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Abstract

Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a
versatile model to study the link between gene regulation and differentiation. To quantitatively assess
the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed
accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a
genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages
of differentiation. We find that only a minority of accessible regions is active and that such regions are
enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence
motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that
change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic
regions when compared to constitutively active enhancers. Further, analysis of differentially active
enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as
their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RAR)
occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the
direction of the change correlating with spacing and orientation of the RARa consensus motif and the
co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map
elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded
by computational prediction tools, and provides a resource for future studies into regulatory elements
in mESCs.


https://doi.org/10.1101/2021.06.04.446899
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.06.04.446899; this version posted June 6, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

Introduction

Gene expression in eukaryotic cells is a tightly regulated process which is a prerequisite for cellular
identity as well as any important cellular process. Regulation of transcription is controlled by
transcription factors (TF) and the regulatory genomic elements (enhancers, promoters) they target
(Ernst et al., 2011; Dunham et al., 2012). The selective and combinatorial activation of enhancersin a
spatiotemporal manner allows for the complexity of higher eukaryotic organisms, which consist of a
large number of different highly specialized cells although they all possess the same genome (Bulger
and Groudine, 2011; Buecker and Wysocka, 2012). Traditionally, enhancers are defined as the genomic
elements that can control the activity of promoters whereas promoters are the regions where
transcription of genes is initiated. Further, promoters and enhancer regions can be distinguished and
predicted based on distinct patterns of histone modifications (HMs) (Heintzman et al., 2007). However,
recent research indicates that the function of enhancers and promoters may not always be distinct as
studies have demonstrated that promoters can act as enhancers for other genes (Dao et al., 2017; Diao
et al., 2017; Dao and Spicuglia, 2018) and enhancers frequently give rise to transcripts (de Santa et al.,
2010), a feature traditionally associated with promoter function. The assignment of enhancers to their
target promoters is an important step in elucidating gene regulation and has been addressed in recent
years with rapidly evolving high-throughput chromatin interaction assays (Belton et al., 2012; Liet al.,
2014; Mumbach et al., 2016). However, the functional relevance of identified enhancer-promoter pairs
was mainly investigated for individual genes or loci (Sanjana, Shalem and Zhang, 2014; Canver et al.,
2015; Diao et al., 2016; Korkmaz et al., 2016; Rajagopal et al., 2016; Gasperini et al., 2017; Klann et al.,
2017) and remains a largely unsolved problem at the genome-wide level.

Further, gene expression is influenced by chromatin accessibility of regulatory elements and correlates
with specific post translational HMs (Klemm, Shipony and Greenleaf, 2019). In eukaryotes, DNA is
wrapped around a histone octamer to form nucleosomes, which are then organized into higher order
chromatin. Chemical modifications of the histones tails demark promoters or enhancers and correlate
with their transcriptional activity (reviewed in Buecker and Wysocka, 2012; Calo and Wysocka, 2013).
The identification and prediction of enhancers is often based on indirect measures of activity, such as
correlating HMs and chromatin accessibility (Ernst et al., 2011; Rajagopal et al., 2013; Zhu et al., 2013;
Ernst and Kellis, 2017; Ramisch et al., 2019). Notably, some enhancer prediction tools discard promoter
regions as potential enhancers even though there is evidence showing that promoters can act as
enhancers of other genes. Moreover, enhancer prediction based on these marks gives rise to myriads
of putative enhancers but doesn’t provide quantitative information regarding their activity. This is of
particular interest, since gene expression is not subject to an on/off switch type of regulation, but
rather the result of a complex interplay between multiple enhancers, TFs, and coactivators which can
fine-tune gene expression levels to meet the cell’s current needs. Consequently, it remains largely
unclear which of the thousands of predicted enhancers are actually functional, how enhancer usage
changes during differentiation and what features are conferring distinct activity levels.

Embryonic stem cells (ESCs) are characterized by their ability to differentiate into any given cell type
and therefore represent a versatile system to study the link between gene regulation, differentiation
and cellular identity (Silva and Smith, 2008; Young, 2011). Murine ESCs (mESCs) in the pluripotent state
exhibit relatively permissive chromatin, with many accessible regions which are thought to comprise
active mESC enhancers but also primed enhancers that can be activated at later stages during
differentiation (Buecker et al., 2014; Wu et al., 2016). The expression of genes in mESCs is also
controlled by transposable elements, for example from the ERVK family, that can act as enhancers that
control the expression of associated genes (Sundaram et al., 2017; Todd et al., 2019; Hermant and
Torres-Padilla, 2021). The pluripotency of mESCs and their ability to self-renew critically depend on the
actions of specific TFs including OCT4 and SOX2, NANOG, KLF4, and ESRRB (Chambers and Tomlinson,
2009; Young, 2011). All these TFs can bind and activate promoters as well as enhancers of pluripotency-
associated genes in ESCs (Buecker et al., 2014). mESCs can be cultivated in the pluripotent state when
leukemia inhibitory factor (LIF) is added to the media to activate the STAT3 pathway (Niwa et al., 1998),
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which in turn promotes c-MYC expression and transcriptional programs important for self-renewal
(Cartwright et al., 2005).

Differentiation of ESCs can be used to study the molecular mechanisms that underly cellular
commitment decisions with potential therapeutic relevance. Many differentiation protocols for
diverse cell types have been established. However, many of these protocols suffer from low
differentiation efficiencies which limits their applicability. A highly efficient, yet simple, protocol to
induce cellular differentiation is to treat mESCs with all-trans retinoic acid (RA) (Gudas and Wagner,
2011). Treatment with RA induces exit from pluripotency, marks a phase of increased susceptibility to
lineage-defining signals (Semrau et al., 2017) and ultimately pushes mESCs towards the neuronal
lineage (Janesick, Wu and Blumberg, 2015). RA is the ligand of retinoic acid receptors (RARSs), which
together with retinoid X receptors (RXRs) bind to genomic response elements and drive expression of
differentiation-associated genes but also repression of genes involved in pluripotency (Chatagnon et
al., 2015). Among the targets of RA-induced differentiation are the well-studied Hoxa genes, which are
coding for TFs that play a pivotal role in development and body axis formation (Neijts and Deschamps,
2017).

In recent years, several studies applying massive parallel reporter assays based on STARR-seq (Arnold
etal., 2013) have been conducted to assess enhancer function of candidate regions in different species
and cell types (Shlyueva et al., 2014; Vanhille et al., 2015; Dao et al., 2017; Barakat et al., 2018; Schéne
etal., 2018; Wang et al., 2018; Chaudhri et al., 2020; Peng et al., 2020). Here, we developed a modified
quantitative STARR-seq protocol focusing on accessible chromatin, thereby including promoter and
enhancer regions, as candidate enhancers. This allowed us not only to identify active enhancers
genome-wide in mESCs, but also to quantify enhancer activity and thus to identify features, such as
sequence motifs and their quantities, that correlate with enhancer activity. Moreover, we used our
quantitative approach to study enhancers upon differentiation to identify those that change their
activity during the early stages of differentiation. Additionally, we intersected RARa binding with RA-
induced changes in enhancer activity to identify “functional” RARa binding sites. This resulted in the
identification of sequence features associated with RARa binding events with distinct changes in
enhancer activity.

Overall, our studies using the FAIRE-STARR-seq assay provide a genome-wide resource for enhancer
activity levels for mESCs in the pluripotent state and after induced differentiation and uncovers
features that are important for enhancer activity and consequently might play a role in modulating
expression levels of associated genes.
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Material and methods

MESC culture and differentiation

E14 mESCs were cultured under feeder-free conditions and routinely passaged every two days in ES-
medium: Glasgow Minimum Essential Medium (Sigma-Aldrich) supplemented with 17% FBS
(Hyclone™, SV30160.03, GE Healthcare), 2 mM GlutaMAX™ (Gibco), 100 U/ml Penicillin-Streptomycin
(Gibco), 1x MEM Non-Essential Amino Acid Solution (Gibco), 1 mM Sodium Pyruvate (Gibco), 0.5 mM
2-Mercaptoethanol (Gibco), and recombinantly expressed leukemia inhibitory factor (LIF). To exit from
pluripotency and induce differentiation, LIF was withdrawn and retinoic acid (RA, Sigma, R2625) was
added to the medium to a final concentration of 1 uM. For all experiments, 4 h prior to harvest, cell
culture medium was removed, cells washed twice with PBS and fresh medium containing either LIF or
RA was added.

FAIRE-STARR-seq

As input material for the reporter screen, accessible chromatin from E14 mESCs treated with RA
(Sigma, #R2625) for 4 h was isolated by formaldehyde-assisted isolation of regulatory elements (FAIRE,
Giresi et al., 2007) and subsequently cloned into the STARR-seq screening vector (Addgene #71509)
following the protocol described in Arnold et al., 2013. To asses enhancer activity, E14 cells were
transfected with this plasmid library using a Nucleofector™ 2b device using the Mouse ES Cell
Nucleofector Kit (Lonza, VAPH-1001). For each of the three biological replicates, four individual
transfections, each with 5 pg plasmid library and 5x10° cells, were performed. The medium was
changed 12 h after transfection and to half of the cells either LIF or 1 M RA was added. After an
additional 4 h of incubation, samples were pooled and RNA was isolated using the Rneasy Midi kit
(Qiagen). Poly adenylated RNA was enriched using Dynabeads™ Oligo(dT),s (Invitrogen), residual DNA
was digested using Turbo DNase (Invitrogen), and finally RNA was cleaned-up with Agencourt®
RNAClean® XP beads (Beckman Coulter). cDNA was synthesized using SuperScript™ Il Reverse
Transcriptase (Invitrogen) according to the manufacturer’s protocol, applying a reporter transcript-
specific primer. This primer contains the sequence of the Illumina PCR Primer 2.0 as overhang as well
as eight random nucleotides that serve as unique-molecular identifiers (UMI) for each cDNA molecule
(CAAGCAGAAGACGGCATACGAGAT[N]sGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT).  cDNA was
further amplified as described in Arnold et al., 2013, using adjusted reporter-specific primers based on
lllumina’s TruSeqg dual index system (universal: CAAGCAGAAGACGGCATACGA, sample specific:
AATGATACGGCGACCACCGAGATCTACAC[barcode, n=6]ACACTCTTTCCCTACACGACGCTC).

As input control for FAIRE-STARR-seq, the input plasmid library was sequenced as well. To this end,
the plasmid library was used for a pseudo “cDNA synthesis”, using the random-UMI primer and the
KAPA HiFi HotStart ReadyMix (Roche) for 4 cycles with a prolonged synthesis step (70 sec) to
individually label input fragments. In a second step, this input library was amplified with lllumina’s
TruSeq dual index based universal and barcoded primers, as done for the FAIRE-STARR-seq libraries,
using the KAPA HiFi HotStart ReadyMix (Roche) for 12 PCR cycles.

STARR-GPCR

Putative enhancer sequences (Table S1) were amplified by nested PCR from genomic DNA derived
from E14 cells using standard PCR procedures. Primers (Table S1) were designed to generate the same
overhangs as used for lllumina sequencing. The negative (ncl and nc2, GR responsive elements) and
positive (CMV enhancer) control regions as well as RARa motif variants were ordered as gBlocks (IDT)
and are listed in Table S1. DNA fragments were subsequently cloned into the STARR-seq screening
vector (pSTARR-seq_human, Addgene plasmid #71509) using the In-Fusion® HD Cloning Kit
(Takara/Clonetech). For transfection of reporter plasmids, E14 mouse ESCs were plated at a density of
1.4 x 10* cells/cm? of a 24 well plate with ES medium supplemented with 17% FBS and LIF. The next
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day, cells were washed with PBS and fresh medium was added. Subsequently, cells were transfected
with individual reporter plasmid using Lipofectamin 2000 (Invitrogen) according to the manufacturer’s
instructions. 20 h after transfection, cells were washed twice with PBS and fresh ES medium, containing
LIF, 1 uM RA or no additional reagent, was added. After another 4 h of incubation, cells were harvested,
RNA extracted (RNeasy Mini Kit, Qiagen), followed by cDNA synthesis (PrimeScript RT Reagent Kit,
Takara, using oligodT and random hexamer primers). Reporter transcript levels were quantified by
gPCR with primers specific for GFP and normalized to the expression of two housekeeping genes (Rpl19
and Actb). Primers are listed in Table S1.

ATAC-, ChIP-, and RNA-seq experiments

ATAC-, HM ChlIP-, and RNA-seq experiments from our laboratory have been published previously
(Ramisch et al., 2019). RARa. ChIP was performed for this study. In short:

ATAC-seq

75,000 low passage (< 10) E14 cells were cultivated for 48 h in ES medium prior to subjecting them to
an improved ATAC-seq protocol as described in Corces et al. (2017). The resulting transposase-
fragmented and PCR-amplified DNA was cleaned up using AMPure XP beads (Agencourt). High-
throughput sequencing was performed generating approx. 50 million 50 bp paired-end reads per
sample using the HiSeq 4000 (lllumina) device

ChiIP-seq

For ChIP experiments, E14 cells were washed once with PBS, treated with trypsin (Sigma, T4049) for 5
min and gently but thoroughly resuspended in ES medium to generate single cell suspensions. Cells
were diluted to 20x10° cells/20 ml medium and crosslinked by adding formaldehyde (1% v/v) for 5 min
under gentle rotation. The reaction was quenched by adding 125 mM Glycine for an additional 5 min,
then cells were washed three times with PBS, snap frozen in liquid nitrogen, and stored at -80°C.

HM ChIP experiments were preformed according to the standard BLUEPRINT protocol
(www.blueprint-epigenome.eu): Cells were resuspended in shearing buffer (20 mM Tris pH 7.5, 150
mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% SDS) supplemented with Complete Protease Inhibitor
Cocktail (PIC) EDTA-free (Roche, 11873580001) and sheared on a Bioruptor Pico device for 25-35
cycles. For each ChIP, 1 pg antibody (listed in Table S2) was used. Automatic ChIP was performed using
the SX-8G Compact IP-Star liquid handler (Diagenode) in combination with Auto Histone ChIP kits
(Diagenode, €01010022). Using the pre-programmed method ‘indirect ChiP’, ChIP reactions were
carried out in a final volume of 200 ul for 10 h followed by 5 h incubation with protein A magnetic
beads and 5 min washes at 4°C. After the ChIP, eluates were recovered, RNase A-treated, de-
crosslinked overnight at 65°C and treated with Proteinase K for 4 h at 55°C. The recovered DNA was
purified using the ChIP DNA Clean & Concentrator Kit (Zymo research, D5205). Sequencing libraries
were prepared using the NEBNext Ultra DNA Library Prep kit (NEB, E7370) according to manufacturer’s
instructions and submitted for paired-end Illlumina sequencing on the HiSeq 2500.

The RARa ChIP was performed as described elsewhere (Glaser et al., 2017), with the following
modifications: Cells were cross-linked for 5 min with 1% formaldehyde and a mild sonication buffer
was used (20 mM Tris-HCI pH 8.0, 2 mM EDTA pH 8.0, 1% Triton X-100, 150 mM NacCl, 0.1% SDS, 1x
PIC). Prior to sonication, nuclei were incubated for 20 min on ice and homogenized ten times by a 27G
needle. Per ChIP 4 pl RARa antibody (serum, Diagenode C15310155) or 2 pg IgG control (Diagenode
C15410296) was used. Sequencing libraries for RARa ChIP and Input fragments were prepared using
the KAPA Hyper Prep Kit (Roche) and submitted for paired-end Illumina sequencing on the NovaSeq
6000 generating 50 bp reads.

RNA-seq

2x10° low passage (< 10) E14 cells were plated per 10 cm dish and cultivated for 48 h in regular ES

medium. Next, medium was exchanged for fresh ES medium containing either LIF or 1 uM retinoic acid

(Sigma, R2625). After 4 h, cells were harvested and RNA extracted using the RNeasy Mini Kit (Qiagen)
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according to the manufacturer’s instructions. The experiment was performed in biological triplicates.
Sequencing libraries were generated using the TruSeq® Stranded mRNA Kit (lllumina) and high-
throughput sequencing was performed on a HiSeq 2500 (lllumina) device generating approx. 100
million 50 bp paired-end reads per sample.

Generation of clonal cell lines with CRISPR/Cas9-mediated genomic deletions and mutations

sgRNAs targeting regions of interest were designed using the CRISPOR tool (http://crispor.org/,
Concordet and Haeussler, 2018), ordered as complementary DNA oligonucleotides (Sigma) with
overhangs for Bbsl, and cloned into the pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmid (Addgene plasmid
#62988) as described in Ran et al. (2013). All sgRNA sequences are listed in Table S1. To delete regions
of interest, two million E14 cells were transfected with a pair of sgRNA plasmids (as indicated), 1 ug
per plasmid, using a Nucleofector™ 2b device and the Mouse ES Cell Nucleofector Kit (Lonza, VAPH-
1001) according to the manufacturer’s instructions and plated into two 10 cm dishes. 24 h after
transfection, medium was exchanged for fresh ES medium, and after another 24 h the medium was
exchanged for fresh ES medium containing 2.5 pg/ml Puromycin. The next day, medium was
exchanged again for ES medium without selection. Subsequently, medium was exchanged every two
days until round colonies formed (7-10 days post transfection). Colonies were picked by pipetting and
individually transferred into 48 well plates. E14 clonal lines were expanded, genomic DNA was
extracted (QIAamp DNA Mini Kit, Qiagen), and lines were genotyped using primers listed in Table S1
and Phusion High-Fidelity PCR Master Mix (with GC Buffer) (Thermo Scientific, F532). PCR products of
candidate clonal lines showing predicted PCR band sizes in agarose gel electrophoresis, were send for
validation by sanger sequencing (Eurofins). To probe for biallelic alterations, PCR products were cloned
into the Zero Blunt™ vector (PCR Cloning Kit, Thermo, K270020), transformed into E.coli, four to eight
individual bacterial colonies were picked, plasmid DNA isolated (QlAprep Spin Miniprep Kit, Qiagen)
and send for Sanger sequencing. Genomic deletions and mutations of E14 clonal lines are listed in
Table S3.

RT-gPCR

RNA from E14 or clonal cell lines, treated as indicated, was extracted using the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s instructions including a DNase treatment. 1 pg total RNA was
subjected to cDNA synthesis applying the ProtoScript® First Strand cDNA Synthesis Kit (NEB, E6300S)
with the included Oligo d(T)23 VN primer according to the manufacturer’s instructions. cDNA was
diluted 1:12.5-1:20 prior to gPCR which was performed as described in Thormann et al. (2018).
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NGS data analyses

FAIRE-STARR-seq data analyses

FAIRE-STARR-seq libraries were sequenced with a HiSeq 2500 (lllumina) to generate 50 bp paired-end
reads. Sequencing reads were aligned to the mouse genome (mm9) using Bowtie2 (Langmead and
Salzberg, 2012)(-X 800 --fr --very-sensitive). UMI-tools (Smith, Heger and Sudbery, 2017) was used for
UMIl-aware removal of PCR duplicates. SAMtools (Li et al., 2009) was used to filter reads for proper
pairs, alignment and quality scores (-h -b -f 3 -F 780 -q 5), to select reads mapping only to regular
chromosomes (chr1-19, chrX and chrY), and to remove reads mapping to blacklisted regions
(ENCFF547MET). UMI-aware deduplication of reads removed about 90% of obtained reads (Fig. S1A)
and is aimed at retaining only true biological replicates resulting in an overall decrease in read-counts
for individual fragments (Fig. S1B). Genome-wide correlation analyses of read distributions of
individual FAIRE-STARR-seq samples showed higher correlation coefficients when UMI-aware removal
of read duplicates was omitted. Fragments with extremely high read counts in only one replicate are
prevalent without UMI-aware removal of duplicates, whereas these regions are absent after UMI-
aware deduplication analysis (Fig. S1C) indicating that such regions are PCR amplification artefacts.
Accessible regions covered by the input library were identified using MACS2 (Zhang et al., 2008)(-q
0.05 --keep-dup all --call-summits -bw 200). Significantly active enhancers, using the input library as
control, were called using MACS2 (Zhang et al., 2008). The analysis was performed for each biological
STARR-seq replicate individually as well as for the merged reads from all replicates. Finally, peaks were
only counted as active STARR-seq enhancers when they were called for the merged reads and for at
least two of three biological replicates and are covered by at least three individual fragments.
Normalized STARR-seq signal for data visualization was generated using bamCoverage of the
deepTools package (Ramirez et al., 2016) for the replicate-merged STARR-seq reads or the input library
to normalize for genomic coverage and sequencing depth (-of bigwig -bs 10 -e --normalizeUsing RPGC
--effectiveGenomeSize 2304947926 --pseudocount 1). Next, signal tracks were normalized to input
library coverage using bigwigCompare (-of bigwig -bs 10 --operation subtract --pseudocount 1).
Heatmaps which show STARR-seq signal distribution at selected regions were generated using
computeMatrix (reference-point mode) and plotHeatmap tools of the deepTools package (Ramirez et
al., 2016). Genomic distribution of FAIRE-STARR with respect to RefSeq genes was annotated with
ChIPSeeker (Yu, Wang and He, 2015).

In order to score the FAIRE-STARR-seq enhancers, the computeMatrix tool of the deepTools package
(Ramirez et al., 2016) was used, this time to obtain the average enhancer activity signal (input and read
depth normalized tracks by bigwigCompare, see above (--operation log2)) over the size-scaled regions
(scale-regions mode). Clustering of FAIRE-STARR enhancers by enrichment of HMs was performed
using the computeMatrix tool (scale-region mode to average HM enrichment per region) and k-means
clustering (k was estimated by the elbow method (total within-cluster sum of square)). Subsequently,
distributions of HMs, TFs, accessibility by ATAC, promoter annotation (RefSeq), transcription (RNA-
seq), and enhancer prediction probability by CRUP (Ramisch et al., 2019) were plotted for the clustered
regions with computeMatrix (reference-point mode on summit of the clustered regions) and
plotHeatmap (Ramirez et al., 2016).

Correlation analyses

Genome-wide correlation analyses for read distributions were performed using multiBamSummary
(deepTools, Ramirez et al., 2016) and filtered reads. The genome was binned into 100 bp bins,
fragments per bin were counted (bins -e -bs 100), the resulting table was analyzed in R (R Core Team,
2017) and pair-wise Pearson correlation coefficients and coefficients of determination were
calculated.

ChlIP-seq analyses
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Paired-end ChIP-seq reads were mapped to the reference genome (mm9) using Bowtie2 (Langmead
and Salzberg, 2012)(--sensitive), and if applicable, mapped reads from the same experiment but
different sequencing runs were merged. SAMtools (Li et al., 2009) was used to filter for proper pairs,
alignment and quality scores (-h -b -f 3 -F 780 -g 10), to select reads mapping only to regular
chromosomes (chrl-19, chrX and chrY), and to remove reads mapping to blacklisted regions
(ENCFF547MET). Input and sequencing depth normalized signal tracks were computed with
bamCompare (-of bigwig --operation subtract -bs 25 --smoothLength 50 -e --normalizeUsing RPKM --
ignoreDuplicates) (Ramirez et al., 2016). Significant RARa binding sites over input sample were
identified using MACS2 (Zhang et al., 2008). For RARa. enhancer inducibility analysis, only RARa binding
sites which overlap with the FAIRE-STARR input library (6,528 of 11,366 RARa sites) were included.

Reprocessing of deposited NGS data

If signal tracks were not available, NGS data for experiments listed in Table S2 were downloaded via
fastq-dump, mapped to mm9 reference genome using Bowtie? (Langmead and Salzberg, 2012)(--
sensitive), and if applicable, mapped reads from the same experiments but different sequencing runs
were first merged and then filtered (-h -b -f 3 -F 780 -q 3) with SAMtools (Li et al., 2009). Signal tracks
were computed with bamCoverage or bamCompare (-of bigwig (--operation subtract) -bs 25 --
smoothLength 50 -e --normalizeUsing RPKM --ignoreDuplicates) (Ramirez et al., 2016) depending on
the availability of a control sample (indicated in Table S2). Reads mapping to blacklisted regions
(Dunham et al., 2012) were excluded. For deposited signal tracks mapped to mm10 reference genome,
lift-over to mm9 was performed using CrossMap (Zhao et al., 2014).

RNA-seq analysis

50 bp paired-end sequencing reads were aligned to the mouse genome (mm9) using STAR (Dobin et
al., 2013)(version 2.5.3a) and ENSEMBL genes (NCBIM37) as annotation reference. SAMtools (Li et al.,
2009) was used to filter reads for proper pairs, alignment and quality scores (-h -b -f 3 -F 780 -q 10), to
select reads mapping only to regular chromosomes (chr1-19, chrX and chrY), and to remove reads
mapping to blacklisted regions (ENCFF547MET). Fragments per gene were assessed using
featureCounts (Liao, Smyth and Shi, 2014) and ENSEMBL gene annotation. To compare expression
between different groups of genes of the same treatment, transcripts per million reads (TPM) were
calculated and compared. Normalization of read coverage and differential gene expression analysis for
different treatments were performed using DESeg2 and LCF shrinkage (Love, Huber and Anders, 2014).
To compare and plot mean expression of genes between different treatments, TMM-normalized
counts (Robinson and Oshlack, 2010) were calculated with the edgeR package (Robinson, McCarthy
and Smyth, 2010). To generate signal tracks for plotting RPKM normalized read coverage at example
loci or heatmaps, bamCoverage was used (-of bigwig -bs 10 -e --normalizeUsing RPKM)(Ramirez et al.,
2016).

ATAC-seq analysis

50 bp paired-end sequencing reads were aligned to the mouse genome (mm9) and filtered as
described for ChiP-seq analysis. Signal tracks for plotting normalized read coverage at example loci or
heatmaps were generated applying bamCoverage (-of bigwig -bs 25 --smoothLength 50 -e --
normalizeUsing RPGC --effectiveGenomeSize 2304947926 --ignoreDuplicates)(Ramirez et al., 2016).

Motif enrichment analyses

To identify TF motifs enriched in sequences of interest, AME (McLeay and Bailey, 2010) was applied (-
-scoring avg --method fisher --hit-lo-fraction 0.25 --evalue-report-threshold 79 --control --shuffle--)
using the JASPAR 2018 clustered vertebrate motif database (Khan et al., 2018) as input motifs. Results
were analyzed in R (R Core Team, 2017), filtered by E-value thresholds as indicated, and plotted with
the ggplot2 package (Wickham, 2009). The JASPAR 2018 vertebrate core motifs and their
corresponding clusters are listed in Table S4. To investigate the enrichment of RARa.::RXRa motifs with
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different spacer lengths and half-site orientations, the corresponding scoring matrices were created
by combining the monomers of the RARa.::RXRa consensus motif (MA0159.1) into direct, inverted,
and everted repeats with zero to eight nucleotides spacing. For the spacers, a uniform nucleotide
frequency distribution was inserted to generate maximal degeneracy.

Counting of enriched motifs per fragment was performed using the matrix-scan function of the pattern
matching program from RSAT software suite (Turatsinze et al., 2008) with a first-order Markov model
estimated from the input sequences as a background model and applying a p-value cut-off (0.002) to
the predicted binding sites.

Heatmaps and anchor plots

Heatmaps and anchorplots depicting ChiP-, DNase-, ATAC-, or RNA-seq distribution or mean
enrichment at selected genomic regions respectively, were generated using computeMatrix
(reference-point mode) and subsequently plotHeatmap or plotProfile tools of the deepTools package
(Ramirez et al., 2016). Sequencing depth and, if applicable and available, input normalized signal tracks
were used.

Assignment of genes to enhancers and gene ontology analysis

To assign putative target genes to STARR enhancers we applied GREAT version 3.0.0 (McLean et al.,
2010) using the whole genome (mm9) as background regions and for association setting “basal plus
extension” with proximal: 5 kb upstream and 1 kb downstream, plus distal: up to 100 kb. The
expression levels of assigned genes per enhancer group or cluster was plotted as TPM derived from
RNA-seq. Additionally, GREAT performs a gene ontology analysis per analyzed enhancer group and
provides enriched GO-terms and significance levels, which were analyzed and cutoffs determined in R
(R Core Team, 2017) and subsequently plotted with the ggplot2 package (Wickham, 2009).

Classifier for enhancer and E-promoter prediction

Pre-processing and motif enrichment: As outlined in Fig. 4a, the 186,959 significantly enriched regions
of the FAIRE-STARR input library were first divided into regions which do (16,769) or do not (170,190)
overlap with ENSEMBL (NCBIM37) promoters, which were defined as regions of -500 bp to the TSS,
and subsequently used to train an E-promoter and enhancer classifier, respectively. For each group,
regions were ranked for their STARR activity (Fig. 4b and S4a) and the sequences of the highest and
lowest ranking 10 or 1% for E-promoters or enhancers, respectively, were used for training of the
classifier. The motifcounter tool (Kopp 2017) was used with default options to calculate sequence-wise
motif enrichment of the 79 clustered motifs from JASPAR matrix clustering 2018 (Khan et al., 2018)
using the union from both sets as background model. Since the width of highest and lowest STARR-
scoring regions was significantly different (Wilcoxon p < 1e-50), region-width was included as a feature
of the classifier. Negative log-transformed p-values of motif enrichment were generated and all
variables were scaled such that they have the same mean and standard deviation, in order to allow for
inferences about feature importance directly from regression model coefficients.

Fitting and evaluation of classifier: To differentiate between the highest and lowest ranking enhancers
based on enrichment of the clustered TF motifs and motif width, a logistic regression model with elastic
net regularization was built. The model combines ridge and lasso penalties to obtain shrunken and
grouped coefficients, that prevent the regression model from overfitting (Zou and Hastie, 2005). For
training and evaluation of the model, a nested cross-validation approach was performed, where the
inner loop is used for the optimization of hyperparameter A (regularization penalty) and the outer loop
to assess the predictive performance on unseen data. Additionally, the second hyperparameter o was
tested over a grid of various values to find the optimal mixing percentage of lasso and ridge regression.
Since only marginal differences in performance were observed, a value of a = 0 corresponding to ridge
regression was chosen to include enrichment of each of the clustered motifs in the classifier. Model
performance for each of the outer cross-validation folds was assessed via the receiver operating
characteristic (ROC) curve to derive a mean and standard deviation of the AU-ROC (area under the ROC
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curve). Preprocessing, training, and testing of the model were performed with R using the gimnet
package (Friedman, Hastie and Tibshirani, 2010) for elastic-net regularized models.
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Results
Generation of a quantitative enhancer-activity map of the meSC genome

To assess the enhancer activity of putative regulatory regions in meSCs, we performed a massively
parallel enhancer reporter assay. To limit the complexity of the library, we prioritized regions that are
likely to act as enhancers (Klemm, Shipony and Greenleaf, 2019) by focusing on accessible chromatin
isolated by FAIRE (formaldehyde-assisted isolation of regulatory regions) as input material for our
STARR-seq (self-transcribing active regulatory regions)(Arnold et al., 2013) library (Fig. 1a). Although
this idea was new at the time of conception, a similar approach has by now also been described by
others that isolated putative regulatory elements by either FAIRE (Chaudhri et al., 2020) or ATAC
(Wang et al., 2018). To determine the complexity of the FAIRE fragments, we sequenced the plasmid
input library (Fig. 1a) resulting in the identification of 4.4 million individual fragments, which cover
about 186,000 significantly enriched open regions. As expected, the enrichment of our input regions
resembles chromatin accessibility determined by DNasel- or ATAC-seq at these sites (Fig. 1b, S1d).
Accordingly, correlation analyses of genome-wide read distribution further confirmed a high
correlation of our input library with DNasel- and ATAC-seq profiles (Fig. 1¢ and Sle), validating that our
library captured open regions, which are enriched for regulatory elements (Klemm, Shipony and
Greenleaf, 2019), on a genome-wide scale.

To get quantitative information regarding enhancer activity, we developed a modified version of
the STARR-seq assay, which introduces unique molecular identifiers (UMIs) during the reverse
transcription step (Fig. 1A). A similar approach has been described, however in that case UMIs are
introduced in a first PCR cycle after the reverse transcription step (Neumayr et al., 2019). The
introduction of UMIs allows one to distinguish between biological replicates and PCR duplicates that
can dramatically distort the relative quantities of individual fragments within a library (Islam et al.,
2014). Genome-wide correlation analyses of read distributions of individual FAIRE-STARR-seq samples
revealed that outlier regions with extremely high read coverage in only one replicate were efficiently
removed during the UMI filtering step (Fig. S1c) indicating that such regions are PCR amplification
artefacts. Upregulation of interferon genes in response to transfection with plasmids can also distort
STARR-seq reporter activation (Muerdter et al., 2018). To test if this is a potential problem in the mESCs
used in our study, we analyzed the expression levels of selected interferon response associated genes.
However, for each of the genes analyzed, the levels were below the gPCR detection limit regardless of
whether the cells were transfected or not (data not shown) indicating that the interferon response is
not activated upon transfection and thus should not influence the STARR activity read-out in our
assays.

Next, active FAIRE-STARR enhancers were identified by performing peak calling for significantly
enriched regions using the input library as background. This was done for each of the three biological
replicates individually and for the merged replicates. We focused only on high-confidence regions by
filtering for enhancers which were called in at least two replicates and were captured by at least three
different fragments. Using these criteria, we identified 4,765 active enhancers with assigned
quantitative STARR-scores, while the majority of the input regions showed no enhancer activity (Fig.
1d and e). To determine what distinguishes active enhancers from their inactive counterparts (182,194
accessible regions without STARR activity covered by our library), we analyzed sequence composition,
TF occupancy and enrichment of a panel of histone modifications (HMs) linked to enhancers in mESCs
(Creyghton et al., 2010; Dunham et al., 2012). In order to reduce the redundancy inherent in many
motif databases that contain multiple highly similar motifs for related TFs, we used the JASPAR 2018
clustered vertebrate motif matrices which group related motifs into non-redundant clusters (Castro-
Mondragon et al., 2017; Khan et al., 2018). As expected, we found that active enhancers are enriched
for sequence motifs of pluripotency TFs such as POU5F1::SOX2 (cluster 18), SOX2 (cluster 33), MYC
(cluster 4) and STAT3 (cluster 32) (Fig. 1g). Furthermore, CG-rich motif clusters (28: SP/KLF, 54: ZNF263,
and 72: NRF1) were enriched for these regions. We also compared the quantity of enriched motifs
between active and inactive regions and found that the number of significant motif hits is higher for
active enhancers when compared to their inactive counterparts (Fig. 1g). On the other hand, inactive
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regions are characterized by an enrichment for motif clusters NEUROD2 (cluster 8) and RUNX3 (cluster
38), which contain TFs associated with differentiation and cell-type specific TFs, most of which are not
expressed in mESCs (Fig. S1f) suggesting that these regions might be primed for activation when ESCs
differentiate towards different cell types. Interestingly, the motif for CTCF, a master regulator of the
genomic architecture (Phillips and Corces, 2009), is enriched for both groups, but this enrichment is
more pronounced for inactive regions (Fig. 1g). Consistent with the observed motif enrichments, we
found that ChiP-seq data for a panel of TFs involved in pluripotency showed higher levels of genomic
occupancy at active enhancers than at their inactive counterparts whereas CTCF occupancy was
slightly higher for inactive regions (Fig. 1h). To compare the chromatin landscape at the endogenous
genomic loci between active enhancers and inactive regions, we performed ChIP-seq for eight HMs in
mMESCs. Intersection of the HM data showed that all three investigated HMs associated with active
enhancers, H3K4mel, H3K27ac, and H3K122ac, as well as the promoter mark H3K4me3 are highly
enriched at active- compared to inactive input regions. For HMs associated with transcription,
H3K36me3 and H3K79me2, we also find an enrichment however not directly at the active enhancer
but rather in the regions flanking it (Fig. S1h). In contrast, repressive marks H3K27me3 and H3K9me3
are depleted at active regions when compared to inactive input regions. Consistent with elevated
H3K4me3 levels, we found that almost half of the active FAIRE-STARR enhancers are promoter-
proximal regions. This percentage is much higher than in our library for which less than 10% of the
regions map near promoters (Fig. 1f). These findings are consistent with a published study showing
that promoters can act as enhancers that control the expression of other genes (Dao et al., 2017).
Taken together, we established a quantitative approach to determine the enhancer activity of
accessible genomic regions resulting in a genome-wide catalog of putative regulatory regions in meSCs.

Quantitative FAIRE-STARR-seq identifies transcription factors associated with distinct enhancer
activity levels

In addition to identifying which regions are active, the UMIs added during the reverse transcription
step facilitate a quantitative assessment of enhancer activity based on the FAIRE-STARR data. This
allowed us to rank the identified active FAIRE-STARR regions by their activity and, for example, to
screen for features associated with different activity levels. To determine if enhancer activity
correlates with expression of nearby genes, we first grouped the active regions into five consecutive
quantiles of ascending activity (Fig. 2a). Next, for each group the individual regions were associated to
neighboring genes by distance. Using this approach, we found that the expression levels for the genes
of each category correlate with the enhancer activity scores with significant differences between the
neighboring groups (Fig. 2b). These findings suggest that our quantitative FAIRE-STARR scores
recapitulate the activity of enhancers in their endogenous genomic setting where they influence the
expression level of nearby genes. Similarly, H3K27ac levels, a mark that is used as a proxy for enhancer
activity (Shlyueva, Stampfel and Stark, 2014), correlate positively with our STARR score (Fig. S2a). This
further indicates that our STARR activity scores capture the activity of enhancers in their endogenous
genomic setting.

To investigate the role of DNA sequence in directing different levels of enhancer activity, we
performed TF motif enrichment analysis comparing active enhancers that are ranked either at the top
or bottom ten percent by STARR activity score (“high” and “low”, Fig. 2c). Interestingly, we found that
the motifs for pluripotency TFs OCT4, SOX2 and NANOG (cluster 18) are enriched for high- as well as
low-ranking enhancers indicating that high activity levels are not dictated by the presence of sequence
motifs for these TFs. Rather, the top-ranking enhancers are characterized by motifs of the SP/KLF
(cluster 28) and ETS (cluster 7) TF families. These factors are ubiquitously enriched at promoters,
irrespective of the cell type and are accompanied by motifs for cell-type specific TFs (Landolin et al.,
2010). For the low-activity enhancers, we found enrichment of motifs of cell type defining TFs, such as
MYOG (cluster 9) and POUF4 TFs (cluster 30), suggesting a priming of enhancers that might play a role
in later developmental stages when these TFs become expressed. Low activity enhancers were also
enriched for the motif of p53, which was recently found to bind “dormant” enhancers in mESCs that
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are located in inaccessible chromatin and become activated upon cellular stress or during
reprogramming (Peng et al., 2020). Another plausible explanation for increased activity levels of
enhancers could be the absolute number of motifs per enhancer as well as on the diversity of these
motifs (Singh et al., 2021). Accordingly, we found that the high-activity enhancers, on average, contain
more motifs (10.6 compared to 9.8 average motifs/enhancer, Fig. 2d) and were 14% larger than
enhancers with low activity (385 bp versus 338 bp for low-activity enhancers, Fig. 2e). Together, these
findings indicate, that the nature of the sequence motifs present as well as the absolute number of
motifs are critical drivers of enhancer activity.

Epigenetic features and transcription factor occupancy define distinct enhancer subsets

Enhancers can be predicted based on the patterns of HMs present, with active enhancers harboring a
high H3K4me1l to H3K4me3 ratio as well as high H3K27ac levels at flanking nucleosomes (Creyghton et
al., 2010; Dunham et al., 2012; Ramisch et al., 2019). However, alternative histone marks for active
enhancers have been described (Pradeepa et al., 2016; Martire et al., 2019; Armache et al., 2020).
Moreover, although HMs correlate with enhancer activity it is largely unclear if this reflects a causative
link (reviewed in Morgan and Shilatifard, 2020). To gain insight into the epigenetic landscape present
at the active STARR enhancers, we clustered the active enhancers based on ChIP-seq signal for a panel
of eight different HMs (Fig. 3a). Consistent with our finding that active enhancers are enriched in
promoter regions (Fig. 1f), we found that about half of the active FAIRE-STARR enhancers show HMs
characteristic for active promoters (cluster A: high H3K4me3, low H3K4me1l, and high H3K27ac signal).
An overlay with annotated promoter regions confirmed that the enhancers of cluster A (we called
these “enhancer-promoters” or in short “E-promoters”) map to annotated promoters (Fig. 3a).
Moreover, RNA-seq as well as H3K36me3 and H3K79me2 levels show that the genes at these
promoters are actively transcribed in mECSs. Notably, enhancers of this cluster do not display the
classical enhancer signature of high H3K4mel over H3K4me3 levels, and consequently are not
recognized by the CRUP enhancer prediction tool (Ramisch et al., 2019), which like many prediction
tools prioritizes high H3K4mel over H3K4me3 levels to call enhancers. This is different for enhancer
clusters B to E which display high H3K4mel levels and varying levels of H3K27ac, thus displaying a
typical epigenetic signature of active enhancers and accordingly a larger overlap with enhancers
predicted by CRUP. Clusters B and C, which display higher H3K27ac signals than clusters D and E, are
highly active enhancers, showing high STARR activity as well as higher CRUP prediction scores. Cluster
F, on the other hand, displays a typical H3K4 methylation pattern of enhancers but is lacking high
H3K27ac levels, indicative of enhancers poised for activity (Creyghton et al., 2010; Rada-Iglesias et al.,
2011). Accordingly, these enhancers have quite low enhancer prediction scores, but still can be
identified as active in our FAIRE-STARR-seq assay. This indicates, that FAIRE-STARR-seq is able to pick
up enhancers with a poised HM signature, while CRUP discards those regions by design.

Cluster G, shows a rather uncommon HM pattern of enriched H3K36me3, a mark for active
transcription, together with elevated H3K9me3, a hallmark of heterochromatin. The combination of
these two marks has previously been reported to occur at the same nucleosome to mark lowly
expressed genes and weak enhancers (Mauser et al., 2017). Interestingly, alignment with the
RepeatMasker database (Smit AFA, Hubley R, 2013) revealed that 93% of cluster G enhancers map to
repeat elements. The majority of these repeats are from the endogenous retrovirus-K (ERVK) family
(Fig. S3f), a rather young family of mouse-specific endogenous retroviruses, which can act as enhancers
in mESCs (Sundaram et al., 2017). Finally, cluster H, which exhibits the lowest STARR signal, also shows
the lowest accessibility based on our ATAC-seq data and lowest enrichment of each HM except
H3K9me3. This indicates that these regions are not very accessible, nor active, in the endogenous
genomic setting and may only be able to unleash their activity in the episomal STARR-seq setting where
such sequences are taken out of their repressive endogenous chromatin context.

Motivated by a study claiming that H3K122ac marks a unique class of active enhancers lacking H3K27ac
(Pradeepa et al., 2016), we included this mark in our ChiP-seq experiments. However, contrary to the
published study, we did not observe a convincing cluster with H3K122ac but lacking H3K27ac. Rather,
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we found that, in general, the signal for H3K27ac and H3K122ac is essentially the same at enhancers.
This is different for promoters, where we found H3K122ac enriched at H3K4me3-marked gene
promoters, irrespective of the H3K27ac state (Fig. S3h).

To study the link between enhancer clusters and nearby gene expression and to test if they are
associated with different categories of genes, we paired the clustered enhancers with genes by
distance and analyzed gene expression levels (Fig. 3b) as well as gene ontologies (Fig. 3c). Overall, we
found that the expression of enhancer cluster-associated genes correlates well with epigenetic
signatures of individual clusters. For example, we find the highest mean expression level for genes
associated with clusters B and C, that show the most prominent signatures of active enhancers (Fig.
3b). In contrast, we find the lowest expression levels for genes associated with clusters G and H, two
enhancer clusters with low levels of active enhancer marks. Interestingly, the function of the genes
associated with different clusters also diverges. For instance, E-promoter cluster A-associated genes
are involved in more general cellular processes, such as nucleic acid, nitrogen compound, and organic
substance metabolic processes, whereas genes associated with clusters B and C play a role in early
embryonic stages (Fig. 3c). Enhancer clusters D to F are associated with genes of medium expression
levels, which are enriched for genes typically expressed at later time points during embryonal
development. Cluster G enhancers correspond to genes with rather low expression levels which are
enriched for zinc finger and KRAB-domain containing genes. The genes of this family of TFs have been
described as marked by H3K36me3 and H3K9me3 (Valle-Garcia et al., 2016), the combination we now
identify at the cluster of associated enhancers as well. Finally, enhancer cluster H is associated with
genes with the lowest mean expression levels of all investigated clusters and no significantly enriched
GO terms could be identified. This is in line with our hypothesis that these enhancers are a
heterogenous group, which are repressed in mESCs but can be activated at different points during
differentiation.

Next, we compared the sequence composition of the enhancer clusters, and found that they display
characteristic patterns of motif enrichment (Fig. 3d). One example is the E-promoter cluster A, which
is enriched for many motifs including CG-rich motifs like SP/KLF family (cluster 28) and NRF1 (cluster
72), as well as motifs of the ETS family (cluster 7). Similarly, analysis of published TF ChIP-seq data
showed different binding patterns for individual enhancer clusters (Fig. S3a). Consistent with a
selective enrichment of their motifs at E-promoters, we found that c-MYC and Ronin selectively occupy
enhancers of E-promoter cluster A (Fig. S3a). The situation is different for KLF4 (a member of the
SP/KLF family) which, as expected, binds E-promoter cluster A, but also to other enhancer clusters that
are enriched for the SP/KLF motif (Fig. S3a). The motif for pluripotency factors OCT4 and SOX2 (cluster
18) is enriched for all enhancer clusters, with the lowest enrichment for cluster A, and ChiP-seq showed
preferential binding at clusters B to F. Enhancer cluster F, lacking the active mark H3K27ac, is enriched
for TF motifs of the ZIC family of TFs (cluster 24) that are implicated in the transition from naive to
primed pluripotency (Yang et al., 2019). Finally, p53, TBP and FOS:JUN motif clusters (36, 64, and 3)
were specifically enriched for repressed enhancer cluster H and p53 was recently described to bind
and activate repressed enhancers upon stress or differentiation stimulus (Peng et al., 2020).

Of note, apart from the transcriptionally active E-promoters, we also find many actively transcribed
promoters without FAIRE-STARR-seq activity (Fig. S3b) showing that enhancer activity is not a general
feature associated with active promoters. Comparison of these promoters with E-promoters shows
stronger enrichment of c-MYC and RONIN at E-promoters, but similar KLF4 occupancy at both groups
(Fig. S3c and d). Further, motif enrichment analysis comparing E-promoters and promoters lacking
STARR-seq activity revealed differences in sequence composition (Fig. S3e). For example, consistent
with the observed selective enrichment by ChiP, the motif for MYC (cluster 4) was more highly enriched
for E-promoters than for regular promoters, while motifs for pluripotency factors OCT4, SOX2, and
NANOG (cluster 18) were more enriched at regular promoters that at E-promoters.

A global comparison between enhancers predicted based on chromatin features using CRUP and
active enhancers identified by FAIRE-STARR revealed that only 2,437 (52.1%) of the active STARR
enhancers were also predicted by CRUP (Fig. 3e) while CRUP predicted 22,833 regions that were not
identified by FAIRE-STARR. The majority of FAIRE-STARR enhancers which were not predicted by CRUP
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fall into cluster A, the E-promoters, and thus display a chromatin signature which is filtered-out by
CRUP. The second largest group of STARR enhancers not detected by CRUP are cluster H regions,
repressed enhancers, which are not marked by the classical enhancer signature recognized by CRUP.
On the other hand, enhancers which were only predicted by CRUP but not picked-up by FAIRE-STARR-
seq showed very low chromatin accessibility by ATAC, and overall lower activation marks (Fig. S3g).
This indicates, that these regions were not included in the FAIRE-STARR input library and thus could
not be identified as active.

Together, we find that enhancers can be grouped based on different HM patterns. These enhancer
clusters have different activities and are associated with genes with different functions. The partial
overlap with CRUP enhancer predictions highlights that HM-based enhancer predictions and functional
assays such as FAIRE-STARR-seq can provide complementary information. For example, FAIRE-STARR-
seq can be used to identify enhancers with typical enhancer signatures, but also to find E-promoters,
poised, and repressed enhancers, which exhibit activity in the episomal reporter background but are
not picked-up by enhancer predictions. Additionally, our data is in line with other studies suggesting
that a formal distinction between promoters and enhancers, and the exclusion of promoter signatures
from HM-based predictions, might not make sense given that promoters can exert both functions (Kim
and Shiekhattar, 2015; Dao et al., 2017; Dao and Spicuglia, 2018) .

Sequence-based prediction of active enhancers in meSC

As shown above, enhancer prediction based on HMs often excludes E-promoters and depends on
several ChlP-seq data sets which are not always available. Here, we set out to build an enhancer
prediction model solely based on DNA sequence using their activity scores from FAIRE-STARR-seq.
Given the different sequence composition and accordingly motif enrichment of promoter and
enhancer regions (Fig. 3d), we chose to analyze candidate regions that map to these two regions
separately. Specifically, we took all accessible regions from our input library and divided them into two
groups: Those overlapping with annotated promoters and those that do not overlap. Next, within each
group, we ranked the regions by their STARR-score and used the 1% or 10% of regions with the highest
or the lowest STARR-score to train two regularized logistic regression (elastic net) models to classify
active and inactive DNA sequences (Fig. 4a, b, and c). As features for each model, we used the width
of the region and enrichment of clustered JASPAR motif matrices (Castro-Mondragon et al., 2017).
Each elastic net regression classifier was fitted to maximize the cross-validated mean AUC which
yielded 0.75 for enhancer regions (Fig. 4b) and 0.87 for E-promoters (Fig. S4a). Thus, the classifier for
both enhancers and E-promoters performed quite well, suggesting that enrichment patterns of TF
motifs alone can be used to distinguish between active and inactive regions for both promoter and
enhancer regions with reasonable accuracy.

To determine which features were most important in predicting if a region is active, we analyzed
the ranked model coefficients (Fig. 4e and S4c) which reflect the importance of individual features for
each optimized activity-prediction model. Interestingly, the two features with the highest coefficient
for both the E-promoter and the enhancer-prediction model are enhancer width and the motif for ETS
TFs (cluster 7). For classification of enhancers, the motif for pluripotency TFs SOX2, OCT4 and NANOG
(cluster 18) was among the top features associated with active regions (Fig. 4e), while it showed a
negative coefficient in the E-promoter classification (Fig. S4c), indicating that pluripotency factors
contribute to enhancer but not E-promoter activity. Similarly, the motif for CTCF scored a positive
coefficient for the E-promoter classification (Fig. S4c), while it was slightly negative for active
enhancers (not in figure, coeff. = -0.045).

Together, our modeling demonstrates that for both enhancers and E-promoters activity can be
predicted from DNA sequence using a rather small feature set of 79 clustered TF motifs and enhancer
width as input.
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FAIRE-STARR-seq identifies enhancers that change their activity upon exiting pluripotency

During ESC differentiation, pluripotency genes are gradually shut down, while genes important for
early differentiation and later cell-type specific genes become activated (Young, 2011; Semrau et al.,
2017). This process is accompanied by gain and loss of activity of differentiation- and pluripotency-
specific enhancers, respectively. To identify enhancers that change their activity upon exiting
pluripotency, we analyzed enhancer activity during the early stages of differentiation using the FAIRE-
STARR-seq approach. Specifically, we compared transfected cells treated with LIF to maintain
pluripotency with cells from the same transfection-batch that were treated for 4 hours with retinoic
acid (RA) to initiate differentiation towards the neuronal lineage (Fig. 5a) (Gudas and Wagner, 2011).
We then focused on enhancer regions which either lost (LIF-dependent) or gained (RA-inducible)
activity upon differentiation. This resulted in the identification of 616 LIF-dependent and 386 RA-
inducible enhancers, which show varying degrees of loss or gain of STARR activity (Fig. 5b). The activity
of these enhancers correlated with changes in the expression of nearby genes, with genes near RA-
inducible enhancers showing, on average, an increase in gene expression (and more associated
upregulated than down-regulated genes) whereas the expression genes near LIF-dependent
enhancers showed, on average, a slight decrease in expression upon differentiation (and more
repressed than upregulated genes, Fig. 5¢ and S5b, c¢). Notably, when compared to all active mESC
enhancers (Fig. 1f) that are typically promoter-proximal, the differentially active enhancers are most
frequently found at distal intergenic regions (Fig. S5a) and display distinct TF motif enrichments (Fig.
5d). For instance, RA-inducible enhancers are more enriched for RARa::RXRa. and ETS-family motifs
than the LIF-dependent enhancers consistent with the activation of RAR upon treatment of cells with
its cognate ligand. Accordingly, when we performed ChiP-seq targeting RARa from RA-treated cells,
we found that RARa. is enriched at RA-inducible enhancers whereas no such enrichment was found for
the LIF-dependent enhancer regions (Fig. S5d). Similarly, consistent with STAT3 activation by LIF, STAT3
binding is more enriched at the LIF-inducible enhancers than at RA-inducible enhancers (Fig. S5d).
Moreover, LIF-dependent enhancers are more enriched for OCT4:5S0X2, SP1-like family, SOX2, NFY,
TEAD and NRF1 motifs than the RA-inducible enhancers. The enrichment of these sequence motifs is
reflected in enriched binding of OCT4, SOX2, NANOG, and KLF4 based on published ChiP-seq data
(Chen et al., 2008, Fig. S5d). Interestingly, binding of OCT4, SOX2, and NANOG was not only enriched
at LIF-dependent but also at RA-inducible enhancers when compared to all active mESC enhancers.
This indicates that pluripotency TFs play a supportive role at RA-inducible enhancers during the early
stages of differentiation.

Next, the regulatory behavior of several LIF-dependent and RA-inducible enhancers identified in
our screen was tested by cloning individual active regions into the STARR-seq vector and analyzing
their activity by qPCR (Fig. 5e). One exemplary LIF-dependent enhancer we tested is located distal to
the Socs3 (suppressor of cytokine signaling-3) gene, which is activated by LIF-mediated STAT3 signaling
(Yu et al., 2017). We confirmed that the Socs3 enhancer is LIF-inducible and this induction is blunted
when the two identified STAT3 motifs were mutated (Fig. 5f). Furthermore, mutation of the two SOX2
motifs of the Socs3 enhancer leads to a marked loss of basal activity. Finally, the combined mutation
of all SOX2 and STAT3 motifs abolished enhancer activity completely. This finding illustrates the
importance of these TFs in facilitating LIF-dependent activity as suggested by the enrichment of
sequence motifs for these TFs at LIF-dependent enhancers (Fig. 5d). We also characterized an RA-
inducible enhancer upstream of the RA target gene Cyp26al, which is pivotal for proper differentiation
(Abu-Abed et al., 2001). The Cyp26al enhancer is inactive during pluripotency but is massively
upregulated upon differentiation (Fig. 5e, f). Consistent with a role of RAR in activating this enhancer,
mutation of both of the identified RARa.::RXRa. motifs resulted in a complete loss of induction upon
RA treatment (Fig. 5f). As a final enhancer, we analyzed the RA-inducible Hoxa enhancer (Fig. 5e, f),
which is located over 70 kb upstream of the RA-responsive Hoxa gene cluster (De Kumar et al., 2015).
The Hoxa enhancer shows basal activity in pluripotency which increases upon differentiation (Fig. 5f).
Interestingly, mutation of the two identified RARa::RXRow motifs reduced basal activity during
pluripotency but did not impair the RA-induced activation, suggesting that other motifs mediate the
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activation. As expected, mutation of the only identified OCT4:SO0X2 motif of the Hoxa enhancer
reduced activity in pluripotency whereas the combined mutation of both RARa::RXRa and the
OCT4:SOX2 motifs completely abolished basal as well as RA-induced activation of the Hoxa enhancer.
To test the role of two RA-inducible enhancers in the regulation of nearby genes in the endogenous
genomic context, we generated CRISPR/Cas9-mediated genomic deletions of these enhancers in
mMESCs. The first enhancer we targeted was the Cyp26al enhancer (E) described above (Fig. 5g). We
were able to generate a single homo- and three heterozygous clonal lines for the Cyp26al E deletion
(Fig. S5e). Analysis of the clonal lines revealed that heterozygous deletion of the Cyp26al E did not
lead to an apparent impairment in upregulation of Cyp26al whereas the homozygous enhancer knock-
out led to a complete loss of inducibility (Fig. 5g). Interestingly, our RNA-seq data showed RA-inducible
expression of two unannotated, spliced, and poly-adenylated transcripts, located anti-sense and only
a few hundred basepairs upstream of Cyp26al (Cyp26al as trx1&2). For these enhancer-proximal
transcripts we found that RA-induction was impaired in the heterozygous lines whereas activation was
completely lost in the homozygous Cyp26al E deletion clone. Inducibility of Hoxal by RA and
expression of OCT4 (Pou5fl), two genes located on other chromosomes than Cyp26al E, was not
affected by the Cyp26al E deletion, indicating that RA-signaling is still functional in the homozygous
enhancer knockout and that the effects observed are specific for transcripts that are enhancer-
proximal. For the other investigated enhancer, upstream of the Hoxa gene cluster (Hoxa E), we were
able to generate only heterozygous deletion mutants (Fig. S5e). These mutants were still able to
activate Hoxal and Hoxa4 upon RA treatment to induce differentiation, however with slightly reduced
levels compared to wildtype indicating that this enhancer might contribute to the RA-dependent
upregulation of the Hoxa gene cluster (Fig. 5h). The impact of the Hoxa E deletion was more prominent
for the non-coding RNA Halrl, which is located upstream of the Hoxa genes and thus closer to the
investigated enhancer. Specifically, the heterozygous deletion of the Hoxa E resulted in a marked
decrease in Halrl expression during pluripotency and much lower levels when cells were treated with
RA to stimulate differentiation. In contrast, expression of Skap2, a gene upstream of the Hoxa gene
cluster, and mESC marker Pou5f1 are not impacted by the Hoxa enhancer deletion, which indicates
specificity of the observed effects. Thus, consistent with the data for the episomal reporter (Fig. 5f),
this indicates a dual function of this enhancer to facilitate basal Halrl expression during pluripotency
as well as induced expression upon differentiation.

Altogether, these results show, that the FAIRE-STARR-seq assay can be used to trace the dynamics
of enhancer activity and can be used to identify enhancers which gain, but also those that loose
enhancer activity upon induced differentiation. These enhancer subsets are characterized by distinct
motif enrichments and the binding of specific TFs and are associated with regulation of nearby genes.

Sequence features associated with RARa-occupied enhancers that change activity upon ligand
binding

Our ChIP-seq experiments targeting RARa., the receptor of RA and key effector in RA-induced
differentiation, uncovered thousands of binding sites. However, only a subset of these RARa-occupied
sites show a change in activity upon RA-treatment in our STARR-seq experiments (Fig. 6a). Moreover,
depending on the RARa-occupied region examined, we found that enhancer activity can either stay
the same, go up, or go down upon addition of RAR’s cognate ligand RA (Fig. 6a, b). To identify sequence
features that may play a role in determining if an RARa-occupied site changes its activity upon RA
treatment, we first determined the effect of RA treatment on enhancer activity for all RARa-occupied
sites covered in our STARR-seq library (Fig. S6a). Next, we defined three categories: Active RARa-
occupied enhancers which (1) do not change activity upon RA treatment (“non-responding)”, (2)
become more active upon RA treatment (“induced”) and finally, (3) RAR-occupied enhancers whose
activity decreases upon treatment (“repressed”, Fig. 6b). Comparison of the motif composition of
these three categories of RARa-occupied enhancers showed several differences that could play a role
in determining if RA treatment induces a change in enhancer activity. For example, RARa.::RXRy
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heterodimer motifs (cluster 25) are more enriched for RARa-occupied regions that are activated in
response to RA than either regions that are not regulated or those with repressed enhancer activity
(Fig. 6¢). Furthermore, clustered TF motifs of nuclear receptors, such as RXRA::VDR (cluster 2) and
PPARG (cluster 41), and motifs for pluripotency factors (OCT4, SOX2, and NANOG, cluster 18) and
SP/KLF (cluster 28) were more significantly enriched for induced RARa binding sites. On the other
hand, RARa-occupied sites that lose activity upon RA treatment had the lowest enrichment of the
canonical RARa.::RXRy heterodimer motif and were characterized by a relatively high occurrence of
motif clusters ZNF384 (cluster 55), HOXAL0 (cluster 22), and CTCF (cluster 48), which could thus play a
role in RARa-dependent repression of enhancer activity. Side-by-side comparison of inducible, non-
responding, and repressed RARa sites showed that RARa. occupancy was comparable for inducible and
non-responding regions with only slightly lower occupancy at repressed sites (Fig. 6f). Interestingly,
chromatin accessibility assessed by ATAC was comparable for induced and repressed RARo-occupied
sites but higher for non-responding sites in pluripotency and only increased marginally at induced sites
upon RA treatment (Fig. 6f). Similarly, H3K27ac enrichment in pluripotency was lower at inducible and
repressed than at non-responding RARa sites and inducible regions only reached comparable levels to
repressed sites upon RA treatment (Fig. 6f). Accordingly, the enrichment of RARa and H3K27ac at
RARa sites did not correlate positively with RA-inducibility (Fig. S6e), indicating that enhancer
inducibility of an RARa site cannot simply be inferred from ChIP enrichment. This further indicates that
sequence composition acts as an additional regulatory layer to control not only if an enhancer changes
its activity but also the direction in which enhancer activity is modulated upon RA treatment.

RARa typically binds as a heterodimer together with retinoic x receptor (RXR) to retinoic-acid
response elements (RAREs) that can have distinct motif architectures, depending on cellular
background and differentiation stage (Delacroix et al., 2010; Chatagnon et al., 2015). These motifs
share the same consensus hexameric direct repeat (DR) however they differ in terms of orientation
and the spacing between the repeat elements (Moutier et al., 2012). To elucidate the possible role of
different spacings of the RARa.::RXRa consensus motif (MAQ0159.1) on RA-induced changes in enhancer
activity, we constructed different repeat orientations and spacings in silico (DR, everted (ER) and
inverted repeats (IR) of the consensus motif with spacing from 0-8 nucleotides) and compared
inducible, non-responsive, and repressed RARa-occupied regions for enrichment of these motifs (Fig.
6d). As previously described (Moutier et al., 2012), we find DRO to be the most enriched spacing for
RARa-occupied sites for all three enhancer subgroups (data not shown). Moreover, induced RARa-
occupied regions are more enriched for each of the investigated motif architectures than their
repressed counterparts and display higher abundance of the consensus repeat half-site (Fig. S6b)
indicating that activation might be driven by direct RARa binding to its response element whereas
repression is not. To determine how DR spacing influences RA-dependent regulation of enhancer
activity in meSCs, we cloned single DRs with different spacings, but the same DR sequence into the
STARR vector. Consistent with previous studies (Moutier et al., 2012), we found that activation was
most prominent for the DR5 spacing, indicating that the ability of RARa to activate enhancers depends
on the spacing of the DRs (Fig. 6e). When we flanked the DR5 element by either an ETS binding site,
which was highly enriched for RA-inducible mESC enhancers (Fig. 5d), or a SoxOct motif, we found no
clear change in enhancer activity for the ETS binding site. In contrast, when the DR5 element was
flanked by the SoxOct motif, we observed an increase in basal enhancer activity and also in RA-induced
activation. This finding indicates a supportive role of pluripotency factors in the RA-induced enhancer
activation by RARa and aligns well with the motif enrichment (Fig. 5d) and mutation analyses (Fig. 5f)
for differentially active enhancers showing that the SoxOct motif is important for both basal and RA-
dependent activation of RARa-occupied enhancers.
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Discussion

This study provides a comprehensive genome-wide enhancer activity map in meSCs assessed by FAIRE-
STARR-seq, that can be used as a resource for further dissection of enhancer function in meSCs, and
identifies various sequence features associated with enhancer activity.

To understand what discriminates active enhancers from inactive accessible regions covered by our
FAIRE-STARR library, we compared these two groups and found that active regions are characterized
by the presence of specific TF motifs as well as the presence of an overall higher quantity of enriched
motifs (Fig. 1g). As expected, among the most prominently enriched motifs for active enhancers were
the motifs of pluripotency factors OCT4, SOX2, and NANOG (cluster 18) but also SP/KLF and ETS family
TFs (cluster 28 and 7), which are TFs almost ubiquitously expressed across cell types. Inactive accessible
regions showed fewer enriched motifs. Moreover, these enriched motifs typically belong to cell-type
specific TFs that are not expressed in mESCs and are associated with differentiation. Consistent with
our findings, a recent study which systematically analyzed the quantity and composition of TF motifs
for meSC enhancers described a threshold for the minimal number of TF motifs required for enhancer
activity (Singh et al., 2021).

The introduction of UMIs during the reverse transcription step allowed us to efficiently distinguish
between biological replicates and PCR duplicates of reporter-derived reads and to analyze enhancer
activity quantitatively. When we started our project, UMIs were not part of the STARR-seq protocol.
However, in the meantime a similar approach has been proposed for low complexity libraries where
UMIs are introduced in the first PCR cycle (Neumayr et al., 2019). By applying UMIs, we could not only
identify active enhancers, but also show that specific sequence features are associated with activity
levels (Fig. 2¢). For example, motifs for SP/KLF (cluster 28) and ETS TFs (cluster 7), which are essentially
ubiquitously expressed across cell types, but also CG-rich motif clusters ZBTB33 (cluster 50), ZNF143
(cluster 63), ZNF263 (cluster 54), and SPIB (cluster 49) are specifically enriched at highly active
enhancers and could contribute to high enhancer activity in meSCs. In contrast, motifs for pluripotency
TFs (cluster 18) are similarly enriched for both highly- and lowly active enhancers and thus seem
required for an enhancer to be active yet not for specifying its activity level. Thus we speculate, that
individual members of the KLF and SP TF families, some of which (e.g. KLF4) were described as
inhibitors of differentiation (Da and Yao, 2006; Aksoy et al., 2014; Tang et al., 2017), could cooperate
with pluripotency TFs to confer high enhancer activity levels. The ETS TF family consists of many
members which conduct different mainly cell-type specific and differentiation-associated functions
(Sharrocks, 2001). Interestingly, ETS factor ETV5, which is very highly expressed in mESCs, was
described to be essential for exit from pluripotency (Akagi et al., 2015; Kalkan et al., 2019) while ETS
factor GABPA, which is the second highest expressed ETS factor in mESCs, was shown to be an activator
of OCT4 (Kinoshita et al., 2007). Therefore, we hypothesize that specific factors of the ETS family,
possibly GABPA, contribute to high enhancer activity in meSCs. On the other hand, TFs specific for
differentiated cell types, such as MYOG (cluster 9), p53 (cluster 36), and POU4F1 (cluster 30) are
enriched at lowly active enhancers. Since many of the TFs associated with low enhancer activity are
not expressed in mESCs, we speculate that these enhancers are primed for high activity once the
specific TFs are expressed e.g. at later stages during differentiation to exert their cell-type specific
enhancer functions. The quantitative nature of our assay also allowed us to assess changes in enhancer
activity during the early stages of RA-induced differentiation and to identify enhancers that gain or
lose activity as well as associated and required TF motifs. As expected, we found that pluripotency TFs
and STAT3 are associated with LIF-dependent enhancer function, however they are also found at RA-
inducible promoters (Fig. 5d, S5d). Mutation experiments of individual reporter constructs (Fig. 5f)
highlighted the crucial contribution of OCT4 and SOX2 motifs to enhancer activity in pluripotency,
RARa::RXRaw motif importance for RA-inducible activation, but also the cooperation of pluripotency
and RARa.::RXRaw motifs in maintaining enhancer activity. Genomic deletion of selected RA-inducible
enhancers (Fig. 59, h) further validated the impact of the identified enhancers on expression of
neighboring genes. Additionally, the quantitative analysis of RARa binding sites revealed a possible
synergistic activation of RA-inducible RARa-bound enhancers by pluripotency TFs and RARa. (Fig. 6e).
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A role of OCT4 in recruiting RAR::RXR to enhancers of differentiation-associated genes has been
demonstrated (Simandi et al., 2016) and together with our data points towards an additional role of
OCT4, and possibly SOX2, in facilitating increased enhancer activity during differentiation.

In our study, only a minor fraction of the probed accessible regions (4,765 of 186,959) showed
significant enhancer activity in at least two out of three replicates. A recent enhancer identification
study based on STARR-seq, assessing activatory potential of the whole genome, found over 18,500
active enhancers in mESCs (Peng et al., 2020). However, the mentioned study assessed a larger input
library and did not remove PCR duplicates from their analyses, and thus applied less stringent cut-offs
that would lead to similar quantities of active enhancers in our assay (e.g., we would call 21 thousand
active enhancers without UMI-aware deduplication). A comparison of enhancers identified in these
two studies reveals that 25.1% of the active enhancers called for our data in serum/LIF conditions
without UMI-deduplicated enhancers coincide with enhancers that overlap with accessible regions
from Peng et al. Vice versa, 33.9% of their enhancers overlap with our dataset. The difference between
these studies might be related to the different promoters of the reporters that were used in these
studies, since differences in promoter-enhancer compatibility can influence whether an enhancer can
activate a promoter or not (Haberle et al., 2019). Given the different experimental set-up of these
studies, these two enhancer catalogs in mESCs could complement each other.

When we analyzed the active FAIRE-STARR enhancers, which were identified by an episomal assay,
for the chromatin signatures present at their endogenous genomic loci, we identified that many show
the expected signature of active enhancers (high H3K4mel/H3K4me3 ratio and high H3K27ac). In
addition, we identified enhancer clusters which can be classified as poised (no H3K27ac), repressed
(elevated H3K27me3 or H3K9me3) or promoters (higher H3K4me3 than H3K4mel) based on their
chromatin context. Strikingly, we found that almost half of the active enhancers are located at gene
promoters (defined as the region up to 1 kb upstream of a TSS, Fig. 1f). The identification of such E-
promoters by FAIRE-STARR-seq is in line with previous reports of promoters that act as enhancers for
other genes (Dao et al., 2017; Diao et al., 2017; Dao and Spicuglia, 2018) and the high percentages of
promoter-proximal enhancers identified by STARR-seq based assays in other cell types (Wang et al.,
2018; Chaudhri et al., 2020). Poised enhancers (cluster F) display enrichment of TF motif cluster 24,
which encompasses TFs ZIC1, ZIC3, and ZIC4. ZIC3 is a critical TF for the transition from naive to primed
pluripotency (Yang et al., 2019) and was shown to activate chromatin-masked enhancers in mESCs,
when taken out of the endogenous context (Peng et al., 2020). Based on our data, we expect that that
ZIC3, or another TF from the ZIC family, activates cluster F enhancers during differentiation.
Furthermore, we identify a subset of enhancers (cluster G) which display enrichment of two
contradictory marks: H3K36me3 associated with active transcription and H3K9me3 which marks
repressed chromatin. This combination of HMs can occur on the same nucleosome (Mauser et al.,
2017), to demark 3’ exons of zinc finger (ZNF) genes which consist of repetitive sequences (Zinc finger
(ZNF) domains) (Blahnik et al., 2011; Hahn et al., 2011), and is possibly the result of two independent
mechanisms, active transcription (H3K36me3) and ATRX chromatin remodeler-mediated preservation
of genomic stability by repressing recombination between ZNFs (H3K9me3) (Valle-Garcia et al., 2016).
We now find ZNF genes to be associated with distal cluster G enhancers (Fig. 3c), which are marked
with the same chromatin signature (Fig. 3a). Interestingly, the vast majority of cluster G enhancers
map to endogenous retrovirus-K (ERVK) family repeats (Fig. S3f), which possess endogenous enhancer
function in mESCs (Sundaram et al., 2017; Todd et al., 2019). Thus, a similar mechanism that ensures
ZNF gene stability might also play a role in preventing recombination between repetitive ERVK
elements that serve as enhancers of these genes.

Motivated by a study claiming that H3K122ac marks a hovel class of enhancers in mESCs (Pradeepa
et al., 2016), we added this HM to our panel of modifications assayed. However, contrary to the
published study, we did not find an enhancer cluster demarked by H3K122ac while lacking the H3K27ac
mark, even when we forced k-means clustering to search for more clusters (data not shown). Rather,
we found that H3K122ac and H3K27ac essentially always co-occur at enhancers. This also fits with the
fact that the same enzymes, histone acetyltransferases p300 and CBP, deposit both the H3K27ac and
H3K122ac marks (Pasini et al., 2010; Tropberger et al., 2013). The situation is different for a subset of
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H3K4me3-marked promoter regions, which have high H3K122ac levels while H3K27ac levels are
relatively low (Fig. S3h). Here a possible explanation is that the selective methylation of H3K27 but not
H3K122 at promoter regions by polycomb repressive complex 2 prevents acetylation of H3K27
whereas H3K122 can still be modified. Accordingly, we find that H3K27me3 levels are higher at
H3K27ac low, H3K122ac high regions. Taken together, these findings highlight the ability of STARR-seq
to identify enhancers that are most likely poised for activation or even repressed, when taken out of
the genomic context. These regions, and also promoters, are frequently excluded from enhancer
prediction tools. Conversely, prediction tools like CRUP identify more putative enhancer regions that
lack accessibility (Fig. S3g) but could be activated once bound by pioneering TFs. Thus, STARR-seq and
enhancer prediction display complementary information about enhancers.

In summary, we generated a genome-wide enhancer activity map by FAIRE-STARR-seq which
catalogs active regulatory regions in meSCs, in pluripotency and after induced differentiation. We
identified features associated with enhancer activity and regulatory elements which are omitted by
standard prediction tools. Our findings can serve as a reference for future functional studies of the
regulatory network of genomic elements in mESCs and contribute to the refinement of computational
methods to predict regulatory elements.
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Figure 1: FAIRE-STARR-seq in mouse embryonic stem cells.

a) Schematic representing the workflow of FAIRE-STARR-seq. b) Heatmaps depicting normalized read distribution
of the FAIRE-STARR input library, DNase- and ATAC-seq at the FAIRE-STARR input regions. ¢) Correlation analysis
of genome-wide read distribution, comparing the input library with DNase-seq data (ENCODE). Normalized and
loglp transformed reads per 10 kb genomic bin are shown. d) Heatmap showing normalized FAIRE-STARR-seq
signal at active (4,765) or inactive (182,194) input regions. e€) Exemplary genomic region encompassing the
Pou5f1 gene. The FAIRE-STARR-seq signal merged from three replicates is shown and inactive, active, and highly
active regions present in the library are highlighted. In addition, ChIP-seq data of histone modifications (HMs) as
indicated, RNA-seq, ATAC-seq and input library signal from mESCs are shown. f) Genomic distribution of input
regions and FAIRE-STARR enhancers with respect to annotated Refseq genes. Promoters were defined as the
regions 1 kb upstream of a TSS. g) Motif enrichment analysis comparing the 4,765 FAIRE-STARR active and an
equal number of randomly sampled inactive input regions. Enrichment of motif clusters is indicated as -log10E-
value and the -log ratio comparing active versus inactive enrichment is shown. Enriched motifs (E <= 1e-5) with
a minimum 20-fold -log difference of E-values between the two groups are shown. The JASPAR 2018 vertebrate
clustered motif database was used as reference and listed TF names display TF groups clustered by consensus
motif similarity (Khan et al., 2018). h) Anchorplots showing mean normalized ChIP-seq enrichment of the
indicated HMs or TFs at FAIRE-STARR active or inactive input regions.
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Figure 2. FAIRE-STARR-seq enables quantification of enhancer activity and activity level-associated sequence
features.

a) FAIRE-STARR enhancers were ranked for their activity (log STARR score) and divided into five groups of
ascending enhancer activity (highlighted by increasing background coloring). Dashed lines depict the 10" and
90™ percentiles of STARR activity. b) Expression of genes paired with FAIRE-STARR enhancers, for each of the five
activity groups as depicted in a). Genes were paired with FAIRE-STARR enhancers by distance using GREAT
(McLean et al., 2010) and TPM values of RNA-seq data are shown. Boxplots depict the distribution of expression
of all genes per group, whiskers extend to 1.5 IQR. TPM values of individual genes are shown as dots. P-values
for unpaired Wilcoxon tests comparing neighboring groups are indicated. ¢) TF sequence motifs enriched at
active FAIRE-STARR enhancers, comparing the most active 10% (high) and least active 10% (low) of the active
enhancers. Enriched motifs (E <= 1e-3) with a minimum 1-fold -log enrichment ratio between the two groups are
shown. The JASPAR 2018 vertebrate clustered motif database was used as reference and a representative TF for
each cluster is listed (Khan et al., 2018). Boxplots depicting d) the number of significantly enriched motifs and e)
length of low- or high-ranking enhancers. Means are indicated as well as p-values for unpaired Wilcoxon tests
comparing the two groups.
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Figure 3. Functional mESC enhancers reside in different epigenomic environments.

a) FAIRE-STARR enhancers were clustered (k-means clustering) based on the enrichment of the eight investigated
histone modifications. For each cluster, the STARR-, ATAC-, and RNA-seq signals were plotted as were promoter
regions (Prom) defined as one kb up- and downstream of the TSSs of annotated Refseq genes. Enhancer
probability scores predicted by CRUP from mESC data are also shown. b) Genes were assigned to enhancer
clusters using GREAT and RNA-seq expression data is shown as dots for individual genes (TPM normalized) and
as boxplots for each enhancer cluster. ¢) Gene ontology analysis of genes associated with each enhancer cluster
showing the fifteen most significant GO terms per cluster and their false discovery rate (-log10BionomFdrQ,
cutoff 1e-03). For each ontology, the number of observed genes (ObsGenes), the significance, and the source of
the assigned ontology are shown. d) TF motif enrichment analysis (AME) for each enhancer cluster using the
JASPAR 2018 vertebrate clustered motif matrices. TF motifs which were enriched (E <= le-5) for at least one
cluster were clustered for TF occurrences applying wards clustering and Manhattan similarity measures. €) Venn
diagram showing the intersection of FAIRE-STARR and CRUP enhancers. FAIRE-STARR enhancers which overlap
with CRUP enhancers (pos) or do not overlap (neg) were assigned to the HM clusters defined in a.
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Figure 4: Sequence-based prediction of active enhancers.

a) The regions of the FAIRE-STARR library were first divided by their overlap with ENSEMBL promoters (region up
to 500 bp upstream of a TSS). Regions which overlap with promoters were used to generate an E-promoter
prediction model, whereas those not overlapping were used for the enhancer prediction model. To this end both
groups (b) putative enhancers and S4a) promoters) were ranked for their STARR score, and 1 or 10% highest or
lowest ranking regions were used for model generation. c) Cartoon depicting how the enhancer prediction model
was trained on ranked regions from our FAIRE-STARR-seq analysis using enrichment of JASPAR 2018 vertebrate
clustered motif matrices and region width as independent variables. 75% of the highest and lowest ranking
regions were used for model training, while the remaining 25% were used for testing. d) Plot shows model
performance as receiver operating characteristic (ROC) curve for each of the outer cross-validation folds, mean
ROC curve with area under the curve (AUC) and its standard deviation. ) The 30 most predictive variables for
the optimal enhancer prediction model and their coefficients are shown. Positive coefficients indicate a positive
association with high STARR scores, while motifs with negative coefficients are associated with low-scoring

elements.
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Figure 5: Differentiation-associated changes in enhancer activity.
a) Treatment scheme to investigate how inducing differentiation of mESCs changes enhancer activity. b) Mean
FAIRE-STARR signal (top) and heat-maps (bottom) for LIF-dependent and RA-inducible STARR enhancers. c)
Number of differentially expressed genes (]log2FC| >=1, p.adj <= 0.05) paired with enhancers by distance using
GREAT. d) Differentially enriched TF motif clusters (JASPAR 2018 vertebrate clustered matrices) for RA-induced
and LIF-dependent enhancers were identified using AME (E <= 1e-3, -logRatio >=5). e) Candidate FAIRE-STARR
enhancers were cloned individually and assessed for enhancer activity by RT-gPCR targeting GFP reporter
transcripts. 20 h after transfection, E14 mESCs were treated for 4 h either with LIF, RA, or ES medium only (none).
Bar plots show normalized mean expression + SE of three replicates (dots). f) TF motifs-matches identified by
JASPAR scan (Table S1) for enhancers as indicated were deleted by site-directed mutagenesis and activity was
analyzed as described in e. g) and h) upper panels show genomic loci encompassing STARR enhancers selected
for genomic deletion using CRISPR/Cas9. Normalized FAIRE-STARR-input, -seq, and RNA-seq signals are shown.
RefSeq genes are shown in either black (protein coding genes) or red (non-coding genes). Lower panels depict
the RNA expression of genes near the deleted enhancer and of control genes for clonal wild type (wt) and
enhancer heterozygous (E +/-) and homozygous (E -/-) deletion clones. Bar plots represent mean gene expression
+ SE of three biological replicates (dots) and 1-3 clonal cell lines (number indicated in brackets) after 4 h of LIF or
RA treatment. Data points for individual clonal lines are shown as dots with matching shapes.
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Figure 6: RA-induced changes in enhancer activity at RARa-occupied sites correlate with specific sequence and
chromatin features.

a) Genome browser view of an exemplary genomic region encompassing RA-inducible and non-inducible RARa
binding sites. Normalized ATAC-, FAIRE-STARR and RNA-seq signals for LIF or RA treated cells and RefSeq genes
for this region in either black (protein coding genes) or red (non-coding genes) b) Distribution of changes in STARR
activity (log2 fold change STARR score RA/LIF) and mean STARR activity (log score, for both treatments) of RARa.-
occupied regions that are covered in our FAIRE-STARR input library (as shown in Fig. S6a). Only regions with a
minimum mean STARR activity >= 2.5 were included for further analysis. The 10% most induced, 10% most
repressed and an equal number of regions that do not respond to RA treatment (non-resp.) were used for motif
enrichment and TF binding analyses. ¢) Enriched TF motif clusters (JASPAR 2018 clustered motif matrices) at
induced, repressed, and non-responsive RARa-occupied sites. TF motif clusters with a maximum E-value of 1e-5
for at least one group and a log fold change >= 2 of induced or repressed over non-responsive regions are shown.
Z-score normalization of E-values per row was performed. d) Different spacings (0-8 nucleotides) and
orientations (direct (DR), inverted (IR), and everted repeat (ER)) of the RARo.::RXRa consensus motif (MA0159.1,
upper panel, arrows highlight repeat orientation) were constructed in silico and used for motif enrichment
analysis using AME. Only motifs which showed significant enrichment (E-value <= 1e-3) for at least one RARa
binding site group are shown. Z-score normalization of E-values per row was performed. e€) Enhancer activity
measured by STARR-RT-gPCR for selected spacing variants of the RARo::RXRa consensus motif (MA0159.1) and
neighboring TF motifs as indicated (scr = scrambled motif) after 4 h of LIF or RA treatment. Bar plots depict the
mean GFP expression + SE for three biological replicates. f) Mean enrichment of RARa and H3K27ac as well as
chromatin accessibility (ATAC) at induced, repressed, and non-responsive RARa-occupied sites.
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