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Abstract10

Highly multiplexed imaging technology is a powerful tool to facilitate understanding cells11

composition and interaction in tumor microenvironment at subcellular resolution, which is12

crucial for both basic research and clinical applications. Imaging mass cytometry (IMC), a13

multiplex imaging method recently introduced, can measure up to 40 markers simultaneously14

in one tissue section by using a high-resolution laser with a mass cytometer. However,15

due to its high resolution and large number of channels, how to process and interpret the16

image data from IMC remains a key challenge for its further applications. Accurate and17

reliable single cell segmentation is the first and a critical step to process IMC image data.18

Unfortunately, existing segmentation pipelines either produce inaccurate cell segmentation19

results, or require manual annotation which is very time-consuming. Here, we developed Dice-20

XMBD, a Deep learnIng-based Cell sEgmentation algorithm for tissue multiplexed imaging21

data. In comparison with other state-of-the-art cell segmentation methods currently used22

in IMC, Dice-XMBD generates more accurate single cell masks efficiently on IMC images23

produced with different nuclear, membrane and cytoplasm markers. All codes and datasets are24

available at https://github.com/xmuyulab/Dice-XMBD.25

Keywords: imaging mass cytometry, multiplexed imaging, single cell segmentation, U-Net,26

knowledge distillation, digital pathology27

1 Introduction28

Analysis of the heterogeneity of cells is critical to discover the complexity and factuality of life29

system. Recently, single-cell sequencing technologies have been increasingly used in the research30

of developmental physiology and disease [1, 2, 3, 4], but the spatial context of individual cells in31

the tissue is lost due to tissue dissociation in these technologies. On the other hand, traditional32

immunohistochemistry (IHC) and immunofluorescence (IF) preserve spatial context but the number33

of biomarkers is limited. The development of multiplex IHC/IF (mIHC/mIF) technologies has34

enabled the detection of multiple biomarkers simultaneously and preserve spatial information,35

such as cyclic IHC/IF and metal-based multiplex imaging technologies [5, 6, 7, 8]. Imaging mass36

cytometry (IMC) [6, 9], one of metal-based mIHC technologies, uses a high-resolution laser with a37

mass cytometer and makes the measurement of 100 markers possible.38
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IMC has been utilized in studies of cancer and autoimmune disorders [6, 10, 11, 12, 13]. Due39

to its high resolution and large number of concurrent marker channels available, IMC has been40

proven to be highly effective in identifying the complex cell phenotypes and interactions coupled41

with spatial locations. Thus, it has become a powerful tool to study tumor microenvironment and42

discover the underlying disease-relevant mechanisms [14, 15, 16, 17, 18, 19, 20, 21]. Apart from43

using IMC techniques alone, several other technologies, such as RNA detection in situ and 3D44

imaging, have been combined with IMC to expand its applicability and utility [22, 23, 24, 25].45

The IMC data analysis pipeline typically starts with single-cell segmentation followed by46

tissue/cell type identification [26, 27, 28]. As the first step of an IMC data processing pipeline,47

the accuracy of single-cell segmentation plays a significant role in determining the quality and the48

reliability of the biological results from an IMC study. Existing IMC cell segmentation methods49

include both unsupervised and supervised algorithms. Unsupervised cell segmentation, such as50

the watershed algorithm implemented in CellProfiler [26], does not require user inputs for model51

training. However, the segmentation results are not precise when cells are packed closely or they52

are in complicated shapes. To achieve better segmentation results, it is possible to use supervised53

methods with a set of annotated images with pixel-level cell masks to train a segmentation classifier.54

However, the manual annotation task is very time-consuming and expensive as well since it is55

normally done by pathologists or experienced staff with necessary knowledge in cell annotation.56

Particularly, for multiplexing cellular imaging methods such as IMC, their channel configurations57

including the total number of markers and their selections are typically study-dependent. Therefore,58

manual annotation may need to be performed repeatedly for each study to adapt the segmentation59

model to different channel configurations, which can be impractical.60

To overcome this limitation, a hybrid workflow combining unsupervised and supervised learning61

methods for cell segmentation was proposed [18]. This hybrid workflow uses Ilastik [27], an62

interactive image processing tool, to generate a probability map based on multiple rounds of user63

inputs and adjustments. In each round, a user only needs to perform a limited number of annotations64

on regions where the probability map generated based on previous annotations is not satisfactory.65

CellProfiler is then used to perform the single cell segmentation based on the probability map once66

the result from Ilastik is acceptable. This hybrid workflow significantly reduces manual annotation67

workload and has gained popularity in many recent IMC studies [10, 13, 14, 17, 21]. However, the68

annotation process still needs to be performed by experienced staff repeatedly for each IMC study,69

which is very inconvenient. In addition, the reproducibility of the experimental results obtained70

from this approach can be an issue due to the per-study, interactive training process used in creating71

the single cell masks. Hence, a more efficient, fully automated single-cell segmentation method for72

IMC data without compromising the segmentation accuracy is necessary for IMC to gain broader73

applications in biomedical studies.74

Convolutional neural networks (CNNs) have been successfully used for natural image segmen-75

tation and recently applied in biomedical image applications [29, 30, 31, 32]. CNN-based U-Net76

was developed for pixel-wise cell segmentation of mammalian cells [33]. It has been demonstrated77

that the U-Net architecture and its variants such as Unet++[34], 3D Unet [35] and V-Net [36] can78

obtain high segmentation accuracy. Motivated by the outstanding performance of using U-Nets79

for cell segmentation [37, 38, 39], we developed Dice-XMBD, a deep neural network (DNN)-based80

cell segmentation method for multichannel IMC images. Dice-XMBD is marker agnostic and can81

perform cell segmentation for IMC images of different channel configurations without modification.82

To achieve this goal, Dice-XMBD first merges multiple-channel IMC images into two channels83

consisting of a nuclear channel containing proteins originated from cell nucleus, and a cell channel84

containing proteins originated from cytoplasm and cell membrane. Channels of proteins with85

2

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 7, 2021. ; https://doi.org/10.1101/2021.06.05.447183doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.05.447183
http://creativecommons.org/licenses/by-nd/4.0/


ambiguous locations are ignored by Dice-XMBD for segmentation as they contribute little to the86

segmentation results. Furthermore, to mitigate the annotation workload, we adopted the knowledge87

distillation learning framework [40] in training Dice-XMBD, where the training labels were generated88

using Ilastik with interactive manual annotation as a teacher model. We used four IMC datasets89

of different channel configurations to evaluate the performance of Dice-XMBD and the results90

show that it can generate highly accurate cell segmentation results that are comparable to those91

from manual annotation for IMC images from both the same and different datasets to the training92

dataset, validating its applicability for generic IMC image segmentation tasks.93

2 Materials and methods94

2.1 Overview of the pipeline95

In Dice-XMBD, we used a U-Net based pixel classification model to classify individual pixels of96

an IMC image to their cellular origins, namely, nuclei, cytoplasm/membrane, or background. The97

pixel probability map produced by the classifier was then used by CellProfiler (version 3.1.0) to98

produce the final cell segmentation results (Figure 1). The pixel classification model was trained on99

IMC images with pixel-level annotations. To mitigate the annotation workload, Ilastik was used as100

the teacher model to produce the classification labels for training. Furthermore, to obtain a generic101

pixel classifier that can be used across IMC datasets of different channel configuration, channels of102

different proteins were combined based on their cellular origins into two channels, namely, nuclear103

and cell (membrane/cytoplasmic) channels, respectively. Channels of proteins without specific104

cellular locations were ignored by Dice-XMBD. The pixel classification model was then trained on105

the combined two-channel images. Likewise, the same preprocessing was used at the prediction106

stage to produce the two-channel (nuclear/cell) images for pixel classification. Of note, although the107

prediction may be performed on images with different markers, the channels were always combined108

based on their origins so that pixel classification was performed based on the two channels of109

putative protein locations rather than channels of individual proteins.110

2.2 Training and evaluation datasets111

We used four IMC image datasets in this study. BRCA1 and BRCA2 [18] contain 548 and 746112

images from patients with breast cancer with 37 and 35 markers respectively. T1D1 [10] and T1D2113

[11] contain 839 and 754 images from patients with Type I Diabetes with 35 and 33 markers,114

respectively. Dice-XMBD was trained on a subset of BRCA1 dataset (n = 348) with 200 held-out115

images reserved for validation and test. To test the generalization ability of Dice-XMBD, we also116

tested the trained model on the other three independent IMC datasets (BRCA2, T1D1 and T1D2).117

2.3 Generating groundtruth cell masks118

The groundtruth cell masks for training were generated using Ilastik and CellProfiler. We used the119

smallest brush size (1 pixel) in annotating the image to avoid annotating a group of neighboring120

pixels of different classes. The annotation was performed in an interactive manner, where the121

random forest prediction model of Ilastik was updated regularly during annotation to produce122

an uncertainty map indicating the confidence level of the classification results produced by the123

prediction model. The annotation was then guided by the uncertainty map to focus on the regions124

with high uncertainty iteratively until the overall uncertainty values were low except for regions of125

which the boundaries were visually indistinguishable.126
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The initial annotation was performed on a randomly selected subset of the dataset. After127

the initial annotation, we loaded all the images from the dataset into Ilastik to calculate their128

uncertainty maps, and then selected those with the highest average uncertainty values for further129

annotation. This process was iterated until the uncertainty values of all images converged, i.e., did130

not significantly decrease for three iterations.131

In the end, we annotated 49 images in BRCA1 to train the model in Ilastik. We then imported132

all the images of the BRCA1 dataset into Ilastik for batch processing and export their corresponding133

pixel classification probability maps for training Dice-XMBD. The probability maps were further134

input to CellProfiler to produce the “groundtruth” cell segmentation. In CellProfiler, we used the135

“IdentifyPrimaryObjects” module to segment the cell nuclei and used the “IdentifySecondaryObjects”136

to segment the cell membranes using the propagation method. The output masks from CellProfiler137

are regarded as “groundtruth” cell segmentation of the dataset for performance evaluation.138

We also generated the groundtruth cell masks of the other three datasets by the same iterative139

procedure separately for testing the generalization ability of Dice-XMBD. During the process, 72140

images in BRCA2, 39 images in T1D1, and 67 images in T1D2 were manually annotated.141

2.4 Training the U-Net cell segmentation model142

2.4.1 Image preprocessing143

The input IMC images were firstly preprocessed by hot pixel removal, dynamic range conversion,144

normalization, and image cropping/padding into fix-sized patches. First, we applied a 5×5 low-pass145

filter on the image to remove hot pixels. If the difference between an image pixel value and the146

corresponding filtered value was larger than a preset threshold (50 in our experiments), the pixel147

would be regarded as a hot pixel and its value would be replaced by the filtered value. As the148

dynamic range of pixels values differs among IMC images of different batches and different channels,149

we further min-max normalized all images to [0,255] to remove such batch effect as follows:150

x
′

ij =
xij −Xmin

Xmax −Xmin
∗ 255, (1)

where xij is the pixel value in one channel, Xmax and Xmin denote the maximum and minimum151

values in the channel. Of note, as the pixel values in IMC images have a high dynamic range,152

transforming the pixel values from its dynamic range to [0, 255] would suffer from detail suppression153

by one or few extremely large values. Therefore, we thresholded the image pixel values at 99.7%154

percentile for each image before normalization.155

Finally, we merged all the nuclear channels into the nuclear channel, and membrane/cytoplasmic156

channels into the cell channel, by averaging on all channel images with pre-selected sets of protein157

markers, respectively. We converted the merged two-channel images into patches of 512× 512 pixels.158

For images or boundary patches that are small than target patch size, we set the pixel values of159

both channels to 0 and set the pixel type as background for padding.160

2.4.2 Data augmentation161

Data augmentation is an efficient strategy to reduce overfitting and enhance the robustness of162

the trained models especially when training data is insufficient. We applied the following data163

augmentation methods on input images.164

First, photometric transformations including contrast stretching and intensity adjustments were165

used. For contrast stretching, we changed the level of contrast by multiplication with a random166

factor in the range of [0.5, 1.5]. Similarly, for intensity adjustments we changed the level of intensity167
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by multiplication with a random factor in the range of [0.5, 1.5]. Geometric transformations168

including image flipping and rotation were used. For flipping we implemented random horizontal169

or vertical flipping. For rotation, the rotating angle is randomly distributed in the range of [-180,170

180]. Note that geometric transformations were applied to pairs of input and output images of the171

network. We also injected random Gaussian noise to the two input channels of the input images.172

Examples of data augmentation are shown in Supplementary Figures 1 and 2.173

2.4.3 Constructing a pixel classification model174

The U-Net pixel classification network is an end-to-end fully convolutional network and contains175

two paths. The contracting path (or the encoder) uses a typical CNN architecture. Each block176

in the contracting path consists of two successive 3 × 3 convolution layers followed by a Rectified177

Linear Unit (ReLU) activation and a 2× 2 max-pooling layer. This block is repeated four times. In178

the symmetric expansive path (or the decoder), at each stage the feature map is upsampled using179

2 × 2 up-convolution. To enable precise localization, the feature map from the corresponding layer180

in the contracting path is cropped and concatenated onto the upsampled feature map, followed181

by two successive 3 × 3 convolutions and ReLU activation. At the final stage, an additional 1 × 1182

convolution is applied to reduce the feature map to the required number of channels. Three channels183

are used in our case for cell nuclei, membrane, and background, respectively. As we output the184

probability map, the output values are converted into the range of [0, 1] using the Sigmoid function.185

2.4.4 Loss function186

We take the binary cross-entropy (BCE) as the loss function which is defined as:187

loss(y, ŷ) = − 1

N

∑
N
i=0(yi ∗ log(ŷi) + (1 − yi) ∗ log(1 − ŷi)), (2)

where N represents the total number of pixels in an image, yi denotes the ground truth pixel188

probability and ŷi denotes the predicted pixel probability. The cross-entropy loss compares the189

predicted probabilities with the ground truth values. The loss is minimized during the training190

process.191

2.5 Model evaluation192

To evaluate pixel-level accuracy, we calculated the true positive and false positive based on the193

binary cell masks. In a binary cell mask, 1 represents cell boundary and 0 denotes cell interior or194

exterior. For every pixel in an image, true positive (TP) and true negative (TN) mean that the195

predicted pixel classification is the same with its label, while false positive (FP) and false negative196

(FN) mean that a pixel is misclassified as cell boundary or cell interior/exterior, respectively. To197

evaluate model performance at cell-level, we first calculated the intersection over union (IOU) on198

cells from predicted and labeled cell masks to determine if they are the same cell from different cell199

segmentation. After filtering cell matches with IOU below 0.1, if a predicted cell only finds one true200

cell, the cell is segmented accurately (same as TP). If a true cell cannot find a predicted cell, the201

cell is denoted as FN. Also, there exist some predicted cells which are assigned to the same true cell,202

we consider this situation as a spit error. If multiple true cells are matched to a same predicted cell,203

we consider those predicted cells as merge errors. Four standard indices are measured as below.204

Recall =
TP

TP + FN
, (3)
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Precision =
TP

TP + FP
, (4)

F1score =
2 ∗ Precision ∗Recall

Precision + Recall
, (5)

Jaccard =
TP

TP + FP + FN
. (6)

3 RESULTS205

3.1 Dice-XMBD enables automatic cell segmentation206

We trained a deep learning model with the above-described U-Net architecture using the BRCA1207

dataset with 348 images as training set and 100 images as validation set. A complete held out test208

set with 100 images was used to test model performance within one dataset. We further applied209

the trained model directly on the other three IMC image datasets to evaluate the cross-dataset210

performance of the model. To evaluate the model performance, we computed standard indices211

(Recall, Precision, F1-score, and Jaccard index) for both pixel-level and cell-level accuracies (see212

Methods for more details).213

We compared Dice-XMBD with a generic whole-cell segmentation method across six imaging214

platforms, Mesmer [41], which used a deep learning-based algorithm trained on a large, annotated215

image dataset to segment single cells and nuclei separately. A trained Mesmer model was tested216

with combined nuclear and cell channels which is the same as the input to Dice-XMBD. Meanwhile,217

we used three commonly used segmentation methods implemented in CellProfiler with default218

parameters: distance, watershed, and propagation. These methods first find nuclei as primary219

objects, and then the membrane proteins are added together into an image as input to recognize220

cells. The distance method does not use any membrane proteins information and simply defines cell221

membrane by expanding several pixels around nuclei. The watershed method computes intensity222

gradients on the Sobel transformed image to find boundary between cells [42], while the propagation223

method defines cell boundary by combining the distance of the nearest primary object and intensity224

gradients of cell membrane image [43]. Hereafter we refer these methods as CP-distance, CP-225

watershed, and CP-propagation, respectively. Results show that Dice-XMBD outperformed all226

other benchmarked methods with highest accuracy on pixel level (F1 score = 0.92, Jaccard index227

= 0.85) (Figure 2A). We also observed that CP-distance obtained the highest recall (Recall =228

0.95) but lowest precision (Precision = 0.66), which means that it can identify almost every pixel229

correctly in the labeled mask but only 66% of predicted pixels were accurate.230

In terms of cell-level performance, we first counted cells per image from predicted and labeled231

cell masks. Dice-XMBD can predict cells similar to ground truth (Pearson correlation = 0.998).232

Although the correlation between prediction and ground truth was relatively high among all233

segmentation methods, Mesmer tended to predict less cells while CellProfiler was more likely to234

over-split cells, as shown in Figure 2B and Figure 2C. Moreover, Figure 2C shows that Dice-XMBD235

had the best prediction performance (F1-score = 0.856) considering precision (Precision = 0.880,236

percent of cells that were correctly predicted) and recall (Recall = 0.867, percent of true cells that237

are predicted) than Mesmer (F1-score = 0.557) and CellProfiler (F1-score ≈ 0.56). We further238

checked the IOU distribution of all one-to-one cell pairs (predicted and true cells), Figure 2D239

demonstrates that most matched cell pairs predicted from Dice-XMBD were highly overlapping240

(mean = 0.815, median = 0.821), followed by Mesmer where most matched pairs are only half area of241
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overlap (mean = 0.579, median = 0.595). An example of BRCA1 shown in Figure 2E demonstrates242

Dice-XMBD prediction was far superior to other benchmarked methods since it contained most243

cells with high matched values.244

3.2 Dice-XMBD enables generic IMC image segmentation tasks245

The key idea of this study was to generate an IMC-specific single cell segmentation model across246

different datasets with multiple proteins. We selected three independent IMC datasets generated247

from different labs to test the generalization ability of Dice-XMBD. Apart from the benchmarked248

methods mentioned above, we also included Ilastik model trained from BRCA1 annotations in249

our comparison. Figure 3A shows that Dice-XMBD outperformed all the methods, followed by250

Ilastik. Moreover, the performance of cells prediction from Dice-XMBD was the best and the most251

stabilized among three datasets, while Ilastik and Mesmer tended to under-predict cells. CellProfiler252

predicted less cells in BRCA2 and over-predicted cells in two T1D datasets, as shown in Figure 3B253

and Figure 3C. Furthermore, Dice-XMBD predictions contained most of the cells with IOU value254

higher than 0.8 (Figure 3D and Supplementary Figure S3).255

3.3 Dice-XMBD enables accurate downstream biological analysis256

Single cell segmentation is the first step of downstream analysis, such as protein quantification, cells257

clustering and annotation. Figure 4A shows the distribution of five proteins extracted from one258

image of BRCA1, proteins distribution from Dice-XMBD are more similar to them from ground259

truth than other methods. We calculated Pearson correlation of protein profiling between prediction260

and ground truth, which demonstrated that protein profiling correlation from Dice-XMBD was the261

highest among all methods by testing in the same dataset (BRCA1) and across datasets (BRCA2,262

T1D1, T1D2), as shown in Figures 4B and 4C. These results suggest that Dice-XMBD has good263

generalization ability to predict single cells for different IMC images with minimum impact to the264

downstream analysis due to the high correlation of its results with ground truth.265

4 DISCUSSION266

Highly multiplexed single cell imaging technologies such as IMC are becoming increasingly important267

tools for both basic biomedical and clinical research. These tools can unveil complex single-cell268

phenotypes and their spatial context at unprecedented details, which provide a solid base for further269

exploration in cancer, diabetes, and other complex diseases. Nevertheless, cell segmentation has270

become a major bottleneck in analyzing multiplexed images. Conventional approaches rely on271

intensities of protein markers to identify different cellular structures such as nuclei, cytoplasm,272

and membrane. Unfortunately, the intensity values of these markers are strongly cell type-specific273

and may vary from cells to cells. In addition, the staining also shows variability across images or274

datasets. As a result, the accuracy and robustness of the segmentation results are far from optimal.275

On the other hand, high-order visual features including spatial distribution of markers, textures,276

and gradients are relevant to visually identify subcellular structures by human. However, those277

features are not considered in these methods to improve the cell segmentation results.278

The DNN-based image segmentation approaches provide an opportunity to leverage high-order279

visual features at cellular level for better segmentation results. Unfortunately, they require a280

significant amount of annotation data that are in general difficult to acquire. In addition, the281

highly variable channel configurations of multiplexed images impose another important obstacle282

to the usability of these methods as most of them lack the ability to adapt to different channel283
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configurations after models are trained. In this study, we develop Dice-XMBD, a generic solution for284

IMC image segmentation based on U-Net. Dice-XMBD overcomes the limitation of training data285

scarcity and achieves human-level accuracy by distilling expert knowledge from Ilastik with manual286

input of human as a teacher model. Moreover, by consolidating multiple channels of different287

proteins into two cellular structure aware channels, Dice-XMBD provides an effective off-the-shelf288

solution for cell segmentation tasks across different studies without retraining that can lead to289

significant delay in analysis. Finally, to facilitate the analysis of large amount of IMC data currently290

being generated around the world, we made Dice-XMBD publicly available as an open-source291

software on GitHub (https://github.com/xmuyulab/Dice-XMBD).292
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[13] C. Böttcher, M. van der Poel, C. Fernández-Zapata, S. Schlickeiser, J. K. Leman, C.-C. Hsiao,344

M. R. Mizee, M. C. Vincenten, D. Kunkel, I. Huitinga, et al., “Single-cell mass cytometry345

reveals complex myeloid cell composition in active lesions of progressive multiple sclerosis,”346

Acta neuropathologica communications, vol. 8, no. 1, pp. 1–18, 2020.347

[14] N. L. de Vries, A. Mahfouz, F. Koning, and N. F. de Miranda, “Unraveling the complexity348

of the cancer microenvironment with multidimensional genomic and cytometric technologies,”349

Frontiers in Oncology, vol. 10, p. 1254, 2020.350

[15] S. Brähler, B. H. Zinselmeyer, S. Raju, M. Nitschke, H. Suleiman, B. T. Saunders, M. W.351
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Figure 1: Dice-XMBD workflow. IMC images are combined into 2-channel images containing
membrane/cytoplasm and nuclear proteins expression information. In stage 1, the pixel probability
maps of given 2-channel images are predicted using a semi-supervised learning model based on Unet
architecture. The training data were generated from Ilastik by using human annotations. In stage
2, the cell segmentation masks are generated from the pixel probability maps using the propagation
method in CellProfiler.
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Figure 2: Dice-XMBD enables automatic single cell segmentation on dataset BRCA1. (A) Pixel
prediction performance comparisons of Dice-XMBD, Mesmer and CellProfiler (CP-distance, CP-
watershed, CP-propagation). All data in bar plots are presented as mean values +/- SD. (B)
Pearson correlations between the number of predicted cells and labelled cells per image. The
number of cells predicted from three cell segmentation methods implemented in CellProfiler are the
same (represented as CellProfiler). (C) Cell prediction performance of five benchmarked methods.
The percent of oversplits and merge errors in predictions are denoted as %Oversplit and %Merge.
(D) Density plot shows the distribution of mean IOU values of matched cells per image. (E)
An example of labeled and predicted single cell mask from benchmarked methods. Match value
represents IOU value for one-to-one cell pair found in label and prediction, -0.4 and -0.8 for merged
cells (multiple true cells are assigned to one predicted cell) and split cells (multiple predicted cells
are matched to a true cell), and -1 for cells are not in any of above situations. Numbers in brackets
of each method indicate mean of IOU values of all matched cell pairs.
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Figure 3: Dice-XMBD enables generic IMC image segmentation. Left: BCRA2, middle: T1D1,
right: T1D2. (A) Pixel prediction performance comparisons of Dice-XMBD, Ilastik, Mesmer and
CellProfiler (CP-distance, CP-watershed, CP-propagation). All data in bar plots are presented
as mean values +/- SD. (B) Pearson correlations between the number of predicted cells and
labelled cells per image. The number of cells predicted from three cell segmentation methods
implemented in CellProfiler are the same (represented as CellProfiler). (C) Heatmaps of cells
prediction performance of six benchmarked methods. The percent of oversplit and merge errors in
predictions are denoted as %Oversplit and %Merge. (D) Density plots show the distribution of
mean IOU values of matched cells per image.
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Figure 4: Dice-XMBD enables accurate downstream biological analysis. (A) Four protein distribu-
tion of one image of BRCA1. Sing cell protein profiling Pearson correlation between prediction and
ground truth for BRCA1 dataset (B) and other three datasets (C). Boxplots represent median
with the center line, and whiskers extend to 1.5x interquartile range (IQR).
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