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2 

Abstract 35 

 36 

Cancer genomes exhibit extensive chromosomal copy number changes and structural variation, 37 

yet how allele specific alterations drive cancer genome evolution remains unclear. Here, through 38 

application of a new computational approach we report allele specific copy number alterations in 39 

11,097 single cell whole genomes from genetically engineered mammary epithelial cells and 40 

21,852 cells from high grade serous ovarian and triple negative breast cancers. Resolving single 41 

cell copy number profiles to individual alleles uncovered genomic background distributions of 42 

gains, losses and loss of heterozygosity, yielding evidence of positive selection of specific 43 

chromosomal alterations. In addition specific genomic loci in maternal and paternal alleles were 44 

commonly found to be altered in parallel with convergent phenotypic transcriptional effects. Finally 45 

we show that haplotype specific alterations trace the cyclical etiology of high level amplifications 46 

and reveal clonal haplotype decomposition of complex structures. Together, our results illuminate 47 

how allele and haplotype specific alterations, here determined across thousands of single cell 48 

cancer genomes, impact the etiology and evolution of structural variations in human tumours.  49 

 50 

 51 

  52 
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3 

Introduction 53 

 54 

More than 70% of human tumours are aneuploid and many harbor highly complex genomes1. 55 

Various processes including whole genome doubling2, whole chromosome and chromosome arm 56 

level gains and losses, segmental aneuploidies1,3, and complex structural rearrangements within 57 

and between chromosomes4,5 result in complex cancer haplotypes which can differentially impact 58 

maternal and paternal alleles. The degree or type of genomic instability correlates with clinical 59 

outcome in many settings, highlighting the importance of large scale genomic changes in 60 

interpreting therapeutic response6–9. Multi-region sequencing studies have begun to illuminate 61 

allele specific granularity of genomic instability8,10, yet how precise single cell-level variation of 62 

maternal and paternal alleles impacts genomic evolution remains understudied. 63 

 64 

Recent advances in scalable low pass single cell (or nucleus) whole genome sequencing can 65 

profile large numbers of cells per sample (100’s to 1000’s) and offer new opportunities to define 66 

properties of intra-tumour heterogeneity in genomically unstable tumours11,12. Methods such as 67 

direct library preparation+ (DLP+) provide granularity to identify ongoing instability at high 68 

resolution11. Yet, most single cell whole genome profiling has focused on the analysis of total copy 69 

number due to technical limitations. Bespoke library preparation methods such as strand-seq13 70 

can infer allele specific copy number but do not scale well to large numbers of cells, while high 71 

throughput methods require dedicated computational solutions due to their sparse coverage14,15. 72 

Total copy number approaches accordingly miss important events such as copy neutral loss of 73 

heterozygosity (cnLOH), impacting key biological attributes such as bi-allelic inactivation of 74 

tumour suppressor genes and mechanisms of immune evasion16. Furthermore, accurate 75 

decomposition of complex genomic variants requires mapping events to homologous 76 

chromosomes17. 77 

 78 

We developed a new analytical method to identify allele and haplotype specific copy number in 79 

scDNA and applied it to DLP+ single cell whole genome sequencing of a cohort of more than 80 

32,000 cells from 22 genomically unstable tumours, 7 genetically engineered cell lines and 3 81 

patient derived cell lines. We used cell-level allele and haplotype specific CNAs to compute 82 

accurate phylogenetic trees and measure rates of instability, integrated them with single cell RNA 83 

sequencing to reveal properties of convergent copy number evolution and combined them with 84 

subclonal structural variants to infer sequential evolution of complex genomic changes. Our 85 
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results highlight the prevalence of continual accrual of large genomic alterations, providing new 86 

insight into copy number driven evolution of cancer genomes at haplotype specific resolution.  87 

 88 

Results 89 

 90 

Accurate allele-specific copy number in single cells 91 

 92 

To study the impact of allele and haplotype specific copy number alterations in single cells at 93 

scale, we developed an analytical approach called schnapps (single cell haplotype copy number 94 

analysis by phased probabilistic states). schnapps phases haplotype blocks across cells, 95 

computing a value for the B allele frequency (BAF) in 500kb bins across the genome. Phasing of 96 

alleles is refined based on global imbalances in clusters of cells sharing similar copy number 97 

events and allele specific states per bin are inferred using a hidden Markov model (HMM) that 98 

incorporates total copy number based on relative read depth and BAF’s (see methods).  99 

 100 

We evaluated schnapps performance metrics on previously published single cell data from a 101 

group of ovarian cancer cell lines derived from the same patient11,18. This data includes cell lines 102 

derived from the primary tumour (SA1090), and 2 relapse specimens from the primary site 103 

(SA921) and ascites (SA922) respectively. Mean coverage per cell was 0.16X. We found clear 104 

examples of loss of heterozygosity (BAF = 0.0) at chromosomes 2p, 3p, 4p, 13, 16,17, 21 and 22 105 

in individual cells (see Figure 1a for an example). BAF’s were distributed around the expected 106 

values, even at relatively high copy states (>8) (Figure 1b). We then computed the variant allele 107 

fraction (VAF) of clonal single nucleotide variants (SNV) per allele specific state. The VAF 108 

followed expected distributions, whereby mutations in balanced regions of the genome had VAF 109 

~ 0.5, mutations in homozygous regions had VAF ~ 1.0, and mutations in unbalanced regions 110 

exhibited modes consistent with mutation acquisition timing pre and post the copy number 111 

alteration (e.g. 1/3 and 2/3 for 2|1) (Figure 1c). 112 
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Figure 1 Allele specific inference at single cell resolution 
a) Example allele specific copy number in a single cell. Genome position in 0.5Mb bins  is shown across the x-axis, top panel shows the 

B-Allele Frequency (BAF) per bin coloured by inferred allele specific state, bottom shows the corrected read counts per bin colored by 

inferred total copy number. b) Distribution of BAF as a function of allele specific state across all cells in sample 2295. c) Variant allele 

frequency of somatic mutations mapped to allele specific states grouped by Balanced states (A==B), LOH states (A or B = 0) and 

Unbalanced (A!=B). d) Copy number heatmaps of all 1031 cells in OV2295, ordered by phylogeny computed from allele specific states 

per cell (left). Left heatmap shows total copy number, right heatmap is allele specific copy number. 

 

Having confirmed the accuracy of allele specific inference we then computed a phylogenetic tree 113 

of all 1031  cells in this three sample dataset with a phylogenetic inference method, sitka19 114 

using allele specific copy number as input (see methods). Visualizing this tree together with 115 

phylogenetically ordered heatmaps of total copy number and allele specific copy number revealed 116 

genomic alterations and clonal relationships that were not predicted with total copy number, 117 

Figure 1d. Firstly, we did not observe any total copy number events that were shared between 118 
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the three samples; allele specific copy number however revealed that all cells are homozygous 119 

(BAF = 0.0) at chromosomes 5, 13, 17, 21 and 22, Figure 1d. In addition, allele specific copy 120 

number events such as cnLOH on chromosomes 8q and 10p in a subset of cells in SA1090 further 121 

refine clonally expanded populations, Figure 1d. Taken together, this analysis illustrates the 122 

increased resolution provided by allele specific copy number at the single cell level. 123 

 124 

We next inferred allele specific copy number in a set 7 genetically engineered cell lines and 22 125 

human tumours with DLP+ single cell whole genome sequencing20. The cell lines originate from 126 

a WT immortalized hTERT mammary epithelial cell line, from which we generated derivative lines,  127 

using CRISPR to inactivate key DNA repair pathway genes. Our data included: wild-type (WT, 128 

n=1), TP53-/- (n=2), TP53-/- BRCA1-/- (n=1),  TP53-/- BRCA2-/- (n=2), and TP53-/- BRCA2+/- (n=1). 129 

The human tumour data derives from 15 high grade serous ovarian cancer (HGSOC) samples 130 

and 7 breast cancer samples from both PDX models (n=19) and primary human tissue (n=3). A 131 

full description of each sample is provided in Supplementary Table 1. Allele specific copy 132 

number inferred from matched bulk whole genome sequencing were highly similar to the average 133 

allele specific copy number of single cells (Supplementary Figure 1). This, together with SNV 134 

VAF distributions confirmed the accuracy of our inferences for downstream analysis.   135 

 136 

Background copy number alteration and positive selection in 22 tumours 137 

 138 

We next investigated the landscape of copy number alterations in the tumour cohort from single 139 

cell whole genome sequencing (median 697 cells per sample, range 49-2,627), enabling 140 

unambiguous cancer cell fraction (CCF) estimates in each tumour. We classified regions of the 141 

genome in each cell as LOH and gained or lost relative to cell ploidy, and then calculated CCF 142 

for each type of event across the genome. At the clonal level (CCF > 95%) recurrent events across 143 

tumours included 1q, 3q and 8q gains and prominent focal alterations around the oncogenes 144 

KRAS, MYC, CCNE1 and PIK3CA. Recurrent losses included 1p, 8p, 5p, 17p and 4, Figure 2a. 145 

These are all known recurrent events in breast and/or ovarian cancers, corroborated by the Pan-146 

Cancer Analysis of Whole Genomes (PCAWG) cohort5, Figure 2a. In samples containing TP53 147 

and/or BRCA1 loss of function mutations, invariably 100% of cells were homozygous around 148 

these loci, Supplementary Figure 2. 149 
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Figure 2 Landscape of copy number alterations as a function of clonality 
a) Landscape of alterations (LOH, Gains and Losses) across the genome in 25 tumours. The fraction of tumours with a particular 

type of alteration is shown on the y-axis, position along the genome is shown on the x axis. Shown here are recurrent clonal 

alterations (CCF > 95% per tumour) and b) recurrent alterations with CCF > 1% per tumour. Darker colored lines show the PCAWG 

cohort frequency. Arrows on the gained track show the location of the oncogenes PIK3CA, MYC, KRAS and CCNE1.  c)  Correlation 

between frequency distributions and PCAWG frequency as a function of CCF. d) Ratio of gene frequencies to chromosome 

frequencies as a function of CCF. Trajectories of MYC, CCNE1, PIK3CA and KRAS are highlighted with red lines  e) Fraction of 

genome altered by gains, losses or LOH for alterations present in 95% of cells and 1% of cells f) Chromosome event rate for gains 

and losses and LOH. Each data point represents the average chromosomal rate per sample. 

 

In contrast to clonal alterations, recurrent alterations present in at least 1% of cells were more 150 

uniformly distributed across the genome (Figure 2b). To quantify these observations, we 151 

compared CNA distributions with those reported in the PCAWG cohort5. Correlation with the 152 

PCAWG data became stronger for losses, gains and regions of LOH as CCF increased 153 

(Figure 2c), and focal amplifications of key oncogenes became more pronounced (Figure 2d). 154 

Furthermore, a higher fraction of the genome was altered at CCF > 1% than CCF > 95% 155 

(Figure 2e). Chromosomal event rates (see methods) were estimated to be on average 0.01 per 156 

division per chromosome for LOH events (excluding losses resulting in 1 copy) and 0.03 for gains 157 
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and losses (Figure 2f). This analysis revealed a high but consistently uniform background rate of 158 

copy number alteration across the genome, suggesting that chromosomes continually acquire 159 

CNAs without enrichment for specific genomic loci, and focuses attention on regions likely under 160 

positive selection in the initial clonal expansions of these tumours. Importantly, these regions 161 

include known oncogenes such as KRAS, CCNE1, PIK3CA and MYC.  162 

 163 

Parallel gains and losses inferred from haplotype specific copy number 164 

 165 

We next leveraged our ability to phase alleles to individual haplotypes in single cells and estimate 166 

“haplotype specific copy number” to investigate parallel copy number evolution8,10,14,15 (subclones 167 

with the same total copy number but different haplotype configurations) as a putative signature of 168 

selection (Figure 3a,b). Parallel evolutionary events are often considered indicators of positive 169 

selection, reflecting convergence on a particular advantageous genotype21,22. We detected a 170 

striking example consistent with this interpretation in our engineered cell line data, where gain of 171 

chromosome 20 of both the paternal and maternal allele is observed in 100% (7/7) of these lines, 172 

often at high frequency (Figure 3c). This is more common for chromosome 20 than other 173 

chromosomes suggesting it provides a fitness advantage for cells in this system 174 

(Supplementary Figure 3). 175 

 176 

We then looked for parallel evolutionary events in the tumour samples. Examples of parallel gains 177 

include chr1q in SA1049 (Figure 3d), chr3q in SA609 (Figure 3e) and chr6q in SA1182 178 

(Figure 3f) and parallel losses or cnLOH at chr15 in SA1053 (Figure 3g), chr3 in SA1184 179 

(Figure 3h) and chr15 in SA1052 (Figure 3i). Even when observed on the same haplotype, many 180 

of the events had distinct breakpoints, consistent with these alterations occurring numerous times 181 

during tumour evolution. Overall, 18/21 tumours (3 tumours were removed from this analysis due 182 

to low cell numbers) and 7/7 cell lines had at least 1 parallel event present in more than 1% of 183 

cells, with parallel gains typically more common than losses (Figure 3j). Although some of these 184 

parallel events affected chromosomes commonly altered in HGSOC or TNBC, such as gain of 1q 185 

in SA1049, 3q in SA609 and chr15 losses, many were observed in chromosomes that are not 186 

recurrently seen in large cohorts5. This raises the possibility that parallel events may often arise 187 

by chance rather than due to selection of a particularly advantageous karyotype. Consistent with 188 

this, we found that the number of parallel events per tumour was positively correlated with 189 

chromosomal event rates (Figure 3k). 190 
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Figure 3 Parallel copy number evolution 
a) Parallel losses at chr 2 in 2 single cells from SA906b b) Parallel gain in 2 single cells from SA906b showing gains in chr17 and 

chr 20 c) Proportion of cells with gains of chr20 in each allele in the engineered hTERT cell lines d)-i) Examples of parallel gains 

and losses in our data. Each heatmap shows a single chromosome or chromosome arm from a single sample, total copy number 

is shown on the left and the allelic imbalance on the right, colour coding the same as in panel b). Cells are ordered from top to 

bottom according to computed phylogenetic trees.  j) Number of parallel events in each sample divided by the number of cells.  k) 

Number of parallel events vs chromosome event rates e) Example of a parallel loss in chr2q in SA906b (TP53-/-), 592 cells are 

shown. Left heatmap shows total copy number, right heatmap shows allele imbalance. Distinct clusters of cells are labelled on the 

left. l) UMAP of gene expression of SA906b coloured by gene expression cluster. n) UMAP coloured by density of cells with the B 

allele lost and o) the A allele lost p) Proportion of cells with allele lost in each gene expression cluster (A lost = BAF < 0.1, B lost = 

BAF > 0.9) and in scDNAseq. 
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We next sought to explore whether parallel events produce convergent effects on transcriptional 191 

phenotype. In order to isolate the effect of a particular parallel event on transcription, we first 192 

identified a group of 592 cells in SA906b (TP53-/-) that had highly consistent copy number 193 

alterations apart from parallel losses on chromosome 2q (Figure 3l, Supplementary Figure 4). 194 

In order to assess transcriptional phenotype, we generated single cell RNA sequencing using the 195 

10X platform and genotyped haplotype blocks identified in the scDNA in the scRNA profiled cells 196 

(see methods). Using the per cell counts we computed BAF values per chromosome arm and 197 

confirmed that this approach could accurately recover allelic imbalance in single cell 198 

transcriptomes (Supplementary Figure 5). We then clustered cells using Louvain clustering 199 

based on gene expression (Figure 3m) and identified losses of chr2q (BAF < 0.1 for loss of B, 200 

BAF > 0.9 for loss of A) in each cell. Gene expression clusters 0 and 1 were enriched for both 201 

types of losses (proportions test, p<0.001) confirming that this parallel copy number event results 202 

in a convergent effect on the transcriptome (Figure 3 n,o,p). 203 

 204 

Decomposition of complex structural rearrangements at haplotype resolution 205 

 206 

Another striking source of variation between cancer cell genomes with functional consequences 207 

for tumour cell fitness is the variation in the level of oncogene amplification between cells20. A 208 

plausible mechanistic explanation for this is genome diversification through breakage fusion 209 

bridge cycles (BFBC)23, a known mechanism of complex rearrangements that can lead to 210 

amplifications of oncogenes24,25. We hypothesized that BFBC-like processes may generate 211 

diversity in the magnitude of oncogene amplification between cells and that progressive BFBC 212 

evolution could be resolved with haplotype specific copy number analysis. 213 

 214 

BFBC typically result in reciprocal patterns of gains and losses in daughter cells following aberrant 215 

missegregation of chromosomes during cell division17  (Figure 4a). We identified this distinctive 216 

pattern in a subset of cells on chr 3 in SA1188 (TP53-/- BRCA2+/-). Mapping events to homologous 217 

chromosomes revealed clusters of cells consistent with different stages of BFBCs (Figure 4a,b). 218 

Clusters B and F are consistent with the expectation of daughter cells following an initial BFBC, 219 

with a reciprocal gain and loss at the terminal end of chromosome 3 (Figure 4a-d). To further 220 

refine this analysis, we identified rearrangement breakpoints in these cells using pseudobulk 221 

analysis (see methods). These rearrangements further refined the likely BFBC progression. We 222 

can deduce that in cluster B a genomic segment at the end of homolog B first underwent a number 223 

of inversions and the “new end” fused with its sister chromatid generating a foldback inversion 224 
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(FBI) (Figure 4c).  FBIs - defined by genomic segments stitched together head to head - are 225 

another footprint of BFBC26. We also observed clusters of cells consistent with a second cycle 226 

producing either internal amplifications (clusters C, D, H, I and G) or extending the terminal loss 227 

(cluster E) on the same homolog (Figure 4-g). In addition, we identified a minor subpopulation of 228 

cells (n=19) with a focal amplification (total copy number = 5) around PIK3CA (Figure 4f), 229 

suggesting further BFBC cycles driving amplification of this oncogene. Independent phylogenetic 230 

reconstruction was consistent with the expected branching process induced by BFBC 231 

(Supplementary Figure 6). Other examples of BFBC mediated genomic variation in the cell lines 232 

included MYC amplification in SA906a (TP53-/-) and chr20 amplification in SA906b (TP53-/-) 233 

(Supplementary Figure 7). 234 

 

Figure 4 Breakage fusion bridge cycles in an TP53-/- BRCA2+/- cell line 
a) Diagram of breakage fusion bridge cycles b) Heatmaps of total copy number and haplotype specific copy number in SA1188. 

c)-h)  Haplotype specific copy number and structural variation in clusters B,F, I, H, E and the small subpopulation with PIK3CA 

amplification. Here we plot the copy number for each homologous chromosome in brown for homolog B and blue for homolog A.  

 235 
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BFBC results in diverse oncogenic amplifications in tumours over time 240 

 241 

We next looked for the signature of BFBC in our tumours, focusing on 3 key characteristics: i) 242 

amplifications adjacent to a loss ii) identification of FBI rearrangements and iii) a ‘staircase’ pattern 243 

of copy number alterations (Supplementary Table 2). In order to dissect the relative timing of 244 

BFBC’s, we first focused on 2 PDX samples (SA1035 & SA535) that were serially passaged over 245 

time. In SA1035, there were numerous subpopulations in chr19 consistent with a simple BFBC. 246 

Evidence for BFBC included internal amplifications adjacent to a terminal loss on the same 247 

homolog and congruent FBI breakpoints (Figure 5a). One of the larger subpopulations (cluster 248 

C), included an amplification of CCNE1 (total copy number 4) (Figure 5a). In SA535 we observed 249 

a more complex BFBC-like rearrangement pattern encompassing the FGFR1 locus, with distinct 250 

amplitude differences between subpopulations (ranging from CN=2 to CN>8). Rearrangement 251 

breakpoints in cluster C suggest that here, the chromosome was stabilized via fusion with 252 

chromosome 5, while in cluster E the chromosome was stabilized via a complex rearrangement 253 

involving both arms of chromosome 8 Figure 5b. Investigating single copy number profiles 254 

revealed rare cells where the amplification was completely absent, cells where there was a small 255 

amplification (copy number  = 3) and cells with extreme copy number (copy number > 10) 256 

(Supplementary Figure 8).  We then computed the frequency of each cluster at each timepoint 257 

in both SA535 and SA1035 and found that all clusters were represented at a non zero fraction 258 

(albeit often at very small frequencies) in the first time point, Figure 5c. In SA535 the population 259 

of cells with FGFR1 copy number < 3 (cluster W) remained at a low frequency over time, while in 260 

SA1035 the CCNE1 amplified subclone (Cluster B) clonally expanded and became the dominant 261 

subclone by passage 8.  262 
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Figure 5 BFBC in human tumours 
a) BFBC in chr19 SA1035. Left shows heatmap of total copy number for 2333 cells in chromosome 19 clustered using UMAP and 

HDBSCAN. Right hand side shows pseudobulk average haplotype specific copy number profiles of 3 clusters with distinct events. 

Schnapps is used to infer the copy number in the 2 homologous chromosomes and these are plotted together with brown points 

indicating allele B and blue points indicating allele A. Top track for each copy number profile shows the structural variants found in 

these clusters. b) and d) are equivalent to a) for chr8 in SA535 b) and chr19 in SA1162 d). c) Frequency of each cluster across 

time in SA1035 and SA535 e) Distribution of the raw copy number per cell in cases that were consistent with BFBC induced 

oncogene amplification. 

 263 

We also observed BFBC driving subclonal amplification of CCNE1 in SA1162, one of the primary 264 

human tumour samples. In this patient we observed subclones with 2, 4 and >15 copies of CCNE1 265 

Figure 5d. Other examples that were consistent with oncogene amplification due to BFBC include 266 

KRAS in SA604, MYC in SA1184, FGFR3 in SA1096 and PIK3CA in SA1181, 267 

Supplementary Figure 9. In all these cases we observed considerable genomic variation 268 

between cells leading to variable levels of oncogene amplification Figure 5e. Notably, we found 269 

that many of these genes had focal amplifications enriched at high CCF across the whole cohort, 270 

Figure 2c. Our data also revealed numerous occurrences of BFBC mediated genomic diversity 271 
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that did not appear to be associated with oncogenic amplification, underlining that this process 272 

likely occurs in the background throughout tumour evolution, Supplementary Figure 10. 273 

 274 

Other genomic instability processes implicated in oncogene amplification include chromoplexy27, 275 

ecDNA28 and tyfonas25. These processes often result in highly complex structural rearrangements 276 

across multiple chromosomes and in some instances, amplify several oncogenes simultaneously. 277 

We identified these types of events in multiple samples. In SA1049 we identified a complex event 278 

that included genomic segments from chromosomes 6,7,8,12, 19 and 20 and included 279 

amplifications of both KRAS and FGFR1, Figure 6a. Striking differences between cell clusters 280 

were apparent including co-amplification of genomic segments in chromosomes 6 and 12 281 

resulting in a high level amplification of KRAS in cluster E. SA604 harbored a complex event that 282 

included chromosomes 6, 8, 12, 19 and 20 with amplification of MYC, KRAS and CCNE1 283 

Figure 6b.  Again, variability in complex structural alterations between clusters was notable, 284 

including rearrangements between chromosomes 6 and 20 amplifying KRAS Figure 6c. Mapping 285 

the clusters identified in SA604 to passages revealed that all populations were present at the first 286 

time point and the cluster with low KRAS copy number (cluster A) remained at low frequency. 287 

Many of these inter-chromosomal amplifications also had clustered FBI’s and segments with 288 

variable copy number, suggesting that BFBC-type processes may contribute to the generation of 289 

these types of events17. Together these results reveal extensive variation in complex 290 

rearrangements as an underappreciated source of variation in cancer genomes that is often 291 

obscured in bulk sequencing of tumours. 292 

 293 
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Figure 6 Diversity in complex interchromosomal high level amplifications 
a) Left, total copy number heatmap in SA1049 with clusters highlighted with the coloured bar on the left. Right, average allele 
specific copy number for 3 different clusters overlaid with structural variants. Grey lines indicate links between 2 bins, yellow 
vertical lines show foldback inversion breakpoints b) same as a) for SA604. Red lines highlight subclonal interchromosomal 
rearrangement amplifications of interest. c) KRAS copy number per cluster in SA604 and SA1049. d) Frequency of clusters 
across passage number in SA604. 
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Discussion 296 

 297 

In this study we reveal substantial genomic diversity in high grade serous ovarian cancers, breast 298 

cancers and genetically engineered mammary epithelial cells at haplotype specific resolution. We 299 

find evidence of ongoing instability that is distributed uniformly across the genome and were able 300 

to estimate rates of chromosomal gains, losses and LOH. Genomic regions that were identified 301 

to be at high frequency recurrently across samples are likely to be under positive selection and 302 

contribute to tumour progression. Notably, these included focal amplifications of oncogenes such 303 

as KRAS, CCNE1 and MYC. Meanwhile, we suggest that pervasive parallel copy number 304 

events10,14,29 in general are a consequence of underlying levels of instability rather than positive 305 

selection. On the other hand, how rarer events modify tumour cell fitness remains uncertain, and 306 

will require integration of single cell data with evolutionary models of genomic instability 30,31.  307 

 308 

Integration of haplotype specific copy number with rearrangement breakpoints allowed us to gain 309 

mechanistic insight into the processes generating ITH in single cells.  We demonstrate that 310 

breakage fusion bridge cycles are a frequent source of genomic diversity and can explain 311 

variability in oncogene copy number between cells. Serially passaged PDX models were 312 

consistent with BFBC initiation followed by chromosomes undergoing progressive diversification 313 

over a few cell divisions until chromosome ends stabilized17. Strikingly, we also observed that 314 

complex interchromosomal high-level amplifications were also variable between subclones.  315 

Complex interchromosomal events are thought to derive from catastrophic genome shattering 316 

events32. Our time series data point to the possibility that multiple similar but distinct subclones 317 

are generated following such an event, as cells attempt to repair their genomes over consecutive 318 

cell divisions.  In general, subclones containing high level oncogene amplifications had higher 319 

clonal frequencies relative to wild-type or low level amplifications (when present), consistent with 320 

these amplifications providing a fitness advantage to cells. How subtle differences in amplitude 321 

may alter fitness remains unclear however. We suggest that co-existing clones with varying levels 322 

of oncogenic amplifications could be exploited as early warnings of phenotypic transformation to 323 

a more aggressive state. Our data support the notion that recurrently amplified regions of the 324 

genome in breast and ovarian cancers such as at the PIK3CA, CCNE1 and KRAS loci have their 325 

etiologic origins in BFBC-like processes. Longer read sequencing of clonal haplotypes coupled 326 

with genome graph analysis will help to further resolve the mechanistic underpinnings of these 327 

events. 328 

 329 
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Two recent haplotype specific inference methods have been developed for use with the 10X CNV 330 

assay14,15. These methods also use either haplotype block counts or SNPs genotyped in single 331 

cells, differently to these methods, schnapps uses a hidden Markov model for inference and 332 

facilitates integration with single cell RNA sequencing data. schnapps also provides an order of 333 

magnitude greater resolution than previous methods (0.5Mb vs 5Mb), enabling reconstruction of 334 

the evolution of focal high level amplifications, complemented by integration with subclonal 335 

structural variants.  schnapps also serves as a general toolkit to analyse single cell genomes 336 

and includes functionality for clustering, plotting and multimodal integration with scRNAseq. We 337 

foresee this toolkit to be a valuable community resource as single cell whole genome sequencing 338 

becomes more widely available. 339 

 340 

In summary, our study shows how haplotype resolved copy number at single cell resolution can 341 

be used to infer instability rates, dissect complex structural rearrangements and identify parallel 342 

copy number events. As cohorts of patients profiled at single cell resolution become larger and 343 

high throughput methods are applied throughout different stages of disease progression33 and 344 

across space and time34, we envisage that these approaches will enable accurate tracking of the 345 

evolutionary history of cancer haplotypes and high resolution characterization of intra-tumour 346 

heterogeneity across genomically unstable tumours. 347 

  348 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2021. ; https://doi.org/10.1101/2021.06.04.447031doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.447031
http://creativecommons.org/licenses/by-nd/4.0/


18 

Methods 349 

 350 

Allele and haplotype-specific copy number in scDNAseq  351 

Previously, we reported allele specific copy number at the level of clones, groups of cells with 352 

similar total copy number profiles11. This was done by aggregating haplotype block counts within 353 

clusters and applying a hidden markov model to infer the most probable state. In this study we 354 

extended this approach to the single cell level and also introduce the ability to identify “haplotype 355 

specific copy number”. With “haplotype specific copy number number” we can identify cells with 356 

the same total copy number but with different allelic combinations. We also leverage haplotype 357 

specific copy number to trace the history of complex genomic rearrangements. 358 

 359 

First, we’ll summarize the challenges of inferring allele specific copy number in single cells and 360 

provide a descriptive overview of our approach. The majority of copy number analysis in single 361 

cells works by leveraging differences in read depth across the genome. This is particularly 362 

important in sparse single cell approaches such as DLP+ where coverage is of the order 0.01-363 

0.1X. Inference of allele-specific copy number however requires an additional measure of allelic 364 

imbalance, in bulk sequencing, this is typically inferred from read count ratios of heterozygous 365 

SNPs. This information is very sparse in low coverage single cells, to boost the signal we can 366 

infer haplotype blocks from a paired normal sample and then genotype the blocks in single cells. 367 

With this in mind, rather than estimating allele-specific copy number using read depth and 368 

haplotype counts jointly we decided to leverage the read counts to compute total copy number as 369 

we have done previously11 and then use allelic imbalance to estimate the allele-specific copy 370 

number post hoc. In essence, we assume the total copy number is correct and use this as an 371 

input into our allele-specific copy number inference. Validation of our inferences using the BAF 372 

distribution per state, matched bulk whole genome sequencing and somatic SNVs present in 373 

single cells, confirms that this approach produces reliable estimates. 374 

 375 

In this section we’ll describe in detail the schnapps algorithm. The input to our algorithm is total 376 

copy number estimates in bins across the genome and haplotype counts per cell. We define the 377 

allele-specific state as follows: A|B where A and B are the copy number of the two alleles. The 378 

total copy number T is given by A + B, therefore both A and B <= T. Inferring the allele-specific 379 

state amounts to identifying the copy state of one of the two alleles. We define the “B allele 380 

frequency” as B / (B+A). In most cases, B will be the minor allele across the whole tumour 381 

population but our approach does not guarantee this. We note that this is different to how this 382 
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type of analysis is performed and the data is typically presented in bulk tumour genome 383 

sequencing where often both B/(A+B) and A/(A+B) are plotted, resulting in the characteristic split 384 

BAF plots in regions of allelic imbalance. As will become apparent, analyzing one of these values 385 

rather than both makes distinguishing haplotype-specific copy number intuitively easier. We note 386 

that we could in principle use mirrored BAF as is often done in bulk whole genome sequencing 387 

and define B as the minor allele in all cases. This is a simpler approach, but does not allow for 388 

identification of parallel copy number events and phasing alleles into homologous chromosomes.  389 

 390 

We first need to phase the alleles identified in the haplotype blocks into one of the two “tumour” 391 

alleles ( , ).  For the purposes of describing the algorithm, we’ll denote the counts of each “block 392 

allele” as ( , ), and the counts of the phased alleles as ( , ). For each haplotype block in 393 

each cell we get the number of counts assigned to ( , ) respectively. Our challenge is to 394 

identify for each haplotype block how ( , ) relates to ( , ), that is we wish to know the phase 395 

 of each haplotype block, . This gives the counts of the phased alleles, ( , ). To do this we 396 

note that cells will share copy number events and thus we can leverage information across cells 397 

to identify block alleles that shift in frequency together. For example, a chromosome undergoing 398 

loss of heterozygosity will completely lose either the maternal and paternal allele, thus any block 399 

alleles within the LOH event that contain non zero counts must necessarily be phased together. 400 

As a first approximation we first assign the B allele to be the minor allele across all cells: 401 

 402 
 403 

 404 
 405 

When a particular region of the genome is in a balanced state across all cells, distinguishing A 406 

and B is  not possible. In this case, ( , ) will be assigned randomly due to stochastic fluctuations 407 

in read counts.  408 

 409 

After this initial phasing assignment we then merge the phased haplotype block counts within bins 410 

and compute a BAF value for each bin in each cell: 411 

 412 
 413 
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With these values we then used a HMM to compute the optimal allele specific state. We used a 414 

beta-binomial emission model and the Viterbi algorithm to compute the optimal B-allele state. 415 

Given observed total copy number, 𝑇 unobserved B-allele copy number 𝐵, B-allele counts  and 416 

total counts  the likelihood is given by 417 

 418 

 419 
 420 

 421 
Where 𝜖is an error term included to account for noise in the data, which we set to 0.01 in the first 422 

instance. This is particularly important in LOH states, where for example due to noise the BAF is 423 

rarely exactly 0.0. 𝜌is the degree of overdispersion in read counts, which can be inferred from the 424 

data, when 𝜌 → 0.0	we recover a Binomial likelihood. 425 

 426 

We used the following transition matrix setting 𝛿 = 0.95, favouring self-transitions. 427 

 428 
 429 

Following the above steps gives us our first allele-specific assignment. However, this assignment 430 

can have some issues due to inaccurate phasing from the first phasing step. Because our initial 431 

phasing uses the minor allele across all cells, if there are a number of overlapping events in 432 

different cells at different proportions we sometimes find implausible results, where for example 433 

a cell will switch phase in the middle of a chromosome, see Supplementary Figure 11 for a 434 

diagram showing how this can arise. To avoid this, we go through a second round of phasing and 435 

inference. We assume that the most accurate phasing should favour results that minimize the 436 

number of apparent switches in phasing. To do this, for each chromosome we cluster BAF values 437 

from step 1, and then identify the cluster with the largest amount of imbalance in each 438 

chromosome. Using this cluster as an anchor we then define the B allele as the minor allele of 439 

cells within this cluster. Clustering is performed using umap and hdbscan as described below. 440 

Haplotype blocks are then reassigned their phase relative to this cluster. Following this 441 

reassignment, we then rerun the HMM. Prior to running the HMM, we also take advantage of this 442 

2 step process to infer 𝜖 and 𝜌directly from the data and assess statistical support for the Binomial 443 

vs BetaBinomial likelihood model. 𝜖 is computed from the average BAF of states assigned as 444 

homozygous, we compute Tarones z-score to assess statistical support for BetaBinomial model 445 
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35. If we find support for a BetaBinomial model (z>5), 𝜌 is then computed using maximum 446 

likelihood estimation. The HMM is then rerun with these input parameters and new phasing 447 

producing the final allele-specific assignment. 448 

 449 

When we use allele specific copy number we use mirrored BAF and assign B to always be the 450 

minor allele in every cell, such that A >= B. Therefore a state such as 1|2 will become 2|1. We 451 

used allele specific copy number in figure 1, but for the remainder of the analysis we used 452 

haplotype specific copy number. 453 

 454 

schnapps is available as an R package at https://shahcompbio.github.io/schnapps/. As well as 455 

the allele specific copy number algorithm, schnapps includes a large number of functions for 456 

plotting copy number profiles and heatmaps, clustering cells, integrating with scRNAseq (see 457 

below) and performing QC. A number of tutorials accompany the package at the above URL 458 

describing this functionality. 459 

 460 

Comparison to other methods 461 

Recently, two other methods (CHISEL14 and Alleloscope29) were published that infer allele 462 

specific copy number from sparse single cell sequencing data. These methods were applied to 463 

data generated from the 10X CNV assay. As is the case with schnapps, CHISEL uses haplotype 464 

block counts for inference, while Alleloscope uses the raw SNP counts. Both methods use an 465 

approach based on clustering BAF and read depth jointly to assign allele specific copy number. 466 

Differently to these methods, schnapps directly models the read counts of haplotype blocks (with 467 

and without overdispersion) using a hidden markov model and uses a clustering approach to 468 

phase haplotypes. The resolution of schnapps is 0.5Mb whereas CHISEL uses 5Mb bins. 469 

Alleloscope segments the genome before inference, so resolution will be a function of the 470 

segmentation. Differently to the other methods, schnapps also provides an approach for 471 

integration with single cell RNA seq, a feature unique to schnapps. Alleloscope on the other 472 

hand is unique in that it provides methods to integrate single cell DNA sequencing with single cell 473 

ATAC-seq. 474 

 475 

Experimental methods 476 

Detailed description of the data generation methods are described in Funnell et. al.20. Including 477 

generation of engineered cell lines, xenografting, tissue processing, single cell whole genome 478 

sequencing and bulk whole genome sequencing. 479 
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 480 

DLP+ whole genome sequencing quantification and analysis 481 

Single cell copy number, SNV, SV and haplotype block calls were generated using our previously 482 

described approach11, except that BWA-MEM was used to map DLP+ reads to the hg19 reference 483 

genome. The genome was segregated into 500 kb bins, and GC-corrected read counts were 484 

calculated for each bin. These read counts were then input into HMMCopy to produce integer 485 

copy number states for each bin36. 486 

 487 

To detect SNVs and SVs in each dataset, reads from all cells in a sample were merged to form 488 

“pseudobulk” libraries. SNV calling was performed on these libraries individually using 489 

MutationSeq37 (filtered by probability threshold = 0.9) and Strelka (filtered by score > 20) 38. Only 490 

SNVs detected by both methods were retained. For each dataset, the union of SNVs was 491 

aggregated, then for each cell and each SNV, the sequencing reads of that cell were searched 492 

for evidence of that SNV. SV calling was performed in a similar manner, by forming pseudobulk 493 

libraries, then running LUMPY39 and DESTRUCT40 on each pseudobulk library.  494 

 495 

To call haplotype blocks we identified SNPs from the 1000 genomes phase 2 reference panel in 496 

matched normal sample. An exact binomial test was used to identify heterozygous SNPs which 497 

were then input into shapeit to identify haplotype blocks41. SNPs used in the haplotype block 498 

inference were then genotyped in individual cells producing per cell haplotype block counts that 499 

could be used for allele specific copy number inference with schnapps. 500 

 501 

Bulk whole genome sequencing 502 

Bulk whole genome sequencing data was generated from matched primary samples from all 503 

patients. Reads were aligned to hg19 using BWA-MEM. Genome wide allele specific copy number 504 

was called using Remixt42 with default parameters. 505 

 506 

DLP+ data filtering 507 

Cells were retained for further analysis if the cell quality was at least 0.75 11, and they passed 508 

both the s-phase and contamination filters. The contamination filter uses FastQ Screen43 to tag 509 

reads as matching human, mouse, or salmon genomes. If >5% of reads in a cell are tagged as 510 

matching the mouse or salmon genomes, then the cell is flagged as contaminated. The s-phase 511 

filter uses a Random Forest classifier and removes cells where s-phase is the most probable state 512 
11. Samples were also filtered to remove small numbers of contaminating diploid cells. We also 513 
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used the procedure outlined in  to further filter out any replicating cells that were missed by the s-514 

phase filter. As the allele specific copy number inference requires cell level haplotype block counts 515 

per cell, we additionally filtered out any cells that contained < 100 haplotype block counts. 516 

 517 

10X scRNAseq data generation 518 

184hTERT cells were cultured as previously described 34,44 in MEBM (Lonza) supplemented with 519 

the SingleQuots kit (Lonza), 5 μg/ml transferrin (Sigma-Aldrich) and 10uM isoproterenol (Sigma-520 

Aldrich). Cells were pelleted and gently resuspended in 200ul PBS followed by 800ul 100% 521 

methanol and incubation at -20C for 30mins to fix and dehydrate cells. Cells were then pelleted 522 

and resuspended in 0.04% BSA/PBS and immediately loaded onto a 10x Genomics Chromium 523 

single-cell controller targeting 3,000 cells for recovery. Libraries were prepared according to the 524 

10x Genomics Single Cell 3′ Reagent kit standard protocol. Libraries were then sequenced on an 525 

Illumina Nextseq500/550 with 42-bp paired end reads, or a HiSeq2500 v4 with 125-bp paired end 526 

reads. 527 

 528 

10X scRNAseq data analysis 529 

The pipeline is built using 10X Genomics Martian language and computational pipeline 530 

framework. CellRanger software (version 3.1.0) was used to perform read alignment, barcode 531 

filtering, and UMI quantification using the 10x GRCh38 transcriptome (version 3.0.0) for FASTQ 532 

inputs. CellRanger filtered matrices are loaded into individual Seurat objects using the Seurat R 533 

package (version 3.0.1)45,46. The resulting gene by cell matrix is normalized and scaled for each 534 

sample. Cells retained for analysis had a minimum of 500 expressed genes and 1000 UMI counts 535 

and less than 25% mitochondrial gene expression. Cell cycle phase was assigned using the 536 

Seurat46 CellCycleScoring function. Scrublet47 (version 0.2.1) was used to calculate and filter cells 537 

with a doublet score greater than 0.25. 538 

 539 

Allelic imbalance in scRNAseq 540 

We called heterozygous SNPs in the scRNAseq data using cellSNP48. As input, we used the 541 

same set of heterozygous SNPs identified in the scDNAseq and corresponding normal sample 542 

for each sample. The liftover script provided in cellSNP was used to lift over SNPs from hg19 to 543 

hg38. Following genotyping, we phase the SNPs using the phasing information computed from 544 

the allele specific inference in the scDNAseq. As SNP counts are much more sparse in scRNAseq 545 

vs scDNAseq (~2 orders of magnitude lower), we aggregated counts across chromosome arms, 546 

computing the BAF for each arm. We then generated a cell by chromosome arm BAF matrix and 547 
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incorporated this into our gene expression Seurat objects. Functionality to map scDNAseq to 548 

scRNAseq and call allelic imbalance are provided in schnapps. Density of the cells with loss of 549 

different haplotypes were plotted using the Nebulosa R package49. 550 

 551 

 552 

Phylogenetic analysis 553 

We used a previously described phylogenetic method sitka to generate single cell trees for each 554 

sample19. Sitka uses breakpoints (also referred to as changepoints) in copy number across the 555 

genome as phylogenetic characters to construct the evolutionary relationships. Rather than use 556 

total copy number as previously described, here we used haplotype specific copy number. To do 557 

this, we enumerated breakpoints on each haplotype. For example a loss of haplotype A will have 558 

a separate breakpoint feature than a loss of haplotype B even if the genomic position of the losses 559 

are identical. This allows for phylogenetically distinguishing parallel evolutionary events.  There 560 

can be some cell-to-cell variability in breakpoints that is technical rather than biological, due to for 561 

example fluctuations in read and SNP counts. To mitigate the influence of this variability, we 562 

averaged the copy number profiles in 3Mb windows, ensuring consistent breakpoints across cells 563 

as much as possible. sitka was run for 3,000 chains and a consensus tree was computed for 564 

downstream analysis. 565 

 566 

Clustering copy number profiles 567 

To cluster copy number profiles we used UMAP dimensionality reduction followed by HDBSCAN 568 
11,50,51. This is implemented within schnapps (function umap_clustering) with following default 569 

parameters: 570 

● Distance metric: correlation 571 

● Number of neighbours: 10 572 

● Minimum distance = 0.1 573 

● Minimum number of points in cluster: 30 574 

 575 

Pseudobulk allele specific copy number profiles 576 

In numerous places in the text we construct “pseudobulk” allele specific copy number profiles 577 

either across all cells in a sample or subsets of cells that share some features of interest. To do 578 

this we group the cells of interest and then compute an average profile by taking the median 579 

values of copy number and BAF and the mode of the allele specific state. The function 580 

consensuscopynumber provided in schnapps was used for this. 581 
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 582 

Chromosomal event rates and LOH rate analysis 583 

To compute chromosomal event rates we enumerated the number of events from our single cell 584 

phylogenies using parsimony based ancestral state reconstruction. We first computed whole 585 

chromosome level consensus copy number profiles for each cell, allowing us to assign 586 

chromosome level states to each tip (cell) in the phylogeny. We defined states relative to cell 587 

ploidy, identifying for each arm whether the chromosome was gained or lost and whether the 588 

chromosome was homozygous. For each chromosome, cells can have one of two possible states 589 

for each class of interest: (Gain, not gained), (Loss, not lost), (LOH, not LOH). By casting the 590 

problem as reconstructing the ancestral states within the phylogeny we can then compute the 591 

number of transitions between these states that most parsimoniously explains the phylogenetic 592 

tree. We used a simple transition matrix where transitions between states incurs a cost of 1. 593 

Ancestral state reconstruction then amounts to finding the reconstruction that minimizes this cost, 594 

we refer to this cost as the parsimony score. The event frequency per sample per chromosome 595 

is then calculated by dividing the parsimony score (number of events) by the number of cells. We 596 

used castor in R to perform the ancestral state reconstruction 52. As we were interested in LOH 597 

events that were not just due to losses resulting in a single copy, we removed LOH events where 598 

the state was 1|0 from this calculation. The units of this quantity is the number of events per 599 

chromosome per cell division assuming no cell death. It’s possible (perhaps likely) that many cells 600 

get chromosomal gains or losses but then die, we of course never sample such cells and our 601 

phylogenetic tree reconstructs ancestral relationships between cells that survive and that we 602 

sample. This value is therefore likely to be an overestimation of the true cell division rate if there 603 

is considerable cell death. It is challenging to decouple the death rate of cells from the true event 604 

rate per cell division, see Werner et. al. for a similar problem53. To get a summary value for each 605 

sample we took the mean of the chromosome level estimates per sample, this value is what is 606 

used in Figures 2 and 3. 607 

 608 

Identification of parallel copy number events 609 

Parallel copy number events were defined as genomic regions greater than 4Mb where gain or 610 

loss of both the maternal and paternal haplotype was observed in more than 1% of cells. This 611 

calculation will be influenced by the number of cells sequenced so in order to compare the number 612 

of parallel events across tumours we divided this number by the number of cells. 613 

 614 

Identification of BFBC 615 
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BFBC have a number of characteristic features which we attempted to identify in our single cell 616 

data: i) staircase copy number patterns ii) foldback inversion rearrangements coincident with copy 617 

number changes and iii) amplifications adjacent to losses. Amplifications may also appear at the 618 

terminal end of a chromosome when telomeres are short. Supplementary Table 2 summarizes 619 

the evidence for BFBC in terms of these features for each example described in the main text or 620 

included in the supplementary figures. When an amplification is adjacent to a loss, BFBC would 621 

predict that both the amplification and the loss occurs on the same homologous chromosome. 622 

Haplotype specific copy number allows for this inference to be made, however in some cases, 623 

this information may be ambiguous. In some cases the default output from schnapps may assign 624 

the gain and the loss to different haplotypes, this is because in the absence of a cluster of cells 625 

with different copy number schnapps will assign the “B” allele to be the minor allele in the whole 626 

tumour population. In these cases we first looked for rare cells that had whole chromosome losses 627 

which would provide unambiguous phasing information (we assume the whole chromosome loss 628 

was a single event and affected the same homolog). In many cases we could identify such cells 629 

and adjust the phasing accordingly. This was the case for both SA535 and SA1035, the 2 630 

examples we looked into in detail in Figure 5. To group cells into clusters we used the UMAP + 631 

HDBSCAN clustering approach outlined above but only clustered using bins within the 632 

chromosome of interest. Clustering is therefore chromosome specific. For each cluster we 633 

constructed consensus haplotype specific copy number profiles and assigned rearrangement 634 

breakpoints to clusters if any cell within the cluster had evidence of the breakpoint. 635 

 636 

 637 

Identification of interchromosomal high level amplifications 638 

We used the rearrangement breakpoints to identify samples where high level amplifications were 639 

linked across chromosomes. We clustered cells only including bins that were part of the 640 

chromosomes of interest. In sample SA1049, chromosomes 6, 7, 8, 9, 12, 17 and 19 were used 641 

for clustering. In SA604 we were particularly interested in the co-amplification of chr12 and chr20 642 

so restricted the clustering to those chromosomes only. 643 

 644 

PCAWG data 645 

Copy number calls from PCAWG were downloaded from the ICGC portal 646 

(https://dcc.icgc.org/releases/PCAWG/). We transformed the segmentations into 0.5Mb bins 647 

across the genome to facilitate comparison with our single cell data. We filtered the PCAWG data 648 

for ovarian and breast cancer types for downstream analysis. 649 
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 650 

Recurrent event analysis 651 

To identify recurrent events across the cohort we first classified each genomic bin in each cell into 652 

gains, losses and LOH. LOH states include any event that has lost one of the alleles, for example 653 

monosomies (ie 1|0), copy neutral LOH (ie 2|0) and regions that are also gained (ie 3|0) were all 654 

included under LOH. Therefore some bins will be classified as both LOH and loss or LOH and 655 

gain. Bins were assigned to be gained or lost relative to cell ploidy. After assigning these states 656 

we then computed the cancer cell fraction, 𝑓! of each type in bins across the genome: 657 

𝑓!,# =
𝑛!,#
𝑛$%&&

 658 

Where 𝑛!,# is the number of cells with event type 𝑡 in bin 𝑖, and 𝑛$%&& is the total number of cells in 659 

the sample. To look at recurrency across samples we then took these values and computed the 660 

fraction 𝐹of samples that had an event in bin 𝑖 with 𝑓!,# greater than some cutoff 𝑋. 661 

𝐹'!,#() =
∑ 𝐼(𝑓!,# > 𝑋)*
+

𝑁
 662 

Where 𝑁 is the number of samples and 𝐼 is the indicator function. In Figure 2 we used cutoffs, 𝑋 663 

of 0.01 and 0.95. 664 

 665 

To investigate how the prominence of focal alterations around oncogenes changes as a function 666 

of CCF we calculated the ratio, 𝑅, between 𝐹 around the locus of interest to the average  across 667 

the whole chromosome: 668 

𝑅, =
𝐹'!,$()

1
𝑁∑ 𝐹'!,#()$-.

 669 

Where 𝑁 is the number of bins in the chromosome of interest and 𝑔 is a gene of interest. We 670 

calculated 𝑅,in 250 oncogenes from the cancer gene census across a range of CCF’s. These 671 

were then plotted in Figure 2d. 672 

 673 

Statistical tests 674 

To compare the proportion of cells with loss of haplotype A vs B in gene expression clusters we 675 

used a proportions test (using prop.test in R). Linear regressions use the lm function in R. 676 

When boxplots are presented in the figures, hinges represent the 25% and 75% quantiles, 677 

whiskers are +/- 1.5X inter quartile range. 678 

 679 

Code availability 680 
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● Schnapps R package: https://shahcompbio.github.io/schnapps/.  681 

● Analysis scripts and figure generation: https://github.com/marcjwilliams1/schnapps_paper  682 

● DLP+ single cell whole genome sequencing pipeline is available at 683 

https://github.com/shahcompbio/single_cell_pipeline 684 

● Whole genome sequencing pipeline: https://github.com/shahcompbio/wgs  685 

● scRNAseq pipeline: https://github.com/nceglia/scrna-pipeline  686 

 687 

Data availability 688 

10X scRNA sequencing data from SA906 is available from the European Genome-Phenome 689 

archive (EGAS00001004448). All other data will be made available for controlled access at EGA 690 

upon publication.  691 

 692 

 693 

  694 
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Supplementary Figures 837 

 838 

 

Supplementary Figure 1 

Comparison of bulk whole genome sequencing and DLP. a) Allele specific copy number inferred from bulk WGS using RemixT 

(top), pseudobulk allele haplotype copy number (bottom) for samples SA1049 and SA1050. b) Fraction of genome inferred to be 

LOH in pseudobulk DLP vs bulk WGS. c) Density of variant allele frequency of somatic SNVs stratified by allele specific state 

across all samples. 
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Supplementary Figure 2 
Percentage of cells that are homozygous around the BRCA1 and TP53 locus where we could identify a loss of function mutation. x-

axis is the sample ID and y-axis is the % of cells that are homozygous. 
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Supplementary Figure 3 
Proportion of cells with gains (left panel) and losses (right panel) of allele A and allele B across chromosomes for each of the 

engineered cell lines. As these cells share a common ancestor, haplotypes can be phased jointly across all cells so allele A and B 

are consistent across the different lines. 
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 848 

 

Supplementary Figure 4 

a) Total copy number (left) and haplotype specific copy number of cells in SA906b that have a loss on chr 2q. Each row is a cell 

and x-axis is genome position. Left track shows groupings into clusters using UMAP and HDBSCAN. Same set of cells shown in 

Figure 3  is shown here. b) Output of UMAP showing distinct clusters. Points are coloured according to clusters/clones. Same 

clustering is used her as in Figure 3. 
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Supplementary Figure 5 
Comparison of allele imbalance per chromosome inferred from single cell DNA a) versus single cell RNA b) in sample cell lines 

2295 (same sample used in Figure 1). In a) and b) each column is a chromosome arm and each row is a cell, colours indicate allele 

imbalance. c) Median BAF per chromosome arm inferred from scDNA vs scRNA, colours indicate the different sites and dashed 

black line the y=x line. 
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Supplementary Figure 6 
Heatmap ordered by phylogenetic tree for SA1188. Rows are cells and x-axis represent genome position. Tree and cluster track 

are coloured according to clustering presented in Figure 4, showing that clusters largely group together on the phylogenetic tree 

and that a split close to the root is present which distinguishes two clades, one clode with an amplification at the end of chromosome 

3 and one with a deletion. 
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 868 

 

Supplementary Figure 7 
BFBC in htert engineered cell lines. For each panel we show the total copy number on the left, allele specific copy number on the 

right and zoomed in haplotype specific copy number plot for the cluster containing the BFBC event at the bottom. We show: a) 

MYC amplification in sa906a and b) chr20 amplification in SA906b 
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Supplementary Figure 8 
Examples of single cells with progressive amplifications on chr 8p in SA535. Each panel is the haplotype specific copy numbers in 

chr8 in individual cells. The cell id is given at the top of each panel, the location of FGFR1 is shown with a dashed line. 
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 873 

 

Supplementary Figure 9 
Additional examples of putative BFBC resulting in subclonal and/or variable oncogene amplifications in tumours For each panel we 

show the total copy number heatmap grouped into clusters with each row being a cell on the left and pseudobulk haplotype specific 

copy number plots with structural variants from some clusters on the right. The examples shown here are:. a) MYC in SA1184 b) 

PIK3CA in SA1181 c) FGFR1 in SA1093 and d) KRAS in SA604. 
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Supplementary Figure 10 
Additional examples of putative BFBC with no associated oncogene amplified. For each panel we show the total copy number 

heatmap grouped into clusters with each row being a cell on the left and pseudobulk haplotype specific copy number plots with 

structural variants from some clusters on the right. Examples shown are: a) chr12 SA1052 b) chr 20 SA1049  c) chr 6 in SA501 

and d) chr 15 in SA530 chr6. SA530 amplified IDH2 but the significance of this alteration is uncertain. 
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Supplementary Figure 11 

Diagram of rationale behind two-step phasing procedure employed by schnapps. On the left assignment of haplotypes based on 

the global minimum results in clone X having an event which switches phase half way though the chromosome, the more 

parsimonious explanation is that this is a single whole chromosome gain and that clone Y has a chromosome arm gain on the 

opposite haplotype. The second phasing assignment in schnapps attempts to correct for this possibility. 
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See excel spreadsheet for the following: 883 

Supplementary Table 1 - Cohort statistics including number of cells per sample, average 884 

coverage and number of samples 885 

Supplementary Table 2 - Table describing the evidence that attributed complex events to 886 

breakage fusion bridge cycles 887 

Supplementary Table 3 - fraction of genome altered as a function of CCF for all samples 888 

Supplementary Table 4 - chromosome event rates per sample 889 

Supplementary Table 5 - genomic coordinates of parallel copy number events 890 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2021. ; https://doi.org/10.1101/2021.06.04.447031doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.447031
http://creativecommons.org/licenses/by-nd/4.0/

