
Automated Generation of Cerebral Blood Flow Maps Using Deep Learning and 

Multiple Delay Arterial Spin-Labelled MRI 
 

Nicholas J. Luciw, MSc a,b; Zahra Shirzadi, PhD a,b,c; Sandra E. Black, MD a,c,d; Maged Goubran, 

PhD a,b,c;  Bradley J. MacIntosh, PhD a,b,c 

aHurvitz Brain Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Canada  

bDepartment of Medical Biophysics, University of Toronto, Toronto, Canada 
cHeart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Toronto, Canada  

dDepartment of Medicine, Division of Neurology, University of Toronto, Toronto, Canada 
 

Abstract 

The purpose of this work was to develop and evaluate a deep learning approach for estimation 

of cerebral blood flow (CBF) and arterial transit time (ATT) from multiple post-label delay (PLD) 

arterial spin-labelled (ASL) MRI. Six-PLD ASL MRI was acquired on a 1.5T or 3T system among 99 

older males and females with and without cognitive impairment. We trained and compared two 

network architectures: standard feed-forward convolutional neural network (CNN) and U-Net. 

Mean absolute error (MAE) was evaluated between model estimates and ground truth 

obtained through conventional processing. The best-performing model was re-trained on 

inputs with missing PLDs to investigate generalizability to different PLD schedules. Relative to 

the CNN, the U-Net yielded lower MAE on training data. On test data, the U-Net MAE was 

8.4±1.4 ml/100g/min for CBF and 0.22±0.09 s for ATT. Model uncertainty, estimated with 

Monte Carlo dropout, was associated with model error. Network estimates remained stable 

when tested on inputs with up to three missing PLD images. Mean processing times were: U-

Net pipeline = 10.77s; ground truth pipeline = 10min 41s. These results suggest hemodynamic 

parameter estimation from 1.5T and 3T multi-PLD ASL MRI is feasible and fast with a deep 

learning image-generation approach.    
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1.0 Introduction 

Arterial spin-labelled (ASL) MRI is becoming increasingly popular and available for examinations 

of cerebral blood flow (CBF) in dementia, stroke, and other neurologic and psychiatric 

diseases.1 While most CBF imaging modalities require an injected contrast agent, ASL is non-

invasive and therefore uniquely suited for follow-up scans and vulnerable patient populations.  

The rising availability of ASL in the clinic can be partially attributed to improvements in pulse 

sequence design of both single post-label delay (PLD) and, more recently, multi-PLD ASL.2 Multi-

PLD ASL is desirable for clinical application because it enables imaging along different stages of 

the vascular network, thereby capturing dynamic information about inflowing blood.3 Such 

information offers the opportunity to quantify the arterial transit time (ATT) and mitigate the 

transit delay confounds evident in single-PLD ASL, as observed in clinical studies.4–6 Multiple 

PLDs, however, require cumbersome and time-consuming post-processing to synthesize CBF 

and ATT images, which limits the clinical adoption of multi-PLD ASL.7  

Deep learning offers advantages for many stages of conventional image processing pipelines,8 

as is the case for de-noising and artifact removal in single-PLD ASL processing.9–12 To date, 

however, the application of deep learning in ASL has been limited to single PLDs. Consideration 

of multiple PLDs, model uncertainty, and additional clinical populations are necessary to 

advance the application of deep learning methods in ASL. 

In this study, we aimed to demonstrate that a deep learning-based processing pipeline is 

feasible for fast and accurate estimation of CBF and ATT from multi-PLD ASL. We performed 

three experiments using scans of older participants with and without cognitive impairment, for 

images acquired at either 1.5T or 3T. First, we trained two convolutional neural networks using 

each PLD as a separate input channel and performed cross-validation to select the best-

performing architecture. Next, we examined the test-set performance of the best-performing 

network and estimated the association between network uncertainty and error. Finally, we 

investigated whether an alternative training scheme could improve model performance when 

tested on inputs with fewer PLD images, emulating alternative PLD schedules. 
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2.0 Methods 

2.1 Participants 

This is a retrospective study of 99 participants scanned between December 2009 and April 2014 

at the Sunnybrook Research Institute (Toronto, ON). Research ethics approval was granted by 

the ethics board at Sunnybrook Research Institute. Participants were recruited through a 

neurology clinic at Sunnybrook Health Sciences Centre (detailed inclusion/exclusion criteria can 

be found at https://clinicaltrials.gov/ct2/show/NCT01800214). Participants were either 

cognitively unimpaired, had a mild cognitive impairment diagnosis, or had a dementia 

diagnosis. 

2.2 Magnetic Resonance Imaging 

Imaging was performed on a 1.5 Tesla GE Signa scanner (General Electric Medical Systems, 

Milwaukee, WI) for 50 participants and on a 3.0 Tesla GE Discovery 750 scanner for 49 

participants. Both scanners were equipped with an 8-channel head array coil for signal 

reception. As detailed in the main text, the MRI protocol consisted of ASL and anatomical 

imaging, namely T1-weighted images. ASL MRI was nearly identical on the two scanners and 

included a 2D echo planar imaging acquisition, 64 x 64 x 17 matrix, 3.5 x 3.5 x 5.6 mm3 voxel 

resolution, TR/TE=3500-5000/17 ms, pseudo-continuous labelling (1500 ms label duration, six 

PLDs of 100, 500, 900, 1300, 1700, 2100 ms), and 12 control-label image pairs for each PLD. 

Labelling was performed using 1000 504μs Hanning-shaped 35° pulses. Additional ASL 

sequence details have been previously reported.13 A long-TR reference image for CBF 

quantification was also acquired at the beginning of each different PLD. Anatomical T1-

weighted imaging was performed for registration and tissue segmentation. The anatomical 1.5 

Tesla T1-weighted acquisition was an axial 3D SPGR with TR/TE= 35/5 ms, flip angle 35°, 256 x 

256 matrix, 0.9 x 0.9 mm2 resolution, and 1.2-1.4 mm slice thickness, depending on participant 

head size. The 3.0 Tesla T1-weighted acquisition was an axial 3D FSPGR with TR/TE/TI: 

8.1/3.2/650 msec, flip angle 8°, 256 x 256 matrix, 0.86 x 0.86 mm2 resolution, and 1.0 mm slice 

thickness.  
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2.3 Image Processing 

2.3.1 Ground truth pipeline 

Ground truth parameter maps were estimated using a standard ASL MRI processing pipeline 

built with tools from the FMRIB Software Library (FSL). Motion correction was applied by 

registering the time series to the middle volume.14 CBF-weighted difference images were 

calculated via sinc subtraction of control and label volumes. Motion-corrupted difference 

images were discarded using the ENABLE quality control algorithm.15,16 Images were skull-

stripped by applying a brain mask estimated from segmentation of the T1w image. CBF and ATT 

were estimated using the BASIL software, which incorporates ASL data from all acquired PLDs 

into a kinetic-model-based inference scheme.17 Resultant ATT images were in units of seconds 

and CBF images were converted to units of ml/100g/min using a standard calibration equation.7  

2.3.2 Proposed pipeline 

Figure 1A shows the proposed pipeline schematic. First, difference images were calculated with 

sinc subtraction of raw control-label ASL volumes. The resultant images were averaged at each 

PLD, resulting in a six-channel input to the neural network. Input and ground truth image 

intensities were standardized by dividing each voxel by the 95th percentile of intensities in the 

training sample. The network outputs were designed to be standardized CBF and ATT images 

that were subsequently scaled using the inverse of the standardization transform.   

2.4 Network implementations 

We implemented two distinct convolutional neural network architectures in Python 3.5 using 

the Keras API of the TensorFlow 2.2 library. As shown in Figure 1B, the two architectures were: 

1) a 3D convolutional neural network (hereafter “CNN”) and 2) a U-Net.18 In both cases, 

trainable parameters were initialized with normally distributed random values. 

For comparison of the two network architectures, the same six-image inputs were used (i.e. 

one 3D image per PLD), along with two output images (i.e. one 3D map for each of CBF and 

ATT). By design, each model varied in the number of trainable parameters. 
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Figure 1 A Image processing pipeline. PLD=post-label delay. B Network architectures. 
Architectures are shown in dashed-line boxes, while the legend is shown in the solid-line box. 
ReLU=rectified linear unit; BN=batch normalization. 

The CNN consisted of five 3D convolutional layers with a 3 × 3 × 3 kernel followed by a ReLU 

activation function. The U-Net included seven convolutional layers with a 3 × 3 × 3 kernel, three 

of which down-sampled the image resolution (i.e. U-Net depth of 3) and three up-sampled the 

images back to the original resolution. Down and up-sampling was performed by a factor of two 

in the x-y plane using convolutions with stride 2.  

2.5 Training details 

We augmented each image (all input and output images) in the training set by applying three 

separate transformations: 1) mirroring in the x-y plane, 2) rotating by +20° in the x-y plane, and 
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3) rotating by -20° in the x-y plane. Therefore, the total dataset used for cross-validation was 

316 image sets (comprising the original 79 times three augmentations for each).  

Training of both networks was performed on a Linux system with an NVIDIA P100 Pascal GPU 

(NVIDIA, Santa Clara, California). For the CNN and U-Net, the loss function was the mean 

absolute error (MAE) adjusted to assign equal weighting to brain and background voxels, 

defined using the average of all images in the training set. Explicitly, the loss function was 

 
ℒ൫𝑦, 𝐶ሺ𝑥ሻ൯ =

σ ȁ𝑦𝑖 − 𝐶ሺ𝑥ሻ𝑖ȁ
𝑛
𝑖=1

2𝑛
+
σ ห𝑦𝑗 − 𝐶ሺ𝑥ሻ𝑗ห
𝑚
𝑗=1

2𝑚
, (1) 

where 𝑦 is the ground truth image, 𝐶 is the neural network (CNN or U-Net), 𝑥 is the input 

image, 𝑛 is the number of brain voxels, and 𝑚 is the number of background voxels. We used the 

Adam optimizer with an initial learning rate of 0.0005 which was reduced to 0.0001 after 100 

epochs. Visual inspection of the loss curves was used to ensure plateau of the training and 

validation losses and to avoid overfitting. Each model was trained for 200 epochs during cross 

validation using a batch size of five image sets. The best performing model was trained for 600 

epochs on the entire training set prior to testing, also using a batch size of five. The number of 

trainable parameters in each of the networks was: CNN=58,592; U-Net=88,792.  

The best performing model architecture was selected based on the lowest aggregate 

(normalized CBF and ATT) MAE of grey matter voxels across all validation data in the cross 

validation. 

2.6 Experiments 

Prior to cross-validation, a random 80%/20% train/test split was employed. Splits were 

stratified by scanner magnetic field strength. 

2.6.1 Cross-validation for architecture selection 
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A five-fold cross-validation of the training set, stratified by scanner magnetic field strength, was 

used to select the best-performing network architecture. Performance was evaluated based on 

aggregate (CBF and ATT) mean absolute error (MAE) of grey matter voxels.  

2.6.2 Evaluation of model performance and model uncertainty estimation 

We re-trained the architecture corresponding to the best-performing model on the entire 

training set. Performance was evaluated on the test set using MAE and the structural similarity 

index for both CBF and ATT. MAE was evaluated across all grey matter, all white matter, and 

five grey matter regions: frontal lobe, parietal lobe, occipital lobe, temporal lobe, and 

subcortical grey matter. Regions were identified using the MNI152 atlas and registered to each 

individual’s ASL image using FSL FLIRT, and using registration to the individual’s T1w image as 

an intermediate step.19  

We used dropout (random deletion of network connections) during testing to produce non-

deterministic network estimates.20 The dropout rate was set to 0.30. Two uncertainty heuristics 

were subsequently considered: standard deviation and coefficient of variation across 500 

samples.  

2.6.3 Generalizing to cases with missing input images via curriculum training 

We re-trained the model using a learning scheme in which one or more of the six input images 

were deliberately missing (i.e., image intensities set to zero). This strategy emulates changing 

the PLD schedule and reducing the scan duration. Examples with missing data were introduced 

during training in order of increasing difficulty, meaning more inputs missing and therefore less 

information provided (a strategy known as curriculum training).21 We removed inputs in a 

systematic outside-in fashion: first the 100ms PLD image was removed, then 2100ms, then 

500ms.  

Curriculum training was performed for 600 total epochs wherein the inputs with missing PLDs 

were introduced starting at epoch 200, after which the difficulty of training examples was 

increased (i.e., another PLD was removed) at epochs 300 and 400.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2021. ; https://doi.org/10.1101/2021.06.04.446768doi: bioRxiv preprint 

https://doi.org/10.1101/2021.06.04.446768
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

2.7 Processing Time Determination 

Total processing time of both the proposed pipeline and the ground truth reference pipeline 

were estimated by timing the processing of a single dataset ten times.  

2.8 Statistical Analyses 

All data were tested for normality with the Shapiro-Wilk test. In the case of a significant result 

(a priori significance threshold = 0.05), non-parametric statistical tests were employed.  

We performed a two-tailed t-test (a priori significance threshold = 0.05) to test for differences 

between field strengths in grey matter MAE of CBF and ATT (Wilcoxon signed-rank test was 

used for ATT due to evidence of non-normality).  

The relationship between regional MAE in grey matter and the standard deviation uncertainty 

heuristic was investigated with a linear mixed-effects model with grey matter region as a 

random intercept term. 

To evaluate whether curriculum training improves performance when three PLDs were 

removed from the input, a two-tailed Wilcoxon signed-rank test compared MAE of the 

curriculum-trained model with the model trained on only six-input images. Using a repeated-

measures ANOVA, we tested for differences in CBF MAE of the curriculum-trained model 

between examples with zero, one, two, and three input images removed; in the case of ATT, we 

used the non-parametric equivalent of repeated-measures ANOVA, the Friedman test, because 

there was evidence for non-normality of ATT MAE.  

2.9 Code availability 

Python code used to train the models, evaluate performance, and generate the figures 

presented in this manuscript will be available at https://github.com/nluciw/Deep-

learning_for_mPLD-ASL. The TensorFlow-based models and weights will also be available. 
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3.0 Results 

3.1 Participant demographics 

Demographics and basic clinical information of the 99 participants are shown in Table 1. 

Scanning was performed at 1.5 T for 50 participants and at 3.0 T for 49 participants. 23 

participants were cognitively unimpaired, 17 had a mild cognitive impairment diagnosis, and 59 

had a dementia diagnosis.  

 1.5T Images 
(N = 50) 

3.0T Images 
(N = 49) 

Demographics   

Age, mean (SD) 73.1 (8.8) 73.6 (8.1) 

Females, n (%)  27 (54.0) 30 (61.2) 

Dementia Diagnosis   

Alzheimer’s Disease 15 23 

Cortical Basal Syndrome 3 0 

Dementia with Lewy 
Bodies 

3 0 

Frontotemporal 
Dementia 

7 4 

Vascular Dementia 1 0 

Cortical Basal Syndrome 
/ Progressive 
Supranuclear Palsy 

1 0 

Dementia with Lewy 
Bodies / Parkinson’s 
Disease Dementia 

1 0 

Alzheimer’s Disease / 
Frontotemporal 
Dementia 

1 0 

Mild Cognitive 
Impairment 

16 1 

Cognitively unimpaired 2 21 

Table 1. Participant 
demographics. Additional 
detailed diagnostic information 
is provided for the group with 
a dementia diagnosis. 
SD=standard deviation. 
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3.1 Selection of network architecture: cross-validation on training data 

The MAE of CBF estimates across five-fold cross-validation were: CNN = 10.3  5.0 ml/100g/min 

and U-Net = 9.2  1.7 ml/100g/min. The MAE of ATT estimates were: CNN = 0.30  0.18 s and 

U-Net = 0.27  0.18 s. Because the U-Net produced estimates with the lowest MAE, we chose 

the U-Net as the best-performing architecture to consider for the next experiments. 

3.2 Test set performance of the U-Net 

The performance of the U-Net on the test set is shown in Figure 2 and Table 2. Average (mean  

standard deviation) grey matter MAE for CBF and ATT estimates was 8.4  1.4 ml/100g/min and 

0.22  0.09 s. Average grey matter MAE was lower for CBF (two-tailed t-test: t=-3.04, p=0.014), 

but not ATT (two-tailed Wilcoxon signed-rank test: W=25.0, p=0.799), in the scans acquired at 

1.5T compared to 3T. Representative high and low MAE network estimates and corresponding 

ground truth images are shown in Figure 3. 

 CBF (mean ± std) 
[ml / 100g / min] 

ATT (mean ± std) 
[s] 

Mean absolute error   

Grey matter 8.4 ± 1.4  0.22 ± 0.09  

Frontal lobe 8.3 ± 2.1  0.18 ± 0.07  

Occipital lobe 8.2 ± 1.5  0.25 ± 0.11  

Parietal lobe 7.6 ± 1.4  0.16 ± 0.07  

Temporal lobe 9.1 ± 1.8  0.30 ± 0.15  

Subcortical 7.5 ± 3.0  0.16 ± 0.13  

White matter 7.5 ± 1.9  0.16 ± 0.07  

Structural similarity 
(entire image; unitless) 

0.78 ± 0.10 0.77 ± 0.04 

Table 2. Test set (n=20) performance characteristics. For reference, average ground truth grey 
matter CBF and ATT across the test set was 51.1 ± 12.1 ml/100g/min and 1.21 ± 0.08 s. 
std=standard deviation. 
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Figure 2. Test set performance. A Association between network estimate and reference images 
averaged across five grey matter regions (resulting in five data points per participant). Colours 
denote grey matter region.  B Mean absolute error (MAE) and structural similarity (SSIM) index 
between network estimate and ground truth. Samples are stratified by scanner field strength. 
Colours denote clinical status.  MCI=mild cognitive impairment; CU=cognitively unimpaired. 

A

B
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Figure 3. High-quality and low-quality examples of CBF and ATT estimates for both 1.5T and 3T 
scans. Each panel displays four axial slices from the same image (top: most superior, bottom: 
most inferior). Each pair of panels displays the network estimate and the reference ground 
truth on the left and right, respectively. Each column displays images from the same individual. 
Ref.=reference ground truth image, MAE=mean absolute error. 
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3.3 Network uncertainty estimation

 

Figure 4. Network uncertainty heuristics estimated through Monte Carlo dropout.  A 
Association of standard deviation with mean absolute error of regional grey matter CBF 
estimates in each test set participant. Colours denote grey matter region. B Association of 
network standard deviation with mean absolute error of ATT estimates. C High-quality 3T CBF 
estimate alongside reference ground truth, difference between estimate and ground truth 
reference, and uncertainty estimates. D Low-quality 3T CBF estimate alongside reference 
ground truth, difference between estimate and ground truth reference, and uncertainty 
estimates. Yellow arrows highlight an example of an area where high uncertainty overlaps with 
high error. 

Figures 4A and 4B show the network uncertainty heuristics and mean absolute error for CBF 

and ATT. Across individuals, a linear mixed effects model revealed an association between 

uncertainty and MAE of both CBF (𝛽=0.16, t=2.64, p=0.0097) and ATT (𝛽=0.048, t=3.43, 

Reference
Network 
est im ate Standard  

deviat ion

Coefficient  of  

variat ion
C

D

Uncertainty

A
Difference 
(net  - ref.)

B
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p=0.0009). Representative uncertainty maps for high and low-quality CBF estimates are shown 

in Figure 4C and 4D, respectively. 

3.4 Curriculum training for parameter estimation with less than six input images 

MAE as a function of missing ASL data is shown in Figure 5. Two models are depicted: one 

trained on examples with missing input data (i.e. curriculum-trained) and one trained with only 

the full input data. The curriculum-trained model had significantly lower CBF MAE relative to 

the model trained on full inputs when considering inputs with three images removed (two-

tailed Wilcoxon signed-rank test: W<0.1, p=8.86×10-5). Repeated-measures ANOVA revealed no 

differences in CBF MAE of the curriculum-trained model across the schedules with zero, one, 

two, and three input images removed (F=1.70, p=0.177). 

 

Figure 5. Model performance when PLDs are removed from the input, emulating a different 
PLD schedule. Performance of two models is shown: 1) the model trained on examples with all 
six images as input; 2) the curriculum-trained model, trained on examples with up to three 
input images missing. Translucent points show individuals’ data, large solid circles show mean, 
and bars show 95% confidence intervals. MAE=mean absolute error; PLD=post-label delay. 

For ATT estimates, the curriculum-trained model similarly had significantly lower MAE relative 

to the model trained using full inputs when considering inputs with three images removed 

(two-tailed t-test t=-5.67, p=1.8×10-5). There were significant differences in ATT MAE of the 
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curriculum-trained model across the schedules with zero, one, two, and three input images 

removed (Friedman test: F=19.92, p=0.0002).  

3.5 Processing times for U-Net and ground truth pipelines  

The total processing time of the U-Net approach was 10.77 ± 0.19 s. The U-Net model alone 

took 2.44 ± 0.03 s. In comparison, the total processing time of the ground truth calculation was 

10 min 41 s ± 40.8 s (of which approximately 4 mins was for tissue segmentation used by the 

ENABLE quality control algorithm).  

4.0 Discussion 

In this study, we trained deep convolutional neural networks to estimate cerebral blood flow 

and arterial transit time maps from multi-PLD ASL MRI. The U-Net modestly outperformed the 

standard CNN with average CBF estimation error of 8.4  1.4 ml/100g/min on the test set. U-

Net uncertainty estimates were associated with MAE of the network-generated CBF and ATT 

maps. Lastly, through a curriculum learning scheme, we trained the U-Net to improve its 

performance when fewer image inputs were provided. The U-Net-based pipeline was 

substantially faster than the ground truth pipeline, a crucial consideration in time-constrained 

clinical settings. 

Overall, the average test set CBF error of the U-Net model was comparable to the variability 

that tends to occur because of different processing choices in a standard ASL pipeline, reported 

to be between 5-10 ml/100 g/min.22 This finding suggests our proposed pipeline is feasible for 

CBF estimation and there is no data quality penalty despite substantive savings in processing 

time.   

The U-Net outperformance of the CNN during cross-validation was modest and may be sample-

specific or related to the number of trainable parameters and architecture design. Further 

hyperparameter optimization may produce different results. 
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In the test set, we observed a significant effect of scanner field strength on network CBF MAE; 

somewhat unexpectedly, 1.5T data had lower MAE than 3T data, which may reflect two 

considerations. First, with a lower signal-to-noise ratio, 1.5T data could permit the network to 

learn average noise features. Second, the participant demographics were different for the two 

scanners, with more cognitively unimpaired individuals scanned at 3T. We also observed two 

outliers in this 3T cohort, based on low structural similarity index. These outliers were less 

prominent based on the MAE metric, which may reflect both the choice of MAE as the training 

loss function and the fundamental differences between MAE, which assesses differences 

between each voxel, and structural similarity, which is a whole-image summary metric.   

Estimating model uncertainty provided insight on regional model performance without the 

need for ground truth comparison. Expedient access to uncertainty information is pertinent in 

clinical deployment of deep learning methods: uncertainty can offer quantification of image 

quality and is a potential avenue for automated quality control. Indeed, the standard deviation-

based uncertainty heuristic was associated with both CBF and ATT errors in grey matter. As a 

secondary metric, we also evaluated uncertainty based on the coefficient of variation, which 

displayed qualitatively distinct contrast relative to standard deviation. This was likely due to 

association between standard deviation and CBF; therefore, the coefficient of variation, which 

is the standard deviation relative to CBF, may be differently sensitive to errors.  

By training the network on inputs with missing PLDs from the six-PLD acquisition, we 

demonstrated preliminary evidence that the network may generalize to accommodate different 

acquisitions, which is desirable to allow patient-specific PLD schedules and to reduce scan 

duration. As expected, the model performed better on three-PLD inputs after it trained on 

examples with a three-PLD input. Notably, this curriculum-trained model exhibited no 

performance decrements in CBF estimates across inputs with up to three missing PLDs. 

Therefore, a single model may be used in a setting where different PLD schedules are acquired, 

without the need for re-training. Conversely, considering ATT estimates, the curriculum-trained 

model performed better using inputs with three PLDs compared to six, five, or four PLDs; 

further attention to the learning scheme may be warranted to improve ATT estimation. 
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Study limitations are discussed herein. First, the models do not explicitly incorporate tissue 

equilibrium magnetization, which is vital for absolute quantification of CBF. In the current 

study, the model may learn to scale appropriately because there are only two scanners; 

generalizability would require additional investigation of a broader set of pulse sequences and 

scanners. Second, although we implemented two network architectures, we did not perform 

exhaustive hyperparameter tuning. Thus, the results of the current study provide a benchmark 

for future studies. Third, the cognitive neurology sample was relatively small, which limits the 

investigation of sources of performance variability and sensitivity to diagnosis. Finally, the 

imaging sequence studied here is one implementation of multi-PLD ASL and, in the absence of a 

standardized protocol, future work is needed to expand on pulse sequence parameters. 

In this study, we demonstrated the feasibility of using a deep neural network to estimate CBF 

and ATT from multi-PLD ASL MRI. We highlighted an avenue for quality control via network 

uncertainty heuristics and demonstrated the potential to generalize to a range of multi-PLD 

schedules. By simplifying and improving efficiency of the ASL workflow, this deep learning-

based pipeline is a step toward wider adoption of multi-PLD ASL MRI.  
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