

1 **Evolutionary tracking of cancer haplotypes at single-cell resolution**

2

3 Marc J Williams^{†,1}, Tyler Funnell^{1,2}, Ciara H O'Flanagan³, Andrew McPherson¹, Sohrab Salehi³,
4 Ignacio Vázquez-García^{1,4}, Farhia Kabeer^{3,5}, Hakwoo Lee^{3,5}, Tehmina Masud³, Peter Eirew³,
5 Damian Yap³, Beixi Wang³, Jazmine Brimhall³, Justina Biele³, Jerome Ting³, Sean Beatty³, Daniel
6 Lai^{3,5}, Jenifer Pham³, Diljot Grewal¹, Douglas Abrams¹, Eliyahu Havasov¹, Samantha Leung¹,
7 Viktoria Bojilova¹, Adam C Weiner^{1,2}, Nicole Rusk¹, Florian Uhlitz¹, Nicholas Ceglia¹, IMAXT
8 consortium⁶, Samuel Aparicio^{†,3,5} and Sohrab P. Shah^{†,1}

9

10 ¹Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan
11 Kettering Cancer Center, New York, NY 10065, USA

12 ²Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, New
13 York, NY 10065, USA;

14 ³Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC,
15 Canada

16 ⁴ Irving Institute for Cancer Dynamics, Columbia University, New York, NY, 10027

17 ⁵Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver,
18 British Columbia, Canada

19 ⁶CRUK Grand Challenge IMAXT Team

20

21 † Corresponding authors :

22 william1@mskcc.org

23 saporicio@bccrc.ca

24 shahs3@mskcc.org

25

26

27

28

29

30

31

32

33

34

35 **Abstract**

36

37 Cancer genomes exhibit extensive chromosomal copy number changes and structural variation,
38 yet how allele specific alterations drive cancer genome evolution remains unclear. Here, through
39 application of a new computational approach we report allele specific copy number alterations in
40 11,097 single cell whole genomes from genetically engineered mammary epithelial cells and
41 21,852 cells from high grade serous ovarian and triple negative breast cancers. Resolving single
42 cell copy number profiles to individual alleles uncovered genomic background distributions of
43 gains, losses and loss of heterozygosity, yielding evidence of positive selection of specific
44 chromosomal alterations. In addition specific genomic loci in maternal and paternal alleles were
45 commonly found to be altered in parallel with convergent phenotypic transcriptional effects. Finally
46 we show that haplotype specific alterations trace the cyclical etiology of high level amplifications
47 and reveal clonal haplotype decomposition of complex structures. Together, our results illuminate
48 how allele and haplotype specific alterations, here determined across thousands of single cell
49 cancer genomes, impact the etiology and evolution of structural variations in human tumours.

50

51

52

53 **Introduction**

54

55 More than 70% of human tumours are aneuploid and many harbor highly complex genomes¹.
56 Various processes including whole genome doubling², whole chromosome and chromosome arm
57 level gains and losses, segmental aneuploidies^{1,3}, and complex structural rearrangements within
58 and between chromosomes^{4,5} result in complex cancer haplotypes which can differentially impact
59 maternal and paternal alleles. The degree or type of genomic instability correlates with clinical
60 outcome in many settings, highlighting the importance of large scale genomic changes in
61 interpreting therapeutic response⁶⁻⁹. Multi-region sequencing studies have begun to illuminate
62 allele specific granularity of genomic instability^{8,10}, yet how precise single cell-level variation of
63 maternal and paternal alleles impacts genomic evolution remains understudied.

64

65 Recent advances in scalable low pass single cell (or nucleus) whole genome sequencing can
66 profile large numbers of cells per sample (100's to 1000's) and offer new opportunities to define
67 properties of intra-tumour heterogeneity in genetically unstable tumours^{11,12}. Methods such as
68 direct library preparation+ (DLP+) provide granularity to identify ongoing instability at high
69 resolution¹¹. Yet, most single cell whole genome profiling has focused on the analysis of total copy
70 number due to technical limitations. Bespoke library preparation methods such as strand-seq¹³
71 can infer allele specific copy number but do not scale well to large numbers of cells, while high
72 throughput methods require dedicated computational solutions due to their sparse coverage^{14,15}.
73 Total copy number approaches accordingly miss important events such as copy neutral loss of
74 heterozygosity (cnLOH), impacting key biological attributes such as bi-allelic inactivation of
75 tumour suppressor genes and mechanisms of immune evasion¹⁶. Furthermore, accurate
76 decomposition of complex genomic variants requires mapping events to homologous
77 chromosomes¹⁷.

78

79 We developed a new analytical method to identify allele and haplotype specific copy number in
80 scDNA and applied it to DLP+ single cell whole genome sequencing of a cohort of more than
81 32,000 cells from 22 genetically unstable tumours, 7 genetically engineered cell lines and 3
82 patient derived cell lines. We used cell-level allele and haplotype specific CNAs to compute
83 accurate phylogenetic trees and measure rates of instability, integrated them with single cell RNA
84 sequencing to reveal properties of convergent copy number evolution and combined them with
85 subclonal structural variants to infer sequential evolution of complex genomic changes. Our

86 results highlight the prevalence of continual accrual of large genomic alterations, providing new
87 insight into copy number driven evolution of cancer genomes at haplotype specific resolution.

88

89 **Results**

90

91 **Accurate allele-specific copy number in single cells**

92

93 To study the impact of allele and haplotype specific copy number alterations in single cells at
94 scale, we developed an analytical approach called `schnapps` (single cell haplotype copy number
95 analysis by phased probabilistic states). `schnapps` phases haplotype blocks across cells,
96 computing a value for the B allele frequency (BAF) in 500kb bins across the genome. Phasing of
97 alleles is refined based on global imbalances in clusters of cells sharing similar copy number
98 events and allele specific states per bin are inferred using a hidden Markov model (HMM) that
99 incorporates total copy number based on relative read depth and BAF's (see methods).

100

101 We evaluated `schnapps` performance metrics on previously published single cell data from a
102 group of ovarian cancer cell lines derived from the same patient^{11,18}. This data includes cell lines
103 derived from the primary tumour (SA1090), and 2 relapse specimens from the primary site
104 (SA921) and ascites (SA922) respectively. Mean coverage per cell was 0.16X. We found clear
105 examples of loss of heterozygosity (BAF = 0.0) at chromosomes 2p, 3p, 4p, 13, 16, 17, 21 and 22
106 in individual cells (see **Figure 1a** for an example). BAF's were distributed around the expected
107 values, even at relatively high copy states (>8) (**Figure 1b**). We then computed the variant allele
108 fraction (VAF) of clonal single nucleotide variants (SNV) per allele specific state. The VAF
109 followed expected distributions, whereby mutations in balanced regions of the genome had VAF
110 ~ 0.5, mutations in homozygous regions had VAF ~ 1.0, and mutations in unbalanced regions
111 exhibited modes consistent with mutation acquisition timing pre and post the copy number
112 alteration (e.g. 1/3 and 2/3 for 2|1) (**Figure 1c**).

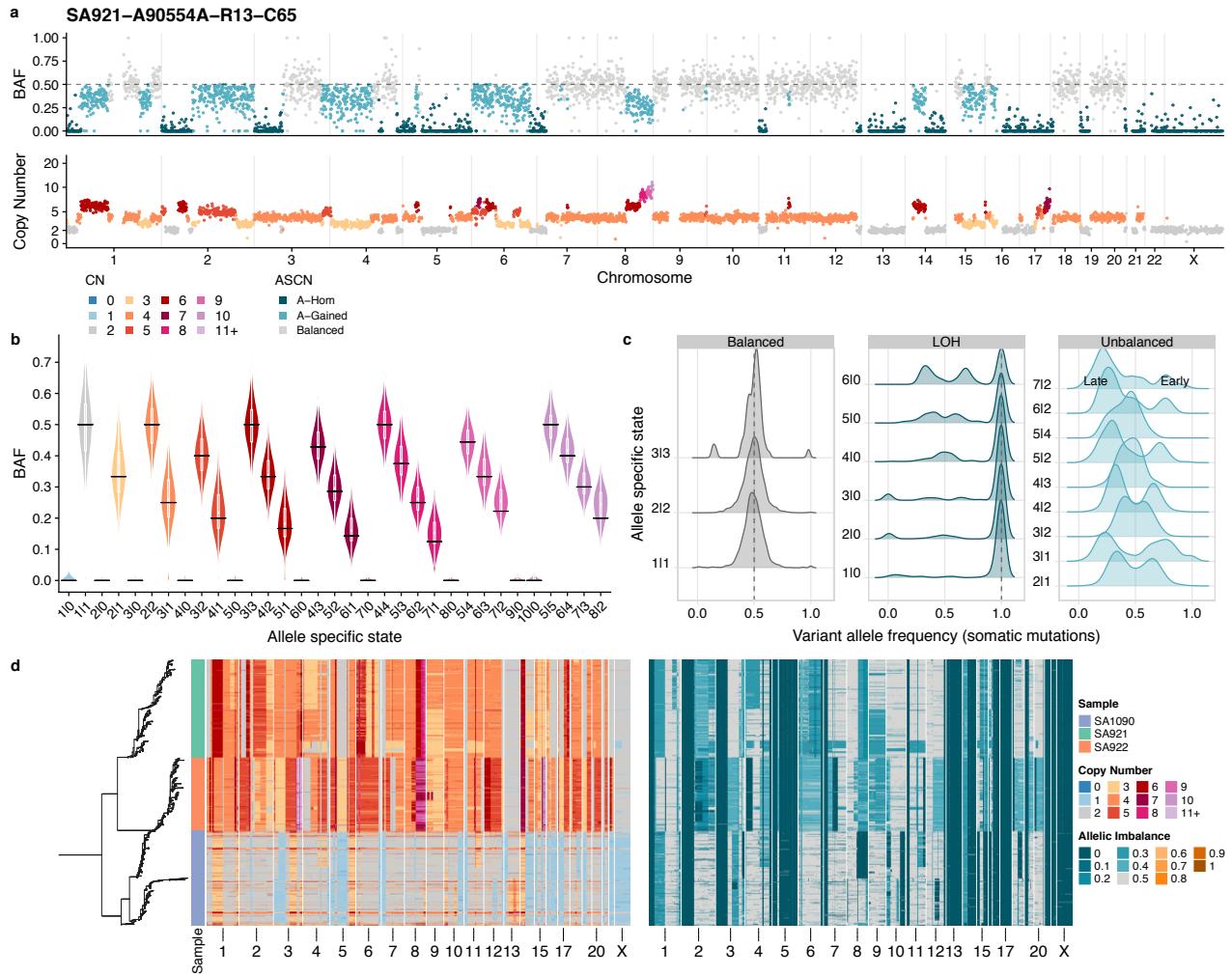


Figure 1 Allele specific inference at single cell resolution

a) Example allele specific copy number in a single cell. Genome position in 0.5Mb bins is shown across the x-axis, top panel shows the B-Allele Frequency (BAF) per bin coloured by inferred allele specific state, bottom shows the corrected read counts per bin colored by inferred total copy number. b) Distribution of BAF as a function of allele specific state across all cells in sample 2295. c) Variant allele frequency of somatic mutations mapped to allele specific states grouped by Balanced states ($A==B$), LOH states (A or $B = 0$) and Unbalanced ($A!=B$). d) Copy number heatmaps of all 1031 cells in OV2295, ordered by phylogeny computed from allele specific states per cell (left). Left heatmap shows total copy number, right heatmap is allele specific copy number.

Having confirmed the accuracy of allele specific inference we then computed a phylogenetic tree of all 1031 cells in this three sample dataset with a phylogenetic inference method, *sitka*¹⁹ using allele specific copy number as input (see methods). Visualizing this tree together with phylogenetically ordered heatmaps of total copy number and allele specific copy number revealed genomic alterations and clonal relationships that were not predicted with total copy number, **Figure 1d**. Firstly, we did not observe any total copy number events that were shared between

119 the three samples; allele specific copy number however revealed that all cells are homozygous
120 (BAF = 0.0) at chromosomes 5, 13, 17, 21 and 22, **Figure 1d**. In addition, allele specific copy
121 number events such as cnLOH on chromosomes 8q and 10p in a subset of cells in SA1090 further
122 refine clonally expanded populations, **Figure 1d**. Taken together, this analysis illustrates the
123 increased resolution provided by allele specific copy number at the single cell level.

124

125 We next inferred allele specific copy number in a set 7 genetically engineered cell lines and 22
126 human tumours with DLP+ single cell whole genome sequencing²⁰. The cell lines originate from
127 a WT immortalized hTERT mammary epithelial cell line, from which we generated derivative lines,
128 using CRISPR to inactivate key DNA repair pathway genes. Our data included: wild-type (*WT*,
129 n=1), *TP53*^{-/-} (n=2), *TP53*^{-/-} *BRCA1*^{-/-} (n=1), *TP53*^{-/-} *BRCA2*^{-/-} (n=2), and *TP53*^{-/-} *BRCA2*^{+/+} (n=1).
130 The human tumour data derives from 15 high grade serous ovarian cancer (HGSOC) samples
131 and 7 breast cancer samples from both PDX models (n=19) and primary human tissue (n=3). A
132 full description of each sample is provided in **Supplementary Table 1**. Allele specific copy
133 number inferred from matched bulk whole genome sequencing were highly similar to the average
134 allele specific copy number of single cells (**Supplementary Figure 1**). This, together with SNV
135 VAF distributions confirmed the accuracy of our inferences for downstream analysis.

136

137 **Background copy number alteration and positive selection in 22 tumours**

138

139 We next investigated the landscape of copy number alterations in the tumour cohort from single
140 cell whole genome sequencing (median 697 cells per sample, range 49-2,627), enabling
141 unambiguous cancer cell fraction (CCF) estimates in each tumour. We classified regions of the
142 genome in each cell as LOH and gained or lost relative to cell ploidy, and then calculated CCF
143 for each type of event across the genome. At the clonal level (CCF > 95%) recurrent events across
144 tumours included 1q, 3q and 8q gains and prominent focal alterations around the oncogenes
145 KRAS, MYC, CCNE1 and PIK3CA. Recurrent losses included 1p, 8p, 5p, 17p and 4, **Figure 2a**.
146 These are all known recurrent events in breast and/or ovarian cancers, corroborated by the Pan-
147 Cancer Analysis of Whole Genomes (PCAWG) cohort⁵, **Figure 2a**. In samples containing *TP53*
148 and/or *BRCA1* loss of function mutations, invariably 100% of cells were homozygous around
149 these loci, **Supplementary Figure 2**.

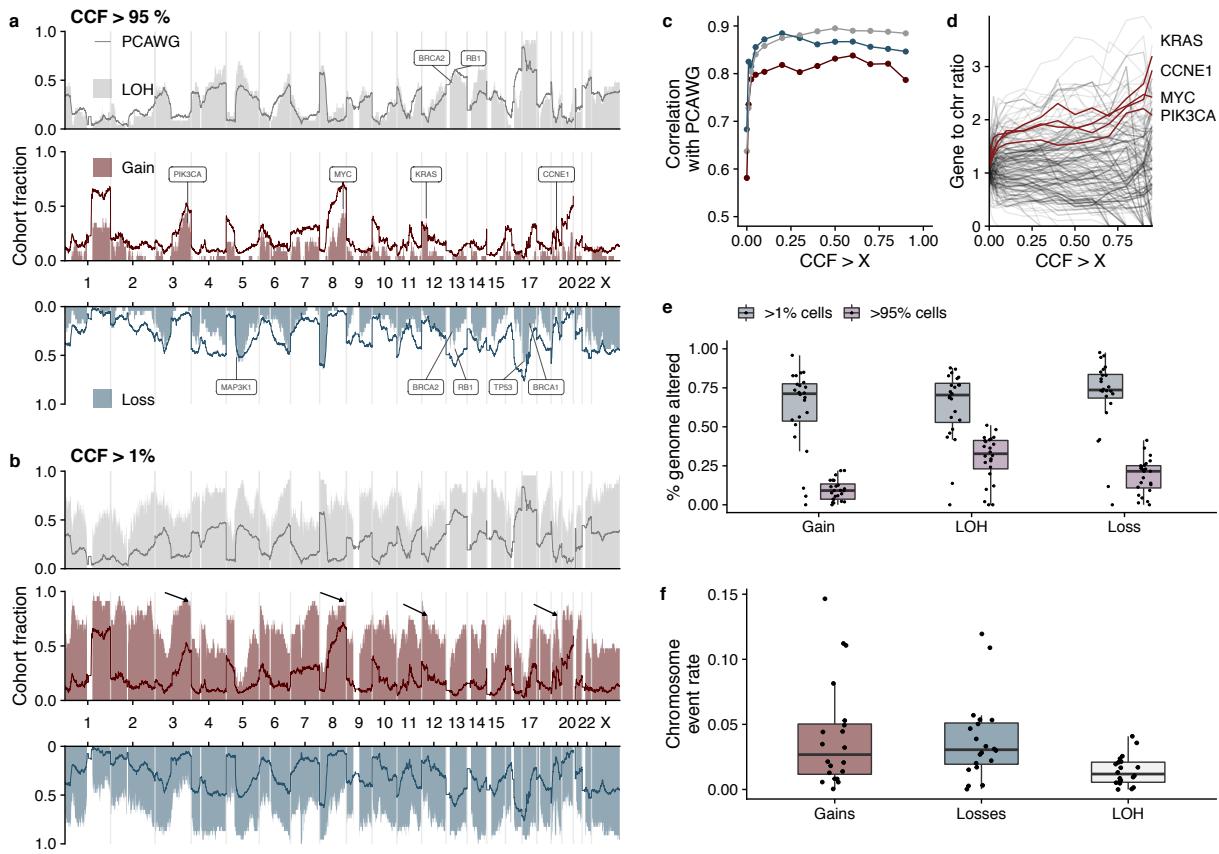


Figure 2 Landscape of copy number alterations as a function of clonality

a) Landscape of alterations (LOH, Gains and Losses) across the genome in 25 tumours. The fraction of tumours with a particular type of alteration is shown on the y-axis, position along the genome is shown on the x axis. Shown here are recurrent clonal alterations (CCF > 95% per tumour) and b) recurrent alterations with CCF > 1% per tumour. Darker colored lines show the PCAWG cohort frequency. Arrows on the gained track show the location of the oncogenes PIK3CA, MYC, KRAS and CCNE1. c) Correlation between frequency distributions and PCAWG frequency as a function of CCF. d) Ratio of gene frequencies to chromosome frequencies as a function of CCF. Trajectories of MYC, CCNE1, PIK3CA and KRAS are highlighted with red lines e) Fraction of genome altered by gains, losses or LOH for alterations present in 95% of cells and 1% of cells f) Chromosome event rate for gains and losses and LOH. Each data point represents the average chromosomal rate per sample.

150 In contrast to clonal alterations, recurrent alterations present in at least 1% of cells were more
 151 uniformly distributed across the genome (**Figure 2b**). To quantify these observations, we
 152 compared CNA distributions with those reported in the PCAWG cohort⁵. Correlation with the
 153 PCAWG data became stronger for losses, gains and regions of LOH as CCF increased
 154 (**Figure 2c**), and focal amplifications of key oncogenes became more pronounced (**Figure 2d**).
 155 Furthermore, a higher fraction of the genome was altered at CCF > 1% than CCF > 95%
 156 (**Figure 2e**). Chromosomal event rates (see methods) were estimated to be on average 0.01 per
 157 division per chromosome for LOH events (excluding losses resulting in 1 copy) and 0.03 for gains

158 and losses (**Figure 2f**). This analysis revealed a high but consistently uniform background rate of
159 copy number alteration across the genome, suggesting that chromosomes continually acquire
160 CNAs without enrichment for specific genomic loci, and focuses attention on regions likely under
161 positive selection in the initial clonal expansions of these tumours. Importantly, these regions
162 include known oncogenes such as *KRAS*, *CCNE1*, *PIK3CA* and *MYC*.

163

164 **Parallel gains and losses inferred from haplotype specific copy number**

165

166 We next leveraged our ability to phase alleles to individual haplotypes in single cells and estimate
167 “haplotype specific copy number” to investigate parallel copy number evolution^{8,10,14,15} (subclones
168 with the same total copy number but different haplotype configurations) as a putative signature of
169 selection (**Figure 3a,b**). Parallel evolutionary events are often considered indicators of positive
170 selection, reflecting convergence on a particular advantageous genotype^{21,22}. We detected a
171 striking example consistent with this interpretation in our engineered cell line data, where gain of
172 chromosome 20 of both the paternal and maternal allele is observed in 100% (7/7) of these lines,
173 often at high frequency (**Figure 3c**). This is more common for chromosome 20 than other
174 chromosomes suggesting it provides a fitness advantage for cells in this system
175 (**Supplementary Figure 3**).

176

177 We then looked for parallel evolutionary events in the tumour samples. Examples of parallel gains
178 include chr1q in SA1049 (**Figure 3d**), chr3q in SA609 (**Figure 3e**) and chr6q in SA1182
179 (**Figure 3f**) and parallel losses or cnLOH at chr15 in SA1053 (**Figure 3g**), chr3 in SA1184
180 (**Figure 3h**) and chr15 in SA1052 (**Figure 3i**). Even when observed on the same haplotype, many
181 of the events had distinct breakpoints, consistent with these alterations occurring numerous times
182 during tumour evolution. Overall, 18/21 tumours (3 tumours were removed from this analysis due
183 to low cell numbers) and 7/7 cell lines had at least 1 parallel event present in more than 1% of
184 cells, with parallel gains typically more common than losses (**Figure 3j**). Although some of these
185 parallel events affected chromosomes commonly altered in HGSOC or TNBC, such as gain of 1q
186 in SA1049, 3q in SA609 and chr15 losses, many were observed in chromosomes that are not
187 recurrently seen in large cohorts⁵. This raises the possibility that parallel events may often arise
188 by chance rather than due to selection of a particularly advantageous karyotype. Consistent with
189 this, we found that the number of parallel events per tumour was positively correlated with
190 chromosomal event rates (**Figure 3k**).

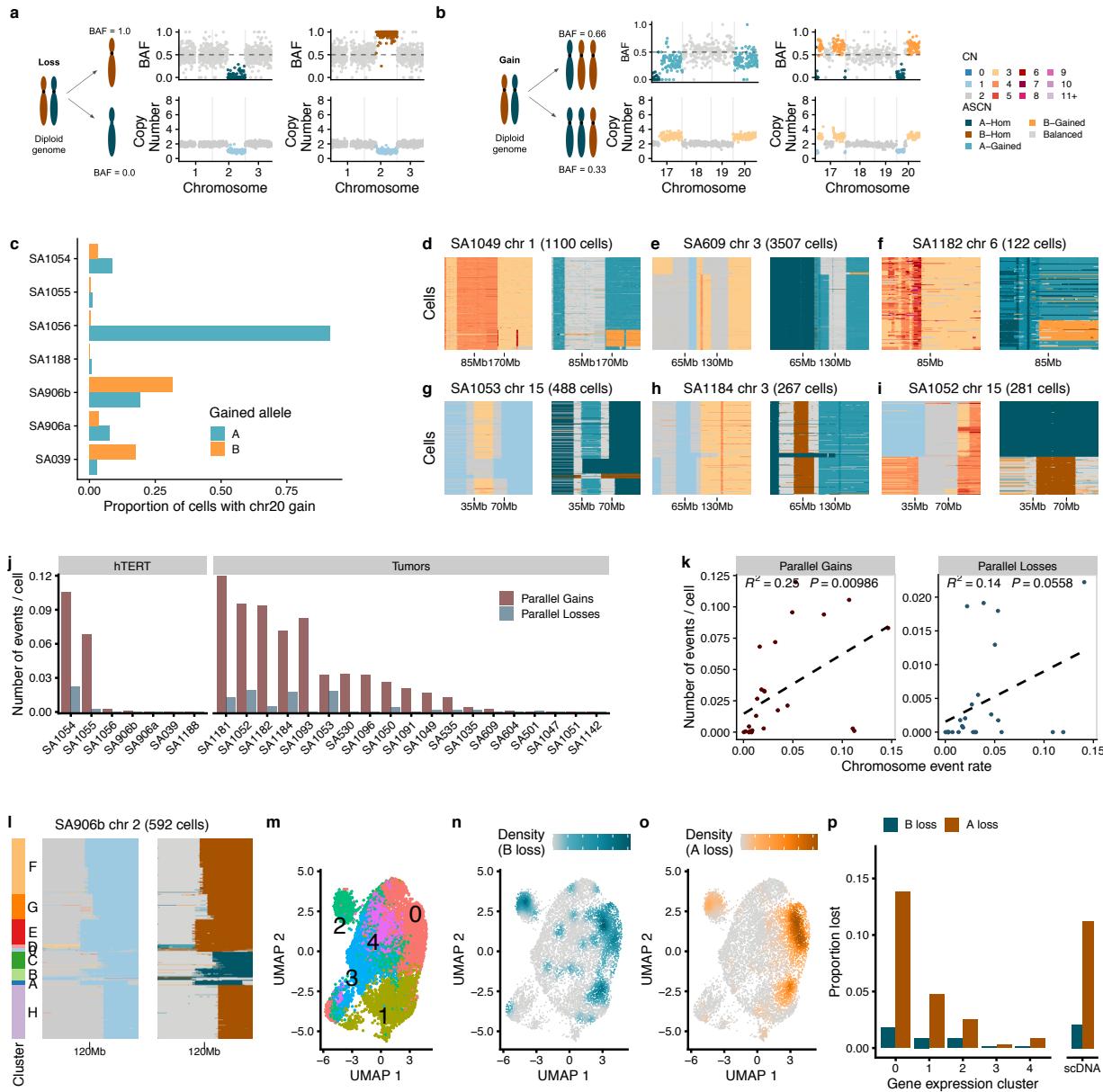


Figure 3 Parallel copy number evolution

a) Parallel losses at chr 2 in 2 single cells from SA906b b) Parallel gain in 2 single cells from SA906b showing gains in chr17 and chr 20 c) Proportion of cells with gains of chr20 in each allele in the engineered hTERT cell lines d-i) Examples of parallel gains and losses in our data. Each heatmap shows a single chromosome or chromosome arm from a single sample, total copy number is shown on the left and the allelic imbalance on the right, colour coding the same as in panel b). Cells are ordered from top to bottom according to computed phylogenetic trees. j) Number of parallel events in each sample divided by the number of cells. k) Number of parallel events vs chromosome event rates e) Example of a parallel loss in chr2q in SA906b (TP53-/-), 592 cells are shown. Left heatmap shows total copy number, right heatmap shows allele imbalance. Distinct clusters of cells are labelled on the left. l) UMAP of gene expression of SA906b coloured by gene expression cluster. n) UMAP coloured by density of cells with the B allele lost and o) the A allele lost p) Proportion of cells with allele lost in each gene expression cluster (A lost = BAF < 0.1, B lost = BAF > 0.9) and in scDNAseq.

191 We next sought to explore whether parallel events produce convergent effects on transcriptional
192 phenotype. In order to isolate the effect of a particular parallel event on transcription, we first
193 identified a group of 592 cells in SA906b (TP53^{-/-}) that had highly consistent copy number
194 alterations apart from parallel losses on chromosome 2q (**Figure 3l, Supplementary Figure 4**).
195 In order to assess transcriptional phenotype, we generated single cell RNA sequencing using the
196 10X platform and genotyped haplotype blocks identified in the scDNA in the scRNA profiled cells
197 (see methods). Using the per cell counts we computed BAF values per chromosome arm and
198 confirmed that this approach could accurately recover allelic imbalance in single cell
199 transcriptomes (**Supplementary Figure 5**). We then clustered cells using Louvain clustering
200 based on gene expression (**Figure 3m**) and identified losses of chr2q (BAF < 0.1 for loss of B,
201 BAF > 0.9 for loss of A) in each cell. Gene expression clusters 0 and 1 were enriched for both
202 types of losses (proportions test, $p < 0.001$) confirming that this parallel copy number event results
203 in a convergent effect on the transcriptome (**Figure 3 n,o,p**).
204

205 **Decomposition of complex structural rearrangements at haplotype resolution**

206

207 Another striking source of variation between cancer cell genomes with functional consequences
208 for tumour cell fitness is the variation in the level of oncogene amplification between cells²⁰. A
209 plausible mechanistic explanation for this is genome diversification through breakage fusion
210 bridge cycles (BFBC)²³, a known mechanism of complex rearrangements that can lead to
211 amplifications of oncogenes^{24,25}. We hypothesized that BFBC-like processes may generate
212 diversity in the magnitude of oncogene amplification between cells and that progressive BFBC
213 evolution could be resolved with haplotype specific copy number analysis.
214

215 BFBC typically result in reciprocal patterns of gains and losses in daughter cells following aberrant
216 missegregation of chromosomes during cell division¹⁷ (**Figure 4a**). We identified this distinctive
217 pattern in a subset of cells on chr 3 in SA1188 (TP53^{-/-} BRCA2^{+/+}). Mapping events to homologous
218 chromosomes revealed clusters of cells consistent with different stages of BFBCs (**Figure 4a,b**).
219 Clusters B and F are consistent with the expectation of daughter cells following an initial BFBC,
220 with a reciprocal gain and loss at the terminal end of chromosome 3 (**Figure 4a-d**). To further
221 refine this analysis, we identified rearrangement breakpoints in these cells using pseudobulk
222 analysis (see methods). These rearrangements further refined the likely BFBC progression. We
223 can deduce that in cluster B a genomic segment at the end of homolog B first underwent a number
224 of inversions and the “new end” fused with its sister chromatid generating a foldback inversion

225 (FBI) (**Figure 4c**). FBIs - defined by genomic segments stitched together head to head - are
 226 another footprint of BFBC²⁶. We also observed clusters of cells consistent with a second cycle
 227 producing either internal amplifications (clusters C, D, H, I and G) or extending the terminal loss
 228 (cluster E) on the same homolog (**Figure 4-g**). In addition, we identified a minor subpopulation of
 229 cells (n=19) with a focal amplification (total copy number = 5) around *PIK3CA* (**Figure 4f**),
 230 suggesting further BFBC cycles driving amplification of this oncogene. Independent phylogenetic
 231 reconstruction was consistent with the expected branching process induced by BFBC
 232 (**Supplementary Figure 6**). Other examples of BFBC mediated genomic variation in the cell lines
 233 included *MYC* amplification in SA906a (*TP53*^{-/-}) and chr20 amplification in SA906b (*TP53*^{-/-})
 234 (**Supplementary Figure 7**).

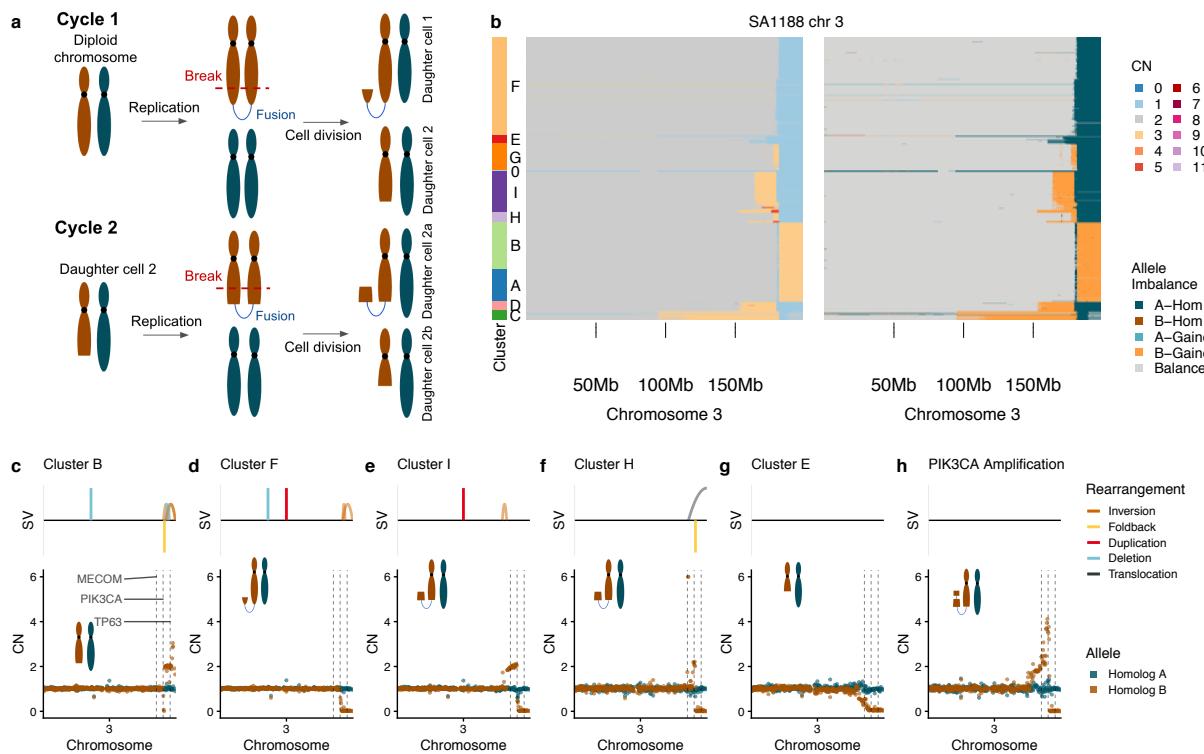


Figure 4 Breakage-fusion-bridge cycles in an *TP53*^{-/-} *BRCA2*^{+/+} cell line

a) Diagram of breakage-fusion-bridge cycles b) Heatmaps of total copy number and haplotype specific copy number in SA1188. c-h) Haplotype specific copy number and structural variation in clusters B, F, I, H, E and the small subpopulation with PIK3CA amplification. Here we plot the copy number for each homologous chromosome in brown for homolog B and blue for homolog A.

235
 236
 237
 238
 239

240 **BFBC results in diverse oncogenic amplifications in tumours over time**

241

242 We next looked for the signature of BFBC in our tumours, focusing on 3 key characteristics: i)
243 amplifications adjacent to a loss ii) identification of FBI rearrangements and iii) a 'staircase' pattern
244 of copy number alterations (**Supplementary Table 2**). In order to dissect the relative timing of
245 BFBC's, we first focused on 2 PDX samples (SA1035 & SA535) that were serially passaged over
246 time. In SA1035, there were numerous subpopulations in chr19 consistent with a simple BFBC.
247 Evidence for BFBC included internal amplifications adjacent to a terminal loss on the same
248 homolog and congruent FBI breakpoints (**Figure 5a**). One of the larger subpopulations (cluster
249 C), included an amplification of *CCNE1* (total copy number 4) (**Figure 5a**). In SA535 we observed
250 a more complex BFBC-like rearrangement pattern encompassing the *FGFR1* locus, with distinct
251 amplitude differences between subpopulations (ranging from CN=2 to CN>8). Rearrangement
252 breakpoints in cluster C suggest that here, the chromosome was stabilized via fusion with
253 chromosome 5, while in cluster E the chromosome was stabilized via a complex rearrangement
254 involving both arms of chromosome 8 **Figure 5b**. Investigating single copy number profiles
255 revealed rare cells where the amplification was completely absent, cells where there was a small
256 amplification (copy number = 3) and cells with extreme copy number (copy number > 10)
257 (**Supplementary Figure 8**). We then computed the frequency of each cluster at each timepoint
258 in both SA535 and SA1035 and found that all clusters were represented at a non zero fraction
259 (albeit often at very small frequencies) in the first time point, **Figure 5c**. In SA535 the population
260 of cells with *FGFR1* copy number < 3 (cluster W) remained at a low frequency over time, while in
261 SA1035 the *CCNE1* amplified subclone (Cluster B) clonally expanded and became the dominant
262 subclone by passage 8.

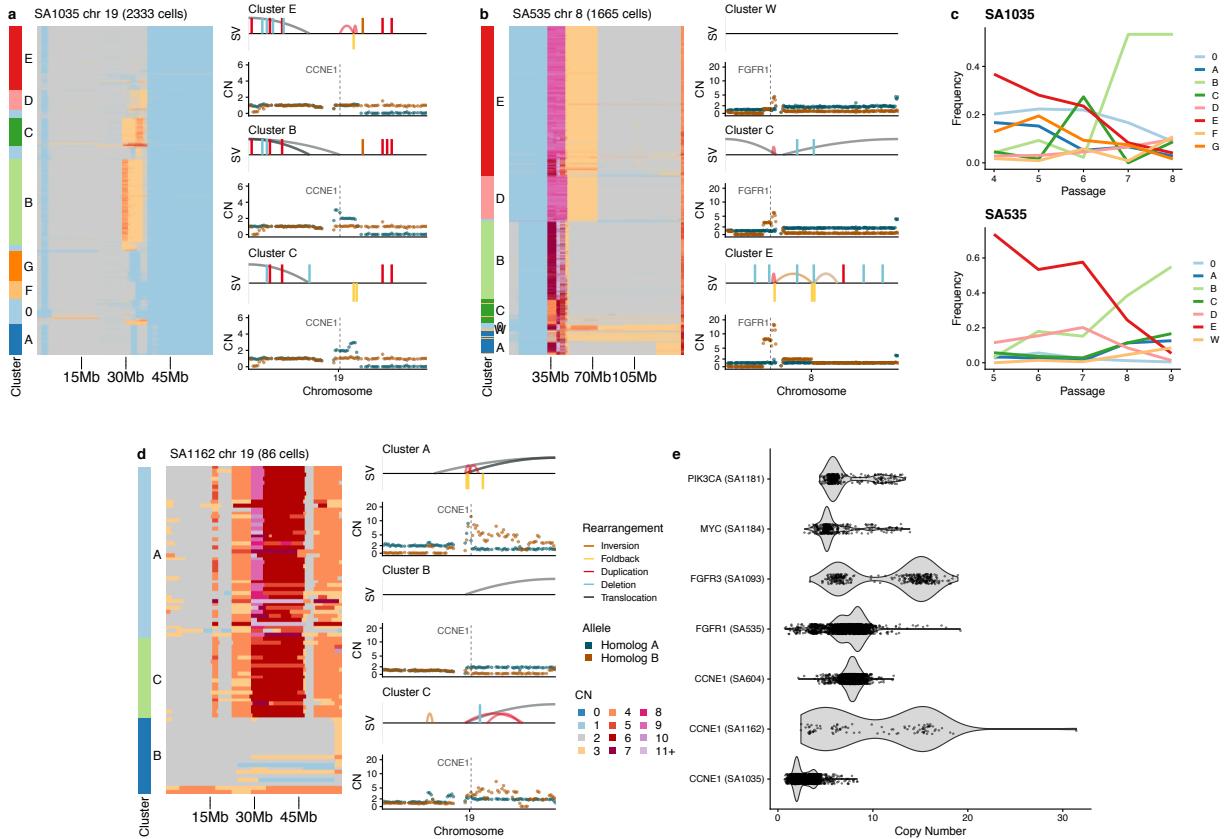


Figure 5 BFBC in human tumours

a) BFBC in chr19 SA1035. Left shows heatmap of total copy number for 2333 cells in chromosome 19 clustered using UMAP and HDBSCAN. Right hand side shows pseudobulk average haplotype specific copy number profiles of 3 clusters with distinct events. Schnaps is used to infer the copy number in the 2 homologous chromosomes and these are plotted together with brown points indicating allele B and blue points indicating allele A. Top track for each copy number profile shows the structural variants found in these clusters. b) and d) are equivalent to a) for chr8 in SA535 b) and chr19 in SA1162 d). c) Frequency of each cluster across time in SA1035 and SA535 e) Distribution of the raw copy number per cell in cases that were consistent with BFBC induced oncogene amplification.

263

264 We also observed BFBC driving subclonal amplification of *CCNE1* in SA1162, one of the primary
 265 human tumour samples. In this patient we observed subclones with 2, 4 and >15 copies of *CCNE1*
 266 **Figure 5d**. Other examples that were consistent with oncogene amplification due to BFBC include
 267 *KRAS* in SA604, *MYC* in SA1184, *FGFR3* in SA1096 and *PIK3CA* in SA1181,
 268 **Supplementary Figure 9**. In all these cases we observed considerable genomic variation
 269 between cells leading to variable levels of oncogene amplification **Figure 5e**. Notably, we found
 270 that many of these genes had focal amplifications enriched at high CCF across the whole cohort,
 271 **Figure 2c**. Our data also revealed numerous occurrences of BFBC mediated genomic diversity

272 that did not appear to be associated with oncogenic amplification, underlining that this process
273 likely occurs in the background throughout tumour evolution, **Supplementary Figure 10**.

274
275 Other genomic instability processes implicated in oncogene amplification include chromoplexy²⁷,
276 ecDNA²⁸ and tyfonas²⁵. These processes often result in highly complex structural rearrangements
277 across multiple chromosomes and in some instances, amplify several oncogenes simultaneously.
278 We identified these types of events in multiple samples. In SA1049 we identified a complex event
279 that included genomic segments from chromosomes 6,7,8,12, 19 and 20 and included
280 amplifications of both *KRAS* and *FGFR1*, **Figure 6a**. Striking differences between cell clusters
281 were apparent including co-amplification of genomic segments in chromosomes 6 and 12
282 resulting in a high level amplification of *KRAS* in cluster E. SA604 harbored a complex event that
283 included chromosomes 6, 8, 12, 19 and 20 with amplification of *MYC*, *KRAS* and *CCNE1*
284 **Figure 6b**. Again, variability in complex structural alterations between clusters was notable,
285 including rearrangements between chromosomes 6 and 20 amplifying *KRAS* **Figure 6c**. Mapping
286 the clusters identified in SA604 to passages revealed that all populations were present at the first
287 time point and the cluster with low *KRAS* copy number (cluster A) remained at low frequency.
288 Many of these inter-chromosomal amplifications also had clustered FBI's and segments with
289 variable copy number, suggesting that BFBC-type processes may contribute to the generation of
290 these types of events¹⁷. Together these results reveal extensive variation in complex
291 rearrangements as an underappreciated source of variation in cancer genomes that is often
292 obscured in bulk sequencing of tumours.

293

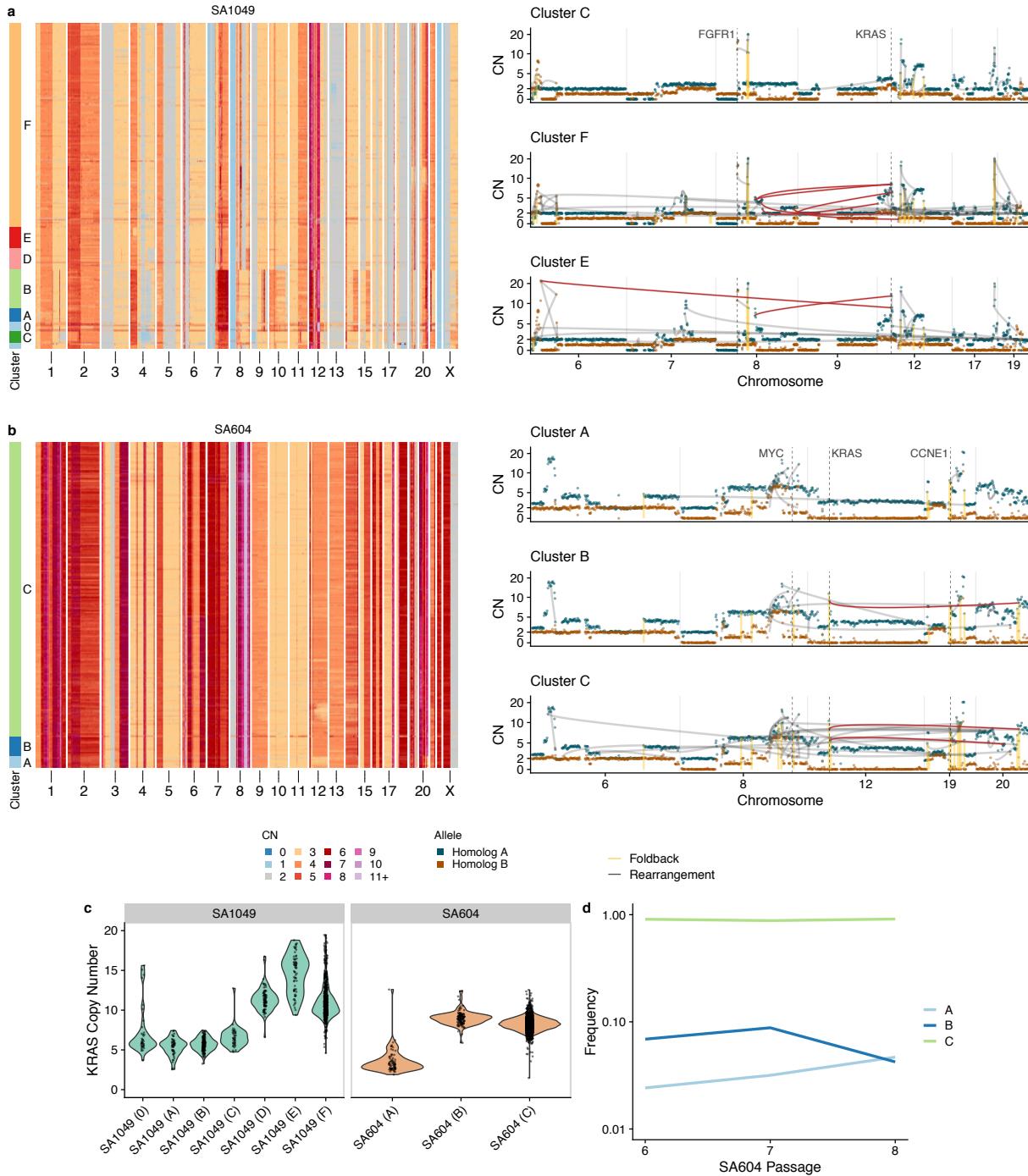


Figure 6 Diversity in complex interchromosomal high level amplifications

a) Left, total copy number heatmap in SA1049 with clusters highlighted with the coloured bar on the left. Right, average allele specific copy number for 3 different clusters overlaid with structural variants. Grey lines indicate links between 2 bins, yellow vertical lines show foldback inversion breakpoints b) same as a) for SA604. Red lines highlight subclonal interchromosomal rearrangement amplifications of interest. c) KRAS copy number per cluster in SA604 and SA1049. d) Frequency of clusters across passage number in SA604.

296 **Discussion**

297

298 In this study we reveal substantial genomic diversity in high grade serous ovarian cancers, breast
299 cancers and genetically engineered mammary epithelial cells at haplotype specific resolution. We
300 find evidence of ongoing instability that is distributed uniformly across the genome and were able
301 to estimate rates of chromosomal gains, losses and LOH. Genomic regions that were identified
302 to be at high frequency recurrently across samples are likely to be under positive selection and
303 contribute to tumour progression. Notably, these included focal amplifications of oncogenes such
304 as KRAS, CCNE1 and MYC. Meanwhile, we suggest that pervasive parallel copy number
305 events^{10,14,29} in general are a consequence of underlying levels of instability rather than positive
306 selection. On the other hand, how rarer events modify tumour cell fitness remains uncertain, and
307 will require integration of single cell data with evolutionary models of genomic instability^{30,31}.

308

309 Integration of haplotype specific copy number with rearrangement breakpoints allowed us to gain
310 mechanistic insight into the processes generating ITH in single cells. We demonstrate that
311 breakage fusion bridge cycles are a frequent source of genomic diversity and can explain
312 variability in oncogene copy number between cells. Serially passaged PDX models were
313 consistent with BFBC initiation followed by chromosomes undergoing progressive diversification
314 over a few cell divisions until chromosome ends stabilized¹⁷. Strikingly, we also observed that
315 complex interchromosomal high-level amplifications were also variable between subclones.
316 Complex interchromosomal events are thought to derive from catastrophic genome shattering
317 events³². Our time series data point to the possibility that multiple similar but distinct subclones
318 are generated following such an event, as cells attempt to repair their genomes over consecutive
319 cell divisions. In general, subclones containing high level oncogene amplifications had higher
320 clonal frequencies relative to wild-type or low level amplifications (when present), consistent with
321 these amplifications providing a fitness advantage to cells. How subtle differences in amplitude
322 may alter fitness remains unclear however. We suggest that co-existing clones with varying levels
323 of oncogenic amplifications could be exploited as early warnings of phenotypic transformation to
324 a more aggressive state. Our data support the notion that recurrently amplified regions of the
325 genome in breast and ovarian cancers such as at the *PIK3CA*, *CCNE1* and *KRAS* loci have their
326 etiologic origins in BFBC-like processes. Longer read sequencing of clonal haplotypes coupled
327 with genome graph analysis will help to further resolve the mechanistic underpinnings of these
328 events.

329

330 Two recent haplotype specific inference methods have been developed for use with the 10X CNV
331 assay^{14,15}. These methods also use either haplotype block counts or SNPs genotyped in single
332 cells, differently to these methods, *schnapps* uses a hidden Markov model for inference and
333 facilitates integration with single cell RNA sequencing data. *schnapps* also provides an order of
334 magnitude greater resolution than previous methods (0.5Mb vs 5Mb), enabling reconstruction of
335 the evolution of focal high level amplifications, complemented by integration with subclonal
336 structural variants. *schnapps* also serves as a general toolkit to analyse single cell genomes
337 and includes functionality for clustering, plotting and multimodal integration with scRNAseq. We
338 foresee this toolkit to be a valuable community resource as single cell whole genome sequencing
339 becomes more widely available.

340

341 In summary, our study shows how haplotype resolved copy number at single cell resolution can
342 be used to infer instability rates, dissect complex structural rearrangements and identify parallel
343 copy number events. As cohorts of patients profiled at single cell resolution become larger and
344 high throughput methods are applied throughout different stages of disease progression³³ and
345 across space and time³⁴, we envisage that these approaches will enable accurate tracking of the
346 evolutionary history of cancer haplotypes and high resolution characterization of intra-tumour
347 heterogeneity across genetically unstable tumours.

348

349 **Methods**

350

351 **Allele and haplotype-specific copy number in scDNAseq**

352 Previously, we reported allele specific copy number at the level of clones, groups of cells with
353 similar total copy number profiles¹¹. This was done by aggregating haplotype block counts within
354 clusters and applying a hidden markov model to infer the most probable state. In this study we
355 extended this approach to the single cell level and also introduce the ability to identify “haplotype
356 specific copy number”. With “haplotype specific copy number number” we can identify cells with
357 the same total copy number but with different allelic combinations. We also leverage haplotype
358 specific copy number to trace the history of complex genomic rearrangements.

359

360 First, we'll summarize the challenges of inferring allele specific copy number in single cells and
361 provide a descriptive overview of our approach. The majority of copy number analysis in single
362 cells works by leveraging differences in read depth across the genome. This is particularly
363 important in sparse single cell approaches such as DLP+ where coverage is of the order 0.01-
364 0.1X. Inference of allele-specific copy number however requires an additional measure of allelic
365 imbalance, in bulk sequencing, this is typically inferred from read count ratios of heterozygous
366 SNPs. This information is very sparse in low coverage single cells, to boost the signal we can
367 infer haplotype blocks from a paired normal sample and then genotype the blocks in single cells.
368 With this in mind, rather than estimating allele-specific copy number using read depth and
369 haplotype counts jointly we decided to leverage the read counts to compute total copy number as
370 we have done previously¹¹ and then use allelic imbalance to estimate the allele-specific copy
371 number post hoc. In essence, we assume the total copy number is correct and use this as an
372 input into our allele-specific copy number inference. Validation of our inferences using the BAF
373 distribution per state, matched bulk whole genome sequencing and somatic SNVs present in
374 single cells, confirms that this approach produces reliable estimates.

375

376 In this section we'll describe in detail the schnapps algorithm. The input to our algorithm is total
377 copy number estimates in bins across the genome and haplotype counts per cell. We define the
378 allele-specific state as follows: A|B where A and B are the copy number of the two alleles. The
379 total copy number T is given by A + B, therefore both A and B <= T. Inferring the allele-specific
380 state amounts to identifying the copy state of one of the two alleles. We define the “B allele
381 frequency” as B / (B+A). In most cases, B will be the minor allele across the whole tumour
382 population but our approach does not guarantee this. We note that this is different to how this

383 type of analysis is performed and the data is typically presented in bulk tumour genome
384 sequencing where often both $B/(A+B)$ and $A/(A+B)$ are plotted, resulting in the characteristic split
385 BAF plots in regions of allelic imbalance. As will become apparent, analyzing one of these values
386 rather than both makes distinguishing haplotype-specific copy number intuitively easier. We note
387 that we could in principle use mirrored BAF as is often done in bulk whole genome sequencing
388 and define B as the minor allele in all cases. This is a simpler approach, but does not allow for
389 identification of parallel copy number events and phasing alleles into homologous chromosomes.
390

391 We first need to phase the alleles identified in the haplotype blocks into one of the two “tumour”
392 alleles (A, B). For the purposes of describing the algorithm, we’ll denote the counts of each “block
393 allele” as (C_h, D_h) , and the counts of the phased alleles as (C_A, C_B) . For each haplotype block in
394 each cell we get the number of counts assigned to (C_h, D_h) respectively. Our challenge is to
395 identify for each haplotype block how (C_h, D_h) relates to (A, B) , that is we wish to know the phase
396 P_i of each haplotype block, i . This gives the counts of the phased alleles, (C_A, C_B) . To do this we
397 note that cells will share copy number events and thus we can leverage information across cells
398 to identify block alleles that shift in frequency together. For example, a chromosome undergoing
399 loss of heterozygosity will completely lose either the maternal and paternal allele, thus any block
400 alleles within the LOH event that contain non zero counts must necessarily be phased together.
401 As a first approximation we first assign the B allele to be the minor allele across all cells:

$$402 \quad x_i = \sum_{j=1}^N C_{h,j} / (C_{h,j} + D_{h,j})$$

403

$$404 \quad P_i = \begin{cases} A, & \text{if } x_i \geq 0.5 \\ B, & x_i < 0.5 \end{cases}$$

405

406 When a particular region of the genome is in a balanced state across all cells, distinguishing A
407 and B is not possible. In this case, (A, B) will be assigned randomly due to stochastic fluctuations
408 in read counts.

409

410 After this initial phasing assignment we then merge the phased haplotype block counts within bins
411 and compute a BAF value for each bin in each cell:

$$412 \quad BAF = \frac{C_B}{C_A + C_B}$$

413

414 With these values we then used a HMM to compute the optimal allele specific state. We used a
415 beta-binomial emission model and the Viterbi algorithm to compute the optimal B-allele state.
416 Given observed total copy number, T unobserved B-allele copy number B , B-allele counts C_B and
417 total counts C_T the likelihood is given by

418

$$419 \quad \mu = \frac{B}{T} + \epsilon$$

420

$$421 \quad p(C_B|\mu, k, \pi, \rho) = BetaBinom(C_B|\mu, C_T, \rho)$$

422 Where ϵ is an error term included to account for noise in the data, which we set to 0.01 in the first
423 instance. This is particularly important in LOH states, where for example due to noise the BAF is
424 rarely exactly 0.0. ρ is the degree of overdispersion in read counts, which can be inferred from the
425 data, when $\rho \rightarrow 0.0$ we recover a Binomial likelihood.

426

427 We used the following transition matrix setting $\delta = 0.95$, favouring self-transitions.

$$428 \quad T_{nm} = \begin{cases} (1 - \delta), & \text{if } n \neq m \\ \delta, & \text{if } n = m \end{cases}$$

429

430 Following the above steps gives us our first allele-specific assignment. However, this assignment
431 can have some issues due to inaccurate phasing from the first phasing step. Because our initial
432 phasing uses the minor allele across all cells, if there are a number of overlapping events in
433 different cells at different proportions we sometimes find implausible results, where for example
434 a cell will switch phase in the middle of a chromosome, see **Supplementary Figure 11** for a
435 diagram showing how this can arise. To avoid this, we go through a second round of phasing and
436 inference. We assume that the most accurate phasing should favour results that minimize the
437 number of apparent switches in phasing. To do this, for each chromosome we cluster BAF values
438 from step 1, and then identify the cluster with the largest amount of imbalance in each
439 chromosome. Using this cluster as an anchor we then define the B allele as the minor allele of
440 cells within this cluster. Clustering is performed using umap and hdbscan as described below.
441 Haplotype blocks are then reassigned their phase relative to this cluster. Following this
442 reassignment, we then rerun the HMM. Prior to running the HMM, we also take advantage of this
443 2 step process to infer ϵ and ρ directly from the data and assess statistical support for the Binomial
444 vs BetaBinomial likelihood model. ϵ is computed from the average BAF of states assigned as
445 homozygous, we compute Tarones z-score to assess statistical support for BetaBinomial model

446 ³⁵. If we find support for a BetaBinomial model ($z>5$), ρ is then computed using maximum
447 likelihood estimation. The HMM is then rerun with these input parameters and new phasing
448 producing the final allele-specific assignment.

449

450 When we use allele specific copy number we use mirrored BAF and assign B to always be the
451 minor allele in every cell, such that $A \geq B$. Therefore a state such as $1|2$ will become $2|1$. We
452 used allele specific copy number in figure 1, but for the remainder of the analysis we used
453 haplotype specific copy number.

454

455 `schnapps` is available as an R package at <https://shahcompbio.github.io/schnapps/>. As well as
456 the allele specific copy number algorithm, `schnapps` includes a large number of functions for
457 plotting copy number profiles and heatmaps, clustering cells, integrating with scRNAseq (see
458 below) and performing QC. A number of tutorials accompany the package at the above URL
459 describing this functionality.

460

461 Comparison to other methods

462 Recently, two other methods (CHISEL¹⁴ and Alleloscope²⁹) were published that infer allele
463 specific copy number from sparse single cell sequencing data. These methods were applied to
464 data generated from the 10X CNV assay. As is the case with `schnapps`, CHISEL uses haplotype
465 block counts for inference, while Alleloscope uses the raw SNP counts. Both methods use an
466 approach based on clustering BAF and read depth jointly to assign allele specific copy number.
467 Differently to these methods, `schnapps` directly models the read counts of haplotype blocks (with
468 and without overdispersion) using a hidden markov model and uses a clustering approach to
469 phase haplotypes. The resolution of `schnapps` is 0.5Mb whereas CHISEL uses 5Mb bins.
470 Alleloscope segments the genome before inference, so resolution will be a function of the
471 segmentation. Differently to the other methods, `schnapps` also provides an approach for
472 integration with single cell RNA seq, a feature unique to `schnapps`. Alleloscope on the other
473 hand is unique in that it provides methods to integrate single cell DNA sequencing with single cell
474 ATAC-seq.

475

476 Experimental methods

477 Detailed description of the data generation methods are described in Funnell *et. al.*²⁰. Including
478 generation of engineered cell lines, xenografting, tissue processing, single cell whole genome
479 sequencing and bulk whole genome sequencing.

480

481 **DLP+ whole genome sequencing quantification and analysis**

482 Single cell copy number, SNV, SV and haplotype block calls were generated using our previously
483 described approach¹¹, except that BWA-MEM was used to map DLP+ reads to the hg19 reference
484 genome. The genome was segregated into 500 kb bins, and GC-corrected read counts were
485 calculated for each bin. These read counts were then input into HMMCopy to produce integer
486 copy number states for each bin³⁶.

487

488 To detect SNVs and SVs in each dataset, reads from all cells in a sample were merged to form
489 “pseudobulk” libraries. SNV calling was performed on these libraries individually using
490 MutationSeq³⁷ (filtered by probability threshold = 0.9) and Strelka (filtered by score > 20)³⁸. Only
491 SNVs detected by both methods were retained. For each dataset, the union of SNVs was
492 aggregated, then for each cell and each SNV, the sequencing reads of that cell were searched
493 for evidence of that SNV. SV calling was performed in a similar manner, by forming pseudobulk
494 libraries, then running LUMPY³⁹ and DESTRUCT⁴⁰ on each pseudobulk library.

495

496 To call haplotype blocks we identified SNPs from the 1000 genomes phase 2 reference panel in
497 matched normal sample. An exact binomial test was used to identify heterozygous SNPs which
498 were then input into shapeit to identify haplotype blocks⁴¹. SNPs used in the haplotype block
499 inference were then genotyped in individual cells producing per cell haplotype block counts that
500 could be used for allele specific copy number inference with schnaps.

501

502 **Bulk whole genome sequencing**

503 Bulk whole genome sequencing data was generated from matched primary samples from all
504 patients. Reads were aligned to hg19 using BWA-MEM. Genome wide allele specific copy number
505 was called using Remixt⁴² with default parameters.

506

507 **DLP+ data filtering**

508 Cells were retained for further analysis if the cell quality was at least 0.75¹¹, and they passed
509 both the s-phase and contamination filters. The contamination filter uses FastQ Screen⁴³ to tag
510 reads as matching human, mouse, or salmon genomes. If >5% of reads in a cell are tagged as
511 matching the mouse or salmon genomes, then the cell is flagged as contaminated. The s-phase
512 filter uses a Random Forest classifier and removes cells where s-phase is the most probable state
513¹¹. Samples were also filtered to remove small numbers of contaminating diploid cells. We also

514 used the procedure outlined in to further filter out any replicating cells that were missed by the s-
515 phase filter. As the allele specific copy number inference requires cell level haplotype block counts
516 per cell, we additionally filtered out any cells that contained < 100 haplotype block counts.

517

518 **10X scRNAseq data generation**

519 184hTERT cells were cultured as previously described ^{34,44} in MEBM (Lonza) supplemented with
520 the SingleQuots kit (Lonza), 5 µg/ml transferrin (Sigma-Aldrich) and 10uM isoproterenol (Sigma-
521 Aldrich). Cells were pelleted and gently resuspended in 200ul PBS followed by 800ul 100%
522 methanol and incubation at -20C for 30mins to fix and dehydrate cells. Cells were then pelleted
523 and resuspended in 0.04% BSA/PBS and immediately loaded onto a 10x Genomics Chromium
524 single-cell controller targeting 3,000 cells for recovery. Libraries were prepared according to the
525 10x Genomics Single Cell 3' Reagent kit standard protocol. Libraries were then sequenced on an
526 Illumina Nextseq500/550 with 42-bp paired end reads, or a HiSeq2500 v4 with 125-bp paired end
527 reads.

528

529 **10X scRNAseq data analysis**

530 The pipeline is built using 10X Genomics *Martian* language and computational pipeline
531 framework. *CellRanger* software (version 3.1.0) was used to perform read alignment, barcode
532 filtering, and UMI quantification using the 10x GRCh38 transcriptome (version 3.0.0) for FASTQ
533 inputs. *CellRanger* filtered matrices are loaded into individual *Seurat* objects using the *Seurat* R
534 package (version 3.0.1)^{45,46}. The resulting gene by cell matrix is normalized and scaled for each
535 sample. Cells retained for analysis had a minimum of 500 expressed genes and 1000 UMI counts
536 and less than 25% mitochondrial gene expression. Cell cycle phase was assigned using the
537 *Seurat*⁴⁶ *CellCycleScoring* function. *Scrublet*⁴⁷ (version 0.2.1) was used to calculate and filter cells
538 with a doublet score greater than 0.25.

539

540 **Allelic imbalance in scRNAseq**

541 We called heterozygous SNPs in the scRNAseq data using cellSNP⁴⁸. As input, we used the
542 same set of heterozygous SNPs identified in the scDNAseq and corresponding normal sample
543 for each sample. The liftover script provided in cellSNP was used to lift over SNPs from hg19 to
544 hg38. Following genotyping, we phase the SNPs using the phasing information computed from
545 the allele specific inference in the scDNAseq. As SNP counts are much more sparse in scRNAseq
546 vs scDNAseq (~2 orders of magnitude lower), we aggregated counts across chromosome arms,
547 computing the BAF for each arm. We then generated a cell by chromosome arm BAF matrix and

548 incorporated this into our gene expression Seurat objects. Functionality to map scDNAseq to
549 scRNAseq and call allelic imbalance are provided in `schnapps`. Density of the cells with loss of
550 different haplotypes were plotted using the `Nebulosa` R package⁴⁹.

551

552

553 **Phylogenetic analysis**

554 We used a previously described phylogenetic method `sitka` to generate single cell trees for each
555 sample¹⁹. `Sitka` uses breakpoints (also referred to as changepoints) in copy number across the
556 genome as phylogenetic characters to construct the evolutionary relationships. Rather than use
557 total copy number as previously described, here we used haplotype specific copy number. To do
558 this, we enumerated breakpoints on each haplotype. For example a loss of haplotype A will have
559 a separate breakpoint feature than a loss of haplotype B even if the genomic position of the losses
560 are identical. This allows for phylogenetically distinguishing parallel evolutionary events. There
561 can be some cell-to-cell variability in breakpoints that is technical rather than biological, due to for
562 example fluctuations in read and SNP counts. To mitigate the influence of this variability, we
563 averaged the copy number profiles in 3Mb windows, ensuring consistent breakpoints across cells
564 as much as possible. `sitka` was run for 3,000 chains and a consensus tree was computed for
565 downstream analysis.

566

567 **Clustering copy number profiles**

568 To cluster copy number profiles we used UMAP dimensionality reduction followed by HDBSCAN
569 ^{11,50,51}. This is implemented within `schnapps` (function `umap_clustering`) with following default
570 parameters:

571 • Distance metric: correlation
572 • Number of neighbours: 10
573 • Minimum distance = 0.1
574 • Minimum number of points in cluster: 30

575

576 **Pseudobulk allele specific copy number profiles**

577 In numerous places in the text we construct “pseudobulk” allele specific copy number profiles
578 either across all cells in a sample or subsets of cells that share some features of interest. To do
579 this we group the cells of interest and then compute an average profile by taking the median
580 values of copy number and BAF and the mode of the allele specific state. The function
581 `consensuscopynumber` provided in `schnapps` was used for this.

582

583 **Chromosomal event rates and LOH rate analysis**

584 To compute chromosomal event rates we enumerated the number of events from our single cell
585 phylogenies using parsimony based ancestral state reconstruction. We first computed whole
586 chromosome level consensus copy number profiles for each cell, allowing us to assign
587 chromosome level states to each tip (cell) in the phylogeny. We defined states relative to cell
588 ploidy, identifying for each arm whether the chromosome was gained or lost and whether the
589 chromosome was homozygous. For each chromosome, cells can have one of two possible states
590 for each class of interest: (Gain, not gained), (Loss, not lost), (LOH, not LOH). By casting the
591 problem as reconstructing the ancestral states within the phylogeny we can then compute the
592 number of transitions between these states that most parsimoniously explains the phylogenetic
593 tree. We used a simple transition matrix where transitions between states incurs a cost of 1.
594 Ancestral state reconstruction then amounts to finding the reconstruction that minimizes this cost,
595 we refer to this cost as the parsimony score. The event frequency per sample per chromosome
596 is then calculated by dividing the parsimony score (number of events) by the number of cells. We
597 used castor in R to perform the ancestral state reconstruction ⁵². As we were interested in LOH
598 events that were not just due to losses resulting in a single copy, we removed LOH events where
599 the state was 1|0 from this calculation. The units of this quantity is the number of events per
600 chromosome per cell division assuming no cell death. It's possible (perhaps likely) that many cells
601 get chromosomal gains or losses but then die, we of course never sample such cells and our
602 phylogenetic tree reconstructs ancestral relationships between cells that survive and that we
603 sample. This value is therefore likely to be an overestimation of the true cell division rate if there
604 is considerable cell death. It is challenging to decouple the death rate of cells from the true event
605 rate per cell division, see Werner *et. al.* for a similar problem⁵³. To get a summary value for each
606 sample we took the mean of the chromosome level estimates per sample, this value is what is
607 used in Figures 2 and 3.

608

609 **Identification of parallel copy number events**

610 Parallel copy number events were defined as genomic regions greater than 4Mb where gain or
611 loss of both the maternal and paternal haplotype was observed in more than 1% of cells. This
612 calculation will be influenced by the number of cells sequenced so in order to compare the number
613 of parallel events across tumours we divided this number by the number of cells.

614

615 **Identification of BFBC**

616 BFBC have a number of characteristic features which we attempted to identify in our single cell
617 data: i) staircase copy number patterns ii) foldback inversion rearrangements coincident with copy
618 number changes and iii) amplifications adjacent to losses. Amplifications may also appear at the
619 terminal end of a chromosome when telomeres are short. **Supplementary Table 2** summarizes
620 the evidence for BFBC in terms of these features for each example described in the main text or
621 included in the supplementary figures. When an amplification is adjacent to a loss, BFBC would
622 predict that both the amplification and the loss occurs on the same homologous chromosome.
623 Haplotype specific copy number allows for this inference to be made, however in some cases,
624 this information may be ambiguous. In some cases the default output from `schnapps` may assign
625 the gain and the loss to different haplotypes, this is because in the absence of a cluster of cells
626 with different copy number `schnapps` will assign the “B” allele to be the minor allele in the whole
627 tumour population. In these cases we first looked for rare cells that had whole chromosome losses
628 which would provide unambiguous phasing information (we assume the whole chromosome loss
629 was a single event and affected the same homolog). In many cases we could identify such cells
630 and adjust the phasing accordingly. This was the case for both SA535 and SA1035, the 2
631 examples we looked into in detail in Figure 5. To group cells into clusters we used the UMAP +
632 HDBSCAN clustering approach outlined above but only clustered using bins within the
633 chromosome of interest. Clustering is therefore chromosome specific. For each cluster we
634 constructed consensus haplotype specific copy number profiles and assigned rearrangement
635 breakpoints to clusters if any cell within the cluster had evidence of the breakpoint.

636

637

638 **Identification of interchromosomal high level amplifications**

639 We used the rearrangement breakpoints to identify samples where high level amplifications were
640 linked across chromosomes. We clustered cells only including bins that were part of the
641 chromosomes of interest. In sample SA1049, chromosomes 6, 7, 8, 9, 12, 17 and 19 were used
642 for clustering. In SA604 we were particularly interested in the co-amplification of chr12 and chr20
643 so restricted the clustering to those chromosomes only.

644

645 **PCAWG data**

646 Copy number calls from PCAWG were downloaded from the ICGC portal
647 (<https://dcc.icgc.org/releases/PCAWG/>). We transformed the segmentations into 0.5Mb bins
648 across the genome to facilitate comparison with our single cell data. We filtered the PCAWG data
649 for ovarian and breast cancer types for downstream analysis.

650

651 Recurrent event analysis

652 To identify recurrent events across the cohort we first classified each genomic bin in each cell into
653 gains, losses and LOH. LOH states include any event that has lost one of the alleles, for example
654 monosomies (ie 1|0), copy neutral LOH (ie 2|0) and regions that are also gained (ie 3|0) were all
655 included under LOH. Therefore some bins will be classified as both LOH and loss or LOH and
656 gain. Bins were assigned to be gained or lost relative to cell ploidy. After assigning these states
657 we then computed the cancer cell fraction, f_t of each type in bins across the genome:

658
$$f_{t,i} = \frac{n_{t,i}}{n_{cell}}$$

659 Where $n_{t,i}$ is the number of cells with event type t in bin i , and n_{cell} is the total number of cells in
660 the sample. To look at recurrence across samples we then took these values and computed the
661 fraction F of samples that had an event in bin i with $f_{t,i}$ greater than some cutoff X .

662
$$F_{f_{t,i}>X} = \frac{\sum_1^N I(f_{t,i} > X)}{N}$$

663 Where N is the number of samples and I is the indicator function. In Figure 2 we used cutoffs, X
664 of 0.01 and 0.95.

665

666 To investigate how the prominence of focal alterations around oncogenes changes as a function
667 of CCF we calculated the ratio, R_g between F around the locus of interest to the average across
668 the whole chromosome:

669
$$R_g = \frac{F_{f_{t,g}>X}}{\frac{1}{N} \sum_{chr} F_{f_{t,i}>X}}$$

670 Where N is the number of bins in the chromosome of interest and g is a gene of interest. We
671 calculated R_g in 250 oncogenes from the cancer gene census across a range of CCF's. These
672 were then plotted in **Figure 2d**.

673

674 Statistical tests

675 To compare the proportion of cells with loss of haplotype A vs B in gene expression clusters we
676 used a proportions test (using `prop.test` in R). Linear regressions use the `lm` function in R.
677 When boxplots are presented in the figures, hinges represent the 25% and 75% quantiles,
678 whiskers are +/- 1.5X inter quartile range.

679

680 Code availability

681 ● Schnapps R package: <https://shahcompbio.github.io/schnapps/>.

682 ● Analysis scripts and figure generation: https://github.com/marcjwilliams1/schnapps_paper

683 ● DLP+ single cell whole genome sequencing pipeline is available at
https://github.com/shahcompbio/single_cell_pipeline

684 ● Whole genome sequencing pipeline: <https://github.com/shahcompbio/wgs>

685 ● scRNAseq pipeline: <https://github.com/nceglia/scrna-pipeline>

686

687

688 **Data availability**

689 10X scRNA sequencing data from SA906 is available from the European Genome-Phenome
690 archive (EGAS00001004448). All other data will be made available for controlled access at EGA
691 upon publication.

692

693

694

695 **References**

- 696 1. van Jaarsveld, R. H. & Kops, G. J. P. L. Difference Makers: Chromosomal Instability versus
697 Aneuploidy in Cancer. *Trends Cancer Res.* **2**, 561–571 (2016).
- 698 2. Bielski, C. M. *et al.* Genome doubling shapes the evolution and prognosis of advanced
699 cancers. *Nat. Genet.* **50**, 1189–1195 (2018).
- 700 3. Bolhaqueiro, A. C. F. *et al.* Ongoing chromosomal instability and karyotype evolution in
701 human colorectal cancer organoids. *Nat. Genet.* **51**, 824–834 (2019).
- 702 4. Li, Y. *et al.* Patterns of somatic structural variation in human cancer genomes. *Nature* **578**,
703 112–121 (2020).
- 704 5. ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of
705 whole genomes. *Nature* **578**, 82–93 (2020).
- 706 6. Wang, Y. K. *et al.* Genomic consequences of aberrant DNA repair mechanisms stratify
707 ovarian cancer histotypes. *Nat. Genet.* **49**, 856–865 (2017).
- 708 7. Maley, C. C. *et al.* Genetic clonal diversity predicts progression to esophageal
709 adenocarcinoma. *Nat. Genet.* **38**, 468–473 (2006).
- 710 8. Jamal-Hanjani, M. *et al.* Tracking the Evolution of Non-Small-Cell Lung Cancer. *N. Engl. J.*
711 *Med.* **376**, 2109–2121 (2017).
- 712 9. Macintyre, G. *et al.* Copy number signatures and mutational processes in ovarian
713 carcinoma. *Nat. Genet.* **50**, 1262–1270 (2018).
- 714 10. Watkins, T. B. K. *et al.* Pervasive chromosomal instability and karyotype order in tumour
715 evolution. *Nature* (2020) doi:10.1038/s41586-020-2698-6.
- 716 11. Laks, E. *et al.* Clonal Decomposition and DNA Replication States Defined by Scaled Single-
717 Cell Genome Sequencing. *Cell* **179**, 1207–1221.e22 (2019).
- 718 12. Minussi, D. C. *et al.* Breast tumours maintain a reservoir of subclonal diversity during
719 expansion. *Nature* 1–7 (2021).

720 13. Sanders, A. D. *et al.* Single-cell analysis of structural variations and complex
721 rearrangements with tri-channel processing. *Nat. Biotechnol.* 1–12 (2019).

722 14. Zaccaria, S. & Raphael, B. J. Characterizing allele- and haplotype-specific copy numbers in
723 single cells with CHISEL. *Nat. Biotechnol.* **39**, 207–214 (2021).

724 15. Wu, C.-Y. *et al.* Integrative single-cell analysis of allele-specific copy number alterations
725 and chromatin accessibility in cancer. *Nat. Biotechnol.* (2021) doi:10.1038/s41587-021-
726 00911-w.

727 16. McGranahan, N. *et al.* Allele-Specific HLA Loss and Immune Escape in Lung Cancer
728 Evolution. *Cell* **171**, 1259–1271.e11 (2017).

729 17. Umbreit, N. T. *et al.* Mechanisms generating cancer genome complexity from a single cell
730 division error. *Science* **368**, (2020).

731 18. Campbell, K. R. *et al.* clonealign: statistical integration of independent single-cell RNA and
732 DNA sequencing data from human cancers. *Genome Biol.* **20**, 54 (2019).

733 19. Dorri, F. *et al.* Efficient Bayesian inference of phylogenetic trees from large scale, low-depth
734 genome-wide single-cell data. *bioRxiv* 2020.05.06.058180 (2020)
735 doi:10.1101/2020.05.06.058180.

736 20. Funnell, T., O'Flanagan, C., Williams, M. J., Aparicio, S. & P., S. S. The impact of
737 mutational processes on structural genomic plasticity in cancer cells. *Biorxiv* (2021).

738 21. Bolnick, D. I., Barrett, R. D. H., Oke, K. B., Rennison, D. J. & Stuart, Y. E. (Non)Parallel
739 Evolution. *Annu. Rev. Ecol. Evol. Syst.* **49**, 303–330 (2018).

740 22. Gerlinger, M. *et al.* Genomic architecture and evolution of clear cell renal cell carcinomas
741 defined by multiregion sequencing. *Nature Publishing Group* doi:10.1038/ng.2891.

742 23. McClintock, B. The Stability of Broken Ends of Chromosomes in Zea Mays. *Genetics* **26**,
743 234–282 (1941).

744 24. Gisselsson, D. *et al.* Chromosomal breakage-fusion-bridge events cause genetic intratumor
745 heterogeneity. *Proc. Natl. Acad. Sci. U. S. A.* **97**, 5357–5362 (2000).

746 25. Hadi, K. *et al.* Distinct Classes of Complex Structural Variation Uncovered across
747 Thousands of Cancer Genome Graphs. *Cell* **183**, 197–210.e32 (2020).

748 26. Zakov, S., Kinsella, M. & Bafna, V. An algorithmic approach for breakage-fusion-bridge
749 detection in tumor genomes. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 5546–5551 (2013).

750 27. Shen, M. M. Chromoplexy: a new category of complex rearrangements in the cancer
751 genome. *Cancer cell* vol. 23 567–569 (2013).

752 28. Kim, H. *et al.* Extrachromosomal DNA is associated with oncogene amplification and poor
753 outcome across multiple cancers. *Nat. Genet.* **52**, 891–897 (2020).

754 29. Wu, C.-Y. *et al.* Alleloscope: Integrative single cell analysis of allele-specific copy number
755 alterations and chromatin accessibility in cancer. *Cold Spring Harbor Laboratory*
756 2020.10.23.349407 (2020) doi:10.1101/2020.10.23.349407.

757 30. Elizalde, S., Laughney, A. M. & Bakhoum, S. F. A Markov chain for numerical chromosomal
758 instability in clonally expanding populations. *PLoS Comput. Biol.* **14**, e1006447 (2018).

759 31. Cross, W. *et al.* Stabilising selection causes grossly altered but stable karyotypes in
760 metastatic colorectal cancer. *bioRxiv* 2020.03.26.007138 (2020)
761 doi:10.1101/2020.03.26.007138.

762 32. Baca, S. C. *et al.* Punctuated evolution of prostate cancer genomes. *Cell* **153**, 666–677
763 (2013).

764 33. Stachler, M. D. *et al.* Origins of cancer genome complexity revealed by haplotype-resolved
765 genomic analysis of evolution of Barrett's esophagus to esophageal adenocarcinoma.
766 *bioRxiv* 2021.03.26.437288 (2021) doi:10.1101/2021.03.26.437288.

767 34. Salehi, S. *et al.* Single cell fitness landscapes induced by genetic and pharmacologic
768 perturbations in cancer. *Cold Spring Harbor Laboratory* 2020.05.08.081349 (2020)
769 doi:10.1101/2020.05.08.081349.

770 35. Tarone, R. E. Testing the goodness of fit of the binomial distribution. *Biometrika* **66**, 585–
771 590 (1979).

772 36. Lai, D. & Shah, S. HMMcopy: copy number prediction with correction for GC and
773 mappability bias for HTS data. *R package version 1*, (2012).

774 37. Ding, J. *et al.* Feature-based classifiers for somatic mutation detection in tumour–normal
775 paired sequencing data. *Bioinformatics* **28**, 167–175 (2011).

776 38. Saunders, C. T. *et al.* Strelka: accurate somatic small-variant calling from sequenced
777 tumor–normal sample pairs. *Bioinformatics* **28**, 1811–1817 (2012).

778 39. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for
779 structural variant discovery. *Genome Biol.* **15**, R84 (2014).

780 40. McPherson, A., Shah, S. & Sahinalp, S. C. deStruct: accurate rearrangement detection
781 using breakpoint specific realignment. *bioRxiv* (2017).

782 41. Delaneau, O., Marchini, J. & Zagury, J.-F. A linear complexity phasing method for
783 thousands of genomes. *Nat. Methods* **9**, 179–181 (2011).

784 42. McPherson, A. W. *et al.* ReMixT: clone-specific genomic structure estimation in cancer.
785 *Genome Biol.* **18**, 140 (2017).

786 43. Wingett, S. W. & Andrews, S. FastQ Screen: A tool for multi-genome mapping and quality
787 control. *F1000Res.* **7**, 1338 (2018).

788 44. Burleigh, A. *et al.* A co-culture genome-wide RNAi screen with mammary epithelial cells
789 reveals transmembrane signals required for growth and differentiation. *Breast Cancer Res.*
790 **17**, 4 (2015).

791 45. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell
792 transcriptomic data across different conditions, technologies, and species. *Nat. Biotechnol.*
793 **36**, 411–420 (2018).

794 46. Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888–1902.e21
795 (2019).

796 47. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell
797 Doublets in Single-Cell Transcriptomic Data. *Cell Syst* **8**, 281–291.e9 (2019).

798 48. Huang, X. & Huang, Y. Cellsnp-lite: an efficient tool for genotyping single cells.

799 *Bioinformatics* (2021) doi:10.1093/bioinformatics/btab358.

800 49. Alquicira-Hernandez, J. & Powell, J. E. Nebulosa recovers single cell gene expression

801 signals by kernel density estimation. *Bioinformatics* (2021)

802 doi:10.1093/bioinformatics/btab003.

803 50. McInnes, L. & Healy, J. Accelerated Hierarchical Density Clustering. *arXiv [stat.ML]* (2017).

804 51. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection

805 for Dimension Reduction. *arXiv [stat.ML]* (2018).

806 52. Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. *Bioinformatics*

807 **34**, 1053–1055 (2018).

808 53. Werner, B. *et al.* Measuring single cell divisions in human tissues from multi-region

809 sequencing data. *Nat. Commun.* **11**, 1035 (2020).

810 **Acknowledgments**

811 This project was generously supported by the BC Cancer Foundation at BC Cancer and Cycle for

812 Survival supporting Memorial Sloan Kettering Cancer Center. SPS holds the Nicholls Biondi Chair

813 in Computational Oncology and is a Susan G. Komen Scholar (#GC233085). SA holds the Nan

814 and Lorraine Robertson Chair in Breast Cancer and is a Canada Research Chair in Molecular

815 Oncology (950-230610). Additional funding provided by the Terry Fox Research Institute Grant

816 1082, Canadian Cancer Society Research Institute Impact program Grant 705617, CIHR Grant

817 FDN-148429, Breast Cancer Research Foundation award (BCRF-18-180, BCRF-19-180 and

818 BCRF-20-180), MSK Cancer Center Support Grant/Core Grant (P30 CA008748), National

819 Institutes of Health Grant's (1RM1 HG011014-01 & P50 CA247749-01), CCSRI Grant (#705636),

820 the Cancer Research UK Grand Challenge Program, Canada Foundation for Innovation (40044)

821 to SA and SPS. MJW is supported by an National Cancer Institute pathway to independence

822 award (K99CA256508).

823 **Competing interests**

824 SPS and SA are shareholders and consultants of Canexia Health Inc.

825 **Contributions**

826 SPS, SA and MJW: project conception, manuscript writing, senior responsible authors; SPS and
827 SA: project supervision and oversight; NR: manuscript writing and editing; COF, FK, HL, TM,
828 PE, DY, BW, JB, JB, JT: tissue procurement, biological substrates, knockout cell line generation
829 and validation, data generation. COF, JB, BW, JB: single cell sequencing; TF, MJW, SS, IVG,
830 AM, ACW, NC, FU: computational biology, data analysis; DL, SB, JP, DG, DA, AM, SL, EH, VB:
831 data processing, visualization;. All authors read and approved the final manuscript.

832

833

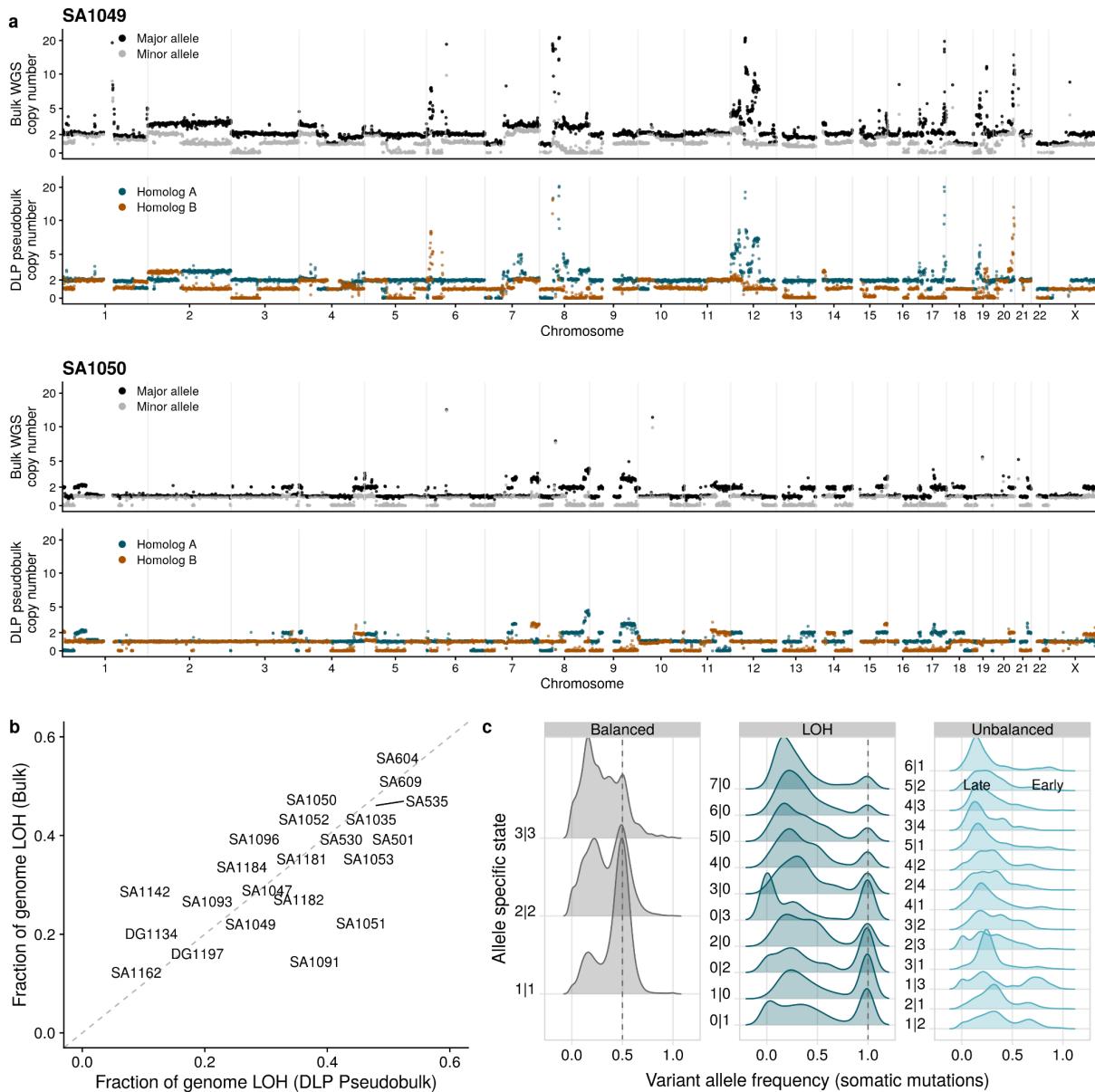
834

835

836

837 **Supplementary Figures**

838

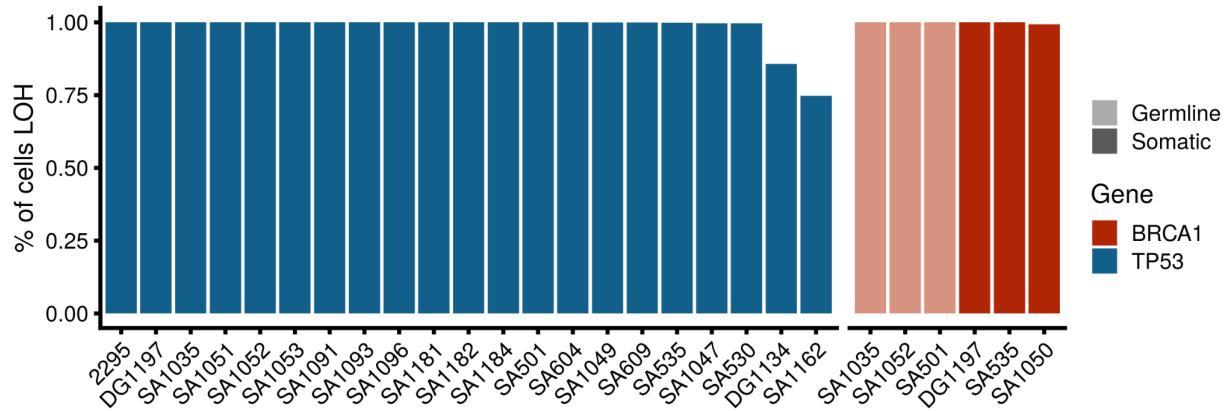


Supplementary Figure 1

Comparison of bulk whole genome sequencing and DLP. a) Allele specific copy number inferred from bulk WGS using RemixT (top), pseudobulk allele haplotype copy number (bottom) for samples SA1049 and SA1050. b) Fraction of genome inferred to be LOH in pseudobulk DLP vs bulk WGS. c) Density of variant allele frequency of somatic SNVs stratified by allele specific state across all samples.

839

840



Supplementary Figure 2

Percentage of cells that are homozygous around the BRCA1 and TP53 locus where we could identify a loss of function mutation. x-axis is the sample ID and y-axis is the % of cells that are homozygous.

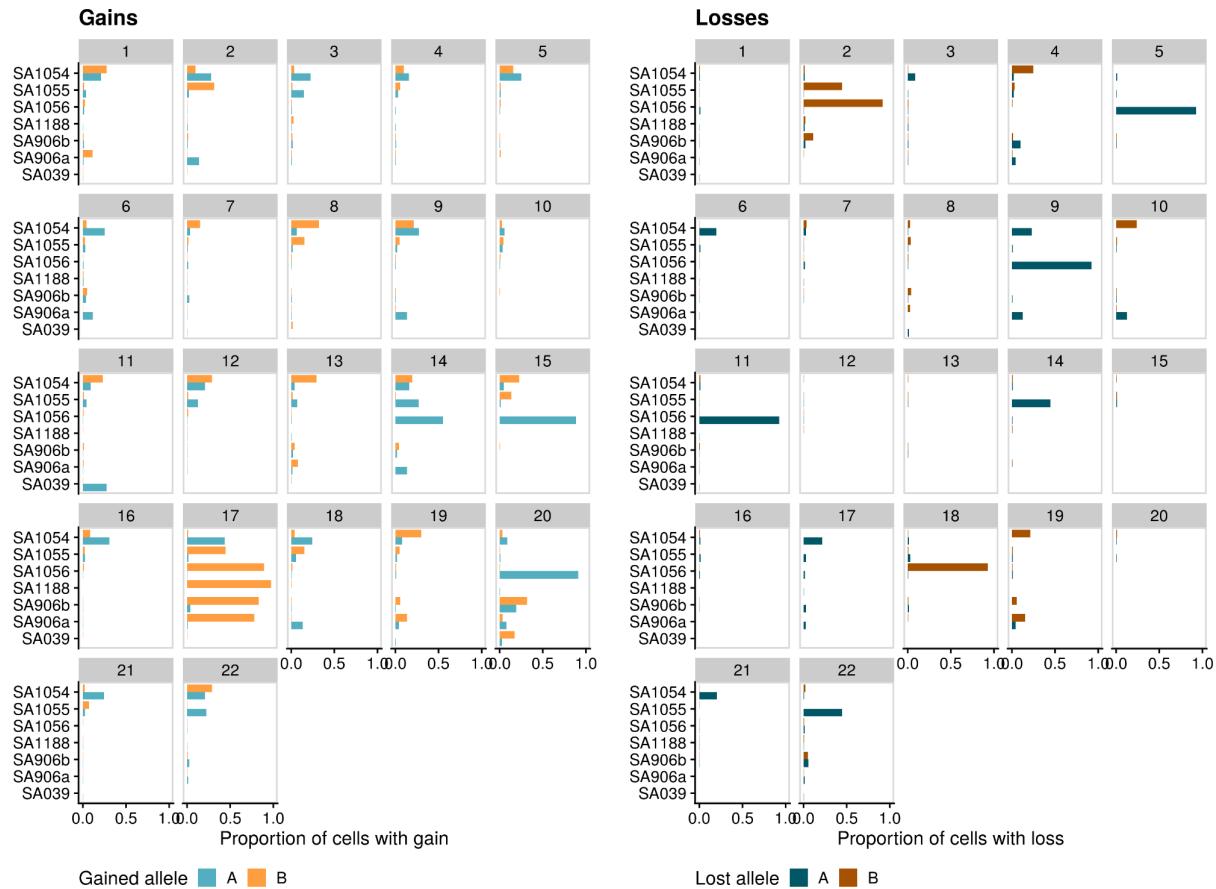
841

842

843

844

845



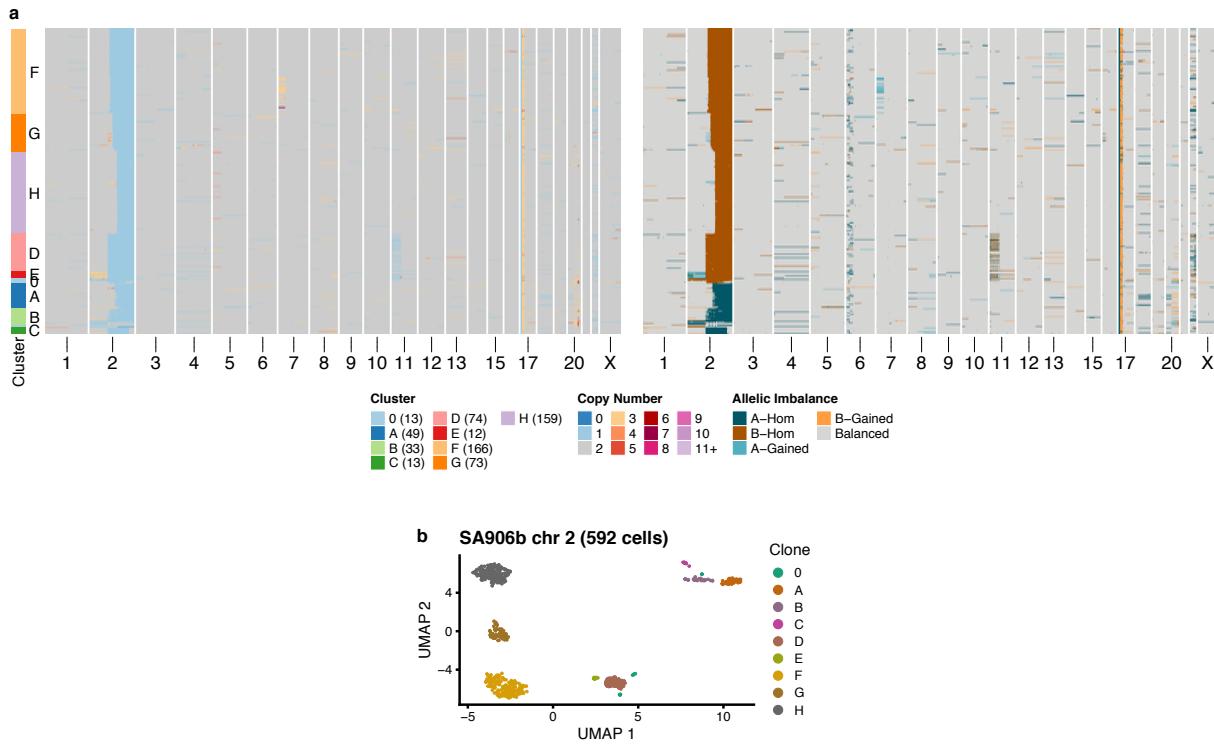
Supplementary Figure 3

Proportion of cells with gains (left panel) and losses (right panel) of allele A and allele B across chromosomes for each of the engineered cell lines. As these cells share a common ancestor, haplotypes can be phased jointly across all cells so allele A and B are consistent across the different lines.

846

847

848

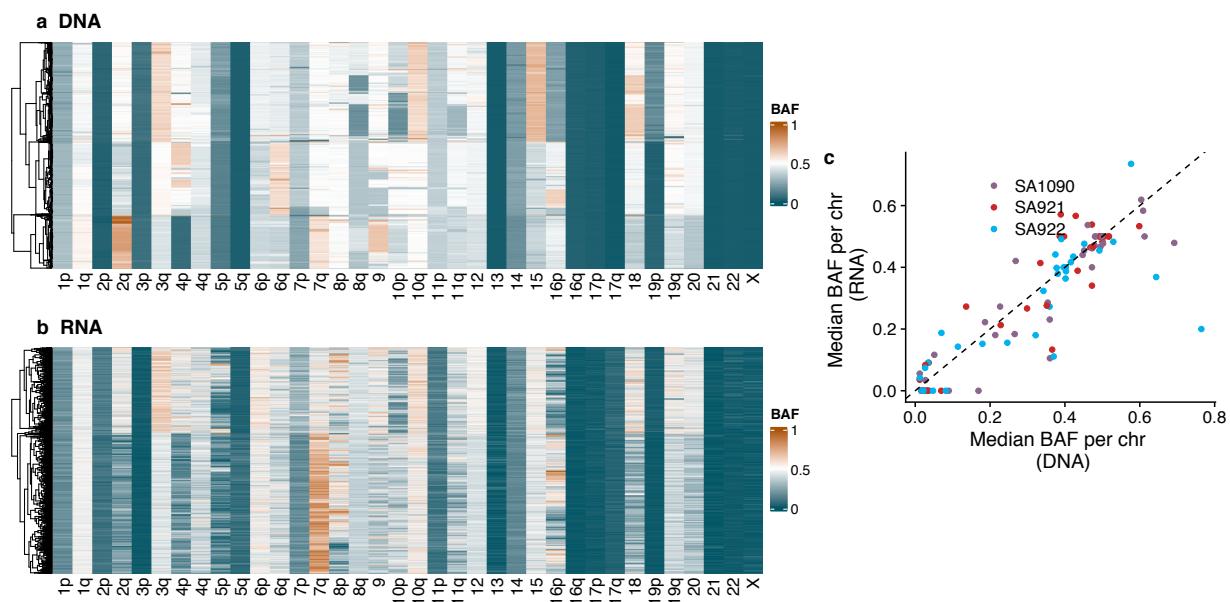


Supplementary Figure 4

a) Total copy number (left) and haplotype specific copy number of cells in SA906b that have a loss on chr 2q. Each row is a cell and x-axis is genome position. Left track shows groupings into clusters using UMAP and HDBSCAN. Same set of cells shown in Figure 3 is shown here. b) Output of UMAP showing distinct clusters. Points are coloured according to clusters/clones. Same clustering is used here as in Figure 3.

849

850



Supplementary Figure 5

Comparison of allele imbalance per chromosome inferred from single cell DNA a) versus single cell RNA b) in sample cell lines 2295 (same sample used in Figure 1). In a) and b) each column is a chromosome arm and each row is a cell, colours indicate allele imbalance. c) Median BAF per chromosome arm inferred from scDNA vs scRNA, colours indicate the different sites and dashed black line the $y=x$ line.

851

852

853

854

855

856

857

858

859

860

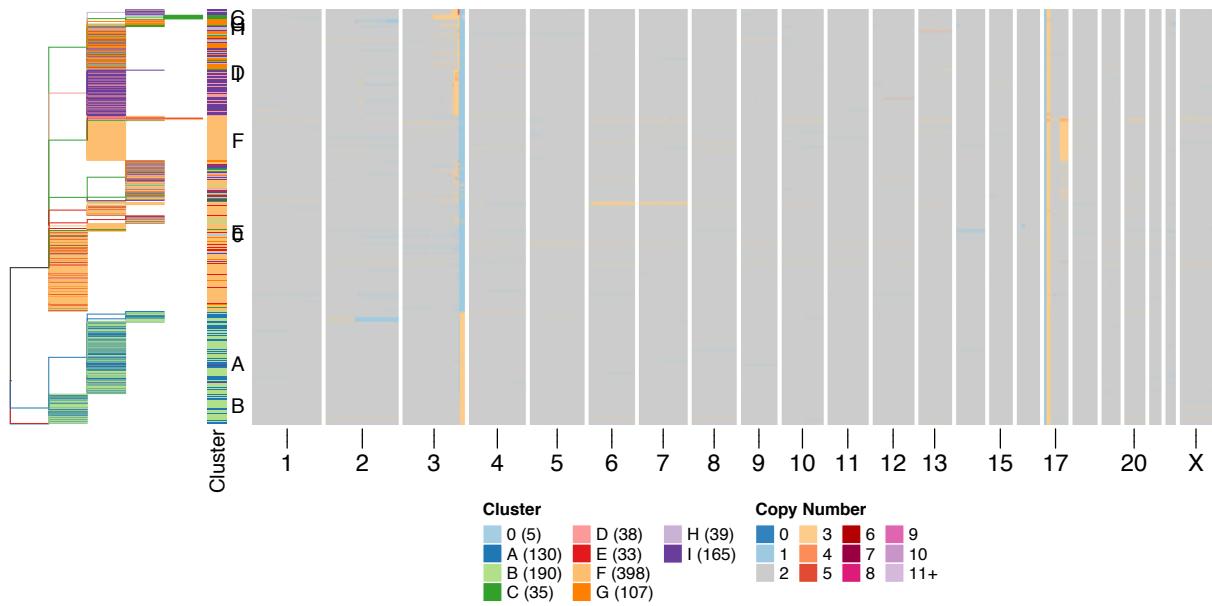
861

862

863

864

865



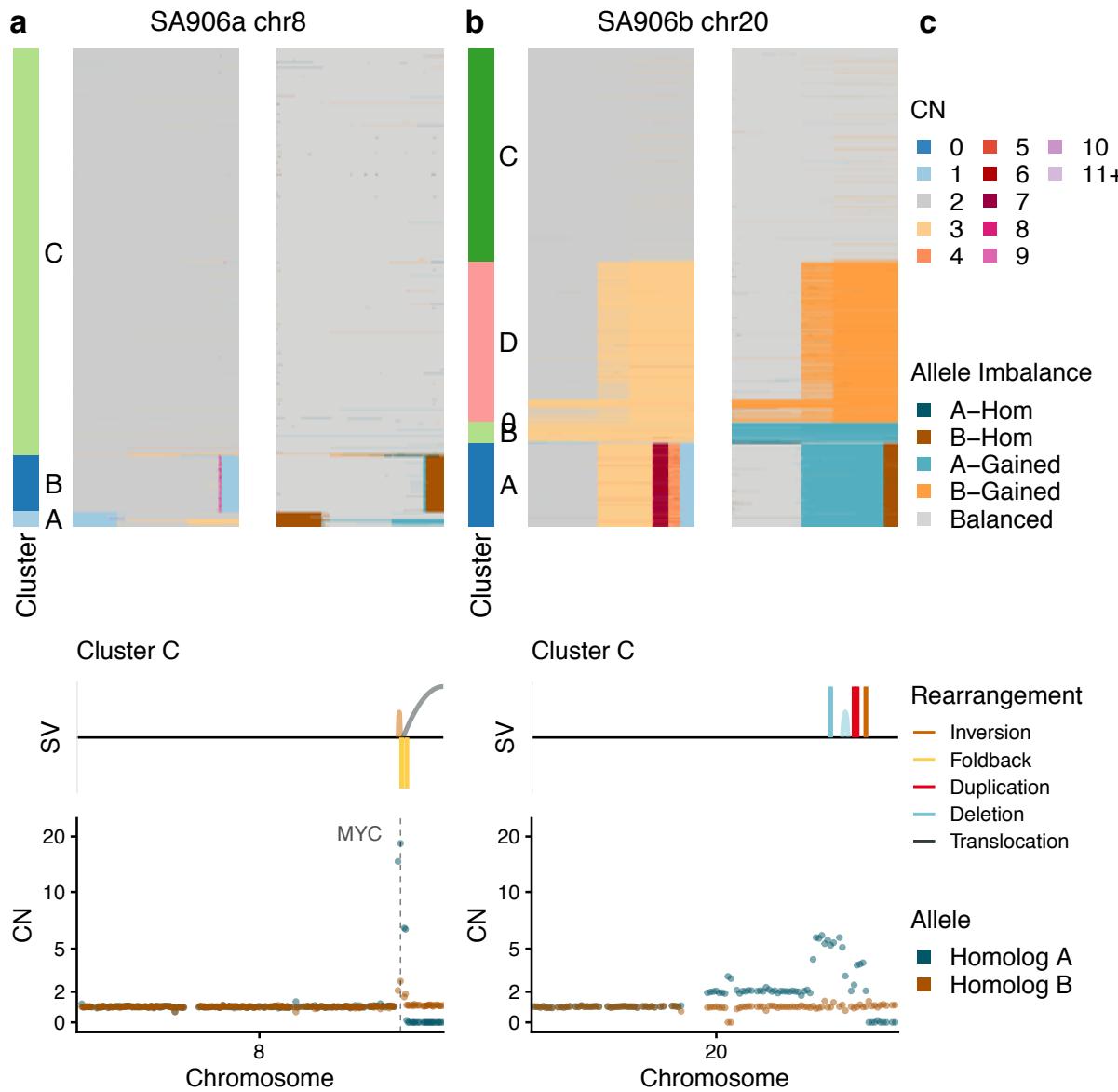
Supplementary Figure 6

Heatmap ordered by phylogenetic tree for SA1188. Rows are cells and x-axis represent genome position. Tree and cluster track are coloured according to clustering presented in Figure 4, showing that clusters largely group together on the phylogenetic tree and that a split close to the root is present which distinguishes two clades, one clade with an amplification at the end of chromosome 3 and one with a deletion.

866

867

868

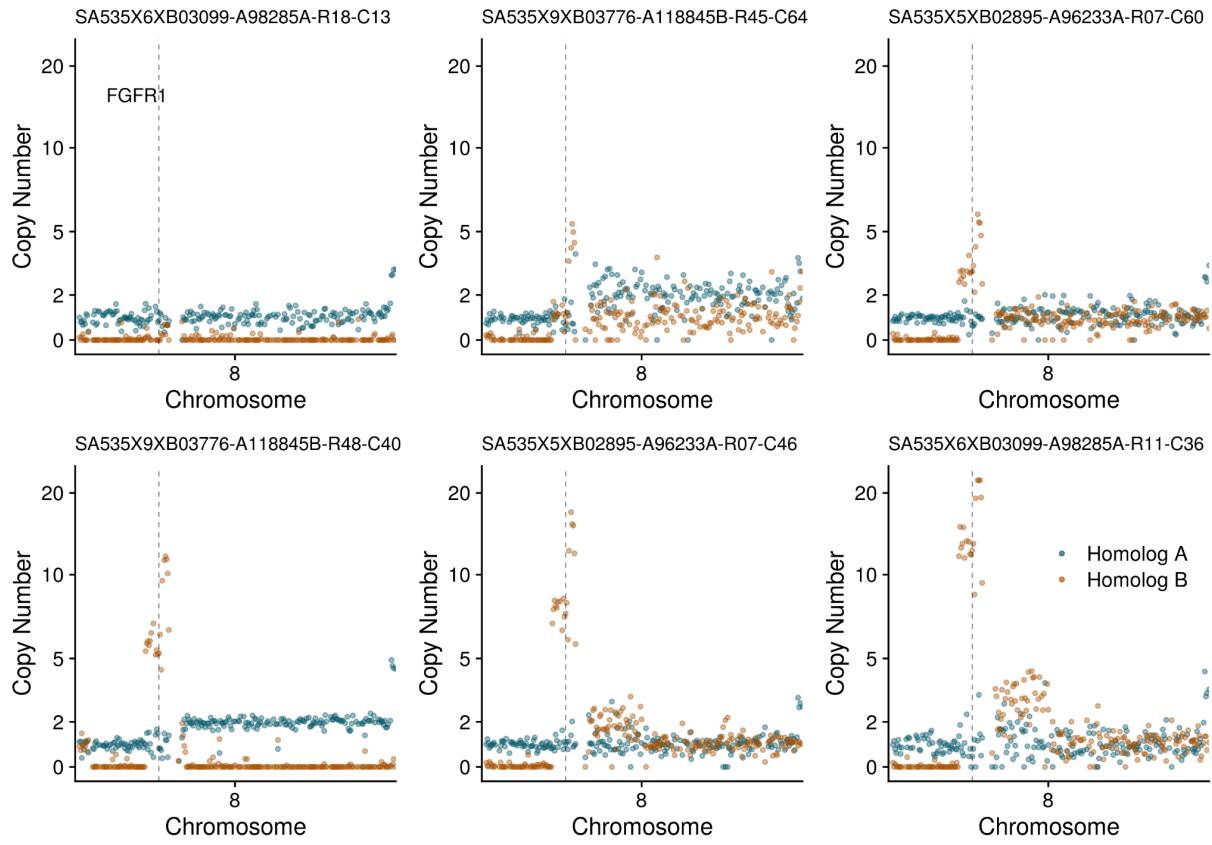


Supplementary Figure 7

BFBC in hert engineered cell lines. For each panel we show the total copy number on the left, allele specific copy number on the right and zoomed in haplotype specific copy number plot for the cluster containing the BFBC event at the bottom. We show: a) MYC amplification in sa906a and b) chr20 amplification in SA906b

869

870



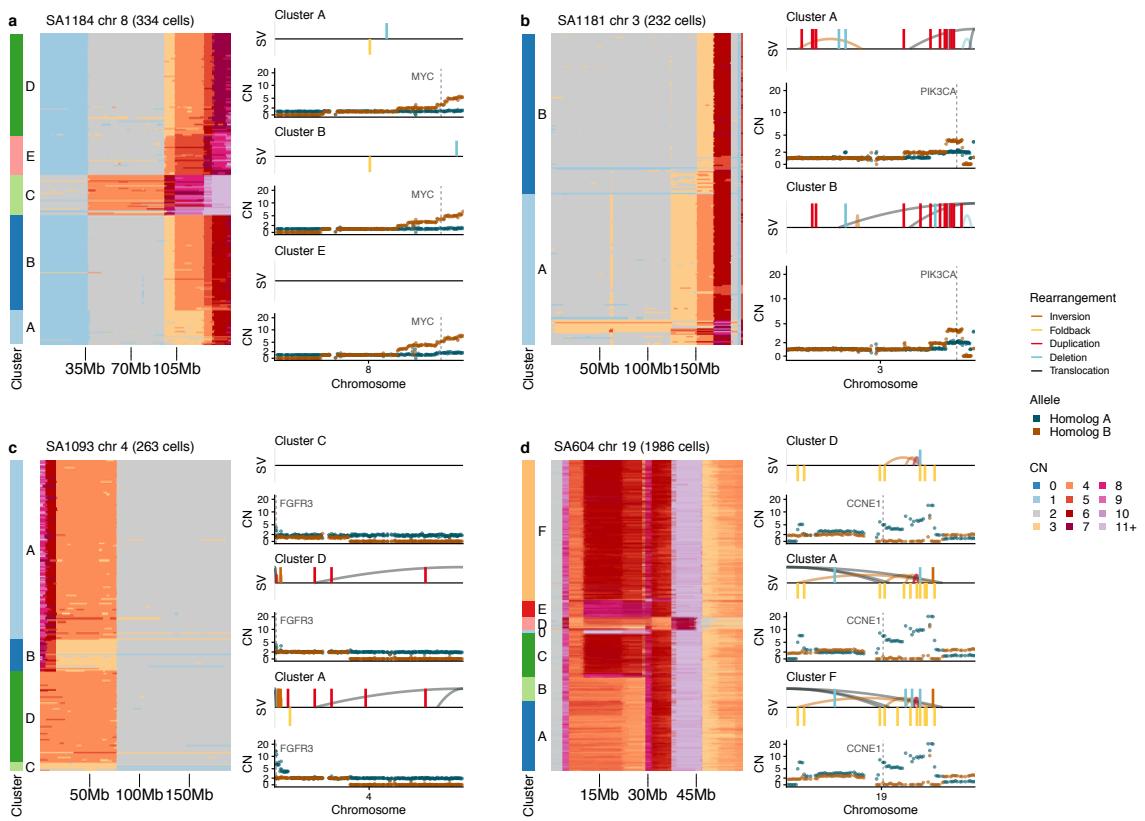
Supplementary Figure 8

Examples of single cells with progressive amplifications on chr 8p in SA535. Each panel is the haplotype specific copy numbers in chr8 in individual cells. The cell id is given at the top of each panel, the location of FGFR1 is shown with a dashed line.

871

872

873



Supplementary Figure 9

Additional examples of putative BFBC resulting in subclonal and/or variable oncogene amplifications in tumours. For each panel we show the total copy number heatmap grouped into clusters with each row being a cell on the left and pseudobulk haplotype specific copy number plots with structural variants from some clusters on the right. The examples shown here are: a) MYC in SA1184 b) PIK3CA in SA1181 c) FGFR1 in SA1093 and d) KRAS in SA604.

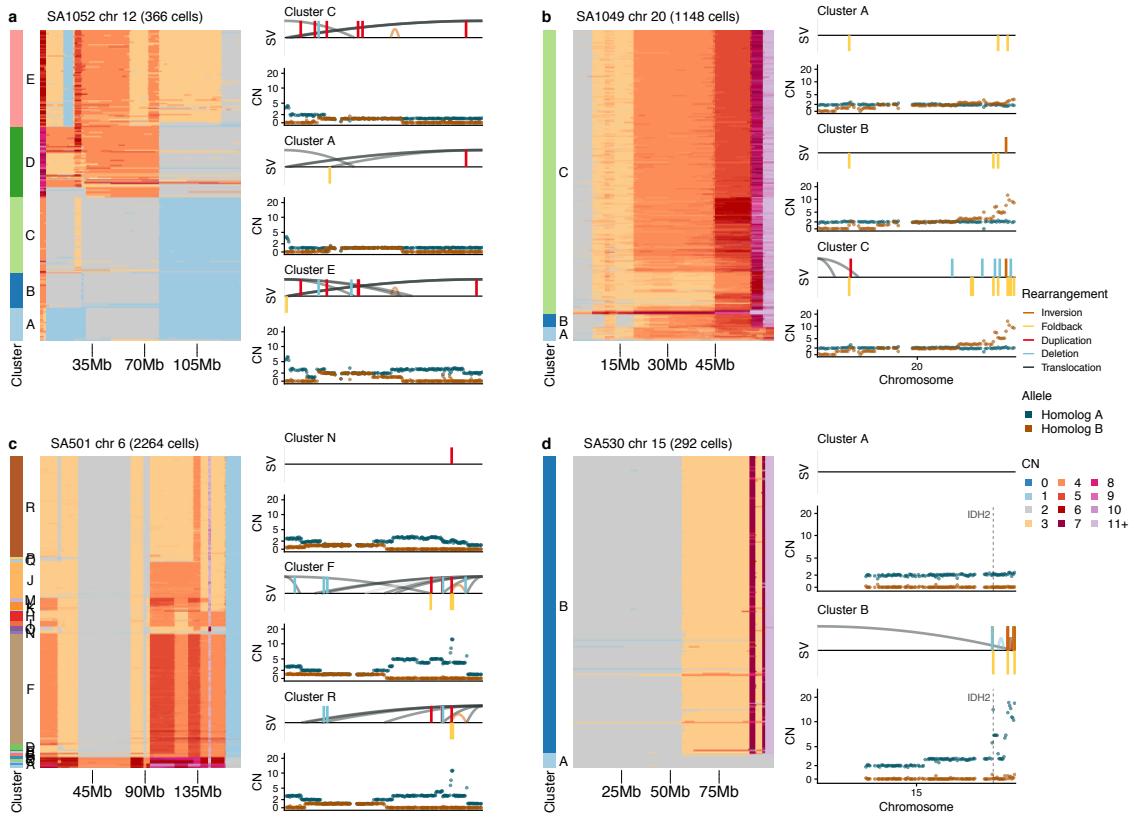
874

875

876

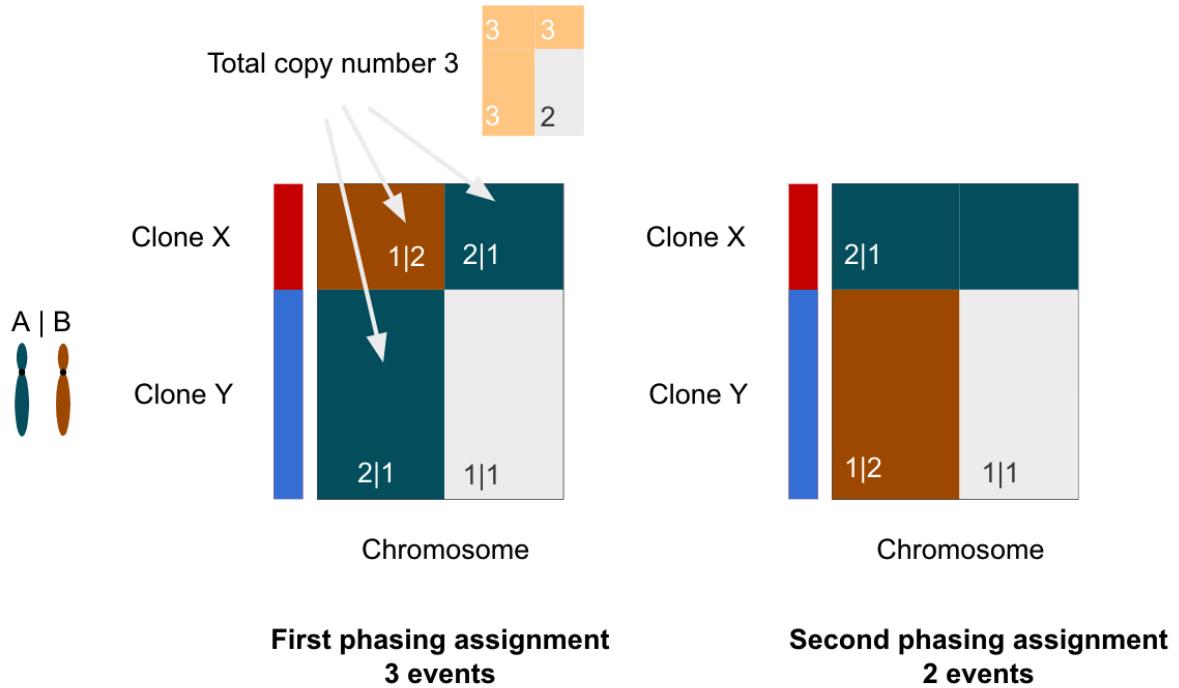
877

878



879

880



Supplementary Figure 11

Diagram of rationale behind two-step phasing procedure employed by schnapps. On the left assignment of haplotypes based on the global minimum results in clone X having an event which switches phase half way though the chromosome, the more parsimonious explanation is that this is a single whole chromosome gain and that clone Y has a chromosome arm gain on the opposite haplotype. The second phasing assignment in schnapps attempts to correct for this possibility.

881

882

883 See excel spreadsheet for the following:

884 **Supplementary Table 1** - Cohort statistics including number of cells per sample, average

885 coverage and number of samples

886 **Supplementary Table 2** - Table describing the evidence that attributed complex events to

887 breakage fusion bridge cycles

888 **Supplementary Table 3** - fraction of genome altered as a function of CCF for all samples

889 **Supplementary Table 4** - chromosome event rates per sample

890 **Supplementary Table 5** - genomic coordinates of parallel copy number events