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10 Abstract

1 Highly multiplexed imaging technology is a powerful tool to facilitate understanding cells

12 composition and interaction in tumor microenvironment at subcellular resolution, which is

13 crucial for both basic research and clinical applications. Imaging mass cytometry (IMC), a

14 multiplex imaging method recently introduced, can measure up to 40 markers simultaneously

15 in one tissue section by using a high-resolution laser with a mass cytometer. However,

16 due to its high resolution and large number of channels, how to process and interpret the

17 image data from IMC remains a key challenge for its further applications. Accurate and

18 reliable single cell segmentation is the first and a critical step to process IMC image data.

19 Unfortunately, existing segmentation pipelines either produce inaccurate cell segmentation

20 results, or require manual annotation which is very time-consuming. Here, we developed Dice-

21 XMBD, a Deep learnIng-based Cell sEgmentation algorithm for tissue multiplexed imaging

2 data. In comparison with other state-of-the-art cell segmentation methods currently used

23 in IMC, Dice-XMBD generates more accurate single cell masks efficiently on IMC images

2 produced with different nuclear, membrane and cytoplasm markers. All codes and datasets are

25 available at https://github.com/xmuyulab/Dice-XMBD.

26 Keywords: imaging mass cytometry, multiplexed imaging, single cell segmentation, U-Net,

27 knowledge distillation, digital pathology

» 1 Introduction

2 Analysis of the heterogeneity of cells is critical to discover the complexity and factuality of life
s system. Recently, single-cell sequencing technologies have been increasingly used in the research
a  of developmental physiology and disease [T}, 2, [3, 4], but the spatial context of individual cells in
2 the tissue is lost due to tissue dissociation in these technologies. On the other hand, traditional
13 immunohistochemistry (IHC) and immunofluorescence (IF) preserve spatial context but the number
1 of biomarkers is limited. The development of multiplex IHC/IF (mIHC/mlIF) technologies has
55 enabled the detection of multiple biomarkers simultaneously and preserve spatial information,
s such as cyclic IHC/IF and metal-based multiplex imaging technologies [B, [6l [7, [§]. Imaging mass
w  cytometry (IMC) [6, @], one of metal-based mIHC technologies, uses a high-resolution laser with a

;s mass cytometer and makes the measurement of 100 markers possible.


https://github.com/xmuyulab/Dice-XMBD
https://doi.org/10.1101/2021.06.05.447183
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.05.447183; this version posted June 7, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

39 IMC has been utilized in studies of cancer and autoimmune disorders [6], 10, 1T}, 12} [13]. Due
2 to its high resolution and large number of concurrent marker channels available, IMC has been
o proven to be highly effective in identifying the complex cell phenotypes and interactions coupled
2 with spatial locations. Thus, it has become a powerful tool to study tumor microenvironment and
. discover the underlying disease-relevant mechanisms [14] [15] [16], 17, 18], 19} 20, 21]. Apart from
« using IMC techniques alone, several other technologies, such as RNA detection in situ and 3D
s imaging, have been combined with IMC to expand its applicability and utility [22] 23], 24} 25].

46 The IMC data analysis pipeline typically starts with single-cell segmentation followed by
«  tissue/cell type identification [26] 27 [28]. As the first step of an IMC data processing pipeline,
s the accuracy of single-cell segmentation plays a significant role in determining the quality and the
w0 reliability of the biological results from an IMC study. Existing IMC cell segmentation methods
so include both unsupervised and supervised algorithms. Unsupervised cell segmentation, such as
st the watershed algorithm implemented in CellProfiler [26], does not require user inputs for model
52 training. However, the segmentation results are not precise when cells are packed closely or they
53 are in complicated shapes. To achieve better segmentation results, it is possible to use supervised
s« methods with a set of annotated images with pixel-level cell masks to train a segmentation classifier.
ss  However, the manual annotation task is very time-consuming and expensive as well since it is
ss normally done by pathologists or experienced staff with necessary knowledge in cell annotation.
sv  Particularly, for multiplexing cellular imaging methods such as IMC, their channel configurations
ss including the total number of markers and their selections are typically study-dependent. Therefore,
s manual annotation may need to be performed repeatedly for each study to adapt the segmentation
o model to different channel configurations, which can be impractical.

61 To overcome this limitation, a hybrid workflow combining unsupervised and supervised learning
2 methods for cell segmentation was proposed [I8]. This hybrid workflow uses Ilastik [27], an
&3 interactive image processing tool, to generate a probability map based on multiple rounds of user
e inputs and adjustments. In each round, a user only needs to perform a limited number of annotations
e on regions where the probability map generated based on previous annotations is not satisfactory.
s CellProfiler is then used to perform the single cell segmentation based on the probability map once
o7 the result from Ilastik is acceptable. This hybrid workflow significantly reduces manual annotation
s workload and has gained popularity in many recent IMC studies [10] T3] T4} 17, 2T]. However, the
e annotation process still needs to be performed by experienced staff repeatedly for each IMC study,
7 which is very inconvenient. In addition, the reproducibility of the experimental results obtained
7 from this approach can be an issue due to the per-study, interactive training process used in creating
2 the single cell masks. Hence, a more efficient, fully automated single-cell segmentation method for
73 IMC data without compromising the segmentation accuracy is necessary for IMC to gain broader
72 applications in biomedical studies.

75 Convolutional neural networks (CNNs) have been successfully used for natural image segmen-
7 tation and recently applied in biomedical image applications [29] [30] 31, 32]. CNN-based U-Net
7 was developed for pixel-wise cell segmentation of mammalian cells [33]. It has been demonstrated
7z that the U-Net architecture and its variants such as Unet++[34], 3D Unet [35] and V-Net [36] can
7 obtain high segmentation accuracy. Motivated by the outstanding performance of using U-Nets
o for cell segmentation [37, [38] [39], we developed Dice-XMBD, a deep neural network (DNN)-based
a1 cell segmentation method for multichannel IMC images. Dice-XMBD is marker agnostic and can
sz perform cell segmentation for IMC images of different channel configurations without modification.
ss To achieve this goal, Dice-XMBD first merges multiple-channel IMC images into two channels
s consisting of a nuclear channel containing proteins originated from cell nucleus, and a cell channel

s containing proteins originated from cytoplasm and cell membrane. Channels of proteins with
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s ambiguous locations are ignored by Dice-XMBD for segmentation as they contribute little to the
s segmentation results. Furthermore, to mitigate the annotation workload, we adopted the knowledge
ss  distillation learning framework [40] in training Dice-XMBD, where the training labels were generated
s using Ilastik with interactive manual annotation as a teacher model. We used four IMC datasets
o of different channel configurations to evaluate the performance of Dice-XMBD and the results
o1 show that it can generate highly accurate cell segmentation results that are comparable to those
e from manual annotation for IMC images from both the same and different datasets to the training

e dataset, validating its applicability for generic IMC image segmentation tasks.

« 2 Materials and methods

s 2.1 Overview of the pipeline

o In Dice-XMBD, we used a U-Net based pixel classification model to classify individual pixels of
o an IMC image to their cellular origins, namely, nuclei, cytoplasm/membrane, or background. The
e pixel probability map produced by the classifier was then used by CellProfiler (version 3.1.0) to
o produce the final cell segmentation results (Figure . The pixel classification model was trained on
w0 IMC images with pixel-level annotations. To mitigate the annotation workload, Ilastik was used as
11 the teacher model to produce the classification labels for training. Furthermore, to obtain a generic
w2 pixel classifier that can be used across IMC datasets of different channel configuration, channels of
w3 different proteins were combined based on their cellular origins into two channels, namely, nuclear
s and cell (membrane/cytoplasmic) channels, respectively. Channels of proteins without specific
s cellular locations were ignored by Dice-XMBD. The pixel classification model was then trained on
ws the combined two-channel images. Likewise, the same preprocessing was used at the prediction
07 stage to produce the two-channel (nuclear/cell) images for pixel classification. Of note, although the
s prediction may be performed on images with different markers, the channels were always combined
w0 based on their origins so that pixel classification was performed based on the two channels of

1m0 putative protein locations rather than channels of individual proteins.

m 2.2 Training and evaluation datasets

2 We used four IMC image datasets in this study. BRCA1 and BRCA2 [I8] contain 548 and 746
us images from patients with breast cancer with 37 and 35 markers respectively. T1D1 [I0] and T1D2
us  [TI] contain 839 and 754 images from patients with Type I Diabetes with 35 and 33 markers,
us  respectively. Dice-XMBD was trained on a subset of BRCA1 dataset (n = 348) with 200 held-out
us images reserved for validation and test. To test the generalization ability of Dice-XMBD, we also
w7 tested the trained model on the other three independent IMC datasets (BRCA2, T1D1 and T1D2).

s 2.3 Generating groundtruth cell masks

us  The groundtruth cell masks for training were generated using Ilastik and CellProfiler. We used the
10 smallest brush size (1 pixel) in annotating the image to avoid annotating a group of neighboring
i pixels of different classes. The annotation was performed in an interactive manner, where the
12 random forest prediction model of Ilastik was updated regularly during annotation to produce
123 an uncertainty map indicating the confidence level of the classification results produced by the
124+ prediction model. The annotation was then guided by the uncertainty map to focus on the regions
125 with high uncertainty iteratively until the overall uncertainty values were low except for regions of

126 which the boundaries were visually indistinguishable.
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127 The initial annotation was performed on a randomly selected subset of the dataset. After
s the initial annotation, we loaded all the images from the dataset into Ilastik to calculate their
120 uncertainty maps, and then selected those with the highest average uncertainty values for further
10 annotation. This process was iterated until the uncertainty values of all images converged, i.e., did
wm  not significantly decrease for three iterations.

132 In the end, we annotated 49 images in BRCA1 to train the model in Ilastik. We then imported
13 all the images of the BRCA1 dataset into Ilastik for batch processing and export their corresponding
13« pixel classification probability maps for training Dice-XMBD. The probability maps were further
s input to CellProfiler to produce the “groundtruth” cell segmentation. In CellProfiler, we used the
136 “IdentifyPrimaryObjects” module to segment the cell nuclei and used the “IdentifySecondaryObjects”
17 to segment the cell membranes using the propagation method. The output masks from CellProfiler
s are regarded as “groundtruth” cell segmentation of the dataset for performance evaluation.

139 We also generated the groundtruth cell masks of the other three datasets by the same iterative
uo procedure separately for testing the generalization ability of Dice-XMBD. During the process, 72
w1 images in BRCA2, 39 images in T1D1, and 67 images in T1D2 were manually annotated.

w 2.4 Training the U-Net cell segmentation model
w3 2.4.1 Image preprocessing

us  The input IMC images were firstly preprocessed by hot pixel removal, dynamic range conversion,
s normalization, and image cropping/padding into fix-sized patches. First, we applied a 5 x 5 low-pass
us filter on the image to remove hot pixels. If the difference between an image pixel value and the
7 corresponding filtered value was larger than a preset threshold (50 in our experiments), the pixel
us  would be regarded as a hot pixel and its value would be replaced by the filtered value. As the
1o dynamic range of pixels values differs among IMC images of different batches and different channels,
s we further min-max normalized all images to [0,255] to remove such batch effect as follows:

wy = 7)(2 : _X;:Zn % 255, (1)
11 where x;; is the pixel value in one channel, X4, and X,,;, denote the maximum and minimum
12 values in the channel. Of note, as the pixel values in IMC images have a high dynamic range,
153 transforming the pixel values from its dynamic range to [0, 255] would suffer from detail suppression
15« by one or few extremely large values. Therefore, we thresholded the image pixel values at 99.7%
155 percentile for each image before normalization.
156 Finally, we merged all the nuclear channels into the nuclear channel, and membrane/cytoplasmic
157 channels into the cell channel, by averaging on all channel images with pre-selected sets of protein
155 markers, respectively. We converted the merged two-channel images into patches of 512 x 512 pixels.
10 For images or boundary patches that are small than target patch size, we set the pixel values of

10 both channels to 0 and set the pixel type as background for padding.

w1 2.4.2 Data augmentation

12 Data augmentation is an efficient strategy to reduce overfitting and enhance the robustness of
13 the trained models especially when training data is insufficient. We applied the following data
1 augmentation methods on input images.

165 First, photometric transformations including contrast stretching and intensity adjustments were
s used. For contrast stretching, we changed the level of contrast by multiplication with a random

7 factor in the range of [0.5, 1.5]. Similarly, for intensity adjustments we changed the level of intensity
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s by multiplication with a random factor in the range of [0.5, 1.5]. Geometric transformations
10 including image flipping and rotation were used. For flipping we implemented random horizontal
o or vertical flipping. For rotation, the rotating angle is randomly distributed in the range of [-180,
in 180]. Note that geometric transformations were applied to pairs of input and output images of the
2 network. We also injected random Gaussian noise to the two input channels of the input images.

73 Examples of data augmentation are shown in Supplementary Figures 1 and 2.

e 2.4.3 Constructing a pixel classification model

s The U-Net pixel classification network is an end-to-end fully convolutional network and contains
ws  two paths. The contracting path (or the encoder) uses a typical CNN architecture. Each block
77 in the contracting path consists of two successive 3 x 3 convolution layers followed by a Rectified
s Linear Unit (ReLU) activation and a 2 x 2 max-pooling layer. This block is repeated four times. In
o the symmetric expansive path (or the decoder), at each stage the feature map is upsampled using
180 2 X 2 up-convolution. To enable precise localization, the feature map from the corresponding layer
11 in the contracting path is cropped and concatenated onto the upsampled feature map, followed
12 by two successive 3 X 3 convolutions and ReLU activation. At the final stage, an additional 1 x 1
183 convolution is applied to reduce the feature map to the required number of channels. Three channels
18 are used in our case for cell nuclei, membrane, and background, respectively. As we output the

155 probability map, the output values are converted into the range of [0, 1] using the Sigmoid function.

s 2.4.4 Loss function
17 We take the binary cross-entropy (BCE) as the loss function which is defined as:

loss(y,) =~ D Mo(ws #loglai) + (1~ wo) = log(1 — 5)) )

183 where N represents the total number of pixels in an image, y; denotes the ground truth pixel
189 probability and y; denotes the predicted pixel probability. The cross-entropy loss compares the
w0 predicted probabilities with the ground truth values. The loss is minimized during the training

191  Process.

v 2.5 Model evaluation

113 To evaluate pixel-level accuracy, we calculated the true positive and false positive based on the
104 binary cell masks. In a binary cell mask, 1 represents cell boundary and 0 denotes cell interior or
s exterior. For every pixel in an image, true positive (TP) and true negative (TN) mean that the
s predicted pixel classification is the same with its label, while false positive (FP) and false negative
w7 (FN) mean that a pixel is misclassified as cell boundary or cell interior/exterior, respectively. To
s evaluate model performance at cell-level, we first calculated the intersection over union (IOU) on
109 cells from predicted and labeled cell masks to determine if they are the same cell from different cell
20  segmentation. After filtering cell matches with IOU below 0.1, if a predicted cell only finds one true
21 cell; the cell is segmented accurately (same as TP). If a true cell cannot find a predicted cell, the
22 cell is denoted as FN. Also, there exist some predicted cells which are assigned to the same true cell,
203 we consider this situation as a spit error. If multiple true cells are matched to a same predicted cell,
2s - we consider those predicted cells as merge errors. Four standard indices are measured as below.
TP

Recall = m y (3)
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TP
Precision = ———— 4
recision = oo pp (4)

2 % Precision x Recall
F1 = , 5
seore Precision + Recall (5)

TP
Jaccard = . 6
wears = rp T FP+ FN (6)

= 3 RESULTS

x 3.1 Dice-XMBD enables automatic cell segmentation

207 We trained a deep learning model with the above-described U-Net architecture using the BRCA1
208 dataset with 348 images as training set and 100 images as validation set. A complete held out test
200 set with 100 images was used to test model performance within one dataset. We further applied
210 the trained model directly on the other three IMC image datasets to evaluate the cross-dataset
an performance of the model. To evaluate the model performance, we computed standard indices
22 (Recall, Precision, Fl-score, and Jaccard index) for both pixel-level and cell-level accuracies (see
23 Methods for more details).

214 We compared Dice-XMBD with a generic whole-cell segmentation method across six imaging
25 platforms, Mesmer [41], which used a deep learning-based algorithm trained on a large, annotated
26 image dataset to segment single cells and nuclei separately. A trained Mesmer model was tested
217 with combined nuclear and cell channels which is the same as the input to Dice-XMBD. Meanwhile,
23 we used three commonly used segmentation methods implemented in CellProfiler with default
a0 parameters: distance, watershed, and propagation. These methods first find nuclei as primary
20 objects, and then the membrane proteins are added together into an image as input to recognize
a1 cells. The distance method does not use any membrane proteins information and simply defines cell
22 membrane by expanding several pixels around nuclei. The watershed method computes intensity
23 gradients on the Sobel transformed image to find boundary between cells [42], while the propagation
24 method defines cell boundary by combining the distance of the nearest primary object and intensity
»s  gradients of cell membrane image [43]. Hereafter we refer these methods as CP-distance, CP-
26 watershed, and CP-propagation, respectively. Results show that Dice-XMBD outperformed all
27 other benchmarked methods with highest accuracy on pixel level (F1 score = 0.92, Jaccard index
2 = 0.85) (Figure [2JA). We also observed that CP-distance obtained the highest recall (Recall =
20 0.95) but lowest precision (Precision = 0.66), which means that it can identify almost every pixel
20 correctly in the labeled mask but only 66% of predicted pixels were accurate.

231 In terms of cell-level performance, we first counted cells per image from predicted and labeled
22 cell masks. Dice-XMBD can predict cells similar to ground truth (Pearson correlation = 0.998).
23 Although the correlation between prediction and ground truth was relatively high among all
24 segmentation methods, Mesmer tended to predict less cells while CellProfiler was more likely to
255 over-split cells, as shown in Figure and Figure 2IC. Moreover, Figure shows that Dice-XMBD
26 had the best prediction performance (F1l-score = 0.856) considering precision (Precision = 0.880,
27 percent of cells that were correctly predicted) and recall (Recall = 0.867, percent of true cells that
2 are predicted) than Mesmer (Fl-score = 0.557) and CellProfiler (F1-score ~ 0.56). We further
20 checked the IOU distribution of all one-to-one cell pairs (predicted and true cells), Figure
20 demonstrates that most matched cell pairs predicted from Dice-XMBD were highly overlapping

21 (mean = 0.815, median = 0.821), followed by Mesmer where most matched pairs are only half area of
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22 overlap (mean = 0.579, median = 0.595). An example of BRCA1 shown in Figure demonstrates
23 Dice-XMBD prediction was far superior to other benchmarked methods since it contained most

aa - cells with high matched values.

2 3.2 Dice-XMBD enables generic IMC image segmentation tasks

a6 The key idea of this study was to generate an IMC-specific single cell segmentation model across
a7 different datasets with multiple proteins. We selected three independent IMC datasets generated
s from different labs to test the generalization ability of Dice-XMBD. Apart from the benchmarked
2«9 methods mentioned above, we also included Ilastik model trained from BRCA1 annotations in
0 our comparison. Figure shows that Dice-XMBD outperformed all the methods, followed by
s Ilastik. Moreover, the performance of cells prediction from Dice-XMBD was the best and the most
»2  stabilized among three datasets, while Ilastik and Mesmer tended to under-predict cells. CellProfiler
253 predicted less cells in BRCA2 and over-predicted cells in two T1D datasets, as shown in Figure
s+ and Figure BIC. Furthermore, Dice-XMBD predictions contained most of the cells with IOU value
255 higher than 0.8 (Figure and Supplementary Figure S3).

= 3.3 Dice-XMBD enables accurate downstream biological analysis

7 Single cell segmentation is the first step of downstream analysis, such as protein quantification, cells
xs  clustering and annotation. Figure @A shows the distribution of five proteins extracted from one
0 image of BRCA1, proteins distribution from Dice-XMBD are more similar to them from ground
x%0 truth than other methods. We calculated Pearson correlation of protein profiling between prediction
1 and ground truth, which demonstrated that protein profiling correlation from Dice-XMBD was the
22 highest among all methods by testing in the same dataset (BRCA1) and across datasets (BRCAZ2,
s T1D1, T1D2), as shown in Figures and . These results suggest that Dice-XMBD has good
x4 generalization ability to predict single cells for different IMC images with minimum impact to the

x5 downstream analysis due to the high correlation of its results with ground truth.

= 4 DISCUSSION

»7  Highly multiplexed single cell imaging technologies such as IMC are becoming increasingly important
xs  tools for both basic biomedical and clinical research. These tools can unveil complex single-cell
»0  phenotypes and their spatial context at unprecedented details, which provide a solid base for further
a0 exploration in cancer, diabetes, and other complex diseases. Nevertheless, cell segmentation has
on become a major bottleneck in analyzing multiplexed images. Conventional approaches rely on
a2 intensities of protein markers to identify different cellular structures such as nuclei, cytoplasm,
;s and membrane. Unfortunately, the intensity values of these markers are strongly cell type-specific
o and may vary from cells to cells. In addition, the staining also shows variability across images or
s datasets. As a result, the accuracy and robustness of the segmentation results are far from optimal.
a6 On the other hand, high-order visual features including spatial distribution of markers, textures,
a7 and gradients are relevant to visually identify subcellular structures by human. However, those
s features are not considered in these methods to improve the cell segmentation results.

279 The DNN-based image segmentation approaches provide an opportunity to leverage high-order
0 visual features at cellular level for better segmentation results. Unfortunately, they require a
2 significant amount of annotation data that are in general difficult to acquire. In addition, the
222 highly variable channel configurations of multiplexed images impose another important obstacle

23 to the usability of these methods as most of them lack the ability to adapt to different channel
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xs  configurations after models are trained. In this study, we develop Dice-XMBD, a generic solution for
s IMC image segmentation based on U-Net. Dice-XMBD overcomes the limitation of training data
26 scarcity and achieves human-level accuracy by distilling expert knowledge from Ilastik with manual
27 input of human as a teacher model. Moreover, by consolidating multiple channels of different
xs proteins into two cellular structure aware channels, Dice-XMBD provides an effective off-the-shelf
20 solution for cell segmentation tasks across different studies without retraining that can lead to
200 significant delay in analysis. Finally, to facilitate the analysis of large amount of IMC data currently
21 being generated around the world, we made Dice-XMBD publicly available as an open-source
22 software on GitHub (https://github.com/xmuyulab/Dice-XMBD).
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Figure 1: Dice-XMBD workflow. IMC images are combined into 2-channel images containing
membrane/cytoplasm and nuclear proteins expression information. In stage 1, the pixel probability
maps of given 2-channel images are predicted using a semi-supervised learning model based on Unet
architecture. The training data were generated from Ilastik by using human annotations. In stage
2, the cell segmentation masks are generated from the pixel probability maps using the propagation
method in CellProfiler.
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Figure 2: Dice-XMBD enables automatic single cell segmentation on dataset BRCA1. (A) Pixel
prediction performance comparisons of Dice-XMBD, Mesmer and CellProfiler (CP-distance, CP-
watershed, CP-propagation). All data in bar plots are presented as mean values +/- SD. (B)
Pearson correlations between the number of predicted cells and labelled cells per image. The
number of cells predicted from three cell segmentation methods implemented in CellProfiler are the
same (represented as CellProfiler). (C) Cell prediction performance of five benchmarked methods.
The percent of oversplits and merge errors in predictions are denoted as %Oversplit and %Merge.
(D) Density plot shows the distribution of mean IOU values of matched cells per image. (E)
An example of labeled and predicted single cell mask from benchmarked methods. Match value
represents IOU value for one-to-one cell pair found in label and prediction, -0.4 and -0.8 for merged
cells (multiple true cells are assigned to one predicted cell) and split cells (multiple predicted cells
are matched to a true cell), and -1 for cells are not in any of above situations. Numbers in brackets
of each method indicate mean of IOU values of all matched cell pairs.
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Figure 3: Dice-XMBD enables generic IMC image segmentation. Left: BCRA2, middle: T1D1,
right: T1D2. (A) Pixel prediction performance comparisons of Dice-XMBD, Ilastik, Mesmer and
CellProfiler (CP-distance, CP-watershed, CP-propagation). All data in bar plots are presented
as mean values +/- SD. (B) Pearson correlations between the number of predicted cells and
labelled cells per image. The number of cells predicted from three cell segmentation methods
implemented in CellProfiler are the same (represented as CellProfiler). (C) Heatmaps of cells
prediction performance of six benchmarked methods. The percent of oversplit and merge errors in
predictions are denoted as %Oversplit and %Merge. (D) Density plots show the distribution of
mean IOU values of matched cells per image.
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Figure 4: Dice-XMBD enables accurate downstream biological analysis. (A) Four protein distribu-
tion of one image of BRCA1. Sing cell protein profiling Pearson correlation between prediction and
ground truth for BRCA1 dataset (B) and other three datasets (C). Boxplots represent median
with the center line, and whiskers extend to 1.5x interquartile range (IQR).
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