vector control. The study of such targets for insecticide

development is a strategy that, to our knowledge, has not yet been explored.

Conclusion

This study found differential insecticide responses from Ae. aegypti field samples of two
previously epidemiologically characterised sites in Colombia. Using these contrasting Ae.
aegypti field mosquito populations together with the New Orleans lab strain, we
demonstrated the risk of producing noise signal by overestimating by several fold the
differential gene expression if mosquito populations are compared only with laboratory
strains. The two overexpressed P450s in resistant Ae. aegypti larvae represent some ten-fold
lower levels in comparison to previous studies [59,84]. Therole of the cuticle in insecticide
resistance suggested in previous studies is substantiated here. This study identified other
potential mechanisms not previously associated with insecticide resistance in mosquitoes.
These included changes in ion exchange homeostasis, chromatin remodelling, lectin-
mediated immune responses, and a plethora of INCRNAs. Evidently, there is a notorious gap
in our knowledge base of gene expression adaption in insecticide resistance. The work
presented here contributed to what seems to be an expansive and varied phenotypic landscape

in the Ae. aegypti responses to insecticides of current importance.
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Figure L egends

Fig 1. Thelocation of the two study sites. Mosquito collections took placein these two
locations, Bello and Cucuta, within Colombia. Departments are the largest units of local
government. (A) Department of Antioguia governs Bello which is denoted as a small blue
area. (B) Department of Norte de Santander has as its capital Clcuta, a city (red) to the East
of this department on the border with Venezuela. Map base layers were obtained from

https://data.humdata.org/dataset/col ombia-administrative-boundaries-level s-0-3 covered by a

Creative Commons Attribution 4.0 International (CC BY) License

(https://creativecommons.org/licenses/by/4.0/legal code). Map base layers were modified by

the addition of colours.

Fig 2. Block diagram of our experimental approach. This study concerned the larval
stages of the mosguito Ae. aegypti. Field samples denoted as Resistant originated from the
Cucuta, Colombia population. The Susceptible samples had dual origin: Field samples from
Bello, Colombia (Field Susceptible) and the New Orleans reference lab strain (Lab
Susceptible). The total RNA sequenced and mapped (Data analysis) originated from four
different experiments (biological replicates) from each population. The gene expression
levels of the Resistant samples compared against the Lab Susceptible and Field susceptible
had at least 503 differentially expressed genes (DEG). The Resistant samples of larvae
transiently exposed to temephos had 13 DEGs in comparison to the unexposed larvae. The
functional annotation for the DEG sets was carried with several different repositories:

VectorBase, Gene Ontology (GO) and KEGG Enrichment Analysis.

Fig 3. Distribution of thetranscriptomic profiles by sample groups. The
multidimensionality of the RPKM values calculated for each mapped transcript per sample
was reduced by principal components analysis (PCA). The field samples were seen linearly

distant from each other across one component whist the reference lab strain NO cluster (Lab

1
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Susceptible) separated from both field samples. The orthogonal dispersion of these samples

allowed for the triangulation of the data as described in the main text.

Fig 4. Differential gene expression in the samples from field susceptible, lab susceptible,
and field resistant populations. (A-D) Differential expression of all transcripts including
those over expressed (red), under expressed (blue) and with no significant differential
expression (black) in the field resistant unexposed population compared to the field
susceptible population (A) and susceptible lab population (B), the resistant temephos exposed
population when compared to the resistant unexposed population (C) and in the field
susceptible population when compared to the lab susceptible population (D). (E) The number
of transcripts significantly differentially expressed (FC >2, FDR <0.05) between each of the
experimental groups. The number of differentially expressed transcripts shown here (E)
include both significantly over and under expressed transcripts. The comparison groups and

sample notation as detailed in Fig 2.

Fig 5: GO termsand KEGG pathways enriched in theresistant population when
compared to both field and lab susceptible populations. GO terms and KEGG pathways
found to be significantly enriched (p <0.05) following Benjamini Hochberg correction in the
significantly over (A) and under (B) expressed transcripts. Enrichment percentage was
calculated as the number of differentially expressed transcripts in each category/pathway
divided by the total number of transcripts in the same category/pathway. Number in bars

indicate the number of differentially expressed transcripts in each category.

Fig 6: Comparison of gene expression of significantly over expressed protein coding
annotated genesin thefield resistant, field susceptible and laboratory susceptible
populations. Comparison of the FR population to both FS and LS populations identified a

total of 88 protein coding VectorBase annotated genes with significant over expression (FC
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>2, FDR <0.05). The expression levels were displayed as counts per million (CPM) which is
the number of counts per gene following normalisation. CPM values were calculated for each
gene by taking the mean CPM of each transcript within that gene. Gene expression was
displayed per sample, rather than per experimental group, allowing for visualisation of
granularity between samples. The gene expression was scaled by row to allow comparison
between samples rather than between genes. Variability in expression between samples from
the same experimental groups can be seen across all genes, highlighting the importance of
biological replication. There was alarger difference in expression between the FR and LS
than between the FR and FS for many genes including CYP6B1 and AAEL007102,
demonstrating the importance of using multiple susceptible comparator strains to reduce over

estimation of DGE.

Fig 7: Differences in gene expression between resistant and susceptible populations of a
set of significantly over expressed, protein coding genes with Vector Base annotation.
Comparison of the FR population to both FS and LS populations identified atotal of 88
protein coding VectorBase annotated genes with significant over expression (FC >2, FDR
<0.05). Gene expression was displayed here as reads per kilobase million (RPKM) inthe FR
population (red) and both susceptible populations (turquoise). RPKM values were calculated
for each gene by taking the mean RPKM of each transcript within that gene. The susceptible
RPKMs (max susceptible) represent the maximum RPKM for each genein both FSand LS
populations. The RPKM values were square root transformed here to optimise the
visualisation of a vast range of values (0.02 to 39.11). Genes with average RPKM across
groups of below 0.02 (23 genes) were not included in the bar plot for visualisation purposes
but areincluded in S1 Table. Mean RPKM values per resistance status allow for comparison

of expression between genes as well as between groups.
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Fig 8: Comparison of gene expression of significantly under expressed protein coding
annotated genesin thefield resistant, field susceptible and laboratory susceptible
populations. Comparison of the FR population to both FS and LS populationsidentified a
total of 76 protein coding VectorBase annotated genes with significant under expression (FC
>2, FDR <0.05). The expression was displayed here as counts per million (CPM) which is the
number of counts per gene following normalisation. CPM values were calculated for each
gene by taking the mean CPM of each transcript within that gene. Expression was displayed
per sample, rather than per experimental group, allowing for visualisation of granularity
between samples. The expression was scaled by row to allow comparison between samples
rather than between genes. Variability in expression between samples from the same
experimental groups can be seen across all genes, highlighting the importance of biological
replication. There was a larger difference in expression between the FR and LS than between
the FR and FS for many genesincluding CLIPB41 and RpL 10, demonstrating the importance

of using multiple susceptible comparator strains to reduce over estimation of DGE.

Fig 9: Differences in gene expression between resistant and susceptible populations of a
set of significantly under expressed, protein coding geneswith Vector Base annotation.
Comparison of the FR population to both FS and LS populations identified atotal of 76
protein coding VectorBase annotated genes with significant under expression (FC >2, FDR
<0.05). Gene expression was displayed here as reads per kilobase million (RPKM) inthe FR
population (red) and both susceptible populations (turquoise). RPKM values were calculated
for each gene by taking the mean RPKM of each transcript within that gene. The susceptible
RPKMs (max susceptible) represent the maximum RPKM for each genein both FSand LS
populations. The RPKM values were sguare root transformed here to optimise the
visualisation of a vast range of values (0.02 to 400). Genes with average RPKM across

groups of below 0.02 (14 genes) were not included in the bar plot for visualisation purposes
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but areincluded in S1 Table. Mean RPKM values per resistance status allow for comparison

of expression between genes as well as between groups.

Fig 10: Differential gene expression of temephos-resistant larvae under transient
exposur e to temephos. Comparison of the resistant temephos exposed population with the
resistant unexposed population identified 19 significantly over expressed transcripts and 13
significantly over expressed genes. The transcript expression was displayed here (A) as
counts per million (CPM) which is the number of counts per transcript following
normalisation. Expression was displayed per sample, rather than per experimental group,
alowing for visualisation of granularity between samples. The expression was scaled by row
to alow comparison between samples rather than between transcripts. Variability in
expression between samples from the same experimental groups can be seen across all genes,
highlighting the importance of biological replication. Gene expression was displayed here (B)
as reads per kilobase million (RPKM) in the resistant exposed population (darker red) and
resistant unexposed population (lighter red). RPKM values were calculated for each gene by
taking the mean RPKM of each transcript within that gene. The RPKM values were square
root transformed here to optimise the visualisation of a vast range of values (0.003 to 239).
Mean RPKM values per group allow for comparison of expression between genes as well as

between groups.
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