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Abstract 
 
To build a large-scale genomic resource for functional validation of sorghum genes 
through EMS-mutagenized BTx623 seeds, we deep sequenced (30-60X) an additional 
445 phenotyped EMS mutant lines. 4.2 million EMS mutations are called with nearly 
36,800 mutations that could have a disruptive effect on functions of over 15,500 genes. 
Combining variants carried by both the natural population and previous EMS efforts, 
over 69% of sorghum coding genes (23644) are now presented with one or more 
mutations that are, or are predicted to be, disruptive to their functions. Our results show 
that the EMS population carries more significant mutations but less in each sample than 
the natural population, which makes it more powerful in elucidating sorghum gene 
functions on a large scale and requiring less work in validation of candidate causal 
genes. We have made the data available through two ways, one is the integration with 
the BSAseq workflow that supports retrieving independent EMS samples carrying the 
same genes with significant mutation for complementary testing, and the other is a web 
application for directly querying genes with significant mutations on SciApps.org.  
  
Introduction 
 
Compared with traditional map-based cloning, molecular identification of allelic variation 
responsible for the phenotypes of plants with induced mutants, known as forward 
genetics, has been much more effective in demonstrating gene functions. For 
introducing point mutations, ethyl methanesulfonate (EMS) mutagenesis has been 
widely used for discovering gene functions for Arabidopsis (Page and Grossniklaus 
2002), rice (Abe et al. 2012), and sorghum [EMS1 (Addo-Quaye et al. 2017; Addo-
Quaye et al. 2018), and our previous effort, EMS2 (Jiao et al. 2016)]. In this study, we 
deep-sequenced an additional 445 EMS pools to further boost the coverage of genes 
with significant mutations. We also compared the statistics of EMS data with recently 
released large natural population data (Lozano et al. 2021). Genes with significant 
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mutations from both populations were integrated and are available through the SciApps 
platform. 
 
Materials and Methods 
 
EMS treatment and DNA sample preparation 
 
EMS treatment was performed as described before (Xin et al. 2008).  
 
Variation analysis 
 
Whole-genome sequencing of the 445 EMS-treated lines was performed on Illumina 
HiSeq 2000 sequencing system. The sequencing depth of each line varies with the 
majority of them falling between 30X - 60X (Figure S1). All reads were aligned using the 
Burrows-Wheeler Alignment (BWA) tool (Li and Durbin 2009) to the sorghum reference 
genome v3.1 available in Phytozome (McCormick et al. 2018). Variant calling was 
performed with Samtools and Bcftools (Li and Durbin 2009; Li et al. 2009). Variants 
overlapping with the ms8 founder line (Wang, Lu, Regulski, et al. 2020), the parental 
BTx623 line, were removed to eliminate background mutations. High-confidence EMS 

SNPs were selected using the following criteria: (1) the nucleotide change is GC → AT; 

(2) the SNP is supported by at least 5 reads; (3) the mutation has an allele frequency <= 

5%. 
 
1 out of the 445 lines (ARS1162) is removed since it carries at least 2.5 times more 
EMS SNPs than the majority of other lines (54K vs 5K-20K), which is an indication of 
contamination. For the remaining 444 lines, cross contaminations were checked via the 
overlapping of EMS SNPs between any pair of lines (Figure S2). Results show that over 
99.99% of the pairs have < 5% overlapping EMS mutations and over 97% have <1% 
identical EMS mutations shared between any two lines. However, we do see very rare 
highly overlapping EMS SNPs between samples with adjacent ids (along the diagonal 
line), which might be an indication of biological contamination. We decided to keep both 
samples in such a situation since they both may contain the significant mutations and 
the true causal genes could still be easily verified. 
 
Functional annotation of SNPs was performed using SnpEff (Cingolani et al. 2012) and 
deleterious mutations were predicted using SIFT 4G (Vaser et al. 2016). Both were 
done on the SciApps platform (Wang et al. 2018; Wang, Lu, delaBastide, et al. 2020).  
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Data availability 
 
EMS variant data are available from the SorghumBase’s CyVerse repository: 
https://datacommons.cyverse.org/browse/iplant/home/shared/SorghumBase/ems.   
We built a Shiny app for checking the presence of a single gene with any significant 
mutations: https://data.sciapps.org/shiny/ems/?gene_id=Sobic.002G221000. The app is 
built into the BSAseq workflow (Wang, Lu, Regulski, et al. 2020) for facilitating 
complementary testing of true causal genes. A web-based application is also provided 
for checking a list of genes against both the EMS population and the natural population: 
https://www.sciapps.org/app_id/queryEMS-0.0.1.  
 
Results 
 
Population sequencing and variant analysis 
 
Because many M2 plants are sterile, mutagenized M1 seeds were propagated to M3 
seeds through single-seed descent, and genomic DNA was prepared from leaf samples 
pooled from 20 individual M3 plants. A total of 445 M3 families were randomly selected 
for whole-genome sequencing. To capture the majority of the heterozygous EMS 
mutations, we chose to deep sequence each family (30X-60X). Although the number of 
EMS SNPs does not show strong correlation with the sequencing depth (Figure S1), 
with deep sequencing we had a higher chance to capture the majority of the 
heterozygous SNPs presented in the M3 families and more confidence in the called 
variants.  
 
Functional annotation of the EMS-induced mutations 
 
We used SnpEff (Cingolani et al. 2012) to annotate the SNPs generated by EMS 
treatment or present in the natural population. The effect of nonsynonymous 
substitutions were predicted by SIFT 4G (Vaser et al. 2016). To reduce the number of 
false-positive predictions made by SIFT, we also used the genomic evolutionary rate 
profiling (Davydov et al. 2010) or GERP score, which identified 9.49% (64.9 Mb) of the 
sorghum genome (Valluru et al. 2019) as evolutionarily constrained (GERP > 0).  
 
In this study, we use four categories to classify a significant mutation: (1) predicted, with 
SIFT score < 0.05, median_info < 3.25, and GERP score >= 2. A median_info value 
greater than 3.25 implies that there are not enough sequences to make the SIFT score 
prediction; (2) knockout, include high impact mutations that are annotated by SnpEff as 
SPLICE_SITE_ACCEPTOR, SPLICE_SITE_DONOR, STOP_GAINED, or 
START_LOST; (3) stop-gained, constituting the majority of the knockout mutations; (4) 
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significant, the union of all three categories above. A gene is only counted once in Table 
1 if it has more than one significant mutation. In total, over 69% of the protein-coding 
genes are now presented in one or more of the 1681 lines carrying a significant 
mutation. 
 
Table 1 shows that the number of significant SNPs per line is similar between EMS2 
and EMS3, and both are higher than EMS1 in each category. The difference might be 
due to the fact that the EMS1 lines are individual M3 plants, not a mixture of 20 plants 
as in EMS2 and EMS3. All EMS lines have a higher number of significant SNPs than 
the natural population, with EMS2 and EMS3 both having two times more stop-gained 
or total significant mutations per line than the natural population, though the total EMS 
mutations (8.41M) is less than the total natural mutations (13.1M).  
 
Statistics of genes with significant mutations 
 
Table 1 shows that EMS3 has the highest coverage of genes with significant mutations 
in each category than EMS1, EMS2, and the natural population (herein referred to as 
NP). Specifically, as shown in Figure 1, EMS3 adds 4902 new genes with knockout 
mutations, in which there are 4335 new genes with stop-gained mutations. The number 
of new genes from EMS3 with mutations predicted to be significant (1601) or total 
significant mutations (3943) are smaller since we are only counting a gene once when 
there are multiple mutations present in the same gene and there is a much larger 
overlap among EMS datasets in these two categories (Figure 1A and 1C) than knockout 
or stop-gained mutations (Figure 1B and 1D). This is also true when compared with the 
natural population (Figure S3), where the natural population also adds new genes with 
significant mutations. 
 
The distribution of the number of significant mutations in each sample is shown in 
Figure 2 for EMS datasets and Figure 3A for the natural population. In general, EMS2 
and EMS3 carry more significant mutations per sample than EMS1. As discussed 
above, this might be due to the fact that both EMS2 and EMS3 samples are a mixture of 
20 M3 plants while EMS1 is a single M3 plant. The distributions in Figure 2 show that, 
even for stop-gained mutations, the number of affected genes varies from 0 to 30 per 
sample for EMS1 (average 10), 4 to 42 for EMS2 (average 20), and 0 to 55 for EMS3 
(average 19). These numbers are high but still much smaller than the majority of NP 
samples with 180 to 420 stop-gained mutations per sample (average 300), as shown in 
Figure 3A. Less significant genes per sample means less work and less confounding 
factors in the molecular identification of genes responsible for mutant phenotypes. 
Therefore, even without considering the large structural variations in the natural 
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population, the BTx623-based EMS data are more efficient resources in elucidating 
gene functions for forward genetics approaches. 
 
As shown in Table 1, there are less genes with stop-gained mutations in the natural 
population than the EMS populations combined (3550/499 vs 12077/1182). The fact 
that each sample carries more stop-gained genes than the EMS data is due to the 
population structure or relatedness among samples. As shown in Figure 3B and Figure 
4D, a large number of genes with significant mutations, knockout mutations, or stop-
gained mutations, are present in over 25 samples. Some are present in over 250 
samples, half of the natural population. On the contrary, the majority of the genes with 
knockout/stop-gained mutations are present in only one or two EMS samples, with very 
few present in more than three EMS samples, as shown in Figure 4A, 4B, 4C and 
Figure S4.  
 
In summary, compared with the natural population, the EMS data carries 4 times more 
significant mutations (84.8K vs 21.3K), and impacts two times more genes (21.4K vs 
11.6K) with any significant mutations, 3 times more genes with knockout mutations (15K 
vs 5.5K), or four times more genes with stop-gained mutation (12.1K vs 3.6K). On the 
other hand, each EMS sample carries 6 times less (100 vs 600) genes with any 
significant mutations, or 20 times less (30 vs 600) genes with knockout mutations, or 15 
times less (20 vs 300) genes with stop-gained mutations. Furthermore, the majority of 
the significant mutations are presented in less than 3 EMS samples in contrast to a 
large number of them presenting in over 25 samples from the natural population. This 
reaffirms that the EMS data is more efficient in gene function study. 
 
Mutation landscape of sorghum 
 
In Figure 5, we combined all three EMS datasets, divided the sorghum genome into 
non-overlapping 500 kb windows, and calculated the number of significant genes in 
each window. For comparison, statistics of the significant mutations from the natural 
population is calculated and shown in blue. 
 
The EMS mutations have been shown to be uniformly distributed within the sorghum 
genome (Jiao et al. 2016). Figure 5 shows that the number of significant mutations 
increases with gene densities but is unrelated to the recombination rate. For example, 
the region around 70 Mb in chromosome 1 has a relatively low recombination rate but 
no dropping is observed for the number of significant genes from the EMS data. The 
functions of genes within these regions might be difficult to study with a map-based 
cloning approach but it is not the case with the EMS method. Inside each 500-kb 
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window, the number of significant, knockout, and stop-gained mutations from the EMS 
data are much higher than those from the natural population. 
 
Discussion 
 
With the combined EMS variants (8,409,135 SNPs), there are only 75,457 SNPs present 
in the natural population (13,087,170 SNPs).  This observation suggests that 99.1% of 
EMS-induced mutations are novel variations that could be used to accelerate sorghum 
breeding.  
 
Previously, we have established an automated workflow for identification of causal 
genes through bulk segregation analysis (Wang, Lu, Regulski, et al. 2020). We built a 
database with the EMS2 data to support complementary testing of candidate causal 
genes. EMS lines with alternative significant mutations on the same gene can be 
retrieved from the database and used to verify the true causal relationship between the 
gene and the observed mutant phenotype. In this study, we have integrated all three 
sorghum EMS datasets into the database, which increases the gene coverage from 
33.3% (11,372) to 62.7% (21384), as shown in Table 1. If using SIFT score < 0.05 as 
the only criteria for a mutation to be predicted as significant (Jiao et al. 2016) (without 
considering median_info and GERP score), the total number of genes with significant 
mutations increases from 20561 (or 60.3%) to 29478 (or 86.4%) after combining the 
EMS1 and EMS3 data. Considering that loss of some genes might be lethal to the plant, 
we have closely covered the majority of the sorghum gene space. By building a massive 
scale of genomic resources for the sorghum community, we hope to facilitate identifying 
and validating gene functions with mutant phenotypes within a short period. 
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Table 1. Summary of SNPs and impacts on genes for EMS mutants and natural 
populations The numbers in the parenthesis are the average numbers per sample (for SNPs) 
and percentage of total 34,118 sorghum v3 protein coding genes (for genes) 
 

 EMS1 EMS2 EMS3 All EMS NP All 

Ref. Addo-
Quaye, 
2018 

Jiao, 
2016 

- - Lozano, 
2021 

- 

# samples 486 252 444 1182 499 1681 

# SNPs 2.55M 
(5247) 

1.74M 
(6905) 

4.17M 
(9392) 

8.41M 
(7115) 

13.1M 
(26253) 

21.4M 
(12731) 

# predicted significant 
SNPs 

19563 
(40.2) 

15870 
(63.0) 

26127 
(58.8) 

60652 
(51.3) 

13872 
(27.8) 

74288 
(44.2) 

# knockout SNPs 7621 
(15.7) 

6180 
(24.5) 

10667 
(24.0) 

24207 
(20.5) 

7465 
(15.0) 

31551 
(18.8) 

# stop-gained SNPs 5334 
(11.0) 

4505 
(17.9) 

7961 
(17.9) 

17606 
(14.9) 

4613 
(9.2) 

22153 
(13.2) 

# significant SNPs 27175 
(55.9) 

22039 
(87.5) 

36785 
(82.8) 

84831 
(71.8) 

21333 
(42.8) 

105800 
(62.9) 

#predicted significant 
genes 

9595 
(28.1%) 

8084 
(23.7%) 

10294 
(30.2%) 

13444 
(39.4%) 

6998 
(20.5%) 

13808 
(40.5%) 

# knockout genes 6431 
(18.9%) 

5187 
(15.2%) 

8428 
(24.7%) 

15033 
(44.1%) 

5497 
(16.1%) 

17663 
(51.8%) 

# stop-gained genes 4689 
(13.7%) 

3907 
(11.5%) 

6610 
(19.4%) 

12077 
(35.4%) 

3550 
(10.4%) 

14073 
(41.2%) 

# significant genes 13642 
(40.0%) 

11372 
(33.3%) 

15532 
(45.5%) 

21384 
(62.7%) 

11557 
(33.9%) 

23644 
(69.3%) 
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Figure 1 Comparison of the number of significant genes among three datasets.  (A) Venn 
diagrams display the number of shared genes carrying any significant mutations among EMS1 
(Purdue), EMS2 (ARS), and EMS3 (CSP, this study). (B) Number of shared genes carrying 
knockout mutations. (C) Number of shared genes carrying mutations predicted to be significant 
by SIFT (<0.05) and GERP scores (>=2). (D) Number of shared genes carrying stop-gained 
mutations.  
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Figure 2 Comparison of the distribution of the number of significant genes in each sample 
among three EMS datasets.  (A) Histograms display the number of genes carrying any 
significant mutations in each sample for EMS1 (Purdue), EMS2 (ARS), and EMS3 (CSP). (B) 
Number of genes in each sample carrying blockout mutations. (C) Number of genes in each 
qsample carrying mutations predicted to be significant by SIFT (<0.05) and evolutionarily 
conserved by GERP scores (>=2). (D) Number of genes in each sample carrying stop-gained 
mutations.  
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Figure 3 Statistics of significant genes for the natural population. (A) Histograms display the 
number of genes carrying different kinds of significant mutations in each sample. (B) Number of 
samples with the same gene carrying different kinds of significant mutations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.06.447271doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.06.447271
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 4 Comparison of distribution of the number of samples with the same significant gene 
among four datasets.  (A) Histograms display the number of samples with the same gene 
carrying different types of significant mutations for EMS1 (Purdue). (B) Number of samples with 
the same gene carrying significant mutations for EMS2 (ARS). (C) Number of samples with the 
same gene carrying significant mutations for EMS3 (CSP). (D) Number of samples with the 
same gene carrying significant mutations for NP (natural population). A mutation is predicted to 
be significant by both SIFT (<0.05) and evolutionarily conserved by GERP scores (>=2).  
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Figure 5 Genome-wide distribution of significant genes in 500 kb windows. (A) Gene density 
heatmap. (B) Population recombination rates (ρ). (C) Number of genes (minimum 0, maximum 
263) with any significant mutations for EMS (red) and natural population (blue). (D) Number of 
genes (0 - 67) with knockout mutations for EMS (black) and natural population (blue). (E) 
Number of genes (0 - 51) with stop-gained mutations for EMS (yellow) and natural population 
(blue). (F) Average GERP scores.  
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Figure S1 Relationship between the number of EMS mutations with sequencing depth for the 
EMS3 data set. The outlier with significantly more EMS SNPs (ARS1162, with 54085 EMS 
SNPs) is removed.   
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Figure S2 Percentage of the overlapping EMS SNPs between each pair of samples for the 
EMS3 data set. 99.9% of the pairwise comparisons have < 5% identical EMS mutations, in 
which 97% have <1% identical EMS mutations.  
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Figure S3 Comparison of the number of significant genes among four datasets.  (A) Venn 
diagrams display the number of shared genes carrying any significant mutations among EMS1 
(Purdue), EMS2 (ARS), EMS3 (CSP), and the NP (the natural population). (B) Number of 
shared genes carrying blockout mutations. (C) Number of shared genes carrying mutations 
predicted to be significant by SIFT (<0.05) and evolutionarily conserved by GERP scores (>=2). 
(D) Number of shared genes carrying stop-gained mutations. 
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Figure S4 Comparison of distribution of the number of samples with the same significant gene 
among three datasets.  (A) Histograms display the number of samples with the same gene 
carrying any significant mutations for EMS1 (Purdue), EMS2 (ARS), and EMS3 (CSP). (B) 
Number of samples with the same gene carrying blockout mutations. (C) Number of samples 
with the same gene carrying mutations predicted to be significant by SIFT (<0.05) and 
evolutionarily conserved by GERP scores (>=2). (D) Number of samples with the same gene 
carrying stop-gained mutations. 
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